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Abstract Effective groundwater monitoring networks are important, as systematic data collected at
observation wells provide a crucial understanding of the dynamics of hydrogeological systems as well as
the basis for many other applications. This study investigates the influence of six groundwater level
monitoring network (GLMN) sampling designs (random, grid, spatial coverage, and geostatistical) with
varying densities on the accuracy of spatially interpolated groundwater surfaces. To obtain spatially
continuous prediction errors (in contrast to point cross‐validation errors), we used nine potentiometric
groundwater surfaces from three regional MODFLOW groundwater flow models with different resolutions
as a priori references. To assess the suitability of frequently‐used cross‐validation error statistics (MAE,
RMSE, RMSSE, ASE, and NSE), we compared them with the actual prediction errors (APE). Additionally,
we defined upper and lower thresholds for an appropriate spatial density of monitoring wells. Below the
lower threshold, the observation density appears insufficient, and additional wells lead to a significant
improvement of the results. Above the upper threshold, additional wells lead to only minor and inefficient
improvements. According to the APE, systematic sampling lead to the best results but is often not suited for
GLMN due to its nonprogressive characteristic. Geostatistical and spatial coverage sampling are
considerable alternatives, which are in contrast progressive and allow evenly spaced and, in the case of
spatial coverage sampling, yet reproducible coverage with accurate results. We found that the global
cross‐validation error statistics are not suitable to compare the performance of different sampling designs,
although they allow rough conclusions about the quality of the GLMN.

1. Introduction

Groundwater is an important, yet spatially extensive, concealed, and inaccessible resource. Therefore, an
effective groundwater monitoring network (GMN) is important, as systematic data collected at observation
wells provide a crucial understanding of the dynamics and quality of the hydrogeological system. A GMN is
defined by a spatial arrangement of monitoring sites and a temporal sampling frequency (Loaiciga et al.,
1992). Economic considerations most strongly influence the number and location of monitoring wells.
Designing an optimal GMN is, therefore, a task of balancing prediction accuracy with cost minimization
(Krivoruchko, 2011). Since a high spatial resolution is usually associated with disproportionate costs, often
only domains of high water management importance are adequately monitored. The design, that is, the
selection of the location and number of the monitoring wells, is a vital part of any study involving modeling
and prediction based on spatial data. A groundwater model can only be as good as the model input data
available. Therefore, poorly distributed monitoring wells can lead to wrong assumptions or to a bias of the
regional image. Unsuitable interpolation methods can yield drastic overestimates or underestimates of the
groundwater level in areas with a low monitoring density, as the parts with a high monitoring density are
disproportionately weighted (Ohmer et al., 2017). GW‐quality observations are subject to the same problem.
In this study, however, we focus on the regional groundwater level as a monitoring parameter.

Varieties of studies dealing with the optimization of GMN have been published in the last 20 years. The lit-
erature focuses on the optimization of GMN design to observe the groundwater quality (GQMN), and the
number of studies dealing with groundwater level (GLMN) is limited. The majority of approaches for
GLMN design optimization are based on geostatistical analysis and therefore on minimizing uncertainty
in parameter estimation. Several studies apply undifferentiated kriging (Prakash & Singh, 2000;
Theodossiou & Latinopoulos, 2006), ordinary kriging (OK; Nunes et al., 2004; Yang et al., 2008), universal
kriging (UK; Kambhamettu et al., 2011; Kumar et al., 2005; Olea, 1984), OK and UK (Ahmadi &
Sedghamiz, 2007), OK and co‐kriging (CG; Ma et al., 1999), or indicator kriging (IK; Cameron & Hunter,
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2002) to interpolate the groundwater surface and use either the mean or maximum kriging variance to
determine where additional observation wells should be built and/or identify well redundancy. Some
recent works use the kriging variance as a part of a multicriteria decision‐making analysis (MCA).
Chandan and Yashwant (2017) considered multiple parameters in addition to the kriging variance such as
groundwater level fluctuation, land use, hydrology, and recharge lineament density, to optimize an
existing GLMN. In Uddameri and Andruss (2014), the kriging variance was linked to a monitoring
priority index (MPI) calculated from a weighted average of several criteria (GW‐variability, recharge,
surface/GW interaction, and GW fluxes across district boundaries). A similar approach can be found in
Zhou et al. (2013) and Wang (2011). Esquivel et al. (2015) used for their MCA a weighted linear
combination that takes GW fluctuations, rates of decline, observation density, hydraulic gradients,
mountains, and water bodies, for example, into account. Additional studies use information theory
(entropy estimation) to evaluate the spatial location and temporal measuring frequency of monitoring
wells (Alfonso et al., 2014; Leach et al., 2016; Masoumi & Kerachian, 2008; Mogheir et al., 2006;
Mogheir et al., 2009). Further studies apply kriging‐based genetic algorithms (Babbar‐Sebens &
Minsker, 2010; Dhar & Patil, 2012; Kollat & Reed, 2006; Luo et al., 2016; Reed et al., 2007; Yeh et al.,
2006), algorithms based on Kalman filter with space‐time covariance matrix as input (Júnez‐Ferreira &
Herrera, 2013; Wu, 2004; Zhang et al., 2005), and artificial neural networks (ANNs; Giustolisi &
Simeone, 2010).

Some authors also take the temporal component of monitoring networks into account (i.e., frequency of
measurements based on groundwater fluctuations; e.g., Ahmadi & Sedghamiz, 2007; Cameron & Hunter,
2002; Chandan & Yashwant, 2017; Kambhamettu et al., 2011; Nunes et al., 2004; Theodossiou &
Latinopoulos, 2006). However, the results are always a compromise between the spatial and temporal
component. Moreover, the influence of the individual components is difficult to quantify. Since the
temporal component (i.e., measuring interval) can be easily varied, whereas the repositioning of sam-
pling points represents a disproportionately greater effort, a focus solely on the spatial arrangement
seems justified. Therefore, in our study we focus on the spatial component and assume a steady‐state
groundwater surface to find the optimal spatial arrangement of sampling points regardless of the
temporal component.

