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Nanocrystalline materials reveal excellent mechanical properties but the mechanism by which
they deform is still debated. X-ray line broadening indicates the presence of large heterogeneous
strains even when the average grain size is smaller than 10 nm. Although the primary sources of
heterogeneous strains are dislocations, their direct observation in nanocrystalline materials is
challenging. In order to identify the source of heterogeneous strains in nanocrystalline materials,
we prepared Pd-10 pct Au specimens by inert gas condensation and applied high-pressure
torsion (HPT) up to y = 21. High-resolution transmission electron microscopy (HRTEM) and
molecular dynamic (MD) simulations are used to investigate the dislocation structure in the
grain interiors and in the grain boundary (GB) regions in the as-prepared and HPT-deformed
specimens. Our results show that most of the GBs contain lattice dislocations with high
densities. The average dislocation densities determined by HRTEM and MD simulation are in
good correlation with the values provided by X-ray line profile analysis. Strain distribution
determined by MD simulation is shown to follow the Krivoglaz—Wilkens strain function of
dislocations. Experiments, MD simulations, and theoretical analysis all prove that the sources
of strain broadening in X-ray diffraction of nanocrystalline materials are lattice dislocations in
the GB region. The results are discussed in terms of misfit dislocations emanating in the GB
regions reducing elastic strain compatibility. The results provide fundamental new insight for
understanding the role of GBs in plastic deformation in both nanograin and coarse grain
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materials of any grain size.
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I. INTRODUCTION

THE role of dislocations in nanocrystalline solids has
been an issue of discussion ever since nanocrystalline
solids have become a hot topic for application and
research.l'® There is almost general consensus that
when the average grain size is around 20 nm or smaller
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the grain interiors are free of dislocations.” ¢ 1%

Obtaining evidence of grain interior structures with a
grain size in the range of 20 nm or smaller is very
difficult to obtain by Transmission Electron Microscopy
(TEM), see for example the following figures from the
literature: Figs. 3a and 3b in Reference 11, Fig. | in
Reference 12, and Fig. 3a in Reference 13. Though the
TEM images in the work by Zhang et al!'¥ do indicate
strain, the resolution is not sufficient to conclude on its
origin. Dislocation activity in nanocrystalline materials
has been widely investigated by molecular dynamlc
(MD) simulations. (2-47-10.14 1y many cases, MD simu-
lations predict that grain boundaries (GBs) emit partial
dislocations pulling stacking faults or twin boundaries
decoratln(g grain interiors at the end of strain-
ing. I"Line profile analysis of X-ray diffraction
patterns reveals 1ar§e microstrains in nanocrystalline
materials.>7 %15 ¥ Markmann et al*% evaluated the
full width at half maxima (FWHM) of diffraction
patterns of nanocrystalline Pd!"” along with the FWHM
of a computer-generated diffraction pattern of an
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MD-simulated specimen of the same material. Figure 1
in Reference 4 shows that the measured and com-
puter-generated diffraction patterns are identical. The
modified Williamson—Hall plots?” of the FWHM and
the integral breadths of the computer-generated diffrac-
tion patterns have large positive slopes indicating the
presence of significant microstrains. Both the real and
the MD-simulated nanocrystalline Pd specimens have
grain sizes of about 10 nm. It was concluded that the
microstrains in both the MD-simulated and experimen-
tally measured nanocrystalline specimens are similar to
those found in plastically deformed fcc metals, even
though no specific lattice defects were introduced during
the simulation process.”! It was further concluded in
Reference 6 that the presence of microstrains, i.e., the
positive slope in the modified Williamson—Hall plots in
Fig. 2 in Reference 4, cannot be considered as evidence
for the presence of dislocations. MD simulations of the
GB regions, shown in Figs. 3 and 4 in Reference 6,
revealed long-range correlated displacement fields
extending well into the grain interiors; however, they
were not directly correlated with any specific source of
these strain fields. It is noteworthy that in this work
(Fig. 3 in Reference 6) the GB regions were left blank
with the atomic positions missing in the MD simula-
tions. Due to the missing evidence of any specific lattice
defects in the GB regions, it was concluded in Reference
4 that, though X-ray line broadening arises from
long-range displacement fields emanating from the
GBs, diffraction-based strategies for inferring the dislo-
cation density in ultrafine-grained metals do not neces-
sarily apply to nanocrystalline materials.

The physical and mechanical properties of nanocrys-
talline materials strongly depend on the nature and
character of grain boundaries. MD simulation ‘experi-
ments’ of Stukowski er all% indicate that substantial
heterogeneous microstrains are potentially associated
with grain boundaries or grain boundary regions. Large
strain broadening in X-ray line profiles are in global
correlation with these simulation ‘experiments.’t*>"* In
order to understand the mechanical behavior of nano-
grain materials, it is of imminent importance to find the
source of heterogeneous microstrains associated with
grain boundaries. For this aim, we prepared nanocrys-
talline Pd-10 at. pct Au alloy specimens by the method
of inert gas condensation with an average initial grain
size of about 12 nm. One of the specimens was plasti-
cally deformed by high-pressure-torsion (HPT) up to a
plastic shear strain of about y = 21. The global disloca-
tion density was determined by X-ray line profile
analysis, whereas the local dislocation structure was
obtained by High-Resolution Transmission Electron
Microscopy (HRTEM). The dislocation structure of the
material was also modeled by MD simulations. Both
HRTEM and MD simulations provide direct evidence
for dislocations in the GB regions, while the grain
interiors of the nanocrystalline grains remain free of
dislocations. The dislocation densities determined by
HRTEM and MD-simulated images prove to be in good
correlation with the values of the global dislocation
densities given by X-ray line profile analysis. The
experimental and simulation results provide evidence
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of the presence of lattice dislocations in GB regions.
These dislocations are the source of large heterogeneous
microstrains and the corresponding substantial strain
broadening in X-ray diffraction patterns. We show that
the distortion distribution determined by MD simula-
tion ‘experiments’ in Reference 6 can be well described
by the Krivoglaz—Wilkens®' ¥ strain function typical
when the source of heterogeneous strains are disloca-
tions. Our HRTEM experiments along with MD sim-
ulations and the distortion distribution data in
Reference 6 provide strong indications that the sources
of strain broadening in X-ray diffraction patterns of
nanocrystalline materials are overwhelmingly lattice
dislocations in GB regions.

