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1 Introduction

Electric Vehicle (EV) penetration, renewable energies, and customer orienta-
tion of car manufacturers [1] enables synergies between energy supply, vehicle
users, and the mobility sector. However, also new challenges arise [2] which
we target to examine with three types of agents and their perspectives: EV
user, power supplier and car manufacturer. Although many research papers in
the literature describe single perspectives, a threefold contemplation of their
connections as shown in Fig. 1, is still missing. In the following, we briefly
present the single perspectives and respective interactions.

To satisfy their individual needs, vehicle users expect their EVs to be just as re-
liable and convenient to use, as known from combustion engine
cars [3, 4]. However, limited range and longer charging times of EVs compli-
cate individual mobility, manifesting e.g. in range anxiety [2, 5]. For EV users
also the power supply interaction changes, as not only home appliances but
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Figure 1: Interaction triangle of electric vehicle user, power supplier, and car manufacturer.

Electric mobility also poses new issues for car manufacturers: During char-
ging and discharging of EV batteries a degradation (battery aging) occurs [15],
that correlates with a value depreciation of the entire EV. However, EV users’
satisfaction requires reliable and value-stable products, which car manufac-
turers aim to achieve by offering services, such as charging assistants [6].
The provided charging strategies target simplified and sustainable EV usage
by considering individual customer needs and battery aging.
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also mobility requires electric energy. Hence, a convenient and cost-efficient
charging process is hard to achieve without automation technology, when using
an EV on a daily basis [6].

Power suppliers (distribution grid operators, energy retailers) target an effi-
cient and fail-proof grid operation, for which a reliable forecast and control of
electric loads is desired [7, 8]. However, the intermittent nature of renewable
energy production endangers the utility grid through voltage and frequency
fluctuation [9, 10]. The energy demand caused by charging EVs might further
amplify this effect [11]. To avoid these issues, power suppliers may influence
the EV users’ affection to connect their vehicles via dynamic energy prices
[9, 10, 12]. At the same time, multiple EVs connected to the grid—especially
if bi-directional charging is enabled [13]—help power suppliers to level out
imbalances due to renewable energy generation [14].



The remainder of this paper is structured as follows: To identify and develop
missing models of the outlined problem, a general approach is presented in
Section 4. Then, Section 3 describes an online learning framework for data
acquisition, storage and application. In Section 4, we propose two data-driven
consumption models. Finally, Section 5 gives a brief summary and outlook on
future work.

2 Approach

Despite existing model predictive approaches [16, 17] that support EV users
while charging, individualized charging strategies are in general still inade-
quately dealt with in the literature. We target to identify missing models that
quantify perspectives and interactions, for which Fig. 2 shows a schematic map
(the green boxes represent unexplored models requiring further evaluation).
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Figure 2: Schematic map of models to describe perspectives and interactions, Automated charging
algorithm (orange box) comprises missing models (green boxes)
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To automatically create charging plans that satisfy the interests of power sup-
pliers, EV users, and car manufacturers at the same time (cf. Section 1), an
Automated charging algorithm will be required (Fig. 2, orange box). A
Charging behavior model (cf. Section 2.1) could determine Charging Habits
(CH, Fig. 2, green arrow) based on behavioral data of Electric vehicle users.
Thereby, charging plans provided to the EV user can be adapted to individual
requirements. In order to obtain user- and route-specific Estimated Consump-
tion (EC, Fig. 2, blue arrows) for the EV, a data-driven Consumption model
(cf. Section 4) may use driving information of the EV. The EC can also help to
estimate the remaining driving range of the EV. Further, charging plans should
be adapted to be battery preservative by means of a Battery degradation
model (cf. Section 2.2) that provides a Predicted Degradation (PD, Fig. 2, red
arrows) for specific charging strategies. Using the PD, car manufacturers may
also monitor the condition of operating EV batteries. A Dynamic charging
energy map (cf. Section 2.3) could calculate the Aggregated Energy Demand
(AED, Fig. 2, pink arrows) based on charging information of several EVs. The
Power supplier may then make use of the AED for improved load forecast
precision. Together with information about momentary grid load conditions
obtained from Power suppliers, peak shaving and load balancing applications
can be included in the charging plan. An Optimization approach may finally
conclude all the information and calculate a charging plan for the EV user.

