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1. Introduction

The main theme in this thesis is, as the title suggests, electromagnetic scat-
tering. The behaviour of electromagnetic waves is described by Maxwell’s
equations. We will consider solutions, which are periodic in time. Therefore,
Maxwell’s equations reduce to a coupled system of partial differential equa-
tions with the two unknowns being the vector fields E and H, the electric and
magnetic field. A general electromagnetic scattering problem is depicted in
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Figure 1.1: Sketch of a scattering problem.

Figure In the presence of an incident field E?, a scatterer D gives rise to a
scattered field E°. This is described by boundary or transmission conditions
defined for the total field E = E° 4+ E° on the boundary 0D of the scatterer.
The scattered field decays as the distance from the scatterer grows due to a
radiation condition. One can consider an expansion of the scattered field with
respect to how fast the solution is decaying. The leading order term with the
slowest decay is called far field pattern F.

Section [2]is centered around the well known mathematical treatment of several
scattering problems and serves as an introduction to electromagnetic scatter-
ing problems (see Section . We will introduce appropriate Sobolev spaces
(see Section and present suitable weak formulations (see Section [2.4)).



1. Introduction

Section |3|is concerned with the following question: How do solutions of elec-
tromagnetic scattering problems behave with respect to perturbations of the
boundary 0D? We will show, that solutions of several scattering problems are
differentiable with respect to the boundary. For the simplest case, the perfect
conductor, we will also show, that the solutions are twice differentiable. As
it turns out, the derivative of the far field pattern with respect to variations
of the boundary only depends on the domain derivative, which is a solution
to the scattering problem at hand with different inhomogeneous boundary
condition. We will provide a characterization of the domain derivative for
each considered scattering problem. A characterization of the second domain
derivative of the perfect conductor is also presented. Our chosen approach
relies heavily on the mathematical framework presented in Section

In Section [@] we present an approach to actually reconstruct the shape of a
scattering object. We employ an iterative regularized Newton scheme to solve
the following, inverse problem: Given a far field pattern E., with respect to
one incident wave, how can we determine the shape 0D of our scatterer? We
will show in detail, how one can set up such a scheme for the class of star
shaped domains with appropriate regularization. Since the scheme does not
depend on a specific scattering problem, it can be applied to every setting
from Section 2.11

The interaction of the electric and magnetic field with the surrounding medium
is described by constitutive relations. Most materials, for example vacuum,
can be described by linear material laws with scalar coefficients. Often more
complex material laws are considered to model optical active media. One ex-
ample of optical activity is chirality. Considering incident fields of purely one
helicity, one can ask the following question: Can we obtain the response of
the scatterer with respect to incident fields of the opposite helicity by consid-
ering a rotated and mirrored image of the original scatterer? If the answer is
no, a scatterer is called chiral. Considering two chiral scatterer, the following
question arises: Which of these scatterer is more chiral?

In Section [5} we consider a new definition of chirality, proposed in [I§]. They
define a measure of chirality which gives an answer to the question, how chiral
a scatterer is and potentially can be. We investigate this new measure of
chirality in the context of time-harmonic electromagnetic scattering. In order
to find scattering objects with high measure of chirality, one might think of
using a gradient type optimization scheme. It seems that the measure of
chirality lacks the necessary regularity. We will therefore propose a slightly



modified measure of chirality, prove its higher regularity and investigate its
relation to the original measure of chirality.

In Section [6] we provide numerous numerical examples to illustrate the previ-
ous sections by using and extending the open source boundary element method
library BEMPP (https://bempp.com/), which provides the necessary imple-
mentations of boundary element spaces, potentials and boundary operators.
We present integral formulations for the scattering problems, which can also
be used to calculate domain derivatives. The boundary conditions that charac-
terize the domain derivatives involve traces and surface derivative operators.
We will present how these can be easily implemented. We will also show
several actual reconstructions, using the regularized iterative Newton scheme
presented in Section [ To illustrate Section [5] we will show numerical calcu-
lations of the measure of chirality and its modification. First, we consider a
model problem, where we can find analytic expressions. Secondly, we will use
again BEMPP to calculate the measure of chirality and its modification for
an ensemble of perfectly conducting spheres.

Finally, we present in Appendix[A]in detail figures of the actual reconstructions
and show convergence plots of our BEMPP extensions, whose implementations
can be found in Appendix [B]


https://bempp.com/




2. Maxwell’s equations

The mathematical foundation of our work is Maxwell’s equations, a system
of partial differential equations in time and space, which couples the scalar
charge density p and the vector valued electric field &, electric displacement
D, magnetic field H, magnetic flux density B and current density J:

oB
n + curl € =0,

aa—lt) —curlH =—-J,
divD = p,
divB = 0.

In general, D and B are functions of £ and H. The behavior can be specified,
if one makes assumptions on the media. In the following, two special cases
will be considered. First, in linear, isotropic media, we have

D=cf, B=uH

with scalar electric permittivity € and magnetic permeability p. The second
case is the Drude-Born-Federov constitutive equations, where

D=c(E+ Bculé), B=p(H+ BcurlH)

with additional scalar chirality parameter 3. We do only consider settings
without charges, i.e. p = 0. By Ohm’s law, we have furthermore

J =o€

with scalar conductivity o. Furthermore we assume all vector fields to be
periodically in time with frequency w. This allows the splitting

E(xz,t) =Re (e_i“tE(x)), H(x,t) = Re (e_i“tl/i\f(;zc))7

with complex valued vector fields E and H , which we will call again electric
and magnetic field. Using this Ansatz, the time derivative becomes a multipli-
cation with —iw and we arrive at the time-harmonic Mazwell system, which
reads as

curl E — iwpH = 0, diveF =0, (2.0.1)
curl H + (iwe — 0)E =0, div pH = 0. (2.0.2)



2. Maxwell’s equations

for linear, isotropic media and
curl E = iwp(H + B curl H), div(e(E + Bcurl E)) = 0, (2.0.3)
curl H = —iwe(E + Beurl E), div(u(H + Beurl H)) = 0

for chiral media with 0 = 0. One important special case is the so called ho-
mogeneous medium, where all material parameters u, €, o and 8 are constant.
In this case, we can introduce the constant wavenumber k € C defined by

E? = wlep + iwpo = w?p(e +io/w)
where we choose k£ > 0 if 0 = 0 and Im k > 0 otherwise. Using the rescaling

E=\/e+ioc/wE, H=/uH

we arrive at the rescaled Maxwell system

curl E =ik H, curlH = —ikE. (2.0.5)
Closely connected to the Maxwell system is the Helmholtz equation

Au+ E?u =0,
which can be derived from the (acoustic) wave equation
0?U (z,t)
ot?

which describes the amplitude U of an acoustic wave in space and time with
speed of sound c. Using again a time harmonic Ansatz U(z,t) = Re (e7“!u(z)),

one arrives at the Helmholtz equation with wavenumber k = \/g . The fol-
lowing Lemma illustrates the connection between the Helmholtz equation and

the Maxwell system ([2.0.5]).

Lemma 2.1. Let Q C R3? be an open set. A wvector field E € C?(Q,C?)
combined with H = %curlE s a solution of the Mazwell system if
and only if E is a solution of

=AU

AE+K’E=0 and divE=0 inQ.
Proof. See [14, Theorem 6.4]. O

Instead of considering the Maxwell system, we can combine the two equa-
tions and consider the second order partial differential equations

curlcurl E — k*E =0 or curlcurl H — k*H = 0.



In homogeneous media, we can easily give explicit examples of solutions of the
Maxwell system. Choosing an arbitrary vector d of length one, i.e. d € R?
with |d| = 1 and a complex vector p € C* with d - p = 0, direct calculation
shows that

E(z) =pe*® and H(z) = (d x p)e*d®

are solutions of the Maxwell system. The pair (E, H) is called plane wave
with direction d and polarization p. Note that (E, H) are analytic solutions of
the Maxwell system in R?. Another type of solutions can be generated with
the help of the following Lemma.

Lemma 2.2. Let Q C R? be an open set and u a solution of Au + k?u =0
in Q. Forpe C? set

1
E(z) = curl(pu(z)), H(z)= %curlE(x).
i
The pair (E, H) is a solution of the Mazwell system in €.

Proof. We have div E = 0 in 2, since we have divcurl V = 0 for any vector
field V € C%(Q,R3). Furthermore, we have by curlcurl = V div —A

—AFE(x) = curl curl curl(pu(z)) = — curl A(pu(x)) 4+ curl V div(pu(x)).
Since curl Vv = 0 for any v € C?(Q), we obtain from Au + k%u =0
—AE(z) = — curl (pAu(z)) = curl (K*pu(z)) = k*E(z).

With the help of Lemma we conclude that (E, H) is a solution of the
Maxwell system. O

As an example for such a solution to the Helmholtz equation, as used in
Lemma we define the analytic function v by

u(x) _ eikd~:z:

for some d € R? with |d| = 1. From

Ou(x)
3:17i

=ikd;u(x), i=1,2,3

we see Au+k?*u = 0. The function u is also called (acoustic) plane wave with
direction d.



2. Maxwell’s equations

2.1. Obstacle scattering

In this section, we want to present the scattering problems, which are con-
sidered in this work. Before going into detail, let us first explain the general
setting. We are always considering scatterers represented by simply connected
bounded domains D C R® which are surrounded by a homogeneous, linear,
isotropic material. This could be vacuum with constant €y > 0, po > 0 and
o = 0 for instance. In the presence of a pair of incident waves (E?, H*), an
analytic solution of the Maxwell system

curl E —ikH =0, curlH +ikE =0, (2.1.1)

with & = w,/ggpo in all of R3, the scatterer gives rise to a pair of scattered
fields (E®, H®), a solution to the Maxwell system in R3\ D. The
interaction of the scatterer, which may or may not be penetrable, with the
incident fields is modelled by boundary conditions on dD. In the case of a
penetrable scatterer, we have an additional pair of fields (E, H), solutions
of an Maxwell system in D, coupled by transmission conditions to (E®, H®)
and (E', H*). To enforce distinguishable behavior between the scattered and
incident fields, we impose a condition at infinity, the so called Silver-Miiller
radiation condition (SMRC) which is given by

lim [a][H(z) x — — E*(z)] =0. (2.1.2)

|| =00 ||
Considering a plane wave E(z) = pe*®® we have
H(z) x z — |z|E(z) = ((d x p) x & — |x|p)eikd~x
— ((z-d— Jalp— (p- )d) .

The factor in front of the exponential function can only vanish, if x - d = ||
and p-x = 0, since p-d = 0. This is the case, if and only if x = d, certainly
not uniformly for |z| — oo. So plane waves do not satisfy the radiation
condition. This example illustrates, how the radiation condition enforces that
the scattered field behaves different than the incident field. In general, the
radiation condition ensures, that the scattered fields are outgoing solutions.
To be more precise, consider the solution ® of the Helmholtz equation, given

by
+ik|z|
() = °

)

||

which is for both signs a solution of the Helmholtz equation in R?\ {0} and
describes a spherical wave. Remembering the time dependency, we arrive at
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the solution of the wave equation

ei(j:k\z|—wt)
U(x,t)=Re| ——— |].
||

Now we see, that only the function with the positive sign describes an outgoing
solution. The gradient of ® is given by

e:i:ik|m| x e:l:ik\:c| T

Vo (x) = (Lik) — — —
I I E N P
The difference between the ingoing and outgoing solution ® is the sign of the
leading term in the asymptotic behaviour of the gradient. This motivates the
so called Sommerfeld radiation condition for acoustic scattering, given by

lim || (Vu

|z]— o0

x
iku) = 0. (2.1.3)
[E]
By Lemma we can define solutions to the Maxwell system (2.1.1)) for any
given p € C? by
1
E(z)=curl(p®(z)) =V® xp, H(z)= & curl B(z), = €R*\{0}.
i

Calculation and recalling the time dependency leads to

(&%) (ﬂ;k B mlp)ei(iw_m)]

Again, we can distinguish ingoing and outgoing solutions by the sign of the
slowest decaying term. The corresponding magnetic field can be calculated to
be

E(z,t) =Re (e “'E(z)) = Re

ikH (x) = curl E(x)

ot (3 0) + (i ) o ) e

If we plug this into the radiation condition (2.1.2)), we arrive at
x

]

which tends to zero for |z| — oo, if and only if we have chosen the + sign
in the definition of ®, which corresponds to an outgoing field E. This is of

#l[H (@) x =+ B(@)| :\x|<1>(x)(| |xp>[ﬁ:1k 1k+(9(| |)}



2. Maxwell’s equations

course just a motivation, why the radiation condition makes sense. In general,
the radiation condition ensures uniqueness of the solutions of the scattering
problems.

We will now state the four scattering problems considered in this work in
the classical form. Throughout this thesis, let D C R? be open, bounded and
simply connected.

2.1.1. Perfect conductor
For the perfect conductor, we assume D to be impenetrable, i.e. there is no

electric and magnetic field inside D. The boundary value problem can then
be fully stated in the unbounded domain R?\ D and reads as

curl E =ik H, curlH = —ikE inR3>\D, (2.1.4a)
vxE=0 ondD, (2.1.4b)

E® E-E :
(Hs) = <H B Hi> satisfies SMRC, (2.1.4¢)

where (E?, H') is a solution of (2.1.1)) in R®. Note, that the boundary condition
i

1.4b) reads as v x EF = 0 as well in the original scaling, since we rescaled
the incident field as well.

2.1.2. Penetrable obstacle

Considering penetrable obstacles, we have an additional set of material
parameters €p, up, op € C, which differ from g, €g, i.e.

() 2 (L, L)

Then we have a set of Maxwell’s equations in the unbounded domain R3 \
D as well as in the bounded domain D, which are coupled by transmission
conditions. The full scattering problem then reads as

curl E =ik H, curlH =—-ikE in D, (2.1.5a)
curl E =ik H, curlH =—ikE inR3*\D, (2.1.5b)
1 1
—vXF|, ———————vXxFE| =0 ondD, 2.1.5¢
Veo ‘Jr Vep +iop/w ’7 ( )
1 1
—vxH ——vxH|_=0 ondD, (2.1.5d)

7w e T

10



2.1. Obstacle scattering

Tl E-Ei :
<H5> = <H B H’) satisfies SMRC, (2.1.5¢)

where (E?, H') is a solution of |D in R® and k = w\/,up(ep +iop/w)
denotes the interior wavenumber. Note, that the unintuitive transmission

conditions (2.1.5¢|) and (2.1.5d)) imply continuity of the tangential components

of the electric and magnetic field in the original scaling
I/X]?I’+—1/xﬁ}_:0:uxﬁ+fuxﬁ'_.
2.1.3. Obstacles with impedance boundary condition

We consider again an impenetrable scatterer. On the boundary 9D, we have
an additional material parameter, the (surface) impedance X : 9D — R which
we always assume to be positive, i.e. A > 0. Then the scattering problem
with impedance boundary condition reads as

curl E =ik H, cwlH = —ikE inR*\D, (2.1.6a)
vx H=Mvx(Exv)) ondD, (2.1.6Db)
(fp) = (g B §Z> satisfies SMRC, (2.1.6¢)

where (E?, H') is again a solution of (2.1.1)) in R3. Note, that the boundary
condition ([2.1.6b|) is equivalent to the impedance boundary condition

VX?IZZ\\(VX(EXV)) on 0D
in the original scaling with positive impedance A= %)\ > 0.
2.1.4. Chiral media

The Maxwell system for chiral media (2.0.3) does not allow the elegant
scaling. Introducing the chiral parameter 8 > 0 and additional ep, up € C,
the scattering from chiral media reads as

curl E =ik H, cwlH=—ikE inR*\D, (2.1.7a)
curl B =ik(H 4 Beurl H), cwlH =ik(E+ pfcwlE) in D, (2.1.7b)

1 1
—vXFE|, ———vxFE| =0 ondD, 2.1.7c
7 Bl Bl (217
1 1
—vxH ——vxH|_ =0 ondD, (2.1.7d)

7w e T

11



2. Maxwell’s equations

E® E-E .
<H5> = (H— H1> satisfies SMRC, (2.1.7e)

where (E?, H') is again a solution of in R? and we have the exterior
and interior wavenumbers k = w,/goptg and K = w,/lipep, respectively. For
more details and how one can derive the boundary conditions from physical
laws for the various scattering cases, we refer to the detailed introduction in
[33].
2.2. Sobolev spaces

In our work, we consider weak solutions of the above stated scattering prob-
lems in H(curl, Q) or in appropriate subspaces of H(curl,2). We will briefly
motivate this approach and present the necessary results. We will start by
defining Sobolev spaces in ).

2.2.1. Sobolev spaces

We start with a partial integration formula. Let u,v € C'(Q) and the
boundary 92 be smooth enough. Then we have

/uVde+/vVudx:/ uvr ds. (2.2.1)
Q Q 19)

Motivated by this equation, we define: A function u € L?(£2) is said to possess
a weak gradient F € L?(Q,C3), if

/qupdx:—/Fgodm, for all p € C5°(Q).
Q Q

Since F' is unique, we use the usual notation Vu = F. We define
H*(Q) = {u € L*(Q) : u possesses a weak gradient in L?(Q, C*)}.

This space is, together with the inner product
(u,v) () = / (uﬁ + Vu- W) dzx,
Q

a Hilbert space. For ¢ € C*(Q), one can define the trace operator v by

10 = 9| po-

12
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Note that the left hand side of makes sense for u,v € H'(Q). By
choosing the right space on the boundary 0f), one can extend v to a linear
bounded operator defined on H'(£2). This extension requires some regularity
of the boundary. To be more precise the boundary 02 has to be at least
Lipschitz. We will present this later. Analogously, one can define Sobolev
spaces of order m € N. For a = (a, a2, a3)" € N® we define the differential
operator D® by

o1 +0‘2+0‘3<p

DYp=— P
4 Oz 0x5?0xg®’

for ¢ € Clol(Q),

where we define |a| by |a| = a3 + as + asz. A function u € L?(Q) is said to
possess a weak derivative f of order a € N® in L?(Q), if there is a function
f € L*(Q) such that

/ uD%pdz = (—1) / gpdx, forall ¢ € C;°(Q).

