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Michael Kellnera,b,∗, Johannes Hötzera,b, Ephraim Schoofa, Britta Nestlera,b

aInstitute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Straße
am Forum 7, 76131 Karlsruhe, Germany

bInstitute of Digital Materials Science, Karlsruhe University of Applied Sciences,
Moltkestrasse 30, 76133 Karlsruhe, Germany

Abstract

The formation of two-phase eutectic colonies is often observed in microstruc-

tures of directionally solidified ternary alloys. Their formation is driven by

microscopic instabilities in a macroscopic planar solidification front, due to im-

purities of the minor component, diffusing from the two solidifying phases into

the liquid. The growth conditions for eutectic colonies, their interactions and

their responses to the microstructure during growth are the focus of the current

work. Therefore, phase-field simulations based on a grand potential formal-

ism are performed for the high-performance material NiAl-34Cr. To enable the

evolution of eutectic colonies in two-dimensional simulations, a concentration-

driven nucleation mechanism is introduced into a multiphase-field framework

and is subsequently validated. With this mechanism, two-dimensional large-

scale phase-field simulations are conducted to study the influence of the applied

temperature gradient on the evolving colonies. The patterns are quantitatively

analyzed by measuring their number, size and height. Furthermore, the ad-

justment processes between the eutectic colonies during the directional solidi-

fication are investigated. The results demonstrate the ability of the presented

phase-field approach with integrated nucleation mechanism for the formation of

eutectic colonies in two-dimensional simulations.
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1. Introduction

During the directional solidification of eutectic multicomponent alloys, eu-

tectic colonies can evolve in the microstructure under certain conditions of the

composition and temperature. Due to the different compositions of the solid-

ifying phases, a concentration accumulation of some alloy components can be5

observed in the melt ahead of the solidifying phases. Depending on the growth

velocity, the temperature gradient and the composition, the impurities form dif-

ferently strong accumulations ahead of the solid phases. An increasing amount

of impurities can lead to an instability of the planar solidification front, breaking

up into cells/colonies [1, 2]. This impurity-driven Mullins-Sekerka instability [3–10

6], in which parts of the front are preferred to grow, can lead to the formation

of eutectic colonies. Thereby, the eutectic fibers and lamellae do not only evolve

along the direction of the temperature gradient, but also tilted to the growth

direction. Due to the tilting, a curved solidification front forms and the lamellar

spacing spreads. This can lead to the formation of new lamellae, to establish15

a reduced spacing, following the Jackson-Hunt criterion [7]. Hence, a eutectic

colony consists of multiple eutectic fibers or lamellae, which can be several times

smaller than the colony itself.

Raj and Locci [8] investigated experimentally the size of colonies depending

on the growth rate for the system Ni-Al-Cr-Mo. For increasing velocities, more20

colonies with similar sizes are found, whereas the size distribution of the colonies

is larger and fewer colonies are found for lower velocities. Further experimental

works for the systems MnSb-(Sb,Bi) and MnSb-(Sb,Sn) are presented in [9] as

well as for the system Al-Ag-Cu in [10].

A theory for the growth behavior of eutectic colonies, also known as two-25

phase eutectic cells, is proposed by Himemiya [11]. With this model, cellular-

eutectic and dendritic-eutectic growth can be distinguished and a phase selection
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map can be derived along the eutectic groove. In their pioneer theoretical

work [12] from 1999, Plapp and Karma describe the initial stages of eutectic

colony formation. Therefore, they use a linear stability analysis of the thin30

lamellar eutectic interface in the presence of a ternary impurity.

In 2002, they continued their work [12] by comparing their theory with 2D

large-scale simulations of Al-Ag-Cu, using an isotropic phase-field model [13].

Lahiri and Choudhury [14] extended this model [13] to consider the anisotropy

of the solid-solid and solid-liquid interfaces. Thus, the effect of the growth35

fronts in multiphase alloys is studied. In their work, the system evolves to a

fixed colony spacing, which is not observed for isotropic systems. Further stud-

ies with the phase-field method and stability analysis were conducted by Lan

and co-workers [15–18], who classified different shapes of the formations, de-

pending on the growth velocity and the cell spacing. A special arrangement of40

eutectic colonies are spiral dendrites, which are investigated simulatively with

the phase-field method by Pusztai et al. [19]. Besides the visual accordance

between the experimental results and the simulations, a scaling of the tip radius

with the interface free energy and the kinetic anisotropy is found. The influence

of the surface energy anisotropies on the formation of two-phase spiral dendrites45

is further examined by Ratkai et al. in [20]. They conclude that an observation

of this type of formation without anisotropy is unlikely, in contrast to the ex-

pectations of Akamatsu et al. [21, 22]. A summary of the work in the field of

eutectic colonies is provided in [23].

The focus of this work is to numerically investigate the evolution of eutectic50

colonies with the phase-field method, depending on the applied temperature

gradient. To resolve the different scales between the eutectic and the colony

structure simultaneously in one simulation, large simulation domains with a

high resolution are required. To reduce the required computational effort, only

two-dimensional large-scale simulations are conducted. Therefore, the grand po-55

tential model of Hötzer et al. [24], which has proven to be suitable for efficiently

performing large-scale simulations, serves as a starting point. For the evolution

of a eutectic colony, the occurrence of new lamellae is needed. The formation of
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new lamellae is generally driven by splitting or nucleation events of the phases.

