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Marvin Knöller for their wonderful collaboration and the fun time we have together. Un-

dertaking this PhD has truly been a tremendous experience for which I am very grateful.

1



Abstract

The focus of the research described herein is the scattering of time-harmonic electromag-

netic waves when encountering with impenetrable and penetrable obstacles. We study

both the direct and inverse problems. In the case of an impenetrable obstacle, we assume

perfectly conducting boundary condition and apply the integral equation method to show

well-posedness of the direct problem. In the case of a penetrable obstacle, we assume

conducting transmission conditions and apply both the integral equation and variational

method to show well-posedness. The inverse problem we consider is determining the shape

of an obstacle from the knowledge of the far field pattern. Specifically, we concentrated on

uniqueness issues, that is, we examined under what conditions an obstacle can be identified

from a knowledge of its far far field patterns for incident plane waves. We conclude this

thesis with a discussion of an interior eigenvalue problem motivated by the penetrable case

with conducting boundary conditions and show that the set of transmission eigenvalues

form at most a discrete set.
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1 Introduction

In mathematics and physics, scattering theory provides a framework for studying and

understanding the scattering of waves and particles. Wave scattering occurs when a wave

collides with some material object and scatters, and scattering theory provides a setting for

studying and understanding the interaction or scattering of solutions to partial differential

equations. In particular, scattering theory deals with two basic problems: the scattering of

time-harmonic acoustic or electromagnetic waves by a bounded impenetrable obstacle and

by a penetrable inhomogeneous medium of compact support. The focus of this research

was the scattering of time-harmonic electromagnetic waves. We considered the case of

an impenetrable obstacle with perfectly conducting boundary condition and the case of a

penetrable obstacle with conductive transmission conditions. In the case of an impenetrable

obstacle, we assumed the obstacle to be embedded in an inhomogeneous and bounded

medium, whereas in the case of a penetrable obstacle, we assumed the scatterer to be an

inhomogeneous medium situated in a homogeneous background. Moreover, we considered

a transmission eigenvalue problem for the case of conductive boundary conditions.

In the discussion below we will consider both the direct (also called forward) and the inverse

problems for both the impenetrable and penetrable cases. The direct scattering problem

is to find the scattered wave given information on the boundary of the scatterer and the

nature of the boundary condition. We will address the questions of uniqueness, existence

and stability, i.e. the continuous dependence of the scattered fields Es, Hs with respect to

the corresponding incident fields Ei, H i. In other words, we address the question of the

well-posedness of the direct problem, as postulated by Hadamard in mathematical physics,

which, generally speaking, can be studied either by applying the integral equation or the

variational method. In Chapter Two, we apply the former in the case of an impenetrable

obstacle, whereas, in Chapter Three, we apply both methods in the case of a penetrable

obstacle.

The field of inverse scattering theory has been a particularly active area within applied

mathematics for the past thirty years. The two basic aims of research in this field has been

to detect and to identify unknown objects through the use of acoustic, electromagnetic

or elastic waves. In many practical applications, the detection and identification aims are

connected in a complicated way. For instance, a problem in medical imaging could involve

the presence of a hard object inside a damaged human body. Here, we are interested both in
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locating the object and recovering the damage by exterior measurements and one possible

model would be an object inside an inhomogeneous structure. The goal we would have in

mind in this situation is to determine the shapes of the scatterers from the knowledge of

the far field patterns E∞, H∞. In contrast to the direct problem, the inverse problem is

improperly posed. As mentioned above, a problem is well-posed in the sense of Hadamard

if the solution exists, the solution is unique and the solution depends continuously on the

data. A problem is ill-posed if at least one of these three statements does not hold, as is

the case for the inverse problems we will be considering. In particular, small perturbations

of the far field pattern in any reasonable norm lead to a function that lies outside the class

of far field patterns. Nevertheless, the inverse scattering problem is important in areas

such as radar, sonar, geophysical exploration, medical imaging and nondestructive testing.

With the knowledge of the direct scattering problem, the inverse problem is currently in

the foreground of mathematical research in scattering theory.

The transmission eigenvalue problem refers to a family of spectral problems and is a class

of non-selfadjoint eigenvalue problem. It is a boundary value problem for a set of equa-

tions defined in a bounded domain coinciding with the support of the scattering object.

It is related to the scattering problem for inhomogeneous medium that has become an

important area of research in inverse scattering theory. The solution of the transmission

eigenvalue problem can be viewed as determining an incident field such that for a given

inhomogeneous medium, the scattered field is zero. In recent years, particular attention

has been given to the study of the frequencies for which this problem has non-unique so-

lutions, i.e. the so-called transmission eigenvalues, whose values can, for instance, be used

to determine the values of the medium physical parameters. This research involved the

study of the transmission eigenvalue problem for Maxwell’s equations where both physical

parameters ε and µ differed from the ε0 and µ0 modelling the background medium, with

conductive transmission conditions. As we will prove the problem is of Fredholm type, and

the transmission eigenvalues form at most a discrete set.

1.1 Maxwell’s equations

Let E and H denote the electric and magnetic fields, respectively. The electromagnetic

wave satisfies Maxwell’s equations

curl E + µ
∂H
∂t

= 0, curlH− ε∂E
∂t

= σE ,
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where ε, µ and σ are the electric permittivity, magnetic permeability and conductivity,

respectively. In the time-harmonic case, we assume that the electric and magnetic field

can be decomposed into space-dependent and time-dependent parts as follows:

E(x, t) = E(x)e−iωt, H(x, t) = H(x)e−iωt,

where ω > 0 is the frequency. Then, the (complex-valued) fields E and H satisfy

curlE − iωµH = 0, curlH + iωεE = σE.

Both in the case of an impenetrable and a penetrable obstacle, we consider the scatter-

ing of an incident time-harmonic electromagnetic wave E i(x, t) = Ei(x)e−iωt, Hi(x, t) =

H i(x)e−iωt, x ∈ R3, t ∈ R, t > 0 with Ei and H i satisfying

curlEi − iωµ0H
i = 0, curlH i + iωε0E

i = 0 in R3,

where ε0 and µ0 are real positive numbers, denoting the electric permittivity and magnetic

permeability in a vacuum. This incident wave is assumed to be scattered by a medium,

resulting in the total fields E and H, given as the sum E = Ei + Es and H = H i + Hs,

respectively, where Es and Hs denote the scattered fields. For Es and Hs to be outgoing,

we require them to satisfy the Silver-Müller radiation condition√
µ0

ε0

Hs(x)× x− |x|Es(x) = O
(

1

|x|

)
as |x| → ∞

uniformly with respect to all directions x/|x|. The above radiation condition leads to an

asymptotic behavior of the form

Es(x) =
eik|x|

|x|

{
E∞

(
x

|x|

)
+O

(
1

|x|

)}
, (1.1)

Hs(x) =
eik|x|

|x|

{
H∞

(
x

|x|

)
+O

(
1

|x|

)}
(1.2)

as |x| → ∞, where the vector fields E∞ and H∞, defined on the unit sphere S2 = {x ∈
R3 : |x| = 1}, are the electric far field pattern and magnetic far field pattern, respectively,

of the scattered waves. The constant k := ω
√
ε0µ0 > 0 is called the wave number, because
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k/2π tells us the number of wavelengths per unit length. The far field pattern satisfy

H∞ =
x

|x|
× E∞ and

x

|x|
· E∞ =

x

|x|
·H∞ = 0,

with the unit outward normal x̂ = x/|x| on S2. A vanishing magnetic far field pattern

on the unit sphere implies Hs = Es = 0 in R3 \ D (see [6]), that is, the far field pattern

uniquely determines the scattered wave and consequently the total wave in the exterior of

the scatterer.

1.2 Spaces and traces

In order to formulate and study the scattering problems, we require appropriate function

spaces that are based or built on the Sobolev spaces for scalar- and vector-valued func-

tions. The theory of Sobolev spaces was originated by Russian mathematician S.L. Sobolev

around 1938. These spaces were not introduced for purely theoretical reasons, but for the

purposes of the theory of partial differential equations, see e.g. [18], [2].

A large part of our work concerns Maxwell’s equations on bounded domains in R3 (un-

bounded domains will be reduced to bounded domains by a truncation problem). By a

domain in R3 we mean an open connected set in 3-dimensional real Euclidean space R3.

In this section, we let G ⊂ R3, be a bounded domain with unit outward normal ν and

boundary ∂G = Σ. By a unit outward normal, we mean a normal vector, such that |ν| = 1,

pointing towards the exterior of G. Vector-valued functions are indicated by the superscript

’3’ and, unless otherwise stated, all functions are complex-valued. The dot ’·’ denotes a

complex scalar product. For a general Hilbert space X, we denote the dual space by X ′.

The support of a function is defined by

supp u = {x ∈ G : u(x) 6= 0}.

We start by defining some standard spaces of continuous functions (see e.g. [18]) and

classes of domains.

Continuous functions. For 0 ≤ k <∞ we define:

Ck(G): the set of k-times continuously differentiable functions on G;

Ck
0 (G): the set of functions u ∈ Ck(G) having compact support in G;
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Ck,α(G): the set of k times continuously differentiable functions on G such that the

k’th partial derivatives are Hölder continuous with exponent α, where 0 < α ≤ 1;

Ck(G): the set of functions in Ck(G) which have bounded and uniformly continuous

derivatives up to order k on G (i.e. the restrictions of functions in Ck
0 (R3) to G);

C∞(G) =
⋂∞
k=1C

k(G): the set of smooth functions;

C∞0 (G) = C∞(G)∩C0(G): the set of smooth functions having a compact support in

G.

As mentioned above, in the case of vector fields, we will write ’3’ as a superscript to the

space. So, for example Ck(G)3 = Ck(G,C3) denotes all k-times continuously differentiable

vector fields G→ C3.

Definition 1.1. The boundary Σ = ∂G of a bounded domain G in R3 is Ck-smooth,

0 ≤ k ≤ ∞, if for every x ∈ Σ there is an open set U ⊂ R3 with x ∈ U and an orthogonal

coordinate system with coordinates ζ = (ζ1, ζ2, ζ3) having the following properties. There is

a vector a ∈ R3 with

U = {ζ : − aj < ζj < aj, j = 1, 2, 3}

and a Ck-continuous function g defined on

U ′ = {ζ ′ ∈ R2 : − aj < ζj < aj, j = 1, 2}

with |g(ζ ′)| ≤ a3/2 for all ζ ′ ∈ U ′ such that

G ∩ U = {ζ : ζ3 < g(ζ ′), ζ ′ ∈ U ′} and

Σ ∩ U = {ζ : ζ3 = g(ζ ′), ζ ′ ∈ U ′}.

The boundary Σ is said to be Lipschitz continuous if the function g which describes the

boundary locally is Lipschitz continuous, that is, there exists a constant L > 0 such that

|g(ζ ′)− g(η′)| ≤ L|ζ ′ − η′| for all ζ ′, η′ ∈ U ′.

We will simply say that the domain is Lipschitz or Ck-smooth when we mean that it

has a Lipschitz continuous or Ck-smooth boundary. We note that a Cm-smooth domain

(m ≥ 1) is also a Lipschitz domain. One key property of a Lipschitz domain is that it has

a well-defined unit outward ν at almost every point on Σ.
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Lp and standard Sobolev spaces. For 1 ≤ p <∞, Lp(G) denotes the set of functions

φ on G for which |φ|p is integrable, or, stated more exactly, functions φ such that∫
G

|φ|pdx <∞.

The norm on Lp(G) will be deonted by ‖ · ‖Lp(G). In the case of vector fields, we write

Lp(G)3. The most important case here is p = 2, which is the set of all square-integrable

functions on G. In the case of L2(G)3, an inner product exists and will be denoted by

(·, ·)G, that is

(U, V )G =

∫
G

U · V dx =

∫
G

3∑
j

UjV j dx

for U, V ∈ L2(G)3, and the norm induced by the inner product will be denoted by ‖ · ‖G.

For a bounded Lipschitz domain G, C∞0 (G) is dense in L2(G) (see e.g., lemma 3.4 in [2]).

We use the standard multi-index notation for derivatives. Let α = (α1, α2, α3)T ∈ Z3
+ and

x = (x1, x2, x3)T ∈ R3, where Z+ is the set of non-negative integers. We then set

|α| =
3∑
j=1

|αj|, xα = xα1
1 x

α2
2 x

α3
3 , ∂α =

∂|α|

∂xα1
1 x

α2
2 x

α3
3

.

For u ∈ L1
loc(G), we call v ∈ L1

loc(G) the α-th weak derivative of u, written ∂αu = v, if∫
G

u∂αφ dx = (−1)|α|
∫
G

vφ dx for all φ ∈ C∞0 (G).

If |α| = 1, then ∂u = ∇u is the weak gradient of u. The weak derivative, if it exists,

is uniquely defined up to a set of measure zero. For functions u ∈ Ck(G), the weak and

classical (or strong) derivatives of u agree provided |α| ≤ k.

For s ∈ Z+, the standard Sobolev spaces are denoted by W s,p(G). These spaces are defined

by

W s,p(G) = {u ∈ Lp(G) : ∂αu ∈ Lp(G) for all |α| ≤ s}.

We equip W s,p(G) with the norm

‖u‖W s,p(G) =

∑
|α|≤s

∫
G

|∂αφ(x)|p dx

 1
p

10



and use the convention W 0,p(G) = Lp(G). The most important case to us is when p = 2.

Then Hs(G) = W s,2(G), even for Lipschitz domains, see [3]. The Sobolev spaces can also

be defined for non-integers s ∈ R≥0. Write s = m + r with m ∈ N0 and 0 < r < 1. Then

W s,p(G) is the space of functions u ∈ Wm,p(G) with∫∫
G

|∂αu(x)− ∂αu(y)|p

|x− y|3+rp
dxdy <∞ for all multi-indices α with |α| = m, (1.3)

equipped with the norm

‖u‖W s,p(G) = ‖u‖Wm,p(G) +
∑
|α=m

∫∫
G

|∂αu(x)− ∂αu(y)|p

|x− y|3+rp
dxdy. (1.4)

We still have Hs(G) = W s,2(G) for p = 2 and again, use the abbreviation Hs(G)3 for the

vector-valued case and H−s(G) for s ≥ 0 denotes the dual space of Hs(G) (with respect

to L2), i.e. H−s(G) := (Hs(G))′. Moreover, we denote by W s,p
loc (G) the space of functions

whose restrictions to any bounded subdomain B of G belonging to W s,p(B).

For functions in the Sobolev spaces to satisfy a Dirichlet boundary condition (i.e. vanishing

on the boundary), the closure of C∞0 (G) in the appropriate norm is used to define

W s,p
0 (G) = closure of C∞0 (G) in the W s,p(G) norm.

Again, the special case p = 2 has its own notation

Hs
0(G) = W s,2

0 (G).

As we will shortly see, functions u in H1
0 (G) satisfy the boundary condition u = 0 on the

boundary Σ in an appropriate sense.

We say that W s,p(G) is imbedded in a space X and write W s,p(G) ↪→ X if W s,p(G) is a

subset of X and if the identity map I from W s,p(G) to X is continuous. This is equivalent

to saying that there exists a constant C independent of u such that ‖Iu‖X ≤ C‖u‖W s,p(G)

for all u ∈ W s,p(G). The embedding is said to be compact if the embedding operator

I is compact. The following theorem from [34], see also [3], summarizes some results on

compact embeddings that will be useful for our purposes.

Theorem 1.2. Let G ⊂ R3 be a bounded Lipschitz domain. The following embeddings are
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compact:

W j+m,p(G) ↪→ W j,q(G) if 0 < n−mp and j +m− n

p
≥ j − n

q
.

In particular, for the special case p = q = 2 we obtain compactness if 0 ≤ m < 3
2
.

Remark 1.3. For C1-smooth domains G, the embeddings W j+m,p(G) ↪→ W j,q(G) are

compact if m ≥ 0 (Kondrachov embedding theorem).

Traces and trace spaces for standard Sobolev spaces. We start by defining Sobolev

spaces on the boundary Σ of G. We follow [2], section 3.2.1, and recall from definition 1.1

that the boundary Σ is such that, for every x ∈ Σ, there is a Lipschitz continuous map

g : U ′ ⊂ R2 → R with

Σ ∪ U = {ζ = (ζ ′, g(ζ ′) : ζ ′ ∈ U ′)}

and thus locally Σ is a two-dimensional surface in R3. We define g via g(ζ ′) = (ζ ′, g(ζ ′)).

Then g−1 exists and is Lipschitz continuous on g(U ′). This motivates the following defini-

tion.

Definition 1.4. Let |s| ≤ 1. u belongs to W s,p(Σ) if the composition u ◦ g belongs to

W s,p(U ′ ∩ g−1 (Σ ∩ U)) for all possible U and g fulfilling the criteria of definition 1.1.

To define a norm on W s,p(Σ), we let
(
Uj,gj

)N
j=1

be any local coordinate system of Σ such

that the pairs
(
Uj,gj

)
satisfy the conditions of definition 1.1. Then

‖u‖W s,p(Σ) =

(
N∑
j=1

‖u ◦ gj‖
p

W s,p(U ′j∩g
−1
j (Σ∩U ′j))

) 1
2

.

In the particular case s ∈ [0, 1), this definition is equivalent to

‖u‖W s,p(Σ) =

(∫
Σ

|u|p ds+

∫
Σ

∫
Σ

|u(x)− u(y)|p

|x− y|2+sp
ds(x) ds(y)

) 1
p

,

where ds is the surface measure on Σ. As usual, Hs(Σ) = W s,2(Σ).

It is well known (e.g. [35]) that there exists a linear, continuous trace operator γ0 :

W s,p(G)→ W s− 1
p
,p(Σ) such that

γ0(φ) = φ|Σ (1.5)
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provided 1/p ≤ s ≤ 1. Using the trace operator, the space W 1,p
0 (G) consists of all functions

in W s,p(G) with vanishing traces on the boundary. An alternative definition for W 1,p
0 (G),

p > 1 is

W 1,p
0 (G) =

{
u ∈ Lp(G) : ∇u ∈ Lp(G)3 and γ0(u) = 0

}
,

where ∇ denotes the gradient defined by

∇u =

(
∂u

∂x1

,
∂u

∂x2

,
∂u

∂x3

)T
.

The most important trace space for us will be H
1
2 (Σ) and its dual space H−

1
2 (Σ). The

norm on this space is the usual dual norm. In particular, for any Lipschitz surface S we

define

< ϕ,ψ >S:=

∫
S

ϕψ ds.

The norm on H−
1
2 (Σ) can be written as

‖φ‖
H−

1
2 (Σ)

= sup
ψ∈H

1
2 (Σ)

| 〈φ, ψ〉Σ |
‖ψ‖

H
1
2 (Σ)

where we used the fact that H−
1
2 (Σ) can also be characterized as the completion of L2(Σ)

in a suitable norm to show that we may identify the duality pairing with the L2(Σ) inner

product (see [18] for more details). We also require the use of trace spaces for s > 1. The

following definition is from [36] and agrees with the previous one for 0 ≤ s ≤ 1. For s > 1,

we define the normed space

Hs(Σ) =
{
u ∈ L2(Σ) : u = U |Σ for some U ∈ Hs+ 1

2 (G)
}
,

and norm given by

‖u‖Hs(Σ) = inf
U∈Hs+ 1

2 (G),u=U |Σ
‖U‖

Hs+ 1
2 (G)

.

In particular, ‖u‖Hs(Σ) = ‖U‖
Hs+ 1

2 (G)
, where U ∈ Hs+ 1

2 (G) satisfies U |Σ = u and

(U, φ)
Hs+ 1

2 (G)
= 0 for all φ ∈ Hs+ 1

2 (G) ∩H1
0 (G).

This function exists by the Lax-Milgram theorem 1.15. Thus, we can see that Hs(Σ) is

complete since Hs+ 1
2 (G) is complete, and is, in fact, a Hilbert space.
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Differential operators on a surface. Next, we define some differential operators related

to tangential vector fields on Σ. We introduce the space of surface tangential vector fields

in L2(Σ) by

L2
t (Σ) = {ϕ ∈ L2(Σ)3 : ϕ · ν = 0 on Σ}

where again ν is the unit outward normal to G. The norm on this space is the standard

L2(Σ)3 norm. We start by defining two fundamental differential operators, the surface

gradient and surface divergence. There exist several different, but equivalent, approaches

for doing so. We follow the approach from [2]. For a function p ∈ H1(Σ), we define the

surface gradient ∇Σp via a parametric representation of Σ. Suppose x ∈ Σ can be written

as

x = (x1(u1, u2), x2(u1, u2), x3(u1, u2))T

for some surface patch of Σ. Then, on this patch, ∇Σp ∈ L2
t (Σ) is defined by

∇Σp =
2∑

i,j=1

f i,j
∂p

∂ui

∂x

∂uj

where f i,j is the (i, j)-th entry of the inverse of the matric F given by

Fi,j =
∂x

∂ui
· ∂x
∂uj

, i, j = 1, 2.

We note that the surface gradient and volume gradient are related for functions p that are

differentiable in the neighborhood of Σ by

(∇p) |Σ = ∇Σp+
∂p

∂ν
ν.

With this observation, we see that (ν × ∇p) × ν = ∇Σp. Having defined the surface

gradient, we can define the surface divergence Div : L2
t (Σ) → H−1(Σ) by duality so that

if V ∈ L2
t (Σ), then Div V ∈ H−1(Σ) satisfies∫

Σ

Div V p ds = −
∫

Σ

V · ∇Σp ds for all p ∈ H1(Σ).

The third fundamental operator we consider here is the surface vector curl denoted by
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Curl : H1(Σ)→ L2
t (Σ) and defined by

Curl p = −ν ×∇Σp.

Lastly, we define the scalar curl denoted by Curl : L2
t (Σ) → H−1(Σ) and defined via

duality using Stokes theorem, so that if V ∈ L2
t (Σ) then∫

Σ

CurlV p ds =

∫
Σ

V ·Curl p ds for all p ∈ H(Σ).

By using the duality definitions, we see that for V ∈ L2
t (Σ) we have

CurlV = −Div (ν × V ) and Div V = Curl (ν × V ) .

Vector fields with weak curl and divergence. We recall that for a smooth vector field

U = (U1, U2, U3)T , the divergence and the curl are defined as follows:

divU :=
3∑
j=1

∂Uj
∂xj

and curlU :=

(
∂U3

∂x2

− ∂U2

∂x3

,
∂U1

∂x3

− ∂U3

∂x1

,
∂U2

∂x1

− ∂U1

∂x2

)T
.

Using partial integration, we can introduce a weak notation of these differential operators

in the following way; see e.g. [2], section 3.5.

• For U ∈ L2(G)3, we call divU ∈ L2(G) the weak divergence of U if it satisfies∫
G

divUφdx = −
∫
G

U · ∇φ dx for all φ ∈ C∞0 (G).

• For U ∈ L2(G)3, we call curlU ∈ L2(G)3 the weak curl of U if it satisfies∫
G

curlU · ψ dx =

∫
G

U · curlψ dx for all ψ ∈ C∞0 (G)3.

Using the weak divergence and curl, we define the following spaces:

H(div, G) = {U ∈ L2(G)3 : div U ∈ L2(G)},

H(curl , G) = {U ∈ L2(G)3 : curlU ∈ L2(G)3}.
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These spaces are endowed with the natural graph norms

‖U‖H(div ,G) =
(
‖U‖2

G + ‖divU‖2
G

) 1
2

and

‖U‖H(curl ,G) =
(
‖U‖2

G + ‖curlU‖2
G

) 1
2 .

H(curl , G) and H(div , G) are Hilbert spaces and furthermore, the space of smooth vector

fields C∞0 (G)3 is a dense subspace of the previously mentioned spaces. This motivates the

following definitions:

H0(curl , G) = closure of C∞0 (G)3 in the H(curl , G) norm,

H0(div, G) = closure of C∞0 (G)3 in the H(div, G) norm.

Normal trace. For a function V ∈ C∞(G)3, the normal trace operator γn is defined by

γn(V ) = V |Σ · ν. (1.6)

We have the following trace and Green’s theorem (corresponding to theorem 3.24 in [2]).

Theorem 1.5. (a) The trace operator γn, defined by (1.6) on C∞(G)3, can be continu-

ously extended to a continuous linear operator γn from H(div , G) onto H−
1
2 (Σ).

(b) The following form of Green’s theorem holds for functions V ∈ H(div , G) and φ ∈
H1(G):

(div V, φ)G + (V,∇φ)G =< φ, γnV >Σ . (1.7)

Using the normal trace operator, we can give the following explicit characterization of the

space H0(Div , G):

H0(div , G) = {V ∈ H(div , G) : γnV = 0 on Σ}.

Tangential trace. Finally, we discuss the trace properties of functions in H(curl , G). For

a smooth vector function U ∈ C∞(G)3, we define the traces

γtU = ν × U |Σ, (1.8)

γTU = (ν × U |Σ)× ν. (1.9)
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We have the following trace and Green’s theorem (corresponding to theorem 3.29 in [2]).

Theorem 1.6. (a) The trace operator γt defined by (1.8) on C∞(G)3 can be continuously

extended to a continuous linear operator γt from H(curl , G) into H−
1
2 (Σ)3.

(b) The following form of Green’s theorem holds for functions U ∈ H(curl , G) and ψ ∈
H1(G)3:

(curlU, ψ)G − (U, curlψ)G =< γtU, ψ >Σ . (1.10)

Using the tangential trace operator, we can give the following explicit characterization of

the space H0(curl , G):

H0(curl , G) = {U ∈ H(curl , G) : γtU = 0 on Σ}.

We note that the map γt : H(curl , G) → H−
1
2 (Σ)3 is not surjective since for any U , the

trace γtU is tangential to Σ, whereas H−
1
2 (Σ)3 contains vectors that are not tangential to

Σ. Furthermore, we would like to prove a similar result about γT , but this is not valid

for Lipschitz domains because, even if V ∈ H1(G)3, γT is not necessarily an element of

H
1
2 (Σ)3 (this only holds for smooth domains). To do so, and to obtain surjectivity of the

trace operator γt, we define the trace space of H(curl , G) as follows:

H−
1
2 (Div,Σ) = {U ∈ H−

1
2 (Σ)3 : ν · U |Σ = 0,DivU ∈ H−

1
2 (Σ)}

and its dual space

H−
1
2 (Curl ,Σ) = {U ∈ H−

1
2 (Σ)3 : ν · U |Σ = 0,CurlU ∈ H−

1
2 (Σ)}.

With the above trace spaces, we have the following theorem (corresponding to theorem

3.24 in [1]).

Theorem 1.7. The trace operators γt : H(curl , G)→ H−1/2(Div,Σ) and γT : H(curl , G)→
H−1/2(Curl,Σ), given by (1.8) and (1.9), respectively, are well defined, linear and contin-

uous. Moreover, they are surjective and, for any U ∈ H(curl , G) and ψ ∈ H(curl , G), the

following form of Green’s theorem holds:

(U, curlψ)G − (curlU, ψ)G =< γtU, γTψ >Σ . (1.11)
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Remark 1.8. We can equivalently define the traces γ0, γn, γt and γT for functions on

R3 \G. That is,

γ0 : Hs
loc(R3 \G)→ Hs−1/2(Σ), 1/2 < s ≤ 1,

γn : Hloc(div,R3 \G)→ H−1/2(Σ),

γt : Hloc(curl ,R3 \G)→ H−1/2(Div,Σ),

γT : Hloc(curl ,R3 \G)→ H−1/2(Curl ,Σ)

are all bounded. When necessary, we will use the subscripts ’+’ and ’-’ to distinguish

between the trace from the exterior domain R3 \G and interior of G, respectively.

1.3 Important theorems

All the theorems we recall here form the theoretical basis of the study of scattering problems

for almost every type of obstacle. We start with three results that are essential to prove

the uniqueness of the direct scattering problems.

Theorem 1.9. (Rellich’s lemma) Let BR = {x ∈ R3 : |x| < R} be a ball of radius

R > 0 centered at the origin with unit outward normal x̂, and suppose Es,Hs are radiating

solutions of Maxwell’s equations in the exterior of BR, that is,

curlEs − iωµ0H = 0 in R3 \BR,

curlHs + iωε0E
s = 0 in R3 \BR,√

µ0

ε0

Hs(x)× x− |x|Es(x) = O
(

1

|x|

)
, |x| → ∞.

If either

Re

(∫
∂B′R

(x̂× Es) ·Hs ds

)
≤ 0 for all R′ > R

or ∫
∂BR

|Hs| ds→ 0 as R→∞

then Es = Hs = 0 in R3 \BR.

For a proof we refer to [2], [6]. The following two theorems correspond to theorem 4.38

and 4.39 in [1], respectively.

18



Theorem 1.10. (Interior regularity principle) Let G ⊂ R3 be a bounded domain, f ∈
L2(G) and U be an open set with U ⊆ G.

(a) Let u ∈ H1(D) be a solution of the variational equation∫
G

∇u · ∇ψ dx =

∫
G

fψ dx for all ψ ∈ C∞0 (G).

Then u|U ∈ H2(U) and ∆u = −f in U .

(b) Let u ∈ L2(G) be a solution of the variational equation∫
G

u∆ψ dx = −
∫
G

fψ dx for all ψ ∈ C∞0 (G).

Then u|U ∈ H2(U) and ∆u = −f in U .