Q Q

We use again the usual notation D*u = g and define for m € N the space
H™(Q) = {u € L*(Q) : D*u € L*(Q) for all @ € N? with |a| < m},

which is, together with the inner product

<u7v>Hm(Q):/u®dx+ Z /Do‘uDo‘Uds,
Q Q

aeN?
lloel| <m

a Hilbert space. Considering smooth vector fields E,V : Q0 — C3, we have the
following partial integration formula:

-/Q(curlE~V—cuer-E)dx:/aQ(VXE)'(VX(sz/)) ds.  (2.2.2)

Motivated by this equation, we define: A function E € L?(Q2,C?) is said to
possess a weak curl F € L*(Q,C3), if

/E-cuer ds:/F~Vds for all V € C5°(Q, C?).
Q Q

We define the space H (curl, Q2) as the subspace of those functions in L?(Q, C?)
with weak curl in L?(Q, C?), i.e.

H(curl,Q) = {E € L*(Q,C?) : E possesses weak curl F € L*(Q,C?)}.

13



2. Maxwell’s equations

If F € L?(Q,C3) is the weak curl of E € H(curl, ), we write again as usually
curl E = F. Together with the inner product

<E, V>H(cur1,Q) = <E, V>L2(Q,(C3) + <CUI‘1 E, curl V>L2(Q,(C3)7

where (A, B)r2@.c3) = [ A" B dx denotes the inner product of L?(§, C?),
one finds that H(curl, Q) is a Hilbert space. For functions ¢ € C1(Q,C?), one
can define the tangential traces i, vre by

e =9 xv|,, Are=Ex(@xv),p,

Motivated by , one can extend these traces for F € H(curl, ), if the
boundary is at least Lipschitz. We want to chose the right range space, such
that v; and vp are continuous and surjective. As it turns out, we need frac-
tional Sobolev spaces with negative index on the boundary 9Q2. We will out-
line, how one defines these for bounded Lipschitz domains 2, following closely
mainly [33] and also [6 B9]. For bounded domains with smooth boundaries,
one could use a more elegant different approach, see e.g. [40]. But this requires
some knowledge about unbounded operators on smooth manifolds. Therefore,
and because above defined scattering problems can be defined and solved for
bounded Lipschitz domains, we chose the more technical approach. Let us
start by defining Lipschitz domains.

2.2.2. Traces and Sobolev spaces on surfaces

A bounded set Q C R3 is called Lipschitz domain, if the boundary can be
locally parameterized by a Lipschitz-continuous function. That means, for
every r € Of) there is an open neighborhood w C R? with x € w satisfying
the following properties. Let B, (p,r) denote the ball of radius r and center
p in R™. Then there exists a constant o > 0, a Lipschitz-continuous function
¥ : B2(0,) — [0, 1], a rotation R € R3*3 and a translation 2z € R? such that
the following holds

0NNw={Rr+ 2z R®: (x1,25) € Bx(0, ), 3 = ¥(x1,72)},
QNw={Rx+2zcR>: (x1,22) € B(0,0), 23 < Y(21,22)},
w\D ={Rx+2 € R®: (x1,22) € B2(0,0), w3 > (1, 22)}.

We define the parametrization ® : B3(0,a) — R? by

1
d(x)=R x9 +z, x€ B3(0,q).
Y(x1,2) + 23

14



2.2. Sobolev spaces

Then & : By(0,a) x {0} — R? is a local parametrization in w and we have

NNw={P(z) : x € Bx(0,), 3 = 0},
QNw={®(z):z € B3(0,a), x3 < 0},
w\ Q= {®(z):x € Bz(0,a), z3 > 0}.

Note, that by Rademacher’s theorem 1 is almost everywhere differentiable
with |V¢| < L, where L denotes the Lipschitz constant of ¢. Some vector
calculus shows

1 _gw1’(/)(m)
[ — - 2o
e 11/}(06)

Since ) is bounded we have that 002 is compact. For every x € 090 we
have such a parametrization ®, : B3(0, ;) — R? of an open neighborhood
wy C R3. Since x € w,, we have 00 C Uzeanw,. Since 02 is compact, we can
choose a finite covering wy,...,wy with N € N of 09, i.e. we need only N
parametrizations ®;,7 = 1,..., N to describe the boundary 9. The boundary
0Q is called of class C*, if we have in addition that all parametrizations )
satisfy ¢ € C*. The boundary 9 is called regular, if k = co. In order to
localize functions, we need the following theorem.

o 0P
X o | = VIFIVOP, vly =) =
6:61 8;1:2

Theorem 2.3 (Partition of the Unity). Let K C R? be a compact set. For
every finite open covering w;, i = 1,...,N with N € N, there exists \; €
C>(R®) with supp \; Cw; i =1,..., N, such that

N
D Ai(@)=1, forallzeK.

Now let u € C(99). Let {\;} be a partition of the unity with respect to the
covering 9 C UY  w;. Then u is represented by a sum of localized functions
v; + Ba(0,a;) x {0} — C. First we write u = Zf\;l Aqu. For every function
u; = \;ju we can define

vj(2) = u;(P;(z)), € Ba(0,a;) x {0}.

We can localize the L?(9)-norm by

ol = | r%—z/ w(y) ds

8Qﬁw,
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2. Maxwell’s equations

m

Z/B(O ‘)Aj(fbj(x))lu(@j(gg))p 1+ |V (2)2de. (2.2.3)

Jj=1

From this we can see that u € L?() if and only if z — /A;(®;(x))u(®;(z))
is in L?(B2(0, a;j)). Note that ); is compactly supported in w; and therefore v;
has compact support in By (0, ;) x{0}. Thus, we can extend v; by zero outside
of Bs(0,a;) to a continuous and periodic function v; € Cper([—m, 7]?). This
localization allows us to define Sobolev spaces on the boundary by means of
periodic Sobolev spaces in dimension two on some cube K with By (0, a;) C K.
Finally, we finish the preparations of defining Sobolev spaces on the boundary
by defining the space HSeT(K ), the space of periodic Sobolev functions on
the cube K = (—n,m)2. For u € L?(K), the Fourier coefficients u,, € C for
n € Z? are defined as

1 )
= 477r2/Ku(x)eﬂn.x dz.

With these coeflicients, we can define the Fourier series of u as the right hand

side of .
u(z) = Z Uupe™ .

nez?

Un

The equality of this equation has to be understood in the L?(K) sense. A
partial derivative of u is formally given by

ou ;
= E injupe™®, i=1,2.
3xi

nez?
Therefore we define for any real s > 0 the space
Hpo(K) = {u € L*(K) : Y (14 |nf*)*[ug|* < oo},
nez?

which is, together with the inner product

(w, v) s, (k) = Z (1 + [2*)*unoy
nez?
a Hilbert space. A finite sum

u(x) = Z upe™?® zrekK, wu,ecC

nez?
[n|<M

16



2.2. Sobolev spaces

is called trigonometric polynomial. We can also define H 5 (K) as the com-

pletion of the space of trigonometric polynoms with respect to the norm
HUHHI;; = Z(l + |n|2)—5|un|27
n

where we sum over the finitely many Fourier coefficients wu,,. We use (2.2.3)
to define Sobolev spaces with non-negative exponent s > 0 on the boundary
99 as subspaces of L?(9Q). Define the space

H*(0D) = {u € L*(0Q) : u; € H:,(K) forall j =1,...,N}

per

where w; denotes the localization of u, i.e.

5(x) = /N (@)1 + [V Pu(®;(2)),
together with the associated norm

N
lullFreamy = D I5l13s, -
j=1

The norm depends on the choice of the parametrizations and partition of the
unity, but different choices lead to equivalent norms. We can also consider
H?*(09Q) with exponent —s. As it turns out, the spaces of exponents s and —s
are dual to each other. The dual pairing

a-=00) (- ) He(90) + H () x H*(0Q) — C
is given by the extension of the L?(99) inner product, i.e. we have
H-+(09) (U, V) s (00) = / uvds,
o0

if u € L2(0Q2) N H=*(09Q). As it turns out, one can extend ~ continuously to
H'(©Q) and the range spaces are exactly the Sobolev spaces on the boundary
H*(09) with s = 2. We will summarize this in the following theorem.

Theorem 2.4 (Trace theorem I). The trace operator v can be extended to a
linear bounded operator

v HY(Q) — H?(09).

Furthermore, v is surjective and admits a bounded right inverse n : H= (09) —
HY(Q), i.e.
u=n"ynu, foralluce H%(aQ).

17



2. Maxwell’s equations

Proof. See [33, Theorem 5.10]. O

Now we want to establish a trace theorem for functions E € H(curl, Q).
Motivated by the partial integration formula (2.2.2)), the space of tangential
vector fields LZ(9€2) defined by

L2(09) = {E € L*(09,C3) : v- E = 0 almost everywhere.}

seems to be a reasonable starting point. Analogously to the scalar case, we
want to localize functions E € LZ(9f2). Since we want to keep the structure
of tangential vector fields, we define

L}(K) ={E € L*(K,C?) : E3 = 0 almost everywhere.}.

Now, using again a partition of the unity, we need to construct functions
E; € L}(K) such that we have E € L?(9Q) if and only if F; € L(K) for
i1=1,...,N. There are two sets of E;, which satisfy our needs, given by

Ei@) - {V TF V@ P VA@@)F () E(@i(x)), @ € B0, 0)
! 0

xr € K\BQ(O,O{Z‘) ’

ET(z) = {\/1 + [Vi(@)[2/Ni(®i(2)) BT (2) BE(®4(x)), x € Ba(0, )
! 0 LL’EK\BQ(O,O&Z‘)’

for © € By(0,«;) and by 0 in K \ By(0,;), where the matrix F; is defined
column wise by

8301

61'2

3151 8:@

Fi(z) = , x € By(0,0a4).

We need both sets of localized functions, since the space H(curl,Q) admits
two kinds of traces, which are in different spaces. Analogously to the scalar
space, we define the following vector valued periodic Sobolev spaces. We start
by defining the space of trigonometric vector polynomials T (K, C?) by

T(K,C?) ={ue L*(K,C°) :u(z) = > upne™” x€K, u, €C’, MeN}

Next, we define two norms on 7 (K, C?) by

. — 2\s 2 . 2
el s, vy = | D (L [n[2)* [Jun]2 + |n - un|?],
nez?

18



2.2. Sobolev spaces

ull iz (curriey = | D (L [0f2)*[[unl? + [0 x un[?],
nez?
where a x b = a1by — agb; for a,b € C*. Then we define H5,, (Div, K) and

H..(Curl, K) for any s € R by the completion of 7 (K, C?) with respect to the
the corresponding norm. Again, we define spaces on the boundary by localized
functions. We define for s € R the spaces H*(Div,9) and H*(Curl, 9Q) as
the completion of

{E e L}09): E! € H*(Div,K), j=1,....N} and
{E € L}(0Q): EI' e H*(Cwl,K), j=1,...,N},

respectively, with respect to the norms

N
I Bl £+ (Div,00) = Z IE s (Div, 1)
j=1

N
||EHHS(Cur1,BQ) = Z ||£EIJT||2 s(Curl,K)"
j=1

As it turns out, one can extend ~; and yr continuously to H(curl, ©2) and the
range spaces are exactly the two spaces defined above with s = f%. We will
summarize this in the following theorem.

Theorem 2.5 (Trace theorem II). The trace operators v, and yr can be
extended to linear bounded operators

v : H(curl, Q) — H™2(Div,09), ~r: H(curl, Q) — H~ 7 (Curl, 09).

They both have bounded right inverses n; and nr. Furthermore, H— 2 (Div, 09Q)
and H_%(Curlﬁﬂ) are dual to each other, where the dual pairing

_1,. _1
H*%(Div,aﬂ)<" '>H*%(Curl7aﬂ) : H2(Div,0Q) x H~2(Curl,09Q) — C

is given by
E-Vds,
o0

if E € L2(0Q) N H~2(Div,80Q) and V € L2(8Q) N H~2(Curl, dQ). Further-
more, we have for E,V € H(curl, Q) the partial integration formula

(E,V)

H™ % (Div,0Q) H™3 (Curl,dQ)

/ <cuer~EfVocurl E) dz = (mE,vrV) (2.2.4)
Q

H™3 (Div,09) H™% (Curl,09)"

Proof. See [33, Theorems 5.24 and 5.26]. O
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2. Maxwell’s equations

2.2.3. Surface differential operators

In this section, we present several surface differential operators and their
extensions to Sobolev spaces. Since we want to define these operators as
classic differential operators, we assume just for this part, that () is a bounded
domain with boundary 9 of class C?. Let u € C*(99Q). Then we can define
the surface gradient Gradgq by

ot

Gradggu = Vi — —uv,
v

e
and the vectorial surface rotation Curlgg by
——
Curlpqu = Gradpq u X v,

where @ € C*(U) denotes an arbitrary extension of u to an open set U such
that 9Q C U. Now let F € C1(9Q,C3) be a tangential vector field, i.e.
F-v=0on 0. Then we define the surface divergence Divgq by

Divog F = divE — v - Jpv,

where again Fec! (U, C?) denotes an extension of F' to an open neighborhood
U of 0Q and Jgz the Jacobian of F. We also define for F the scalar surface
rotation Curlsgg by

Curlgg F = curl F.u

The surface gradient Gradgg and the surface divergence Divgq are coupled
by duality with respect to the L?(92) inner product, that is we have

/ u Divgo F'ds = —/ F - Gradgg uds. (2.2.5)
Ele) Ely)

The scalar surface rotation Curlyq can be expressed by the surface divergence
Divpq by
Divaa(F x v) = Curlpq F, (2.2.6)

which could also be used as definition of Curlyqn. These operator motivate in
hindsight the definition of the trace spaces H~2 (Curl, dQ) and H~2 (Div, 892).
Recall for smooth vector fields the partial integration formula (2.2.2). If V
is a gradient field, i.e. V' = Vu for some smooth function u, we arrive with
curl Vu = 0 at

/ curl £ - Vudz = / (v x E) - Gradgg uds = —/ Divpa(v x E)uds.
Q 90 90
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2.2. Sobolev spaces

Again, the left hand side does make sense in H(curl, §2), therefore the right
trace space has to include the fact, that the trace v F admits surface diver-
gence. For smooth vector fields E, we have

vXyrE=~yFE on 0.

Therefore, v E has to possess the surface rotation Curlyg in the right trace
space. Recall the definition of H*(Div, K) with K = (—m,w)? for the lo-
calized tangential vector fields as the completion of the trigonometric vector
polynomials 7 (K,C?). K can be seen as surface of the three-dimensional cube
(—m,m). If we consider the trigonometric vector monomial

F(z) = fe™*, x= (i;) €K, [= (g) eC? n= <Z;) ez’

we can easily extend F to a vector field defined on (—m,7)3 by forgetting the
third variable and setting the third component to zero, i.e.

F(y) = (F(9),0)" €C’, ye (-mm)° CR?
where § = (y1,v2) " € K. The surface divergence Divy F is then given by
Divg F(z) =i(n- f)e™*.

This motivates the second term in the H?®(Div, K)-norm. For the surface
rotation Curlg F', we have analogously

0 0
Curlg F(z) = | 0] - 0 e =i(n x f)e™?,
1 i(n1fa —nafi)

which motivates the second term in the H*(Curl, K)-norm. The boundedness
of the surface divergence and the surface rotation is the reason, why these op-
erators can be extended to linear bounded operators between certain Sobolev
spaces on the boundary 0f2 for Lipschitz domains. Since the above definitions
used boundaries of class C2, we have to redefine the surface differential op-
erators in the context of Lipschitz domains. We will summarize this in the
following theorem.

Theorem 2.6 (Surface differential operators). Let 2 be a bounded Lipschitz
domain with boundary 0Q. Let ¢ € HY(Q). Then Vi € H(curl,Q). We

define the bounded linear operators Gradgq and Curlyg by

Gradgq : H? (99) — H™ 7 (Curl, 89)
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2. Maxwell’s equations

Curloq : H?(99Q) — H™% (Div,09)

by
Sy
Gradaoo ¢ =yrVne and  Curlpnp = 1 Vne.

We define the linear bounded functionals

Divog : H*(Div, Q) — H™2(89), Curlpq : H 2 (Curl, 09Q) — H 2 (9)

by
H™ % (09) (Divaq ¢, w>H%(aQ) T H™ 3 (Div,00) (¢, Gradoq w>H’%(Curl,BQ)
and
—
H™ % (09) {Curloq ('07w>H%(852) T H(Div,09) (Curlaat), _¢>H*%(curl,m)

for all € H2 (0%).

Proof. Since curl Vo = 0 in L?(Q) for ¢ € H' (), see [39, Theorem 3.40],
we have Vnp € H(curl, Q). The boundedness of Gradgq and (ﬁm follows
from the boundedness of 7 : Hz (99) — H'(€). The boundedness of Divag
and Curlyq follows immediately. If ¢ can be extended to a smooth function
in the neighborhood of 052, then Gradgg, defined as in this theorem, is just
the classic surface gradient, which does not depend on the extension, see [33]
Lemma A.19]. By a density argument we conclude that the definition of the
surface differential operators in this theorem does not depend on the choice
of n. O

2.3. Analytic solutions and the Calderén operator

The scattering problems defined in Section [2:I]are formulated in unbounded
domains in R3. 1In this section, a summary of [39, Section 9.3], we want
to present the framework, which allows us to consider weak formulations of
those scattering problems in bounded domains in R3. This is possible, since
we can find explicit representations of solutions of Maxwell’s equations in
linear isotropic homogeneous media, such as vacuum. Recall, that we always
assumed our scatterer to be surrounded by such a medium. In this section,
let R > 0 be large enough, that the scatterer D lies completely in the ball
of radius R centered in 0, i.e. D C Br(0). We are considering the following
scattering problem

curl B* —ik H* =0 in R®\ Bg(0), (2.3.1a)
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2.3. Analytic solutions and the Calderén operator

curl H* +ik E* =0 in R®\ Bg(0), (2.3.1b)
vx E°=g¢g on dBg(0), (2.3.1¢)
(E°, H®) satisfies SMRC, (2.3.1d)

for a tangential vector field g. For now, we will assume g to be smooth. Later
on, we want to choose g = v x E5, where E* is the solution of the scattering
problem restricted to Br(0). As we have seen before, see Lemma [2.1] the
Maxwell system is closely connected to the Helmholtz equation. In order to
find explicit solutions of —, we start by finding solutions of the
Helmbholtz equation

A+ k*u =0, (2.3.2)
using spherical coordinates (r,0, ) defined by
7 sin 0 cos ¢
R¥*> 2= |rsinfsing |, r>0,0¢c]0,7], ¢ €[0,2n]
r cos 0

Since we want to exploit the structure of the spherical coordinates, we make
an Ansatz by separation of variables, i.e. u(z) = u(r,0,¢) = ui(r)uz(0, p).