II. EXPERIMENTAL

A. Materials

Nanocrystalline Pd-10 at. pct Au powder was pro-
duced by inert gas condensation® using a 10~ mbar
base pressure vacuum system and thermal evaporation
of 99.95 pct purity Au and Pd in a 1 mbar He
atmosphere. The powder was consolidated in sifu at a
pressure of 2 GPa to obtain disk-shaped specimens with
a diameter of 8 mm and thickness, 1 = 0.263 mm. The
nanocrystalline Au-10 at. pct Pd samples exhibit a
stable grain size even at temperatures well above room
temperature.''! Even nanocrystalline pure Au shows
stable grains size up to about 770 K and the grain size
stability in nanocrystalline materials increases with
alloying.” The microstructure was studied in two
initially identical specimens. One of the specimens was
investigated in the as-prepared state and the other after
deformation by high-pressure-torsion (HPT) of 1/4
(x = 90 deg) rotation at a constant speed of 2 rota-
tions/minute at a pressure of p = 6 GPa in a cus-
tom-built computer-controlled HPT device (W. Klement
GmbH, Lang, Austria). The shear strain was calculated
as y = yr/t and it was 4, =7 and y; =21 at third
radius and close to the edge, respectively.

B. X-ray Diffraction Experiments

X-ray diffraction experiments were carried out in a
special high-resolution double crystal diffractometer
with wavelength compensation dedicated to line profile
analysis. It was built on the principles described in
References 26-28. A plane Ge (220) primary monochro-
mator operated at the Cu Ko fine-focus rotating copper
anode (Rigaku, RA-MultiMax9) at 40 kV and 100
mA."" A narrow slit in front of the monochromator
was adjusted to eliminate CuKo, radiation. After the
monochromator, a second slit of 0.2 x 1.0 mm?, close
to the specimen, blocked parasitic scattering from the
monochromator and reduced beam divergence normal
to the incidence plane. The distance between the X-ray
source and the specimen was 560 mm. This setup
provides a monochromatic and almost parallel beam
with a divergence less than about 0.025 deg in the plane
of incidence. The footprint of the beam on the specimen
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was about 0.2 x 1.0 mm?>. Since, in the present case, the
narrowest diffraction peaks in all measured diffraction
patterns were at least one order of magnitude broader
than the instrumental breadth of 0.057 deg, there was no
need for instrumental corrections. The diffracted beam
was recorded using three curved image plates (IP) with a
linear spatial resolution of 50 um. The IPs were posi-
tioned at a distance of 300 mm from the stationary
specimen, covering the 20 angular range from 30 to 153
deg. The X-ray beam was positioned on the specimen
surface by using a low depth-resolution microscope
coupled to a TV screen. X-ray diffraction measurements
were carried at about the center, at one-third and
two-third of the radius and close to the edge of the
samples as shown in Figure 1(a). Diffraction images
recorded by three curved image plates from the center
and 2/3R position of the HPT-deformed specimen are
shown in Figure 1(b). The diffraction patterns were
obtained by integrating the intensity distributions along
the Debye—Scherrer arcs on the image plates. Only the
central parts of the arcs were used for integration where
the geometrical spreading of Debye—Scherrer arcs does
not affect line broadening. The diffraction patterns of
the as-received inert gas-condensed specimen and the
HPT-deformed specimen at 0.25 rotation, measured
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close to the edge, are shown in Figure 1(c). The
logarithmic intensity scale is used to better see the shape
of the peaks in the entire intensity range. A closer
inspection reveals that the peaks narrow after deforma-
tion in correlation with both grain growth and reduction
in dislocation density. In order to see the difference
between measured and CMWP-calculated intensity
distributions, the as-received pattern is shown in
Figure 1(d) with linear intensity scales.

C. Evaluation of the X-ray Diffraction Patterns

The diffraction patterns are evaluated by using the
convolutional multiple whole profile (CMWP) proce-
dure.?**% The method is based on physically well-estab-
lished profile functions theoretlcally calculated for
different specific lattice defects, in {)artlcular for (i)
coherently scattering domain size,®"! (i) disloca-
tions,?' > and (iii) various planar defects.***¥ The
size profile function is given by the median, m, and the
variance, g, for the coherently scattering domain size.
The strain profile function is given by the density, p, the
average contrast factors, C, and the arrangement
parameter, M, of dislocations. The profile function of
planar defects is given as the sum of symmetric and
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Fig. 1—X-ray diffraction results: (¢) schematic image of the HPT-deformed PdAu diskette showing the footprints of the X-ray beam in true
relative scale; (b) image plate records from the as-received and 2/3R position of the HPT-deformed specimen, where R is the radius; (c)
diffraction patterns obtained by integrating the central region of the image plate readout from the as-received and the edge of the HPT specimen
in logarithmic intensity scale. Crosses are the measured and red line the CMWP-calculated patterns. (d) Same as the as-received patterns in (c)
with linear intensity scale. The difference between the measured and CMWP-calculated patterns is shown in the lower part of the figure. The

inset is the enlarged part in the higher angle section of the pattern.
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antisymmetric Lorentz functions vs the density of planar
faults.?> 37 The calculated and measured diffraction
patterns are matched to each other by adjusting the
physical parameters listed above. Instrumental effects, if
necessary, are also convoluted to the physical profiles.
The background is determined either manually or by a
background fitting procedure. Matching of the calcu-
lated and measured patterns is done by combining the
Marquard-Levenberg analytical least-squares and a
Monte Carlo statistical optimization procedure.”® The
two procedures are applied iteratively in order to obtain
the global optimum for the physical parameters: the
crystallite size distribution parameters, i.e., the median,
m, and variance, g, of the log-normal size distribution
function, the dislocation density and arrangement
parameter, p and M, and the planar defect density, f,
respectlvely

Size broadening
Slze broadenlng 1s produced by small coherently
scattering domains®®!! also called crystallites. The size
distribution of the coherently scattering domains is
taken into account by assuming log-normal size distri-
bution function, f{(x), given by the median, m, and the
variance, o:

1 [In(x/m)]?
f(x)—\/%;eXP{—T} (1]

The size profile is given by convoluting the size
function of coherently scattering domains and the

log-normal size distribution function®*-3%-%!:
o0 . 2
156) = [0 e MO gy
/7 %

where erfc is the complementary error function. It can
be shown that the best match between TEM and
X-ray 31ze 1s growded by the area-weighted mean crys-
tallite sizel® :

(X)area = M X €xp(2.5 x 2. 3]

When the crystallites are equiaxed size broadening is
isotropic, i.e., it is independent of scattering order. If the
crystallites are oblate or elongated, then size broadening
becomes /hikl dependent i.e., anisotropic as a function of
diffraction order.*0#!) S1nce the hkl dependence of
anisotropic size broadening is different from the hk/
dependence of strain anisotropy, the two anisotropies
can be distinguished from each other.[?*-3%:40:41)

In a comprehensive analysis of crystallite size and
grain size obtained by X-ray line broadening and TEM
in the same specimens, it was shown that, when the
TEM grain size becomes smaller than a few hundred
nanometers, then the X-ray crystallite size tends to be
identical with the TEM grain size.*”) The physical
reason for this is that in large grain size samples the
X-ray crystallite size provides the sub-grain size which is
usually smaller than the grain size given by TEM. If,
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however, the grain size becomes of the order of a few
hundred nanometers or smaller, then such grains are
usually not divided further by smaller sub-grains.