What most of the studies mentioned here have in common is that a large amount of auxiliary data for the
respective study areas have been incorporated into the optimizations. Therefore, the results cannot be easily
transferred to other areas where these data may not be available. One aim of this study is to find out if there is
a universally applicable design approach that can achieve the best possible results without a priori knowl-
edge of the hydrogeological situation. For this reason, we compared six design strategies that were as gener-
ally applicable as possible and analyzed their results in nine areas of investigation. We assumed “real”
groundwater surfaces to be known as they are taken from large‐scale numerical groundwater models for this
simulation experiment. The idea behind this approach is to compare the interpolated surfaces resulting from
the respective GLMN design to the “real” surface and thereby compute the “real” error in addition to the
cross‐validation (CV) error.

In detail, the research objectives are to answer the following questions:

1. Is there an extensible and transferable GLMN design that allows reliable spatial estimates of groundwater
level with a minimum number of monitoring wells?

2. What quality differences result from the use of different GLMN design approaches?
3. At what observation well density a reasonable information/cost ratio emerges?
4. Which is the most suitable CV error statistic (MAE, RMSE, RMSSE, ASE, or NSE) to evaluate the quality

of interpolated groundwater surfaces?

To answer these questions, we applied six different design strategies on nine different groundwater surfaces,
starting with initial 10 observation wells each. Based on the groundwater levels of the observation wells, a
groundwater surface was interpolated and the deviation from the real groundwater surface calculated,
along with global CV error statistics. The monitoring networks were then gradually densified up to 500
observations wells, the interpolation and error calculation being repeated after each step. The design
strategies, which contain random components, were repeated 10 times in order to include the influences
caused by them.
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2. Methods
2.1. Interpolation Method

In a previous study, we examined and compared nine different interpolation methods (inverse distance
weighting, radial basis function, simple, ordinary, universal, empirical Bayesian and CG, and local and glo-
bal polynomial interpolation) to find the most suitable method to interpolate a continuous groundwater sur-
face from observed groundwater levels (Ohmer et al., 2017). The best results, based on global CV error
statistics, were achieved with co‐OK. In this type of kriging, additional correlated secondary variables
(e.g., DEM, springs, and wetlands) are used to improve the prediction. Since secondary data are generally
not sufficiently available everywhere, we decided not to consider this method here and instead use the sec-
ond best method, OK, which is one of the most frequently used geostatistical estimators (Siska et al., 2005;
Wackernagel, 1995, i.a.).

Geostatistics is based on the work of Krige (1951) and was further developed by Matheron (1963) with his
theory of regionalized variables. Kriging is a generic name for a group (e.g., simple kriging, OK, and UK)
of generalized least squares regression algorithms (Li, 2008). Before the prediction, the spatial correlation
of the regionalized data is assessed by a semivariogram analysis. The semivariance γ of Z between 2 points
xixo separated by distance h is defined as

γ xixoð Þ ¼ γ hð Þ ¼ 1
2
var Z xi−Z x0ð Þð �:½ (1)

The empirical semivariogram is a graphical representation of the semivariance (γ(h) vs. h) and represents the
spatial autocorrelation of the data points. It quantifies the assumption that nearby data points tend to bemore
similar thanmore remote points (First Law ofGeography, according to Tobler, 1970). This empirical semivar-
iogram is used as the first estimate of the theoretical semivariogram that is needed for the spatial interpola-
tion. Important features of the semivariogram are the nugget, the range, and the sill/partial sill. The nugget
effect is a positive value of γ(h) at h close to 0. It allows for the variogram to assume a nonzero value for two
observations having a separation distance that is less than the minimum bin size, and accounts for a sum of
measurement error and microscale irregularities. A method that produces an estimate equal to the observed
value at the sample points is called exact; all others are called inexact. The sill is the semivariance value at
which the semivariogram levels off for stationary data sets (Bohling, 2005). Partial sill results from the differ-
ence between sill and nugget. The range is a value of distance at which the sill is reached. Points further away
than the range are regarded as spatially independent (Li, 2008). OK is robust and straightforward and there-
fore probably themost widely used kriging technique (Heuvelink&Pebesma, 2002). Each of the different kri-
ging methods (e.g., simple kriging and OK) is based on the following basic equation:

bz x0ð Þ−μ x0ð Þ ¼ ∑
n

i¼1
λi Z xið Þ−μ xið Þ½ �; (2)

wherebz is the estimated value at a point of interest x0, n is the total number of measured groundwater levels,
and Z(xi) is the measured groundwater level at well xi. λi are the kriging weights derived from a covariance
function or semivariogram; μ is in the case of OK the Lagrange multiplier constant that has to be estimated
and is considered to be constant over the area to be interpolated (Li & Heap, 2008):

bZ x0ð Þ ¼ ∑
n

i¼1
λOKi xoð ÞZ xið Þ with ∑

n

i¼1
λOKi xoð Þ ¼ 1: (3)

We used an omnidirectional Gaussian semivariogram model, which is flexible, and a good candidate for a
default model (Krivoruchko, 2011). With its parabolic behavior at the origin, it represents very smoothly
varying properties (Bohling, 2005). The associated parameters partial sill, range, search neighborhood,
and specific search distance were optimized by using automated CV diagnostics minimizing the RMSE for
each individual case. To ensure the stability of the resulting kriging matrices, a systematically small constant
nugget of 0.05 m was used (Johnston, 2004; Yarus & Chambers, 1994).

It should be noted that the use of a single variogrammodel (Gaussian) might not be the optimal way to quan-
tify spatial correlation, especially for nonstationary data. However, it is a necessary simplification owed to
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the automation process, which still allows comparability of the spatial design methods, while the best pos-
sible interpolation result is not the focus of this study.

2.2. Data and Data Processing

The spatial and temporal variability of the groundwater surface is generally unknown except for wells,
springs, wetlands, and interacting surface waters. Therefore, the accuracy assessment of an
interpolated/predictive groundwater surfaces can only take place at these measured locations using CV
and error statistics (e.g., ME, MAE, RMSE, NSE, and RMSSE). The expected level of fit of these results is
therefore primarily dependent on the number and distribution of the monitoring locations.