Then ([2.3.2)) reads as

%[%(r ai?il)+k2r2ul}u2+[rzslin9%< sin 96&?;) r2511n29862<;22}u(1 :0)’
2.3.3

or, using the representation of the Laplace-Beltrami operator in spherical co-
ordinates
1 0 2 8“1
[87‘ (r or
Noticing, that the first summand is a function of only r and the second one
of only # and ¢, the sum can only be zero, if there is a constant n € C such
that

1
) + k2r2u1} + ;AaBl(O)UQ =0. (234)
2

AaBl(O)UQ = Nu2 (235&)
0 ( 28u1
(2t
or or
Note that is an ordinary differential equation for » > 0 and
is the eigenvalue problem for the Laplace-Beltrami operator. For an arbitrary
1 € C, this is not solvable. We present the solutions of in the following
theorem. For completeness, we define the Legendre polynomials P, of order
n € Ny by

) + (k2 4 n)ug =0 (2.3.5b)

(=" d~
2nn! dt"(

P.(t) = — )", te[-1,1]
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2. Maxwell’s equations

and the mth associated Legendre functions of order n by

m

Pt =(1-12)% (%)mPn(t), m=0,1,2,...,n,te[-1,1].

n

Furthermore, we define the spherical harmonics Y," by

2n+1 (n — |m|)! .
Y0, ) = plm| 0)e'™m?

for n € Ny and m € Z with |m| < n. We have the following theorem.

Theorem 2.7 (Eigenvalues of App, (0y). For any n € Ng and m € Z with
|m| < n we have

A(‘)Bl(O)Ynm =-n(n+1)Y ",

i.e. the spherical harmonics of order n are the eigenfunctions of the Laplace-
Beltrami operator with respect to the eigenvalue —n(n + 1). The set

{v"

:n €Ny, meZ, |m|<n}
is a complete orthonormal system in L?(0B1(0)).

Proof. See for example Section 2.4.1 in [40]. O

Due to this result, we only have to find solutions of (2.3.5b)) for n = —n(n+
1), n € Ny. Using the change of variables ¢ = kr, one finds two families of
solutions, the spherical Bessel functions of order n € Ny, given by

tn+2l

e ()
yn(t)—; 2 (—2n+1)(—2n+3) - (—2n+ 20— 1)’

teR,

and the spherical Neumann function of order n € Ny, given by

(2n)! = (1) t2—n—1
2nl = 200 (=20 +1)(=2n+3) - (~2n + 20 — 1)

Yn(t) = —

for t > 0. Note the singularity of the Neumann functions for ¢ — 0. The
linear combination

hgzl) = Jn +iyn, hg) =Jn —1iYn, m €Ny
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2.3. Analytic solutions and the Calderén operator

are called spherical Hankel functions of order n € Ny of the first and second
kind. These functions and their derivatives have the following asymptotic
behaviour

1 4o 1
(hgll,Q))/(t) _ ;e:b(t—T 4 O(ﬁ)’

(2.3.6)

where the positive sign corresponds to the spherical Hankel function of the
first kind, and the minus sign to the spherical Hankel function of the second
kind, see [14, Section 2.4]. We conclude, that we have constructed to families
of functions, namely

up (@) = G (kr)Y," (0, 0), oy (2) = hD (kr)Y;"(0, ), n € No, |m| <n,

where the u™ satisfy the Helmholtz equation in R? and the v™ in R3\ {0}.
Using the asymptotic behaviour of the v, one can show the following lemma.

Lemma 2.8. Forn € Ny and m € Z with |m| < n, we have that v satisfies

the Sommerfeld radiation condition .

Proof. This follows from the asymptotic behaviour of the Hankel functions
(2.3.6), for more details see [14, Theorem 2.9]. O

Recall our goal to construct explicit solution of the scattering problem

(2.3.1a)-(2.3.1d)). Using our set of solutions of the Helmholtz equation, we

arrive at the family of vector wave functions, defined in spherical coordinates
by

M (x) = n(:L—i—l) curl(z j, (kr) Y0, ¢)), =€ R3,
mwzil curl(z D (kr) Y™ T 3
Ny (z) MOESY Wz by, (k) Y (0,0)), x€R*\{0}.

These are called Debye potentials and define solutions of the system (2.1.1]) in
R3 and R3 \ {0}, resp. by the following lemma.

Lemma 2.9. Let u be a solution of the Helmholtz equation
Au+ku=0
Then E(z) = curl(z u(zx)) is a solution of

curl> E — k2E = 0.
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2. Maxwell’s equations

Proof. Let u be a solution of the Helmholtz equation, i the identity, i.e. i(z) =
z and E(z) = curl (u(z)i(z)). Using the vector calculus identity

curl(F x G) = Fdiv(G) — Gdiv(F) + JpG — Jo F
for some sufficiently smooth vector fields F, G, we have
curl®> B = curl®(ui) = curl®(Vu x 1)

= curl (3Vu —Aui+ Jyyui — JZ-Vu)
= k? curl(u i) + curl(Jy,i).

Since
Jvui = (Jyu — Juy)i + (Joui + J;' Vu) — J Vu
= curl(Vu) x i + V(Vu'i) — Vu,

we conclude
curl> E — k2E = 0.

Inspired by the observation
curl(z u(z)) = Vu x z,

one can see, that the vector wave functions M,* and N, can be interpreted
as tangential vector fields on Bj(0). Since we have

= [ VrVids=nlnd ) [ MgV Tids
8B, (0) 9B (0)

=n(n+1) / Gradypp, (o) Y, - Gradgp, (o) ¥;* ds,
0B1(0)

we find that the spherical surface harmonics U™, V™, defined for # € S? by

1
U™(%) = ——— Grad Y™ (&
n( ) TL(TL—|—1) 0B1(0) tn ( )
Vi (z) =2 x UM&)

form an orthonormal system in the space of tangential vector fields, which we
denote by LZ(9B;(0)). One can also show completeness.
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2.3. Analytic solutions and the Calderén operator

Lemma 2.10. The set of spherical surface harmonics
{UF, vit,neN, meZ,|m|l<n}
is a complete orthonormal system in L?(0B1(0)).

Proof. See for example [14, Theorem 6.23]. O

The main difference between the vector wave functions M and N/ (and
their curls) is the asymptotic behaviour, as stated in the following lemma.

Lemma 2.11. The functions N, L curl N™ are radiating solution of the
Mazwell system in R3\ {0}.

Proof. See [14, Theorem 6.24]. O

Now, we have all the ingredients to state the main theorem of this section.
Recall, that our main goal was to find explicit representations of a radiating
solution of Maxwell’s equations outside some ball of radius R, see (12.3.1al)-

@.3.1d).

Theorem 2.12. Let E* be a solution of - . Then E*® has the
representation

HZWZ;H(WN’" +b;"—kcur1Nm( )), |z > R.

The series converges uniformly on compact subsets. For the magnetic field,
we have

Z Z (a gy corl N @) = BEN @) o] >

Conwersely, if the tangential component of this series converge in L? on the
sphere of radius R, then the series itself converges uniformly on compact sub-
sets of |x| > R. In this case, the series represent a radiating solution to the
Mazwell system.

Proof. See [14, Theorem 6.25]. O

If we consider the corresponding interior problem

curl> E — k?E =0 in Bg(0), (2.3.7a)
vx E=g ondBg(0), (2.3.7b)
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2. Maxwell’s equations

we have analogous representation as in the theorem above

Z Z (mMm —|—bm—cur1Mm( )), |z| < R,

n=1m=-—-n

Z Z (mMm —Hﬁ—kcurlM’"( )), |z| < R.

n=1m=-—n

These representations allow us, to calculate explicit representations of our
scattering problems from Section [2:1} if we restrict ourselves to the special
case D = Bpr(0). These formulas, which will be presented in Section [2.3.1]
are immensely important as a first step of the verification of our numerical
experiments.

For now, we will continue presenting the framework for the Calderén op-
erator. In Section we defined the Sobolev space H ™~z (Div, dQ) for the
boundary of a bounded Lipschitz domain. For the special case, where € is a
ball of some radius, i.e. 2 = Bg(0), one can give a more direct definition,
using the orthonormal systems in L?(0Bg(0)) and L?(0Bg(0)). First, any
given U € L?(0Bg(0)) can be written by Lemma [2.10] as

Z Z (v (@) + V@), @€ Br(0), & = — €82

n=1m=-—n

with coefficients o, b7 € C, n € N, |m| < n. Since the UJ* and V" are

nrr» n
orthonormal, we have

10123 0maion = B DS D2 (la? + B2,
n=1m=-—n

We can calculate the surface divergence of U, by

B
nin+1)

1
:7A831(0 —\/n ’I’L—|—1 Ym

n(n+1)

DiVaBl(O) U:Ln = DiVaBl(O) Gradagl(o) Ynm

We have Divyp, ) V)" = 0 by considering for n,k € N and m,l € Z with

n

|m| < nand || <k

/ ﬁDiV@Bl (0) V,Zn ds = —/ Vnm . Gradagl(o) Yklds
9B1(0) 9B1(0)
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2.3. Analytic solutions and the Calderén operator

:7/ Vi Ol ds = 0.
9B1(0)

We can define H*(Div,dBr(0)) for s € R as the completion of the space of
tangential vector fields of the form

v=%" Zn: (agU,TM,TV,;n),

n m=—n

where the sum over n is finite with respect to the norm

\‘I M3

1Tz (Div.0r(0)) = Z [ (n+1))"Hai[? + (n(n +1))°|by 2

Consider for g € H™2 (Div, 0BR(0)), given by

- i zn: (aﬁ‘U[l” + ﬁ?VT{”) (2.3.8)

n=1m=-—n

the exterior spherical scattering problem ([2.3.1a)) - (2.3.1d)) for some coeffi-
cients o', S € C, n € N, |m| < n. By Theorem [2.12] we make the Ansatz

s o0 n m 1 m
()05 55 b () e (3 o]
n=1m=-—n ik n n

(2.3.9)
In order to match the boundary condition v x E® = g, we have to calculate
the traces v x N, and v X i curl N explicitly. This is done by using the
representation of curl in spherical coordinates. We omit the calculation and
present the result. We have

NM(x) = —hD (kR)V,™(

>
~

and

1
& curl N} (x)

_n(n+1) / m
= YO0 Ry 3+ (D () + M (80 (R

for z = R%, R > 0, & € S?, see [14, Section 6.5]. Therefore, the boundary
values are given by

v x N (x) = h{ (kR)U} (%),
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2. Maxwell’s equations

U %curlN:l”( )= L (O (RR) + kRODY (RR)) VI

ikR
for x = R%, & € S?. If we compare the coefficients in

0=vxE°—g= ZZ (a™hD(kR) — a™)U™

n=1m=-—n

+Z Z ( (A (kR) + kR(R) (k R))—BZ’)W

n=1m=-—n
we find, that the coefficients a)' and b]" of the solution are formally given by

m 'kR m
e b & . (2.3.10)
h (kR) h (kR) + kR(h" Y (kR)

We conclude this with the following lemma.

Lemma 2.13. Let k € R. For any g € H™ 2 (Div,dBg(0)) with the represen-
tation (2.3.8), the unique solution E*,H® of (2.3.1d) - (2.3.1d) is given by
with the coefficients defined in (2.3.10}).

Proof. By Theorem we only have to check if the coefficients a)’, b]' are
well defined. Assume h%l)(kR) = 0 for some n € N. Since k, R > 0, we have
by hY = Jn +iyy that j,(kR) = y,(kR) = 0. This is a contradiction to the

Wronskian

In(2yn(2) = dn(2)yn(2) = 7, z€C. (2.3.11)

z

Therefore a™ is well defined. Analogously, if A\ (kR) + kR(hY (kR) = 0
we have j,(kR) + kRj.,(kR) = 0 and y, + kRy,,(kR) = 0. This leads to

kR, (kR)ju(kR) = —kRj, (kR)y,(kR).

Again by the Wronskian, we conclude

0 = kR(y,(kR)jn(kR) — yn(kR)j. (kR)) = %,

a contradiction. O

We now define the Calderdn operator A as follows. Given a function A in
1
H~2(Div,0Bgr(0)), we define A\ = & x H®, where the pair (E*®, H®) satisfies
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2.3. Analytic solutions and the Calderén operator

(2.3.1a) - (2.3.1d)) with g = A. Due to our representations, we can define A\

in terms of the coefficients ', 5" in the representation

oo n

A= (aqur + BV

n=1m=-—n

by

0 n m 7,(1) (1)ys
) am B (kR) + kR(WD) (kR)
M =ix H = In_ vm
gmzz ikR hi (kR)
h' (kR)
Y (kR) + kR(WVY (kR)

m

—ikR g™

The next theorem is a summary of the properties of A.

Theorem 2.14. The Calderén Operator
A« H™3(Div,dBg(0)) — H 2 (Div, 9B5(0))
1s linear and bounded.
Proof. See [39, Theorem 9.21]. O

The Calderén operator will help us in Section to incorporate the Silver-
Miiller radiation condition into the weak formulation. For now, we continue
to present analytic solutions to scattering problems, since that requires the
same Ansatz and the comparison of coefficients, as we have done to define the
Calder6n operator.

2.3.1. Analytic solutions

Throughout this section, we consider positive wavenumbers k£ > 0 and the
scatterer D = Br(0) for some R > 0. Furthermore, we will always use the
decomposition

Ei o M™ L curl M
()@= > [a? (3 onting ) @+ 8 (F 5000 <m>]
n=1m=—n 1 n n
(2.3.12)
of the incoming field in a neighborhood of 0D, which holds on any compact set.

We already stated the solution to the spherical perfect conductor in Lemma
and continue with the impedance boundary condition.
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2. Maxwell’s equations

Lemma 2.15. Let k, A € R. For any pair of incoming fields with represen-
tation , the unique solution of (2.1.0d) - (2.1.6d) is given by

(o-£ 5 [ () oor (7)o

m

where the coefficients a]', b" € C are given by

o n(kR) + kRl (KR) +ikRj, (kR)
" hOkR) + kR (WD) (kR) + IMRRD (kR)
o gm A(jn(kR) + kR j,(kR)) + ikR j,(kR)
! " AV (kR) + kR (h)) (kR)) + ikRhY (kR)

forn € N, Im| < n.

Proof. If we plug in the Ansatz for the incoming and scattered field into the
boundary condition

vx (H*+H") =M x ((E°+E") xv)

and use v X (U x v) = U for tangential vector fields as well as v x V™ = U™,
we can conclude the representations of a* and b]' by comparing coefficients.
We have to check, whether the denominator in the claimed representations
can vanish. Let the denominator of the representation of a;* vanish for some
n € N. Then we define the scalar function

x

un(x):Rh;U(meYgl( ) z #0.

]
By Lemma [2.8] we have hat u, is a radiating solution of

Au+k*u =0, inR*\ Bg(0),
u

ey +Au=0, ondBg(0),

with A = %. We have by [I3, Theorem 3.37], that any radiating solution

has to vanish, i.e. u, = 0. This is a contradiction. Analogously, defining
U, = AR hg)(k|z|)Y7§"(a:/|x|) and considering A = 235 - we conclude that
also the second denominator can not vanish. O

We continue with the scattering from penetrable obstacles. Since we now
have additionally a non trivial electric and magnetic field inside of the scat-
terer, we have to expand our Ansatz. The vector wave functions depend of
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2.3. Analytic solutions and the Calderén operator

course on the wavenumber. The scattering from penetrable obstacles involves
two wavenumbers, the exterior k£ and the interior k. Therefore, we will denote
this by M™(x, k) and M (z, k), respectively. & is called interior (Dirichlet)
etgenvalue, if the boundary value problem

curl> E — k2E =0, in Bg(0)
vx E =0, ondBgr(0)

admits non-trivial solutions. For the next theorem we assume, that x is no
interior eigenvalue.

Lemma 2.16. Let €p, €9, up and pg € R and op = 0. Furthermore, let
Kk be no interior Dirichlet eigenvalue. For any pair of incoming fields with
representation , the unique solution of (2.1.5d) - (2.1.5€) is given by

(5) =3 52 [ (i) ooz (R ) o)

n=1m=-—n

for x € R3\ D and by

() X:Z[:(CQLJ@wH%(iﬁﬁwya@

n=1m=-—n n

for x € D, where the coefficients a]', by, e, dit € C are the unique solutions
of the lznear systems

T
m m m m m — ,m
An (a’n bn Cn dn ) - en

with the matriz A™ € C*** given by

H,(kR) —/£ 42, (xR) 0 0
o WD (kR) /22 ja(kR) 0 0
" 0 0 Hy(kR) —\[E220 7 (sR) |
0 0 WY (kR) =\ /22 (5R)

where we abbreviated Jp,(2) = jn(2)+2j.(2) and H,(2) = h%l)(z)—&—z(h%l))’(z).
The right hand side e € C* is given by

e = — (Ju(kR)a™  —ju(kR)al —J,(kR)B™ —ju(kR)BM) "
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2. Maxwell’s equations

Proof. We plug in our Ansatz into the transmission conditions. This leads
by orthogonality of the vector spherical harmonics to the decoupled linear
systems stated above. We will now prove that the linear system is always
uniquely solvable. The determinant of A} is given by the product of the
determinant of the upper left block, given by

— 2 (Ho (kR)jn(kR) — 22 1, (s RYRD (K R)) (2.3.13)
€D KD

and the lower right block, given by
— B (Ho (kR)jn(R) — 2 (s R)RV (RR)). (2.3.14)
KD €D

Assuming det A7 = 0, we have that one of the determinants (2.3.13) or
(2.3.14) has to be zero. Let (2.3.13) be zero. Since all material parameter

are real valued, we can split it into real and imaginary part and arrive at

0= (1= £2)ju(kR)ju(<R) + kR ju(kR)j, (kR) - %nm;(mm(m),

K“D
(2.3.15)
0= (1= £2) g (kR (5R) + KR ju(<R)Y, (kF) = L2 kR (< R)ya (k).
KD KD (2.3.16)

Since k is no interior eigenvalue, we have j,(kR) # 0 for all n € N, since
otherwise M (z, k) is a non-trivial solution of the interior Dirichlet problem.
If jn(ER) were zero, we could conclude by that j,(xR) has to be
zero, since j;,(kR) can not also be zero by the Wronskian. So j,(kR) can not
vanish for any n € N. Similarly, if y,(kR) = 0, we can conclude y/, (kR) = 0
by , which also can not be. So we can divide the first equation by the
product of j,(kR) and j,(xR) and the second one by the product of y, (kR)
and j,(kR) and subtract them. This yields with the Wronskian

. . 1
0= kR (jy (kR)yn (kR) — jn(kR)y, (kR)) = ==,
a contradiction. Repeating the same argument with (2.3.14]), we conclude
det A7" # 0. O

Our Ansatz uses solutions of the Maxwell system and then matches
the boundary conditions. This does not work directly for chiral media. One
can transform solutions of the scattering from chiral media - (2.1.7¢]) to
solutions of a certain transmission problem, see [5]. This will also be addressed
later in Section [Bl

34



2.4. Weak formulations

2.4. Weak formulations

In this section, we want to present the formulations for the scattering prob-
lems. We start with the perfect conductor. As mentioned above, we can
consider Lipschitz domains. So let D be a bounded, simply connected Lips-
chitz domain. Let R > 0 be large enough such that D C Br(0) and define
the open set 2 = Br(0) \ D. Note that  has the two connected boundaries
0D and 9Bg(0).