2. Strain broadening
The Fourier transform of the strain profile can be
written as!*?!

Ahkl(L) = exp[*2n2g2l‘2 <8§,L>]7 [4]

where g is the absolute value of the diffraction vector,
L is the Fourier variable, and (s{f,’ ) is the mean square
strain. For dislocated crystals, the mean square strain
was elaborated by Krivoglaz,?'*?! Wilkens,*® and
Groma et al™

(200 5 ). 3

where p and b are the density and Burgers vector of
dislocations, C is the average dislocation contrast factor
and f(n) is the strain function. The function f{n)
describes the L dependence of the mean square strain
with n = L/R., where R, is the effective outer cut-off
radius of dislocations. The physical meaning of R. here
is the same as in the elastic stored energy of disloca-
tions.[** %1 R_ is rationalized as the dipole character of
dislocation arrangements 1ntroduc1nF the dimensionless
arrangement parameter M = Re./p. SIIf M is smaller
or larger than about unity, the dipole character of
dislocations is stronger or weaker, respectively. For very
strong dipole character of dislocation arrangements,
e.g., in the cell walls of persistent slip bands in high-cycle
fatigued copper single crystals M = 0.7." For loosely
distributed dislocations with weaker dipole character,
eg., 1n tensﬂe deformed copper single cr_ystals
M = 2.3.%80 A1 correlates with the profile shape.*”! For
smaller or larger M values, the tails of diffraction peaks
become longer or shorter, respectlvely [23.29.30]

Equation [5] shows that the mean square strain also
depends on the contrast factors, C, of dislocations. The
physical reason for this is that strain broadening
depends on the relative orientation between the Burgers
and line vectors of dislocations and the diffraction
vector, b, I, and g, and the elastic constants, c;;;, of the
material,! [20°23.49-31) making strain broadening &kl
dependent. The effect is called strain anisotropy which
can be taken into account by the dislocation contrast
factor, C = C(b.glc;). Strain anisotropy is well
known in TEM where tilting of a specimen changes
the contrast of dislocations. Strain anisotropy in X-ray
diffraction and TEM has the same physical background.
The contrast factor is a purely geometrical parameter
and can be calculated theoretically for s 5}())f:clﬁc disloca-
tions and Akl values in any material.. In a tex-
ture-free polycrystal or a powder specimen, the contrast
factor can be averaged over the permutations of hkls.
For cubic systems, the ikl dependence of the average
contrast factors isl®*

C = Co(1 —qH), [6]
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where Cjg is the average contrast factor of the 400
reflections  and H?> = (IPK*> + PP + IPP)) (P + K +
k*)>. The q parameter depends on the elastic constants
of the crystal, and the type of dislocations, i.e., on the
slip system and screw or edge chdracter respectlvely,
and can be evaluated numerically.>

In the present fcc crystal structure, the major oper-
ating slip system is {111}(110). The contrast factors
were evaluated for edge- and screw-type dislocations
with (110) Burgers vectors on {111} slip planes. Dislo-
cation types were analyzed in an MD-simulated
nanocrystalline polycrystal sample of fee structure.’
It was shown that a large fraction of dislocations in the
GB region are partials with Burgers vectors of 1/6[121].
Equation [2] shows that the dislocation density is scaled
by Ch?. The average contrast factors, C, of the 1/2[110]
and 1/6[121] Burgers vectors are the same for all Akl
reflections within about 15 pct.’% The major difference
in the Ch? scaling factor is given by b%. The ratio of the
two scaling factors is Cb?) /Cb7,; = 3. This has been

taken into account in evaluating the dislocation density
values listed in Tables I and III.

3. Operation of the CMWP procedure
The physically modeled diffraction patterns, I"™(20),
are the convolution of the physically modeled profile

functions of crystallite size, IZH, strain caused by

D [32.33] Inst
dislocations, I}, planar defects, /1), and the I}}',

instrumental profiles. The background, BG, is added to
the convoluted model profiles:

™(20) Zlhkl X Iy % Ty x It + BG. [7]
hkl

Two typical measured (crosses) and CMWP-calcu-
lated (red lines) patterns are shown in Figure 1(c). The
values of the physical parameters are limited in the
CMWP procedure in wide ranges of bounds which can
be edited by the user.”® The errors of the physical
parameter values are determined in terms of the p pct
fractions of the weighted-sum- of-squared residuals
(WSSR), AWSSR = WSSR(1 + p pct), m the Monte
Carlo algorithm after the last iteration step.*® Both the
number of iteration steps and the value of p can be
edited by the user. In the present case, p was set to

= 3.5 pct. More details of the algorithms used in the
CMWP procedure can be found in Reference 38.

4. Elastic compatibility strains or stresses

Compatibility stresses related to strain gradients can
build uF b¥ geometrically necessary dislocations
(GNDs).> 58 1t has been proved in a number of works
that X-ray peak broadening catches both GNDs and
statistically stored dislocations (SSD) together. For
example, SSDs in dislocation cell walls along with
GNDs producing long-range internal stress in ten-
sile-deformed copper single crystals®™ or GND-type
misfit dislocations at the interfaces between y and
phases along with SSDs within the y channels in Ni-base
superalloys!®” or GNDs at the interphase between
martensite and austenite layers along with the SSDs

METALLURGICAL AND MATERIALS TRANSACTIONS A

Values of the Area Average Mean Crystallite Size, (x),rca, the Median and Variance, m and o1, of the Log-Normal Size Distribution Function, the Average
Dislocation Density, p, the ¢ Parameter as Defined in Eq. [8], the Dipole Character Number, M, the Effective Outer Cut-Off Radius, R., of Dislocations, the Average Twin

Table 1.