To quantitatively determine and compare the effects of the different GLMN designs on the accuracy of the
predicted groundwater surfaces, we used nine potentiometric groundwater surfaces, extracted from simula-
tion results of three regional MODFLOW groundwater flow models as an a priori reference. The model data
are publicly accessible from the USGS (DeSimone et al., 2002; Parsen et al., 2016; Sepulveda & Painter, 2017).
The idea behind this approach was to compare the interpolated surfaces to the “real” surface and thereby
compute the “real” error in addition to the CV error. This has been done with completely artificial surfaces
to compare different network designs (Aguilar et al., 2005; Heuvelink & Pebesma, 2002; Romero et al., 2005;
Wild, 2009), but artificial surfaces may not have the same properties as typical groundwater surfaces in terms
of variability, roughness, gradients, and so on. To use surfaces computed by numerical groundwater models,
which incorporate the hydraulic properties of the aquifer, are based on physical processes of groundwater
flow, and therefore produce not “real” but at least “realistic” surfaces, seems to be the best compromise.
The resulting groundwater surfaces each consist of 100 × 100 pixels with pixel sizes of 100 m × 100 m,
200 m × 200 m, or 500 m × 500 m. The pixel size corresponds approximately to the element size of the
groundwater models.

The different resolutions of the surfaces were chosen to assess if and how the resolution affects the results.
The resolution can, for example, influence elevation and slope values (Chunmei et al., 2013), as small‐scale
variabilities below the pixel size are eliminated. However, this does not allow comparing the observation
density and resulting errors with each other directly. A detailed overview of essential parameters of the sur-
faces is given in Table S1 in the supporting information, groundwater contour maps of the surfaces are
shown in Figure 1.

For the simulation experiment, we used the following automated workflow for all surfaces:

1. Ten initial monitoring points were distributed randomly on every surface from a random number genera-
tor (exceptions are the systematic sampling and low discrepancy sampling methods; see section 2.3).

2. Based on the groundwater level of the available observation points, an empirical variogram was com-
puted, and an optimized (by CV) Gaussian semivariogram model was fitted to the data.

3. Based on the semivariogram, the GWS was interpolated with OK.
4. The prediction error (the difference between the real and the predicted surface), as well as different CV

error statistics, was calculated.
5. The location for an additional monitoring point was computed, depending on the used design method

(see section 2.3),
6. Steps (ii) to (iv) were repeated until the monitoring network included 500 points. Steps (i) to (vi) were

repeated 10 times for the methods that include random components, and the results were averaged to
consider errors caused by random initialization or random addition of point locations.

For OK stationarity (a constant mean and variance of the values across the area) generally must be assumed,
which is not the case for all tested surfaces (Figure 1). Nevertheless, we have chosen a uniform procedure in
order to ensure comparability of the sampling designs and to exclude the influence of different
interpolation methods.

2.3. Sampling Designs

When planning a new or extending an existing GLMN, one of two fundamentally different strategies must be
chosen. One is the design‐based sampling approach, which is based on classical sampling theory; the other is
the model‐based approach, based on geostatistics. The main difference between the two is how they deal
with the randomness they use to give the inference a stochastic structure (Särndal, 1978). The additional
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monitoring wells (or, in general, samples) in a design‐based observation network are selected in such a way
that each location within the study area has the same probability of being chosen. Another term for design‐
based sampling is, therefore, probability sampling. These probabilities provide the foundation for statistical

Figure 1. Groundwater contour maps and histograms extracted from three MODFLOWmodels as a priori reference to evaluate the investigated observation net-
work designs qualitatively and quantitatively (DeSimone et al., 2002; Parsen et al., 2016; Sepulveda & Painter, 2017).
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inference from the observations (Gruijter et al., 2006). In a model‐based network, a theoretical construction
(model) is used to deal with the differential probabilities of the potential observation points. The model is
built upon information on prior knowledge and assumptions (Geuna, 2000). It contains the prescription
for the statistical inference. A detailed description of sampling theory and the contrast between the two
strategies can be found in Särndal (1978), Hansen et al. (1983), Brus and de Gruijter (1997) and Brus
(2010). Figure 2 shows an overview of the observation network designs compared in this study.

2.3.1. Design‐Based Approach: Spatial Statistical Sampling and Probability Sampling
Four standard types of statistical sampling methods are generally used in “classical” statistical surveys (Kish,
1995). These methods are simple random sampling (SRS), random grid sampling (random systematic sam-
pling), stratified sampling, and cluster sampling. For this study, SRS and random grid sampling were chosen.
Stratified sampling and cluster sampling are usually used, when a heterogeneous distribution of values can
be broken down in parts that are internally homogenous or when values tend to cluster together (Gilbert,
1987). Neither is the case for groundwater elevation.

2.3.1.1. Simple Random Sampling
SRS is the simplest and most frequently used sampling design approach in survey sampling, since it is
assumed that n wells are located randomly from N potential sites with an “equal probability of selection”
(EPS) throughout a domain. The advantages are that it is simple to use and free from bias and prejudice.
Disadvantages are poor spatial coverage and the possible occurrence of clustering, redundancy, and regions
that contain no observation points. The additional observation points with SRS were selected in this study
using the ESRI ArcGIS tool GenerateRandomPoints. This tool creates a specified number of random points
in a defined extent.

2.3.1.2. Random Grid Sampling
In random grid sampling (or random systematic sampling), samples are taken at regularly spaced intervals
over space with the first pointm chosen randomly. The approach is classified as probability sampling since,
with the first point selected randomly, each location within the study area initially has the same probability
of being selected. Examples of a systematic grid are rectangular, triangular, hexagonal, or radial grids. If the

Figure 2. Schematic overview of the observation network designs compared in this study.
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starting point is not chosen randomly, the approach is classified as model based (see section 2.3.2), as, for
example, in regular systematic sampling and centric systematic sampling (Delmelle, 2014). The main advan-
tage of a systematic sampling over SRS is that it can be more conducive to covering more extensive areas
through a maximized sampling coverage while clustering and redundancy are prevented. Moreover, it
allows to add a degree of system into the process of random selection (Fischer & Nijkamp, 2014). Gridded
sampling designs are particularly suitable for large investigation areas, which should be covered with a lim-
ited number of sampling points (Gruijter et al., 2006). The disadvantage of this method is that the smallest
separation distance is fixed. Since the kriging variance is described as a function of the separation distance,
this can lead to unnecessarily large nugget effects for the model semivariogram (Baxter, 2016). Furthermore,
the approach is not progressive, which means that the number of overall observation points has to be known
beforehand, and it is not possible to progressively add more points without breaking the order. Though
therefore systematic sampling methods are not suitable to construct extensible observation networks, we
added two methods for comparison, as they are often referred to as the most efficient design for survey sam-
pling (Birch et al., 2007; Olea, 1984).