2.4.1. Perfect conductor

Recall the scattering problem of the perfect conductor (2.1.4al) - (2.1.4¢):

curl E =ik H, curlH =—ikE inR*\D, (2.4.1a)
vxE=0 ondD, (2.4.1Db)

E® E—-FE .
<H5> = (H B H’) satisfies SMRC. (2.4.1¢)

The first equation ([2.4.1a)) does make sense for FE, H in H (curl, €2). The bound-
ary condition (2.4.1b)) can be understood as v, E = 0 in H™ 2 (Div,0D). There-

fore, we choose the closed subspace
Hpo(Q) :={F € H(curl, Q) : nE =0}. (2.4.2)
For now, let (E, H) be a pair of smooth solutions of (2.4.1a]) - (2.4.1c]) and let

V be a smooth vector field with v x V=0 on dD. We multiply the second
equation of (2.4.1a)) with V and use the partial integration formula (2.2.2)) and

arrive at
O:/(curlH+ikE)~de
Q
:/ (Hocur1V+ikE~V>d:z:—/ (1/><H)~Vds+/ (vx H)-V ds.
Q oD BR(0)

Note the minus sign in front of the boundary integral over 9D since the out-
wards directed normal vector to 0D is pointing into 2. The first boundary
integral vanishes, since v XV = 0. On the second one, we employ the Calderén
operator by

vx H=vx (H*+ H"
=AvxE)4+vxH =AvxE)+vxH —Av x E).
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2. Maxwell’s equations

Furthermore, we use the first equation of (2.4.1a)) to remove H from the equa-
tion. After multiplying with ik, we arrive finally at

/ (curlE-cuer—kQE-V)dx-i-ik/ A(v x E)-Vds
Q 9BRr(0)

= / (ikA(v x E") —v x cwrl EY) - Vds.  (2.4.3)
9Br(0)

Note, that we have removed the magnetic field from the equation and that the
equation can be extended to E, V' € Hc(€2). Note that the boundary integrals
become the dual pairings between the trace spaces H~2 (Div,dBg(0)} and
H~=(Curl, dBr(0)}. We define the bounded sesquilinear form A : Hp () x
Hy(©2) — C and the antilinear map £ : H,o(€2) — C such that reads
as

A(E, V) =£V). (2.4.4)

A weak solution of the scattering from a perfect conductor is then a function
E € H,e(f2) such that (2.4.3) holds for all V € H,.(£2). There exists always
a unique solution of (2.4.4)), see [39, Theorem 10.7].

2.4.2. Obstacle with impedance boundary condition

Recall the scattering problem involving obstacles with impedance boundary

condition ([2.1.6a)) - (2.1.6¢):

curl E =ik H, curlH =—ikE inR*\D, (2.4.52)
vxH=Avx(Exv)) ondD, (2.4.5D)

E?® E—-F' .
<H§> = (H _ HZ> satisfies SMRC. (2.4.5¢)

The boundary condition can not be extended for £, H € H(curl, Q)
since the traces v; and vyr have different range spaces, see Theorem 2.5 We
have to impose additional regularity of the solutions in order to formulate a
weak formulation as opposed to the perfect conductor case. The space

Himp(Q) = {F € H(cwrl,Q) : v x E € L}(dD)}, (2.4.6)
equipped with the inner product
<'a '>Hm,p(Q) = <'7 '>H(Curl,Q) + <V X VX '>L2(8D)

seems reasonable. Again, let (E, H) be a pair of smooth solutions of (2.4.5al) -
(2.4.5¢) and V' be a smooth vector field. Multiplying the Maxwell system with
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2.4. Weak formulations

V, partial integration formula (2.2.2) and applying the boundary condition
(2.4.5b) leads to

02/9(H-cur1V—|—ikE-V) dx—/8 )\(I/X(EXV))-Vds—i—/ (vxH)-V ds.

D 9BR(0)

We apply again the Calderén operator on the outer boundary dBg(0) and
remove H from the first volume integral by the first equation of the Maxwell

system ([2.4.5a)). This leads finally to

/ (curlE-cuer—kQE-V)da:—i—ik Ay x E)-Vds
Q 9BRr(0)

—ik [ A xE)-(vxV)ds=V). (2.47)
oD

Note that can be extended to E,V € Hiy,p(£2). The boundary integral
on OBR(0) becomes again the dual pairing between the range spaces of the
trace operators v, yr. The boundary integral over 0D is well defined, since
vxE,vxV € L}(0D). We define the bounded sesquilinear form B : Hpp (92) x

Himp(2) = C such that (2.4.7) reads as
B(E,V)=¢(V). (2.4.8)

A weak solution of the scattering problem from an obstacle with impedance

boundary condition is a function E € Himp(€2) such that (2.4.8) holds for all
V € Himp(12). There exists always a unique solution of (2.4.8), see [9].

2.4.3. Chiral media

We define the piecewise constant parameters €., ., 3, : R3\ D — C by
ED eD ED - p e D
er@) =450 TEZ @)= Z
1, x¢D 1, x ¢ D

and

mu»—{? e

Using the scaling F = \/ET)E and H = | /Moﬁ , the scattering from chiral media
(2.1.7a) - (2.1.7€) can be formulated as

{curlE = ikp,(H + B curl H)

_ inR3*\ 9D  (2.4.9a)
curl H = —ike,(E + By curl E)
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2. Maxwell’s equations

vx Bl —vxE|_=0, vxH| —vxH|_=0 ondD (2.4.9b)

E? E—FE' .
(HS> = (H _ H1> satisfies SMRC.  (2.4.9¢)

As usual, k = w,/go1o denotes the exterior wavenumber. Note that for 5 = 0,
this scattering problems becomes the scattering from a penetrable obstacle

with op = 0. Considering again smooth solutions (E, H) of (2.4.9a) - (2.4.9¢)

and a smooth vector field V', we start with the second equation of the Maxwell
system , multiply it by V' and use partial integration in D and
Q. Note, that due to the jumps in the coefficients, we can not expect (E, H)
to be smooth in R*, but only smooth in D and R®\ D. This leads to

0= / (H -cwlV + ike,(E + B, curl E) -V) da
Br(0)

+/ (1/><H|+—1/><H|7)-Vds+/ vx H-Vds. (2.4.10)
dD dBR(0)

The boundary integral on 0D vanishes due to the transmission condition
(2.4.9b). We use a combination of the Maxwell system (2.4.9a) to remove
H from the volume integrals and apply the Calderén operator on the bound-
ary. We arrive, after multiplying with ik, at

/ [(i — k‘2ﬂfsr> curl £ - curl V. — kzsrﬂr (E ~curlV +curl £ - V)] dzx
Bgr(0) \Hr

f/ kzer~de+ik/ Ay x E)-Vds=V). (24.11)
Br(0) OBR(0)

Note that (2.4.11]) can be extended to E,V € H(curl, Br(0)). We define the
bounded sesquilinear form C : H(curl, Br(0)) x H(curl, Bg(0)) — C such that

reads as
C(B, V) =4V). (2.4.12)

A weak solution of the scattering problem for an obstacle consisting of chiral
media is a function F € H(curl, Bg(0)) such that holds for all V' €
H(curl, Br(0)). Unique solvability of the scattering problem has been shown
for C? boundaries in [5].
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3. Domain Derivatives

This chapter is concerned with the following question: How do the solu-
tions of the scattering problems presented in Section [2.1] behave with respect
to variations of the boundary 0D. We will show that, under certain assump-
tions on the regularity of the boundary and the regularity of the perturbations
of the boundary, we have differentiability of the solutions with respect to the
boundary. There have been used several approaches successfully in order to
answer this question for acoustic and electromagnetic scattering. One is based
on boundary integral equations and investigations on the behaviour of the po-
tentials. For acoustic scattering, see [43] [45]. For electromagnetic scattering,
we refer to [44] [T6]. Another approach, based on representation formulas, is
presented for the acoustic case in [36] and was later applied to electromag-
netic cases in [34} 20, 10]. A unified approach for acoustic and electromagnetic
scattering using techniques from differential geometry was recently presented
in [30]. Our approach, based on variational formulations, was first used for
the acoustic scattering from an obstacle with Dirichlet boundary conditions
in [32] and later extended and generalized in [25]. This approach as also been
successfully used to characterize the shape derivative for the scattering from
a penetrable obstacle in the electromagnetic case, see [20]. In this section, we
apply and extend the techniques used in [26] to the scattering problems from
Section For the perfect conductor, we also prove the existence and give
a characterization of the second derivative, following again the methods used
for acoustic scattering in [25], 27].

supp h

Figure 3.1: Kite D perturbed by h.

Before we start, we present some notations used throughout this section.
Let h denote a small C' vector field, compactly supported in a neighborhood
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3. Domain Derivatives

of 0D. We will use this vector field as a perturbation of the scatterer D.
Given a set M C R3, we denote by M), the corresponding set perturbed by h,
i.e.

My ={z+h(z): z€ M}
We will always assume ||h[|c1(rs g3y to be small such that the transformation
x— (x) =z + h(z)

is a diffeomorphism. We will consider solutions of the scattering problems
with respect to the scatterer D and Dj and investigate their behavior for
l2llcr(rs,gsy — 0. We will use the shortened notation [|h[|c1 for the norm
|2l o1 (s rs). Recall the weak formulations for the scattering problems defined
in a bounded domain, where the outer boundary is the surface of Br(0) for
some R > 0, see Section Throughout this section, we will always assume,
that the compact support of h is in Bg(0), i.e h = 0 in a neighborhood of
OBRr(0). This is always possible by choosing R large enough. See Figure
for an example.

Considering M and Mj, related by the transformation ¢, we define for a
function f : M), — R? with d € N the function f : M — R? by

f(@) = (fop)(x) = flp(x) = f(z + h()).

We can decompose a continuous vector field F' : D — C? into normal and
tangential components by

F=F.+Fv=vx(Fxv)+(F v

Note, that formally ypF = F; holds, but the left hand side might be an
element of H~z(Curl,dD). We will use the notation F, for a tangential
vector field in L2(9D) and ~¢F for the tangential trace in H~2 (Curl, dD) of
a vector field in H(curl, Q).

3.1. Perfect conductor

Let E denote the weak solution of the scattering from the perfect conductor
D, ie.
A(E, V) = V)

for all V' € Hpe(2). Let Ej € H,o(9,) denote the weak solution of the
scattering problem with respect to the perturbed scatterer Dy, i.e.

/ (curlEh.curlvrk?EhW) dz—ik(AeEn, Y2 Vi) om0y = (Vi) (3.1.1)
Qp
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3.1. Perfect conductor

for all Vi, € Hpc(Q1). Note that only the domain of the volume integral
changed. We can not directly compare the solutions Ej, and E, since they are
in different function spaces. The idea is to use a transformation on Ej — Eh
to arrive at a function Eh € H,.(Q). This is done by the curl conserving
transformation, given by

Ey(x) = J] (2)En(z) = (I + J)] (2)) En(x + h(z)), (3.1.2)

which is used in finite element theory for H(curl, §2), see [39, Section 3.9]. We
denote the Jacobian of ¢ with J,. Note, that we have seen this transformation

in Section where we used it to localize vector fields. The curl of E; and
of Ej, with respect to the untransformed coordinates are connected by

~ 1
curl, By = det —Jy curl B, (3.1.3)

and we have Ej, € H(curl, Q) if and only if Eh € H(curl, ), see [39, Corollary
3.58]. This holds also for the space of solutions.

Lemma 3.1. Let E;, € Hpo(2) and E\h defined by . Then we have
E, € HpC(Q)

Proof. We only need to show 7,5@; =0 on 0D. Let V,, € H(curl,Q;). We
have by (2.2.4)) and applying change of variables x — ¢ (x)

Ve Eny v Vi)oa = / (curl‘//; - Ep — cwrl By, ﬁ) dz

Q

_ 1 T - 1 =T =T
/ (detu )curl A ~ ey B T Vi) det(J,) de

= / (Eh -curl. ?;; — curl. Evh ?h) det(J,) dx

Q
= / (curl Vi - Ep, — Vi, - curl E) dy = (v En,yrVih)oa,, s

Qp

where Vj, € H(curl, Q) is defined in the same way as E, ie.
Vi = J) Vi,

We have 092 = 9D U 9BR(0) and 9Q), = 0D;, U dBg(0). Note fytl/?; = v%E
on OBR(0). Therefore we arrive at

(Ve En,vrVi)op = (v+En,yrVn)op, =0
for any V}, € H(curl, Q) and therefore %E'; =0 on 0D. O
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3. Domain Derivatives

This allows us to apply the change of variables x +— ¢(x) to (3.1.1)). Together

with the transformation l) we arrive at the weak formulation for Ej €
H,o(9), given by

~T J I, —~T —
p P 1.2 -1 7T
/Q (‘curl B, T gy Y — KB det(J,) I V) do

— ik (A, Ep, YrV)oBro) = £(V)

for all V' € Hpc(£2). We define the bounded sesquilinear form Ay, : Hpc(2) X
Ho(9) — C such that the equation above reads as

An(En, V) = (V). (3.1.4)

To understand the asymptotic behaviour of L/?; for h — 0in C?, it is important
to investigate the coefficients in the weak formulation, which depend on h.
The linearizations presented in the following lemma are the main ingredient
to prove first continuity and later differentiability of the solution with respect
to the perturbation h.

Lemma 3.2. We have the following asymptotic behavior for ||h|cr — 0:
J;Lp

det(J,)

det(J,)J ", T =1(1+divh) — Jy — J), + O([|h]I30).

=I(1 —divh) + Jn + J; +O(|hl%0),

Proof. Recall () = « + h(z) and therefore we have J, = I + J,. By
(I + I = Jn) = (I = Jn)(I + Jn) = T+ O(|h]Z)

we see Jo ' =1 —J,+O(||hl|Z.). By the rule of Sarrus, one can see that only
the product of the diagonal entries is relevant for the linearization of det J,,
and we arrive at

3
det(J,) = [ [(1 + 0z, hi) + O(|B]I2:) = 1 + divh + O(|[h]2:).

i=1
By considering again
(1+divh)(1 —divh) =1+ O(||h]|21),

we conclude

1
———— =1—divh+ O(||h]|z).
Toiry = L vk OClAlZ)
The claim of the lemma follows by combining these linearizations. O
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3.1. Perfect conductor

In the next theorem, we show continuity of the solution with respect to the
perturbation h € C1.

Theorem 3.3. Let E € Hy,.(2) be the solution of , i.e. a weak solution
of the scattering problem from a perfect conductor and E € Hy(2) a solution

of . Then we have

im B — Epllz(cun,o) = 0.
IRl g1 —0

Proof. We consider the bounded linear operators A, Ap, : Hpc(2) = Hpe(2),
implicitly defined by the Riesz representation theorem, satisfying
<AE7 V>H(Curl,Q) = -A(Ev V)v <AhE7 V>H(Curl,Q) = -Ah(Ea V)

and let L € H(curl, Q) such that (V) = (L,V)g(cu,0)- The weak formu-
lations A(E,V) = (V) and Aj(E,V) = £(V) are then equivalent to the
operator equations -

AE =L, AyE,=L.

We will show convergence of Ay, to A in the operator norm. Let V € Hy ().
Then we have

H(Ah - A)VHif(curl,Q)
= (AnV, (A — AV)) H(cun,0) — (AV, (An — A)V) g (cur,0)
= Ap(V.(Ap —A)V) — AV, (A, — A)V)
JIJ B
_ T PP _
= /Q {cuer (det(Jcp) I) (Ap — A)V

— K2V (det(J,) T T = 1) (A — A)V} da.

By Cauchy-Schwarz and Lemma [3.2] we conclude

||(Ah - A)V”QH(curl,Q) < C(”h”C'1 ||V||H(curl,Q)||(Ah - A)V”H(Curl,ﬂ)-

and therefore
||Ah - AH — 0, for Hh”cl — 0.

Since A(E,V) ={(V) for all V € H¢(2) is uniquely solvable with
||EHH(cur1,Q) < C”é”H(curl,Q)* )

see [39] Theorem 10.7], we find A to possess a bounded inverse. With the Per-

turbation Theorem, see [35, Theorem 10.1], we conclude HE\h_E”H(CurLQ) -0
as ||h]lcr — 0.
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3. Domain Derivatives

Using the linearizations from Lemma |3.2] we can prove the first differentia-
bility result.

Theorem 3.4. Let E € Hyo(Q2) be the solution of (n) and E, € H, pe(€2)
of (58.1.4 (-) Then there exists a function W € Hpc(S2), depending lmearly and
continuously on h € C1, such that

Jim B — F— Wl iiewta = 0.
IAll g1 —0 IIhllc 1En - laeun

Proof. Motivated by
A(En — B, V) = A(Ep,V) — U(V) = A(Ep,V) — An(Epn, V)  (3.1.5)

for any V' € Hp.(2) and looking closely at the linearizations, we define W €
H,.(Q) for a given perturbation h as the solution of

AW, V) = / [curlET(div(h)I —Jp = Jy JewrlV
Q
+R2ET (div(h)I — Jy — J)) }dx
for all V € Hp,(R2). Using (3.1.5), we calculate

AE, — E—-W,V) = A(Ep, V) — Ap(Ep, V) — AW, V)

T J Jo _
:/chrlEh <I_det( 5 — (div(h )I—Jh—JhT))curIde

—~ T i
- k2/ Ej, (1 — J ', T det(Jy) + (div(h)I — J, — JJ))de
Q
+ / curl(Ep, — E)T(div(h)f - )curl Vda
Q
+ K2 / (En — E)T(div(h)f —Jh— JhT)cuerdx
Q

for any V' € Hpo(Q2). Using first the linearizations from Lemma then
applying Cauchy-Schwarz and finally the continuity from Theorem we
finally conclude

1

A, —E~W,V)
[Allc

C (1Bl meuoyOUIRlor) + 11En = Bllrgeun.on IV || rgeun.c) = 0,
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3.1. Perfect conductor

as h — 0in C1, i.e.