2.1 Charging behavior model

The effectiveness of charging strategies depends on user acceptance, which
in turn requires user-specific charging strategies [6]. Therefore, a suitable
characterization of users’ driving and charging behavior is necessary [18].
Existing approaches in the literature distinguish between qualitative and quan-
titative ones. Psychological approaches, e.g. deducted from customer surveys
[19, 2, 20] allow to characterize basic user types. Therein, gamification and
incentivation [2] methods are developed to increase user acceptance. Quanti-
tative approaches aim at predicting driving and charging behavior of EV users,
e.g. to infer energy demand [21, 22, 23, 24]. However, an adequate user
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integration, i.e. individualized charging strategies based on EV users’ charging
habits is not represented.

To attain a more universal characterization of the EV users’ charging behavior,
different user types need to be determined by analyzing behavioral data of the
EV user. Thereby, different user clusters can be identified, for which individual
charging habits can be determined (cf. Fig. 2, left). To clarify the EV users’
objectives, we plan a customer survey in future work. Therein, the basic requi-
rements towards automated charging strategies are inquired from i) customers
using a conventional car, ii) customers about to acquire an EV, iii) customers
just recently started using an EV, and iv) customers already using an EV for a
longer time. Specific questions on the users’ mobility requirements, charging
habits, doubts, and expectations are supposed to reveal further requirements
for individualized charging strategies. Subsequently, a data-driven analysis of
charging processes and EV user information may support these findings and
may allow creating a mathematical model.

2.2 Battery degradation model

The interest of car manufacturers focuses on the depreciation process of the EV
and its key factors. As the battery considerably contributes to the vehicle value
[25], we particularly consider battery degradation. Present-day mobility con-
cepts (e.g. car sharing, leasing) comprise the vehicle battery to remain property
of the manufacturer [26]. Value-stable batteries are thus even more relevant to
operate economically. To quantify battery aging, usually the State of Health1

(SOH) is used [27, 28]. Hitherto SOH models have limited practicability due to
a complex execution [29] or inaccurate State of Charge (SOC) estimations [30].
Data-driven methods, e.g. Bayesian networks and neural networks [31, 32]
hold feasible alternatives for SOH estimation [33]. However, the existing
approaches barely use user-related data, for which reason the influence of
charging behavior on battery aging is not represented properly.

Hence, we target to evaluate the influence of charging strategies on battery
degradation (cf. Fig. 2, center right). By means of a neural network re-

1Ratio of actual usable capacity in relation to the nominal battery capacity
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gression model, we target to estimate the energy consumption for driving (cf.
Section 4), not taking any battery aging influences into account. The model
trained on data from batteries without degradation can be used to estimate
the energy consumption for EVs with aged batteries. A discrepancy between
the estimation and the real consumption indicates a battery aging caused by
increased internal losses. Together with a feature-augmented map, this model
can additionally estimate energy consumption for charging scheduling, that
also considers individual driving styles and environmental conditions. Once
this battery aging estimation is mature, also a dependency on charging influ-
ences could be inferred. A concept validation has to be proceeded with both
simulation and real data.

2.3 Dynamic charging energy map

To match energy usage and generation, power suppliers require information on
the energy demand at a certain time and place, targeting a fault-free delivery
of electric energy. This includes the demand due to charging EVs. Research
papers to model the energy demand caused by charging EVs already exist.
They differentiate among approaches to predict and control the grid condition
[11, 34, 35, 14], and approaches for dimensioning and locating new charging
stations [36, 37]. Stochastic assumptions to describe the EV user behavior are
a major deficiency of these approaches.

By combining information about operating EVs, the behavior of their drivers,
and the associated charging requirements, we target to aggregate the energy
demand caused by charging vehicles and predict vehicles’ anticipated charging
location.2 EVs requiring charging can be consolidated to larger energy de-
mands characterized by a load profile over time and location. Then, an “energy
map” can be created, containing the aggregated energy demand in real time, or
a prediction for future points in time (cf. Fig. 2, right). The required energy
can either be acquired directly from the energy market, or the information can
be passed to power suppliers to handle the predicted load accordingly. For
concept validation, a simulation environment has to be developed.