Theorem 1.11. (Unique continuation property) Let G ⊂ R3 be a domain; that is, a

nonempty, open and connected set, and u1, ..., um ∈ H2(G) be real valued such that

|∆uj| ≤ c
m∑
l=1

(|ul|+ |∇ul|) in G for j = 1, ...,m.

If uj vanish in some open set U ⊆ G for all j = 1, ...,m, then uj vanish identically in G

for all j = 1, ...,m.

Next, we continue with results from functional analysis and start with two important

theorems in Fredholm theory: the Fredholm and the analytic Fredholm theorem. These

are well-known theorems in functional analysis for compact operators. The first theorem

will be useful in the following chapters for demonstrating the existence of unique solutions

to the scattering problems under consideration, whilst the second will be useful for showing

the discretness of the set of transmission eigenvalues. The following results are from [1].

Theorem 1.12. (Fredholm) Let T : X → Y be a linear and bounded operator between the

normed spaces X and Y . Let T be of the form A+K such that A is an isomorphism from

X onto Y and K : X → Y is compact. If T is one-to-one, then T is also onto. Moreover,

T−1 is bounded from Y onto X. In other words, if the homogeneuous equation

Tx = 0
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admits only the trivial solution x = 0, then the inhomogeneuous equation

Tx = y

is uniquely solvable for all y ∈ Y and the solution x depends continuously on y.

By writing T = A (I + A−1K) it is obvious that it is suffucient to consider the case Y = X

and A = I. We will demonstrate the well-posedness of the direct problems by showing

that these problems, and in particular their variational formulations, are of Fredholm type.

Hence, the existence of a solution follows if uniqueness holds. For the next theorem, we

denote by L(X) the Banach space of bounded linear operators mapping the Banach space

X into itself.

Theorem 1.13. Let V be a domain in C and let K : V → L(X) be an operator-valued

analytic function such that K(z) is compact for each z ∈ V . Then, one of the following

holds:

(i) (I −K(z))−1 does not exist for any z ∈ V ;

(ii) (I −K(z))−1 exists for all z ∈ V \ S where S is a discrete subset of V .

The above theorem states that, if we can find at least one z for which the analytic Fredholm

operator is injective, then it is always injective except for a discrete set of values of z.

The next two results are used for proving the existence of solutions of boundary value

problems, in particular those formulated as equivalent variational formulations.

Theorem 1.14. (Representation theorem of Riesz) Let H be a Hilbert space with inner

product (·, ·)H and let l : H → C be a linear and bounded functional. Then there exists a

unique z ∈ H with

l(x) = (x, z)H for all x ∈ H.

Furthermore, ‖l‖ = ‖x‖H .

An extension is given by the following theorem.

Theorem 1.15. (Lax Milgram theorem) Let H be a Hilbert space over C with inner product

(·, ·)H , let l : X → C be linear and bounded, and let a : H × H :→ C be a bounded and
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coercive sesquilinear form, that is, there exists c1, c2 > 0 with

|a(u, v)| ≤ c1‖u‖H‖v‖H for all u, v ∈ H

Re a(u, v) ≥ c2‖u‖2
H for all u ∈ H.

Then there exists a unique u ∈ H with

a(ψ, u) = l(ψ) for all ψ ∈ H.

Furthermore, there exists c > 0, independent of u, such that ‖u‖H > c‖l‖H′, where H ′

denotes the dual space of H.
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2 Scattering of electromagnetic waves from a perfect

conductor in an inhomogeneous medium

In this section, we consider the scattering of electromagnetic time-harmonic fields from

a perfect conductor embedded in an inhomogeneous medium. A perfect conductor is an

idealized material having zero electrical resistance, thus allowing a steady current to flow

within it without losing energy to resistance. While perfect conductors do not exist in

nature, the concept provides a useful model for situatuions in which electrical resistance is

negligible compared to other effects. One example is electrical circuit diagrams, in which

the wires connecting components are implicitly assumed to have no resistance.

Initially considering the direct problem we show that it is well-posed, that is, that it has a

unique radiating solution. Studying the inverse problem, we then show that, if the outside

inhomogeneity is known, the scatterer is uniquely determined by the fixed energy far field

data.

2.1 Direct problem

To demonstrate the existence of a unique solution to the direct problem, we apply the

integral equation method. Generally speaking, the idea behind this method is to obtain

an operator equation that is equivalent to the scattering problem. To establish the direct

problem’s well-posedness, we show that the operator equation is of Fredholm type. In the

case of a homogeneous medium, the operator equation is a boundary integral equation,

also referred to as an ansatz of a solution. In the case of a two-dimensional configuration,

Green’s represention theorem typically motivates this ansatz, whereas the Stratton-Chu

formula typically provides this motivation in the three-dimensional configuration, [6], [1].

Since we will work with an inhomogeneous medium, we will derive an operator equation,

known as a Lippmann-Schwinger equation in cases involving an inhomogeneous medium,

by using a general representation formula.

For the analysis of the operator equation, coercivity and compactness are two important

properties. For equations of the second kind (i.e., a inhomogeneous Fredholm equation of

the seond kind), such as the Lippmann-Schwinger equation, exploiting the compactness of

the integral operators by using Riesz theory is of course the more desirable strategy when-

ever it is possible. Unfortunately, in electromagnetic medium scattering, where both the
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electric permittivity ε and the magnetic permeability µ are space dependent, the operator

in the corresponding Lippmann-Schwinger equation fails to be compact. To overcome this

problem, we first consider the operator, which lacks compactness, in the case of a complex

wavenumber. Specifically, we show that the sum of the identity operator and the opera-

tor appearing in the Lippmann-Schwinger equation is coercive for complex wavenumber.

Afterwards, we use a compactness argument to show that the operator equation is of Fred-

holm type for all wavenumbers k as long as k2 is not a so-called Dirichlet eigenvalue. This

approach has been applied in cases involving a penetrable obstacle without any boundary

condition in [4] and also in [5], where the lack of compactness was replaced by positivity,

which is implicitly introduced via positivity constraints on the coefficients of the partial

differential equations.

For a two-dimensional configuration, the corresponding electromagnetic model reduces to a

scalar problem involving the operators −div (τ∇·) with a Dirichlet or Neumann boundary

condition, and τ being equal to ε−1 or µ−1; see [8]. Although the integral equation method

and the scattering of Maxwell’s equations from a perfect conductor are certainly known to

the experts, we were not able to find an application of the above-named approach to the

scattering problem in the (mathematical) literature. However, [1] employed the integral

equation method to show the existence of a unique weak solution in the case of a homoge-

neous medium, and [2] applied the variational mehtod in case of an inhomogeneous medium

and continuously differentiable electric permittivity and constant magnetic permeability.

Thus, we were able to weaken the assumptions on the data.

2.1.1 Problem statement and uniqueness

An incident electromagnetic field Ei, H i, which satisfies the reduced Maxwell system

curlEi − iωµ0H
i = 0, curlH i + iωε0E

i = 0 in R3 (2.1)

is scattered by a perfect conductor occupying a bounded domain D ⊂ R3 with boundary

∂D and connected exterior R3 \ D. We assume that D is surrounded by a medium with

space-dependent electric permittivity ε(x), magnetic permeability µ(x) and conductivity

σ(x). We assume the scatterer to be bounded, that is, we assume that there exists a ball

BR0 = {x ∈ R3 : |x| ≤ R0} of radius R0 > 0 centered at the origin, such that D ⊂ BR0 ,

ε(x) ≡ ε0, µ(x) ≡ µ0 and σ(x) ≡ 0 for |x| > R0. The total fields are superpositions of
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the incident and scattered fields, i.e. E = Ei + Es and H = H i +Hs and satisfy Maxwell

system

curlE − iωµH = 0 in R3 \D, (2.2)

curlH + iωεE = σE in R3 \D. (2.3)

On the boundary ∂D of D, we impose the perfect conducting boundary condition,

E × ν = 0 on ∂D, (2.4)

where ν is the unit outward normal to ∂D. To ensure that the scattered field is outgoing,

it has to satisfy the Silver-Müller radiation condition√
µ0

ε0

Hs(x)× x− |x|Es(x) = O
(

1

|x|

)
as |x| → ∞ (2.5)

uniformly with respect to all directions x/|x|.

We will work with magnetic field H only. This is motivated by the fact that for the

important case of non-magnetic media (i.e. µ = µ0), the magnetic field is divergence free

as seen from (2.2) and the fact that div curl = 0. Therefore, eliminating the electric field

E from (2.3) and substituting into (2.2) leads to

curl

(
1

σ − iωε
curlH

)
− iωµH = 0,

that is,

curl

(
1

εr
curlH

)
− k2µrH = 0 in R3 \D, (2.6)

where k = ω
√
ε0µ0 > 0 is the wave number, εr denotes the (complex valued) relative

permittivity and µr is the relative permeability given by

εr(x) =
ε(x)

ε0

+ i
σ(x)

ωε0

, µr(x) =
µ(x)

µ0

respectively. We note that εr ≡ 1 and µr ≡ 1 outside the ball BR0 . On ∂D, we have

1

εr
curlH × ν = 0 (2.7)
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and the Silver-Müller radiation condition reads

curlHs(x)× x

|x|
− ikHs(x) = O

(
1

|x|2

)
, |x| → ∞. (2.8)

For R > 0 we set

ΩR := {x ∈ R3 \D : |x| ≤ R }.

To simplify notation, we omit the subscript R for the special case R = R0 and write Ω

instead of ΩR0 . To avoid making smooth assumptions on the data εr, µr, we need to derive

a variational formulation of problem (2.6)-(2.8). To do so, we multiply equation (2.6) by a

sufficiently smooth test function ψ, integrate over ΩR, R ≥ R0, and formally use integration

by parts:

0 =

∫∫
ΩR

(
curl

[
1

εr
curlH

]
· ψ − k2µrH · ψ

)
dx

=

∫∫
ΩR

(
1

εr
curlH · curlψ − k2µrH · ψ

)
dx+

∫
∂ΩR

(
ν × 1

εr
curlH

)
· ψ ds

=

∫∫
ΩR

(
1

εr
curlH · curlψ − k2µrH · ψ

)
dx−

∫
∂BR

(ν × curlH) · ψ ds.

where we used the fact that ∂ΩR = ∂D ∪ ∂BR, boundary condition (2.7) and the fact that

εr = 1 on ∂BR0 . Assuming ψ(x) = 0 for |x| ≥ R0 and letting R→∞ yields∫∫
R3\D

(
1

εr
curlH · curlψ − k2µrH · ψ

)
dx = 0. (2.9)

Introducing

p = µr − 1 and q = 1− 1

εr

and noting that p ≡ q ≡ 0 outside BR0 , we can write equation (2.9) as∫∫
R3\D

(
curlH · curlψ − k2H · ψ

)
dx = k2

∫∫
Ω

pH ·ψ dx+

∫∫
Ω

qcurlH · curlψ dx. (2.10)

The above variational formulation (2.9) holds for µr ∈ L∞(R3 \D) and εr ∈ L∞(R3 \D)

such that 1
εr
∈ L∞(R3 \D). Thus we can state our problem.
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Problem statement (P1):
Determine H ∈ Hloc(curl ,R3 \ D) such that the variational equation (2.9) holds for all

ψ ∈ Hloc(curl ,R3 \ D) with ψ(x) = 0 for |x| ≥ R0, and Hs = H − H i satisfies the

Silver-Müller radiation condition (2.8).

We note the following regularity result for the solution H outside BR0 . For a proof, we

refer the reader to e.g., [26].

Remark 2.1. Outside BR0, the solution H is smooth and satisfies

curl curlH − k2H = 0.

Taking the divergence of the above equation and using the identities div curl = 0 and

curl 2 = −∆ +∇div, the above system is equivalent to the pair of equations

∆H + k2H = 0 and divH = 0.

Using interior regularity results, we can show H to be analytic outside BR0.

The next lemma shows equivalence between the scattering problem (2.2)-(2.4) and the

variational problem (P1) for the magnetic field H.

Lemma 2.2. Let H ∈ Hloc(curl ,R3 \D) satisfy the variational problem (P1). Set

E =
1

σ − iwε
curlH in R3 \D.

Then, H ∈ Hloc(curl ,R3 \D) and E ∈ Hloc(curl ,R3 \D) satisfy Maxwell’s system (2.2)-

(2.2), E satisfies the perfectly conducting boundary condition (2.4) on ∂D and Es = E−Ei,

Hs = H−H i satisfy radiation condition (2.5). Furthermore, E ∈ Hloc(curl ,R3\D) satisfies∫∫
R3\D

(
1

µr
curlE · curlψ − k2εrE · ψ

)
dx = 0

for all ψ ∈ H(curl ,R3 \ D) with compact support, E × ν = 0 on ∂D and Es = E − Ei

satisfies the Silver-Müller radiation condition (2.8).

The same statement holds for E and H interchanged.

Proof. Let H ∈ Hloc(curl ,R3 \ D) satisfy the variational problem (P1). We note that

E = 1
σ−iwεcurlH ∈ L2

loc(R3 \ D)3. Substituting the definition of E into the variational
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equation (2.9) yields

∫∫
R3\D

σ − iωεεr︸ ︷︷ ︸
=−iωε0

E · curlψ − k2µrH · ψ

 dx = 0 (2.11)

which is the variational form of

−iωε0curlE − k2µrH = 0.

Division by −iωε0 and substituting for k2 = ω2ε0µ0 and µr = µ
µ0

yields (2.2). Eliminating

H from (2.2) and substituting into variational equation (2.11) yields

0 =

∫∫
R3\D

(
−iωε0E · curlψ − k2µr

1

iωµ
curlE · ψ

)
dx

=

∫∫
R3\D

(−iωε0E · curlψ + iωε0curlE · ψ) dx

= −(iωε0)

∫∫
R3\D

(E · curlψ − curlE · ψ) dx.

Dividing by −(iωε0) and using Green’s theorem (1.11) gives

0 = 〈γtE, γTψ〉∂D

for all ψ ∈ H(curl ,R3 \ D) with ψ(x) = 0 for |x| ≥ R0, where γt and γT are the traces

given by (1.8) and (1.9), respectively. Thus we conclude γtE = E × ν = 0 on ∂D. We

can derive the variational formulation for the electric field E by taking the dot product of

(2.3) with a test function ψ ∈ H(curl ,R3 \D) of compact support, integrating over R3 \D,

inserting for H from (2.2) and using Green’s theorem (1.11).

With the above lemma, we note that if H is a solution to (P1), then curlH ∈ Hloc(curl ,R3\
D) and choosing sufficiently smooth test functions allows it to be easily verified that H

solves the differential equation (2.6) outside D and the boundary condition (2.7) on ∂D.

Next we state the assumptions on the data and prove the uniqueness of problem (P1).

Assumption 2.3. We assume that:

• D ⊂ R3 is a bounded Lipschitz domain with connected exterior R3 \D.
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• µr ∈ W 2,∞(R3 \D) real-valued and µr ≡ 1 outside BR0.

• εr ∈ W 1,∞(R3 \ D), Im εr ≥ 0 and εr ≡ 1 outside BR0. Consequently Im 1
εr

=

Im εr
|εr|2 ≤ 0.

• There exists a constant c0 > 0 with Re εr ≥ c0 and µr ≥ c0 on Ω. Then, in particular
1
εr
∈ L∞(R3 \D) and 1

µr
∈ L∞(R3 \D).

Theorem 2.4. Under assumption 2.3, there exists at most one solution to problem (P1).

Proof. Let H be a solution corresponding to H i = 0, i.e. H itself satisfies radiation

condition (2.8). Further, let φ ∈ C∞0 (R3) be real-valued with φ(x) = 1 for x ∈ ΩR and

φ(x) = 0 for |x| > R + 1 where R ≥ R0. Substituting ψ = φH into variational equation

(2.9) yields∫∫
ΩR

(
1

εr
|curlH|2 − k2µr|H|2

)
dx+

∫∫
R<|x|<R+1

(
curlH · curl (φH)− k2φ|H|2

)
dx = 0.

(2.12)

By Remark (2.1), H is a smooth solution to curl 2H − k2H = 0 in the region {x ∈ R3 :

R < |x| < R + 1}, and thus we compute for the second term on left hand side of (2.12):∫∫
R<|x|<R+1

(
curlH · curl (φH)− k2φ|H|2

)
dx

=

∫∫
R<|x|<R+1

φH ·
(
curl 2H − k2H

)︸ ︷︷ ︸
=0

dx+

∫
|x|=R

(ν × curlH) ·H ds

=−
∫
|x|=R

(curlH × ν) ·H ds, (2.13)

where we used that φ(x) = 0 for |x| = R+ 1 and φ(x) = 1 for |x| = R. Substituting (2.13)

into (2.12) and taking the imaginary part yields

Im

(∫
|x|=R

(curlH × ν) ·H ds

)
=

∫∫
ΩR

[
Im

(
1

εr

)
|curlH|2 − k2µr|H|2

]
dx ≤ 0. (2.14)
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From the radiation condition (2.8) we obtain

0
R→∞←

∫
|x|=R

|curlH × ν − ikH|2 ds

=

∫
|x|=R

(
|curlH × ν|2 + k2|H|2

)
ds− 2kIm

∫
|x|=R

(curlH × ν) ·H ds

(2.14)

≥
∫
|x|=R

(
|curlH × ν|2 + k2|H|2

)
ds

and thus conclude limR→∞
∫
|x|=R |H|

2 ds = 0. Rellich’s lemma 1.9 now implies that H = 0

in R3 \BR.

Next we want to apply the unique continuation principle 1.11 to conclude that H vanishes

in the exterior of D. We start by substituting ψ = ∇ξ, for some ξ ∈ H1
0 (R3 \D), into the

variational equation (2.9). Using Green’s theorem (1.7), and the fact that ξ = 0 on ∂D (in

the trace sense) and ξ(x) = 0 for some R > 0 with |x| > R, yields

0 = −k2

∫∫
R3\D

µrH · ∇ξ dx = k2

∫∫
R3\D

div(µrH)ξ dx,

that is ∫∫
R3\D

div(µrH)ξ dx = 0. (2.15)

The above result holds for all ξ ∈ H1
0 (R3 \ D), and thus (2.15) is the variational form of

div(µrH) = 0 in R3 \D. (We note that taking the divergence of (2.6) yields div(µrH) = 0

and thus µrH ∈ Hloc(div,R3 \D), thereby justifying the use of Green’s theorem (1.7)). If

εr, µr and H were sufficiently smooth, we could rewrite equation (2.6) as

0 = εrcurl

(
1

εr
curlH

)
− k2µrεrH = curl 2H + εr∇

(
1

εr

)
× curlH − k2µrεrH.

From div(µrH) = 0, we obtain divH = −∇µr
µr
·H and thus

∆H = −∇
(
∇µr
µr
·H
)

+ εr∇
(

1

εr

)
× curlH − k2µrεrH,

where we have used the identity curl 2 = −∆ +∇div. Next we will derive this formula by

the variational equation. We set ψ = εrϕ for some ϕ ∈ C∞0 (ΩR)3, R ≥ R0, and extend ψ
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by zero into R3. Then, ψ ∈ H0(curl ,R3) with compact support and, because

curlψ = εrcurlϕ+∇εr × ϕ

we obtain, by substituting for ψ into (2.9),∫∫
ΩR

(
curlH · curlϕ+

1

εr
curlH · (∇εr × ϕ)− k2µrεrH · ϕ

)
dx = 0

for all ϕ ∈ C∞0 (ΩR)3. The last equation we write as∫∫
ΩR

curlH · curlϕdx =

∫∫
ΩR

G · ϕdx

where G = − 1
εr

curlH ×∇εr + k2µrεrH ∈ L2(ΩR,C3). Further, we compute∫∫
ΩR

G · ϕdx =

∫∫
ΩR

curlH · curlϕdx

(1.11)
=

∫∫
ΩR

H · curl 2ϕdx

= −
∫∫

ΩR

H ·∆ϕdx+

∫∫
ΩR

H · ∇divϕdx

(1.7)
= −

∫∫
ΩR

H ·∆ϕdx−
∫∫

ΩR

divH divϕdx

(1.7)
= −

∫∫
ΩR

H ·∆ϕdx+

∫∫
ΩR

∇divH · ϕdx

= −
∫∫

ΩR

H ·∆ϕdx−
∫∫

ΩR

∇
(
∇µr
µr
·H
)
· ϕdx,

that is ∫∫
ΩR

H ·∆ϕdx = −
∫∫

ΩR

(
G+∇

(
∇µr
µr
·H
))

︸ ︷︷ ︸
∈L2(ΩR)3

·ϕdx

where we used that ϕ = 0 on ∂ΩR, divϕ ∈ C∞0 (ΩR) and curlϕ ∈ C∞0 (ΩR)3. The above

equation holds for all ϕ ∈ C∞0 (ΩR)3. By the interior regularity property 1.10, we conclude

that H ∈ H2(U)3 where U is an open set with U ⊆ ΩR and

∆H = −G−∇
(
∇µr
µr
·H
)

= − 1

εr
curlH ×∇εr + k2µrεrH −∇

(
∇µr
µr
·H
)
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in U . Since every component of curlH is a combination of partial derivatives of Hj,

j = 1, 2, 3, we conclude that there exists a constant c > 0 such that

|∆Hj| ≤ c
3∑
l=1

(|∇Hl|+ |Hl|) in U

for j = 1, 2, 3. Therefore H = 0 in all of U by the unique continuation principle 1.11.

Because U is an arbitrary domain with U ⊆ ΩR, we conclude that H = 0 in ΩR and thus

H = 0 outside D.

2.1.2 Potentials

The key ingredient needed to apply the integral equation method are potentials. In the case

of the scalar Helmholtz equation in a homogeneous medium, we can present the solution via

a combination of single- and double-layer potentials, following from Green’s representation

theorem; see [6], [1]. For Maxwell’s system, we obtain with the help of the Stratton-

Chu formular a representation for a solution via the curl and curl 2 of the vector-valued

single-layer potential; see [1] in case of Lipschitz domains working in the Sobolev space

H(curl , ·). In case of an inhomogeneous medium, the volume potential will be needed.

Both the single-layer and volume potentials are integral operators with a weakly singular

kernel.

The derivation of a Lippmann-Schwinger equation is based on a representation formula for

the magnetic field inside and outside D. The equation will not be an integral equation,

since it will contain the derivatives of both the volume and single-layer potential. In [4],

the term integro-differential equation was used, which we find suitable.

In this section we define the necessary potentials and state some of their properties in case

of a Lipschitz domain.

Lemma 2.5. Let Φk be the fundamental solution of the scalar Helmholtz equation ∆Φk +

k2Φk = 0 in R3, defined by

Φk(x, y) =
eik|x−y|)

4π|x− y|
, x 6= y.
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(a) For g ∈ L2(Ω)3 the volume potential

v(x) =

∫∫
Ω

g(y)Φk(x, y) dy, x ∈ R3 (2.16)

defines a function in H2
loc(R3)3 which satisfies ∆v + k2v = −g̃ in R3, where g̃ is the

extension of g by zero into R3. Furthermore, v satisfies the Silver-Müller radiation

condition (2.8) and the restriction v|Ω of v to Ω defines a bounded operator from

L2(Ω)3 into H2(Ω)3.

(b) For g ∈ L2(Ω)3 the vector fields

u(x) = curl

∫∫
Ω

g(y)Φk(x, y) dy, x ∈ R3, (2.17)

w(x) =
(
k2 +∇div

) ∫∫
Ω

g(y)Φk(x, y) dy, x ∈ R3 (2.18)

define functions in Hloc(curl ,R3) which satisfy curl 2u − k2u = curl g and curl 2w −
k2w = k2g in the variational sense, respectively, i.e.∫∫

R3

(
curlu · curlψ − k2u · ψ

)
dx =

∫∫
Ω

g · curlψ dx, (2.19)∫∫
R3

(
curlw · curlψ − k2w · ψ

)
dx = k2

∫∫
Ω

g · ψ dx (2.20)

for all ψ ∈ H(curl ,R3) with compact support. Furthermore, u and w satisfy the

Silver-Müller radiation condition (2.8) and the restriction u|Ω of u to Ω and the

restriction w|Ω of w to Ω define bounded operators from L2(Ω)3 into H(curl ,Ω).

Proof. This is lemma 2.2 from [4] in case of C2-smooth domain Ω. Since Green’s theorem

is also valid for Lipschitz domains, see [1], the above statements remains true for Lipschitz

domains.

The single layer potential S̃ is defined by(
S̃a
)

(x) :=

∫
∂D

a(y)Φk(x, y) ds(y), x ∈ D ∪
(
R3 \D

)
. (2.21)
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For s ∈
[
−1

2
, 1

2

]
,

S̃ : H−
1
2

+s(∂D)→ H1+s(D) ∪H1+s
loc (R3 \D)

is linear and bounded, see [9], [10].

We define a potential Ñ generated by an electric current a ∈ H− 1
2 (Div , ∂D) by

Ña = curl 2

∫
∂D

a(y)Φk(·, y) ds(y) x ∈ D ∪
(
R3 \D

)
. (2.22)

This can also be written as Ña = ∇S̃Div a + k2S̃a because of the Helmholtz equation

and the identity −∆ = curl curl −∇div . We define a ”magnetic analogue” generated by

a ∈ H− 1
2 (Div , ∂D) as

M̃a = curl

∫
∂D

a(y)Φk(·, y) ds(y) x ∈ D ∪
(
R3 \D

)
. (2.23)

The following lemma, stating properties of the operators Ñ and M̃, corresponds to lemma

5.52 in [1].

Lemma 2.6. Let Q be a bounded domain with ∂D ⊆ Q.

(a) The operators Ñ and M̃, defined by (2.22) and (2.23), respectively, are well-defined

and bounded from H−
1
2 (Div, ∂D) into H(curl , D) and into H(curl , Q \D).

(b) For a ∈ H− 1
2 (Div, ∂D), the fields u = M̃a and curl u = Ña satisfy u|D, curlu|D ∈

H(curl , D) and u|Q\D, curlu|Q\D ∈ H(curl , Q\D) and γtu−−γtu+ = a and γtcurlu−−
γtcurlu+ = 0. In particular, u ∈ C∞(R3 \∂D)3 and u satisfies the equation curl 2u−
k2u = 0 in R3 \ ∂D. Furthermore, u and curlu satisfy the Silver-Müller radiation

condition (2.8); that is

curlu× x̂− iku = O
(

1

|x|2

)
, |x| → ∞,

uniformly with respect to x̂.
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(c) The traces

N = γtÑ on ∂D,

M =
1

2

(
γtM̃− + γtM̃+

)
on ∂D,

are bounded from H−
1
2 (Div, ∂D) into itself. With these notations the following jump

condition hold for u = M̃a and a ∈ H− 1
2 (Div, ∂D)

γtu± = ∓1

2
a+Ma, γtcurlu± = Na. (2.24)

(d) N is the sum N = N̂ + K̂ of an isomorphism N̂ from H−
1
2 (Div, ∂D) onto itself and

a compact operator K̂.

2.1.3 Existence

To apply the integral equation method, we need to derive a Lippmann-Schwinger equation,

that is an operator equation that is equivalent to the scattering problem (P1). The idea

is first to argue classically, that is, to use a representation formula that holds for general

vector fields H,E ∈ C1(Ω)3 ∩C(Ω)3 such that curlH ∈ C1(Ω)3 and divE ∈ C1(Ω). Using

Maxwell’s system, we will be able to derive a Lippmann-Schwinger operator equation. We

start by stating the representation formula (the result for the electric field can be find in

[1], theorem 3.25; see also [6]).

Lemma 2.7. Let H,E ∈ C1(Ω)3 ∩ C(Ω)3 such that curlH ∈ C1(Ω)3 and divE ∈ C1(Ω).

Then we have for x ∈ Ω:

H(x) =curl

∫∫
Ω

(curlH(y) + iωε0E(y)) Φk(x, y) dy −∇
∫∫

Ω

divH(y)Φk(x, y) dy

− iωε0

∫∫
Ω

(curlE(y)− iωµ0H(y)) Φk(x, y) dy

− curl

∫
∂Ω

(ν(y)×H(y)) Φk(x, y) ds(y) +∇
∫
∂Ω

(ν(y) ·H(y)) Φk(x, y) ds(y)

+ iωε0

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y). (2.25)

Furthermore, the right-hand side of this equation vanishes for x /∈ Ω.
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Now, let E,H ∈ C1(R3 \D)3 ∩C(R3 \D)3 satisfy Maxwell’s system (2.2)-(2.3), E × ν = 0

on ∂D and the scattered field Es, Hs satisfies the Silver-Müller radiation condition (2.5).

We rewrite (2.2)-(2.3) as

curlE − iωµ0H = iωµ0pH, curlH + iωε0E = qcurlH in R3 \D (2.26)

where we recall q = 1− 1
εr

, p = µr− 1 and q ≡ p ≡ 0 outside BR0 . Substituting (2.26) into

the representation formula (2.25) yields for all x ∈ Ω:

H(x) =curl

∫∫
Ω

q(y)curlH(y)Φk(x, y) dy −∇
∫∫

Ω

divH(y)Φk(x, y) dy

+ k2

∫∫
Ω

p(y)H(y)Φk(x, y) dy

− curl

∫
∂Ω

(ν(y)×H(y)) Φk(x, y) ds(y) +∇
∫
∂Ω

(ν(y) ·H(y)) Φk(x, y) ds(y)

+ iωε0

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y). (2.27)

Dividing curlE − iωµH = 0 by µ0 and taking the divergence yields

div(µrH) = 0 or equivalently div(pH) = −divH.