1 —
7||Eh —F - WHH(curl,BR(O)) -0
17|l

as h — 0 in CY(R3,R3). O

The function W € H,o(Q) is called material derivative of E with respect
to the perturbation h. Note that W is not a solution of Maxwell’s equations.
Furthermore, W depends on all values of h in 2. One would expect a shape
derivative to depend only on h’ op- DBoth issues are solved by considering
the so called domain derivative E’, which is a radiating solution of Maxwell’s
equations and depends only on h’ op- The domain derivative can be extracted
from W. We introduce the notation E(z,h) = Ej(x) and set E(x,0) = E(x).
To motivate the following theorem, consider the formal Taylor expansion

E’;(x) = (I—i— J,;r(x))Eh(m + h(x)) = (I + J}—Lr(x))E(sc + h(x),h)

= (I + 5] (@) (E(2,0) + Ju(@)h(z) + L Ba)+ O(hlj2:))

dh
d
= B(z) + 3 B(@) + Jp(@)h(z) + Jy (z)E(z) + O(||h]|21).  (3.1.6)
In the previous theorem, we formally derived
d —~
= —E.
W= g n

This motivates the definition E/ = d—iE = W—JJE—JEh. The next theorem
shows, that this is the right choice to define the domain derivative E’. This
decomposition requires additional regularity of the boundary, since we need
higher regularity of our solutions. First, we show the following lemma.

Lemma 3.5. Let 0D be of class C™ for some m € N. Any weak solu-
tion (E, H) € Hpc() x H(curl, Q) of the scattering from a perfect conductor
satisfies (B, H) € H™(Q,C3) x H™(Q,C3).

Proof. The proof is an application of [I, Corollary 2.15]. They show, that if
0D is of class C™ 1! for some integer m € N, the spaces

{E e L*(Q,C%: cwrl E ecH™1(Q,C?),

divE € H" (Q)andv x E € H™ 2 (9D, C?)},
{E € L*(Q,C%: crl EcH™ 1(Q,C?),

divE € H" '(Q)andv - E € H™ 3(dD)}
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3. Domain Derivatives

are both continuously embedded in H™(Q,C?). First, we observe divE =
divH = 0 € L*(Q,C?) by Maxwell’s equations. By the boundary condition
v E = 0, we immediately conclude E € H*(Q,C3) since E is an element of
the first space. Again by the boundary condition, we have

1 1
H~V:ECUT1E~V=ED1V8D(EXV):O’

see , i.e. H e HY(Q,C?)since H is an element of the second space. Now,
we have curl E,curl H € H'(Q,C3) by Maxwell’s equations. We can repeat
the argument and conclude E, H € H?(Q,C?). By induction we conclude
E,H € H™(Q,C3). O

Now we can prove the decomposition of the material derivative.

Theorem 3.6. Let OD be of class C2. In the setting of Theorem we
have E' = W — J' E — Jgh € H(curl,Q). E’ can be uniquely extended to the
radiating weak solution of Mazwell’s equations

curlB/ —ikH' =0, curlH +ikE =0
in R\ D with boundary condition
—
vx E'" = Curlpp(h,E,) — ikh,yvH on 0D. (3.1.7)

Proof. We define £/ = W — JhTE — Jgh. Since the boundary 9D is of class
C?, we have E, H in H'(Q) with vanishing tangential trace of the electric field
by Lemma By the Trace Theorem we have E|6D cH:2 (0D, C?). The
normal vector field is in C*(0D,S?) and therefore E, = E - v € H2(dD). By
Theorem We have Cmap(hl,El,) € H™2(Div,dD). Since H € H* (), we
have also ypH € H ’%(Div,ﬁD). We conclude, that the boundary condition
is well defined for B/ € H(curl,Q). Since E € H(Q,C3), we have E' =
W — J] E — Jgh € L*(Q,C3). Some basic vector calculus shows

curl(J), E + Jgh) = curl ((Jg — J5)h + V(R E))
= curl(curl £ x h) =div(h) curl E + Jeyn g — Jpcurl E. (3.1.8)

Note that H = - curl E € H*(€2,C?) and therefore curl E' € L*(2,C?). So
we conclude E' € H(curl, ). Since v x W = 0 on 0D, we find

vx B = —vx (Jgh+ J] E) = —v x (Jgh — Jgh) —v x (J,) E+ Jgh)
= —vx (curlE x h) —v x V(" E).
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3.1. Perfect conductor

e
Since v x =0 and with v x V = v x Gradgp = —Curlygp on 9D we have
—
—v x V(h'E) = Curl(h, E,).

Furthermore, we have v x (curl E x h) = ik(v x (H x h)). Using a x (bx ¢) =
(a-¢)b—(a-b)c and the decomposition of h and H into normal and tangential
component, we find

v X (curl E x h) =ik(h, H, + H,h.).

From ({2.2.6) with F' = E we find H, = 0 and therefore conclude the boundary
condition
v x E' = Curlpp(h,E,) — ikh,yr H. (3.1.9)

To see that E’, together with H' = %curl E’ is a radiating solution of

Maxwell’s equation, we start by noticing

A(F,V) = /

(curl FlemlV — k2FTV) dz — ik(A(VeF), 72V ) o5,(0)
Q

= / (cwl® F — K°F) "V dx — ik(A(F) — %G, V)opm0) = 0,
Q
for any pair of radiating solutions (F,G) of Maxwell’s equations and any

V € Hpe(), since A(yF) = vG and v x V = 0 on 0D. Therefore, since we
already have shown the boundary condition (3.1.9)), we only need to show

AE V) =AW = J] E—Jgh,V) =0
for any V € Hpo(2). Let V € H,o(2). Then
AW, V) — A(J E + Jgh,V)
_ / (cwrl BT (div(h)1 — o — ] Jourd V 4+ R2ET (div(h)I —J— J7)V) da
Q
- / (curl(JhTE + Jph) Teurl V — k2(J,) E + JEh)TV) dz. (3.1.10)
Q
Using again (3.1.8]), we find
AW, V) — A(J) E + Jgh,V)
T__
_ k?/ (JEh + div(h)E — JhE) Vde
Q

T
_/ (JCurlEh—&—J;;r curlE) curl V dz.
Q
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3. Domain Derivatives

From div £ = 0 in R3 \ D, we conclude
cwrtl(E x h) = div(h)E + Jgh — JoE
and therefore
AW, V) — A(J E + Jgh,V)
e /Q curl(E x h)TVdz — /Q (qurlEh +J7 cul E) eV da.

With Maxwell’s equations we compute the identity

Jewrngh+ J), cwrl E = (Jow1 £ — Joun g) b+ Jeq gh + Jj E
= (cwlewlE) x h+ V(h'" curl E) = k*(E x h) + V(h' curl E).

Together with
div ((E x h) x V) = cwl(E x h) "V — (E x h)cwrlV
we conclude
AW, V) — A(J) E + Jgh,V)
= kQ/Qdiv ((Exh)xV)de - /Q V(h" curl E) "eurl V dz

= [ div [kz (Exh)xV —(h" curl E)ewl V| dz.
Q

Since h is compactly supported in Bgr(0), we have h = 0 on dBr(0). We
apply the divergence theorem in €2 to the right hand side of the last equation

and get
AW, V) — A(J E 4 Jgh,V)
= / ((hT curl B) (v carl V) — k*((E x h) x V)Tz/> ds.
aD

Note the sign change, since v outwards drawn normal vector to D. The first

term vanishes, since

v curlV = Curlgp V = Divgp(V x v) = 0,

see (2.2.6) and since V' € H,¢(€2) has vanishing tangential trace on dD. For

the second term, we compute
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3.1. Perfect conductor

(Exh)xV)-v=(E-V)h-v)=(V-h)(E-v)=(hxE)-(vxV)=0
and therefore conclude
AE',\ V)= AW,V) - A(J,) E+ Jgh,V) =0
for all V' € Hp,c(2), which finishes the proof. O

3.1.1. The second domain derivative

In this section, we present the characterization of the second domain deriva-
tive of the perfect conductor. Some difficulties arise, which can be treated
successfully in the same way as in the case of acoustic scattering, see [27]. We
will present the procedure. The first observation is the following: Considering
two small variations hq, ha with compact support in Br(0), we arrive at the
perturbed boundary

(aDh2)h1 = {y = 901(902(1')) =x+ hQ(I) + hl(l' + hg(l’)) T x € aD}

This variation is not symmetric in h; and ho, a property one expects from
a second derivative, see [I7, Chapter VIIL.12]. Let E![0D] be the domain
derivative of the perfect conductor with respect to the variation h;, i = 1,2
and the scatterer D. Our goal is to find a radiating solution of Maxwell’s
equations E”, depending continuously on h; and ho, being symmetric with
respect to h1 and ho, satisfying

lim — su E' 0Dy, - E;, [0D] — E"|| = 0.
Rz =0 HhQH Hh1”=1H h10¢21[ h2] hl[ } H

Together with the Taylor expansion
hio gyt =y — Jy ho + O(||he||*)
we arrive at the characterization
E" = (E}))y — E}, (3.1.11)

with h = Jp, he. We dropped the dependency of the scatterer, since all terms
are with respect to dD. The first term on the right hand side of is the
domain derivative with respect to the variation hs of the domain derivative
with respect to the variation hy. This is the unknown function, which we
have to determine. The second term Ej} is the previous calculated domain
derivative with respect to the variation h = Jp, he. In this section, we will
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3. Domain Derivatives

prove the existence of £’ and provide a characterization, which highlights the
symmetry of E” with respect to hy and hs.

Let W; € H(curl, Q) denote the material derivative of the perfect conductor
dD with respect to the variation h;, ¢ = 1,2. Recall the weak formulation

AWM0=/

(curlETcuer - k2ETV) dz + ik(A(v x E), V)=
Q

= / (curl ET AjcurlV + k‘2ETAiV) dz, (3.1.12)
Q
where we used the abbreviation A; for the symmetric matrix given by
Ay = div(h)I — Jp, — Jj) .

As before we denote by W; € H(curl, Qp,) the solution of (3.1.12)) with Qj,
instead of 2. We define

Wi, = JJ, W1 € Hpe(9)

The function le h, SOlves

— JIJ - —~ _
T P2 P2 1277 -1 7-T
/Q <cur1WLh2( e )cuer k WLhz(det(Jm)Jw I )V) da

P2
+ ik‘<A(V X Wl,m), V>|a:|:R
Il AL . . _
_ T 2 2 14 T
_ /Q (curl By (fietiJw) curl V + k2B, (det(Jw)Jw A, )V) da.
(3.1.13)

Note that in contrast to the first domain derivative, we had to transform the
right hand side as well. Again, we have used the notation

Ar(z) = A(p2(2)) = A1 (@ + ha(2)).

We need the following lemma, which characterizes the linearizations of the
new matrices in the equation above.

Lemma 3.7. Let A € CYR3R3**3) and ¢(x) = x + h(z) with h € C!
sufficiently small. Then we have

Iy A,

= A+ JTA+ AJy — div(h)A + A'(h) + O(||h||20),
det J,
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3.1. Perfect conductor

det(J,)JS AT T = A — Jp A — AJ) + div(h) A+ A'(h) + O(||h]|Z:),
where the matriz A'(h) € C(R3,R3*3) is given by (A'(h))yj = h' VA, i,j =
1,....3.

Proof. The linearization follows from combining the linearizations in Lemma
[3:2 and the Taylor expansion

Ayj(x + h(x)) = Aij(z) + hTV Ay () + O(|[n]|2)
for the coefficients of the matrix A. O
With this Lemma, we can proof continuity of I//V\Lhz with respect to ho.

Theorem 3.8. Let Wi € H,o(Q2) be the solution of and WULQ €
H,e(Q) a solution of . Then we have

lim ”Wl - Wl,hz HH(curl,Q) =0.
lh2llo1—0
Proof. The proof is done very similar as in Theorem with the additional
consideration of the linearization of the right hand side. Let ¢, (V) denote
the right hand side of with ¢ = 1 and let £, 5, (V') denote the right
hand side of (3.1.13). Recall the notation Ay, for the sesquilinear form, such

that the left hand side of ([3.1.13)) is given by Ay, (I//V\Lhz,V). Then we have

AWy =W V) = AWy, V) = Ay (Wi, V) + Ly s (V) = Ly (V)
+ / (curl E;LAl curl V + kQE;LAlv) dz.
Q

This leads to
AWy, — W1, V)

_ JIJ
= 1 Wi p, (I — 2222 curl
/Q (cur 1’h2< det 7, ) curl V

— KW, (1= det JIJWT)V) d

P22

T AT o
| DDA R | 1V
* /Q (C“r n (e oo 1)

P2 p2

+K2E), (det T g AL — A1>V> de

ol



3. Domain Derivatives

+/ (curl(E}L — B) AyewrlV 4 k*(Ep, — E)TA1V> da.
Q

By Lemma |3.7] and Theorem we conclude
AWy, — W1, V) =0, hy—0 inC
By again a perturbation argument, we conclude
i I, = Wil uay = 0.
O
We prove differentiability of Wl,;w € H(curl, Q) with respect to hy € C!.

Theorem 3.9. Let Wi € H,.(Q2) be the solution of and Wl,hz €
Hy () of . Then there exists a function W{ € Hpc(Q2), depending
linear and continuous on hy € CY, such that

lim  —— Wi — Wy — W/ _o.
[lh2|lo1—0 Hh2||C1 || 1,hz 1 1||H(Cur1,Q)

Proof. By considering Lemma and observing the differences occurring in
the proof of the previous theorem, we define W1 € H,(€2) as the solution of

AW, V) = /Q (curl W, Ayeurl V + k2, A2V) da
+ /Q (curl W AV + k2w Alv) da
+ /Q curl BT (JhTzAl + A1 Jp, —div(h2) Ay + A&(hg))mdx
2 /Q BT (= Jnyds — AT+ div(ha) Ay + A4 (hs))V dr

We consider the difference .,4(/1/171,;12 — W1 —W/{,V) and add some smart zeros.
This leads to

AWy, — Wy — WL, V)
= AW, V) = Apy Wing, V) + by iy (V) — AW V) — AW, V)

+ / (lethQCU.I‘lV — k‘Q/WLthQV) dx
Q
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3.1. Perfect conductor

+ / (Curl E,—;Alcurlv + kQE;;Alv) dx
Q
i/ curl B (J,;Al + Ay, — div(ha)Ar + A’l(hQ)) da
Q
+ kz/ B (= T Ay = AvTL + div(io) As + 4] (1) )V
Q

We gather the terms, such that we can apply Cauchy-Schwarz, the lineariza-
tion Lemmata [3.2] and [3.7 and Theorem [3.3] by

AWy, — Wy — W, V)

_ JLJ
— _ T2P2
- /Q curl Wi, (I . AQ) curl V dz
g / W, (1= det T, I ILT + A2 )V de
Q
+ / (curl(Wl_yhz — Wl)TAQW — k‘z(WLhQ — Wl)TAQV) dx
Q

n /Q curl B (‘]gef}j” — Ay — JLA

— Ay Jn, + div(ho)I — A’l(hz))mdm
+ k2 /Q By, ((det(Jp,) I AT - Ay

+ Jny Ay + AL — div(ho)T — A’l(h2)>de
+ /Q (curl (En, — E—Wa) AycurlV + k*(Ey, — E — WQ)TAW) da
+ /Q curl (B, — E)T<JhT2A1 + Ay, — div(he)A; + A'l(hg)>mdx
+ k2/Q (En, — E)T( — Ty Ay — Ay gL+ div(hy) Ay + A’l(hQ))de.

This leads finally with some constant C' > 0 to

AW,y =Wy =W, V)
< C(IWan lOh222) + W = WA O(I sl c)

+ | En, [0(Ih2]1E0) + o[lhaller) + (1 En, — EHO(IIhzllm)) VI,
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3. Domain Derivatives

where the non specified norms are always the H(curl, Q)-norm. Again by a
perturbation argument, we conclude

fim W h -w 7W/ T =0.
Ihzlic1—0 [[hallcr Wihe = Wi = Wil m(eun,o)

O

Note that W] € Hpc(€?) is the material derivative with respect to hs of the
material derivative with respect to h; and contains by linearity the domain
derivative with respect to hy of the domain derivative with respect to hq,
noted by (E1)5. Similar to the first domain derivative, we consider the formal

Taylor expansion of Wy p,:

Wi, (@) = (I + J} (2)Wip, (2 + ha(z))
= (I + J,(2))Wi(z + ha(z), ha)

= (1 + 7, (@) (Wi (@,0) + Jw, (2)ha(x) + %Wl( ) +O(ha]?)).

With Wy = E] + J,—'l—lE + Jgh1 we have

d

mel = (B + Jn, By + Jeyha.

We have formally calculated

W! = — Wy ..
17 ghy bl

This motivates the Ansatz
(EY)y = Wi = J, W1 — Jw,ha — J) By — Jg h,
which will be proven in the next theorem. Similar to the first domain deriva-

tive, this decomposition holds only, if we assume higher regularity of the
boundary.

Theorem 3.10. Let D be regular. In the setting of Theorem[3.9, let
(EY)y =W — J,W1 — Jw,ha — J)| By — T hy.

Then (EY)5 € H(curl, Q) is a radiating solution of Mazwell’s equations.
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3.1. Perfect conductor

Proof. Similar to the proof of the first domain derivative, we define (E1)5 by
the right hand side of equation stated in the theorem, i.e.

(B}, = Wi = L, W1 — Jw, ha — J) By — Jgha,

which defines by Lemma a function in H (curl, ). Note, that the proof of
Lemma [3.5|shows, that a sufficiently smooth solution (E, H) to the scattering
problem implies also high regularity of the domain derivative E’ and therefore
also high regularity of the material derivative W.

To see, that this is a radiating solution of Maxwell’s equations, we will show
A((E})5, V) =0 for all V € H(curl, ). Since the material derivatives W;,
i = 1,2 do not satisfy Maxwell’s equations, we want to remove them from the
above expression. We have

W; = E}+J, E+ Jgh; = E,+ V(h{ E) + cutl E x h;.
From this, we can calculate the curl of the material derivative by

curl W; = curl B + curl (curl E x hy)
= cwrl B} + curl Ediv(h;) + (Jowrl £ — Joqri ) i
+ (Jown ghi + Jy, catl E) = (Jp, + J; ) cwl B

= curl B + A; curl E 4 k*(E x h;) + V(b curl E).