The systematic random approach used in this study is a triangular grid based on regular hexagonal polygons.
The points are placed in the center as well as at the corners of a hexagon (shared with three other hexagons).

The hexagons have a widthw ¼ ffiffiffi
3

p
·sidelength and a height h = 2 · sidelength. Therefore, the lateral distance

dhz between adjacent hexagon center points is wwhile the longitudinal distance is h·3/4. In contrast to other
methods, here no additional points can be added progressively without breaking the grid symmetry. Instead,
the existing points were replaced in the next iteration step by as many points as were necessary to maintain a
regular grid with the next‐larger number of points.
2.3.2. Model‐Based Approach
2.3.2.1. Centered Grid Sampling
Though very similar to random grid sampling, the centered grid sampling is referred to as a model‐based
approach, since in contrast to random grid sampling, the starting point is not chosen randomly, but purpo-
sefully, so that the area of investigation is well covered, especially when the overall number of points is low.
For the rectangular grid used in this study, the investigated area was divided into n·n square intervals, and
the observation points were set in their center (centric systematic sampling). The shortest distance d between

the observation points equals the side length of the square divided by the square root of the sample size, d ¼ffiffiffiffiffiffiffiffiffi
A=n

p
, whereA is the area of the square. As with all regular grids, this method is not progressive. An existing

network cannot be extended under the applicable laws.
2.3.2.2. Spatial Coverage Sampling
Spatial coverage sampling is a technique that optimizes an objective function of the distance between the
observation points (Brus et al., 2006). We have chosen two low‐discrepancy sequences as objective functions.
In quasi‐random or low‐discrepancy sampling, the position of sampling points is based on low‐discrepancy
sequences (also called quasi‐random or subrandom sequences). These sequences represent numbers that
are better equidistributed than pseudo‐random numbers (Dalal et al., 2008). To construct higher‐dimension
low discrepancy, as in the case of two‐dimensional sampling design, several one‐dimensional sequences are
combined in a component‐wise manner, that is, that the x and y coordinates of a two‐dimensional area are
constructed by pairing consecutive numbers of two different low discrepancy series in an [0,1] × [0,1] space
and then adjusted to the actual spatial extent of the area to be sampled. In a two‐dimensional context, dis-
crepancy refers to the density of points on an area or sampling space. A high discrepancy means that there
are large areas of empty space or regions with a disproportionally high point density (as it may be the case in
a random distribution). Therefore, SRS can lead to a high discrepancy while systematic sampling has the low-
est discrepancy. Fully deterministic low‐discrepancy sequences were developed to optimize Monte Carlo
simulations because they fulfill requirements as if they were genuinely random numbers. At the same time,
higher accuracy and faster convergence can be achieved with fewer samples compared to pseudo‐random
numbers, which reduces the computational costs. Low‐discrepancy sampling methods thus constitute a
good compromise of being progressive (like SRS) and having a low discrepancy (like systematic sampling).
Therefore, they are frequently used in sampling problems. Furthermore, they allow for a better distribution
of sample separation distances than gridded sampling schemes, while minimizing sampling bias and cluster-
ing. To our knowledge, low‐discrepancy sequences have not yet been applied to the development of ground-
water level monitoring design before.
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A categorization of the different types of low‐discrepancy sequences is mostly done by the method of con-
structing their bias (hyper)parameter. These are either prime numbers (Van der Corput, Halton and Faure
sequence), polynomials (Sobol and Niederreiter sequence), or irrational fractions (Kronecker and R‐sequence).
In this study, the Halton sequence and the R‐sequence were investigated, as they are more suitable for low‐
discrepancy in two dimensions than other low‐discrepancy series (Roberts, 2018).

TheHalton sequence (Halton, 1960) is a generalization of the van der Corput sequence (van der Corput, 1935)
to higher dimensions. It uses arbitrary coprime numbers as a base for each dimension. The most frequent
selection for two dimensions, due to its apparent simplicity and sensibility, is to select the first primes, which
is referred to as the (2,3)‐Halton sequence. To generate the sequence for 2, the interval [0,1] is divided in half,
then in fourths, eighths, and so forth, which generates ½, ¼, ¾, 1/8, 5/8, 3/8, and so forth. Equivalently, the
Halton sequence for 3 is generated by dividing the [0,1] interval in thirds, ninths, twenty seventh, and so
forth, giving 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, and so forth. The coordinates for the sampling points are constructed
by placing the x coordinates according to the 2‐Halton sequence and y coordinates according to the 3‐Halton
sequence, adjusting the numbers of the sequence to the actual spatial coordinate extent of the area.

TheHalton sequence constitutes a good source for a low discrepancy in two dimensions since the selection of
small coprime bases ensures a minimal correlation between dimensions (Worley, 2016) and is therefore reg-
ularly used in ecological sampling (Brown et al., 2015; Kermorvant et al., 2019).

Recently, a new low discrepancy quasi‐random sequence that offers a substantial improvement over current
state‐of‐the‐art sequences has been proposed by Roberts (2018). The new additive recurrence sequence (R‐
sequence) is a recurrence method based on irrational numbers (generally called Kronecker sequences),
which uses the golden ratio as a basis. For the two‐dimensional case (R2‐sequence), it produces more evenly
spaced points than any of the other known methods. The generalized version of the golden ratio Φd is
defined as the unique positive root xd + 1 = x + 1. That is, for d = 2, Φ2 = 1.3247 … . This value was conjec-
tured to most likely be the optimal value for a related two‐dimensional problem (Hensley & Su, 2004). In two
dimensions the x and i coordinates of the nth term (n = 1, 2, 3, …) are defined as

xn ¼ 0:5þ 1
Φ2

·n
� �

and yn ¼ 0:5þ 1
Φ2

2 ·n
� �

: (4)

2.3.2.3. Geostatistical Sampling
Model‐based sampling techniques, more specifically geostatistical sampling when the postulated model is a
geostatistical model, have been applied in several studies in recent years for the assessment and location of
additional monitoring wells in a GLMN (see section 1).