As shown in [25], the adjustment of eutectic microstructures is mainly driven by60

splitting and merging events. In two-dimensional simulations, however, a split-

ting event can only occur in conjunction with a nucleation event. To enable the

investigation of eutectic colonies in 2D, the aforementioned model is extended

by a kinetically consistent concentration-driven nucleation mechanism.

Modeling nucleation, however, is one of the main challenges in phase-field65

approaches [26]. Especially in a multiphase-field framework, where only the

active phase-fields are updated, special treatments have to be incorporated to

trigger nucleation. In general, this can be done by an explicit nucleation method

where nuclei are set according to a seed density model [27] or by applying a

noise to the phase-fields, as it is done in [28], for example. The second one70

is especially appropriate for highly unstable systems, i.e., for conditions where

a small perturbation from the metastable state results in a nucleation of the

thermodynamically more stable phase. Therefore, the second approach is used

in this work. Nestler and Wheeler [29] investigated the adjustment of a eutectic

lamellar spacing in an unstable regime, as an effect of the spontaneous nucleation75

of solids in liquid. An overview of the works studying nucleation mechanisms

with the phase-field method is given in [30].

To ensure the thermodynamic consistence of the simulations, the ternary

system Ni-Al-Cr is used for the investigations. The directionally solidified eutec-

tic alloy NiAl-34Cr possesses promising properties for structural applications at80

high temperatures, such as an increased creep resistance, compared to the inter-

metallic NiAl, while keeping the excellent oxidation behavior of the binary com-

pound. With its high melting point (Tm = 1911 K), its low density (5.95 g/cm3),

its high thermal conductivity (> 70 W/K m) and its excellent oxidation resistance,

NiAl is of particular interest for technical applications at elevated temperatures,85

such as turbine blades in jet engines or stationary gas turbines [31, 32]. Apart

from these advantages, NiAl possesses a low fracture toughness and ductility at

room temperature as well as insufficient strength at high temperatures and a

poor creep resistance [33]. One possible way to overcome these disadvantages

4



is to introduce a second reinforcing phase, through the addition of refractory90

metals (e.g. Cr, Mo and W) [34] and through the subsequent directional solid-

ification of the resulting quasi-binary eutectics. The ternary system Ni-Al-Cr

contains a binary eutectic reaction at 34 at.% Cr, 33 at.% Ni and 33 at.% Al,

between the liquid and the two solid phases NiAl (ordered B2) and Cr (disor-

dered A2) [35, 36]. A quantitative comparison between experimental samples95

and large-scale phase-field simulations of the system NiAl-34Cr for different so-

lidification velocities is reported in [37]. During the directional solidification,

Cr–rich fibers grow in a hexagonal arrangement, embedded in a NiAl–matrix.

The influence of changing solidification velocities on the adjustment processes

of the fibers into a hexagonal arrangement is investigated in [38]. Depending on100

the process conditions and the melt composition, differently strong amounts of

impurity-driven Mullins-Sekerka instabilities can be observed, which can result

in the formation of eutectic colonies.

In the following, the basic phase-field model, the extended nucleation mech-

anism and the used simulation setup is presented. Subsequently, the nucleation105

mechanism is adjusted and validated. Based on this, two-dimensional large-

scale simulations are conduced to investigate the influence of the temperature

gradient on the colony shapes and sizes. In addition, the interactions between

colonies during their evolution are studied. Finally, the results are summarized

and discussed.110

2. Method

For the investigation of the two-phase eutectic reaction Liquid ⇆ B2NiAl +
A2Cr in the ternary system Ni-Al-Cr, a thermodynamically consistent phase-field

model based on a grand potential functional is used [24, 39, 40]. The N = 3

phases are represented by the order parameters φα̂ and describe the local phase

fractions. The K = 3 chemical potential vectors µ are derived from the mass

balance of the concentrations and from Fick’s law. The coupling of the N phase-

fields, the K chemical potentials and the imprinted temperature T , results in
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the following set of evolution equations:

τε
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∂T

∂t
= ∂

∂t
(T0 +G(x − vGt)) = −GvG. (3)

The parameter τ in (1) is introduced to relate the different timescales of the

evolution equations. The shape of the diffuse interface between the phases is

modeled by the gradient energy term a(φ,∇φ), the obstacle potential term ω(φ)
and the parameter ε, which controls the interface width. The driving force for

the phase transition is described by the difference of the grand potentials, which

are modeled in the term ψ(φ,µ, T ). The grand potentials are calculated from

the Gibbs energies g of the obtained N = 3 phases. The Gibbs energies are

incorporated from the thermodynamic Calphad database of Peng et al. [41],

to ensure the thermodynamic consistency of the model. To reduce the compu-

tational effort, the thermodynamic data is fitted by a parabolic approach of the

form:

gα̂(c, T ) = ⟨c,Ξα̂(T )c⟩ + ⟨c,ξα̂(T )⟩ +Xα̂(T ), (4)

with the matrix Ξα̂(T ), the vector ξα̂(T ), the scalar Xα̂(T ) and the scalar

product ⟨⋅, ⋅⟩ [37, 42]. The approximated Gibbs energy function (4) depends on

the concentration vector c and the temperature T . The last part of (1) is the

Lagrange multiplier Λ, with Ñ as the number of locally active phases. The mul-115

tiplier is introduced to fulfill the constraint ∑Nα̂=1 ∂φα̂/∂t = 0 [43]. The evolution

equation of the chemical potentials is given in (2), with the mobility term M ,
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the anti-trapping current Jat [40, 44, 45] and the interpolation function hα [46].