In the proof for the first domain derivative, we have shown, that if F €
H'(Q,C?) is a solution of Maxwell’s equations, i.e. divF = 0 and curl® F —
k*F = 0, then we have for any V € H,(2) and i = 1,2

/ (cuﬂFTAiV + k;2FTA,V) dz — A(J, F+ Jph;, V) =0.  (3.1.14)
Q
Note, that we did not use the boundary condition of ¥ X F = 0 in the proof

but only v x V' = 0. Therefore, we can apply (3.1.14) with F' = E; and i #£ j,

i.e. we have
/Q (cwrl BT AV + K2ETAV) dw — A(JL B} + Jphi, V) = 0

for i,7 = 1,2, ¢ # j. In order to eliminate W; from the terms we subtracted
from (E1)5 in the definition, we consider

Tna Wi+ Jwihe = J), By + Jpiha + 0y, D, B+, Jehy + T gy g, ha-

The last two terms can be written as
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3. Domain Derivatives

Tna Bl + 57 g gpn, 2
= V(1 (V(h] E) + carl B x b)) + curl (curl E x hy)  hs.

This leads to

Ty J2ha + J51 i gon,ha
= V(1] (VA E) + curl E x ) ) + (A curl ) x hy
+ k*(E x hy) X hy + V(h{ curl E) x hy.

Now we consider

A((E)2. V) = AWL V) = A(Jy, By + Jgyhy — g, Wi — Jw, ha, V)

= / (curl W, Agcurl V + k;2W1TA2V) dx
Q

+ / (curl W;Alcuer + kQW;Alv) dzx

Q
+ / curl ET (J}LAl + Ay Jp, — div(h2)A; + A’l(hg))cuerdx

Q
bR /Q BT~y — AT+ div(ha) Ay + A4 (hs))V da

— A(J) By + Jpyha, V) — A(J)LES + T ha, V)
— AL, LB+ Ty Jeha + J57 pa g he, V).

We use our previous calculations to get

A((E1)3), V)

-

+

/N

curl BT Agcurl V + kQEgTAQV) dz — A(Jn, By + Jg; ha, V)

=0

(curl ELT AjewrldV + k‘zEéTAlv) dz — A(Jn, B3 + Jg hi, V)

S—

=0

+ (A2 cwrl E + K2(E % ha) + V(h] curlE))Alcuerdx

+

S~ 5—

(A1 cwrl E + K(E x hy) + V(h] curlE))Agcurl Vdz
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3.1. Perfect conductor

T _
+ k2/ (curlE X hy + V(h;E)) AV dz
Q
T _
+ k2/ (curd B x by + V(] B)) AV da
Q
—|—/ curl B' (JhTQAl + Ay Jp, —div(ha)A; + A’l(hg))curIde
Q
+ k2/ BT ( — T Ay — AvJL 4 div(hy) Ay + A’l(hg))de
Q
- / curl {(A1 curl E) x ha + k2(E % hy) % ho
Q
T
+ V(h{ curl E) x h2] curl Vdzx
+ k?/ [v(h; (V(h{ E) + curl E x h1)> + (A curl E) x hy
Q
T__
+E2(E x hy) x hy + V(] curl E) x hQ] V da.
Recall A; = div(hi)I — Jp, — J,;r . Therefore, we have

A Ay + A1 Ay = 2div(ha) Ay — Jpy A1 — )AL — Avdp, — Ardy,

which leads to

A((ED), V) = ]4;2/ BT (= i Ar — AT}, 4 div(ha)Ar + A (ho))V da

Q
+ / curlET( — Jn, A1 — AthT2 + div(h2) Ay + A’l(hg)>cur1de
Q
+/ (kQ(E x hy) + V(hg curl E))AlcurIde
Q
+/ <k2(E % hy) + V(h] curl E))Agcuerdz
Q
T _
n k2/ (curlE % ha + V(h;E)) AV dz
Q
T _
+ k2/ (curlE x hy + V(hIE)) AV dz
Q

— / curl [(Al curlE) X ho + k’Q(E X hl) X ho
Q

T
+ V(h{ curl E) x h2:| curl V dz
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3. Domain Derivatives

+ k2/ [V <h;— (V(hIE) +curl E x h1)> + (Aj curl E) x hg
Q

T__
+ K2(E x hy) X hy + V(h] curl E) x hz} V da. (3.1.15)

For vector fields F,V, h and a symmetric matrix A we can show the following
identities by using elementary calculus:

div ((hTE) )= (h"E)div(V)+ VI E+VTJgh,

div (h"V)AE) = (h"V)div(AE) + ETAJ,] V + ET AJy h,

div (( hTE JAV) = (hTE)div(AV) + VT AJ, E+ VT AJLh,

div ((BTAV)h) = BT AV div(h) + hT JLAV + ETA'(h)V + ET AJyh.

Together with the identity (Jr — J5)G = curl F x G for two vector fields F
and GG, we have

curl BT ( — Tny Ay — Ay + div(ha) Ay + A’l(hg))cuer
= —div [(h;r curl BYA curl V 4 (hg curl V) A; curl E — (curl ETAlmV)hg}

+ (hg curl V) div(A1 E) + (hy curl E) div(A;curl V)
+ (Aycurl E) " (curleurl V x hy) — k%(E x hy) T Ajcurl V, (3.1.16)

since curl curl E = k?E. Similarly, we have

ET ( — Ino AL — Avdy, + div(he) Ay + Af (h ))V

— — div [(h;E)AIV + (WIVVALE + (ET A\ V)hs TV div(A, E)
+ (h;E) le(A1V) — (AlE)T(cuer X hg) — (CuI‘lE X hQ)TA1V
(3.1.17)

and
div ((h;E)Alv) = (h] B)div(A,V + V(h] E)T AV,  (3.1.18)
div ((hQT curlE)Alm) = (h] curl B) div(A;cul V)
+ V(hg curl E) T Ajcurl V. (3.1.19)

Combining (3.1.16]), (3.1.17), (3.1.18) and (3.1.19) and inserting the result

into (3.1.15)) yields
A((E])2, V)
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3.1. Perfect conductor

= / div [(Curl ETAjcurl V)hy — (hg curl V A; curl E)} dz
Q
+/ <(h;—curl V) div(4; curl E)
Q
— (Aycurl B) " (curlcurl V' x ]’Lg)) dz
+ k? / div [(ETA1V)h2 — (hQTV)AlE} dx
Q
+K? / (V) div(A1 B) = (A E) (@l V x ho) ) de
T o
+/ (k2(E x hy) + V(h] curlE)) AgewrlV dz
Q
T
+ k2/ (cund B x by + V(] B)) AV da
Q
- / curl ((A1 curl E) x hy + k2(E x h1) % hs
Q
T
+V(h] cwrl B) x h2) curlV da
+ kQ/ [v(hg (V(h{ E) + cwrl E x h1)> + (A curl E) x hy
Q
T
Y EXE % hy) % ha + V(] curl E) x hz} V da.
By the Theorem of Gauf}, we have
/ div [(curl ETAjcurl V)hy — (hgy curl V) A; curl E} dz
Q
= —/ (hgyl,(curl ETAjcurlV) — (A curl E), (hy curl V)) ds,
aD

since hi, ho are compactly supported in €. On the other hand, using the
partial integration formula for the curl operator (2.2.2)), we have

/ (— (A; curl E) " (curlcurl V' x hg) — curl (A1 curl E) x hg)Tcurl V)

Q

:/ ((A1 curl E x ho) Teurlcurl V — curl ((A1 curl E) x hg)Tm) dx
Q

=_ / (v x curl V)T((Al curl E) x hy) ds.
aD
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3. Domain Derivatives

Note that in both cases we have used the outwards directed normal vector v
to 0D, which points inwards €. In the boundary integral, we only need the
tangential component of (A; curl E) x hg, which is given by

[(Aj curl E) x hol, = (Ajcurl ), (v X hg) — (1/ X (Aj curl E) )hg »

Since the tangential trace of V' vanishes on 0D, i.e. v x V = 0, we have
(curl V), = —=Div(v x V) = 0. Therefore we have

(v x curl V) " (A1 curl E) x hy)
= (hg curl V)(A; curl B), — hy, (curl ET Ajcurl V).

We finally conclude
/ div [(curl ETAjcurlV)hy — (hg curl V) A curl E} dz
Q
—/ ((A1 curl E) T (curlcwr] V' x ho ) —curl (44 curlE)xhg)Tcurl V) dz = 0.
Q

A second application of the Theorem of Gaufileads together with v x F =
vxV=0ie E=F,w,V=V,vondD to

/ div [(BT V) — (h] V) A1 E] da
Q
= —/ ((VTAly)hg,yE,,Vy - (Z/TAlz/)hngVVy) ds = 0.
oD

We have achieved
A((ED, V) = / ((h] QT V) div(As curl B) + K2(h] V) div(4, E) ) da
Q
- k2/ ((AlE)T(cuer X hg)) dx
Q
T _
+ kz/ (curlE X hy + V(hIE)) AV da
Q
T
+/ (kQ(E % h1) + V(] curl E)) AscwrlV dz
Q
T
- / curl (k:Q(E X h1) X hy + V(h{ curl E) x h2) curl V dz
Q

+ k‘2/ [V (h;— (V(h{ E) + cwl E x hl)) + (Aj curl E) x ha
Q
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3.1. Perfect conductor

T__
+K2(E x hy) x hy + V(h] curl E) x hz} V da.

We take a closer look at the term curl ((E X hy) X hg). Similar calculations
as before lead to

curl ((E x hy) x hs)
=A5(E x h1) — ho div(E x h1) + V(hg (E x h1)) + curl(E x hy) x hs
=As(E x hy) — ha div(E x hy) 4+ V (k] (E x hy))
+ (A1E) X ha + (V(h{ E)) x hy + (curl E x hy) x ho.

This leads to
A((B)S, V) = / ((hgcurl V) div(A; curl E) + k*(hy V) div(AlE)) dz
Q
T
+/ (V(hlT curl E) + k% curl E x hy + kQV(thE)> AV dx
Q
T
- / curl (V(th curl E) x hg) curl Vdx
Q
+ k?/ [div(E x hi)hy — V (hy (E x h1))
Q
T
“V(h{E) x hs — (cwrtl E x hy) x h2} cwlV da
+ k?/ [v (hQT (V(h] E) + curl E x h1)> + (A cwrl B) x ho
Q
T__
FEX(E % hy) % hy + V(] curl B) x hg] V da.

Again with the Theorem of Gauf}, we have

/QV(’”LQT(E x b)) TV de = _/

Q

:/ uT(v(hJ(Exhl)) xV) ds:/ V(hd (B x b)) (v x V)ds = 0.
oD oD

div {v(hJ(E % hy)) x V] da

and similarly
/ V(h3 V(h] curl E)) "curlV dz = 0.
Q

The last term occurs by considering

curl (V(h{ curl E) x hy)
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3. Domain Derivatives

= AyV(h{ cwrl E) — hoA(h{ cwtl E) + V(h] V(h{ curl E)).
This leads to

A((EY)5, V) = / (hg carlV) (div(A; cwl B) + A(h{ cwl E)) dz
Q
+ k2 / (hy V)(div(A1E) + A(h{ E)) dz + k2/ (curl E x hy) ' A5V dz
Q Q
+ k2/ {v(hg(curlE x h1)) + (Ay curl E) x hy
Q
T__
+ K2(E x hy) x hy + V(h] curl E) x hz} Vdz
T
+ k2/ (div(E X hy)hs — (curl B x hy) x h2) crlV da.
Q
We apply again the partial integration formula (2.2.2)) in the following way

/ ((curl B x hy) x hy) ' curl V da: = / ((curl E x hy) x hy) ' V da.
Q Q

The term on the right hand side can be calculated by

curl ((curl E x hy) x hs)
=As(curl E x hy) — div(curl E X hy)hg + (Aj curl E) x hg
+k%(E % h1) X ha + V(] curl E) x hy + V (hy (cutl E x hy)),

which leads to
A((E)), V) = k2 / (W V) (div(4 ) + A(h] E) + div(cwl E x hy) ) dz
Q
+ / (h{ curl V)(div(Al curl E) + A(h{ curl E) + k*div(E x hl)) dz.
Q

Since div E = 0 and curl curl E = k? E we have with some basic vector calculus
the identities
0 =div (curl(E x hy)) = div(41 E) + A(h{ E) + div(curl E x hy),
0 = div (curl(cwrl E x hy)) = div(4; curl E)A(h] curl E) + k2 div(E x hy).
With these identities, we finally conclude
A((EY)y, V) = AW — J) By — Jgihy + Jy, Wi + Jw, ha, V) =0

for all V € H,(Q2), i.e. (EY) is a radiating solution to Maxwell’s equations.
O
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3.1. Perfect conductor

The domain derivative (E1)5 € H(curl, Q) with respect to the perturbation
hg of the material derivative Ff with respect to the perturbation h; is, as a
solution to the scattering problem, fully determined by its trace v x (E7)% on
0D. Since Wi € Hpc(92), we have

v x (B}), = v x [—JthEé — Tyt — JL W — JW1h2].

With these boundary values, we can calculate the boundary values of the sec-
ond domain derivative. Our goal is to find a characterization, which shows the
symmetry of the second domain derivative with respect to the perturbations
h1 and hs. In order to formulate the characterization, we need to define the
curvature operator R and the (mean) curvature . For more details, see [40,
Section 2.5.6]. Let I" be a smooth surface of a bounded and simply connected
domain €. Then there is an open neighborhood U of T', such that for every
x € U there is exactly one & € I which satisfies

|# — 2| = min|u — z|.
uel’

This allows us to extend v : I' — S? to U by setting v(z) = v(#). Note that
v(z) =v(z+ sv) for z € I and s sufficiently small. Furthermore, we have for
any ¢ € U with ¢ ¢ T

v(z) = £V|x — z,

where the sign depends on whether x lies in  or in R? \ Q. This implies
curly = 0. Now, we can define the curvature operator R : I' — R3*3 by
R(z) = Ju(z), z € I'. We state the most important properties in the following
lemma.

Lemma 3.11. Let I' be a smooth surface. The curvature operator R is sym-
metric and is acting only on the tangential plane, i.e.

R(z)v(z) =0, xel.
Proof. Let v € R®. Then symmetry of R follows from

Rh=J,h=(J,—J)h+J h=curlluxh+.J h=R"h.
N——
=0

For z € T', we have
1= |v(z)]

and therefore
0= V(@) = V() v(z) =2J] (2)v(z) =2R(x)v(z),

since R is symmetric. O
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3. Domain Derivatives

We define the mean curvature x: ' — R by
1.
=3 div(v). (3.1.20)
Note that the definition of the mean curvature in [20, 23] 24] has a different
sign. We have chosen the plus sign to be consistent with [25] 27, [40].

Theorem 3.12. Let D be regular. The second domain derivative E” is a
radiating solution to Mazxwell’s equations, satisfying the boundary condition
vx BE"=—-vx {Grad (h{ E} + hy BY) 4+ cwrl By x hy + curl Bf x hz}
—— oE,
= ik(h] Rhy ) Hy + Cutlop | (h  Rh1 1) B, + by yha, 5
’ v

+ ik hyyha., (R — 2% — %)H

+ hy, Cutlop [h2 B aaE ] + hy, Cutlop [hl a aaE }

+ (b, Gradap El,) Curlopha,, + (i, Gradop F, ) Cutlophi
on dD.

Proof. Recall the characterization of the trace of the second domain derivative
(3.1.11f), which reads as

vx E'=vx(E)y—vxE},
where h = Jj,, ha. From Theorem [3.6] we know
v x By, = Cutlop (v Juha) By ) — (v Ju ho) H
It is

I/TJhlhg = (I/TJ}Lll/)hQ,y + I/TJhthJ
=hay v (Vhiy —J) k) + hy  (J v+ J) hi — Ju' hy)
Ohi.,
ov

= ha, — hayhi{ Jv +hy Gradpp hi, — hy, Rh .
~—~— ’
=Rv=0
We have therefore

Oh1

vx E, = —1k(h2 v Y 4+ h2 - Gradsp hy U)H + 1k(h2 +Rhq T)

64



3.1. Perfect conductor

6h1,l/
v

As seen before, we have

+ map |:E,, (h27,, + h;T Gl"adaD h17,,)} — (ﬁap {(hg)TRhl,T)EV} .

v x (B}), = v x [— AN Py S AR leh2].

We use Wi:EZ{—&—J;L:E—i—JEhi for i = 1,2 to find

v x (E})y = —v x {GradaD (h] B} + hi ) + curl By x hy + curl B} x hQ}
U [Grad@D (h;(V(hIE) +ewlE x h1)> + curl(curl B x hy) x hg]

We have identified some terms, which are not symmetric in h; and hs. We
take a closer look at these. We have, as seen before,

curl(curl E x hy) X hy = (A curl E) x hy +k*(E x hy) X ha + V(R curl E) x h.

Since v x E =0 on 9D, we have

— v x Gradgp (h] V(h] E)) = Curlap (h;i - Gradop(h] E) + ha, -

8(h17VEV + hITET)
ov )

athE>

= Gradap (h; _Gradop (h1.,B,) + ha.
and therefore

— v x Gradgp (h] V(h] E)) = Curlap (Eyh;, Gradap hi.,

OF, Oh1., OE.
+ hauhs - Gradop By + b hoy S5 % + haw By =5 + ha i 2 )
Next, we consider
Vv X ((E X hl) X h2) = Ey hz,y(l/ X hl)
as well as
T . T . ahITHT
% (Gradap(hl curl E) x hg) =ikhg, GradaD(hl,THT) —ik Thg,T

and since 0 = (curl E),, i.e. curl E = ik H,; we have

v x ((Aycurl E) x ho) =ik hoy A1 Hy — k(v A H,)ho
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3. Domain Derivatives

and finally

v x Gradpp (h;(curlE X hy))
= Curlgp (hgyy curl ET(V X h1) — h1 (v x hg)T curlE).

We plug these identities into (3.1.11)) to get

—
v x E" = Curlgp (h] By + hi B}) — v x (curl E} x hy + curl B} x hg)

— (kg Rh ) Hy + Curlop [ (h] , Rby 1) By + b h%@]

ov
T 5‘ET}
1,7 8V
— Curlsp [hg)y curl ET(I/ X h1) —hy (v x hQ)T curl E]
—ik(hay A1Hy — (T A1H:)ho 1) — K*E, ho o, (v X hy)
— ikhy,, Gradyp (hy H,)

. 8hITH‘F . ahl v
+ikhg s+ ik (hQ,,,—ay’ + hg., Gradyp hlyu)HT.