In geostatistical sampling, a geostatistical model, the model variogram, is used to identify locations for addi-
tional sampling points (Gruijter et al., 2006). These are selected based on the predefined selection criterion,
usually by minimizing the mean or the maximum kriging variance (Olea, 1984).

σ2OK ¼ Var Zð Þ−∑n
α¼1λαC h0αð Þ (5)

The kriging variance depends on the covariance model and the data configuration but is independent of the
data values. For a given covariance model two identical sample location distributions would yield the same
kriging variance independently no matter what the data were (Goovaerts, 1997). Heuvelink and Pebesma
(2002) examined the validity of kriging variance by numerical analysis of two‐dimensional Gaussian distrib-
uted realizations and by mathematical‐statistical description. They show that the prediction error variance is
independent of the data values and therefore the kriging variance is still a correct assessment of the local
uncertainty even if in parts of the area the variations are larger or smaller than elsewhere. However, these
findings do not apply to the non‐Gaussian case.

We used the maximum prediction standard error (square root of the kriging variance) as the selection criter-
ion for placing additional sampling points. This approach is implemented in the ArcGIS Tool “Densify
Sampling Network” and is therefore referred to as DSN (Johnston, 2004).
2.3.3. Reference
We introduce a reference method (REF) to evaluate the quality of the tested approaches. After each interpo-
lation, the predicted surface is compared with the “real,” surface, and an additional well is set at the point
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with the largest difference between the two surfaces. The idea behind this approach is that the resulting
arrangement is the best possible design for each respective surface. Hence, we assume that it theoretically
represents the lower limit for the smallest prediction error achievable with a given number of
observation wells.
2.3.4. Progressive Versus Nonprogressive Designs
Progressive (sequential) sampling design creates an observation network by optimally adding one or several
new points step by step, whereas in nonprogressive (simultaneous) sampling design, all points have to be
added at once.

While somemethods are either progressive or nonprogressive, some others can be used in both ways (though
they are usually referred to as progressive only). The latter is the case for SRS and the spatial coverage sam-
pling strategies (R2 and Halton), where the results are the same whether one, several, or all points are added
at a time. The DSN method constitutes an exception. It can be used progressive or nonprogressive, but the
results may differ. DSN places additional points at the highest prediction standard error, which depends
on the locations of the existing observations points as well as the semivariogram model. The semivariogram
is recomputed in each densifying process and therefore leads to different results, depending if a number of
points is added one by one (sequential) or all at one time (simultaneously). In practice, the differences in the
results are often small, at least when a certain number of observations is reached, since the addition of new
points only leads to minor changes in the modeled semivariogram.

The grid sampling methods are nonprogressive, in the sense that only a certain number of points can be
added at a time without breaking the grid symmetry (and therefore are usually referred to as
nonprogressive only).

Whether a progressive or nonprogressive method is preferred may depend from case to case, though in
GLMN design, progressive methods have the advantage to allow for an extension of the network at a
later stage.

2.4. Validation Methods

The absolute prediction error (APE) is the absolute mean difference between the real GWS and the predicted
(interpolated) GWS, divided by the area of the surface. For the methods with a random component (REF,
SRS, triangular random grid, and DSN), a mean value was calculated from 10 runs.

APE ¼
∑
n

i¼1

bZ xð Þ−Z xð Þ
��� ���
Area

(6)

The standardized absolute prediction error (SAPE) is the APE divided by the maximum value of the APEs of
all methods per surface (except REF). The SAPE makes it easier to compare the error propagations of the
individual surfaces with each other.

SAPE ¼ APE
max APEð Þall methods

(7)

The mean standardized absolute prediction error (MSAPE) is the mean SAPE of the individual design
approaches for all nine surfaces.

Since the real value for an actual GWS at the time of the prediction is generally unknown, the real prediction
error is also unknown. Validation of the interpolation can therefore only be performed at the observation
points, using CV and error statistics to assess the accuracy of the interpolation. Based on the results of the
CV, the following error measures were used to compare the accuracy of the different interpolation methods,
where n is the number of observations, mi is the measured value, and pi is the predicted CV value at the
position i:

The mean absolute error (MAE) is the arithmetic mean of the absolute error values. It indicates the magni-
tude of the error:
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MAE ¼ 1
n
∑n

i¼1 pi−mij j: (8)

The root mean square error (RMSE) represents the root of the averaged square error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
pi−mið Þ2

s
: (9)

The average standard error (ASE) is the average of the prediction standard errors:

ASE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
pi− ∑

n

i¼1
pi

� �
=n

� �2
s

: (10)

The root mean square standardized error (RMSSE) with psi as the standardized predicted value and msi:

RMSSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
psi−msið Þ2

s
: (11)

The Nash‐Sutcliffe model efficiency coefficient (NSE; Nash & Sutcliffe, 1970) withmi as themean of themea-
sured values is used to quantify how well a model simulation can predict the outcome variable. The NSE
ranges from minus infinity to 1 (perfect fit):

NSE ¼
∑
n

i¼1
pi−mið Þ2

∑
n

i¼1
mi−mið Þ2

: (12)

In a detailed review, Li and Heap (2008) have compiled a comprehensive assessment of error statistics. They
conclude that MAE and RMSE are similar measures that give an estimate of the average error but do not pro-
vide information about the relative size of the average difference nor the nature of the difference. In contrast
to MAE, RMSE is very sensitive to outliers (Hernandez‐Stefanoni & Ponce‐Hernandez, 2006; Ikechukwu
et al., 2017; Vicente‐Serrano et al., 2003; Willmott, 1982). Nonetheless, both are among the best measures
of model performance (Willmott, 1982). The following criteria for using error measurements are proposed
to assess the performance of spatial interpolation. MAE, RMSE, and ASE should be as small as possible.
ASE and RMSE should be nearly identical, and RMSSE should be close to 1, indicating the estimated predic-
tion uncertainty is consistent. ASE > RMSE or RMSSE > 1 implies an overestimation of the variability of the
predicted values; ASE < RMSE or RMSSE < 1 implies an underestimation (Hu et al., 2004).