Following the initially imprinted temperature function (3), with the base tem-

perature T0, the temperature T evolves in the growth direction x depending on120

the gradient G and the velocity vG. The partial differential equations (1) to (3)

are spatially discretized with finite differences and the temporal evolution is cal-

culated with a forward Euler scheme [47]. These numerical solution schemes are

implemented into the massively parallel multiphysics framework Pace3D [48].

A more detailed description of the general phase-field model is presented in [24].125

For a simultaneous resolution of the fibrous structure of the eutectic NiAl-

34Cr and the multiple times larger structures of the eutectic colonies in one

simulation, large solidification fronts with a high resolution are needed. As

the formation of colonies is an instability-driven process, long simulation runs

with multiple million iteration steps are necessary as well. Therefore, large-130

scale 2D simulations are performed to investigate colony formation and colony

interplay. To resolve similar structures in representative three-dimensional vol-

ume elements, more than 108 CPUh would be required in relation to the used

parameters, described in AppendixA.

For the evolution of new rods, which is required to ensure a stable growth of

curved solidification fronts with multiple phases in 2D phase-field simulations,

the possibility of solid phase nucleation has to be given. Following the approach

from Schoof et al. [28], which showed successful nucleation for martensitic phase

transformation in the context of a comparable multiphase-field evolution equa-

tion, the presented model is extended by a nucleation mechanism. To introduce

new nuclei into the simulations, a noise term ζα is added to the phase-field

evolution equation. The term has the form

ζα =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ndist ⋅A ∀φβφl > 0, tstep mod i = 0

0, else
(5)

and is used in the solid-liquid interface to enable the evolution of new rods.135

The generally uniform distribution of the noise is given by the function ndist.

The parameter A describes the amplitude, φl is the value of the order param-
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eter for the liquid phase, tstep describes the time step of the simulation and i

is the interval at which the noise term interferes. The nucleation mechanism

fulfills the conditions ∑α φα = 1 and cnew = cold for each cell of the simulation140

domain. However, due to the nucleation of a new phase, the chemical potentials

in the considered cells have to change to ensure a thermodynamic consistence.

Hence µnew is not equal to µold. With each nucleation iteration, multiple nuclei

are randomly set into the solid-liquid interface. As a modification to [28], only

favorable regions of the interface in which a set nucleus can grow and form a145

new stable phase, are chosen for the nucleation. Based on experimental obser-

vations [1, 2], the magnitude of the concentration accumulations ahead of the

solidification front is used as criterion for a favorable region.

In each nucleation step, the concentrations in the interface between the solids

and the liquid are determined to identify the deviation of the evolved concentra-150

tions from the equilibrium state. If the concentration of a cell in the interface

exceeds a predefined limit, the nucleation mechanism is implementing the noise

function into the cell. As the concentration of one cell does not differ strongly

from the concentration of the surrounding cells, spatial compact areas are in-

fluenced by the noise function, leading to stable nuclei with a clear bulk region.155

In Fig. 1, the concentration limits climits for the nucleation mechanism in

NiAl-34Cr are schematically depicted. The colored triangles and the square sym-

bol respectively indicate the equilibrium concentrations of the two solid phases

and the liquid. The concentration deviations in front of the two solid phases

are marked with correspondingly colored circles, along the lever arms, from160

the liquid equilibrium concentration to the solids. The concentration limits are

marked by red lines and are determined from the deviations of the accumulated

concentrations cder in fraction of the referring lever arm. For a better visual-

ization, an unnaturally enlarged deviation of 20 % (cder = 0.2) is used in Fig. 1.

165
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Figure 1: Liquidus projection of Ni-Al-Cr from Peng et al. [41] (green lines), with equilibrium

concentrations of the solids (triangles) and liquid (square), lever arms (black lines), concen-

trations ahead of the solidifying phases (circles) and concentration limits (red lines) for a

deviation of 1/5, to adjust the nucleation mechanism.

3. Setup

To investigate the evolution of eutectic colonies, the material system NiAl-

34Cr is used. The chosen material and numerical parameters for the simulations

are collected in Table A.4 and Table A.5, respectively. In this work, the same

approximated thermodynamic energies as in [37] are used. The parameters are170

formulated in the notation presented in (4) and are summarized in Table A.6

in AppendixA. The setup used for the simulations is illustrated in Fig. 2. Sim-

ilar to [49, 50], an infinite domain, perpendicular to the solidification front, is

modeled by periodic boundary conditions. At the liquid end of the domain, a

constant flux of melt into the domain is realized by the Dirichlet boundary condi-175

tion. For the starting conditions, initially defined settings of lamellae pairs (lp),

representing the phase fractions of the solid phases and labeled with Setting 1-6,

are applied at the bottom of the domain (x ≤ 20 voxel cells). The simulations of
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the two-dimensional eutectic colony formation are performed with an initial set-

ting of random seeds, using a Voronoi tessellation, as schematically illustrated180

with Setting V in Fig. 2. From the initial settings, the solid phases evolve in

x-direction, with the velocity vF. The growth direction and the velocity are

controlled by the analytic temperature profile described in eq. (3) and shown in

the lower part of Fig. 2.

Figure 2: Applied two-dimensional simulation setups for the directional solidification of NiAl-

34Cr.