Substituting the above relation into the second term of the right-hand side of (2.27) yields

−∇
∫∫

Ω

divH(y)Φk(x, y) dy

=∇
∫∫

Ω

div
(
p(y)H(y)

)
Φk(x, y) dy

=∇
∫∫

Ω

[
div
(
p(y)H(y)Φk(x, y)

)
−∇yΦk(x, y) · p(y)H(y)

]
dy

=∇
[∫

∂Ω

p(y)
(
ν(y) ·H(y)

)
Φk(x, y) ds(y) +

∫∫
Ω

∇xΦk(x, y) · p(y)H(y) dy

]
=∇

[∫
∂Ω

(µr(y)− 1)
(
ν(y) ·H(y)

)
Φk(x, y) ds(y) +

∫∫
Ω

divx

(
p(y)H(y)Φk(x, y)

)
dy

]
.

(2.28)
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By substituting (2.28) back into equation (2.27), we obtain

H(x) =curl

∫∫
Ω

q(y)curlH(y)Φk(x, y) dy + (k2 +∇div)

∫∫
Ω

p(y)H(y)φk(x, y) dy

−curl

∫
∂Ω

(ν(y)×H(y)) Φk(x, y) ds(y)︸ ︷︷ ︸
J1

+∇
∫
∂Ω

µr (ν(y) ·H(y)) Φk(x, y) ds(y)︸ ︷︷ ︸
J2

+iωε0

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y)︸ ︷︷ ︸
J3

. (2.29)

Next, we consider the terms J1, J2 and J3. We have∫
∂Ω

ν(y) · curl(E(y)φk(x, y)) ds(y) = 0 (2.30)

due to the divergence theorem and the fact that the divergence of the curl of any vector is

zero. Then using

divx

(
ν(y)× E(y)Φk(x, y)

)
= ν(y) ·

(
curly

[
E(y)Φk(x, y)

])
− Φk(x, y)ν(y) · curlyE(y)

= ν(y) ·
(

curly
[
E(y)Φk(x, y)

])
− Φk(x, y)ν(y) · iωµ(y)H(y)

we arrive at

div

∫
∂Ω

ν(y)× E(y)Φk(x, y) ds(y)
(2.30)
= −iωµ0

∫
∂Ω

ν(y) · µr(y)H(y)Φk(x, y) ds(y)

that is∫
∂Ω

ν(y) · µr(y)H(y)Φk(x, y) ds(y) = − 1

iωµ0

div

∫
∂Ω

ν(y)× E(y)Φk(x, y) ds(y). (2.31)
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Furthermore,

J2 + J3

= ∇
∫
∂Ω

µr (ν(y) ·H(y)) Φk(x, y) ds(y) + iωε0

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y)

(2.31)
= − 1

iωµ0

∇div

∫
∂Ω

ν(y)× E(y)Φk(x, y) ds(y) + iωε0

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y)

= − 1

iωµ0

(
∇div

∫
∂Ω

ν(y)× E(y)Φk(x, y) ds(y) + k2

∫
∂Ω

(ν(y)× E(y)) Φk(x, y) ds(y)

)
= − 1

iωµ0

(∇div−∆)

∫
∂Ω

(
ν(y)× E(y)

)
Φk(x, y) ds(y)

= − 1

iωµ0

curl2
∫
∂Ω

(
ν(y)× E(y)

)
Φk(x, y) ds(y)

where we used the fact that k2Φk(x, y) = −∆Φk(x, y), x 6= y. Our considerations so far

imply that

J1 + J2 + J3

= −curl

∫
∂Ω

(ν(y)×H(y)) Φk(x, y) ds(y)− 1

iωµ0

curl2
∫
∂Ω

(
ν(y)× E(y)

)
Φk(x, y) ds(y).

We note that ∂Ω = ∂D ∪ ∂BR0 . Inserting E = Ei +Es, H = H i +Hs into the right-hand

side of the above equation for the boundary part ∂BR0 and using the Stratton-Chu formula

for x ∈ BR0 yields

−curl

∫
|x|=R0

(
ν(y)×H i(y)

)
Φk(x, y) ds(y)− 1

iωµ0

curl2
∫
|x|=R0

(
ν(y)× Ei(y)

)
Φk(x,y) ds(y)

= H i(x)

and

−curl

∫
|x|=R0

(ν(y)×Hs(y)) Φk(x, y) ds(y)− 1

iωµ0

curl2
∫
|x|=R0

(
ν(y)×Es(y)

)
Φk(x, y) ds(y) = 0.

Here, we used the fact that the scattered field Es, Hs satisfies the Maxwell system

curlE − iωµH = 0, curlH + iωεE = 0
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outside BR0 and the Silver-Müller radiation condition at infinity. Summing, we obtain

J1 + J2 + J3

= −curl

∫
∂D

(ν(y)×H(y)) Φk(x, y) ds(y)− 1

iωµ0

curl2
∫
∂D

(
ν(y)× E(y)︸ ︷︷ ︸

=0

)
Φk(x, y) ds(y)

= −curl

∫
∂D

(ν(y)×H(y)) Φk(x, y) ds(y).

Finally, substituting for J1 + J2 + J3 into (2.29) yields the following operator equation:

H(x) = H i(x) + curl

∫∫
Ω

q(y)curlH(y)Φk(x, y) dy

+ (k2 +∇div)

∫∫
Ω

p(y)H(y)Φk(x, y) dy

− curl

∫
∂D

(ν ×H(y)) Φk(x, y) ds(y), x ∈ Ω. (2.32)

To simplify notation, we define the operators Lk, Tk : H(curl,Ω)→ H(curl,Ω) by

(Lkg) (x) := curl

∫∫
Ω

g(y)Φk(x, y) dy, x ∈ Ω, (2.33)

(Tkg) (x) := (k2 +∇div)

∫∫
Ω

g(y)Φk(x, y) dy, x ∈ Ω (2.34)

for g ∈ L2(Ω)3. By lemmas 2.5 and 2.6, the right hand side of (2.32) belongs to H(curl ,Ω).

Moreover, using operator notation, (2.32) can be written as

H = H i + Lk(qcurlH) + Tk(pH)− M̃(γtH) ∈ H(curl,Ω)

where M̃ is given by (2.23) and where γt is the trace operatorH(curl ,Ω)→ H−
1
2 (Div , ∂D),

H → ν ×H.

Now that we have derived the Lippmann-Schwinger operator equation, we will prove the

equivalence between (2.32) and problem (P1). To do so, we need to assume that k2 is not

a Dirichlet eigenvalue to the Maxwell’s problem inside D, that is, that the interior Maxwell

problem with Dirichlet boundary value admits at most one solution.
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Theorem 2.8. We assume that k2 is not an eigenvalue of

curl2w − k2w = 0 in D,

ν × w = 0 on ∂D.

(a) Let H ∈ H(curl,Ω) solve the integro-differential equation (2.32). Then H can be

extended by the right hand side of (2.32) to a solution to problem (P1).

(b) Let H ∈ Hloc(curl,R3 \ D) be a solution to problem (P1). Then the restriction

H|Ω ∈ H(curl,Ω) of H to Ω solves the integro-differential equation (2.32).

Proof. (a) Let A be the right-hand side of (2.32) in all of R3. Then A = H in R3 \D and

thus γtA|+ = γtH|+ on ∂D. Furthermore, using the jump condition (2.24) yields

γtA|± = H i + Lk(qcurlH) + Tk(pH)± 1

2
γtH −M(γtH) on ∂D.

From

γtH|+ = H i + Lk(qcurlH) + Tk(pH) +
1

2
γtH −M(γtH)

that is
1

2
γtH|+ = H i + Lk(qcurlH) + Tk(pH)−M(γtH) on ∂D

we conclude γtA|− = 0 on ∂D. The assumption on k2 now implies A = 0 in D. Let

ψ ∈ H(curl,R3) with ψ(x) = 0 for |x| ≥ R0 and let

u = Lk(qcurlH), v = Tk(pH) in R3, w = M̃(γtH) in R3 \ ∂D.

Then∫∫
R3\D

(
curlA · curlψ − k2A · ψ

)
dx

=

∫∫
R3

(
curlA · curlψ − k2A · ψ

)
dx

=

∫∫
R3

(
curlH i · curlψ − k2H i · ψ

)
dx+

∫∫
Ω

qcurlH · curlψ dx+ k2

∫∫
Ω

pH · ψ dx

−
∫∫

R3

(
curlw · curlψ − k2w · ψ

)
dx (2.35)

where we used lemma 2.5. Let BR be a ball of radius R ≥ R0 that contains the
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support of ψ. With Green’s theorem (1.11) we compute∫∫
R3

(
curlH i · curlψ − k2H i · ψ

)
dx =

∫∫
BR

(
curl2H i − k2H i

)
· ψ dx = 0 (2.36)

and ∫∫
R3

(
curlw · curlψ − k2w · ψ

)
dx

=

∫∫
D

(
curlw · curlψ − k2w · ψ

)
dx+

∫∫
BR\D

(
curlw · curlψ − k2w · ψ

)
dx

= 〈γtcurlw|− − γtcurlw|+, γTψ〉∂D
=0

where we used that w ∈ C∞(R3 \ ∂D)3, curl2w − k2w = 0 in R3 \ ∂D, and the jump

condition (2.24). Substituting the above identities into (2.35) yields∫∫
R3\D

(
curlA · curlψ − k2A · ψ

)
dx =

∫∫
Ω

qcurlH · curlψ dx+ k2

∫∫
Ω

pH · ψ dx

for all ψ ∈ H(curl,R3) with ψ(x) = 0 for |x| ≥ R0. The above variational formulation

is equivalent to (2.10). By lemmas 2.5 and 2.6, H − H i satisfies the Silver-Müller

radiation condition (2.8).

(b) Let H ∈ Hloc(curl,R3 \ D) be a solution to (2.9), in particular, to (2.10) such that

H − H i satisfies the Silver-Müller radiation condition (2.8). Further, let A be the

right-hand side of (2.32) in R3. By part (a), it holds that

γtA|+ − γtA|− = γtH|+, that is, γt(A−H)|+ = γtA|−.

Set

Â :=

A−H, in R3 \D,

A, in D.

Then, γtÂ|− = γtÂ|+ on ∂D, and thus Â ∈ H(curl,R3), and, again by part (a), we
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obtain∫∫
R3

(
curlA · curlψ − k2A · ψ

)
dx =

∫∫
Ω

qcurlH · curlψ dx+ k2

∫∫
Ω

pH · ψ dx

(2.10)
=

∫∫
R3\D

(
curlH · curlψ − k2H · ψ

)
dx

for all ψ ∈ H(curl,R3) with ψ(x) = 0 for |x| ≥ R0, and hence∫∫
R3

(
curlÂ · curlψ − k2Â · ψ

)
dx = 0

for all ψ ∈ H(curl,R3) with ψ(x) = 0 for |x| ≥ R0, which is the variational formula-

tion of Maxwell’s equation

curl 2Â− k2Â = 0 in R3.

Moreover, Â satisfies radiation condition (2.8), and thus we conclude that Â = 0 in

R3 (see [6], page 156).

Now we are in a position to prove the existince of a solution to problem (P1). By the

above theorem, we consider the operator equation (2.32) and show that it is of Fredholm

type.

Theorem 2.9. Let assumption (2.3) hold, and we make the same assumption on k2 as in

theorem 2.8. Then there exists a unique solution H ∈ Hloc(curl,R3 \D) to problem (P1).

Proof. By theorem (2.8) we can consider equation (2.32), which we rewrite as

H − Li(qcurlH)− Ti(pH) + M̃i(γtH)︸ ︷︷ ︸
I1

− (Lk − Li) (qcurlH)︸ ︷︷ ︸
I2

− (Tk − Ti) (pH)︸ ︷︷ ︸
I3

+
(
M̃ − M̃i

)
(γtH)︸ ︷︷ ︸

I4

= H i in Ω, (2.37)

where Li, Ti and M̃i are the operators Lk, Tk and M̃ respectively, for the special case

k = i. We want to apply the Fredholm theory to (2.37) to conclude the existence of a
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solution. To do so, we need to show that I1 is an isomorphism and that I2, I3 and I4 are

compact.

(I1): The operator H → H − Li(qcurlH) − Ti(pH) + M̃i(γtH) is an isomorphism from

H(curl,Ω) into itself:

Let F ∈ H(curl,Ω) be given and consider

H − Li(qcurlH)− Ti(pH) + M̃i(γtH) = F in Ω,

which is equivalent to H = F + U and

U = Li(qcurlH) + Ti(pH)− M̃i(γtH)

= Li(qcurlU) + Ti(pU)− M̃i(γtU) + Li(qcurlF ) + Ti(pF )− M̃(γtF ) in Ω

that is,

U = Li(qcurlU) + Ti(pU)− M̃i(γtU) +G in Ω (2.38)

with G = Li(qcurlF ) + Ti(pF ) − M̃(γtF ) ∈ H(curl,Ω). We note that the above

equation is of the form (2.32) for k = i and G instead of H i. Extending U by the

right hand side of (2.38) to all R3 and using similar arguments as in the proof of

theorem (2.8) for k = i, we conclude that U = 0 in D, and U satisfies the variational

equation (replacing ψ with its complex conjugate ψ),∫∫
R3

(
curlU · curlψ + U · ψ

)
dx =

∫∫
Ω

qcurlU · curlψ dx−
∫∫

Ω

pU · ψ dx

+

∫∫
R3

(
curlG · curlψ +G · ψ

)
for all ψ ∈ H(curl ,R3) with ψ(x) = 0 for |x| ≥ R0, where we have extended G by

zero into R3. That is, U solves∫∫
D

(
curlU · curlψ + U · ψ

)
dx+

∫∫
R3\D

(
1

εr
curlU · curlψ + µrU · ψ

)
dx

=

∫∫
R3

(
curlG · curlψ +G · ψ

)
dx (2.39)

for all ψ ∈ H(curl ,R3) with ψ(x) = 0 for |x| ≥ R0. By the form U = Li(qcurlH) +

Ti(pH)− M̃i(γtH) and the definition of Φi we observe that U decays exponentially
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as |x| tends to infinity. Therefore, U ∈ H(curl,R3) and the variational equation

(2.39) holds for all ψ ∈ H(curl,R3). The left-hand side of (2.39) defines a coercive

sesquilinear form on H(curl,R3). Indeed, by the assumptions made on µr and εr,

there exist constants c0 > 0 and c1 > 0 such that µr ≥ c0 and 1
εr
≥ c1 on Ω. Thus∫∫

R3

(
1

εr
curlU · curlU + µrU · U

)
dx

=

∫∫
Ω

(
1

εr
curlU · curlU + µrU · U

)
dx+

∫∫
R3\BR0

(
curlU · curlU + U · U

)
dx

≥ min{c0, c1, 1}
∫∫

R3\D

(
|curlU |2 + |U |2

)
dx

= c‖U‖2
H(curl,R3)

where c := min{c0, c1, 1} and where we assumed that U = 0 inD. The right-hand side

of (2.39) defines a bounded conjugate-linear functional on H(curl,R3). Consequently

the theorem of Lax-Milgram implies the existence of a unique solution U of the

variational equation (2.39).

(I2),(I3): The operators H → (Lk − Li) (qcurlH) and H → (Tk − Ti) (pH) are compact in

H(curl ,Ω):

Using the power series expansion for the exponential function, one obtains that the

difference Φk − Φi has the form

Φk(x, y)− Φi(x, y) = F1(|x− y|2) + |x− y|F2(|x− y|2)

with some analytic functions F1, F2 : R3 → C. With some ornate but elementary

calculations, it can be verified that∣∣∣∇x

(
Φk(x, y)− Φi(x, y)

)∣∣∣ ≤ k1 and
∣∣∣∇xx

(
Φk(x, y)− Φi(x, y)

)∣∣∣ ≤ k2

|x− y|

for some constants k1 > 0 and k2 > 0, where ∇xx :=
(

∂2

∂x1∂x1
, ∂2

∂x2∂x2
, ∂2

∂x3∂x3

)>
. Thus,
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the kernels ∇x

(
Φk − Φi

)
and ∇xx

(
Φk − Φi

)
are weakly singular and hence

(
Lk − Li

)
g(x) = curl

∫∫
Ω

g(y)
(
Φk(x, y)− Φi(x, y)

)
dy

=

∫∫
Ω

g(y)×∇x

(
Φk(x, y)− Φi(x, y)

)
dy

and

curl
(
Lk − Li

)
g(x) = curl 2

∫∫
Ω

g(y)
(
Φk(x, y)− Φi(x, y)

)
dy

= (∇div −∆)

∫∫
Ω

g(y)
(
Φk(x, y)− Φi(x, y)

)
dy

=
(
∇div + k2

) ∫∫
Ω

g(y)
(
Φk(x, y)− Φi(x, y)

)
dy

=

∫∫
Ω

g(y) · ∇xx

(
Φk(x, y)− Φi(x, y)

)
dy

+ k2

∫∫
Ω

g(y)
(
Φk(x, y)− Φi(x, y)

)
dy

are compact on L2(Ω)3. From this and the boundedness of the mapping H(curl ,Ω)→
L2(Ω)3, H → qcurlH we conclude the compactness of H → (Lk − Li) (qcurlH) on

H(curl ,Ω). We note that (Tk − Ti) g = curl
(

(Lk − Li) g
)

and curl
(

(Tk − Ti) g
)

=

k2 (Lk − Li) g. From this and the boundedness of H(curl ,Ω) → L2(Ω)3, H → pH

we also conclude the compactness of H → (Tk − Ti) (pH) in H(curl ,Ω).

(I4): The operator H →
(
M̃ − M̃i

)
(γtH) is compact on H(curl,Ω):

From the boundedness of the trace operator γt : H(curl ,Ω) → H−
1
2 (Div , ∂D) and

the fact that(
M̃ − M̃i

)
a(x) = curl

∫
∂D

a(y) (Φk(x, y)− Φi(x, y)) ds

=

∫
∂D

a(y) (∇xΦk(x, y)−∇xΦi(x, y)) ds, a ∈ H−
1
2 (Div , ∂D)

has a weakly singular kernel, we conclude compactness of H →
(
M̃ − M̃i

)
(γtH)

on H(curl ,Ω).

By Fredholm theorem 1.12 and the uniqueness result of theorem 2.4, we conclude that

there exists a unique solution H ∈ Hloc(curl ,R3 \D) to problem (P1).
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2.2 Inverse problem

An important example of incident fields are plane waves

Ei(x, d, p) = ik(d× p)× deikx·d, H i(x, d, p) = d× peikx·d, x ∈ R3

with propagation direction d ∈ S2 and polarization p⊥d. In the following discussion, we

denote the scattered wave and far field pattern corresponding to the incident plane wave by

Es(·, d, p), Hs(·, d, p), and H∞(·, d, p), E∞(·, d, p), respectively, indicating the dependence

on the direction d and polarization p of the incident field. The inverse problem we will

investigate here is, under what conditions an obstacle can be uniquely identified from a

knowledge of the far field pattern H∞(·, d, p) (or the electric far field pattern E∞(·, d, p))
for one or several incident plane waves with incident direction d and polarization p.

By Rellich’s lemma 1.9, the scattered wave, and thus the total field in the exterior of

the scatterer, is uniquely determined by the far field pattern. Consequently, showing the

uniqueness of the inverse problem is equivalent to showing that the total field can not

satisfy the perfectly conducting boundary condition (2.4) for two different domains D1 and

D2. Assuming that the two scatterers are disjoint, that it, D1∩D2 = ∅, the scattered wave

is defined in all of R3 because it is defined in the exterior of both D1 and D2. This implies

that the scattered field Es, Hs constitutes an entire solution to the Maxwell’s equation

satisfying the radiation condition and therefore must vanish. In particular, the scattered

field vanishes outside of the inhomogeneity in which the domains D1 and D2 are imbedded.

Using unique continuation, it is easily verified that the scattered field vanishes everywhere.

However, then the total field coincides with the incident field, and therefore the incident

field itself satisfies the perfectly conducting boundary condition ν × Ei = 0 on ∂D, an

impossibility for a closed surface. As a consequence, nonuniqueness can occur only when

D1 ∩D2 6= ∅.

The idea behind unique determination of an obstacle is from Kirsch and Kress [19] (see

theorem 7.1 in [2]) for the acoustic case. In [6], the idea was generalized for the electromag-

netic case in a homogeneous medium. The idea is to assume that we have overdetermined

data in the sense that the far field pattern is known for all incident directions and polar-

izations. We follow Potthast [11] and simplify the approach of Kirsch and Kress through

the use of a mixed reciprocity relation. Determining the scatterer from the knowledge of

the far field pattern for one incident plane wave is still an open problem. Partial progress
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has been made in inverse acoustic obstacle scattering; see [12] and [13]. In [14], the result

was extended to the electromagentic case for sound-hard balls.

Let D1 and D2 be two obstacles imbedded in an inhomogeneous and bounded medium

described by εr and µr. We assume hereinafter that µr satisfies assumption (2.3) and

εr ≡ 1, in particular, ε ≡ ε0 and σ ≡ 0. Furthermore, we assume that the corresponding

far field patterns H1,∞(x̂, d, p) and H2,∞(x̂, d, p) with respect to D1 and D2 respectively,

coincide for all x̂, d ∈ S2 and all p⊥d. We begin by showing that, under these assumptions,

the scattered fields coincide also for those fields that are responses of electric dipoles

H i
e(x; z) = curl xpΦk(x, z), Ei

e(x; z) = − 1

ik
curl xcurl xpΦk(x, z)

with source point z in the unbounded component G of R3\(D1∪D3). We will then use this

result, together with the mixed electromagntic reciprocity relation, to show uniqueness of

the inverse problem. We note the symmetric and asymmetric properties of the electric and

magnetic dipoles, respectively, that is,

Ei
e(x; z) = Ei

e(z;x) and H i
e(x; z) = −H i

e(z;x), x 6= z. (2.40)

2.2.1 Scattering of electric dipoles

In this section, we will discuss the well-posedness of the scattering problem in case of

incident electric dipole with source point z ∈ R3 \D and polarization a ∈ R3:

He = He(·; z) = curl (aΦk(·, z)) +Hs
e in R3 \

(
D ∪ {z}

)
, (2.41)

curl curlHe − k2µrHe = 0 in R3 \
(
D ∪ {z}

)
, (2.42)

curlHe × ν = 0 on ∂D, (2.43)

Hs
e ×

x

|x|
− ikHs

e = O
(

1

|x|2

)
as |x| → ∞. (2.44)

We note that H i
e(·; z) = curl aΦk(·; z) satisfies the Silver-Müller radiation condition (2.44);

see lemma 3.29 (a) in [1]. Consequently He satisfies the Silver-Müller radiation condition

(2.44). The variational formulation of the above problem is given by∫∫
R3\D

(
curlHe · curlψ − k2µrHe · ψ

)
dx = 0 (2.45)
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for all ψ ∈ H(curl ,R3 \D) with ψ(x) = 0 for |x| ≥ R0.

To show the existence of a unique solution, we would like to argue as we did previously, and

thus we consider the operator equation (2.32) in case of incident electric dipole H i
e(·; z):

He = H i
e(·; z) + T (pHe)− M̃(γtHe) in Ω. (2.46)

Here T and M̃ are given by (2.34) and (2.23), respectively. We note that q = 0 since

εr = 1, and thus the operator L given by (2.33) in (2.32) disappears. Next we need to

establish equivalence between the scattering problem (2.46)-(2.44) and the operator (2.46)

equation. Unfortunately, we cannot argue as we did in theorem 2.8 to show equivalence.

This is due to computation (2.36) in the proof of theorem 2.8, that is, we need∫∫
R3

(
curlH i

e(·; z) · curlψ − k2H i
e(·; z) · ψ

)
dx =

∫∫
BR

(
curl2H i

e(·; z)− k2H i
e(·; z)

)
·ψ dx !

= 0

for all ψ ∈ H(curl ,R3) with ψ(x) = 0 for |x| ≥ R0. The above equation only holds when

the source point z lies outside BR, where BR is a ball of radius R ≥ R0 that contains the

support of ψ, because then the dipole H i
e(·; z) has no singularity. If z ∈ Ω, then H i

e(·; z)

has a singularity at z and curlH i
e(·; z) a singularity of order two and thus is not even a L2-

function. Therefore, we need to investigate the case when z ∈ Ω in more detail.

We isolate z ∈ Ω by taking a small ball Bε(z) of radius ε > 0 centered at z such that

Bε(z) ⊂ Ω. Further, let ϕ ∈ C∞(R3) with

ϕ(x) =

1, for |x| > 2ε
3
,

0, for |x| < ε
3

and define h : R3 → C by

h(x) = Φk(x, z)ϕ(|x− z|2).

Then, h ∈ C∞(R3) and, for x /∈ Bε(z), we have that h(x) = Φk(x, z). Moreover, the trace

of h on ∂D equals Φk(·, z)|∂D. Next we set

Ĥ = Hs
e + curl (ah) = He + curl

(
a[ϕ(| · −z|2)− 1]Φk(·, z)

)
in R3 \D. (2.47)
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To simplify notation we define

ϕ̂z(x) := ϕ(|x− z|2)− 1.

If He solves problem (2.41)-(2.44), then

curl curl Ĥ − k2µrĤ = curl 3 (aϕ̂zφk(·, z))− k2µrcurl (aϕ̂zφk(·, z)) in R3 \D, (2.48)

curl Ĥ × ν = curl 2 (aϕ̂zφk(·, z))× ν on ∂D. (2.49)

Remark 2.10. (a) We note that ϕ̂z(x) = ϕ(|x − z|2) − 1 = 0 for |x − z|2 > 2ε
3

so

curl (aϕ̂zΦk(·, z)) = 0 away from z.

(b) Since h(x) = Φk(x, z) for x away from z, curl (ah) satisfies the Silver-Müller radia-

tion condition (2.44). Thus, Ĥ also satisfies radiation condition (2.44).

By the above remark, in case of z ∈ Ω, in particular z /∈ ∂D, the right-hand side of (2.49)

equals zero. Next we need to examine the right-hand side of (2.48):

curl 3 (aϕ̂zφk(·, z))− k2µrcurl (aϕ̂zφk(·, z))

=− curl ∆ (aϕ̂zφk(·, z))− k2µrcurl (aϕ̂zφk(·, z))

=− curl

a{Φk(·, z)∆ϕ̂z + 2∇Φk(·, z) · ∇ϕ̂z + ϕ̂z ∆Φk(·, z)︸ ︷︷ ︸
=−k2Φk(·,z)

}

− k2µrcurl (aϕ̂zφk(·, z))

=k2 (1− µr)︸ ︷︷ ︸
=−p

curl (aϕ̂zΦk(·, z))− curl (a{Φk(·, z)∆ϕ̂z + 2∇Φk(·, z) · ∇ϕ̂z})

=− k2curl (paϕ̂zΦk(·, z)) + k2∇p× {aϕ̂zΦk(·, z)} − curl (a{Φk(·, z)∆ϕ̂z + 2∇Φk(·, z) · ∇ϕ̂z}) .

For x ∈ Ω set

f(x) = −k2ap(x)ϕ̂z(x)Φk(x, z), (2.50)

g(x) = k2∇p(x)× {aϕ̂z(x)Φk(x, z)} − curl (a{Φk(x, z)∆ϕ̂z(x) + 2∇Φk(x, z) · ∇ϕ̂z(x)}) .
(2.51)

Then f, g ∈ L2(Ω)3 (we note that ∆φ̂z(x) = ∆φ(|x − z|2), ∇φ̂z(x) = ∇φ(|x − z|2) which

vanish near the singularity of Φk(x, z)) and due to remark 2.10 (a), both f and g vanish
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on ∂D. Summing, we obtain the following problem for Ĥ:

curl curl Ĥ − k2µrĤ = curl f + g in R3 \D, (2.52)

curl Ĥ × ν = 0 on ∂D, (2.53)

Ĥ × x

|x|
− ikĤ = O

(
1

|x|2

)
as |x| → ∞ (2.54)

where we have extended f and g by zero outside into R3 \D.

We note that, if Ĥ solves problem (2.52)-(2.54), then by substitutingHe = Ĥ−curl (aϕ̂zΦk(·, z))
into (2.52)-(2.54) and letting f and g be given by (2.50) and (2.51), respectively, solution

He of problem (2.42)-(2.44) is obtained.

The corresponding variational formulation of problem (2.52)-(2.54) is given by∫∫
R3\D

(
curl Ĥ · curlψ − k2µrĤ · ψ

)
dx =

∫∫
Ω

f · curlψ dx+

∫∫
Ω

g · ψ dx (2.55)

for all ψ ∈ H(curl ,R3 \D) with compact support. Further, set

Ĥ = Lk(f) +
1

k2
Tk(g) + Tk(pĤ)− M̃(γtĤ) in Ω (2.56)

where Lk, Tk and M̃ are the opertors given by (2.33), (2.34) and (2.23), respectively. We

can argue exactly as in theorem 2.8 to obtain the equivalence of the scattering problem

(2.52)-(2.54) and the Lippmann-Schwinger operator equation (2.56). Moreover, writing

H − Ti(pĤ) + M̃(γtĤ)− (Tk − Ti) (pĤ) +
(
M̃ − M̃i

)
(γtĤ) = L(f) +

1

k2
T (g) in Ω

and assuming that k2 is not a Dirichlet eigenvalue in D, we obtain by theorem 2.9 and the

uniqueness result of theorem 2.4 the existence of a unique solution Ĥ ∈ Hloc(curl ,R3 \D)

to problem (2.55). Thus, there exists a unique solution He ∈ Hloc

(
curl ,R3 \

(
D ∪ {z}

))
to the variational problem (2.45).