Note, that the first two lines are already as stated in the theorem. For any
vector field F', we have

OF;
L= curl FF x v+ Gradgp F, — RF;,

+ Curlop [y b, Grad By + ha, h

see equation (5.4.50) in [40]. Recall Ay = div(h1)I — Ju, — J), . Therefore, we
have

h
v AvH, = —H] (Jy, + J; )v=—H Gradpp h1, — H Rh1 , — urm

T o’
We have
% . 8h177- - (’9h17,,1/ —h @ +V5'h171,
v o o M v ov '’
<~
=Rv=0
and therefore
Oh{ _H.
(VTAlHT) + 1877- = fH;r Gradsp hip.
v

Additionally, using div(H) = 0 and H, = 0, we have

AH|_ = curl(H x hy)|_— Gradgp(hy H:) — ik E,(v x hy).
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3.1. Perfect conductor

This leads to

—
v x B = Curlyp (thEé + hQTEi) —v X (curlEé x hy + curl B} x hg)

(R R o) o+ Cuto [ (b R ) B+ s 57
+ CT>1‘13D [hl,u h;;r Gradop By + ha,, hrf%}

—
— Curlpp |:h27l, curlET(l/ X h1) — hy (v X hg)T curl E}

— ik h27,} curl(H X hl)
Ohi,

+ ik (h2,u BN

H, + Gradop(h1,) x (H, x h2’7)>.
For a vector field F, the tangential part of the curl operator is given by

- 0
curl F|_ = CurlopF, + (R 2%k — éT) (F x v),
T v
see [40, Theorem 2.5.20]. We want to apply this identity for F = H x hy. It is
(Hxhy)xv=H,hi—h1,H; = —h1,H; and (H xhy), = % curl ET (hy xv).
Therefore, we have

ikha,, curl(H x h)| = ha,, Curlgp (curl B (hy x 1))

OH .
— ikhl)y hg)l, (R — QK)HT + ikhl)yhg)yw + ik‘hgﬂj

ahl,l/
v

H..
We arrive at

—
v x B = Curlyp (thEé + hQTEi) —v X (curlEé x hy + curl B} x hg)

(R R o) o+ Curto [ (b Rhs ) B s 57

+ikhy, ho., (R — 2% — %)HT

s E.
+ Curlyp [hl,u Wl Gradop By + h ], 0 }

1,7 81/

—
— Curlsp |:h27l, curl ET (v x hy) — hy (v % hy) " curl E}
— ha,, Curlyp (curl E"(h x v))

+ik(GradaD(h1,u) x (Hy x h277))'
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3. Domain Derivatives

Since F = v X (E x v) =0 on 9D, we have

vx BE" = Curlpp (h{ E5 + hy Ey) — v x (curl Ejp x hy + curl By x h2>

— ik (hy, Rhy,) Hy + Curlop (b RV By + b o ”aa]i ]
9
kb o (R — 26 E)HT
— OFE; OFE,
+ Cutlop [, b3, 5T + ha h] %

— Curlop (2 curl BT (v x hy) = ha (v x ha) T curl E]
— curl ET(I/ X hl)CT;'laD(hg,y)
+ ik(GradaD(hl,v) x (H, x hQ,T)).
With
ik Gradpp (h1y) % (Hy X ha.r) = —curl ET (v x hy)Curlop (h1),

we finally arrive at a symmetric characterization, i.e.

v x B" = Cutlyp (] By + h 1) = v x ((cwrl By x hy + cwrl E| x hy )
— ik(h;:-rRhl,T)HT + map |:(h2 +Rh1, T)E + hy ho Vaafj :|
kb o, (R = 26 g)H

v
OF, OF
T T ™
2T +h2yh1T8V}

- (ﬁap |:h27y CUI"IET(I/ x h1) —hy (v % hg)T curlE}

+ Cutlop [, h

—curl ET (v x hy)Curlpp(ha,) — curl ET (v x hy)Curlyp (b1 ).

Considering again only the tangential part of curl £ and using v x E = 0, we
arrive at the in the theorem stated equation. O

We do not claim this characterization to be the most elegant or the shortest
characterization of E”. Our goal was to present a characterization of the sec-
ond domain derivative as a scattering problem with inhomogeneous boundary
condition, where the boundary condition depends on the solution (E, H) and
is symmetric with respect to the perturbations h; and hs.
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3.2. Penetrable obstacles

3.2. Penetrable obstacles

The existence and characterization of the domain derivative for the scat-
tering from penetrable obstacles using the weak formulation Ansatz has been
shown in [26]. For completeness and since we will use the domain derivative in
Section [f] and talk about numerical implementation in Section [6.3] we present
the final result. The differences in the formulation are due to a different rescal-
ing of Maxwell’s equations. To keep the formulas short, we further assume
op = 0. Since we have to consider traces on 9D from inside and outside of
D, we denote with v7,v;" the traces defined on H(curl, Bg(0) \ D) and with
Y77 the traces defined on H(curl, D).

Theorem 3.13. Let D be of class C'. The domain derivative (E', H') of the
scattering problem (2.1.5d) - (2.1.5€) is given by the radiating weak solution

of

curl B/ =ik H', curlH' = —ix E' in D, (3.2.1)
curl ' =ik H', cuwrlH' = —ikE" inR3\ D, (3.2.2)

with transmission conditions

1 1 1 — .
EI/ X El|+ — \/?;V X E/|7 = E(CurlaD(hyE,,Lr) - lkhy’}/;’:H)
1 /— .
= (CurlaD(hl,EyL) — Ky H) (3.2.3)
and
1

1 1 —
— UxH| - —uxH| =—(Cudyp(h,H,|.)+ikh, +E)
=X H'|, — v HY|_ = (Cudap( Hy 1) + ik

1 /= . _
By (Curlap(hl,H,,L) +ikhy vy E) (3.2.4)

3.3. Chiral media

In this section, we present the domain derivative for the scattering from
chiral media, which is an extension of the result in [26]. Since the scattering
problem is solvable for C? boundaries, we will always assume 0D to be of
class C?. Let again E denote the weak solution of the scattering problem
from chiral media, i.e.

C(E,V)=LV)
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3. Domain Derivatives

for all V' € H(curl, Br(0)). Let E}, € H(curl, Bg(0)) denote the weak solution
of the scattering from chiral media with respect to the by h € C2(Br(0),R?)
perturbed scatterer Dy, i.e.

1 -
/ ( — kQBf,hsr,h) curl Bl carl V dz
Br(0) “Hr.h

—k? / er,hﬁfﬁh(Eg—curl V +curl B V) dx
Br(0)

—k? / ern BTV dz — k(AW E), vV )op o) = L(V),
Br(0)

where fi, 1, €r 5 and By denote the piecewise constant functions with respect
to the perturbed scatterer Dy, e.g. B, = 0 outside of Dy, and 5, , = § inside
of Dj,. In contrast to the scattering from a perfect conductor, the function Ej,
does lie in the same function spaces as F, but the weak formulation depends
implicitly on Dy, e.g. the integrals containing 3, are effectively integrals
over Dj,. We again apply the transformation (3.1.2)), i.e.

Ey=J; En

and use change of variables x — () = + h(x). This leads to the perturbed
weak formulation .
Ch(En, V) =1L4V) (3.3.1)

for all V € H(curl, Bg(0)) with the bounded sesquilinear form
Ch, : H(curl, Bg(0)) x H(curl, Bg(0)) — C,

defined by

1 5 JYJ,
( —k253,h€r,h) curl ET—2"% _curlV dz

CnlBV) = / Hrh det(J,)

Br(0)

- k2/ ErnE " det(J,)J M TV da
Br(0)

— K / Brnern(curl ETV + ETcurl V) da — ik(A(v E), 7 V) 05 (0)-
Br(0)

Note, that in the mixed products curl ETV and by symmetry E'curl V, the
Jacobians or its inverse of ¢ and the determinant det(¢) of the change of
variables cancel due to . We chose the notation &, p, ity and Sy p,
since one can extend the following results to inhomogeneous media, where
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3.3. Chiral media

these coefficients are assumed to be constant outside of D and for example
differentiable and real-valued in D, see e.g. [39, Section 4.2]. Then, one can
prove the following theorem in the same way, but has to consider the Taylor
expansions -

Brn() = Br(z) + VB(2) - h(z) + O(|[A]| ). (3.3:2)
for all occurring coefficients. Since this only adds additional terms to our
calculations and yields no further insight, we restrict ourselves to the case of
piecewise constant coefficients y., &, and but 3,|p € C*(D). Analogously to
the perfect conductor, we can prove the following theorem.

Theorem 3.14. Let E € H(curl, Bg(0)) be the solution of and E), €
H(curl, Bg(0)) a solution of . Then we have

E — Enllmen =0.
Hhchrfl—)O | h”H( 1,Br(0)

Proof. The proof is similar to the proof of Theorem [3.3] We again define
bounded linear operators C,C}, : H(curl, Bg(0)) — H(curl, BR(0)) by the
Riesz representation theorem, such that

(CE, V)t (cul,Br(0)) = C(E, V),  (CLE,V)H(cur,Br(0)) = Ch(E,V)

for all £,V € H(curl, Bg(0)) and L € H(curl, Bg(0)) such that ¢(V) =
(L, V) H(curl, B (0))- This leads to

1(Ch = OVEl T (cuntBr(0)) = Cu(E, (Ch = C)E) = C(E, (Ch — C)E)

JIT -
= / curl BT (&; PP _ a,J) curl(C, — C)E dx
Br(0) det JLp

- k2/ ET (J;lJ;T det(J,)erm — d) (Cn — O)E dz
Br(0)

- kz/ ((mﬁfh - 5TBT)(ETcurl(Ch —C)E +curll ET(C), — C)E)) dz
Br(0)

with a, = ﬁ — k2€TNhEZL and o, = l% - k2srﬁf7h. Considering the lin-

earizations of the matrices in these integrals in the same way as in the proof

of Theorem together with the Taylor expansions of the form (3.3.2), we
conclude

EnBrn —eBr = & VBT R+ O(||h||21) = O(||hl|c)

and analogously
=~ JJ Jo
"det J,

—apd = O([hllc1 (3 r3)
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3. Domain Derivatives

as well as
J I T det(Jy)Emn — end = O(||h]|cr e ra)-
With the same arguments as in the proof of Theorem [3.3] we conclude
|En — Ell tcurl, Br(o)) — 0, h—0in C*,
which finishes the proof. O

We continue by proving the existence of the material derivative.

Theorem 3.15. Let 8D be of class C2. Let E € H(curl, BR(0)) be the

solution of (2 and Eh € H(curl, Br(0 of l Then there exists a
function W € H(curl, Bg(0)), depending lmearly and continuously on h € C*,

such that
I WAl A1 E\ —-E-W cur =0.
HhchIF—m Hh”cl ” h HH( 1,Br(0))

Proof. Again, the motivation of the material derivative W € H(curl, Bg(0))
comes from considering the difference

C(Ep — B, V) =C(Ey, V) — V) = C(En, V) — Cu(Ep, V)

for any V € H(curl, Bg(0)). We define W € H(curl, Bg(0)) for a given
perturbation h € C! as the solution of

C(W,V) = / curl ET ( ~ k%, ,32) (div(h)[ T JJ)curl V da
Br(0) Hor
+ / 2k%B,e, (VB h) curl ET carl V d
Br(0)
+ K2 / ETET(div(h)I —Jh — JhT)Vdm
Br(0)
+ k? / e (VB h)(curl ETV + ETcurl V da
Br(0)
for all V€ H(curl, Br(0)). Note the additional terms in comparison with the

perfect conductor due to the Taylor expansion of Br n and ﬂQ Similarly to
Theorem [3.4] we continue by considering the difference

C(En—E—-W,V)=C(E,, V)= V) —CW,V)
=C(Bn, V) — Cu(Ep, V) = C(W, V),
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3.3. Chiral media

which by adding a smart zero leads to
C(Ep, —E—~W.V)

- / curl By [(i - kQstr) (I = div(h)I + Jy + J))
Br(0)

T

L o\ e do v
—k Er,hﬁrh) i }cuerdx

— 92 T —
ke, 3. (VBT h) <ur,h WaeT

—k? / Ep(er(I+div(h)I — Jy, — J)T) — Erndy tJy T det J,)V dx
Br(0)
2 T T /\Tf /\Ti
—k (Brer + (VB h) —rnBrp) (curlE, V + Ep cwrlV)dz
Br(0)

— 1
+/ curl(E, — E)" [(— - kQETﬁf) (div(h)I — J, —Jy )
BRr(0) Hor

+ 2k25TBT(VﬁTh))} curl V dz

+ k2/ (Ep — B)T (e (div(h)] — Jp — J]))V da
Br(0)

+ K2 / (e-VB h)((En — E) el V + curl(E;, — E) V) da.
Br(0)

Using the linearizations from Lemma and the Taylor expansion of B; to-
gether with Cauchy-Schwarz leads to
C(Ep— E—W,V) < C[|Enl s (cur, Br(0)) ORI E1)
+ 1En = Ell g cur Br©0) ORIl e) ]IV [ 2 (eurt, B (0)
for some constant C' > 0. With the previous theorem, we conclude

1
mHEh — E = Wl (cur,Br(0)) — 0

for b — 0 in C*, which finishes the proof. O

The function W € H(curl, Bg(0)) is again called material derivative of
FE with respect to the perturbation h. We can again extract the domain
derivative E’', as the following theorem shows.

Theorem 3.16. Let OD be of class C?. In the setting of Theorem we
define E' = W — J' E — Jgh. Then E'|p € H(curl, D) and E'p,onD €
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3. Domain Derivatives

H(curl, BR(0) \ D can be uniquely extended to the radiating weak solution of
the scattering problem from chiral media, i.e.

curl B = ik, (H' +B,curl H'), curl H' = —ike, (E'+3, curl E') in R*\OD

where H' is defined by a combination of these equations. E' and H' satisfy
the transmission boundary conditions

v x E's = [Catlop (hE,) — hy(v % (curl B x )],

v x B2 = [Curlop(hy H,) + hy (v x (curl H x 1))] .

Proof. The proof is similar to the proof of Theorem and an extension of
[26, Theorem 4.1]. First, the regularity of 9D yields classic smooth solutions
§|D,H\D € CY(D,C3) nC(D,C?3) and E|BR(0)\37H|BR(0)\B € CY(Bg(0)\
D,C3)NC(Br(0)\ D), see [5, Theorem 3]. Therefore B/ = W —J,J E—Jgh €
L?(Bg(0)) is well defined. By considering again

curl (J), E + Jgh) = div(h) cutl E + Jou1 g — Jp curl E

we conclude E'|p € H(curl, D) and E'| o5 € H(curl, Br(0)\ D), since by
combining the Maxwell system in chiral media (2.4.9a)), we have

(1- k2urer63) curl B = iku,-H + k2,ur6r5TE

and therefore differentiability of curl E inside of D and in Bg(0)\ D. Similarly
to the characterization of the domain derivative for the scattering from a
perfect conductor, we consider the difference

C(E,V)=C(W,V)—C(J)] E+ Jgh,V)
_ / curl BT (0 (div(W) = Ty = I ) + 2426, ,(VAT )T el V da
Br(0)
+ k2 / e BT (div(h)I — Jp — J;) )V da
Br(0)
+ k2 / & (VBT h)(carl ETV + ETewrl V dz
Br(0)

7/ ozrcurl(JhTEJrJEh)Tcur1V+k2/ e(Jy E+ Jgh) "V dz
Br(0) Br(0)

+ K2 / B (curl(J), E+ Jph) 'V + (J) E + Jph) TcwlV dz,
Br(0)
(3.3.3)
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3.3. Chiral media

where again a, = ui — k%B2%¢,. Note the vanishing boundary integrals on

OBRr(0) of the second term, due to the compact support of h in Br(0). We
are going to summarize these terms. In order to keep track of all terms, we
introduce the notation

C(E' V) =: /

(T1T cwlV + T V) de, (3.3.4)
Br(0)

where the terms 77 and T, are implicitly defined such that equations ((3.3.3)
and (3.3.4) are the same. We start by simplifying the integrals containing T5.
We are using

curl(J)) E+ Jgh) = curl(curl Ex h) and V(h'E)=J] E+ Jgh, (3.3.5)

which yields

/ V' Tyde = k2 / eV {(div(h)] Ty —JNE
Br(0) Br(0)
+ (VB h)curl E +V(h"E) + (Jg — Jg )h + B, curl(curl E x h)| dz.

We further use
(Jg — Jg)h=curl E x h

and
curl(E x h) =div(h)E — div(E)h + Jgh — JLE

to get
il 2 vl : T
V' Tode =k &V [curl(E % h) + div(E)h — Jph — JT E
Br(0) Br(0)
+ (VB h)curl E+ V(h"E) + curl E x h + 8, curl(curl E x h)| dz.

Using again
~Jph—J]E=-V(h"E) —curlE x h

we arrive at

/ V' Ty de = k2 / 5TVT(cur1(E x h) + div(E)h
Ba(0) Br(0)

+ (VB h) curl E + B, curl(curl E x h)) dz.
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3. Domain Derivatives

Considering the formula
curl(A x B) = Adiv(B) — div(A)B+ J4aB — JgA (3.3.6)

for vector fields A and B together with the product rule for the Jacobian of
the product of some scalar function «, and a vector field B

Jooa = arJa+ Ady, = apJa + AVa,
we find
curl(Bcurl E x h) = Beurl(curl E x h) — (curl ETVB,)h + (curl EVS, )h.

Note (VBT h)curl E = (curl EV3,)h. From Maxwell’s equations in chiral
media, we see

div(E) = -V, curl E.
This leads finally to

/ VTTQ dz = k2/ ey curl ((E + Bcurl E) x h) "V da.
Br(0) Br(0)

Now, we consider the integral

/ curl VTTl dx
Br(0)

= / curllV ' {ar(div(h)f —Jp—J, ) curl E
Br(0)

+ 2k%¢, 3, (VB h) curl E + k*c,.(VB, h)E
— ay cutl(J] B+ Jph) + k2,8, (J] E + JEh)} da.