For the validation of the nucleation mechanism, several simulations in differ-185

ent domain sizes are conducted for up to 10 million time steps (TS). While all

simulations have the same height of 400 voxel cells in x-direction, the width of

the domains in y-direction is varied from 36 up to 284 voxel cells. The large-scale

simulations for the investigation of the eutectic colony formation are conducted
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in a simulation domain of 1 500 × 10 000 voxel cells. Due to the use of a moving190

window technique [48, 51], the finally resulting structures reach after 20 million

time steps a size of 25 000 × 10 000 voxel cells.

4. Results

For the two-dimensional simulation of eutectic colonies, the parameters of

the presented nucleation mechansim have to be adjusted to calibrate the growth195

conditions in the simulations. Therefore, a comparison between simulations with

and without nucleation mechanism is conducted. The comparison is based on

the relation of the undercooling ∆T , the growth velocity v and the spacing λ,

as derived in [7], by Jackson and Hunt, for binary eutectic systems. Based on

these calibrations, large-scale simulations are subsequently performed in 2D, to200

investigate the influence of the applied temperature gradients on the formation

of eutectic colonies.

4.1. Validation of the nucleation mechanism

The aim of the parameter calibration is an autonomous adjustment of the

lamellar spacing in the vicinity of λext during the directional solidification of a205

two-phase eutectic system in two-dimensional simulations. The spacing λext is

related to the spacing with the maximum growth velocity for isothermal solidifi-

cation and to the spacing of minimum undercooling for solidifications with tem-

perature gradient [52]. Once the simulation has reached the vicinity of λext, the

nucleation mechanism should not affect the relation between the undercooling210

∆T , the growth velocity v and the spacing λ, as it is given by the corresponding

simulations without nucleation mechanism. Therefore, a parameter set for the

amplitude A and the intervention interval i from (5) as well as the limit for

the concentration deviation cder is derived for the system NiAl-34Cr, in order to

fulfill these constraints.215

Derivation of the nucleation parameters. To adjust the limits for the concen-

tration deviation, two simulation studies without the nucleation mechanism are
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performed, using the initial Settings 1 and 2 from Fig. 2. The simulations are

conducted with an isothermal temperature of (T4 = 0.993 ⋅ Teut), to determine

the spacing. For Setting 1, containing one pair of lamellae lp, the domain width220

y is varied from 36 to 126 cells and for Setting 2, containing two lp, the domain

width y is varied from 72 to 144 cells. In all conducted simulations, the initial

number of lamellae stays constant. For the two settings, the relation between

the growth rate and the width of the simulation domain y is plotted in Fig. 3.

For the simulations with one pair of lamellae, λext is found at 40 cells and for225

the simulations with two pairs of lamellae λext is subsequent found at 80 cells.

For a domain width y of 72 ≤ y ≤ 96 cells, both settings lead to a stable

growth without a change in the number of lamellae pairs. In this range, the

growth velocity of the simulations with two lp is more than 12 % higher than

for the simulations with one lp. In the simulations starting from Setting 1,230

small oscillations of the phase widths occur in this range. Both observations

indicate that the setting with two lamellae pairs leads to a higher stability of

the growth for these domain widths. This assumption is also in accordance with

the theory of Jackson and Hunt [7]. In a 2D simulation with only one pair of

lamellae, the nucleation of a new phase would consequently result in a more235

stable lamellar spacing. To adjust the limits for the concentration deviation

cder of the nucleation mechanism, the concentration accumulations ahead of the

solid phases are analyzed in the simulation with one lp and the domain width of

80 cells. In the lower part of Fig. 3 the averaged accumulations of Al, Cr and Ni

in areas ahead of the solidification fronts are shown for the analyzed simulation.240

From this, the limits of the deviations are extracted, which are required for

the intervention of the nucleation mechanism. The derived limits are summa-

rized in Table 1. The maximum deviation of cder in fraction of the referring

lever arm is 9.8 % for the accumulation of Ni in front of the Cr-rich phase A2.

To also enable a nucleation for domain widths, in which smaller amounts of245

accumulations form, the deviation limit is set to 8.5 % in the following.

The parameters for the magnitude A of the noise function and its interven-

tion interval i are derived on the basis of simulations with these concentration
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Figure 3: Plot of the velocity-spacing relationship for simulations with one and two set lamellae

pairs. Violet crosses mark simulations with stable and straight growth, whereas simulations

with oscillations are marked with blue circles. The red triangles indicate simulations in which

one phase has been overgrown by the other. Below, concentration accumulations of Al, Cr

and Ni ahead of the solidification front of a two-dimensional simulation of NiAl-34Cr using

Setting 1 in a domain of 400 × 80 cells (green square in plot above) are shown.
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Table 1: Summary of accumulations in front of the solidification front and derived concentra-

tion limits for the nucleation mechanism.

Al Cr Ni

concentration in front of A2Cr 0.329 0.331 0.340

cder in front of A2Cr 3.4 % 4.2 % 9.8 %

concentration in front of B2NiAl 0.318 0.355 0.327

cder in front of B2NiAl 7.5 % 3.1 % 0.1 %

max climit for cder = 8.5 % 0.344 0.317 0.338

min climit for cder = 8.5 % 0.315 0.381 0.303

limits. These parameters are influenced by each other, as depending on the

height of the magnitude the diffusion in the system requires more iteration steps250

to reduce the noise implemented disturbance. Too strong magnitudes and too

high rates lead to an unphysical escalation of the nucleation process, whereas,

too small values result in an unproductive mechanism. A promising combina-

tion of magnitude and interval is found for A = 4 and i = 3000. The following

studies, based on the theory of Jackson and Hunt, are performed with these255

parameters.