2The access to EV information subjects to the present data security legislation [38].
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3 Data framework

In the following, we propose a cloud-based framework to acquire, store and
analyze vehicle data, as shown in Fig. 3. A telematic system records selected
Controller Area Network (CAN) signals for a fleet of connected EVs during
driving and charging.

Figure 3: Scheme of framework for data acquisition via a MQTT-broker, storage in several
databases and application of data-driven models or microservices.

Applications, e.g. distributed functions structured in microservices require a
reliable internet connection to provide historical and live data. Existing devices
such as data loggers store data in the car locally. However, data can only be
transmitted infrequently via infrastructure-bound connections (e.g. WLAN or
LAN). A real-time vehicle status can thus not be established and the large
amount of data causes the data transmission to be time-intensive. For this
reason, we use a single-board computer (SBC) equipped with a GPS antenna
and mobile internet connection as a gateway between vehicle and back-end
infrastructure. The SBC initially decodes and filters data with libraries stored
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on its internal memory. Via software packages, the SBC can be updated and
controlled remotely not requiring a physical contact to the SBC. The data
transmission utilizes a Message Queuing Telemetry Transport (MQTT) pro-
tocol following a publish and subscribe mechanism3. A central MQTT broker
(Fig. 3, left) organizes the data distribution. This mechanism also enables
communication into the vehicle. Currently ten EVs provide 370 signals of
interest, which we record with a 10-Hz sampling rate4.

We process and store all collected data according to its structure (Fig. 3,
middle). A relational database stores vehicle data and meta-information. Furt-
her, a document-oriented database allows to store semi-structured signal time
series data efficiently. Additionally, a library database allows transforming
vehicle specific data into a standardized format.

The stored data can subsequently be used to build models or provide stand-
alone microservices with information (Fig. 3, right). Each model or micro-
service can make use of several data sources, or communicate among each
other, respectively. A separate application database contains configurations
and meta-information necessary for the microservice operation. The cloud
structure allows continuity in various aspects. Models can be easily implemen-
ted, changed, monitored and deleted. Software changes can be applied and
deployed continuously. Through a constant availability, the models can be fed
with new data each time it is produced. This allows a continuous development
of the model with a updated data stream. However, a continuous availability
also constitutes a risk in terms of information security [39], that needs to be
handled accordingly. The modular structure allows to create and train several
models in parallel. An Application Database contains all models and their
internal, learned parameters (Fig. 3, right). Via a human machine interface,
the models and their learning progress can be monitored and analyzed. This
allows to supervise the data acquisition, storage, and application. Furthermore,
databases can be examined, microservices and models can be adapted, and
errors can be handled accordingly. The interface also provides feedback to the
vehicle fleet and vehicle users.

3participants can publish information others can subscribe to
4equals data stream of approx. 12 Megabyte per hour and vehicle.
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Table 1: Input signals grouped by driving behavior, battery state and environmental condition

Driving behavior Battery state Environmental cond.

acceleration torque total electric current geodetic altitude
brake torque battery voltage ambient temperature
recuperation torque battery temperature
lateral acceleration
vehicle speed
electric current driving
longitudinal acceleration

4 Data-driven consumption model

Here, we propose a data-driven consumption model as an exemplary applica-
tion of the framework presented in Section 3. Consumption models, as used
in charging scheduling, help to estimate energy demands for routes the user
will drive [40]. However, existing estimators mostly utilize physical models
neglecting influences of the driver and the environment. Such consumption
models yield relative estimation errors between 2.52 % and 8.3 % [41, 42].
A higher model accuracy allows to compute a more reliable and thoroughly
adapted charging strategy. Thus, we aim to design a model estimating the total
consumed energy per driven distance for a given driving behavior, environmen-
tal condition, and battery state. Note, that we use the dimensionless State of
Charge (SOC) as a metric for the consumed energy.