Boundary Density, B, and the Average Distance Between Twin Boundaries, dy,, as Provided by CMWP

dTwin (nm)

p (Percent)

R, (nm)

m (nm) OLN p (10" m™?)
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within the laths in tensile-deformed martensite steels,!®!!

all are captured together in peak broadening. Elastic
compatibility strains or stresses (ECSs) can exist below
the critical resolved shear stress (CRSS).P7-6%631 If
necessary, these can be treated in CMWP by an
additional profile function convoluted to the other
modeled profile functions in Eq. [5].5¥

D. Dimensional Classification of Lattice Defects

Krivoglazi?? showed that strain broadening of X-ray

line profiles can only be caused by dislocations or
linear-type lattice defects. Lattice defects can be sorted
into three dimensional categories, (i) zero, (ii) one, and
(iii) two dimensional, which are point defects, linear
defects, i.e., dislocations or dislocation-like defects, and
planar defects, i.e., twin boundaries, stacking faults, or
grain boundaries, respectively. The strain fields are of
short range, i.e., ¢ o< 1//%, long range, i.e., ¢ o 1/r and
constant or homogeneous, respectively, where r is the
distance from the defects. Due to reciprocity between
crystal and reciprocal space, the intensity distribution
corresponding to the three defects categories will be (i)
smoothly varying below the Bragg peaks,®¥ (iig clus-
tered around the fundamental Bragg reflections,** and
(iii) causing peak shifts, ¢f. References 32-37, respec-
tively. The first is often called Huang scattering.[**! Line
broadening affects the Bragg peaks and is usuall
restricted to small, AK/K <5 x 1072 ranges.[?**74"]
According to the dimensional hierarchy of lattice defects
introduced by Krivoglaz,®? strain broadening of
diffraction peaks is an indirect indication of the presence
of dislocations.

E. Electron Microscopy Characterization

X-ray line profile analysis gives the global disloca-
tion density in the specimen. In order to determine the
location and arrangement of dislocations, we carried
out HRTEM investigations. The microstructure and
micro-texture of the samples before and after HPT
were characterized by scanning electron microscopy
(SEM) and TEM. Electron-transparent samples were
prepared from the cross section of the samples by
focused ion beam using an FEI Quanta 3D SEM
electron microscope. In the case of the HPT-deformed
specimen, the TEM foils were prepared from the
regions about halfway between the center and the edge
of the disks. TEM observation and high-resolution
HRTEM imaging were conducted in an FEI F30 field
emission gun TEM operated at 300 kV. Transmission
Kikuchi Diffraction (TKD) technique was used for
micro-texture analysis. TKD was carried out in an FEI
Magellan 400 SEM equipped with an Oxford-Aztec
system operated at 30 kV with a probe current of 1.6
nA. The sample was tilted to an angle of 20 deg with
respect to the electron beam. A step size of 2 nm was
chosen, and the data were collected by Aztec and
analyzed using the Channel5 software of Oxford
Instruments. No appreciable texture was observed in
the two investigated samples.
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F. Molecular Dynamics Simulation Methodology

Grain interiors in nanocrystalline materials are usu-
ally found to be free from dislocations.> *¢ 1% X ray
line broadening, however, reveals large strain broaden-
ing in nanocrystalline materials'® the source of which
has not been clarified yet. We carry out MD simulations
to support HRTEM experiments in order to have more
evidence of the nature and location of dislocations
causing large strain broadening in nanocrystalline spec-
imens in which the grain interior regions are free from
dislocations. Digital samples of nanocrystalline pure Pd
and pure Au were generated to mimic the experimental
nanocrystalline samples. The technique for sam?le
generation is based on a Voronoi construction®”
technique in three dimensions and randomly chosen
grain orientations and centers. Periodicity was utilized
in all three directions to avoid any effects of free
surfaces. This technique has been used extensively to
study the properties of nanocrystalline materials, and it
implies general grain boundaries with no preference to
any special misorientation or grain boundary planes.
The samples generated were cubes of 20 nm side and
contained 12 grains of average diameter 7.5 nm. The
total number of atoms in each simulation was 496,772.
The samples were relaxed at 300 K for 100 ps using
molecular dynamics and an Embedded Atom Method
(EAM) interatomic potentials developed for Au and
Pd.1*) The molecular dynamics implementation used is
that of LAMMPS.®”) The relaxation was performed
maintaining a constant zero pressure separately in all
faces of the sample. This procedure resulted in relaxed
grain boundary structures in a sample with no macro-
scopic stress in any of the spatial directions. Visualiza-
tion of the digital samples was performed using
OVITO.[*! The primary goal of the visualization
was the identification of any dislocations that were
present in the relaxed sample, either inside the grains or
as part of the grain boundary structure.

III. RESULTS

A. Global Dislocation Densities in the Nanocrystalline
Au-10 Pct Pd Specimens Determined by X-ray Line
Profile Analysis

X-ray diffraction measurements were carried on both
the undeformed and the deformed specimens. In the
sample deformed by HPT, strain increases from the
center to the edge. With the fine footprint of the X-ray
beam on the specimen of about 200x 1500 yum, X-ray
diffraction patterns were measured as a function of
distance from the center of the deformed specimen
shown in Figure 1. This provides global dislocation
densities as a function of shear strain shown in
Figure 1(a). Close inspection of the patterns in
Figure 1(c) reveals that the peaks narrow after HPT.
The X-ray diffraction patterns were evaluated for the
area average mean crystallite size, (x)..q, the average
dislocation density, p, the average dislocation contrast

factors, C, the average twin boundary density, /3, and the
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Fig. 2—X-ray diffraction analysis: (¢) The area average mean
crystallite size, (X)area (open red circles), the dislocation density, p
(open blue triangles), and the twin density, f (open black rectangles).
The lines through the data points are only to guide the eye. (b)
Log-normal size distribution functions of crystallite size for the
as-received and HPT-deformed specimen determined either by X-rays
(blue solid and red dash-dot lines) or from dark-field TEM
micrographs (blue dash and red dash double-dot lines). The X-ray data
correspond to the 2/3R region in the disk. The vertical arrows indicate
the area average mean values as in Eq. [6] (Color figure online).

dislocation arrangement parameter, M, by the CMWP
procedure. The average distance between twin bound-
aries, dryin, can be obtained from f as dryin :\/ig%,

where it is assumed that twinning occurs along the {111}
planes and a is the lattice constant of the sample.
Figure 2(a) shows (x).rear p, and f as a function of y.
The values of (X)areas p» M, and dryin are listed in
Table 1.

The M value increases with 7 indicating that the
dipole character of dislocations decreases. Figure 2(b)
shows the log-normal size distribution function, f(x), for
the as-received and the HPT-deformed specimens deter-
mined by X-ray LPA and by dark-field TEM. The LPA
size distribution corresponds to y = 15. The area average
mean crystallite or grain size values, (X),eq, are shown
by vertical arrows. The X-ray data indicate somewhat
smaller grain size than dark-field TEM micrographs.
This difference is most probably due to smallest grains
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Fig. 3FWHM values for the as-received and two deformed states
of the specimen: FWHM values in the («) Williamson—Hall and (b)
modified Williamson-Hall plots. In latter, the FWHM values were
corrected for twinning as in Ref. [15]. Errors of the FWHM values
are given by the vertical black line.

not being counted in the TEM micrographs, whereas all
coherent domains contribute to size broadening in the
X-ray patterns.