Fig. 4 shows an exemplary simulation with the nucleation mechanism. Each

of the five intermediate states (a) to (e) shows the concentration field of Ni

with an adjusted color bar, to highlight the accumulations. Several nucleation

events of the NiAl-phase occur in the simulation. This leads to a competition260

between the rods, resulting in overgrowing and merging events. During growth,

all microstructure events of nucleation, splitting, merging and overgrowing can

be observed in this simulation, as defined in [25]. Due to the nucleation of new

rods, the accumulations in the vicinity of the solidification front reduce from

(a) to (e). After the adjustment, the accumulations are less than the applied265

concentration deviation criterion cder and a stable growth of four rods occurs

(cf. (d) and (e)).
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Figure 4: Illustration of a nucleation process for a two-dimensional simulation of NiAl-34Cr,

in a domain of 400 × 180 cells, over five different time steps, labeled with (a) to (e). Starting

from Setting 1 multiple spliting, nucleation, merging and overgrowing events lead to a stable

growth of four lamellae pairs.

Jackson-Hunt studies with nucleation. To ensure that the evolving microstruc-

ture with nucleating rods is growing in the expected relationship between growth

velocity, undercooling and spacing, two different simulation studies are con-270

ducted. In the first study, the velocity-spacing relationship is investigated for

isothermal simulations Siso with a temperature gradient G of zero and a tem-

perature T iso
sim of 0.993, which corresponds to 1703 K. The temperature T iso

sim is

non-dimensionalized with the eutectic temperature Teut of 1715.08 K and repre-

sents 99.3 % of Teut. In the second study, the undercooling-spacing relationship275

for the simulations S∇T with the temperature gradient G = 400 K/mm and a con-

stant gradient velocity vG is analyzed. The velocity vG is chosen similar to the

solidification velocity of the isothermal simulations.

In both studies, simulations with and without the nucleation mechanism

are performed, using different domain sizes. In addition to the tags ◻iso and280

◻∇T in the superscript for the temperature gradients, the tags ◻+ and ◻− are

introduced to indicate simulations with and without the nucleation mechanism.
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The simulations Siso,− and S∇T,− are conducted as reference, using the initial

start Settings 1 to 6 with different numbers of preset lamellae pairs, as illustrated

in Fig. 2. All simulations with the nucleation mechanism start from Setting 1285

with only one preset lamellae pair in the domain. For the velocity-spacing

relationship, the results of the simulation studies are shown in Fig. 5(a) and

for the undercooling-spacing relationship in Fig. 5(b). In all diagrams, the

simulations Siso,− and S∇T,− are plotted with lines, while the simulations Siso,+

and S∇T,+ are plotted with different marks. The indices in the subscripts of the290

simulation labels, as well as the different marks, represent the final number of

evolving lp after 10 million time steps.

As expected, the simulations without the nucleation mechanism show re-

peating sequences in both studies with extreme points at constant distances

from each other. In Fig. 5(a) and in Fig. 5(b), all extreme points reach the295

same values for the velocity and the undercooling, respectively. Depending on

the number of evolving lamellae pairs, the positions of the extreme points are lo-

cated at an integer multiple of λext. In the vicinity of λext and 2 ⋅λext, the results

of the simulations with the nucleation mechanism are in good accordance with

the results of the reference simulations without nucleation. With an increasing300

distance from the extreme points, the reached velocities as well as undercoolings

start to differ from the reference simulations. In these regions, the nucleation

mechanism is already active, but it is either not strong enough or the conditions

in the simulation are not benefiting enough for a successful nucleation. With

a further increase of the domain width, the conditions become more favorable,305

until a new phase nucleates. After a stable phase has evolved, the values of the

velocity and of the undercooling match with the reference curves for the next

higher number of lamellae pairs.

In Fig. 5(b), simulations with the temperature gradient S∇T,+ already show

successful nucleations for smaller domain sizes, in contrast to the isothermal310

simulations Siso,+ in Fig. 5(a). For domain widths larger than 3 ⋅ λext, the

number of evolving lamellae pairs is fluctuating. As shown in the plots, multiple

settings of lamellae pairs can grow in a steady state for the same domain size. If a
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Figure 5: Comparison of the velocity-spacing relationship for isothermal simulations Siso in

(a) and the undercooling-spacing relationship for temperature-dependent simulations S∇T in

(b) with + and without − the nucleation mechanism referred to the simulation domain. In (c)

and (d), the relationships are referred to the the evolving lamellar spacing, respectively.
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stable growth has established for a simulation with the nucleation mechanism,

the predefined conditions of the nucleation are no longer suitable to evolve315

additional pairs of lamellae. This can lead in larger simulations to fewer pairs

of lamellae, compared to the corresponding reference simulations. Apart from

the domain size, the number of finally evolving lamellae pairs depend on the

growth history.

By referring the results from Fig. 5(a) and (b) to the finally evolving lamellar320

spacing, the velocity-spacing relationship and the undercooling-spacing relation-

ship are replotted in Fig. 5(c) and (d), respectively. In a range from 0.9 ⋅ λext

to 1.34 ⋅λext, the simulations with the nucleation mechanism are in good accor-

dance with the reference simulations. For evolved structures with larger lamellar

spacings, a deviation between the simulations with and without nucleation is325

observed. As discussed before, the criterion for nucleation is already fulfilled in

these simulations and hence, the nucleus is not able to evolve. The maximum

deviation for both, velocity and undercooling, is less than 2 % referred to the

reference simulations.