3. Results and Discussion

We divided the presentation of the results into three sections. In section 3.1, the spatial distributions of the
added monitoring wells from the tested approaches are shown and compared on example (ACF A). Since a
priori known groundwater surfaces are used, not only the CV errors but also the “real” prediction errors
based on the GLMN can be computed. Therefore, in section 3.2, a comparison of the tested design
approaches based on these real prediction errors (APE) is drawn. Section 3.3 finally contains a comparison
based on the CV results.

3.1. Resulting Spatial Distribution

The GLMN designs resulting from each approach are shown for the example of ACF A in Figure 3. The
Reference method (REF) results in a network design with concentrated observation density and clustering
in the more variable southern part of the area, while in the less variable northern part with lower gradients,
there are large regions with a low density even with 500 monitoring points. This clustering is because an
additional point is set at the location of the largest deviation between the interpolated and the actual surface
(APE). Thus, the first 37 extra wells are placed exclusively in the south (light blue points). After that, points
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will also be set further north although a concentration of additional points will remain in areas of high
variability (cyan points).

SRS exhibits point clustering and regions without points. Since the points are placed randomly, this effect
can be stronger or weaker from case to case. To take this random component into account, the placement
was repeated ten times for SRS. The figure shows one of the ten examples.

To varying degrees, the low discrepancy methods (Halton and R2 method) and the geospatial method DSN
show uniformly distributed arrangements of the observation points. The Halton method shows a very even
global point distribution. Locally, however, the method tends to place individual points closer together as the
number of monitoring points increases (cyan and light yellow points). DSN shows a uniform local point
distribution with relatively consistent neighboring distances. Since the kriging variance depends on the dis-
tance to the closest n‐observation points, a high prediction standard error results at the boundary of the
research area, and additional points are placed along that edge. The R2 method shows both an even global
distribution and uniform distances to the neighboring n‐observation points across all observation densities.

Figure 3. Resulting spatial distribution of the observation wells for surface ACF A based on the investigated network
designs at the start (dark blue), less than 55 (≤P1, light blue), less than 172 (≤P2, cyan), and for 500 (≤Pmax, off white)
observation wells (the numbers for the nonprogressivemethods are adapted according grid symmetry). Progressive: design
that can be extended with n additional observation wells. Nonprogressive: design that is not extensible without
breaking the symmetry of the grid (points marked by white outlines). The Geostatistical sampling design (DSN) uses the
prediction standard error as selection criterion for the placement of additional sample points.
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3.2. Absolute Prediction Errors

Figure 4a shows the APE for all tested design approaches for surface ACF A as an example (diagrams for all
surfaces are provided as supporting information, Figure S1) as a function of the number of observation wells.
The points P1 and P2 were defined such as the numerical derivatives of the mean SAPE of all methods
(excluding REF) are 0.005 and 0.001, respectively. Consequently, an additional monitoring point results in
a reduction of the initial mean SAPE by 0.5% for P1 and 0.1% for P2 and hence can be used for the definition
of a well density for the respective information/cost ratio. The idea behind the thresholds P1 and P2 is that
below P1, the observation density seems insufficient, and the placement of additional wells leads to a
substantial improvement of the results, while above P2 further observation wells lead only to minor and
thus possibly inefficient improvements. The decision at which information/cost ratio these points are
defined can only serve as a rough guideline and must, of course, be adapted to the respective requirements
of each site.

The theoretical maximum information content is reached at a density of 1 point per pixel, that is, the value is
known for each grid cell. The grid size of the output maps needs to match the sampling density and scale at
which the processes of interest occur (Hengl, 2009), since small‐scale variabilities can only be displayed up to
pixel size and the coarser the resolution of a GWS, the more small‐scale variations disappear. P1 was
achieved for ACF A with 55 observation points and P2 with 172 observation points. Figures 4b and 5b show
a detailed view of P1, P2, and Pmax (for the maximum tested number of 500 observation points). Figures 4c
and 5c show the deviations of the MSAPE of the individual design approaches from the mean MSAPE of
all methods (except REF). A value <1 means that the individual design approach performs better than aver-
age, >1 that it performs worse than average.

To make more general statements about the different methods, the individual APE of each surface and
method was standardized (SAPE) by division through the maximumAPE of all methods per surface to make
the absolute error values, which have different magnitudes for each surface, comparable. Afterward, the
mean over all surfaces of the SAPE for each method was computed (MSAPE; Figure 5a) to determine the
overall performance of the method.

Figure 4. (a) Absolute prediction error (APE) of the tested methods for ACF A (left y axes) as a function of the number of
observation wells and the derivative of themean SAPE of themethods (excluded REF; right y axes). (b) Detailed view of P1,
P2, and Pmax. P1 and P2 are points at which the numerical derivative of the mean SAPE of themethods (excluded REF) has
the value 0.005 and 0.001. (c) Ratio of the APE of the individual design approaches to the mean APE of all methods
(excluding REF). A value <1 means that the individual design approach is better than average, >1 that it is poorer than
average.
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In Both Figures 4a and 5a as well as Figure S1, three facts stand out:

1. Visible at first glance is that SRS underperforms, and it produces the largest error consistently for all sur-
faces as well as all point densities.

2. For the low end of number of monitoring wells (less than about 50, respectively <P1), it seems arbitrary
which design method performs best. This can be explained by the fact that below a certain well density, it
is not possible to record and map small‐scale variabilities of the tested surface and, thus, it is more or less
a matter of luck whether the observations points are placed in locations that allow for an interpolation
that is similar to the actual surface. For the ACF A, for example, P1 would correspond to an observation
density of one observation well per 50 km2 only. Some of the designs even seem to outperform REF.
This can be explained by the fact that with REF an additional point is set on the location of the largest
difference between actual and interpolated surface. With a few observation points, however, the elimina-
tion of the largest but possibly very small‐scale (regarding area) error does not always lead to the smallest
global error.

3. For higher point densities, a ranking of the design strategies becomes identifiable, but the resulting errors
(except SRS) are in a narrow range, and none of the methods is clearly superior to the other methods for
every surface, regardless of the number of monitoring wells.