4.1 Data selection

To abstract driving and environmental influences we use time series data re-
corded during driving of the EVs. We differentiate the input signals in the
three categories: driving behavior, battery state, and environmental condition
(as shown in Table 1). The acceleration torque, brake torque, and recuperation
torque are measured for front and rear axle, i.e. two signals for those values
exist. Thus, we obtain a total signal number of Nsignal = 15.
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With a variety of driving situations and environmental conditions as input,
we target a universal estimator that generalizes well on arbitrary input data.
The samples are sections with duration tsec = 6 min of EV trips representing
a typical ride. All trips with insufficient duration or faulty signal values are
discarded beforehand.5 To avoid estimation errors due to random noise, the
originally 10-Hz-sampled signals are aggregated before passing them to the
model. For each signal and for all values within an aggregation time period
tagg = 1 min the mean is calculated.

With 15 signals multiplied by 6 data points per trip section we obtain the
extracted features x1,..,90. Note that we chose the parameters tsec and tagg

according to preliminary test results.6

For each data sample representing a trip section of tsec = 6 min we calculate a
label

Γ =
e− e
o−o

. (1)

Therein, e is the SOC at the start of the trip section, e the SOC at the end.
Similarly, o is the mileage (in kilometers) at the start of the trip section, o at
the end, respectively.

4.2 Models

To model the dependency between the input features x1,..,90 and output label Γ,
we design two models.

4.2.1 Model A

For the first Model A we use a linear regression model

Γ̂ = W ·x+b, (2)

5In following evaluations, these special cases need to be contemplated separately.
6In future work, a more detailed evaluation on the selection of these parameters is required.
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with the input features x=(x1,x2, ...,x90)
> of the aggregated signal time series,

the weight matrix W ∈R1×90, and the bias b ∈R. The weights W and the bias
b are chosen to yield a minimum mean squared error (cf. Section 4.3) between
the training samples and the regression [43].

4.2.2 Model B

For the second Model B we design a neural network regression model. The
input layer comprise 90 nodes representing the input features x1,..,90. Further,
we use five hidden layers in a triangular shape, as shown in Fig. 4. Each of
the hidden layer nodes is activated through a Rectified Linear Unit (ReLU).
The output layer of the neural network consists of one node representing the
estimated consumption Γ̂.

For training the model we process all trips into training samples (cf. Section
4.1). Then, the data is fed to the models in batches of 32 samples over 100
epochs. The model is implemented in Python [44] using Keras [45]. We use
the Adam optimizer [10] with a learning rate α = 0.001.

Figure 4: Schematic architecture Model B, green: input nodes, hidden layer nodes in grey, output
node in orange, total number of nodes below each layer.
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4.3 Evaluation

The models are trained with data obtained from eight out of ten EVs. For
validation, the data obtained from the remaining two EVs is used, i.e. we
compare the estimated consumption Γ̂ with the actual consumption Γ. To
quantify the model performance, we calculate the metrics
Mean Absolute Error (MAE)

MAE =
1
N

N

∑
n=1
|Γn− Γ̂n|, (3)

Relative Mean Absolute Error (RMAE)

RMAE =
1
N

N

∑
n=1
|Γn− Γ̂n

Γn
|, (4)

Mean Squared Error (MSE)

MSE =
1
N

N

∑
n=1

(Γn− Γ̂n)
2, (5)

and Root Mean Squared Error (RMSE)

RMSE =

√
1
N

N

∑
n=1

(Γn− Γ̂n)2. (6)

Table 2 reports the validation results according to the error metrics (3)-(16).
The results show, that the neural network Model B outperforms the linear Mo-
del A in all four metrics. Using Model B, the estimation yields a mean absolute
error of 0.00461 km−1, i.e. for a trip of 1 km driven distance, the battery level
change is estimated with an average discrepancy of 0.461% SOC compared to
the true value. On the contrary, Model A estimates the battery level change for
such a trip with an average discrepancy of 52.783% SOC. Note that an SOC of
100% represents a fully charged battery and an SOC of 0% an empty battery,
respectively. Considering this fact, the estimations obtained from Model A
do not provide useful information on the EV’s consumption. Showing the
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Table 2: Evaluation of Model A and Model B with MAE, RMAE, MSE, and RMSE.