4.2. Investigation of eutectic colony formation330

Based on the validated parameters for the nucleation mechanism, the growth

of eutectic colonies is investigated in two-dimensional phase-field simulations

in the following. To ensure a free growth of the microstructure, large-scale

two-dimensional domains of 1 500 × 10 000 cells are used. All simulations were

conducted on the SuperMUC system [53] on 1 200 cores for ∼ 100 h, to perform335

20 million time steps. The finally evolved microstructure is shown in Fig. 6,

using the parameters from the previous validation.

The complete microstructure is shown in the middle of the image, surrounded

by enlargements of selected features labeled with (a) to (e), to illustrate differ-

ent effects during the evolution process. In Fig. 6(e) the formation of lamellae340

from the initial Voronoi tessellation of Setting V is shown. Due to the used

parameter set from the Jackson-Hunt analysis, most of these lamellae evolve in

a straight growth, with an average lamellar spacing of 49.2 cells. This corre-
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sponds to a ∼ 19 % larger lamellar spacing, compared to λext from the simula-

tions with small domain sizes. The spacings of the lamellae pairs vary in a range345

from 30 to 60 cells. Due to this variation of the lamellar spacing in the large-

scale simulation and the concentration accumulation ahead of the solidification

front, impurity-driven Mullins-Sekerka instabilities occur. These instabilities

result in several microstructure adjustments of the lamellae during the growth.

In Fig. 6(c) and (d), all microstructure events of nucleation, splitting, merging350

and overgrowing can be observed. In contrast to the previously shown sim-

ulations in the small domains, mostly the Cr-rich fiber phase is nucleating in

large domains during the microstructure evolution. In Fig. 6(b), a competition

between two evolving lamellar structures is depicted. Many competition areas

can be found in Fig. 6(a), showing the solidification front after 20 million time355

steps. The structures between these areas form one eutectic colony.

For a better investigation of the colony formation and interaction, the num-

ber of colonies in one simulation has to be increased. Therefore, either the

domain size needs to be increased or the instabilities have to be enhanced. To

keep the computational effort in a reasonable range, the colony formation is360

promoted by decreasing the intervention interval i and the concentration devi-

ation cder to 1 000 and 4 %, respectively. As a result, the growth velocity of the

isothermal simulation is increased by 7.0 %.

To systematically investigate the colony formation for comparable structures,

2D large-scale simulations with different temperature gradients are performed,365

as given in Table 2, together with their physical expressions.

Table 2: Summary of the applied temperature gradients together with their physical units.

∇T

G0 G20 G40 G100 G400

Tsim/cells 0 1.76 ⋅ 10−7 3.51 ⋅ 10−7 8.78 ⋅ 10−7 3.51 ⋅ 10−6

K/mm 0 20 40 100 400

In Fig. 7, the solidification fronts from the simulations with different applied
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(a)

(b)

(c)

(d)

(e)

Figure 6: Resulting microstructure of an isothermal 2D large-scale simulation of NiAl-34Cr,

surrounded by enlargements of the selected features labeled with (a) to (e). For the nucle-

ation mechanism, an amplitude A of 4, an intervention interval i of 3000 and a limit for the

concentration deviation cder of 8.5 % is used.

20



Table 3: Analysis of colony widths, heights and lamellar spacings after 20 million time steps

depending on the applied nucleation parameters and temperature gradients.

i cder[%] ∇T [K/mm] λrods [cells] λcolony [cells] hcolony [cells]

3000 8.5 0 49.2 ± 19.2 3333 ± 1074 72.5 ± 65

1000 4 0 47.5 ± 20.9 1667 ± 1358 224.2 ± 190

1000 4 20 47.8 ± 39.5 1667 ± 653 218.2 ± 108

1000 4 40 45.1 ± 25.2 1667 ± 716 203.8 ± 99

1000 4 100 46.5 ± 25.2 1667 ± 821 169.6 ± 68

1000 4 400 44.4 ± 25.8 1667 ± 1002 51.7 ± 23

temperature gradients are shown after 20 million time steps. For all simulations,

the solidification velocities converge to a similar value, as depicted in the velocity

plot in the lower part of the figure. In contrast to the simulation shown in Fig. 6,370

multiple well-pronounced colonies with convex solidification fronts evolve for the

simulations with modified parameters. In general, the rods in the middle of a

colony mainly show straight growth. In the vicinity of the contact areas between

two colonies, the rod growth is no longer directed in the direction of the applied

temperature gradient, which results in a curved growth with multiple splitting375

and nucleation events. As expected, the height difference at the solidification

front decreases with an increasing temperature gradient. However, independent

from the temperature gradient, all solidification fronts consist of six colonies

after simulating 20 million time steps. For the temperature gradient of zero, it

can be assumed that the smallest colony is overgrown by further solidification.380

Quantitative analyzes of the visually described trends for the colony widths

λcolony, the heights hcolony and the rod spacing λrod are compiled in Table 3.