It can, therefore, be concluded that unless there is a sufficiently dense observation point coverage, there is
more benefit in adding an additional observation point than in the use of the supposedly best design (as long
as the wells are reasonably distributed). Whichmethod performs best in detail depends on the characteristics
of the surface and the density of the existing monitoring wells (Figure S1). This is mainly due to large‐
magnitude but small‐scale variabilities in the surfaces. If there is no monitoring well in such an area, this
can increase the APE of a method excessively although most of the surface is well represented. In addition,
none of the tested method comes close to the (known by a priori) theoretically best possible design REF.

In detail, for the majority of point densities and tested surfaces, the regular grid arrangements (triangular
grid and rectangular grid) achieved slightly lower errors than the other methods (Figures 5a and S1).
However, their advantage of the excellent spatial sampling coverage is in contrast to the nonprogressive
characteristic of these design approaches, which makes them unsuitable for many applications, unless the

Figure 5. (a) Mean standardized absolute prediction error (MSAPE) of the individual methods for all nine surfaces (left y
axes) and the derivative of the averagedMSAPE of the methods (excluded REF; right y axes). P1 and P2 are points at which
the numerical derivative of the averaged MSAPE of the methods (excluded REF) has the value 0.005 and 0.001. (b)
Detailed view of P1, P2, and Pmax. (c) Ratio of the MSAPE of the individual design approaches to the averaged MSAPE of
all methods (excluding REF). A value <1 means that the individual design approach is better than average, >1 that it is
poorer than average.

10.1029/2019WR025728Water Resources Research

OHMER ET AL. 13



final number of available wells is known in advance. On average, the triangular grid shows better results
than the rectangular grid.

In the case of the tested spatial coverage sampling methods, the R2 method, in particular, shows good results
across all observation point densities and for most of the surfaces. The resulting error is only slightly higher
for the majority of surfaces than for the grid methods. Since the locations are only based on mathematical
sequences, the spatial coverage sampling methods have the advantage, which they can be used without prior
measurements to construct an effective and evenly spaced monitoring network from scratch. Furthermore,
the placement of the observations points is reproducible and does not change over time (with possibly differ-
ent measurements, as it is the case forDSN). TheHaltonmethod also delivers acceptable results, especially at
low observation densities. At higher densities, it produces only mediocre results. As a conclusion, the R2
method is preferable.

The geostatistical DSN method led to the lowest errors among the tested progressive network designs, only
slightly higher compared to the grid methods. As an advantage over the grid methods, it can be sequentially
extended and is, therefore, more appropriate for most the observation of groundwater levels networks.
However, since DSN selects the location of new observation points based on the maximum prediction stan-
dard error, it requires an existing kriging interpolation and can therefore only be used for adding new sam-
pling locations to an existing monitoring network.

P1 was achieved for the nine surfaces with 37–64 observation points (mean 51) and P2 with 118–186 observa-
tion points (mean 156). Since the surfaces have different spatial resolutions, with pixel sizes between 100 and
500m (and therefore varying degrees of detail), an observation density in observation wells per km2 at which
P1 or P2 is reached could be misleading. However, since all surfaces are 100 × 100 pixels in size, a comparison
can still be made regarding an observation density per pixel. In the case of P1, that means that on average for
all surfaces and methods, for a density of 5.1 · 10‐3/pixel, a reduction of the initial mean SAPE by 0.5% is
achieved, and for P2, 1.56·10

‐2/pixel, respectively. That means that on average, about 0.51% (with a range
of 0.37–0.64%) of all possible sampling options (imaginary pixels of a grid reflecting the assumed variability
of the groundwater) should be sampled, since until then, there is a significant error reduction of 0.5% with
each additional well, while on average, with above 1.56% of all possible sampling options being sampled
(with a range of 1.18–1.86%), the error reduction becomes considerably less (0.1% with each additional well),
and the resulting information/cost ratio might become too low. To compare these values (in density per
pixel) with a real observational density in wells per km2, it must be assumed that the resolution of an ima-
ginary grid is adapted to the actual variability of the GWS to be expected. As a rule of thumb, the observation
density at P1 and P2 can be used as an indicator for evaluating existing observation networks and planning
new ones.

3.3. CV results

Although an assessment of the error based on the deviation from the real groundwater surface (APE) seems
necessary to determine both the number of wells required and the best method for their placement, this
deviation will not be available in practice. Only the error at the existing observation points can be deter-
mined by CV. Thus, we compare the APE with different CV error statistics to examine whether one of them
is more appropriate as a proxy for the averaged APE as well as suitable point densities for the assessment of
an information/cost ratio.

Figure 6a shows a comparison of the averaged standardized APE (SAPE) of all design approaches and the
averaged, standardized global CV error estimates (MAE, RMSE, ASE, and NSE), as well as the averaged
RMSSE for all surfaces. Along with the averages, the ranges between the minimum and maximum curves
are given as shaded areas in the same color. For a better comparison, NSE is shown as 1‐NSE. The standar-
dization aims to present the error developments of the different design approaches so that they can be com-
pared with each other. Furthermore, it should be shown whether and to what extent conclusions can be
drawn from the shape of the individual CV curves compared to the SAPE curve regarding the assessment
of an information/cost ratio.

Figure 7b shows the Pearson correlation coefficient r between the CV‐error estimates and the APE. Except
for RMSSE, all methods consistently have a very strong correlation with APE. RMSE (between 0.950 and
0.995) and MAE (0.965 and 0.997) show the strongest correlation to the APE, which makes them to
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reliable qualitative error estimators. This is followed by 1‐NSE (0.883–0.987). Since the RMSSE should go to
1, the Pearson's r of|1‐RMSSE|instead of RMSSE was calculated. This variable shows the worst correlation
with the APE (−0.633 to 0.896) of the tested estimators.

Since both MAE and RMSE have the same units as the estimated quantity, Figure 6c compares them with
the APE to examine to what extent their value is suitable for quantifying the actual absolute error. Since

Figure 6. (a) Comparison of the standardized average prediction error (SAPE), RMSSE, and the standardized averagedMAE, RMSE, and ASE alongwith the ranges
(shaded colors). (b) Pearson correlation between the SAPE and the respective CV‐results (best method in each case is in bold type). (c) Comparison of the averaged
prediction error (APE), the MAE, and RMSE. (d) Development of the ratio of APE and the individual cross‐validation results (mean values of all testedmethods and
areas) for APE:MAE, APE:RMSE, APE:ASE, and APE:(1‐NSE).
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RMSE squares the errors before averaging them, it gives a relatively high weight to large errors. Thus, the
RMSE is clearly above the APE and the MAE for every surface. The APE corresponds approximately to ½
RMSE and to 2/3 MAE, which can, according to our data, therefore be used as a rough quantitative
estimate for the actual error.