B. Qualitative Verification of Strain Line Broadening
by the Williamson—Hall and Modified Williamson—Hall
Methods

The qualitative features of line broadening are best
seen in the Williamson—Hall (WH)"” and modified
Williamson—Hall (mWH)?” plots. In these plots, the
FWHM of peaks are plotted either vs K = 2sinf/A or

K\/a respectively, where 6 and 1 are the diffraction
angle and the wavelength of X-ray beam and C is the
average dislocation contrast as provided by CMWP and
defined in Egs. [3] and [4]. The WH plots for the
as-received and the HPT-deformed specimen measured
at 0.33R and 0.66R shear strained to y = 7.3 and
y = 14.7 are shown in Figure 3(a). The apparent
weirdness of FWHM vs strain indicates strong strain
anisotropy. In case there are no planar defects, strain
anisotropy can be straightened in the mWH plot?” by

VOLUME S51A, JANUARY 2020—519



replacing K with KV/C. Planar defects introduce addi-
tional anisotropic broadening, the Akl dependence of
which is different from strain anisotropy. This addi-
tional broadening can be taken into account by cor-
recting the measured FWHM values by the effect of
planar defects>!34

FWHM* = FWHM — BW(hkl), 8]

where f3 is the density of twin boundaries and W(hkl) are
hkl-dependent numbers characterizing broadening
caused by twinning.**) The mWH plot corrected for
twinning is shown in Figure 3(b). The figure shows a
good linear relation between the FWHM values and

K+/C. The slopes of the linear regressions of the 0.33R
and 0.66R FWHMSs are smaller than that of the
as-received specimen and are equal to each other,
indicating a decrease of microstrain compared to the
as-received state. The smallest intersection of the regres-
sion at K = 0 corresponds to the 0.66R position,
indicating the largest size of coherently scattering
domains. The qualitative trends revealed by the mWH
plots in Figure 3(b) are in good correlation with the
quantitative results listed in Table I. We note, however,
that the breadth data can only provide qualitative

information about the microstructure and should not be
used for quantitative analysis.[?>-3%71]

C. Electron Microscopy Results of the Nanocrystalline
Au-10 Pct Pd Samples

The microstructures of the as-received and HPT-de-
formed samples were characterized by TEM shown in
Figure 4. Figures 4(a), (b), (d), and (e) show typical
bright-field and corresponding dark-field TEM micro-
graphs of the as-received and HPT-deformed material,
respectively. The micrographs indicate grain coarsening
during HPT. The grain size distributions were obtained
by evaluating more than 1000 grains from at least 10
dark-field TEM images well spread in the whole TEM
samples. The histograms of grain size distribution of the
as-received and HPT-deformed samples are shown in
Figures 4(c) and (f), respectively. The histograms were
fitted with log-normal size distribution functions accord-
ing to Eq. [4]. The TEM-determined median, m, and
variance, o, of the as-received and HPT-deformed
samples are Mugiec = 13.2,  Oasree = 0.33, and
mypr = 22.6, oypr = 0.37. The comparison of the
TEM and X-ray determined m and ¢ values is shown in
Table II indicating a reasonable correlation provided by

d=13.2+4.2 nm

10 15

Size, nm

20 25 30

d=23.1£8.2 nm

70

Fig. 4—(a, b) are bright-field and dark-field TEM images and (c) a histogram showing the grain size distribution of about 1000 grains obtained
from about 10 similar dark-field images of the as-received sample. (d, ¢) are bright-field and dark-field TEM images and (f) a histogram showing
the grain size distribution of about 1000 grains obtained from about 10 similar dark-field images of the HPT-deformed sample.
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Table II. Comparison of the X-ray and TEM Grain Size and Grain Size Distribution Data

X-ray LPA Dark-Field TEM
m (nm) o (%) area (nm) m (nm) o (¥)area (NM)
As-Received 8.4 (£ 0.5) 0.49 (£ 0.02) 153 (£ 2) 12.5 (£ 0.3) 0.33 (£ 0.016) 16.4 (£ 0.8)
HPT 12 (£ 0.8) 0.44 (£ 0.1) 19.5 (£ 5) 21.1 (£ 0.5) 0.37 (£ 0.05) 29.5 (£ 1.7)

The median and variance, m and oy N, of the log-normal size distribution function and the area average mean crystallite and grain size of the
as-received and HPT-deformed specimens determined by LPA and TEM, respectively. The X-ray LPA numbers of the HPT-deformed specimen are

the averages of the HPT data listed in Table I.

©
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Fig. 5—Microstructural information obtained by TKD. (@, ¢) Orientation maps, (b, d) band contrast images of the as-received and
HPT-deformed specimens. (e, f) misorientation distribution histograms of the as-received and HPT-deformed samples, respectively.

the two different methods. As mentioned in paragraph
3.1, the X-ray grain size values are slightly smaller than
the TEM values most probably due to the smallest
grains not being counted in the TEM micrographs.
Orientation maps of the grain structure are deter-
mined by Transmission Kikuchi Diffraction (TKD)
shown for the as-received and the HPT-deformed
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samples in Figures 5(a) and (d), respectively. The
corresponding band contrast images are shown in
Figures 5(b) and (d). The orientation distributions in
Figures 5(c) and (f) show that there are a large number
of grains with low-angle GBs. Because of the limited
angular resolution of the TKD technique, misorienta-
tions less than about 1 deg were not considered in the
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{111}<112>
Twin

Fig. 6—HRTEM analysis of the sample after HPT deformation. (¢) A HRTEM image showing a tilt grain boundary (GB) with tilt axis along
the [110] direction and some twin boundaries (TB), (b) is the FFT pattern of the yellow-framed region in (a), (¢) is the enlarged IFFT image of
the white dash-line-framed region with {111}(11-2) twins. The twin boundaries (TB) are marked by white arrows in (a) (Color figure online).