As an example, the simulation with an applied temperature gradient of

20 K/mm is discussed in more detail. The fully evolved microstructure after

20 million time steps as well as enlargements of the selected microstructure fea-385

tures of this simulation are shown in Fig. 8. For the other simulations, similar
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Figure 7: Comparison of solidification fronts after 20 million time steps for the simulations

with different temperature gradients. The diagram displays the corresponding velocity profiles

over the simulation time.
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illustrations are depicted in the Figs. B.10 to B.13 in AppendixB. In Fig. 8(a),

the evolved solidification front with multiple colonies is highlighted, while in

(b) the straight growth of a colony is shown. Similar to the adjustments of the

rods in classical eutectic solidification [25], microstructure events can be found390

during the evolution of eutectic colonies. In Fig. 8(c), the overgrowth of two

colonies is depicted. In contrast to the events of rods, an overgrowth of a colony

in 2D is not combined with a merging event. The overgrowing colonies are just

forming a new contact area, instead of combining to one colony. The formation

of a new colony is indicated in Fig. 8(d).395

(a)

(b)

(c)

(d)

Figure 8: Resulting microstructure of a 2D large-scale simulation of NiAl-34Cr with an applied

temperature gradient of 20 K/mm, surrounded by the enlargements of selected features, which

are labeled with (a) to (d). For the nucleation mechanism, an amplitude A of 4, an intervention

interval i of 1 000 and a limit of 4 %, for the concentration deviation cder, is used.
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To highlight the formation process in more detail, the evolution of the mi-

crostructure in the enlarged section of Fig. 8(d) is shown in Fig. 9 for six different

time steps, labeled with (a) to (f). On both sides of this section, one colony

is overgrown during the first two time steps, shown in (a) and (b). Hence, the

width of the colony in the center is increasing. During the enlargement of this400

colony, a concave shape occurs in the middle of the overall convex solidification

front between the time steps depicted in (c) and (d). This behavior is compa-

rable to an enlarged rod before nucleation, as exemplarily shown in Fig. 4. For

the whole colony, a kind of double peak profile establishes. In contrast to the

2D formation of new rods, a new contact area between colonies is forming in405

the middle of the double peak profile, instead of a nucleation event. This leads

to a division of the original colony into two colonies.

The division of colonies is observed in all simulations with a temperature

gradient between 0 and 40 K/mm. The sizes of the colonies, at which the devision

occurs, is decreasing with increasing temperature gradients. In the isothermal410

simulation, the division occurs at a colony spacing of ∼ 3 228 cells, whereas in

the simulation with a temperature gradient of 20 and 40 K/mm it occurs at a

spacing of ∼ 2 624 and ∼ 2 092 cells, respectively. All divisions occur at a height-

to-length ratio of 0.115, which is ∼ 10 % smaller than the average ratio in the

simulations.415

Depending on the material system and the process conditions, different mor-

phologies of the colonies are reported from experiments and simulations [8–

10, 13, 54]. The presented colonies in this work are composed of multiple lamel-

lae pairs, which is in contrast to the colonies presented in the experimental work

of Hecht et al. [10] and in the simulative works of Plapp and Karma [13], as well420

as of Lahiri et al. [54]. In the presented simulations, no penetration of the liquid

phase between the colonies is observed. The number of rods in the presented

colonies is comparable to reported experimental results of Raj and Locci for

the related system Ni-Al-Cr-Mo in [8] and of Durand-Charre and Durand for the

systems MnSb-(Sb,Bi) and MnSb-(Sb,Sn) in [9].425

Based on the good qualitative accordance of the presented simulations, the
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(a) t=14 · 106 time steps (b) t=15 · 106 time steps (c) t=16 · 106 time steps

(d) t=17 · 106 time steps (e) t=18 · 106 time steps (f) t=19 · 106 time steps

Figure 9: Transformation process from one to two colonies over six different time steps (a) to

(f).

25



used phase-field and material models are suitable for the investigation of eutectic

colony formations. For a further validation of the models, more studies with

different process conditions as well as a comparison with experimental results

are required.430

5. Conclusion

The aim of this work is to investigate the formation process of multiple eutec-

tic colonies in two dimensional phase-field simulations. Therefore, a concentration-

driven nucleation mechanism is derived in the context of a multiphase-field

framework, to ensure a free growth of multiple lamellae pairs. The nucleation435

mechanism is adjusted and validated by comparing simulations with and with-

out a nucleation mechanism with the theory of Jackson and Hunt for lamellar

growth. On this basis, the formation of eutectic colonies and their interac-

tion are investigated in two-dimensional large-scale phase-field simulations de-

pending on the applied temperature gradient. From the simulation results, the440

following observations and conclusions are made:

(i) For simulations with and without the nucleation mechanism, a good ac-

cordance is found in the vicinity of λext for the velocity-spacing as well

as for the undercooling-spacing relationship. Hence, the derived and ad-

justed nucleation method is able to efficiently simulate the formation of445

multiple eutectic colonies in large-scale 2D domains.

(ii) For domain sizes larger than three times λext, several stable settings with

different numbers of lamellae pairs are found. From this, it can be con-

cluded that the final number of evolving lamellae pairs is affected by the

domain size and by the growth history of the microstrudture.450

(iii) In large-scale 2D simulations, the simultaneous formation process of multi-

ple eutectic colonies is observed by applying the derived nucleation method.

(iv) The applied temperature gradients affects the height of the colonies and

the spacing of the rods, but not the number of the evolving colonies.
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(v) Within the colonies, multiple splitting, merging, nucleation and overgrow-455

ing events of the rods occur as a reaction of the concentration accumula-

tions.