Model MAE [km−1] RMAE [-] MSE [km−2] RMSE [km−1]

Model A 0.52783 1.45031 0.44548 0.66744
Model B 0.00461 0.01782 0.00004 0.00651

Figure 5: Estimated consumption Γ̂ (red dots) of Model A with validation data set compared with
the true consumption Γ, ideal model output (green line), and 5% relative estimation error
(green dashed lines).

are not estimated correctly by the linear Model A, shown by the red dots that
are far from the green line. Based on the low accuracy of the linear model, we

Proc. 29. Workshop Computational Intelligence, Dortmund, 28.-29.11.2019 85

results graphically further emphasizes this finding: Figure 5 illustrates the
validation results of Model A. For each validation sample with consumption
Γ the estimation Γ̂ that the model provided is depicted as red dot. The green
line represents an ideal model behavior for comparison. The green dashed lines
represent an RMAE of 5%. It can be seen, that most of the validation samples



assume the real relation between the input features x1,..,90 and the consumption
Γ to be non-linear.

The results of the neural network Model B support this assumption: In the
same manner as done for Model A, Fig. 6 shows the estimations for Model B.
The results show a higher precision, as the estimations Γ̂ are located closer to
the ideal model representation, i.e. the green line. A mean relative estimation
error εB = 1.78 % (cf. Table 2) on the validation data supports this result.
According to the results, the internal structure of the neural network Model B
seems to represent the influences on the energy consumption with much higher
precision than the linear Model A.

Figure 6: Estimated consumption Γ̂ (red dots) of Model B with validation data set compared with
the true consumption Γ, ideal model output (green line), and 5% relative estimation error
(green dashed lines).

A further improvement of the model performance is expected if further data,
e.g. the actual weight of the electric vehicle due to baggage and passengers,
would be considered. Cross-validation over several vehicles should be procee-
ded to test the generalization of the developed model.
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Note that the input data excludes signals allowing to infer the state of bat-
tery degradation. Thus, the consumption model does not consider effects of
battery aging. Prospectively, battery aging can be estimated by training a
similar model with data solely obtained from EVs, whose batteries have not
degraded yet. Then, a consumption can be estimated for vehicles that are
assumed to have an aged battery. A discrepancy between the estimation and
the real consumption—beyond the known estimation error—indicates a battery
aging due to increased internal losses. This method would allow an entirely
data-driven battery aging estimation based on data anyway created within the
vehicle operation.

5 Conclusion and perspective

In this paper, we examined perspectives and interactions of Electric Vehicle
(EV) users, car manufacturers and power suppliers. We proposed a concept to
quantify the objectives of all parties, aiming at automated calculation of EV
charging strategies. In this context, we outlined a cloud-based framework for
data acquisition, storage and application as a common basis for data-driven
analyses. As an example use case, we proposed two data-driven models based
on linear regression and neural-network regression to estimate specific con-
sumption, i.e. consumed energy per driven distance. Therefore, we used time
series data collected from a fleet of ten connected EVs. For the model training
only eight out of ten EVs were used, while the remaining two EVs were used
for validation.

The linear model seems to inadequately represent the true relation between
input features and consumption. However, the neural network model with five
hidden layers yields a mean relative absolute error of 1.78%. Considering the
underlying data, the proposed model outperforms estimators based on physical
models as described in the literature. More elaborate model validation with
different data and other models, such as polynomial models, or other neural
network architectures may allow further model precision improvement.

In future work, a model as proposed could estimate battery aging, if the trai-
ning data is solely obtained from EVs, whose batteries have not degraded yet.
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Comparing the estimated consumption with the actual consumption for EVs,
which have degraded batteries, might indicate battery aging due to increased
internal losses. This method would allow an entirely data-driven battery aging
estimation.

Furthermore, the remaining model parts of the proposed concept require a
more elaborate implementation and evaluation. The interactions among EV
user, power supplier, and car manufacturer should be analyzed and described
mathematically. Finally, the findings need to be combined in an optimiza-
tion approach, enabling the automated calculation of individualized EV char-
ging strategies considering momentary grid load and battery preservation. For
concept evaluation, we plan to use an experimental EV fleet within measure
campaigns in the Energy Lab 2.0 [47]. Concluding, the feasibility of grid-
optimal, battery-preserving and individualized charging strategies needs to be
investigated with adequate indexes, such as user acceptance.
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