Fig. 7—(a) HRTEM image showing a region with a 7 deg tilt grain boundary and high-angle grain boundaries between [110] and [100] oriented
grains with respect to the incident electron beam, (b) an enlarged image from the red dash rectangle-framed region. The dislocations are
indicated by T shape symbols (Color figure online).

misorientation distribution analysis. The misorientation Dislocations are identified in the boundaries of grains
peak around 60 deg indicates twinning in correlation by HRTEM images in Figures 7 and 8. Because of the
with X-ray observations shown in Figure 2(a) and very small grain size in the as-received specimen,
Table I. The twins are identified as {111}{11—2) twins HRTEM micrographs could only be obtained from
by HRTEM shown in Figure 6. the HPT-deformed specimens where the grains are
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Fig. 8—HRTEM analysis of grain boundaries in the HPT-deformed sample: (a) to (d) are IFFT images of enlarged regions in HRTEM images
of grain boundaries with grains oriented along [110] and [100] directions. Lattice dislocations in the grain boundaries are indicated by T shape
symbols. It is noted that several more similar images were taken throughout the entire electron-transparent region of the sample.

somewhat larger. Figure 7(a) shows a 7 deg tilt bound-
ary (white dash line), and a high-angle grain boundary
between the [110] and [100] oriented grains (yellow
dash-line-encircled region) with respect to the incident
electron beam. The red dash-dot line-encircled region is
enlarged in Figure 7b where the dislocations in the tilt
boundary and in the high-angle boundary are high-
lighted by white T signs.

The main issue in the present work, as mentioned
before, is to find the source of strain causing strain
broadening in X-ray line profiles in nanocrystalline
materials. Our HRTEM micrographs provide direct
evidence that dislocations in the present nanocrystalline
alloys are within the grain boundary regions rather than
in the grain interiors. In Figure 7(a), there is a 7 deg tilt
boundary and there are several grain boundaries with
high misorientations in Figure 7(b) and in Figure 8.
Figures 8(a) to (d) show four typical grain boundaries
between [110] and [100] oriented grains. Lattice disloca-
tions in the grain boundaries in all four micrographs are
indicated by T shape symbols. We note here that many
more similar images were taken throughout the entire
electron-transparent region of the HPT-deformed spec-
imen. Figure 9(a) shows a HRTEM micrograph of a
single grain with incident electron beam along [110] zone
axis. The corresponding inverse Fourier transform
(IFFT) image is shown in Figure 9(b). The white dash
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line marks the grain boundary. The grain diameter is
about 22(+ 3) nm and the grain interior is free from
dislocations. The average dislocation distances in the
boundaries in Figures 7 and 8 are about 1.5(% 1) nm.
Taking the average grain size in the HPT-deformed state
as 27(x£ 10) nm, the average dislocation density can be
estimated to be between 1x10'® and 5x10'® m~2. This
relatively large error margin is the consequence of the
relatively wide grain size distribution, as shown in
Figure 4, and of the fact that not all grain boundaries
contain lattice dislocations, as it will be shown and
discussed below in paragraphs 3.4. It should be noted that
Moiré fringes are frequently observed in HRTEM images
of nanocrystalline materials due to double diffraction in
overlapping crystals through the foil thickness. Renten-
berger et al”* have pointed out that Moiré fringes can
erroneously be interpreted as regions with high density of
dislocations. Figures 7 and 8 show clearly that there are
no Moiré fringes in the present HRTEM micrographs.

D. Molecular Dynamic Simulations of Nanocrystalline
Au and Pd with Detailed Grain Structure Where Lattice
Dislocations are Identified

The samples used model completely random grain
boundaries in a nanocrystalline material. In this sense,
they do not model exactly the experimental material but

VOLUME 51A, JANUARY 2020—523



Fig. 9—Microstructure of a grain with a size of ~ 26 nm in the sample after HPT: (¢) HRTEM image, the corresponding FFT pattern (inset
upright corner) indicates electron beam is along the [110] zone axis of this grain; (b) the corresponding IFFT image of image (a).

represent a reasonable approximation to a typical
random grain boundary. Similarly, because we use
empirical potentials, the interactions do not represent
exactly the experimental material. We are interested in
general features that do not depend strongly on the
details of the potential used. For this reason, we have
used a pure Pd potential and we have also repeated the
simulations with a pure Au potential to make sure the
general trends are independent of the details of the
potential.

The overall microstructure for the Pd sample is shown
in Figure 10(a). About 79 pct of the atoms were
identified as fcc atom using the common neighbor
analysis formalism as implemented in OVITO.!** These
are shown in green in Figure 10(a). The remaining 21
pct of the atoms, in blue, are the atoms comprising the
grain boundaries. The results for the sample of Au were
very similar. After the relaxation procedure, the samples
were analyzed for dislocation content using the Dislo-
cation Extraction Algorithm (DXA).1*®! This procedure
generates a geometric description of dislocation lines
contained in an arbitrary crystalline model structure.
Burgers vectors are determined reliably, and the
extracted dislocation network fulfills the Burgers vector
conservation rule at each node. DXA detects disloca-
tions by iteratively constructing Burgers circuits to
identify dislocation cores. The DXA implementation in
OVITO extracts perfect lattice dislocations of the FCC
lattice and partial dislocations in FCC crystals. In the
present work, we have only utilized it to detect perfect
dislocations in order to better match the experimental
procedure, which detects perfect dislocations. In the
construction of the Burgers circuits, the procedure
requires two parameters. These parameters are called
“trial circuit length” and “circuit stretchability.” We
have utilized the default values of 14 atom-to-atom steps
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for the trial circuit length and 9 atom-to-atom steps for
the circuit stretchability.

Only perfect lattice dislocations of the fcc lattice were
detected in this procedure. They could be dislocations of
the lattices of any of the grains comprising the grain
boundary. Grain boundary dislocations or partial dislo-
cations were not detected by this procedure. As expected
for a relaxed sample under no applied stress, no disloca-
tions were detected inside the grains. This is in agreement
with the experimental results showing no dislocations
inside the grains. Most interestingly, it was found that
many of the grain boundaries in the sample contained a
dislocation network as part of the structure. Figures 10(b)
and (c¢) show two different sections of the sample
illustrating that many of the boundaries have perfect
lattice dislocations as part of their structure.
Figures 10(d) and (e) show two examples of the detailed
dislocation structure found in the nanocrystalline grain
boundaries. The dislocation segments are colored accord-
ing to dislocation character, from blue for edge to red for
screw. While it is widely recognized that the structure of
low-angle boundaries may be lattice dislocations, our
results show that there are dislocations in the high-angle
random grain boundaries. The average length of the
dislocation segments is about 1.2 nanometers. A total of
about 300 dislocations were detected in each sample,
which corresponds to a volumetric dislocation density of
about 4.7(£ 0.5)x10'® m 2. This number arises from the
large fraction of grain boundary material present in the
nanocrystalline sample, and occurs despite the fact that
there are no dislocations within the grains. The average
planar dislocation densitgy in the grain boundaries was
found to be about4 x 10°m™". In recent work using a Ni
potential and a similar technique, it was found that a large
fraction of the boundaries studied contained significant
densities of dislocations as part of their structure.>¥
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(d)

Fig. 10—Results of the MD simulation: (a) resulting structure for the MD-simulated Pd sample. (b, ¢) are two different sections of the sample
illustrating that many of the boundaries have perfect dislocations as part of their structure. (d, ¢) show two examples of the detailed dislocation
structure in the nanocrystalline grain boundaries. Dislocation segments with perfect lattice Burgers vectors viewed close to perpendicular to the
grain boundary plane. Coloring is according to dislocation character, from blue for edge to red for screw (Color figure online).