2.2.2 Uniqueness

To show the uniqueness of the inverse problem, we are going to work with the electric

field only instead of the magnetic field. We note that, by lemma 2.2, the E field can be
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computed from the H field (and vice versa). The reason why we choose to work with the

electric field is because of the symmetry property of the electric dipole (2.40), that is,

Ei
e(x; z, p) = Ei

e(z;x, p) for all x 6= z

which is necessary to prove a mixed electromagnetic reciprocity relation that we state in

the following lemma. The problem for the electric field states: determine E : R3 \D → C3,

E = Es + Ei such that

curl

(
1

µr
curlE

)
− k2E = 0 in R3 \D,

E × ν = 0 on ∂D,

Es satisfies the Silver-Müller radiation condition.

Lemma 2.11. Let Ee,∞ denote the electric far field pattern in case of an incident electric

dipole with source point z ∈ R3 \D and Es the scattered wave corresponding to an incident

plane wave. Then following relations holds

p · Ee,∞(x̂, z, q) =
1

4π
q · Es(z,−x̂, p) (2.57)

for all z ∈ R3 \D, for all incident directions x̂ ∈ S2 and all polarizations p⊥x̂ and q⊥x̂.

Proof. We remove the electric dipole Ei
e(·;x, q) at x = x̂|x|, x̂ ∈ S2, to infinity in the

direction of x̂. Then for z ∈ R3 \D fixed we obtain:
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p · Ei
e(z;x, q) = p ·

(
− 1

ik
curl zcurl z [qΦk(z, x)]

)
= − 1

ik
p · curl zcurl z [qΦk(x, z)]

= − 1

ik
p · curl zcurl zq

(
eik|x|

4π|x|
e−ikx̂·z +O

(
1

|x|

))
= − 1

ik

eik|x|

4π|x|
p · curl z

(
−ik[x̂× q]e−ikx̂·z

)
+O

(
1

|x|

)
=

eik|x|

4π|x|
p ·
(
∇ze

−ikx̂·z × [x̂× q]
)

+O
(

1

|x|

)
= −ik e

ik|x|

4π|x|
p · (x̂× [x̂× q]) e−ikx̂·z +O

(
1

|x|

)
= −ik e

ik|x|

4π|x|
q · (−[x̂× p]× x̂) e−ikx̂·z +O

(
1

|x|

)
=

eik|x|

4π|x|
q · (ik[(−x̂)× p]× (−x̂)) e−ikx̂·z +O

(
1

|x|

)
=

eik|x|

4π|x|
q · Ei(z,−x̂, p) +O

(
1

|x|

)
, |x| → ∞,

that is,

p · Ei
e(x; z, q) =

eik|x|

4π|x|
q · Ei(z,−x̂, p) +O

(
1

|x|

)
, |x| → ∞

where we used the symmetry property (2.40) of the electric dipole. In other words, when

removing the electric dipole to infinity, it acts like a plane wave, this implies

p · Es
e(x; z, q) =

eik|x|

4π|x|
q · Es(z,−x̂, p) +O

(
1

|x|

)
, |x| → ∞. (2.58)

Substituting

p · Es
e(x; z, q) =

eik|x|

4π|x|

{
p · Ee,∞(x̂; z, q) +O

(
1

|x|

)}
into (2.58) yields the mixed reciprocity relation (2.57).

Now we are in a position to prove our first result.

Theorem 2.12. Let G be the unboudned component of R3 \ (D1 ∪D3) and E1,∞(x̂, d, p) =

E2,∞(x̂, d, p) for all x̂, d ∈ S2 and all p⊥d. Let z ∈ G and Ee,j(·; z) = Ee,j, j = 1, 2 be the
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unique solution of

Ee,j = − 1

ik
curl curl pΦk(x, z) + Es

e,j in R3 \Dj, (2.59)

curl

(
1

µr
curlEe,j

)
− k2Ee,j = 0 in R3 \Dj, (2.60)

1

µr
curlEe,j × ν = 0 on ∂Dj, (2.61)

Es
e,j satisfies the Silver-Müller radiation condition (2.62)

in the variational sense. Then Es
e,1(x; z) = Es

e,2(x; z) for all x ∈ G, x 6= z.

Proof. By Rellich’s lemma, from the coincidence of the far field patterns for plane wave

incidence, it follows that the corresponding scattered waves satisfy Es
1(·, d, p) = Es

2(·, d, p)
for all d ∈ S2 and all p⊥d in the exterior of the ball BR of radius R > 0, where R is

choosen large enough such that D1 ∪D2 ⊂ BR and µr ≡ 1 outside BR. By lemma 2.2, it

also holds that Hs
1(·, d, p) = Hs

2(·, d, p) for all d ∈ S2 and all p⊥d in R3 \BR. Applying the

unique continuation principle to Hs = Hs
1 −Hs

2 in a similar way as was done in the proof

of theorem 2.4, we conclude that Hs
1(·, d, p) = Hs

2(·, d, p) in G for all d ∈ S2 and all p⊥d,

which by lemma 2.2 implies

Es
1(·, d, p) = Es

2(·, d, p) in G

for all d ∈ S2 and all p⊥d. Now, from the mixed reciprocity relation (2.57) for scattering

of electric dipole fields, we conclude that

Ee,1,∞(·; z, q) = Ee,2,∞(·; z, q) on S2,

for z ∈ G and all polarizations q. Again by Rellich’s lemma, this implies that the corre-

sponding scattered waves coincide Es
e,1(x; z, q) = Es

e,2(x; z, q) for all x ∈ R3 \ BR, z ∈ G
and all polarizations q. With the unique continuation principle applied as in the proof of

theorem 2.4, we conclude that

Es
e,1(x; z, q) = Es

e,2(x; z, q) in G

for all z ∈ G and all polarizations q.
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Finally we prove uniqueness of the inverse problem.

Theorem 2.13. Let Es(·, d, p) and E∞(·, d, p) be the scattered wave and far field pattern,

respectively, corresponding to the plane wave Ei(x, d, p) = ik(d× p)× deikx·d, x ∈ R3 with

propagation direction d ∈ S2 and polarization p⊥d. If the far field patterns E∞,1(x̂, d, p)

and E∞,2(x̂, d, p) for the obstacles D1 and D2 coincide for all incident directions d, all

polarizations p⊥d and all observations x̂, then D1 = D2.

Proof. We prove the claim by contradiction and assume that D1 6= D2. Then without loss

of generality, there exists z∗ ∈ ∂G such that z∗ ∈ ∂D1 and z∗ /∈ D2. We can choose h > 0

small enough such that the sequence

zn := z∗ +
h

n
ν(z∗), n = 1, 2, 3, ...

is contained in G, where ν(z∗) is the outward normal vector to ∂D1 at z∗. Consider the

(variational) solution Es
e,n,j, j = 1, 2 to the boundary value problem (2.59)-(2.62) with

z replaced by zn. By theorem 2.12, it holds that Es
e,n,1 = Es

e,n,2 in G. We denote by

Ei
n(·; zn) = Ei

n(·; zn, p) = − 1
ik

curl curl pΦk(·, zn) the incident electric dipole with source

point zn and polarization p.

Consider Es
e,n = Es

e,n,2 as the scattered field corresponding to D2. In view of the well-

posedness of the direct scattering problem for the scatterer D2, since z∗ has positive dis-

tance from D2, we obtain on one hand that

‖Es
e,n(·; zn)‖Hloc(curl ,R3\D2) <∞ for sufficiently large n ∈ N.

On the other hand, considering Es
e,n = Es

e,n,1 as the scattered field corresponding to D1 we

obtain, due to the singular behavior of Φk(·, z∗), that

‖ν × Es
e,n(·; zn)‖∂D1 = ‖ν × Ei

n(·; zn)‖∂D1 →∞ as n→∞.

Hence

‖Es(·; zn)‖Hloc(curl ,R3\D1) ≥ c̃‖ν × Es
e,n(·; zn)‖∂D1 →∞ as n→∞.

This is a contradiction, and thus we conclude D1 = D2.

We will end this section by showing in the case of a homogeneous medium, that is, µr = 1,

where the scatterer is a ball, the uniqueness of the inverse problem can be proven from the
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knowledge of the far field pattern for the scattering of one incident plane wave only. The

following result is from [14].

The solution of the scattering problem for a ball in a homegenous medium, has an explicit

solution in terms of radiating spherical vector wave functions; see [1], [2]. This implies

that the scattered field can be extended across the boundary of the ball into the interior,

with the exception of the center of the ball. Consequently, if two different scattering balls

have far field patterns that coincide for one incident plane wave, they must have the same

center, since otherwise the scattered wave would be an entire solution to the Maxwell’s

equation. By symmetry, the electric far field pattern for the scattering of plane waves at

a ball centered at the origin satisfies E∞(Rx̂,Rd,Rp) = RE∞(x̂, d, p) for all x̂, d ∈ S2,

all p⊥d, and all rotations R (that is, for all orthogonal transformations with detR = 1).

Hence, knowledge of the far field pattern for one incident direction and polarization implies

knowledge of the far field pattern for all incident directions and polarizations. Now the

uniqueness of the inverse problem follows from theorem 2.12.
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3 Scattering of electromagnetic waves with conduc-

tive transmission condition

In this section, we consider the scattering of time-harmonic electromagnetic waves in case

of a penetrable obstacle. We assume the scatterer to be an inhomogeneous medium sur-

rounded by a homogeneous setting and on the boundary of the scatterer we assume con-

ductive transmission conditions. These transmission conditions model the occurrence of a

thin layer of very high conductivity for, while the electric field does not penetrate into an

ideal conductor of positive thickness, such a field certainly will penetrate into the medium

beyond that conductor if the latter is infinitely thin. We will briefly mention the motiva-

tion of considering obstacles surrounded by a thin layer of very high conductivity and the

advantage of approximating this kind of model via conductive transmission conditions.

In many practical applications, electronic devices are surrounded by casings or other layers

of a highly conductive material to protect them from external electromagnetic fields (e.g.,

data cables) or to protect the environment from the electromagnetic fields generated by

devices. To minimize the cost, size and weight, these layers have to be thin. This leads to

a non-perfect shielding where the electromagnetic fields partly penetrate the shields and,

e.g., external fields have a small but significant effect on the encased electronic devices.

The large ratio of characteristic lengths (width of the device against thickness of the layer)

leads to serious numerical problems. Even thought we are not going to consider any

numerical results in this work, we would briefly like to point out where some of the main

problems occur. The classical numerical methods such as finite differences or finite elements

require a small mesh size. As the layers have to be solved by the mesh in thickness

direction, the number of cells in the mesh increase with the decreasing layer thickness.

The numerical modelling is much simplified if the thin conducting layers are replaced by

transmission conditions on an interface, which is usually its mid-surface. Using conductive

transmission conditions, which relate the electric and magnetic fields on both sides of the

interface, meshes with much larger cells can be used. Providing an accurate prediction of

the electromagnetic fields, those transmission conditions are called equivalent. Moreover,

there are several different ways of deriving equivalent transmission conditions, e.g., with the

scaled asymptotic expansions technique it can be shown that the model with the conductive

transmission conditions can be used as a first order approximation for the full model; see

[23] for the two-dimensional configuration and [21], [22] for the three-dimensional.
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3.1 Problem statement

Let D ⊂ R3 be a bounded domain. We assume that D is surrounded by a homogeneous

medium with constant electric permittivity ε0 and constant magnetic permeability µ0.

Inside D, the electric permittivity ε, magnetic permeability µ and conductivity σ are

assumed to be scalar functions. By ν we denote the unit outward normal to ∂D.

We consider the scattering of an incident time-harmonic electromagnetic wave Ei, H i sat-

isfying curlEi− iωµ0H
i = 0 and curlH i+ iωε0E

i = 0 in all of R3. Inside D, the field E,H

satisfies

curlE − iωµH = 0, in D, (3.1)

curlH + (iωε− σ)E = 0 in D (3.2)

while outside D it satsfies

curlE − iωµ0H = 0 in R3 \D, (3.3)

curlH + iωε0E = 0 in R3 \D. (3.4)

Moreover, the total (exterior) field consists of the sum of incident and scattered fields

E = Es + Ei, H = Hs +H i,

where Es, Hs is an outgoing wave satisfying the Silver-Müller radiation condition

lim
|x|→∞

(Hs × x− |x|Es) = 0, (3.5)

uniformly with respect to all directions x̂ = x/|x|. On the boundary ∂D, we have the

conductive transmission conditions given by

ν × E|+ − ν × E|− = 0 on ∂D, (3.6)

ν ×H|+ − ν ×H|− − βν × (E × ν) = 0 on ∂D (3.7)

where the subscripts ”+” and ”−” denote the traces from the outside and inside of D,

respectively, and β is a strictly positive, real-valued function of position on ∂D.

We will present two different ways to show well-posedness of the direct problem. The first
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one is the integral equation method that we introduced in the previous section. Here we

have to be careful with the spaces due to the transmission condition (3.7). As a first choice

we seek a solution E,H in the space H(curl , D) ∪Hloc(curl ,R3 \D). But for a Lipschitz

domain D, the traces ν ×H|± belong to H−
1
2 (Div , ∂D) while the trace ET := ν × (E × ν)

belongs to H−
1
2 (Curl , ∂D), thus we encounter trouble with the transmission condition

(3.7). To overcome this problem we will need to assume more smoothness on the domain

and data. Moreover, we will seek a solution E,H in the space H1(D)3∪H1
loc(R3 \D)3 that

will allow us to consider the transmission condition (3.7) in H
1
2 (∂D)3.

Here we will argue differently than for the previous scattering problem. We start by con-

sidering the case when the electric permitivity is constant and make an ansatz for E,H

that solves Maxwell’s system (3.1)-(3.4) via integral equations, in particular, boundary

integrals, with unknown densities. Requiring the traces of the ansatz to satisfy the trans-

mission conditions (3.6)-(3.7) will lead us to a system. To obtain a compactness result, we

will consider the boundary intgeral operators appearing in the system, in particular, their

traces, for different wavenumbers.

The second method we will apply is the variational approach. The idea is to derive an

equivalent variational formulation of the full scattering problem on a bounded subdomain

BR. The formulation uses the electromagnetic analogue of the Dirichlet-to-Neumann map

called the electric-to-magnetic Calderon operator described in section 3.3.2. Generally

speaking, the electric-to-magnetic Calderon operator is used to replace the radiating con-

ditions with transmission conditions on the artificial boundary ∂BR, thereby enabling us

to truncate the problem to the subdomain BR. The advantage of using the variational

method is, that we will be able to show well-posedness of the direct problem for Lipschitz

domains and require less regularity on the data compared to the integral equation method.

The general approach of using a Calderon operator in a non-local boundary condition for a

weak formulation of unbounded electromagnetic scattering problems for bounded obstacles

was introduced by A. Kirsch and P. Monk [15] in 1995.

Coercivity and compactness are not only important properties for the integral equation

method, but also for the analysis of variational formulations. Applying the Lax Mil-

gram theorem to obtain the existence of a unique solution is of course favorable whenever

possible. Unfortunately, in electromagnetic medium scattering where the medium is inho-

mogeneous, the variational formulation fails to be coercive. Moreover, the solution space

fails to be compactly imbedded in the space of all square integrable vector functions, thus
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making it difficult to write the variational formulation as the sum ’coercive + compact’.

To overcome this problem, we will use decomposition of vector fields, that is, a Helmholtz

decomposition [1].

In the following, we will only work with the electric field. We recall the relative permittivity

and relative permeability given by

εr(x) =
ε(x)

ε0

+ i
σ(x)

ωε0

, µr(x) =
µ(x)

µ0

, x ∈ D

respectively. Eliminating H from equation (3.1) and (3.3), and substituting into (3.2) and

(3.4) yields the problem of determining E : R3 → C3 such that

curl

(
1

µr
curlE

)
− k2εrE = 0 in D, (3.8)

curl curlE − k2E = 0 in R3 \D, (3.9)

E = Ei + Es in R3 \D, (3.10)

ν × E|+ − ν × E|− = 0 on ∂D, (3.11)

ν × curlE|+ − ν
1

µr
× curlE|− − λET = 0 on ∂D, (3.12)

lim
|x|→∞

|x| (curlEs × ν − ikEs) = 0, (3.13)

where ET := ν × (E × ν) and λ := iωµ0β.

3.2 Well-posedness of the direct problem via the integral equa-

tion method

Let D ⊂ R3 be a bounded C2,1-smooth domain with connected boundary ∂D such that

the complement R3 \ D is connected. By a C2,1-smooth domain, we mean a domain

that satisfies definition 1.1 where the function g, which describs the boundary locally, is

two-times continuously differentiable such that each derivative is Hölder continuous with

exponent 1. We will consider the case when µ ≡ µ0 and β ∈ R, β > 0 are constants, in
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particular, λ = iωµ0β is constant with Im(λ) > 0. Define

X(D) = H1(D)3 ∩H(curl 2, D),

X(R3 \D) = H1
loc(R3 \D)3 ∩Hloc(curl 2,R3 \D)

where

H(curl 2, D) = {U ∈ L2(D)3 : curl 2U ∈ L2(D)3},

Hloc(curl 2,R3 \D) = {U ∈ L2
loc(R3 \D)3 : curl 2U ∈ L2

loc(R3 \D)3}.

We seek a solution E in the space X(D)∪X(R3 \D) and consider transmission conditions

(3.11)-(3.12) in H
1
2 (∂D)3.

We note that if E|D ∈ X(D), E|R3\D ∈ X(R3\D) solve (3.8)-(3.13), then it is easily verified

that E and H = 1
iωµ0

curlE solve Maxwell’s system (3.1)-(3.7). Moreover, since divH = 0

and ν ×H|+ − ν ×H|− ∈ H
1
2 (∂D)3, we conclude that H ∈ H1(D)3 ∪H1

loc(R3 \D). Thus

problem (3.1)-(3.7) is equivalent to (3.8)-(3.13), and the problem we will study reads:

Problem statement (P2):
Determine E ∈ X(D) ∪X(R3 \D), which satisfies (3.8)-(3.13).

Next we summerize the assumptions on the data and prove uniqueness.

Assumption 3.1. We assume that:

• D ⊂ R3 is a bounded C2,1-smooth domain with connected exterior R3 \D.

• λ = iωµ0β ∈ C with β > 0 and µ = µ0 ∈ R constants.

• k = ω
√
ε0µ0 > 0.

• εr ∈ W 2,∞(D) with Im(εr) ≥ 0 and such that there exists a c0 > with Re(εr) > c0.

Then in particular 1
εr
∈ L∞(D).

We note that by definition εr = 1 outside D.

Theorem 3.2. There exists at most one solution to problem (P2).

Proof. Let Ei = 0, i.e. E satisfies radiation condition (3.13). Let BR be a ball of radius

R > 0 such that D ⊂ BR and set ΩR = BR \D. As noted in remark 2.1, the solution E
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is smooth outside D, and thus ET = ν × (E × ν) = E on ∂BR = {x ∈ R3 : |x| = R}.
Multiplying (3.8) by E and using Green’s theorem (1.11) in D yields∫∫

D

(
|curlE|2 − k2εr|E|2

)
dx+ 〈ν × curlE,ET 〉∂D = 0. (3.14)

Similarly, multiplying (3.9) by E and using Green’s theorem (1.11) in ΩR = BR \D yields∫∫
ΩR

(
|curlE|2 − k2|E|2

)
dx− 〈ν × curlE,ET 〉∂D + 〈ν × curlE,E〉|x|=R︸ ︷︷ ︸

=−〈curlE×ν,E〉|x|=R

= 0. (3.15)

By adding (3.14) to (3.15) and using transmission condition (3.7), we obtain

〈curlE × ν, E〉|x|=R =− iωµ0

∫
∂D

β|ET |2 ds+

∫∫
BR

|curlE|2 dx

− k2

∫∫
D

εr|E|2 dx− k2

∫∫
ΩR

|E|2 dx.

Moreover,

Im 〈curlE × ν, E〉|x|=R ≤ 0. (3.16)

From the radiation condition (3.13), we obtain

0
R→∞←

∫
|x|=R

|curlE × ν − ikE|2 ds

=

∫
|x|=R

(
|curlE × ν|2 + |E|2

)
ds− 2Im

∫
|x|=R

(curlE × ν) · E ds

(3.16)

≥
∫
|x|=R

(
|curlE × ν|2 + |E|2

)
ds.

Rellich’s lemma 1.9 now implies that E = 0 outside BR. Outside D the solution is smooth

and analytic, hence E = 0 outsideD. Now, taking the divergence of (3.8) yields div (εrE) =

0 in D, that is, divE = − 1
εr
E · ∇εr = −E · ∇ ln(εr). Using the vector identity curl 2 =
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∆ +∇div and substituting for divE, we obtain

∆E = ∇divE − k2εrE

= −∇ (E · ∇ ln(εr))− k2εrE

= −
3∑
l=1

(
El∇

∂ ln(εr)

∂xl
+∇El

∂ ln(εr)

∂xl

)
− k2εrE.

Here we argued classically and next we derive this formula in the variational sense. We

multiply equation (3.8) by a test function φ ∈ C∞0 (D)3 and integrate over D, this yields:

0 =

∫∫
D

(
curl 2E − k2εrE

)
· φ dx

(1.11)
=

∫∫
D

(
E · curl 2φ− k2εrE · φ

)
dx

=

∫∫
D

(
E∆φ+ E · ∇div φ− k2εrE · φ

)
dx

(1.7)
=

∫∫
D

(
E∆φ+ divEdiv φ− k2εrE · φ

)
dx

=

∫∫
D

(
E∆φ− (E · ∇ ln(εr)) div φ− k2εrE · φ

)
dx

(1.7)
=

∫∫
D

(
E∆φ−∇ (E · ∇ ln(εr)) · φ− k2εrE · φ

)
dx

that is, ∫∫
D

E∆φ dx =

∫∫
D

(
∇ (E · ∇ ln(εr))− k2εrE

)
· φ dx

where we used that φ = 0 on ∂D, div φ ∈ C∞0 (D) and curlφ ∈ C∞0 (D)3. The above

identity holds for all φ ∈ C∞0 (D)3. By the interior regularity property 1.10, we conclude

that E ∈ H2(U)3, where U is an open set with Ũ ⊆ D. Now we can argue as we did in

the uniqueness result of theorem 2.4 and apply the unique continuation principle 1.11 to

conclude that E = 0 in R3.

Before we make an ansatz for a solution, we recall several integral operators and their

mapping properties for smooth domains.

Surface potentials. We re-introduce the single layer potential from (2.21):

(
S̃ka
)
(x) =

∫
∂D

a(y)Φk(x, y) ds(y), x ∈ R3 \ ∂D
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and denote its restriction to the boundary ∂D by Sk, that is

(
Ska
)
(x) =

∫
∂D

a(y)Φk(x, y) ds(y), x ∈ ∂D.

It is known that (see e.g., [18], [25])

S̃k : Hs− 1
2 (∂D)3 → Hs+1(D)3 ∪Hs+1

loc (R3 \D)3

Sk : Hs− 1
2 (∂D)3 → Hs+ 1

2 (∂D)3

are bounded for −1 ≤ s ≤ 2. Furthermore, U = S̃ka satisfies the vector Helmholtz

equation ∆U + k2U = 0 in R3 \ ∂D and since each component Uj, j = 1, 2, 3 satisfies

the Sommerfeld radiation condition, U satisfies the Silver-Müller radiation condition (this

follows from theorem 6.7 in [6]). On ∂D, we have

ν × S̃k|∂D = ν × Sk. (3.17)

Next we define the space

Hs
t (∂D) := {a ∈ Hs(∂D) : ν · a = 0}

of tangential fields and re-introduce the bounded operators from (2.22), (2.23):

M̃k = curl S̃k : H
s− 1

2
t (∂D)3 → Hs(D)3 ∩Hs

loc(R3 \D)3, 0 ≤ s ≤ 3,

Ñk = curl 2S̃k : H
s− 1

2
t (∂D)3 → Hs−1(D)3 ∩Hs−1

loc (R3 \D)3, 1 ≤ s ≤ 2

where the mapping properties follow from the mapping property of the single layer potential

S̃k. We note that

curl M̃k = Ñk, curl Ñk = k2M̃k.

The restrictions of M̃k and Ñk to the boundary ∂D will be denoted by Mk and Nk, respec-

tively. Then, for a C2,1-smooth boundary ∂D,

Mk : H
s− 1

2
t (∂D)3 → H

s− 1
2

t (∂D)3

is compact and

Nk : H
s− 1

2
t (∂D)3 → H

s− 3
2

t (∂D)3
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is bounded, for 0 ≤ s ≤ 2 (see [6], [25]). Moreover, the following jump condition hold for

a ∈ Hs− 1
2

t (∂D), 0 ≤ s ≤ 2 (corresponding to lemma 2.6):

ν × M̃ka||± = Mka∓
1

2
a ∈ Hs− 1

2
t (∂D)3, (3.18)

ν × Ñka||± = Nka ∈ Hs− 3
2

t (∂D)3. (3.19)

Lastly, we define the double layer potential with density φ ∈ H 1
2 (∂D) by

(
Dkφ

)
(x) =

∫
∂D

φ(y)
∂Φk

∂ν(y)
(x, y) ds(y), x ∈ R3 \ ∂D

and denote its restriction to the boundary ∂D by Dk. By theorem 5.46 in [1], Dk is a

bounded map into H1(D) and into H1
loc(R3 \ D). Furthermore, u = Dkφ satisfies the

Helmholtz equation ∆u + k2u = 0 in R3 \ ∂D and the Sommerfeld radiation condition.

Moreover, D : H
1
2 (∂D)→ H

1
2 (∂D) is bounded and the following jump condition holds

ν ×Dkφ|± = ±1

2
φ+Dφ. (3.20)

We end this section by stating one very important property that will be useful in the next

section.

Lemma 3.3. Let Φ1 and Φ2 denote the fundamental solution for the wave numbers k1 and

k2, respectively. The operators

S1 − S2 : Hs− 1
2 (∂D)3 → Hs+ 1

2 (∂D)3, −1 ≤ s ≤ 2,

M1 −M2 : H
s− 1

2
t (∂D)3 → H

s− 1
2

t (∂D)3, 0 ≤ s ≤ 2,

N1 −N2 : H
s− 1

2
t (∂D)3 → H

s− 3
2

t (∂D)3, 0 ≤ s ≤ 2

are compact.

Proof. Let Φi be the fundamental solution for the special case k = i. By theorem 2.9,

the kernels Φl − Φi, ∇x(Φl − Φi) and ∇xx(Φl − Φi), l = 1, 2 are weakly singular, where

∇xx =
(

∂2

∂x1∂x1
, ∂2

∂x2∂x2
, ∂2

∂x3∂x3

)T
. Thus writing Φ1 −Φ2 = (Φ1 −Φi)− (Φ2 −Φi) proves the

claim.
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3.2.1 Integral equation method for constant electric permitivity

Let εr > 0 be a constant such that εr 6= 1. In the following, we set

k1 := k
√
εr.

Ansatz for a solution. We make an ansatz motivated from the exterior impedance

boundary value problem considered in [6] for Hölder continuous densities. Generally speak-

ing, the impedance problem can be considered as the ”exterior conductive transmission

condition problem”. We set

E = S̃k1(a) + M̃k1(b) +∇S̃k1(φ− φ1) + λS̃k1(φ1ν) in D, (3.21)

E = Ei + S̃k(a) + M̃k(b) +∇S̃k(φ− φ1) + λS̃k(φν) in R3 \D (3.22)

for unknown densities a ∈ L2(∂D)3, b ∈ H
1
2
t (∂D)3 and φ, φ1 ∈ L2(∂D). W.l.o.g. we write

E = E|D and Es = E|R3\D = E − Ei. We note that M̃k1 and M̃k satisfiy (3.8) and (3.9),

respectively. Moreover, the single layer potential and the gradient of the single layer poten-

tial satisfy the vector Helmholtz equation in D and in R3\D and the cartesian components

of Es satisfy the Sommerfeld radiation condition. Using the identity curl 2 = −∆ +∇div

and insisting that divE = 0 in D and divEs = 0 in R3\D, the ansatz (3.21)-(3.22) satisfies

Maxwell’s system (3.8)-(3.9) and Es satisfies the Silver-Müller radiation condition. Since

divEs satisfies the scalar Helmholtz equation and the Sommerfeld radiation condition, by

the uniqueness for the exterior Dirichlet problem it suffices to impose divEs = 0 only on

∂D. Under the assumption that k2
1 is not a Dirichlet eigenvalue we similarly can deduce,

by the uniqueness of the interior Dirichlet problem, that it suffices to impose divEs = 0

only on ∂D. Thus, under the assumption on k2
1, ansatz (3.21)-(3.22) solves problem (P2) if

we can determine a, b, φ1 and φ such that transmission conditions (3.11)-(3.12) are satisfied

and divE = divEs = 0 on ∂D.