This can also be seen in Figure 6d, which illustrates the development of the ratios of APE and the CV error
estimators (APE/MAE, APE/RMSE, APE/ASE, and APE/(1‐NSE)). The standard deviation caused by the
different design approaches is essentially lower for RMSE (0.09) and MAE (0.08) than for APE (0.22),
RMSSE (1.29), and 1‐NSE (0.24). 1‐NSE shows the most irregular course. The ratio changes from 0.7 at
the beginning to 0.03 at 500 observation points.

Figure 7 shows a comparison of theAPE for all design approaches (Figure 7a) and the individual results of the
CV errors (Figure 7b) as a ranking at the points P1, P2 and with 500 observation wells (Pmax) for all nine sur-
faces. For better clarity, the results are ranked according to the error size (RMSSE and NSE ranked by proxi-
mity to 1). A table with the actual errors can be found in the supporting information (Table S2). The results
show that it is not possible to evaluate the different design approaches based on their CV errors.With increas-
ing measurement density, there is a moderate to strong negative Spearman rank correlation between the
APE‐based error ranking and the CV error estimates (except RMSSE). Thus, the SRS design, which actually
led to the largest errors on any surface, is mostly classified as the supposedly best design approach, while the
triangular grid producing on average the smallest APE is predominantly classified as the least suitable design.
We therefore advise not to evaluate different designs based on their CV‐error statistics.

4. Conclusions

The focus of this study was to compare different design approaches for groundwater level monitoring net-
works (GLMN) to find out if there is an extensible design that allows reliable spatial estimates of

Figure 7. Comparison of the (a) ranking of the six investigated methods on all surfaces based on their absolute prediction errors (APE) and (b) the CV error
estimates mean absolute error (MAE), root mean square error (RMSE), root mean square standardized error (RMSSE) and average standard error (ASE), Nash‐
Sutcliffe Efficiency (NSE), from best (1, green) to worst (7, red, RMSSE and NSE ranked by proximity to 1), along with the Spearman rank correlation between the
APE and the CV error estimates from 1 (blue) to −1 (red).
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groundwater level with an optimal information/cost ratio. Additionally, we examined what quality differ-
ences result from the use of different design approaches and which are the most suitable error statistics to
evaluate the quality of the interpolated groundwater surface. For this purpose, we used nine potentiometric
groundwater surfaces, extracted from three regional MODFLOW groundwater flow models to compare the
interpolation results to an a priori reference. The sampling designs examined were random sampling, grid
sampling (triangular and rectangular grid), spatial coverage sampling (low‐discrepancy methods), and geos-
tatistical sampling (densify sampling network).

The results show that the number of monitoring wells has more beneficial influence on the interpolation
result than their spatial distribution (design), as long as a reasonably even spatial distribution is given. All
tested sampling designs led to significantly better results than SRS, but none of these designs proved to be
clearly superior to the others. Which method performs best is mostly dependent on the density of the
GLMN and the characteristics of each individual groundwater surface.

Interpolated groundwater surfaces based on systematic sampling approaches (rectangular and triangular
grid) showed on average the smallest actual APE at all observation densities. Due to their nonprogressive
nature, they are only suitable for the construction of a new GLMN with a defined number of wells, which
will not be extended in the future. The triangular grid design showed on average better results than the rec-
tangular grid design.

The geostatistical DSNmethod, in which the location of an additional observation point is selected based on
the maximum prediction standard error, resulted in the lowest APE among the tested progressive network
designs. Despite its insignificantly higher APE compared to the grid designs, DSN has the advantage that
the resulting design can be sequentially extended and is therefore more appropriate for most groundwater
level observation networks. However, since DSN selects the location of new observation points on the basis
of the maximum prediction standard error, it requires an existing kriging interpolation and can therefore
only be used for adding new sampling locations to an existing monitoring network.

Consistently good results have been achieved with the low‐discrepancy methods (Halton and R2 method),
which, to our knowledge, have not yet been used for GLMN designs before. Moreover, their locations are
only based on mathematical sequences and can therefore be determined without prior measurements.
Furthermore, the placement of the observations points is reproducible and does not change over time (with
possibly different measurements, as it is the case for DSN). Among the low‐discrepancy methods, the R2

method delivers better results than the Halton method and should be preferred.

Based on the SAPE, we defined the points P1 and P2 where an additional well leads to a reduction of the
initial mean SAPE by 0.5% for P1 and 0.1% for P2. Below P1, the observation density seems insufficient,
and the placement of additional wells leads to a substantial improvement of the results, while above P2
further observation wells only lead to minor and thus inefficient improvements. On average for all surfaces
and methods, the observation density for P1 is 5.1 · 10

‐3/pixel and 1.56·10‐2/pixel for P2, respectively, that is,
about 0.51% of all possible sampling options (imaginary pixels of a grid reflecting the assumed variability of
the groundwater) should be sampled definitely, while on average when over 1.56% of all possible sampling
options are sampled, the error reduction becomes considerably less, and the resulting information/cost ratio
might become too low. To compare the density per pixel with a real observation density in wells per km2, it
must be assumed that the resolution of the grid is adapted to the actual variability of the GWS to be expected.
Therefore, P1 and P2 can be used as rough guideline values for the required number of observation wells in
the planning of a GLMN as well as the evaluation of an existing one.

From the results of global CV, we conclude that one should avoid comparing different designs based on the
global average CV error estimation since there are strong negative correlations between APE and the CV‐
error estimates, especially at higher observation point densities. Thus, the CV error statistics are not appro-
priate to evaluate the results of different methods and to compare different design approaches. Which meth-
ods performs best can differ significantly from the actual error depending on the surface and on the CV
statistics used. The actual benefit of CV comes not from using it in a global sense but rather in looking at
the spatial distribution of the individual CV errors (correlated residuals, bias, normal distribution, etc.).
According to our results, the CV error statistics, especially MAE and RMSE, can be helpful as a rough quan-
titative estimate for the actual error, though.
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