(vi) Similar to the evolution of eutectic structures, rearrangement events are

observed for the multiple times larger colonies. An increase of the colony

number is achieved by a division of a large colony into two colonies by460

forming a new contact area. A decrease is achieved through an overgrowth

of a colony by its neighbors.

The effect of velocity variations on the colony formation is of high interest

for future works. Furthermore, due to the computational resources required

to capture the different length scales between the rods and the colonies, the465

formation process in three dimensions remains an open topic.
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AppendixA. Parameter sets for simulations

Table A.4: Summary of material parameters in dimensionless simulation units and their phys-

ical units.

parameter simulation value physical value

D 2.5 1.25 ⋅ 10−9 m2/s

γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

phase A2 B2 `

A2 − γαβ γα`

B2 γβα − γβ`

` γ`α γ`β −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
γαβ , γβα 0.013 2.0 J/m2

γα`, γ`α 0.016 2.5 J/m2

γβ`, γ`β 0.013 2.0 J/m2

γαβδ 0.208

phase fraction of A2, B2 0.3,0.6
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Table A.5: Summary of material parameters in dimensionless simulation units and their phys-

ical units.

parameter simulation value physical value

∆x 1.0 1.5 ⋅ 10−8 m

ε 5.0 7.5 ⋅ 10−8 m

∆t 0.1 4.5 ⋅ 10−8 s

τ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

phase A2 B2 `

A2 − ταβ τα`

B2 τβα − τβ`

` τ`α τ`β −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ταβ ,τβα 0.52705

τα`,τ`α 0.23877 based on [40]

τβ`,τ`β 0.39319
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Table A.6: Fitted thermodynamic energies from the Calphad-database of Peng et al. [41]

written as dimensionless simulation parameters in matrix notation and their values in physical

units. The parameters are similar to the energies used in [37].

phase parameter simulation value physical value

Cr-rich A2 ΞA2

⎡⎢⎢⎢⎢⎢⎣

3.29 1.75

1.75 1.54

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

329282 175062

175062 154856

⎤⎥⎥⎥⎥⎥⎦
J/mol

ξA2

⎡⎢⎢⎢⎢⎢⎣

−3.80

−2.42

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−379838

−242302

⎤⎥⎥⎥⎥⎥⎦
J/mol

XA2 0.03 −3257 J/mol

NiAl-rich B2 ΞB2

⎡⎢⎢⎢⎢⎢⎣

3.88 1.96

1.96 1.90

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

387820 195574

195574 189791

⎤⎥⎥⎥⎥⎥⎦
J/mol

ξB2

⎡⎢⎢⎢⎢⎢⎣

−4.01

−1.50

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−401248

−149767

⎤⎥⎥⎥⎥⎥⎦
J/mol

XB2 −0.48 −48777 J/mol

liquid Ξ`

⎡⎢⎢⎢⎢⎢⎣

1.80 0.82

0.82 0.58

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

180047 82296

82296 57830

⎤⎥⎥⎥⎥⎥⎦
J/mol

ξ`

⎡⎢⎢⎢⎢⎢⎣

−1.81

−0.34

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

181003

34700

⎤⎥⎥⎥⎥⎥⎦
J/mol

X` −0.25 − 0.75 ⋅ T −25133 J/mol − 44.166 ⋅ T J/mol K
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AppendixB. Colony formation depending on the temperature gradi-

ent in NiAl-34Cr480

Similar to the discussed microstructure in Fig. 8, the simulation results for

colonies with the temperature gradients G0, G40, G100 and G400 are shown in

Figs. B.10 to B.13. In (a) the solidification front after 20 million time steps is

enlarged. Depending on the growth history, different features like the straight

evolution of contact areas between two colonies, the overgrowth of a colony and485

the division of one large colony into two smaller ones are highlighted in the

different enlargements (b) to (e) or (b) to (d), respectively.
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(a)

(b)

(c)

(d)

Figure B.10: Resulting microstructure of an isothermal 2D large-scale simulation of NiAl-34Cr

surrounded by enlargements of the selected features labeled with (a) to (d). For the nucleation

mechanism, an amplitude A of 4, an intervention interval i of 1000 and a limit of 4 %, for the

concentration deviation cder, is used.
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(a)

(b)

(c)

(d)

Figure B.11: Resulting microstructure of a 2D large-scale simulation of NiAl-34Cr with an

applied temperature gradient of 40 K/mm surrounded by enlargements of the selected features,

labeled with (a) to (d). For the nucleation mechanism, an amplitude A of 4, an intervention

interval i of 1000 and a limit of 4 %, for the concentration deviation cder, is used.
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(a)

(b)

(c)

(d)

Figure B.12: Resulting microstructure of a 2D large-scale simulation of NiAl-34Cr with an

applied temperature gradient of 100 K/mm surrounded by enlargements of the selected features,

labeled with (a) to (d). For the nucleation mechanism, an amplitude A of 4, an intervention

interval i of 1000 and a limit of 4 %, for the concentration deviation cder, is used.
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(a)

(b)

(c)

(d)

(e)

Figure B.13: Resulting microstructure of a 2D large-scale simulation of NiAl-34Cr with an

applied temperature gradient of 400 K/mm surrounded by enlargements of the selected features,

labeled with (a) to (e). For the nucleation mechanism, an amplitude A of 4, an intervention

interval i of 1000 and a limit of 4 %, for the concentration deviation cder, is used.
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