Next we consider the traces of (3.21)-(3.22). Using jump conditions (3.17) and (3.18)-(3.19)
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we obtain for x ∈ ∂D:

ν(x)× E(x) = ν(x)× (Sk1a) (x) + (Mk1b) (x) +
1

2
b(x)

+ ν(x)×
∫
∂D

[φ(y)− φ1(y)]∇xΦk1(x, y) ds+ λSk1(φ1ν),

ν(x)× Es(x) = ν(x)× (Ska) (x) + (Mkb) (x)− 1

2
b(x)

+ ν(x)×
∫
∂D

[φ(y)− φ1(y)]∇xΦk(x, y) ds+ λν(x)× Sk(φν),

ν × curlE(x) = (Mk1a) (x) +
1

2
a(x) + (Nk1b) (x)

+ λ ν(x)×
∫
∂D

φ1(y)ν(y)×∇xΦk1(x, y) ds,

ν × curlEs(x) = (Mka) (x)− 1

2
a(x) + (Nkb) (x)

+ λ ν(x)×
∫
∂D

φ(y)ν(y)×∇xΦk(x, y) ds.

Transmission condition (3.12) is satisfied if there exists a ∈ L2
t (∂D), b ∈ H

1
2
t (∂D)3 and

φ, φ1 ∈ L2(∂D) such that:

− a(x) + (Mk −Mk1) a(x) + λν(x)× (Sk1a) (x)

+ (Nk −Nk1) b(x) + λν(x)×
(
Mk1 +

1

2
I

)
b(x)

+ λν(x)×
∫
∂D

φ1(y) [ν(y)− ν(x)]×∇xΦk1(x, y) ds(y) + λν(x)× (Sk1(φ1ν)) (x)

+ λν(x)×
∫
∂D

φ(y) [ν(x)×∇xΦk1(x, y)− ν(y)×∇xΦk(x, y)] ds(y) = −ν(x)× curlEi(x).

(3.23)

By lemma 3.3, the operators Mk −Mk1 : L2
t (∂D) → L2

t (∂D) and Nk −Nk1 : H
1
2
t (∂D)3 →

L2
t (∂D) are compact. Due to the compact embeddingsH1(∂D)3 ↪→ L2(∂D)3 andH

1
2 (∂D)3 ↪→

L2(∂D)3, we conclude that the operators S and Mk1 + 1
2
I are compact from L2

t (∂D) into

itself. Moreover,

Ŝk1(·) := Sk1(·ν) : L2(∂D)3 → L2
t (∂D)
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is compact. Set

(Pk1φ1) (x) := ν(x)×
∫
∂D

φ1(y) [ν(y)− ν(x)]×∇xΦk1(x, y) ds(y)

and

(Qφ) (x) := ν(x)×
∫
∂D

φ(y) [ν(x)×∇xΦk1(x, y)− ν(y)×∇xΦk(x, y)] ds(y)

for φ1, φ ∈ L2(∂D). We note that the factor ν(y) − ν(x) makes the kernel of Pk1 weakly

singular; see corollary 2.9 in [7], thus Pk1 : L2(∂D) → L2
t (∂D) is compact. The operator

Q we can rewrite as

(Qφ) (x) = ν(x)×
∫
∂D

φ(y) [ν(x)×∇xΦk1(x, y)− ν(y)×∇xΦk(x, y)] ds(y)

= − (Pk1φ) (x) +

∫
∂D

φ(y)ν(y)× [∇xΦk(x, y)−∇xΦk1(x, y)] ds(y).

Since the kernel of the second boundary integral is weakly singular and the operator Pk1

compact, we obtain that Q : L2(∂D)→ L2
t (∂D) is compact. So far, we have that (3.23) is

of Fredholm type considered in L2
t (∂D).

Now we turn to transmission condition (3.11). It is satisfied if there exists a ∈ L2
t (∂D),

b ∈ H
1
2
t (∂D)3 and φ1, φ ∈ L2(∂D) such that:

(Sk − Sk1) a(x) + (Mk −Mk1) b(x)− b(x)

− λ (Sk1(φ1ν)) (x)− ν(x)×
∫
∂D

φ1(y) [∇xΦk(x, y)−∇xΦk1(x, y)] ds(y)

+ λ (Sk(φν)) (x) + ν(x)×
∫
∂D

φ(y) [∇xΦk(x, y)−∇xΦk1(x, y)] ds(y) = −ν(x)× Ei(x).

(3.24)

Due to the identity map b → b and since b ∈ H
1
2
t (∂D)3, we have to consider the above

equation in H
1
2
t (∂D)3. By the mapping properties of S and M and lemma 3.3, the operators

Sk − Sk1 : L2
t (∂D)3 → H

1
2
t (∂D) and Mk − Mk1 : H

1
2
t (∂D)3 → H

1
2
t (∂D)3 are compact.

Moreover,

Ŝk1 = Sk1(·ν) : L2(∂D)3 → H1
t (∂D)3 compact

↪→ H
1
2
t (∂D)3
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is compact. The operator

(Wφ)(x) := ν(x)×
∫
∂D

φ(y) [∇xΦk(x, y)−∇xΦk1(x, y) ds] = ν(x)× (∇x [Sk − Sk1 ]φ) (x)

has a weakly singular kernel and is thus compact from L2(∂D) to H
1
2
t (∂D)3. We thus have

that (3.24) is of Fredholm type considered in H
1
2
t (∂D)3.

Finally, we consider the divergence-free conditions divE = divEs = 0 on ∂D. The first

one is satisfied if there exists a ∈ L2
t (∂D), b ∈ H

1
2
t (∂D)3 and φ1, φ ∈ L2(∂D) such that:∫

∂D

a(y) · ∇xΦk1(x, y) ds(y)− k2
1Sk1 (φ1 − φ)− λDk1φ1 +

1

2
λφ1 = 0 (3.25)

where we used that

div∇Sk1 = ∆Sk1 = −k2
1Sk1 , div S̃k1(φ1ν) = D̃k1φ1

and the jump condition for the double layer potential (3.20). The single layer and double

layer potentials are, for smooth domains, compact on L2(∂D). Analogously, the condition

divEs = 0 on ∂D is satisfied if there exists a ∈ L2
t (∂D)3, b ∈ H

1
2
t (∂D)3 and φ1, φ ∈ L2(∂D)

such that: ∫
∂D

a(y) · ∇xΦk(x, y) ds(y)− k2Sk (φ1 − φ)− λDkφ1 −
1

2
λφ = 0. (3.26)

It remains to consider the operator

(La) (x) :=

∫
∂D

a(y) · ∇xΦ(x, y) ds(y)

where Φ is either Φk or Φk1 . In [6], section 9.5, it is stated that L : C0,α
t (∂D)3 → C0,α(∂D)

is bounded. It is easily verified that the adjoint L∗ : C0,α(∂D)→ C0,α
t (∂D)3 of L is given

by

(L∗ψ) (x) = ν(x)×
(∫

∂D

ψ(y)∇xΦ(x, y) ds(y)× ν(x)

)
which is bounded. Thus, by Lax theorem L : L2

t (∂D)3 → L2(∂D) is bounded.

Using matrix-vector notation, we obtain that ansatz (3.21)-(3.22) solves problem (P2), if
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there exists a ∈ Lt(∂D)3, b ∈ H
1
2
t (∂D)3 and φ1, φ ∈ L2(∂D) such that

JU +KU = R (3.27)

where

U =


a

b

φ1

φ

 , R =


−ν × curlEi

−ν × Ei

0

0

 , J =


−I 0 0 0

0 −I 0 0

Lk1 0 1
2
I 0

Lk 0 0 −1
2
I

 ,

K =


Mk −Mk1 + λν × Sk1 Nk −Nk1 + λν ×

(
Mk1 + 1

2
I
)

λPk1 + λŜk1 λQ

Sk − Sk1 Mk −Mk1 −λŜk1 −W λŜk +W

0 0 −k2
1Sk1 − λDk1 k2

1Sk1 − λDk1

0 0 −k2Sk − λDk k2Sk − λDk

 .

We consider (3.27) in the product space

L2
t (∂D)3 ×H

1
2
t (∂D)3 × L2(∂D)× L2(∂D).

All of the entries of the matrix K are compact and matrix J has a bounded inverse because

of its triangular form. Hence, we can apply the Riesz-Fredholm theory to (3.27). To show

uniqueness of solutions of (3.27), we assume that the scattering problem (3.8)-(3.13) itself

has at most one solution, which holds under assumptions 3.1. Let a, b, φ1 and φ be solutions

to the homogeneous equation corresponding to (3.27), i.e. R = 0 and thus Ei = 0. For

j ∈ {k, k1}, we define

Ej = S̃j(a) + M̃j(b) +∇S̃j(φ− φ1) + λS̃j(φjν) in R3 \ ∂D

where φk = φ and φk1 = φ1. Use of standard potential-theoretic arguments and the jump

conditions, see (37), then lead to the following main theorem.

Theorem 3.4. Under the assumptions made in 3.8 and the fact that k1 is not a Dirichlet

eigenvalue in D, the boundary value problem (P2) has exactly one solution.

3.2.2 General inhomogeneous medium

In the more general case when εr = εr(x) in D, we can prove the same result as in theorem

3.4 by replacing the fundamental solution Φk1(·, y) with the free space fundamental solution
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G(·, y) of

∆G(·, y) + k2εr(x)G(·, y) = −δy in R3

in the distributional sense together with the Sommerfeld radiation condition, where εr(x)

is extended by one to the whole space R3. This follows because the mapping properties

of the boundary operators appearing in (3.21)-(3.22) with kernels G and Φ are the same.

Unfortunately we were not able to find the proof of this statement. The following result is

from Andreas Kirsch.

It is the aim to construct the Green’s function G for the equation

∆u+ k2nu = 0

where n(x) = 1 outside of D. We make the ansatz G(x, y) = Φk(x, y) + Φ̂(x, y) where Φk

is, as before, the fundamental solution of ∆ + k2 in R3 and Φ̂ unkown. We fix y ∈ R3 and

from

∆xΦ̂(x, y) + k2n(x)Φ̂(x, y) = −∆xΦk(x, y)− k2n(x)φk(x, y) = −k2 (n(x)− 1) Φk(x, y)

we consider the right-hand side as a source and define fy(x) := k2 (n(x)− 1) Φk(x, y).

Lemma 3.5. fy ∈ L2(D) and y → fy is continuous from R3 into L2(D).

Proof. fy ∈ L2(D) is obvious because
∫
D

dz
|y−z|2 exists and is finite. Furthermore, for any

η > 0, we write (c > 0 generic constant)

‖fy1 − fy2‖2
D ≤ c

∫
D

∣∣∣∣ 1

|y1 − z|
− 1

|y2 − z|

∣∣∣∣2 dz
≤ c

∫
|z−y1|<η

[
1

|y1 − z|2
− 1

|y2 − z|2

]
dz + c

∫
|z−y1|>η

∣∣∣∣ 1

|y1 − z|
− 1

|y2 − z|

∣∣∣∣2 dz.
From

∫
|z|<η

dz
|z|2 = 4πη and |z − y2| ≤ |z − y1| + |y1 − y2| < η + |y1 − y2| for |z − y1| < η

we conclude that the first integral is estimated by 4πη + 4π(η + |y1 − y2|). For the second
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integral we write∫
|z−y1|>η

∣∣∣∣ 1

|y1 − z|
− 1

|y2 − z|

∣∣∣∣2 dz ≤ ∫
|z−y1|>η

|y1 − y2|2

|y1 − z|2|y2 − z|2
dz

≤ |y1 − y2|2

η2

∫
D

dz

|y2 − z|2

≤ c
|y1 − y2|2

η2
.

Altogether we have

‖fy1 − fy2‖2
D ≤ c

[
η + |y1 − y2|+

|y1 − y2|2

η2

]
.

Now we choose η = |y1 − y2|
2
3 . Then ‖fy1 − fy2‖2

D ≤ |y1 − y2|
2
3 .

The equation

∆xΦ̂(x, y) + k2n(x)Φ̂(x, y) = −fy(x)

can be rewritten as

∆xΦ̂(x, y) + k2Φ̂(x, y) = −fy(x)− k2 (n(x)− 1) Φ̂(x, y)

which is equivalent to the Lippmann-Schwinger equation

Φ̂(·, y)− V Φ̂(·, y) =

∫
D

fy(z)Φk(·, z) dz in D

where V : L2(D)→ H2
loc(R3) is the volume potential defined

(
V f
)
(x) = k2

∫
D

(n(z)− 1) f(z)Φk(x, z) dz x ∈ R3.

The right-hand side of the Lippmann-Schwinger equation is in H2(D) and depends con-

tinuously on y. There, the same holds for the solution, and we have the following result.

Theorem 3.6. Φ̂(·, y) ∈ H2
loc(R3) and y → Φ̂(·, y) is continuous from R3 into H2(K) for

any bounded K ⊂ R3.

Therefore, the mapping properties of the boundary operators with kernels G and Φ are the

same.

70



3.3 Well-posedness of the direct problem via the variational ap-

proach

We will apply the variational approach to show the existence of a unique solution. We

will start by deriving a variational formulation on a reduced domain by introducing the

Calderon operator on the auxiliary boundary. The solution space to the reduced problem

is motivated from the variational formulation. Unfortunately, the space fails to be compact

in L2, hence we can not apply directly the Fredholm theory to the reduced problem. To

overcome this difficulty, we use decompositions of vector fields to factor out the null space

of the curl operator. Due to the Calderon operator and its properties, any solution to the

reduced problem also solves the scattering problem.

In the following, we combine techniques from sections 4 and 10 in [2]. In section 4, the cavity

problem with impedance boundary condition was considered and it will be helpful to us to

study the conductive transmission conditions. In section 10, the exterior scattering problem

with perfectly conducting boundary condition using Calderon maps was considered. This

will assist us to derive a variational formulation to our scattering problem on a reduced

domain. We will also adopt some of the notation used in sections 4 and 10 in [2].

3.3.1 Variational formulation and uniqueness

In the following, we no longer assume µ and λ to be constants. Moreover, we let D ⊂ R3

be a bounded Lipschitz domain with a connected boundary ∂D such that the complement

R3 \ D is simply connected. To obtain a variational formulation, we introduce a ball

BR = {x ∈ R3; |x| < R} of radius R, where R > 0 is choosen such that D ⊂ B and we set

as before Ω = BR \D. This will be the computational domain. The auxiliary boundary is

the boundary of BR denoted by Σ = ∂BR. We note that the incident field is assumed to

satisfy

curl curlEi − k2Ei = 0 in R3.

In Ω we will solve for the total field E, while in the exterior of BR we will solve for the

scattered field Es. Using Ω and matching the fields across Σ, we obtain the following
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problem:

curl

(
1

µr
curlE

)
− k2εrE = 0 in D, (3.28)

curl curlE − k2E = 0 in Ω, (3.29)

curl curlEs − k2Es = 0 in R3 \BR, (3.30)

ν × E|+ − ν × E|− = 0 on ∂D, (3.31)

ν × curlE|+ − ν ×
1

µr
curlE|− − λET = 0 on ∂D, (3.32)

ν × E = ν × Ei + ν × Es on Σ, (3.33)

ν × curlE = ν × curl (Ei + Es) on Σ, (3.34)

lim
|x|→∞

|x| (curlEs × ν − ikEs) = 0. (3.35)

We set

µ̃r =

µr, in D,

1, in R3 \D,
ε̃r =

εr, in D,

1, in R3 \D
. (3.36)

We multiply (3.28) and (3.29) by a smooth test function ψ, integrate over D and Ω,

respectively, and formally use integration by parts. This yields:

0 =

∫∫
BR

(
1

µ̃r
curlE, curlψ − k2ε̃rE,ψ

)
dx

+

∫
∂D

(
ν × 1

µr
curlE|− − ν × curlE|+

)
· ˜(ν × ψ)× ν ds+

∫
Σ

(ν × curlE) · ˜(ν × ψ)× ν ds.

Now using boundary condition (3.32) on ∂D and (3.34) on Σ, we may write

0 =

(
1

µ̃r
curlE, curlψ

)
BR

− k2 (ε̃rE,ψ)BR
− 〈λET , ψT 〉∂D +

〈
ν × curl (Es + Ei), ψT

〉
Σ
.

To complete the derivation of the variational formulation, we need to specify how ν ×
curl (Es + Ei) depends on ν × E. We use the so-called electric-to-magnetic Calderon
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operator Ge which is, for a given tangential vector field α on Σ, defined by

Ge : H−
1
2 (Div ,Σ)→ H−

1
2 (Div ,Σ), Geα = ν × 1

ik
curlEs

where Es satisfies the homogeneous isotropic Maxwell equation (3.30) in R3 \ BR. A

brief introduction on the electric-to-magnetic Calderon operator will be given in the next

subsection. Choosing α = ν × Es = ν × (E − Ei), we see that the definition of Ge

implies that we have ν × 1
ik

curlEs = Ge (ν × (E − Ei)) on Σ. Our variational problem

now becomes the problem of finding E such that ν × E|− = ν × E|+ on ∂D and(
1

µ̃r
curlE, curlψ

)
BR

−k2 (ε̃rE,ψ)BR
− 〈λET , ψT 〉∂D

+ ik 〈Ge(ν × E), ψT 〉∂D =
〈
ikGe(ν × Ei)− ν × curlEi, ψT

〉
Σ

(3.37)

for all smooth test functions ψ defined on R3.

Remark 3.7. We note that ψT , ET and ν×E in the above variational equation are meant

in the trace sense. That is, defining

γt : H(curl , B)→ H−
1
2 (Div , ∂D), γtu = ν × u|∂D,

γT : H(curl , B)→ H−
1
2 (Curl , ∂D), γtu = ν × (ν × u|∂D) ,

πt : H(curl , B)→ H−
1
2 (Div ,Σ), πtu = ν × u|Σ,

πT : H(curl , B)→ H−
1
2 (Curl ,Σ), πtu = ν × (ν × u|Σ)

the precise formulation of the variational equation (3.37) is(
1

µ̃r
curlE, curlψ

)
BR

−k2 (ε̃rE,ψ)BR
− 〈γTE, γTψ〉∂D

+ ik 〈Ge(πtE), πTψ〉Σ =
〈
ikGe(πtE

i)− πtcurlEi, πTψ
〉

Σ
.

To simplify notation, we omit writing the traces γt, γT , πt and πT , since it is clear from

the context which trace is meant, i.e. ν × u and uT = ν × (u × ν) on ∂D is meant in the

trace sense γtu and γTu respectively, while ν × u and uT = ν × (u × ν) on Σ is meant in

the trace sense πtu and πTu, respectively.

In order for all the integrals of the variational equation (3.37) to be well defined, we define
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the solution space X by

X :=
{
u ∈ H(curl , BR) : uT ∈ L2

t (∂D,C3) on ∂D
}
.

We note that E ∈ H(curl , D) ∪ H(curl ,Ω) with ν × E|− = ν × E|+ on ∂D implies

E ∈ H(curl , BR). Indeed, for ψ ∈ C∞0 (BR) using integration by party (1.11) yields∫
BR

E · curlψ dx =

∫
D

E · curlψ dx+

∫
Ω

E · curlψ dx

=

∫
D

curlE · ψ dx+

∫
Ω

curlE · ψ dx+ 〈ν × E|− − ν × E|+, ψ〉∂D

=

∫
BR

curlE · ψ dx

where we used that ψ vanishes on ∂BR = Σ and ν × E|− = ν × E|+ on ∂D. Thus E

possesses a variational curl in BR. We equip X with the following inner product, defined

for each u, v ∈ X, by

(u, v)X := (u, v)BR
+ (curlu, curl v)BR

+ 〈uT , vT 〉∂D .

Then (X, (·, ·)X) is a Hilbert space. The proof is similar to the proof of theorem 4.1 in [2].

Summing, we can now state our problem.

Problem statement (P3):
Determine E ∈ X such that the variational formulation (3.37), that is,(

1

µ̃r
curlE, curlψ

)
BR

−k2 (ε̃rE,ψ)BR
− 〈λET , ψT 〉∂D

+ ik 〈Ge(ν × E), ψT 〉Σ =
〈
ikGe(ν × Ei)− ν × curlEi, ψT

〉
Σ

holds for all ψ ∈ X.

We note that, if E is a solution of (P3), then it is easy to show by choosing sufficiently

smooth test functions that E satisfies the differential equation (3.28) in D and (3.29) in Ω,

the transmission conditions (3.31)-(3.32) on ∂D and ν × (curlEs) = ikGe (ν × (E − Ei))

on Σ.

Before we continue, we make the following assumptions regarding the data.

Assumption 3.8. • D ⊂ R3 is a bounded simply connected Lipschitz domain with
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connected exterior R3 \D.

• k = ω
√
ε0µ0 > 0.

• β ∈ L∞(∂D) real-valued and strictly positive, implying that λ = iωµoβ ∈ L∞(∂D) is

pure imaginary with Im λ stricly positive.

• µr ∈ W 1,∞(D) real valued and µr ≥ c0 on D for some constant c0 > 0. We note that

this implies 1
µr
∈ W 1,∞(D).

• εr ∈ W 2,∞(D) with Im εr ≥ 0 and Re εr ≥ c1 on D for some constant c1 > 0.

Further we define

ε+ := supx∈BR
|εr(x)|, ε− := infx∈BR

|εr(x)|, µ+ := supx∈BR
|µ̃r(x)|, µ− := infx∈BR

|µr(x)|

and

λ+ := supx∈∂D|λ(x)|, λ− := infx∈∂D|λ(x)|.

Next we discuss uniqueness. We note that it is sufficient to show uniqueness for the problem

(3.8)-(3.13).

Theorem 3.9. Under assumption 3.8, problem (3.8)-(3.13) has at most one solution.

Proof. By linearity, we need only to consider the case Ei = 0. Hence E = Es in R3 \D and

thus E is a radiationg solution of Maxwell’s equations in R3\D. By taking the dot product

of (3.8) and (3.9) with E, integrating over D and Ω, respectively, and using integration by

parts (1.11) and boundary condition (3.12), we obtain

0 =

∫∫
BR

(
1

µ̃r
|curlE|2 − k2ε̃r|E|2

)
dx−

∫
∂D

λ|ET |2 ds+

∫
|x|=R

(ν × curlE) · ET ds

that is∫
|x|=R

(curlE × ν) · ET ds =

∫∫
BR

(
1

µ̃r
|curlE|2 − k2ε̃r|E|2

)
dx−

∫
∂D

λ|ET |2 ds.

Taking the imaginary part yields

Im

(∫
|x|=R

(curlE × ν) · ET ds

)
= −k2

∫∫
BR

Im(ε̃r)|E|2 dx−
∫
∂D

Im(λ)|ET |2 ds < 0.

(3.38)
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From the radiation condition (3.35) we obtain

0
R→∞←

∫
|x|=R

|curlE × ν − ikE|2 ds

=

∫
|x|=R

(
|curlE × ν|2 + k2|H|2

)
ds− 2kIm

∫
|x|=R

(curlE × ν) · E ds

(3.38)

≥
∫
|x|=R

(
|curlE × ν|2 + k2|E|2

)
ds

and thus conclude limR→∞
∫
|x|=R |E|

2 ds = 0. Rellich’s lemma 1.9 now implies that E = 0

in R3 \ BR. Outside D the solution E is smooth and satisfies curl curlE − k2E = 0. As

noted in remark 2.1, the solution is analytic outside D, and thus E = 0 in R3 \ D. We

can now argue as in the proof of theorem 2.4, with the roles of µr and εr interchanged, to

conclude that

∆E = −∇
(
∇εr
εr
· E
)

+ µr∇
(

1

µr

)
× curlE − k2µrεrE ∈ L2(D)3

in the variational sense. Applying the interior regularity property 1.10 and the unique

continuation principle 1.11 as in theorem 2.4 yields E = 0 in R3.

Now, assuming that the reduced problem (P3) has a solution, we can construct an extension

of this solution from the bounded domain BR to R3 \ BR (for details we refer the reader

to section 9.3.3 in [2]). Due to the use of the Calderon map Ge, this extended solution

satisfies the Maxwell equation (3.9) in the weak sense in Hloc(curl ,R3 \BR) together with

the Silver-Müller radiation condition. The above uniqueness result then implies that this

extension is the only solution of (P3). Hence, once we have proven the existence of a

solution of (P3), we also have then verified that the transmission problem (3.8)-(3.13) has

a unique solution E ∈ Hloc(curl ,R3) with ET ∈ L2
t (∂D)3.

3.3.2 The electric-to-magnetic Calderon operator

Before introducing the electric-to-magnetic Calderon operator and listing some of the op-

erators properties, we briefly need to discuss the series solution of the exterior Maxwell
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problem, that is, the problem of determining Es and Hs such that

curlEs − ikHs = 0 in R3 \BR, (3.39)

curlHs + ikEs = 0 in R3 \BR, (3.40)

ν × Es = α on ∂BR = Σ, (3.41)

|x| (Hs × x̂− Es)→ 0 as |x| → ∞, (3.42)

where x̂ = x/|x|. In particular, working only with the electric field, we obtain the following

problem for Es:

curl curlEs − k2Es = 0 in R3 \BR, (3.43)

ν × Es = α on Σ, (3.44)

|x| (curlEs × x̂− ikEs)→ 0 as |x| → ∞. (3.45)

Here, α is suitable given tangential vector field on Σ. We adopt the notation from [2] and

refer to this literature for more detailed reading.

Let Y m
n for n = 0, 1, · · · and m = −n, · · · , n, denote an orthonormal sequence of spherical

harmonics on the unit sphere S2. The basis functions for tangential fields on Σ are then

the vector spherical harmonics of order n given by

Um
n =

1√
n(n+ 1)

∇S2Y m
n and V m

n = x̂× Um
n

for n = 1, 2, · · · and m = −n, · · · , n, where ∇S2 denotes the surface gradient on the

surface of the unit sphere S2. By lemma 9.15, in [2] the vector spherical harmonics Um
n

and V m
n form a complete orthonormal basis for L2

t (S
2). Thus, we can expand any function

α ∈ L2
t (Σ) by

α =
∞∑
n=1

n∑
m=−n

cn,mU
m
n + c̃n,mV

m
n . (3.46)

Next we define the vector wave functions

Mm
n = curl {xh(1)

n (k|x|)Y m
n (x̂)} and Nm

n =
1

ik
curlMm

n

for n = 1, 2, · · · and m = −n, · · · , n, where h
(1)
n is the spherical Hankel function of first

kind and order n (presented in section 9.3.2 in [2]). Then, by theorem 9.16 in [2] the
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functions Mm
n and Nm

n are radiating solutions of Maxwell’s equations in R3 \ {0}.

The following theorem corresponds to theorem 9.17 in [2].

Theorem 3.10. Let Es be a radiating solution of Maxwell’s equations for |x| > R > 0.

Then Es has the representation

Es(x) =
∞∑
n=1

n∑
m=−n

{dn,mMm
n (x) +Dn,mN

m
n (x)}.

The series converges uniformly (together with its derivative) on compact subsets of |x| > R.

The corresponding series for Hs = 1
ik

curlEs is

Hs(x) =
∞∑
n=1

n∑
m=−n

{dn,mNm
n (x)−Dn,mM

m
n (x)}.

Now, let us suppose the boundary data α ∈ H− 1
2 (Div ,Σ) has representation (3.46). Next,

we want to compute the scattered field satisfying (3.43)-(3.45) in terms of the coefficients

of this expansion. With the representation from theorem 3.10 for Es we can express x̂×Es

on |x| = R in terms of the coefficients of the expansion,

x̂× Es =
∞∑
n=1

n∑
m=−n

{dn,mx̂×Mm
n (x) +Dn,mx̂×Nm

n (x)}.

Using the definition of Mm
n , a suitable vector identity and the definition of Um

n we obtain

x̂×Mm
n (x) = h(1)(kR)

√
n(n+ 1)Um

n (x̂) on |x| = R. (3.47)

Further, using the definition of Nm
n , suitable vector identities, the fact that x̂ and x are

parall and the definition of V m
n , we obtain

x̂×Nm
n (x) =

1

ikR

[
h(1)(k|x|) + |x| ∂

∂r
h(1)(k|x|)

]√
n(n+ 1)V m

n (x̂).

78



Using this equality and (3.47), shows that, on |x| = R,

x̂× Es =
∞∑
n=1

n∑
m=−n

dn,mh
(1)(kR)

√
n(n+ 1)Um

n

+
1

ikR

∞∑
n=1

n∑
m=−n

Dn,n{h(1)(kR) + kR(h(1))′(kR)}
√
n(n+ 1)V m

n . (3.48)

Analogously we obtain

x̂×Hs =
1

ikR

∞∑
n=1

n∑
m=−n

dn,n{h(1)(kR) + kR(h(1))′(kR)}
√
n(n+ 1)V m

n

−
∞∑
n=1

n∑
m=−n

Dn,mh
(1)(kR)

√
n(n+ 1)Um

n . (3.49)

Now we can solve the boundary value problem (3.39)-(3.42) for arbitrary tangential bound-

ary data α and obtain a series for each field Es and Hs that converges in Hloc(curl ,R3\BR).

The following lemma is lemma 9.19 in [2].

Lemma 3.11. For α ∈ H−
1
2 (Div ,Σ) given by (3.46), the unique solution Es, Hs ∈

Hloc(curl ,R3 \BR) of (3.39)-(3.42) is given by

Es =
∞∑
n=1

n∑
m=−n

[
cn,mM

m
n

h
(1)
n (kR)

√
n(n+ 1)

+
ikRc̃n,mN

m
n

[h
(1)
n (kR) + kR(h

(1)
n )′(kR)]

√
n(n+ 1)

]
,

Hs =
∞∑
n=1

n∑
m=−n

[
cn,mN

m
n

h
(1)
n (kR)

√
n(n+ 1)

− ikRc̃n,mM
m
n

[h
(1)
n (kR) + kR(h

(1)
n )′(kR)]

√
n(n+ 1)

]
.