Table III. Values of the Average Grain Size and Average Dislocation Densities in the HPT-Deformed Pd-10 At. Pct Au Specimen
Determined by X-ray LPA, Dark-Field TEM, and MD-Simulated Pd Nanocrystal
Sample Method Average Grain Size (nm) Average Dislocation Density (10'® m™2)
HPT-Deformed Pd-10 At. Pct Au XLPA 19.5 (£ 5) 1.32 (£ 0.3)
HRTEM 27 (£ 10) 3(22)
MD-Simulated Pd MD simulation 7.5 (£ 0.5) 4.7 (£ 0.5)

For the sake of a better overview, the average grain
size (crystallite size), (X),.,. and dislocation density, p,
values obtained by X-ray diffraction, HRTEM, and MD
simulations are compiled in Table III. As discussed at
the end of paragraph 2.3.1, since in the present case the
grain size is well below 100 nm, the crystallite size,
(X)req» 18 1dentical with the grain size.

IV. DISCUSSION

A. Strain Distribution in the Near GB Region

Based on MD simulations, Stukowski es al.l® con-
clude that local displacements near GBs correlate over
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short distances insignificantly affecting the broadening
of Bragg reflections. Instead, strain broadening arises
from long-range displacement fields extending far from
GBs, the origin of which is, however, not understood. In
the present paragraph, we scrutinize the local lattice
distortions near GBs deduced from MD simulations of
nanocrystalline Pd shown in Fig. 4 in Reference 6. We
show that, contrary to the assumptions in Reference 6,
these lattice distortions are of long-range character
following the strain function of Wilkens®*! for disloca-
tions. Stukowski er al!® determined the average local
distortion, & = [1/3(£2 + &2 + ¢2)]'/%, in MD-simulated
nanocrystalline Pd, where ¢;, ¢, and &5 are the relative
variation of the local lattice parameter in the three
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principle directions of the Green strain tensor. More
details are in paragraph 2.2.2 in Reference 6. The
average distortion vs the distance of GBs in the
MD-simulated nanocrystalline Pd of 9.2 nm grain size
is shown in Fig. 4 of Reference 6. The histograms show
that the average distortion is large close to the GB and
decays towards the grain interior region. Virtual X-ray
diffraction patterns were also produced and the square-

root of the mean square strain, (82><mWH>, was

determined from the modified Williamson—Hall plot.
This value is denoted as exrp in Fig. 4 in Reference 6.
The atomic displacements and the corresponding
stresses are shown as colored figures for a cross section
of one of the MD-simulated nanocrystalline Pd sample
in Fig. 3 in Reference 6. The atomic positions in the GB
regions were not investigated. One of the histograms of
Fig. 4 in Reference 6 and the digitized values are shown
in Figures 11(a) and (b), respectively. The analysis
indicates that the digitized distortion follows the
Krivoglaz—Wilkens strain function, f{(y), shown as a
blue curve in Figure 11(b), where 7 is the distance from
GBs in R, units. The colored figure of local stresses in
Figure 11(c) shows that the elevated stresses appear
pairwise on the opposite sides of the GBs. Encouraged by
this observation, the local distortion distribution is
plotted in Figure 11(d) as appearing symmetrically on
both sides of a grain boundary intruding into the two
neighboring grains. There has been an attempt to inter-
pret strain broadening in the diffraction patterns of
nanograin materials as enhanced Debye—Waller factors in
the GB regions.[*” The strain field of the enhanced
Debye—Waller factor would, however, decrease as 1 /xz,
where x is the distance from GBs. The same digitized
values shown in Figure 11(d) (open ochre circles) are
shown in double logarithmic scale in Figure 11(e) along
with the Krivoglaz—Wilkens strain function (blue curve)
and a 1/x* function (dashed straight line). The fig-
ure shows that the average strain decays substantially
slower than 1/x* and it follows the strain distribution
function typical for dislocations. The strain distribution
maps of Stukowski et al. in Reference 6 are in good
correlation with the present X-ray, HRTEM, TKD, and
MD simulation results which prove the presence of lattice
dislocations in GBs and GB regions. A very recent MD
simulation work has also proved the Eresence of lattice
dislocations in GBs and GB regions.?

The value of exgrp in Fig. 4 in Reference 6 is much
smaller than the distortion distribution shown as his-
tograms. Although the slopes of modified Wil-
liamson—Hall plots, corrected for dislocation contrast,
are in correlation with dislocation densities, c¢f. Refer-
ences 5, 15, and 20, the concrete values of dislocation
densities cannot be determined from = such
slopes.!?2:293%7371 A large number of investigations
proved that the breadths and shape of line profiles
depend on the coupled values of the number density, p,
and the effective outer cut-off radius, R., of disloca-
tions.[23:2-30.38.39.41.43.47°51] Thege two parameters deter-
mine the distortion distribution function, f{(5), derived
by Wilkens.!”®) It is probably the first time that the
distortion distribution function, f{n), has been
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determined in an MD simulation ‘experiment’ in such
a clear form as shown in Figure 4 in the work of
Stukowski er al.l

B. Dislocation Density as a Function of Grain Size

The HRTEM and MD simulations show that a
substantial fraction of GBs contain lattice dislocations
with large densities. Keeping in mind that below a
certain threshold of grain size there are no dislocations
in the grain interiors, the following model of dislocation
density vs grain size is suggested. The model is using the
finding of Swygenhoven ez al.l”*! who found that GBs in
nanocrystalline and coarse grain materials have very
similar structures. Based on this, we assume that the
linear dislocation density in GBs, prr, does not depend
on grain size (the subscript IF refers to interface and
note that the unit of prg is reciprocal length.) The
volume dislocation density corresponding to GBs,
smeared over entire grains, pg’{g, can be written as

vol P1F
= f— 9
pGB o D ) [ ]

where D is the average grain size and o is a constant.
As discussed before, grain interiors are free from dislo-
cations when the grain size is below a certain threshold
value, Dy,,. A simple exponential function is suggested

to give the dislocation density in grain interiors, pgi,
as a function of grain size:

P = pcgll — exp( — kD")], [10]

where pcg is the average dislocation density when
grain size is large or coarse, k¥ and n are constants,
adjusted to give the grain size threshold, Dy, (below
which the grain interiors are free from dislocations).
When the grain size is smaller than Dy, i.e., D < Dy,
the total dislocation density is provided by the disloca-
tions in the GB region, i.e., pis. However, at larger
grain size, when D > Dy,,, p% becomes negligible com-
pared to pgr. Since pi%s and pgp are dominant in two
distinct grain size regions, the total dislocation density,
p, can be given, approximately, as the sum of the two
dislocation densities:

VO p
par + piy = pegll —exp(— kD)) + O‘§~ (1]

Equation [11] is shown in Figure 12. The solid black
line is the dislocation density in the grain interiors, pgr,
the black dash line is the volume dislocation density in
the GBs, p/%, and the blue dash-dot line is the total
dislocation density, p. The vertical dot arrow indicates
the grain size threshold, Dy, below which grain
interiors are free from dislocations. The open red circles
are the dislocation densities in the Au-10 pct Pd
specimen provided by CMWP, shown in Figure 2(a)
and listed in Table I. The constants in Eq. [11] were
adjusted to match p in Eq. [11] with the measured
dislocation density values: o = 4, pcg = 1.25 x
101 m=2, k = 2.8x107° [D™"], and n = 4. The thresh-
old of grain size, Dy, below which grain interiors
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Fig. 11-—(a) Average distortion distribution vs the distance from GBs in nanocrystalline Pd determined by MD simulation. The basis of the
figure was borrowed by courtesy from Ref. [6]. (b) Digitized values (open ochre circles) of the distortion values in (a) and the Krivoglaz—Wilkens
strain function f{n) (blue curve) (see Eq. [2] and Eq. (A8) in Ref. [23]) vs the distance from GBs as in (a). 1 in the f{x) function is scaled in units
of R.. (¢) Stress fields in a cross section of one of MD-simulated nanocrystalline Pd with grain size of 9.2 nm. Atoms are colored for the
hydrostatic stress component. Parts of the figures here were borrowed from Ref. [6] by courtesy of the authors. (d) Average distortion vs the
distance from GBs in MD-simulated nanocrystalline Pd on the two sides of a GB (vertical green line). (¢) Digitized values (open ochre circles) as
in (b) with the Krivoglaz—Wilkens strain function (blue curve) and a 1/x* function (dashed straight line) in double logarithmic scale, where x is
the distance from grain boundaries (Color figure online).

become free from dislocations, was taken to be dip in the total dislocation density at very small grain
Dy = 13 nm.B* Figure 12 does not show the as-re- sizes might be related to the inverse Hall-Petch behavior
ceived p value since this corresponds to sample prepa- of nanocrystalline metals."! We note that a more
ration and is irrelevant for the deformation process. The rigorous model would have to take into account the
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Average grain size [nm]

Fig. 12—Semischematic image of the dislocation density vs the
average grain size, according to Eq. [3]. The decaying dash line is the
total dislocation density in grain boundaries. The solid black line is
the total dislocation density in grain interiors assuming that below a
grain size threshold of about Dy, the grain interiors become free of
dislocations. The dash-dot blue line is the sum of the dash and solid
lines. The open red circles are the dislocation densities measured by
X-ray line profile analysis (Color figure online).

volume fractions of GBs and grain interior regions. This
is, however, beyond the scope of the present work.

In elastically anisotropic polycrystalline materials,
elastic compatibility strains and stresses (ECSsg can
build up between grains of different orientations.[’”® As
soon as the local ECSs reach a critical value, misfit
dislocations will emanate in the GB regions reducing
these strains and stresses.>>% In Reference 54, the
types and Burgers vectors of dislocations were deter-
mined by MD simulation in an fcc nanocrystalline
specimen. It was shown that the overwhelming majority
of dislocations prevail in the GB regions and that almost
all dislocations along one particular GB have the same
Burgers vector (see Figure 8 in Reference 54). These are
the misfit dislocations reducing the ECSs. Since the
Burgers vectors along a particular GB are the same, we
can assume that these dislocations are similar to GNDs
in the gradient model of plasticity.”>’” %% The strain
fields of these misfit dislocations are of long-range
character in good correlation with the strain distribution
determined by Stukowski in Reference 6 and discussed
in the previous paragraph.

V. CONCLUSIONS

We carried out X-ray line profile analysis, TEM,
HRTEM, and TKD experiments on inert gas-condensed
Pd-10 at. pct Au nanocrystalline specimens in the
as-received and HPT-deformed states. The experiments
are supported by MD simulations of nanocrystalline Pd
and Au specimens consisting of 12 grains of an average
diameter of 7.5 nm. The goal of the work has been to
find the source of large strain broadening of X-ray
diffraction peaks from nanocrystalline materials. The
HRTEM experiments and the MD simulations reveal
that there are large dislocation densities in the GB
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regions. The method of DXA was implemented in
OVITO extracts of the MD-simulated specimens. The
procedure revealed perfect lattice dislocations of the fcc
lattice and partial dislocations in fcc crystals all cluster-
ing within the GB regions. Dislocation densities have
been assessed from several HRTEM micrographs of the
deformed specimen and determined by the DXA
method in the undeformed MD-simulated Pd crystal.
These values are 3(£ 2)x 10 m~2 and 4.7(+ 0.5)x10'®
m 2, respectively. X-ray line broadening gave
1.32(£ 0.3)x10' m ™2 in good correlation with the
other two values, nonetheless as a lower bound of those.

Spatial distribution of distortions stemming from GB
regions was determined by Stukowski er a/!® in an
MD-simulated Pd crystal. We have shown that it
follows the Wilkens strain function®! typical for strain
distributions produced by dislocations. The faster, 1/x*
type strain distribution, typical for random displace-
ment of atoms, is not supported by the experimental or
MD simulation evidences.

Assuming that grain boundary structures in nanocrys-
talline and coarse grain materials are very similar, a
schematic model is suggested for the dislocation density
as a function of grain size. We suggest that the
dislocation density in the GB regions is almost like a
material constant depending mostly on the misorienta-
tion and structure of GBs. The model shows, on the one
hand, that when the grain size is smaller than about
20 nm and the grain interior regions become more-or-
less free from dislocations the average dislocation
density in the crystal can still be substantially large. At
these small grain size values, the volume fraction of GBs
becomes significant and the dislocation density in GBs
becomes dominant in the entire crystal. On the other
hand, even in coarse grain polycrystals, the GB regions
do consist of substantial dislocation densities playing an
important role in the plastic deformation of materials.
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