The electric-to-magnetic Calderon operator Ge takes the electric field boundary data to

magnetic field boundary data. In particular, for a given tangential vector field α on Σ we

define

Geα = x̂×Hs

where Es and Hs satisfy (3.39)-(3.42). For α ∈ H− 1
2 (Div ,Σ) given by (3.46), we can use

(3.49) to obtain an explicit representation for the map Ge,

Geα =
∞∑
n=1

n∑
m=−n

{
−ikRc̃n,m

δn
Um
n +

cn,mδn
ikR

V m
n

}
(3.50)
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where

δn = kR

(
h

(1)
n

)′
(kR)

h
(1)
n (kR)

+ 1.

The Calderon operator Ge : H−
1
2 (Div ,Σ) → H−

1
2 (Div ,Σ) is continuous (theorem 9.21 in

[2]). We denote by G̃e the Calderon operator for pure imaginary wavenumbers, that is, G̃e

is defined by (3.50) with k = i. We have the following property of G̃e.

Lemma 3.12. The operator G̃e is negative definite in the sense that〈
G̃eα, α× x̂

〉
Σ
< 0

for any α ∈ H− 1
2 (Div ,Σ) with α 6= 0. Furthermore,∣∣∣〈G̃eα, α

〉
Σ

∣∣∣ ≥ x‖α‖2
Σ for all α ∈ H−

1
2 (Div ,Σ).

Proof. This is lemma 9.23 in [2].

Our final result of this section shows that a suitable combination of Ge and G̃e is compact

on a suitable set of functions on Σ. Let

H
− 1

2
Div (Div ,Σ) =

{
α =

∞∑
n=1

n∑
m=−n

c̃n,mV
m
n :

∞∑
n=1

n∑
m=−n

1√
1 + n(n+ 1)

|c̃n,m|2 <∞

}
.

Then the following operator is well defined and bounded:

Ge + ikG̃e|
H
− 1

2
Div (Div ,Σ)

: H
− 1

2
Div (Div ,Σ)→ H−

1
2 (Div ,Σ). (3.51)

For a proof, we refer the reader to lemma 9.24 in [2].
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3.3.3 Existence

In this section, we will discuss the reduced problem (P3) with the aim of showing that the

problem is well-posed. We start by defining A : X ×X → C and B : X → C by

A(E,ψ) :=

(
1

µ̃r
curlE, curlψ

)
BR

− k2 (ε̃rE,ψ)BR
− 〈λET , ψT 〉∂D + ik 〈Ge(ν × E), ψT 〉Σ ,

(3.52)

B(ψ) :=
〈
ikGe(ν × Ei)− ν × curlEi, ψT

〉
Σ
. (3.53)

Then, we can write problem (P3) as the problem of finding E ∈ X such that

A(E,ψ) = B(ψ), for all ψ ∈ X.

To prove existence, we will use decomposition of vector fields, that is, a Helmholtz de-

composition that is closely related to the Maxwell system. There are several forms of

a Helmholtz decomposition. In our case, we will need to decompose the solution space

X = {u ∈ H(curl , BR) : uT ∈ L2
t (∂D,C3) on ∂D} to factor out the null space of the curl

operator.

3.3.3.1 The scalar problem

To take into account the functions in X that have vanishing curl , we suppose u ∈ X is such

that curlu = 0 in BR. Since D is simply connected Lipschitz domain, by theorem 3.37 in

[2], we know that u = ∇ξ for some ξ ∈ H1(BR). We note that uT = (∇ξ)T = ∇∂Dξ, where

∇∂Dξ is the surface gradient on ∂D. By definition of the space X, we have uT ∈ L2
t (∂D)3,

this motivates us to define the following space:

S =

{
ξ ∈ H1(BR) : ∇∂Dξ ∈ L2

t (∂D)3 on ∂D and

∫
∂D

ξds = 0

}
.

The condition
∫
∂D
ξds = 0 for all elements ξ ∈ S, as we will see, is necessary to prove

uniqueness. We note that, we have shown that there exists a scalar potential ξ ∈ S with

u = ∇ξ. We equipp S with the following scalar product, defined for each ξ, η ∈ S:

(ξ, η)S := (ξ, η)H1(BR) + 〈∇∂Dξ,∇∂Dη〉∂D .
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Since the trace operator ∇ξ → ν×(∇ξ×ν) is continuous, it is easily verified that (S, (·, ·)S)

is a Hilbert space.

Now, to factor out the null space of the curl operator, which is motivated by substituting

ψ = ∇ξ, ξ ∈ S as a test function in the variational formulation (3.37), we have to consider

the scalar problem of finding p ∈ S such that

A(∇p,∇ξ) = B(∇ξ), for all ξ ∈ S. (3.54)

In particular,

−k2 (ε̃r∇p,∇ξ)BR
− 〈λ∇∂Dp,∇∂Dξ〉∂D + ik 〈Ge(ν ×∇p),∇Σξ〉Σ

=
〈
ikGe(ν × Ei)− ν × curlEi,∇Σξ

〉
Σ

for all ξ ∈ S. We note that A is not coercive on S × S, but we can show that it satsifes

the Fredholm property. With the help of the Riesz representation theorem, we define the

operator A from S to S such that

(Ap, ξ)H1(BR) = A(∇p,∇ξ), for all p, ξ ∈ S.

Theorem 3.13. Under the conditions on the data outlined in assumptions (3.8) and

assuming that εr = µr = 1 in a neighborhood of Σ, the following hold:

(a) The operator A associated with the scalar problem (3.54) satisfies the equality A =

J1 +K1, where J1 is an isomorphism on S and K1 is a compact operator on S.

(b) The operator J1 +K1 is an isomorphism from S into itself. The scalar problem (3.54)

is uniquely solvable in S and the solution is given by p = (J +K1)−1 z, where z ∈ S
satisfies B(∇ξ) = (z, ξ)H1(BR) for all ξ ∈ S.

Proof. (a) Using the Calderon operator G̃e for pure imaginary wavenumbers and writing

−k2 = (ik)2, we can write

A(∇p,∇ξ) = −k2 (ε̃r∇p,∇ξ)BR
− 〈λ∇∂Dp,∇∂Dξ〉∂D + ik 〈Ge(ν ×∇p),∇Σξ〉Σ

= −k2 (ε̃r∇p,∇ξ)BR
− 〈λ∇∂Dp,∇∂Dξ〉∂D

+ k2
〈
G̃e(ν ×∇p),∇Σξ

〉
Σ

+ ik
〈(
Ge + ikG̃e

)
(ν ×∇p),∇Σξ

〉
Σ
.
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We decompose A as

A(∇p,∇ξ) = a1(p, ξ) + b1(p, ξ)

where

a1(p, ξ) = −k2 (ε̃r∇p,∇ξ)BR
− k2 (ε̃rp, ξ)BR

− 〈λ∇∂Dp,∇∂Dξ〉∂D
+ k2

〈
G̃e(ν ×∇p),∇Σξ

〉
Σ
,

b1(p, ξ) = k2 (ε̃rp, ξ)BR
+ ik

〈(
Ge + ikG̃e

)
(ν ×∇p),∇Σξ

〉
Σ
.

We first consider the sesquilinear form a1. Using the Cauchy-Schwartz inequality,

boundedness of the Calderon operator G̃e : H−
1
2 (Div ,Σ)→ H−

1
2 (Div ,Σ) as well as

boundedness of the trace operators πt and πT defined in remark 3.7, we obtain that

there exists a constant c̃ > 0 with∣∣∣〈G̃e(ν∇p),∇Σξ
〉

Σ

∣∣∣ ≤ c̃‖∇p‖BR
‖∇ξ‖BR

≤ c̃‖p‖S‖ξ‖S.

Consequently, using the boundedness of λ and εr ∈ L∞(D), in particular, |ε̃r| ≤
max{ε+, 1}, we estimate:

|a1(p, ξ)| ≤
∣∣−k2

∣∣ ∣∣∣∣(ε̃r∇p,∇ξ)BR
+ (ε̃rp, ξ)BR

+
1

k2
〈λ∇∂Dp,∇∂Dξ〉∂D

∣∣∣∣
+
∣∣∣k2
〈
G̃e(ν ×∇p),∇Σξ

〉
Σ

∣∣∣
≤ k2max

{
ε+, 1,

λ+

k2
, c̃

}
(|(p, ξ)S|+ ‖p‖S‖ξ‖S)

≤ C‖p‖S‖ξ‖S

for p, ξ ∈ S, with C = k2max
{
ε+, 1, λ

+

k2 , c̃
}
> 0, which implies boundedness of a1.

To show coercivity, we estimate:
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2|a1(p, p)|

≥ |Re (a1(p, p))|+ |Im (a1(p, p))|

= k2
∣∣(ε̃r∇p,∇p)BR

+ (ε̃rp, ξ)BR

∣∣+ k2

∣∣∣∣ 1

k2
〈λ∇∂Dp,∇∂Dξ〉∂D −

〈
G̃e(ν ×∇p),∇Σp

〉
Σ

∣∣∣∣
≥ k2 (ε̃r∇p,∇p)BR

+ k2 (ε̃rp, p)BR
+

1

k2
〈λ∇∂Dp,∇∂Dξ〉∂D

≥ k2min

{
ε−, 1,

λ−

k2

}
︸ ︷︷ ︸

:=c>0

(
(∇p,∇p)BR

+ (p, p)BR
+ 〈∇∂Dp,∇∂Dp〉∂D

)

= c‖p‖2
S

where we used lemma 3.12 to estimate G̃e. That is, a1 is a bounded, coercive sesquilin-

ear form on S × S. Applying the Lax-Milgram theorem yields the existence of a

unique bijective bounded linear operator J1 : S → S with bounded inverse, that is,

an isomorphism, satisfying

a1(p, ξ) = (J1p, ξ)H1(BR), for all ξ ∈ S.

By the Riesz representation theorem, there exists a bounded linear operator K1 :

S → S defined by

b1(p, ξ) = (K1p, ξ)S, for all ξ ∈ S.

To prove compactness, let (pn)n ⊂ S be a sequence converging to zero weakly in S,

that is (pn, p)S → 0 for all p ∈ S. By the compact embeddings H1(BR) ↪→ L2(BR)

and H1(BR) ⊃ S ↪→ L2(BR), we conclude that ‖pn‖BR
→ 0. Using the compactness

of Ge+ ikG̃e on H−
1
2 (Div ,Σ) and the boundedness of the trace operator we estimate

|b1(pn, ξ)| =
∣∣∣k2 (ε̃rpn, ξ)BR

+ ik
〈(
Ge + ikG̃e

)
(ν ×∇pn),∇Σξ

〉
Σ

∣∣∣
≤ d1‖pn‖BR

‖ξ‖BR
+ d2‖∇pn‖BR

‖∇ξ‖BR

≤ dn‖ξ‖H1(BR)

≤ dn‖ξ‖S,
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with d1 > 0, d2 > 0 and dn → 0 as n→∞. Then,

‖K1pn‖2
S = b1(K1pn,K1pn) ≤ dn‖K1pn‖S

which shows that ‖K1pn‖S → 0. This proves that K1 is compact.

(b) Let z ∈ S be such that B(∇ξ) = (z, ξ)H1(BR), for all ξ ∈ S. Now we can write the

scalar problem (3.54) as

(J +K1) p = z (3.55)

which is a Fredholm equation, hence existence follows from uniqueness. To show

uniqueness, it is sufficient to consider the case when z = 0. Hence p satisfies

(J +K1) p = 0

that is

−k2(ε̃r∇p,∇ξ)BR
− 〈λ∇∂Dp,∇∂Dξ〉∂D + ik 〈Ge(ν ×∇p),∇Σξ〉Σ = 0, for all ξ ∈ S.

Choosing ξ = p, we obtain

ik 〈Ge(ν ×∇p),∇Σp〉Σ = k2(ε̃r∇p,∇p)BR
+ 〈λ∇∂Dp,∇∂Dp〉∂D . (3.56)

Now, if u ∈ Hloc(curl ,R3 \BR) is the weak solution of

curl curlu− k2u = 0 in R3 \BR, (3.57)

ν × u = ν ×∇p on Σ, (3.58)

that is, ∫∫
R3\BR

(
curlu · curlϕ− k2u · ϕ

)
dx+

∫
Σ

(ν × curlu) · ϕ ds = 0

for all ϕ ∈ H1
loc(curl ,R3 \ BR) of bounded support, together with the Silver-Müller

radiation condition, then by the definition of Ge we have

Ge(ν ×∇p) = ν × w on Σ (3.59)
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where w = 1
ik

curlu. Thus u solves∫∫
R3\BR

(
curlu · curlϕ− k2u · ϕ

)
dx− ik

∫
Σ

(ν × ϕ) · w ds = 0

for all ϕ ∈ H1
loc(curl ,R3 \ BR) of bounded support. Let φ ∈ C∞0 (R3) be real-valued

with φ(x) = 1 for x ∈ BR′ \ BR and φ(x) = 0 for |x| > R′ + 1 where R′ > R. We

substitute ϕ = wφ in the above variatonal equation and argue as in the uniqueness

proof of theorem 2.4. The integral (2.12) appearing in the proof of theorem 2.4 is

given by ∫
Σ

(ν × u) · w ds (3.58)
= −〈∇Σp, ν × w〉Σ

(3.59)
= −〈∇Σp,Ge(ν ×∇p)〉Σ

= −〈Ge(ν ×∇p),∇Σp, )〉Σ
(3.56)
= −k

i
(ε̃r∇p,∇p)

BR

− 1

ik
〈λ∇∂Dp,∇∂Dp〉∂D

= −ik(ε̃r∇p,∇p)BR
− i

k
〈λ∇∂Dp,∇∂Dp〉∂D.

Taking the complex conjugate of both sides, we obtain

Re

(∫
Σ

(ν × u) · w ds
)

= −k
∫∫

BR

Im(ε̃r)︸ ︷︷ ︸
≥0

|∇p|2 dx− 1

k

∫
∂D

Im(λ)︸ ︷︷ ︸
>0

|∇∂Dp|2 ds ≤ 0.

The Silver-Müller radiation condition and Rellich lemma imply that u = 0 in R3\BR.

From (3.58), we conclude ∇Σp = 0 on Σ, that it p is constant on Σ. By (3.56) this

implies (ε̃r∇p,∇p)BR
+ 〈λ∇∂Dp,∇∂Dp〉∂D = 0. Since

0 = (ε̃r∇p,∇p)BR
+ 〈λ∇∂Dp,∇∂Dp〉∂D ≥ min{ε−, 1, λ−}

(
‖∇p‖2

BR
+ ‖∇∂Dp‖2

∂D

)
≥ min{ε−, 1, λ−}(‖∇p‖2

BR

it follows that ∇p = 0 in BR, i.e. p constant on BR. By the definition of the space

S we have
∫
∂D
p ds = 0, hence p = 0 in BR.
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3.3.3.2 Helmholtz decomposition

Now that we have characterized the null space of the curl operator, we can remove, or

factor out, this component from X. By substituting ψ = ∇ξ for some ξ ∈ S into the

variational equation (3.37) motivates us to introduce the space

X0 =
{
u ∈ X : −k2 (ε̃ru,∇ξ)BR

− 〈λu,∇∂Dξ〉∂D + ik 〈Ge(ν × u),∇Σξ〉Σ = 0, for all ξ ∈ S
}
.

Let us state a lemma characterizing the elements of X0.

Lemma 3.14. Let u be an element of X. Then, u belongs to X0 if and only if div (ε̃ru) = 0

in BR \ ∂D, k2(ν · u|+ − εrν · u|−) = ∇∂D · (λuT ) on ∂D and ν · u = − i
k
∇Σ ·Ge(ν × u) on

Σ.

Proof. Consider u ∈ X0. By definition, we have

−k2 (ε̃ru,∇ξ)BR
− 〈λu,∇∂Dξ〉∂D + ik 〈Ge(ν × u),∇Σξ〉Σ = 0, for all ξ ∈ S.

Taking ξ ∈ C∞0 (BR) with ∇ξ = 0 on ∂D, and applying Green’s theorem (1.7), we obtain

0 = (ε̃ru,∇ξ)BR
= (εru,∇ξ)D (εru,∇ξ)Ω

= − (div (εru), ξ)D − (div (εru), ξ)Ω

= − (div (ε̃ru), ξ)BR

where we used that BR = D∪Ω and the fact that ∇ξ = 0 on ∂D and on Σ. Consequently,

div (ε̃ru) = 0 in BR. Taking now ξ ∈ C∞0 (BR) and applying again Green’s theorem (1.7),

we obtain

0 = −k2 (ε̃ru,∇ξ)BR
− 〈λu,∇∂Dξ〉∂D

= −k2 (εru,∇ξ)D − k
2 (u,∇ξ)Ω − 〈λu,∇∂Dξ〉∂D

= k2(div (ε̃ru), ξ)BR
+ k2 〈ν · εru|− − ν · u|+, ξ〉∂D + 〈∇∂D · (λu), ξ〉∂D

= k2 〈ν · εru|− − ν · u|+, ξ〉∂D + 〈∇∂D · (λu), ξ〉∂D .
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Consequently, k2(ν · u|+ − εrν · u|−) = ∇∂D · (λuT ) on ∂D. Now, if ξ ∈ S, we can write

k2 〈ν · u, ξ〉Σ = k2 (div (u), ξ)Ω + k2 (u,∇ξ)Ω + k2 〈ν · u|+, ξ〉∂D
= k2 (div (u), ξ)Ω + k2 (u,∇ξ)Ω + k2 〈ν · εru|−, ξ〉∂D − 〈∇∂D · (λu), ξ〉∂D
= k2 (div (ε̃ru), ξ)Ω + k2 (u,∇ξ)Ω + k2 (div (εru), ξ)D + (εru,∇ξ)D + 〈λu,∇∂Dξ〉∂D
= k2 (div (ε̃ru), ξ)BR

+ k2 (ε̃ru,∇ξ)BR
+ 〈λu,∇∂Dξ〉∂D

= ik 〈Ge(ν × u),∇Σξ〉Σ = −ik 〈∇Σ ·Ge(ν × u), ξ〉Σ .

Now, let u ∈ X satisfy div (ε̃ru) = 0 in BR, k2(ν · u|+ − εrν · u|−) = ∇∂D · (λuT ) on ∂D

and ν · u = − i
k
∇Σ ·Ge(ν × u) on Σ. Then

−k2 (ε̃ru,∇ξ)BR
− 〈λu,∇∂Dξ〉∂D = −k2 (εru,∇ξ)D − k

2 (u,∇ξ)Ω − 〈λu,∇∂Dξ〉∂D
= k2 〈ν · εru|− − ν · u|+, ξ〉∂D − 〈λu,∇∂Dξ〉∂D + k2 〈ν · u, ξ〉Σ
= k2 〈ν · u, ξ〉Σ
= −ik 〈∇Σ ·Ge(ν × u), ξ〉Σ

for all ξ ∈ S. Consequently, u ∈ X0.

Next we can state the Helmholtz decomposition of the space X.

Theorem 3.15. (a) The spaces X0 and ∇S = {∇ξ : ξ ∈ S} are closed subspaces of X.

(b) We may write

X = X0 ⊕∇S. (3.60)

Proof. (a) We note that for p ∈ S we have curl (∇p) = 0 in BR, (∇p)T ∈ L2
t (∂D) on

∂D. Hence ∇p ∈ X and closedness of ∇S in X follows from the closedness of S in

H1(BR). To show closedness of X0 in X, we let ξ ∈ S be fixed and consider the

linear functionals

l1(u) = (ε̃ru,∇ξ)BR
+ 〈λu,∇∂Dξ〉∂D , l2(u) = 〈Ge(ν × u),∇Σξ〉Σ u ∈ X.

Using the Cauchy–Schwarz inequality and the boundedness of ε̃r, λ and the trace

operator, we conclude that l1 : X → C is bounded. The boundedness of l2 on X

follows by the boundedness of the trace operator H(curl , BR)→ H−
1
2 (Div ,Σ). This

implies that X0 is closed subspace of X.
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(b) Let u ∈ X be fixed and let p ∈ S be the unique solution of

A(∇p,∇ξ) = A(u,∇ξ), for all ξ ∈ S

which exists by theorem 3.13. Set w = u −∇p. Clearly w ∈ X. Moreover w ∈ X0,

because

− k2(ε̃rw,∇ξ)BR
− 〈λw,∇∂Dξ〉∂D + ik 〈Ge(ν × w),∇Σξ〉Σ

=− k2(ε̃ru,∇ξ)BR
− 〈λu,∇∂Dξ〉∂D + ik 〈Ge(ν × u),∇Σξ〉Σ

+ k2(ε̃r∇p,∇ξ)BR
+ 〈λ∇∂Dp,∇∂Dξ〉∂D + ik 〈Ge(ν ×∇p),∇Σξ〉Σ

=A(u,∇ξ)− A(∇p,∇ξ)

=0.

Thus, we conclude that u = w +∇p for w ∈ X0 and p ∈ S. It remains to show that

X0 ∩∇S = {0}. Suppose u ∈ X0 ∩∇S. Then u = ∇p for some p ∈ S and, since also

u ∈ X0, it holds that

0 = A(u,∇ξ) = A(∇p,∇ξ), for all ξ ∈ S.

Theorem 3.13 now implies that p = 0.

Next, we prove a compactness property of the space X0.

Theorem 3.16. The space X0 is compactly imbedded in L2(BR)3.

Proof. Let {uj}j ⊂ X0 be a bounded sequence. By solving the exterior Maxwell problem

curl curl vj − k2vj = 0 in R3 \BR,

ν × vj = ν × uj on Σ

together with the Silver-Müller radiation condition at infinity, we can extend every uj ∈ X0

to all of R3. Then the function uej defined by

uej =

uj in BR

vj in R3 \BR
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for all j, is in Hloc(curl ,R3) since the tangential components are continous across Σ. Let

R1 > R and ξ ∈ H1
0 (BR1) with ∇∂Dξ ∈ L2

t (∂D)3. By lemma 3.14 and the definition of Ge,

we obtain

k2 〈ν · uj, ξ〉Σ = −ik 〈∇Σ ·Ge(ν × uj), ξ〉Σ = ik 〈Ge(ν × uj),∇Σξ〉Σ
= 〈ν × curl vj,∇Σξ〉Σ =

(
curl 2vj,∇ξ

)
BR1
\BR

= −k2 (vj,∇ξ)BR1
\BR

= k2 (div vj, ξ)BR1
\BR

+ k2 〈ν · vj, ξ〉Σ
= k2 〈ν · vj, ξ〉Σ

that is, ν · uj = ν · vj on Σ, where we used the Maxwell equation and the divergence-free

condition of vj outside BR. Thus, the normal component of uej is continous on Σ. Moreover,

for ξ as here above, we have

k2

∫
BR1

ε̃r u
e
j · ∇ξ dx +

∫
∂D

λujT · ∇∂Dξ ds = 0.

Now, let φ ∈ C∞0 (R3) with support in BR1 and φ = 1 on BR and consider the bounded

sequence {φuej}j. Next, we extract a subsequence of {φuej}j converging strongly in L2(BR)3.

Set

wj = φuej +∇pj

for all j, where pj ∈ H1
0 (BR1) solves∫

BR1

ε̃r∇pj·∇ξ dx =

∫
BR1

ε̃r (φ−1)uej ·∇ξ dx = −
∫
BR1

∇(ε̃rφ)·vj ξ dx for all ξ ∈ H1
0 (BR1)

because ∇ · vj = 0. For ξ ∈ H1
0 (BR1) with ∇∂Dξ ∈ L2

t (∂D)3 the right hand side is∫
BR1

ε̃r (φ− 1)uej · ∇ξ dx =

∫
BR1

ε̃r φu
e
j · ∇ξ dx +

1

k2

∫
∂D

λujT · ∇∂Dξ ds .

Therefore, ∇ · (ε̃r∇pj) = −∇ · (ε̃rφuej) = −∇(ε̃rφ) · vj in BR1 . Thus ∇ · wj = 0 in BR1 ,

wj bounded in H(curl , BR1) and ν ×wj = 0 on ∂BR1 . Therefore, there exists convergence

subsequence in L2(BR1). Also, from ∇ · (ε̃r∇pj) = −∇(ε̃rφ) · vj we conclude that pj is

bounded in H2(BR1 , thus contains a convergent subsequence in H1(BR1)). Therefore, φuej

contains convergent subsequence in L2(BR1). Since φ = 1 on BR we have a convergent

subsequence of uj in L2(BR).
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Finally we return to problem (P3). To discuss existence in the solution space X, we use

the Helmholtz decomposition to decompose E = E0 +∇p for uniquely E0 ∈ X0 and p ∈ S.

Substituting this decomposition into the variational equation (3.37) yields

A(E0, ψ) + A(∇p, ψ) = B(ψ) for all ψ ∈ X.

Taking ψ ∈ S as a test function and recalling that

−k2 (ε̃rE0,∇ψ)BR
− 〈λE0,∇∂Dψ〉∂D + ik 〈Ge(ν × E0),∇Σψ〉Σ = 0 for all ψ ∈ S

yields

A(∇p,∇ψ) = B(∇ψ) for all ψ ∈ S.

By theorem 3.13, the above scalar problem has a unique solution p ∈ S. Defining

F (ψ) = B(ψ)− A(∇p, ψ) for all ψ ∈ X0

it thus remains to show that there exists a E0 ∈ X0 that satisfies the equation

A(E0, ψ) = F (ψ) for all ψ ∈ X0 (3.61)

and is continuously dependent on the data. To do so, we decompose the sesquilinear form

into a coercive and compact part. To motivate a decomposition, we need to examine the

Calderon operator in more detal. The following results are from [2], page 269. Suppose

α ∈ H− 1
2 (Div ,Σ) has the expansion

α =
∞∑
n=1

n∑
m=−n

[cn,mU
m
n + c̃n,mV

m
n ] .

and define δ̃ = iR

(
h

(1)
n

)′
(iR)

h
(1)
n (iR)

+ 1 for n ∈ N. The expansion for Ge in (3.50) we can write as

Geα = G1
eα +G2

eα

with

G1
eα =

∞∑
n=1

n∑
m=−n

[
−ikRc̃n,m

δn
Um
n +

cn,m(δn − δ̃n)

ikR
V m
n

]
, G2

eα =
1

ikR

∞∑
n=1

n∑
m=−n

cn,mδ̃nV
m
n .
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Part (a) of the next lemma corresponds to lemma 10.5 in [2].

Lemma 3.17. (a) Let πt : H(curl , B) → H−
1
2 (Div ,Σ) be the trace operator defined in

remark 3.7. The operator G1
e ◦ πt, that is, the mapping u → G1

e(ν × u), is compact

from X0 into H−
1
2 (Div ,Σ).

(b) The operator G2
e satisfies

ik
〈
G2
e(ν × α), αT

〉
Σ
≥ 0

for all α ∈ H− 1
2 (Div ,Σ).

The above lemma suggests the decomposition A = a2 + b2 where

a2(u, ψ) =

(
1

µ̃r
curlu, curlψ

)
BR

+ k2 (ε̃ru, ψ)BR
− 〈λuT , ψT 〉∂D + ik

〈
G2
e(ν × u), ψT

〉
Σ
,

b2(u, ψ) = −2k2 (ε̃ru, ψ)BR
+ ik

〈
G1
e(ν × u), ψT

〉
Σ
.

With the above decomposition we prove in the next theorem that problem (P3) satisfies

the Fredholm property.

Theorem 3.18. Under the same hypptheses as in theorem 3.13, the following hold:

(a) There exist an isomorphism J2 : X0 → X0 and a compact operator K2 : X0 → X0

such that A(u, ψ) = a2(u, ψ) + b2(u, ψ) = ((J2 +K2)u, ψ)X for all u, ψ ∈ X0.

(b) The operator J2 +K2 is an isomorphism from X0 onto itself. The variational problem

A(E0, ψ) = F (ψ), for all ψ ∈ X0

is uniquely solvable in X0 and the solution is given by E0 = (I + K2)−1w where

w ∈ X0 satisfies F (ψ) = (w,ψ)X for all ψ ∈ X0.

Proof. We note that the operator A : X0 × X0 → C is bounded. This follows from the

boundedness of the Calderon and trace operator and the assumptions made for µr and εr.

Thus a2, b2 : X0 ×X0 → C are bounded.

(a) Using lemma 3.17 (b) and the arithmetic-geometric mean inequality, we obtain for
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any δ > 0

|a2(u, u)|2 ≥
(
‖µ−

1
2

r curlu‖2
BR

+ k2‖Re(εr)
1
2u‖2

BR

)2

+
(
k2‖Im(εr)

1
2u‖2

BR
− ‖λ

1
2ut‖2

∂D

)2

≥ ‖µ−
1
2

r curlu‖4
BR

+ k4‖Re(εr)
1
2u‖4

BR
+ k4‖Im(εr)

1
2u‖4

BR
+ ‖λ

1
2ut‖4

∂D

− 2k2‖Im(εr)
1
2u‖2

BR
‖λ

1
2ut‖2

∂D

≥ ‖µ−
1
2

r curlu‖4
BR

+ k4‖Re(εr)
1
2u‖4

BR
+ k4‖Im(εr)

1
2u‖4

BR
+ ‖λ

1
2ut‖4

∂D

− k4 1

δ
‖Im(εr)

1
2u‖4

BR
− δ‖λ

1
2ut‖4

∂D

= ‖µ−
1
2

r curlu‖4
BR

+ k4‖Re(εr)
1
2u‖4

BR
+ k4

(
1− 1

δ

)
‖Im(εr)

1
2u‖4

BR

+ (1− δ) ‖λ
1
2ut‖4

∂D.

By the assumptions on εr, there is a constant c1 > 0 such that Re εr ≥ c1 on D, and,

by the boundedness of εr, there exists a constant c2 ≥ 0 such that Im εr ≤ c2 on D.

Now, if we choose δ < 1, we may estimate

‖Re(εr)
1
2u‖4 +

(
1− 1

δ

)
‖Im(εr)

1
2u‖4 ≥

(
c2

1 + c2
2 −

1

δ
c2

2

)
‖u‖4

BR
.

Thus, choosing δ such that
c22

c21+c22
< δ < 1 yields the coercivity of a2 : X0 ×X0 → C.

By the Lax-Milgram lemma, there exists an isomorphism J2 : X0 → X0 satisfying

a2(u, ψ) = (J2u, ψ)X , for all ψ ∈ X0.

Furthermore, by the Riesz representation theorem there exists a bounded linear op-

erator K2 : X0 → X0 defined by

b2(u, ψ) = (K2u, ψ)X , for all ψ ∈ X0.

Using that the embedding X0 → L2(BR)3 is compact and lemma 3.17 (a), we can

argue as we did in the proof of theorem 3.13 (b) to prove that K2 is compact.

(b) Let w ∈ X0 be such that F (ψ) = (w,ψ)X for all ψ ∈ X0. Now we can write the

variational problem A(E0, ψ) = F (ψ) as

(J2 +K2)E0 = w
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which is a Fredholm equation, hence it remains to prove that (J2 +K2)E0 = 0 has

only the trivial solution E0 = 0. If (J2 +K2)E0 = 0, then E0 satisfies

A(E0, ψ) = 0, for all ψ ∈ X0.

But, since E0 ∈ X0, we have for any p ∈ S,

A(E0, ψ +∇p) = A(E0, ψ) + A(E0,∇p) = 0,

so that E0, extended to R3 \ BR as a solution of Maxwell’s equations, is a weak

solution of the scattering problem with vanishing incoming wave. Hence, by the

uniqueness theorem 3.9, we conclude E0 = 0.

The Fredholm alternative shows the existence of E0 for general data and completes

the proof.

We now combine these results in the following main theorem of this section.

Theorem 3.19. Under the same hypotheses as Theorem 3.13 the variational problem (P3)

is uniquely solvable in X for every incident field Ei that satisfies curl curlEi − k2Ei = 0

in BR.

It will be useful for the inverse problems to have a generalization of this theorem, that is,

of the scattering problem (3.28)-(3.35). Let f, g ∈ H−
1
2 (Div , ∂D) be given and suppose

that we wish to find Eint ∈ H(curl , D) and Eext ∈ Hloc(curl ,R3 \D) such that
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curl

(
1

µr
curlEint

)
− k2εrE

int = 0, in D,

curl curlEext − k2Eext = 0 in R3 \D,

ν × Eext − ν × Eint = f on ∂D,

ν × curlEext − ν × 1

µr
curlEint − λν × (Eint × ν) = g on ∂D,

lim
|x|→∞

|x|
(
curlEext × ν − ikEext

)
= 0.

Moreover, we want to show that

‖Eint‖H(curl ,D) + ‖Eext‖Hloc(curl ,R3\D) ≤ c (‖f‖∂D + ‖g‖∂D)

for some positive constand c independent of f and g.

By the surjectivity of the trace operator, there exists a F ∈ H(curl , D) such that ν×F = f

on ∂D. Next we define

Ê :=

Eint + F, in D,

Eext, in R3 \D.

Introducing the computational domain Ω = BR\D as we did before, we obtain the following

problem for Ê:
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curl

(
1

µr
curl Ê

)
− k2εrÊ = −curl

(
1

µr
curlF

)
+ k2εrF, in D,

curl curl Ê − k2Ê = 0 in R3 \D,

ν × Ê|+ − ν × Ê|− = 0 on ∂D,

ν × curl Ê|+ − ν ×
1

µr
curl Ê|− − λÊT |− = g − ν × 1

µr
curlF − λFT on ∂D,

ν × Ê|+ − ν × Ê|− = 0 on Σ,

ik

ν
× curl Ê|+ −

1

ik
ν × curl Ê|− = 0 on Σ,

lim
|x|→∞

|x|
(

curl Ê × ν − ikÊ
)

= 0.

Multiplying the above differential equations with a test function ψ ∈ X and using inte-

gration by parts (1.11) causes the above boundary conditions, and the introduction of the

Calderon operator Ge(ν×Ê) = ν× 1
ik

curl Ê, to yield the variational problem of determining

Ê ∈ X such that

(
1

µ̃r
curl Ê, curlψ

)
BR

− k2
(
ε̃rÊ, ψ

)
BR

−
〈
λÊT , ψT

〉
∂D

+ ik
〈
Ge(ν × Ê), ψT

〉
Σ

=

〈g, ψT 〉Σ −
(

1

µr
curlF, curlψ

)
Ω

+ k2 (εrF, ψ)Ω + 〈λFT , ψT 〉∂D (3.62)

for all ψ ∈ X. Extending F by zero outside D and denoting the extension by F̃ , the above

variational problem is equivalent to

A(Ê, ψ) = −A(F̃ , ψ) + lg(ψ) for all ψ ∈ X (3.63)

where lg(ψ) = 〈g, ψT 〉∂D. By the previous results, there exists a unique solution Ê ∈ X
and

‖Ê‖X ≤ ‖F̃‖X + ‖g‖∂D.
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Thus, Eint ∈ H(curl , D) andEext ∈ Hloc(curl ,R3\D) exists. Now, a norm onH−
1
2 (Div , ∂D)

is given by

‖f‖
H−

1
2 (Div ,∂D)

= inf
F∈H(curl ,D), ν×F=f

‖F‖H(curl ,D),

see e.g. [2], page 58, thus taking the infimum over all F ∈ H(curl , D) with ν × F = f on

∂D yields the desired inequality

‖Eint‖H(curl ,D) + ‖Eext‖Hloc(curl ,R3\D) ≤ c (‖f‖∂D + ‖g‖∂D) . (3.64)

3.4 Inverse problem

The inverse problem we will consider in this subsection is to determine the support of the

medium D given the far field pattern of the scattered field for many incident plane waves.

To be more precise, given the far field pattern E∞, H∞ corresponding to all incident plane

waves

Ei(x, d, p) = ik(d× p)× deikx·d, H i(x, d, p) = d× peikx·d

for x ∈ R3, with polarization p ∈ R3 and incident direction d on the unit sphere S2,

find the support of D. We note that the H field can be computed from the E field

(and vice versa). As we mentioned in the previous section, showing uniqueness of the

inverse problem is equivalent to showing that the total field cannot satisfy the conductive

transmission condition (3.11)-(3.12) for two different domains D1 and D2. We will use the

same idea as in section 2.2.

Let D1 and D2 be two obstacles described by εr,1 and µr,1 respectively, where εr,2 and µr,2

satsfiy assumption 3.8. We assume that the obstacles are surrounded by vaccum and that

the far field patterns E1,∞(x̂, d, p) and E2,∞(x̂, d, p) coincide for all x̂, d ∈ S2 and all p ∈ R3,

p ⊥ d. We start by considering the scattering of electric dipole fields

Ei
e(x, z, p) = − 1

ik
curl xcurl xpΦk(x, z), H i

e(x, z, p) = curl xpΦk(x, z)

due to an electric dipole with polarization p with source point z in the unbounded compo-

nent G of R3 \
(
D1 ∪D2

)
.

Theorem 3.20. Let G be the unboudned component of R3 \ (D1 ∪D2) and E1,∞(x̂, d, p) =

E2,∞(x̂, d, p) for all x̂, d ∈ S2 and all p⊥d. Let z ∈ G and Ee,j(·; z) = Ee,j, j = 1, 2 be the
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unique solution of

curl

(
1

µr
curlEe,j

)
− k2Ee,j = 0 in Dj, (3.65)

curl curlEs
e,j − k2Es

e,j = 0 in R3 \Dj, (3.66)

(3.67)

ν × Es
e,j − ν × Ee,j = −ν × Ei

e on ∂Dj (3.68)

ν × curlEs
e,j − ν ×

1

µr
curlEe,j − λν × (Ee,j × ν) = −ν × curlEi

e on ∂Dj, (3.69)

(3.70)

Es
e,j satisfies the Silver-Müller radiation condition (3.71)

in the variational sense. Then Es
e,1(x; z) = Es

e,2(x; z) for all x ∈ G, x 6= z.

Proof. We note that the existence of a unique solution follows from the previous existence

result (we do not encounter the same difficulty as we did for the impenetrable case). By

Rellich’s lemma 1.9, from the coincidence of the far field patterns for plane wave incidence,

it follows that the corresponding scattered waves satisfy Es
1(·, d, p) = Es

2(·, d, p) for all

d ∈ S2 and all p ⊥ d in the exterior of the ball BR of radius R > 0, where R is choosen

large enough such that D1 ∪D ⊂ BR. Since the solutions Es
1, Es

2 are analytic outisde D1

and D2, respectively, we obtain that the scattered fields coincide outside D1∪D2. Applying

the unique continuation principle 1.11 to Es = Es
1 − Es

2 in a similar way as was done in

the proof of theorem 3.9, we conclude that Es
1(·, d, p) = Es

2(·, d, p) in G for all d ∈ S2 and

all p ⊥ d.

Now, from the mixed reciprocity relation (2.11) for scattering of electric dipole fields we

conclude

Ee,1,∞(·; z, q) = Ee,2,∞(·; z, q) on S2,

for all z ∈ G and all polarizations q. Again by Rellich’s lemma and the analycity of

the solutions, this implies that the corresponding scattered waves coincide Es
e,1(x; z, q) =

Es
e,2(x; z, q) for all x outside BR, z ∈ G and all polarizations q.

Next we turn to the main result.

Theorem 3.21. Let Es(·, d, p) and E∞(·, d, p) be the scattered wave and far field pattern,

respectively, corresponding to the plane wave Ei(x, d, p) = ik(d× p)× deikx·d, x ∈ R3 with
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propagation direction d ∈ S2 and polarization p⊥d. If the far field patterns E∞,1(x̂, d, p)

and E∞,2(x̂, d, p) for the obstacles D1 and D2 coincide for all incident directions d, all

polarizations p⊥d and all observations x̂, then D1 = D2.

Proof. We prove the claim by contradiction and assume that D1 6= D2. Then, without loss

of generality, there exists z∗ ∈ ∂G such that z∗ ∈ ∂D1 and z∗ /∈ D2. We can choose h > 0

such that the sequence

zn := z∗ +
h

n
ν(z∗), n = 1, 2, 3, ...

is contained in G. Consider the (variational) solution Ee,n,j, j = 1, 2 to the boundary value

problem (3.65)-(3.71) with z replaced by zn. By theorem 3.20, it holds that Es
e,n,1 = Es

e,n,2 in

G. Consider Ee,n = Ee,n,2 as the scattered field corresponding to D2. Since z∗ has positive

distance from D2, we conclude from the well-posedness of the transmission problem and

(3.64) that there exists a C > 0 with

‖Ee,n(·; zn)‖H(curl ,D2) + ‖Es
e,n(·; zn)‖Hloc(curl ,R3\D2)

≤ ‖ν × Ei
e(·, zn)‖∂D2 + ‖ν × curlEi

e(·, zn)‖∂D2

≤ C for sufficiently large n.

On the other hand, considering Ee,n = Ee,n,1 as the scattered field corresponding to D1 we

conclude, due to the singularity of Φk(·, zn),

∞←‖ν × Ei
e(·; zn)‖∂D1 + ‖ν × curlEi

e(·; zn)‖∂D1

=‖ν × Ee(·; zn)− ν × Es
e(·; zn)‖∂D1 + ‖ν × 1

µr
curlEe(·; zn)− ν × curlEs

e(·; zn)

+ λν × (Ee(·; zn)× ν)‖∂D1

≤‖ν × Ee(·; zn)‖∂D1 + ‖ν × Es
e(·; zn)‖∂D1 + c1‖ν × curlEe(·; zn)‖∂D1

+ ‖ν × curlEs
e(·; zn)‖∂D1 + c2‖ν × (Ee(·; zn)× ν)‖∂D1

≤Ĉ
(
‖Ee(·; zn)‖H(curl ,D1) + ‖Es

e(·; zn)‖Hloc(curl ,R3\D1)

)
where c1, c2 and Ĉ are positive constants (c1 and c2 are due to estimating µr and λ). Here we

used transmission conditions (3.68)-(3.69), the triangular inequality and the boundedness

of the trace operators. This is a contradiction, and thus we conclude D1 = D2.
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4 Electromagnetic transmission eigenvalue problem

To motivate the topic of our next chapter, we recall that, in both sections Two and Three,

in order to demonstrate the existence of the scattering problems (P1) and (P2), we had

to assume that k2 is not a transmission eigenvalue for D. That is, we had to exclude

particular frequencies for which there exists an incident wave that does not scatter, called

transmission eigenvalues. Generally speaking, for the transmission eigenvalue problems

that have been studied, the following results have been shown to hold:

• Transmission eigenvalues exist.

• They form a discrete set.

• Estimates on the parameters of the scatterer εr and µr with respect to transmission

eigenvalues were found.

In the study of the inverse problem, the transmission eigenvalue problem plays an important

role in determining the shape of a penetrable medium from knowledge of the time-harmonic

incident waves and the far field patterns of the scattered waves. Thus, for example, it

provied a powerful tool for establishing uniqueness in case of anisotropic media and also

plays a fundametal role in reconstruction the support of penetrable objects, [28].

One possible approach solving the transmission eigenvalue problem is the use of an integral-

type method. For instance, if the index of refraction is assumed to be smooth inside the

medium and to have no jump across the boundary, this type of method has been successfully

applied to the case of an inhomogeneous medium; [29]. However, as presented in [30], it

gives only partial answeres in the case of anisotropic media. Another approach for solving

the transmission eigenvalue problem is using a variational framework where less regularity

on the index of refraction is required; [28].

In this section, the underlying scattering problem is the scattering problem (3.1)-(3.4)

of section Three. That is, the scattering of electromagnetic waves by an inhomogeneous

medium of bounded support D situated in a homogeneous backround with conductive

transmission conditions, which is given by, in terms of the electric field:
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curl

(
1

µr
curlE

)
− k2εrE = 0 in D,

curl curlE − k2E = 0 in R3 \D,

E = Ei + Es in R3 \D,

ν × E+ − ν × E− = 0 on

ν × curlE+ − ν ×
1

µr
curlE− − iωµ0βET = 0 on ∂D,

lim
|x|→∞

|x| (curlEs × ν − ikEs) = 0,

where ET := ν × (E × ν), as before, but now with β(x) < 0 for all x ∈ ∂D. To solve

the transmission eigenvalue problem, we use a variational framework, in particular, the

T-coercivity approach, to show that our transmission problem is of Fredholm type and

that the transmission eigenvalues form at most a discrete set when εr − 1 and µr − 1 are

either positive or negative in a neighborhood of the boundary and can change sign inside

the domain D. The T-coercivity aproach was used initially to study metamaterials in [17].

In the case of 2D configurations, that is, in Helmholtz-like problems, this approach is a

reformulation of the Banach-Neas-Babuska theory. Whereas the so-called BNB approach

relies on an abstract inf-sup condition, T-coercivity uses explicit inf-sup operators. In

case of non-conductive transmission conditions, the T-coercivity approach was successfully

applied in [16] to show discreteness of the transmission eigenvalues when the contrast was

either positive or negative in a neighborhood of the boundary and could change sign inside

the domain D. Closely following their study, we adjusted it to fit our problem. [32]

employed the T-coercivity approach to investigate the time-harmonic Maxwell problem in

a composite material surrounded by a perfect conductor with sign changing coefficients.

Another important question related to transmission eigenvalue problems is proving the

existence of transmission eigenvalues, which can then be used in determining the values

of the physical parameters of the inclusion. This question will not be dealt with here.

Indeed, up to now, the T-coercivity approach appears inefficient to show these kinds of

results because the formulation on which we work, although it presents the useful property
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of positivity, is not symmetric and thus prevents using the min-max arguments; see [33].

To cover all aspects, we would like to mention that the transmission eigenvalue problem for

scattering problems in case of impenetrable obstacles, that is, the transmission eigenvalue

problem for regions with cavities, was studied in [27]. There the problem was reformulated

into a fourth order boundary value problem to establish the Fredholm property of the

problem and to show that the transmission eigenvalues exist and form a discrete set. This

kind of reformulation, is in fact not new and was used previously in [31] to study the acoustic

case of a nonabsorbing inhomogeneous medium and in [28] to study the electromagnetic

case for anisotropic media.

4.1 Problem statement

Let D ⊂ R3 be a bounded, simply connected Lipschitz domain with boundary ∂D described

by the electric permittivity ε ∈ L∞(D) and magnetic permeability µ ∈ L∞(D). Further,

let ν denote the unit outward normal to ∂D and set λ = −iωµ0β. The transmission

eigenvalue problem is related to non-scattering incident fields. In particular, if Ei is such

that Es = 0, then E and E0 = Ei|D satisfy the following homogeneous problem:

curl

(
1

µr
curlE

)
− k2εrE = 0 in D, (4.1)

curl curlE0 − k2E0 = 0 in D, (4.2)

ν × E = ν × E0 on ∂D, (4.3)

ν × 1

µr
curlE − λET = ν × curlE0 on ∂D (4.4)

which is referred to as the transmission eigenvalue problem. Conversely, if (4.1)-(4.4) has

a nontrivial solution E and E0 and if E0 can be extended outside D as a solution to

curl curlE0−k2E0, then if this extended solution E0 is considered as the incident field, the

corresponding scattered field is Es = 0.

Definition 4.1. Values of k ∈ C such that there exists a pair (E,E0) 6= (0, 0) solving the
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transmission eigenvalue problem (4.1)-(4.4), that is

curl

(
1

µr
curlE

)
− k2εrE = 0 in D,

curl curlE0 − k2E0 = 0 in D,

ν × E = ν × E0 on ∂D,

ν × 1

µr
curlE − λET = ν × curlE0 on ∂D

are called transmission eigenvalues.

Multiplying (4.1)-(4.2) with two test functions φ and ψ, respectively, such that ν×φ = ν×ψ
on ∂D, using integration by parts (1.11) and boundary condition (4.4) yields the variational

equation:

0 =

∫
D

(
1

µr
curlE · curlφ− k2εrE · φ

)
dx−

∫
D

(
curlE0 · curlψ − k2E0 · ψ

)
dx

+

∫
∂D

λ ((ν × E)× ν) · φT ds.

For all the terms in the above equation to be well defined, we set

Himp(curlD) =
{
U ∈ H(curl , D) : UT ∈ L2

t (∂D)3
}

and define our solution space by the following:

X(D) = {(U, V ) ∈ Himp(curl , D)×H(curl , D) : U − V ∈ H0(curl , D)} .

We equipp X(D) with the inner product

((U, V ), (U ′, V ′))X(D) = (U,U ′)D+(curlU, curlU ′)D+(V, V ′)D+(curlV, curlV ′)D+〈UT , U ′T 〉∂D .

We note that the above inner product gives rise to the norm ‖ · ‖X(D) defined as follows,

for every (U, V ) ∈ X(D):

‖(U, V )‖2
X(D) = ‖U‖2

D + ‖curlU‖2
D + ‖V ‖2

D + ‖curlV ‖2
D + ‖UT‖2

∂D

= ‖U‖2
H(curl ,D) + ‖V ‖2

H(curl ,D) + ‖UT‖2
∂D.
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Moreover, for any (U, V ) ∈ X(D) it holds that 〈UT , VT 〉∂D = 〈ν × U, ν × V 〉∂D, so that we

can use ‖ν × U‖∂D in place of the corresponding norm on UT in the definition of X(D).

X(D) together with (·, ·)X(D) defines a Hilbert space, and the proof is simular as the proof

from theorem 4.1 in [2]. We state the variational problem:

Problem statement (P4):
Determine (E,E0) ∈ X(D) such that(

1

µr
curlE, curlφ

)
D

− k2 (εrE, φ)D − (curlE0, curlψ)D + k2 (E0, ψ)D + 〈λET , φT 〉∂D = 0

(4.5)

for all (φ, ψ) ∈ X(D).

We note that, if (E,E0) solves problem (P4), then it is easily verified, by choosing suf-

ficiently smooth test functions, that (E,E0) satisfies the differential equations (4.1) and

(4.2) in D and boundary conditions (4.3) and (4.4) on ∂D.

We introduce the sesquilinear form on X(D)×X(D) as follows:

ak((U, V ), (U ′, V ′) =

(
1

µr
curlU, curlU ′

)
D

− (curlV, curlV ′)D − k
2
[

(εrU,U
′)D − (V, V ′)D

]
+ 〈λUT , U ′T 〉∂D .

and make the following assumptions regarding the data.

Assumption 4.2. • D ⊂ R3 is a bounded and simply connected Lipschitz domain with

connected boundary ∂D.

• εr ∈ L∞(D), µr ∈ L∞(D) rela-valued such that 1
εr
∈ L∞(D) and 1

µr
∈ L∞(D).

• λ pure imaginary with Im λ > 0.

We note that, in the previous section we assumed Im λ to be negative. Why we need

positiveness will be made clear in the proof of lemma 4.10. We define

ε− = inf
x∈D
|εr(x)| <∞, ε+ = sup

x∈D
|εr(x)| <∞,

µ− = inf
x∈D
|µr(x)| <∞, µ+ = sup

x∈D
|µr(x)| <∞
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and let

ε∗ > 1, ε∗ < 1 µ∗ > 1, µ∗ < 1

be constants, allowing us to state some assumptions on the values of εr and µr in a neigh-

borhood of the boundary ∂D. We note that, under the assumptions on εr and µr, the

sesquilinear form ak is bounded on X(D)×X(D).

Let (U, V ) ∈ X(D), then ν × U = ν × V on ∂D. If we assume that curlU = curlV = 0 in

D and ν×U = ν×V = 0 on ∂D, then there exist scalar potential (ξ, η) ∈ H1(D)×H1(D)

such that (U, V ) = (∇ξ,∇η). This follows from theorem 3.37 in [2]. The perfect conducting

boundary condition implies that ν ×∇ξ = ν ×∇η = 0. Thus, ξ and η are constant on ∂D

and we can choose the same constant for ξ and η on ∂D. Then set

S(D) =
{

(ξ, η) ∈ H1(D)×H1(D) : ξ = η = constant on ∂D and 〈ξ, 1〉∂D = 〈η, 1〉∂D = 0
}
.

The condition 〈ξ, 1〉∂D = 〈η, 1〉∂D = 0 for elements (ξ, η) of S is only used to set the

constants, that is, if (ϕ1, ϕ2) ∈ S ∩ C2, then ϕ1 = ϕ2 = 0. It is easily verified that S(D)

together with (
(u, v), (ξ, η)

)
S(D)

= (∇u,∇ξ)D + (∇v,∇η)D

defines an inner product space. We note that (ξ, η) ∈ S(D) implies (∇ξ,∇η) ∈ X(D)

because (∇ξ−∇η)×ν = 0 and (∇ξ)T = ∇∂Dξ = 0 on ∂D, where ∇∂D denotes the surface

gradient.

Now, if (E,E0) solves (P4), then substituting φ = ∇ξ and ψ = ∇η into the variational

equation (4.5) yields

(εrE,∇ξ)D − (E0,∇η)D = 0 (4.6)

for all (ξ, η) ∈ S, leading us to define the space

X0(D) = {(U, V ) ∈ X(D) : (εrU,∇ξ)D − (V,∇η)D = 0 for all (ξ, η) ∈ S(D)}

and the scalar problem of determining (u, v) ∈ S(D) such that

(εr∇u,∇ξ)D − (∇v,∇η)D = 0 for all (ξ, η) ∈ S(D).

The above scalar problem is a general case of the following problem: determine (u, v) ∈
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S(D) such that

(εru,∇ξ)D − (v,∇η)D = f ((ξ, η)) for all (ξ, η) ∈ S(D) (4.7)

where f ∈ S(D)′. Here S(D)′ denotes the dual space of S(D).

The solution space X(D) is not compactly imbedded in L2(D)×L2(D), and so we can not

apply the analytic Fredholm theorem. As we saw in the previous chapter, the compactness

will be obtained by taking into account the divergence-free condition working in the space

X0(D). We end this section by characterizing the elements of X0(D) and consider a

compactness property of X0(D). We then study the scalar problem, which will be useful

since doing so will provide information about the space X0(D) ∩ ∇S(D) and we will be

able to present the T-coercivity approach on a simpler example.

Lemma 4.3. Let (U, V ) ∈ X(D). Then, (U, V ) belongs to X0(D) if and only if div (εrU) =

div V = 0 in D and ν · (εrU − V ) = 0 on ∂D.

Proof. Let (U, V ) ∈ X0(D). Then, for all (ξ, η) ∈ S(D), by definition of X0(D), we obtain

0 = (εrU,∇ξ)D − (V,∇η)D = − (div (εrU), ξ)D + (div V, η)D + 〈ν · εrU, ξ〉∂D + 〈ν · V, η〉∂D

where we used (1.7). Choosing ξ = 0 and η ∈ C∞0 (D) yields div V = 0 in D. Analogously

div (εrU) = 0 in D when η = 0 and ξ ∈ C∞0 (D). Now for ξ ∈ H1(D), using (1.7) we can

write

〈ν · (εrU − V ), ξ〉∂D = (div (εrU − V ), ξ)D + (εrU − V,∇ξ)D = (εrU,∇ξ)D − (V,∇ξ)D = 0

and hence ν · (εrU − V ) = 0 on ∂D.

If (U, V ) ∈ X(D) satisfies div (εrU) = div V = 0 in D and ν · (εrU − V ) = 0 on ∂D, then

for all (ξ, η) ∈ S(D) we obtain

(εrU,∇ξ)D − (V,∇ξ)D = 〈ν · εrU, ξ〉∂D − 〈ν · V, η〉∂D = 〈ν · (εrU − V ), ξ〉∂D = 0.

Set X̂(D) := {(U, V ) ∈ H(curl , D)×H(curl , D) : U − V ∈ H0(curl , D)} and let X̂0(D)

be the space X0(D) with elements from X̂(D). By theorem 4.1 in [16], the space X̂0(D) is
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compactly imbedded in L2(D)3 × L2(D)3 when εr ≥ ε∗ > 1 or εr ≤ ε∗ < 1. Since for any

U ∈ X0(D), we have ‖U‖X̂(D) ≤ ‖U‖X(D), we conclude that X0(D) is compactly imbedded

in L2(D)3 × L2(D)3.

4.2 The scalar problem

Define the sesquilinear form b ((u, v)(ξ, η)) = (εr∇u,∇ξ)D− (∇v,∇η)D and, with the help

of the Riesz representation theorem, the operator B : S(D)→ S(D), such that

(
B(u, v), (ξ, η)

)
S(D)×S(D)

= b
(
(u, v), (ξ, η)

)
for all (u, v), (ξ, η) ∈ S(D).

Due to the negative sign in front of the term (∇v,∇η)D, it is not possible to directly

show that the variational formulation leads to a Fredholm equation. In particular, the

sequilinear form b is not coercive, nor ’coercive + compact’ as was the case for the scalar

problem in subsection 3.3.3.1. To overcome this problem and restore some property of

positivity for the principal part of b, we apply the T -coercivity approach. We recall the

general concept before we continue with the scalar problem.

T -coercivity approach

Let H denote a Hilbert space with inner product (·, ·)H.

Definition 4.4. Let T be an isomorphism on H. A sesquilinear form b(·, ·) is T -coercive

on H×H if there exists a constant γ > 0 such that for all v ∈ H it holds that

|b(v, Tv)| ≥ γ‖v‖2
H.

We note that, if the sesquilinear form b : H ×H → C is T -coercive, then using the Lax-

Milgram theorem and since T is an isomorphism on H, the operator B : H → H defined by

(B(v), w)H = b(v, w) for all v, w ∈ H is an isomorphism. We can generalize this statement

and state the next theorem. The proof can be found in [17].

Theorem 4.5. Let l : H → C be a linear and continuous functional on H and let a(·, ·) be a

continuous sesquilinear form on H×H. Assume that a can be split as a(·, ·) = b(·, ·)+c(·, ·)
where the sesqulinear forms b(·, ·) and c(·, ·) are both continuous and linear on H×H and

the bounded linear operator C on H associated with c(·, ·) is compact. Assume, moreover,
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that there exists an isomorphism T on H such that b(·, ·) is T-coercive on H × H. Then

the variational problem of determining u ∈ H such that

a(u, v) = l(v) for all v ∈ H (4.8)

has a solution if and only if uniqueness holds, that is, the only solution of (4.8) with l = 0

is u = 0.

Case when (εr − 1) is positive

As mentioned in the introduction, we closely follow chapter 2.2 in [16] where the case

(εr − 1) < 0 was fully considered. For the sake of completion, we thus consider the case

(εr − 1) > 0, in particular, 1 < ε− ≤ εr. Our goal is to apply theorem 4.5 to the scalar

problem (4.7), and the key is to be able to construct an appropiate isomorphism T on

S(D). An obvious first idea would be to consider T (ξ, η) = (ξ,−η) in order to change

the sign of the term (∇v,∇η)D in the variational formulation (4.7). But, unfortunately,

(ξ,−η) is not in S(D) because ξ 6= −η on ∂D. Thus, we need to modify T so that it

satisfies all the properties of S(D). We define T : S(D)→ S(D) by

T (ξ, η) = (ξ,−η + 2ξ).

Then, T (ξ, η) ∈ S(D) because ξ+η−2ξ = −ξ+η = 0 on ∂D and 〈ξ, 1〉∂D = 〈η − 2ξ, 1〉∂D =

0. Moreover, since T 2(ξ, η) = T (ξ,−η + 2ξ) = (ξ, η − 2ξ + 2ξ) = (ξ, η), that is, T 2 = I

where I denotes the identity operator, T is isomorphism of S(D). With the help of T , we

define a new sequilinear form

bT
(
(u, v), (ξ, η)

)
= b
(
(u, v), T (ξ, η)

)
.

We note that bT is coercive if and only if b is T -coercive. In particular, (u, v) is a so-

lution to the scalar problem b
(
(u, v), (ξ, η)

)
= f

(
(ξ, η)

)
if and only if (u, v) is a solution

to bT
(
(u, v), (ξ, η)

)
= f

(
T (ξ, η)

)
. In the next lemma, we examine the coercivity of the

sesquilinear form bT .

Lemma 4.6. Assume that ε− > 1. Then the operator B associated with the scalar problem

(4.7) is an isomorphism of S(D).

Proof. Let (ξ, η) ∈ S(D) and τ > 0. Then, using Young’s inequality, we obtain the
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following estimate:

∣∣bT ((ξ, η), (ξ, η)
)∣∣ =

∣∣b((ξ, η), (ξ,−η + 2ξ)
)∣∣

= |(εr∇ξ,∇ξ)D + (∇η,∇η)D − 2(∇η,∇ξ)D|

≥ (εr∇ξ,∇ξ)D + (∇η,∇η)D − 2|(∇η,∇ξ)D|

≥ (εr∇ξ,∇ξ)D + (∇η,∇η)D − τ(∇ξ,∇ξ)D −
1

τ
(∇η,∇η)D

≥ [ε− − τ ] (∇ξ,∇ξ)D +

[
1− 1

τ

]
(∇η,∇η)D.

Choosing ε− > τ > 1 yields ε− − τ > 0 and 1 − 1
τ
> 0. Thus, we have proven that the

sesquilinear form b is T -coercive on S(D)×S(D), hence, the operator B is an isomorphism

of S(D).

Next we wish to weaken the assumption on εr. To this end we let U be a neighborhood

of ∂D, that is an open set of R3 such that ∂D ⊂ (U ∩D). We furhter introduce a cut-off

functionχ ∈ C∞0 (D, [0; 1]) with support in U ∩D and equal to 1 in the neighbourhood of

∂D and redefine the operator T as follows:

T (ξ, η) := (ξ, η − 2χη), for all (ξ, η) ∈ S(D).

Theorem 4.7. Assume that εr satisfies εr ≥ ε− > 1 almost everywhere on D ∩ U . Then

the sesquilinear form bT (·, ·) satisfies the Fredholm property. In particular, the operator

B associated with the scalar problem (4.7) is the sum B = I + C, where I is an is an

isomorphism of S(D) and K is a compact operator of S(D).

Proof. For (ξ, η) ∈ S(D) we have, by definition,

bT
(

(ξ, η) , (ξ′, η′)
)

= (εr∇ξ,∇ξ′)D + (∇η,∇η′)D − 2(∇η,∇(χξ′))D

= (εr∇ξ,∇ξ′)D + (∇η,∇η′)D − 2(χ∇η,∇ξ′)D − 2(∇η, ξ′∇χ)D.

With the help of the Riesz representation theorem, we define the continuous operator

I : S(D)→ S(D) by

(I(ξ, η), T (ξ′, η′))S(D) = (εr∇ξ,∇ξ′)D + (∇η,∇η′)D − 2(χ∇η,∇ξ′)D

for all (ξ, η), (ξ′, η′) ∈ S(D)× S(D). We claim that I is an isomorphism of S(D). Indeed,
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using Young’s inequality, we estiamte

2(χ∇η,∇ξ)D = 2(χ∇η,∇ξ)U ≤
1

τ
(∇η,∇η)U + τ(∇ξ,∇ξ)U

with τ > 0 and thus

|(I(ξ, η), T (ξ, η))| ≥ (εr∇ξ,∇ξ)D + (∇η,∇η)D − 2 |(χ∇η,∇ξ)D|

≥ ε−(∇ξ,∇ξ)D\U + (∇η,∇η)D\U + (∇ξ,∇ξ)U + (1− τ)(∇η,∇η)U .

Taking τ < 1 yields that ((ξ, η), (ξ′, η′)) → (I(ξ, η), T (ξ′, η′)) is coercive, in particular,(
(ξ, η), (ξ′, η′)

)
→ (I(ξ, η), (ξ′, η′)) is T -coercive. From this, we conclude that I : S(D)→

S(D) is an isomorphism.

Next, we show thatK := B−I defines a compact operator on S(D). For all ((ξ, η), (ξ′, η′)) ∈
S(D)× S(D), we have

(K(ξ, η), T (ξ′, η′))S(D) = −2(∇η, ξ′∇χ)D.

Let (ξn, ηn)n and (ξ′n, η
′
n)n be two bounded sequences of elements of S(D). Since every

bounded sequence in a Hilbert space contains a weakly convergent subsequence, we can

extract subsequences, still denoted by (ξn, ηn)n and(ξ′n, η
′
n)n, which converge weakly to (ξ, η)

and (ξ′, η′), respectively. Moreover, since the imbedding of S in L2(D)×L2(D) is compact,

there again exist subsequences, still denoted by (ξn, ηn)n and (ξ′n, η
′
n)n, converging strongly

to (ξ, η) and (ξ′, η′) in L2(D) × L2(D), respectively, i.e. ‖(ξn, ηn)‖D → ‖(ξ, η)‖D and

‖(ξ′n, η′n)‖D → ‖(ξ′, η′)‖D. Hence, from the definition of K, K(ξn, ηn) is weakly convergent

in S(D) and (K(ξn, ηn), T (ξ′n, η
′
n))S(D) → (K(ξ, η), T (ξ′, η′))S(D). Consequently, setting

(ξ′n, η
′
n)n = T−1K(ξn, ηn)n and noting that (ξ′n, η

′
n)n is bounded in S(D), because T−1 and

K are continuous operators, we obtain

(
K(ξm, ηm),K(ξm, ηm)

)
S(D)

= −2 (∇ηn, ξ′n∇χ)D → −2 (∇η, ξ′∇χ)D =
(
K(ξ, η),K(ξ, η)

)
S(D)

that is,

‖K(ξm, ηm)‖S(D) → ‖K(ξ, η)‖S(D).

Hence we have shown that K is compact.

We end this section by showing that the space X0(D)∩∇S(D) equals the gradients of the
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elements of the kernel of the scalar problem (4.7). We denote by kerA the kernel of the

operator A.

Theorem 4.8. X0(D) ∩ ∇S(D) = ∇kerB where B is the operator associated with the

scalar problem (4.7).

Proof. Let (U, V ) ∈ X0(D) ∩ ∇S(D). Then (U, V ) = (∇ϕ,∇ψ) for some (ϕ, ψ) ∈ S(D)

and (B(ϕ, ψ), (ξ, η)) = 0 since (U, V ) ∈ X0(D). Thus (ϕ, ψ) ∈ kerB, in particular

(U, V ) ∈ ∇kerB.

Now, let (U, V ) ∈ ∇kerB, then (U, V ) = (∇ϕ,∇ψ) for (ϕ, ψ) ∈ kerB ⊂ S(D) and

(B(ϕ, ψ), (ξ, η)) = 0, hence (U, V ) ∈ X0(D).

4.3 A sufficient condition for the discreteness of transmission

eigenvalues

We return to problem (P4). As for the scalar problem, if T is an isomorphism ofX(D), then

(E,E0) is a solution to problem (P4), that is ak
(
(E,E0), (φ, ψ)

)
= 0 for all (φ, ψ) ∈ X(D),

if and only if (E,E0) satisfies

aTk
(
(E,E0), (φ, ψ)

)
= ak

(
(E,E0), T (φ, ψ)

)
= 0 for all (φ, ψ) ∈ X(D). (4.9)

Now, suppose k is a non-trivial transmission eigenvalue, that is, there exists (E,E0) 6= (0, 0)

solving (4.1)-(4.4). Then according to (4.6), the associated pair of eigenvectors belong to

X0(D). This leads us to introduce the problem of determining (U, V ) ∈ X0(D) such that

aTk
(
(U, V ), (φ, ψ)

)
= l ((φ, ψ)) for all (φ, ψ) ∈ X0(D) (4.10)

where l ∈ X ′0(D) with X ′0(D), the dual space of X0(D). With the help of Riesz represen-

tation theorem, we define the operator ATk : X0(D)→ X0(D) by

(
ATk (U, V ), (φ, ψ)

)
X(D)×X(D)

= aTk
(
(U, V ), (φ, ψ)

)
.

If (U, V ) is a pair of eigenvector, associated with the transmission eigenvalue k 6= 0, then

aTk
(
(U, V ), (φ, ψ)

)
= 0 for all (φ, ψ) ∈ X0(D) and thus ATk (U, V ) = 0. Consequently, we

can prove that the transmission eigenvalues form at most a discrete set by showing that
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the operator ATk is injective for all k ∈ C \ S, where S is a discrete set of the complex

plane.

Remark 4.9. Let us assume that the operator B associated with the scalar problem (4.7) is

an isomorphism. By lemma 4.6 a sufficient condition for that is ε− > 1. Using theorem 4.8,

this implies ∇kerB = X0(D) ∩∇S(D) = {0}. Since the scalar problem is well-defined, we

can argue similarly as in the proof of theorem 3.15 to conclude that X(D) = X0(D)⊕∇S.

Thus, if (E,E0) is a solution to (P4), that is

ak
(
(E,E0), (φ, ψ)

)
= 0 for all (φ, ψ) ∈ X(D),

we can substitute E = E ′ +∇u, E0 = E ′0 +∇v in the above equation, for E ′, E ′0 ∈ X0(D)

and u, v ∈ S(D), and choosing φ = ∇ξ and ψ = ∇η with ξ, η ∈ S(D) yields

(εr∇u,∇ξ)D − (∇v,∇η)D = 0 for all (ξ, η) ∈ S(D)

where we used the definition of X0(D). This is equivalent to B
(
(u, v)

)
= 0. Since the

operator B is an isomorphism, this implies (u, v) = (0, 0). Now choosing φ = φ′ and

φ = ψ′ with φ′, ψ′ ∈ X0(D), we obtain

ak
(
(E ′, E ′0), (φ′, ψ′)

)
= 0 for all (φ′, ψ′) ∈ X0(D).

Since it is equivalent to consider aTk instead of ak, and thus Ak instead of ATk , we conclude

from the above that

ATk
(
(E ′, E ′0)

)
= 0.

If ATk is not injective, then k is a transmission eigenvalue.

Consequently, under the assumption that the operator B is an isomorphism, if ATk is not

injective, then k is a transmission eigenvalue. In this case, it even holds that k 6= 0 is a

transmission eigenvalue if and only if ATk is not injective.

4.4 Case 1
µr
≥ µ∗ > 1 in a neighbourhood of the boundary ∂D

We study the case 1
µr
≥ µ∗ > 1, in particular, µr − 1 < 0, in a neighbourhood of the

boundary ∂D. In the following, we show that the operator ATk is of Fredholm type and

discuss discreteness of the transmission eigenvalues.
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4.4.1 Fredholm property of the operator ATk

In the following, we define T : X(D)→ X(D) by

T (U, V ) = (U,−V + 2χU)

where, as before, χ ∈ C∞0 (D, [0; 1]) is a cut-off function with support in U ∩D and equal

to 1 in the neighbourhood of ∂D. As for the scalar case, we can easily verify that T 2 = I

where I is the identity operator, and hence T is an isomorphism of X(D). The next lemma

states that there exists wavenumbers k such that the operator ATk is an isomorphism of

X0(D).

Lemma 4.10. Assume that 1
µr
≥ µ∗ > 1 and εr ≥ ε∗ > 1 almost everywhere on D ∩ U .

Then there exists k = iκ with κ ∈ R, such that the operator ATk is an isomorphism of

X0(D).

Proof. The goal is to show that the sesquilinear form aTiκ is coercive for some κ ∈ R. Let

(U, V ) ∈ X0(D), then we have

∣∣aTiκ((U, V ), (U, V )
)∣∣ =

∣∣aiκ((U, V ), (U,−V + 2χU)
)∣∣

=
∣∣∣ ( 1

µr
curlU, curlU

)
D

+ (curlV, curlV )D − 2 (curlV, curl (χU))D + κ2(εrU,U)D

+ κ2(V, V )D − 2κ2(V, χU)D + 〈λUT , UT 〉∂D
∣∣∣

≥
(

1

µr
curlU, curlU

)
D

+ (curlV, curlV )D + κ2 [(εrU,U)D + (V, V )D] + 〈λUT , UT 〉∂D

− 2 |(curlV, curl (χU))D|︸ ︷︷ ︸
(I)

− 2κ2 |(V, χU)D| .︸ ︷︷ ︸
(II)

(4.11)

We note that, here we used that λ is positive, which is necessary to later on obtain an

estimate w.r.t to the X(D)-norm. We are going to estimate the terms (I) and (II) with
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the help of Young’s inequality. We let τ, ρ and ς be strictly positive constants. Then

(I) = 2 |(curlV, curl (χU))D|

≤ 2 |(χcurlV, curlU)D|+ 2 |(curlV,∇χ× U)D|

≤ τ (curlV, curlV )U +
1

τ
(curlU, curlU)U + ρ (curlV, curlV )U

+
1

ρ
((∇χ× U),∇χ× U)U

≤ τ (curlV, curlV )U +
1

τ
(curlU, curlU)U + ρ (curlV, curlV )U

+ C
1

ρ
(U,U)U (4.12)

with C = C(χ) > 0 depending only on χ. For the term (II), we estimate

(II) = 2 |(V, χU)D| ≤ ς(V, V )U +
1

ς
(U,U)U . (4.13)

By the assumptions on 1
µr

and εr we also obtain the estimate(
1

µr
curlU, curlU

)
D

+ k2(εrU,U)D ≥ µ∗(curlU, curlU)D + k2ε∗(U,U). (4.14)

Now, we write D =
(
D \ U

)
∩ U and substitute (4.12), (4.13) and (4.14) into (4.11). This

yields

∣∣aTiκ((U, V ), (U, V )
)∣∣ ≥

µ∗ (curlU, curlU)D\U + (curlV, curlV )D\U + κ2
[
ε∗(U,U)D\U + (V, V )D\U

]
+ 〈λUT , UT 〉∂D

+

(
µ∗ −

1

τ

)
(curlU, curlU)U + (1− τ − ρ) (curlV, curlV )U +

[
κ2

(
ε∗ −

1

ς

)
− c1

ρ

]
(U,U)U

+ κ2(1− ς)(V, V )U + 〈λUT , UT 〉∂D . (4.15)

We recall that µ∗ > 1 and ε∗ > 1. We choose τ ∈
(

1
µ∗
, 1
)

to obtain 1−τ > 0 and 1−τ > 0.

Next, we choose ρ ∈ (0, 1− τ), and hence 1− τ − ρ > 0. Finally we choose ς ∈
(

1
ε∗
, 1
)

so

that both 1 − ς > 0 and ε∗ − 1
ς
> 0. Now, choosing κ sufficiently large in absolute value,

we obtain

∣∣aTiκ((U, V ), (U, V )
)∣∣ ≥ c

(
‖U‖2

H(curl ,U) + ‖V ‖2
H(curl ,U) + ‖UT‖2

∂D

)
= c‖(U, V )‖2

X(D)
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where c > 0 is a constant independent of (U, V ) ∈ X0(D).

We have proven that, for sufficiently large values of κ, the sequilinear form aTiκ is coercive.

For those values of κ, with the help of the Lax-Milgram theorem, we conclude that the

operator ATiκ is an isomorphism of X0(D).

With the above lemma, we can prove that the sesquilinear form aTk satisfies the Fredholm

property, in particular, the operator ATk is of Fredholm type.

Theorem 4.11. Assume that µr ≥ 1
µ∗
> 1 and εr ≥ ε∗ > 1 almost everywhere on D ∩ U .

Then, the operator ATk satsfies the equality ATk = I + Kk for all k ∈ C, where I is an

isomorphism of X0(D) that is independent of k, and Kk is a compact operator of X0(D).

Proof. We note that, under the assumption εr ≥ ε∗ > 1, the space X0(D) is compactly

embedded in L2(D)3×L2(D)3. Let aTiκ,1/2 with κ ∈ R, be the sesquilinear form aTiκ for the

special case when εr = 1
2
, that is

aTiκ,1/2
(
(U, V ), (U ′, V ′)

)
=

(
1

µr
curlU, curlU ′

)
D

+ (curlV, curlV ′)D − 2 (curlV, curlχU ′)D

+ κ2

[(
1

2
U,U ′

)
D

+ (V, V ′)D − 2 (V, χU ′)D

]
+ 〈λUT , U ′T 〉∂D

for (U, V ), (U ′, V ′) ∈ X0(D). Next we define the sesquilinear form cTk : X0(D)×X0(D)→ C
by

ck
(
(U, V ), (U ′, V ′)

)
= aTk

(
(U, V ), (U ′, V ′)

)
− aTiκ,1/2

(
(U, V ), (U ′, V ′)

)
= ak

(
(U, V ), T (U ′, V ′)

)
− aiκ,1/2

(
(U, V ), T (U ′, V ′)

)
= −k2 [(εrU,U

′)D + (V, V ′)D − 2(V, χU ′)D]

− κ2

[(
1

2
U,U ′

)
D

+ (V, V ′)D − 2(V, χU ′)D

]
.

From Riesz’s representation theorem, we define the bounded linear operators I and Kk
from X0(D) into itself by

(I(U, V ), (U ′, V ′))X(D) = aiκ,1/2
(
(U, V ), (U ′, V ′)

)
, (4.16)

(Kk(U, V ), (U ′, V ′))X(D) = ck
(
(U, V ), (U ′, V ′)

)
. (4.17)

By lemma 4.10, we can choose κ ∈ R so that I is an isomorphism of X0(D). Moreover,
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since the space X0(D) is compactly embedded in L2(D)3 × L2(D)3, the operator Kk is

compact on X0(D).

4.4.2 Discreteness of the transmission eigenvalues

Let us assume the assumptions of theorem 4.11 to be true and let us recall the operators

I and Kk with ATk = I + Kk. Since Kk depends analytically on k ∈ C and J does not,

the eigenvalue problem becomes (I +KkI−1)(U, V ) = 0 where KkI−1 : X0(D)→ X0(D) is

compact and I denotes the identity operator ofX0(D). To see that the mapping k → KkI−1

is analytic in C, we define the operators F and G from X0(D) to X0(D) by

(F(U, V ), (U ′, V ′))X(D) = (εrU,U
′)D + (V, V ′)D − 2(V, χU ′)D

(G(U, V ), (U ′, V ′))X(D) = −κ2

[(
1

2
U,U ′

)
D

+ (V, V ′)D − 2(V, χU ′)D

]
.

Then, ATk = I + k2F + G, that is ATk I−1 = I + k2FI−1 + GI−1. Due to the compact

embedding of X0(D) into L2(D)3 × L2(D)3, it follows that F ,G and thus FI−1, KkI−1

are compact operators from X0(D) to X0(D). Furthermore, the map k → k2FI−1 +GI−1

from C to the Banach space of bounded operators from X0(D) to X0(D) is polynomial

and so analytic.

To apply the analytic Fredholm theory, it remains to show that there exists a k ∈ C for

which I +Kk is injective. By lemma 4.10, we know that there exists κ ∈ R such that ATiκ
is an isomorphism of X0(D). Thus ATk is injective for all k ∈ C \ S, where S is a discrete

set of the complex plane. For k ∈ C \ S, this implies that the only solution of problem

(4.9), and consequently of problem (P4), is the zero solution. So far, we have proven the

following theorem.

Theorem 4.12. Assume that µr ≥ 1
µ∗
> 1 and εr ≥ ε∗ > 1 almost everywhere on D ∩ U .

Then the set of transmission eigenvalues is at most a discrete set in C.

Theorem 4.13. Assume that µ+ < 1, so that 1
µr
≥ 1

µ+
> 1. Assume further that the

operator B associated with the scalar problem (4.7) is injective. Then the set of transmission

eigenvalues is at most a discrete set in C.

Proof. We write aTk = aTiκ − (aTiκ − aTk ) for κ ∈ R. Then

|aTk | ≥ |aTiκ| − |(aTiκ − aTk )|. (4.18)
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By lemma 4.10 the sesquilinear form atiκ is coercive, thus with χ = 1, there exists a constant

c > 0 such that

∣∣aTiκ((U, V ), (U, V )
)∣∣ ≥c‖(U, V )‖2

X(D)

=c
(
‖curlU‖2

D + ‖curlV ‖2
D + ‖U‖2

D + ‖V ‖2
D + ‖UT‖2

∂D

)
(4.19)

for all (U, V ) ∈ X0(D). We note that a sufficient condition for the operator B associated

with the scalar problem to be an isomorphism is ε− > 1 (or ε+ < 1 as shown in [16]). Now

for (U, V ) ∈ X0(D), we estimate

∣∣aTiκ((U, V ), (U, V )
)
− aTk

(
(U, V ), (U, V )

)∣∣ =
∣∣(k2 + κ2) [(εrU,U)D + (V, V )D − 2(V, U)D]

∣∣
≤ |k2 + κ2|

(
|(εrU,U)D|+ |(V, V )D|+ 2|(V, U)D|

)
.

Using Young’s Inequality 2|(V, U)D| ≤ ‖U‖2
D + ‖V ‖2

D and estimating εr yields that there

exists a constant c̃ > 0 such that

|(aTiκ − aTk )| ≤ c̃|k|2
(
‖U‖2

D + ‖V ‖2
D

)
. (4.20)

Putting everything together, substituting (4.19) and (4.20) into (4.18) yields that there

exists constants c1, c2 > 0, independent of k, such that

∣∣aTk ((U, V ), (U, V )
)∣∣ ≥ c1

(
‖curlU‖2

D + ‖curlV ‖2
D + ‖UT‖2

∂D

)
− c2|k|2

(
‖U‖2

D + ‖V ‖2
D

)
.

(4.21)

Next we show that

(U, V )→
(
‖curlU‖2

D + ‖curlV ‖2
D + ‖UT‖2

∂DD
) 1

2

defines a norm on X0(D) that is equivalent to the X(D)-norm. Since

(
‖curlU‖2

D + ‖curlV ‖2
D + ‖UT‖2

∂DD
) 1

2 ≤ ‖(U, V )‖X(D)

it is sufficient to prove that there exists a constant Cp > 0 such that

‖U‖2
D + ‖V ‖2

D ≤ Cp
(
‖curlU‖2

D + ‖curlV ‖2
D + ‖ν × U‖2

∂D

)
(4.22)

for all (U, V ) ∈ X0(D). We prove by contradiction and let (Un, Vn) be a sequence of
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elements of X0(D) such that

‖Um‖2
D + ‖Vm‖2

D = 1 for all m ∈ N,

and

lim
m→∞

(
‖curlU‖2

D + ‖curlV ‖2
D + ‖ν × U‖2

∂D

)
= 0.

By the compactness property of X0(D), there exists a subsequence, still denoted by

(Um, Vm), that converge to (U, V ) ∈ X0(D) in L2(D)3 × L2(D)3. By the properties of

the sequence, we have that ‖U‖2
D + ‖V ‖2

D = 1 and curlU = curlV = 0 in D and ν×U = 0

on ∂D. Moreover, ν × V = 0 on ∂D. By theorem 3.37 in [2], there exist scalar potentials

(ξ, η) ∈ S(D) such that (U, V ) = (∇ξ,∇η). Now, B(∇ξ,∇η) = 0, and since B is injective,

we conclude that (∇ξ,∇η) = (U, V ) = 0, which is a contradiction to ‖U‖2
D + ‖V ‖2

D = 1.

Now we return to (4.21). Since the map (U, V ) → (‖curlU‖2
D + ‖curlV ‖2

D + ‖UT‖2
∂D)

1
2

defines a norm on X0(D) equivalent to the X(D)-norm, we conclude that aTk is coercive

on X0(D)×X0(D) for |k|2 < c1
c2Cp

, where Cp is defined in (4.22). Thus, for those values of

k the operator ATk defines an isomorphism of X0(D). The analytic Fredholm theorem now

implies that the set of transmission eigenvalues is at most a discrete set in C.

4.4.3 Case 1
µr
≤ µ∗ < 1 in a neighbourhood of the boundary ∂D

For the case 1
µr
≤ µ∗ < 1, in particular, µr − 1 > 0 in a neighbourhood of the boundary

∂D, we can argue as in the previous section by taking T : X0(D) → X0(D), T (U, V ) =

(U − 2χV,−V ) with the cut-off function χ ∈ C∞0 (D, [0; 1]) as before. Then, two issues

need to be remarked on.

The first is that, we need to verify that T (U, V ) is an element of X0(D). For (U, V ) ∈
X0(D), in particular (U, V ) ∈ X(D), we have by definition that U ∈ Himp(curl , D), V ∈
H(curl , D) and ν×(U−V ) = 0 on ∂D. Since the trace operator is linear and the tangential

trace of U belongs to L2
t (∂D), we conclude that V ∈ Himp(curl , D), and consequently

T (U, V ) ∈ X0(D). It is easily verfied that T defines an isomorphism on X0(D).

The second issue is that we need to verify that the estimates of aiκ in the proof of lemma

4.10 hold. We compute,
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∣∣aTiκ((U, V ), (U, V )
)∣∣ =

∣∣aiκ((U, V ), (U − 2χV,−V )
)∣∣

≥
(

1

µr
curlU, curlU

)
D

+ (curlV, curlV )D + κ2(εrU,U)D

+ κ2(V, V )D + 〈λUT , UT 〉∂D

−
∣∣∣∣2( 1

µr
curlU, curl (χV )

)
D

∣∣∣∣− 2
∣∣κ2(εrU, χV )D

∣∣− 2 |〈λUT , VT 〉∂D| .

Compared to (4.11), we have obtained the additional term −2 |〈λUT , VT 〉∂D|. Now, esti-

mating
∣∣aTiκ((U, V ), (U, V )

)∣∣ for all (U, V ) ∈ X0(D), as was done in lemma (4.10), using

Young’s inequality to estiamte 2| 〈λUT , χV 〉∂D | ≤ σ 〈λUT , UT 〉 + 1
σ
〈λVT , VT 〉∂D, for some

σ > 0, and choosing κ sufficiently large in absolute value, we obtain

∣∣aTiκ((U, V ), (U, V )
)∣∣ ≥ c

(
‖U‖2

H(curl ,U) + ‖V ‖2
H(curl ,U) + ‖UT‖2

∂D

)
− 1

σ
〈λVT , VT 〉∂D

� c‖(U, V )‖2
X(D)

Thus, for the case µr − 1 > 0 in a neighbourhood of the boundary ∂D, we unfortunately

can not conclude the same results as in the previous subsections.
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5 Conclusion

We considered scattering of time-harmonic electromagnetic waves. We were able to show

the existence of a unique solution to direct problems and introduced both the integral

equation and variational methods. Despite the differing approaches of the methods, the

basic general idea is somewhat the same, that is, the derivation of an equivalent formulation

of the scattering problem. Well-posedness was then obtained by showing that the equivalent

formulation is of Fredholm type. In the case of the scattering of an impenetrable obstacle

with perfectly conducting boundary conditions, we derived a Lippmann-Schwinger operator

equation and considered that equation in the space Hloc(curl , ·). There we assumed a

general setting, that is, the obstacle occupied a Lipschitz domain, and the data were

described by Sobolev functions. We were also able to obtain well-posedness of the direct

problem applying the integral equation method to the scattering problem in the case of a

penetrable obstacle with conductive transmission conditions. However, we had to assume

more regularity on the data. In particular, we assumed the obstacle to occupy a smooth

domain and sought a solution in the space H1(·)3. Uniqueness of a unique solution for the

general setting was obtained by applying the variational method.

For the scattering problems, we also studied the inverse problem of determining the shape

of the obstacle from the knowledge of the far field pattern for the scattering of incident

plane waves. In particular, we showed uniqueness when we had overdetermined data, in the

sense that the far field pattern was known for all incident directions and polarizations. The

question of uniqueness in case of the knowledge of the far field pattern for one incident

plane wave still remains open. Moreover, as a further study, we might investigate the

question of uniqueness w.r.t. to the conductive transmission function λ of problem (P3).

In the case of the scattering from a penetrable obstacle with conductive transmission con-

ditions, we also studied the case of non-scattering incident fields and obtained the interior

transmission eigenvalue problem. Applying the variational method, in particular, the T-

coercivity approach, we were able to prove discreteness of the transmission eigenvalues

when µr − 1 was negative and εr − 1 was either positive or negative in a neighborhood of

the boundary and µr−1 and εr−1 can change sign inside the domain. As a further study,

we might investigate the following questions:

- µr − 1 positive in a neighborhood of the boundary;
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- Discreteness of transmission eigenvalues applying an integral equation type method;

- Existence of transmission eigenvalues.
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