First, we use again ({3.3.5]), which yields
/ curl VTTl dx
Br(0)
= / [ar( div(h)I — Jy — J), ) curl E
Br(0)

+ k%e,.8.(VB, h) curl E + k?¢,.(VB h)E
— a, curl(curl E x h) + &,8,k*V(h' E) + k*¢,8, curl E x h| dz
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3.3. Chiral media

With (3.3.6)) we find
div(h) curl E — J,| curl E + Jou1 gh = curl(curl E x h)

and therefore

/ curl VTTl dx
Br(0)

= / curl V—r [aT( — J,;r curl £ — qurlEh) + 2k2arﬁr(V6:h) curl £
Br(0)
K26, (VBT h)E + k2B,e,V(hT E) + k%e,.8, curl E x h] da.

We continue by considering

cur(—J,;r curl B — Joun gh) = —aTV(hT curl E) — i curlcurl E x h
=—V(a,(h" cutl E)) + (h" curl E)Va,
—curl(ay curl E) x h + (Vay, x curl E) x h
=— V(Ozr(hT curl E)) — curl(ey, curl E) x h + (Va, h) curl E.

Recall o, = /% — k?¢,82 and therefore Vo, = —2k?%¢,3,V3,.. Instead of

considering the first order system ([2.4.9al) for the two unknown solutions E and
H, one can consider the following second order partial differential equation,
where only the electric field appears:

curl (o curl E) — k%, E — k¢, B3, curl E — k?c, curl(3,.E) = 0. (3.3.7)

This can be achieved by plugging the second equation from into the
first, then applying the curl operator and again using the second equation
from (2.4.9a). One can easily see, that the weak formulation of this second
order partial differential equation is again given by the bounded sesquilinear
form C. We need this strong formulation to continue our calculations. Using

(13.3.7), we find

ap(—J,) curl E — Jou gh)
=—V(ap(h" curl E)) + (Ve h) cwrl E — k*e, E x h
— k2,8, curl E x h — ke, curl(8, E) x h

Together with

curl(B,E) x h =B, curl E x h+ (V3 X E) x h
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3. Domain Derivatives

=B, curl E x h — (h"E)VB, + (VB h)E

we arrive at

/ curl VTTl dx
Br(0)

_ / curlV ' { — V(o (" curl B)) + k28,6, V(1 E) + k%e, 8, curl E x h
Br(0)
— K%, (E x h) — 2k%, B, curl B x b + kzzer(hTE)Vﬁr} da
_ / wl V' [V(hT (e, F - oy curl E))
Br(0)
— k*e,.(E 4 B, curl B) x h} dz.
Recalling (3.3.4), we finally have

C(E,V) :/

irdl (k%r curl ((E + B, curl E) x h)) dz
Br(0)

+ / curl VT (V (hT(k%TBTE — a,. curl E))
Br(0)
— k%, (E + B, curl E) x h) da.
Using the identities
VT curl G =div(feurlG) and div(F x G) =curl F'G — F" curl G
for some scalar function f and vector fields F' and G, we get
C(E,V)= / (div (W (k*e,8,E — ap curl E) ) curl V]
Br(0)
+ div [k, ((E + B, cwrl E) x h) x V] ) de.

Now, we can apply the Theorem of Gaufl. Note, that due to the discontinuities
of a;, e, and B, we have to apply the theorem in D and in Bg(0). Since h is
compactly supported in Bg(0), no boundary integrals on 9Br(0) occur. This
leads to

C(E',V)= / {(hT(kQETBTE — o, curl E))VTCU.I‘IV
oD
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3.3. Chiral media

k2T (((E + By curl E) x h) x V)} L ds. (33.8)

From the definition of the weak formulation (2.4.10) and (2.4.11]), we see that
E’ is a solution of the scattering problem from chiral media that satisfies the

radiation condition. Comparing (2.4.10)) to (3.3.8)), we see

C(E", V)= —ik /w[u x H' L (v x (V xv))ds.

Combining equations (2.2.5) and (2.2.6]), we have

/ uv’ curl Fds = Gradgpu' (v x F)ds
oD oD

and therefore with (a x b)Tc = —(c x b) Ta we find

C(E,V) = /6D [ Gradop (hT(kQS,.,BT'E — oy curl E))
+ k2, (E + By curl E) x h]l(y x V) ds.
From Maxwell’s equations in chiral material, we have
ikH = o, curl E — k¢, 8,E and curl H = —ike,(E + 3, curl E),
which leads to

C(E", V)= —ik/ [Gradyp(h"H) — curl H x h]l(u x V) ds.
oD

Considering the expansion
H=H,+Hyv=wx(Hxv)+(H- -vv

and since [v x H]+ = 0, we have Gradpp(h' H) = Gradgp(h, H,). This leads
to

C(E', V)= _ik/aD [—y x Grad(h, H,) + v x (curl H x h)]l(y x (V xv))ds.

e
Recall Curlyp - = Gradgp - X v. Finally, we compute

[v x (curl H x h)]+ = [hy, curl H]+ — [h(curl H), ]+
= hy[curl H)]+ + h[Divogp v X H|x = hy[curl H)]..
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3. Domain Derivatives

With this, we conclude

v x H')x = [Cutlop (b, H,) + hy (v x (carl H x )] .

Since [v x W] =0 on 0D, we have

v x E'lx = —[vx (Jgh+ J; E)],.

Using Jeh + J,) E = curl E x h + V(h" E) together with [v x E]l+ = 0 we
conclude

v x By = [Cutlop(hyE,) — hy(v x (url E x 1)) .

O

This result is in line with Theorem [3.13|from Section[3.2] the domain deriva-
tive for penetrable obstacle, since we have curl E = —ikH and curl H = ikE
and curl E = —ikH in D and curl H = ikE in R3\ D if 8, = 0. The remaining
difference is due to the different scaling of the solutions.

3.4. Obstacles with impedance boundary condition

In this section, we present the domain derivative for the scattering from
an bounded obstacle with impedance boundary condition. We extend the
techniques used in [26] and in [25], for which boundaries of class C? are needed.
The higher regularity is needed for two reasons. First, the weak formulation
involves boundary integrals on dD. In order to linearize the deformation of
such integrals and, the boundary has to be at least of class C2. In order to
characterize the domain derivative, we need again the solution to be in H!
and therefore the boundary to at least of class C''. Our actual calculations
rely heavily on equations formulated in [40], where regular boundaries are
assumed. Here, lower regularity assumptions might be possible. Let again
E € Hiyp(9) denote the weak solution of the scattering problem, i.e.

B(B,V) = (V)

for all V' € Himp(Q2), see (2.4.8) in Section Let Ej € Himp(Q) denote

the weak solution of the scattering problem with respect to the perturbed
scatterer Dy, i.e.

/ (curl Bl curl V — kQEhTV> dz — ik{(Ay En, Y7V )0BR(0)
Qp
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3.4. Obstacles with impedance boundary condition

- ik/ Mon x Ep) T (v x V)ds = £(V). (3.4.1)
oDy,

We have to comment on the regularity of the impedance A : 9D — R. By
perturbing the boundary 9D, we have to define A : 9D, — R. Since any
y € ODy, is given by y = x + h(z) for exactly one x € 9D, one could define
Ay =z + h(z)) = A(z). This case has been considered in [I0]. We want to
consider the more general setting, where we also allow A to change. Therefore
we will assume from now on A € C!(R3).

Note, that in contrast to the scattering from a perfect conducting or pen-
etrable obstacle, we have to consider the additional integral over the surface
ODy,. With vy, : 0D;, — S?, we denote the outwards drawn normal vector field
with respect to dDy,. The normal vectors of 0D and 0Dy, are related. This is
illustrated by the following lemma.

Lemma 3.17. Let 0D be of class Ct. Let x € OD and v(z) the normal
vector of 0D at x. Let further vy(p(x)) be the normal vector of 0Dy at
o(z) =z + h(z). Then

vn(z + h(z)) = vn(p(2)) = m

Proof. Let ® : S C R? — 0D be a local parametrization of 9D with ®(0) = x.
We can define by

d:5 R (&)= 0(2) + h(D(2))
a local parametrization of D), with ®(0) = z + h(z). We define
U= J;TV(CE)

and claim ¥ to be orthogonal to 9D, at = + h(z). By the chain rule, we
compute for ¢ € {1,2}

22 0) = S20) 4 Ju(B(E) o (0) = (I + (e - (0) = () (0),
Therefore, we have
0% -1 0P 0d
s (0) = v(z) " J; (2) Ty (x) 7o (0) = v(z) - o (0) =0,

for i =1, 2, since g—z(O) is a tangential vector at x = ®(0). Additionally, ¥ is

outwards directed, since ¥ — v for h — 0 and ¥ depends continuously on h.
Therefore, ¥ is up to normalization the claimed normal vector. O
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3. Domain Derivatives

We employ again the change of variables x — ¢(x) to transform the integrals
over Qp, in (3.4.1) to integrals over Q. For the surface integral on 0Dy, we
define the surface functional determinant Det ¢ implicitly by

/ ds = / Det pds,
aDy, aD

see [25, Section 2.3]. If ® : S C R3 is a global parametrization of 9D, i.e.
®(S) = 9D and ® : S C R3 of Dy, i.e. ® = & + ho ®, then one finds the
explicit representation of Det ¢ in local coordinates by considering

/mjh ds = / ’6361 8;102 (x)’ dz

8<I>

[ B 28 = [
= xr = € S.
qu) ‘8.%1 6332 oD 14

=:Det ¢

For non global parametrizations, one defines Det ¢ using a partition of unity
in a point € 9D by the above fraction for any parametrization which maps
to . We will see, that this definition does not depend on the choice of the
parametrization.

We use again the transformation (3.1.3))
Ey, = J] Ep.
Note that the proof of Lemma E 1| yields Eh € Hinp(Q). The boundary
integral in ) transforms then with Lemma m 3.17| as follows

/ Mvn X E)T(vp x Vi) ds = / Xvh x Ep)T (v x Vi) Det ¢ ds
oDy, oD

T _ _t—, Detop
vx J 7 TE) (I v x STV —— ds.
oD @ @ h) (go © h)|J V|2

= [ xJZT
We use the identity
(Au) x (Av) = det(A)A™ " (u x v)

for an invertible matrix A € R3*3 and u, v € R3, which can be seen from

((Au) x (Av)) - w = det(Au|Av|w) = det(A) det(u|v|A™ w)
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3.4. Obstacles with impedance boundary condition
= det(A)(u x v) - (A" w) = det(A) (A~ " (u x v)) - w,

to get

/ )\(l/h X Eh)T(Vh X Vh) ds
BDh

~ —~ —~ Det ¢
= MNvxE)TJ I, (v <V
op R e T X V) e T

The following lemma helps us to simplify the last term and shows, that the
Definition of the surface functional determinant Det(yp) does not depend on
the chosen parametrization.

Lemma 3.18. Let 9D be of class C'. Then we have

Det ¢

————=—=1 ondD.
det J,|J; v

Proof. Recall the proof of Lemma 3.1} There we have shown, that the follow-
ing holds:

—~T o~
/ YWE), Vi ds = / veEn yrVi ds.
8Dy aD

On the other hand, we have
/ %E,TVTV;L ds = / (vp X Eh)TVh ds = / (v, X E\;;)Tf/; Det ¢ ds
oDy, 0Dy, oD
-T —TENT T Pete
= (Jap Vv X Jap Eh) (J@ Vh)ids
aD

|7 v
—— ——~  Det
:/ (I/XE}L)TVheisiT S.
aD det J,|J, V|

So we conclude
Det ¢

det J,|J; v

1.

Note, that we have shown
Det(p) = det(J,)|J, vl

an explicit representation of the surface functional determinant.
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3. Domain Derivatives

In conclusion, we have shown that Ej, € Himp(£25) is a weak solution of the
scattering from the perturbed scatterer Dy, if and only if Ej, € Himp(£2) is a
solution of

T I T, —~T —

0o 2 —14-T

/Q (curlE, 22 etV = KBy det S V) de
T

. ~ =T de— i
— 1l<:/ Ay Ey, vV ds + ik
oD Det ¢

(AWER), 72V om0 = (V) (34.2)
for all V' € Hipp(2). We define the bounded sesquilinear form

Bh : Himp(Q) X Himp(Q) — C
such that (3.4.2) reads as

Bu(En, V) =£(V) for all V € Hipnp(9Q).

(3.4.3)
To investigate the behaviour of l/?; as h = 0 in C', we need the following
additional linearization.

A
Det ¢

Lemma 3.19. Let 9D be of class C? and let A € C1(R3). Then

= A1 =Divap(hs) = 26h,) + VAT b+ O(||h[|21 (gs o))
for h — 0 in CL.

Proof. By Lemma [3.18] we have

Det(¢) = det J¢|J;TV|.
From the proof of Lemma we conclude

det J, = 1div(h) + O(||hl|za) and J T =1—J) +O(||h]|g:)

We use the representation of the divergence operator

hy,
div(h) = Divaop(h;) + 2kh, + 0

ov’
see [40l Theorem 2.5.20], and compute
Ohy =v'Jyw+h'Jv=vJ,
v N——

=0
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3.4. Obstacles with impedance boundary condition

since R = J, acts on the tangential plane, see Lemma We consider the
Taylor expansion
1T, Tvl=1—v"Jw + O(||h||2n)

and arrive at
Det(¢) = 1 + Divap hy + 26h, + O(||h||%0).
The claim follows with the Taylor expansion
X=X+ VATh+O(n]2).
O

Recall x being the mean curvature, defined in (3.1.20)). Now, we are able
to prove continuity of the solution with respect to the boundary in the same
way as before.

Theorem 3.20. Let 0D be of class C*. If E € Hinp(Y) is the solution of

and EZ € Himp(Q?) a solution of , then we have

lim By - |

i
Al g1 —0

Himp () = 0.

Proof. Let B, By, : Himp(Q) — Himp(Q) be the bounded linear operators,
given by the Riesz representation theorem, satisfying

B(E,V)=(BE,V)g,..« Br(E,V)=(BLE,V)u,. ()
for all E,V € Hinp(£2). Then we have
I(Bn — B)Ell,,., ) = Bu(E, (B, — B)E) — B(E, (B, — B)E).

By the definition of B and Bj, the linearizations from Lemma and
together with the Cauchy-Schwarz inequality, we conclude

(B = B)Ell%,,.. 0

JIJ -
— T pre _
_/Q{curlE (detJip I)curl(Bh B)E

—kK’ET(J;'J, " det J, — I)(B, — B)E| dx
~JTJ .
— ik ET(ANZ2"2 _\I)v(B, — B)Ed
! aD% ( Det ¢ )%( h )E ds
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3. Domain Derivatives

< ClPller 1B i () | (Br = B)El| 02+

We see B, — B for ||hl]|ct — 0 and therefore, by a perturbation argument
similar to Theorem [3.3] we conclude

|1En — Bl

Himp(@) — 0, h—0in ch.
O

As before, we continue by proving the existence of the material derivative
by taking a closer look at the linearizations from Lemma[3.2]and Lemma [3.19]

Theorem 3.21. Let OD be of class C?. Let E € Hinp(Q) be the solution

of and Eh € Himp(Q) of (3 Then there exists a function W &€
Hlmp(Q) depending linearly and contmuously on h € C', such that

Jim Er—E—Wlu (o =0
o TRller | Ity )

Proof. Similar to the previous cases, we define W € Hjpn,,(2) as the unique
solution of

B(W,V) = / carl BT (div(h)I — J,| — Jp)curlVdz
Q
KPET (div(h)I — J;) — Jp)V dz

Q

ik | wET (A(Divap(hT) 20 )] — A+ J)T) — (VATh)I)st
oD

for all V' € Hipp(€2). We have

B(E, — E —W,V) = B(Ey, V) — (V) — B(W,V)
= B(Ep, V) — Bu(En, V) — BW, V),

since B(E,V) =4(V) = Bh(E\h, V) and conclude by considering

B(Ey — E—~W,V)

T JTJ -
= 1E, (I- d I—J,—J 1Vd
/chr h ( detJ, — (div(h)I — Jp — Jp, ))cur Vdx

—~ T .
— kQ/ Ej, 1 —J ', T det J, + (div(h)] — J, — Jh))de
Q
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3.4. Obstacles with impedance boundary condition
—~T ~JIJ
— S e i
ik /aD veEn ()\I )\Detgp A(Divop (h;) + 2kh,)1

FNJT ) + (VATh)I)st

Jr/ curl(E’; — B)T(div(R)I — Jp, — J;) )ewrl V da
Q

+ K / (En — B)T(div(h)I — Jy — J )V da

Q

~ik [ (B - B)(\Divan(he) + 26h,)1
oD
N+ T - (V/\Th)I)WdS,

where we added a smart zero and together with the linearizations from Lem-

mata [3.2 and B.19]

1 —
B(E,—E-W,V)

Al
< C (I @ Ohllcn) + 1B = Bl ) IVl iy
for [[rfler = 0. As in Theorem we conclude
lim — E’\ —E-W ‘ 0
Ikllor ||R]cr 1 | Himp (22)
O

Motivated again by the formal Taylor expansion (3.1.6), we can extract
the domain derivative E’ in the same way as for the perfect conductor, see
Theorem [3.6

Theorem 3.22. Let D be regular. In the setting of Theorem[3.20, we have
B = W—JhTE—JEh € Himp(Q). E' can be uniquely extended to the radiating
weak solution of Maxwell’s equations

curl B —ikH' =0, cwlH +ikE' =0
in R3\ D satisfying the impedance boundary condition
’ ! -
vx H — /\(u x (E' x 1/)) = Curlpp(h,H,) + A Gradgp(E,h,)

+ hl,(% +ik — 2\(R — ,{I)) (v X (E x v)) + kA, (H x v).  (3.4.4)
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3. Domain Derivatives

Proof. The proof uses heavily calculations already done in [26], which we
also used for the domain derivative of the perfect conductor in Theorem [3.6
First, since the boundary is analytic, we have E, H € H?((), see for example
[15, Section 4.5d] and [I0, Proposition 2.2]. To be more precise, they show
E,H € H*(Q), if 0Q is of class C*T1. Therefore, we have (map(hl,Hl,) and
Gradgp(h,E,) in L?(0D), i.e. the right hand side of is well defined in
L2(0D). As usual, after defining E' = W — J,] E — Jgh € Himp(2), we start
by considering
B(E',V)=B(W,V) - B(J] E + Jgh).

Since the terms in B(W, V') involving volume integrals over {2 are exactly the
same as in the proof of the characterization of the domain derivative of the
perfect conductor, see equation (3.1.10)) in the proof of Theorem we have

.
B(E',V) = / [GradaD(hT curl B) + k*(E x h)] (v x V) ds

oD

- ikz/ (wxE)T [A(DivaD(hT) +2kh )T = N(Jn + J)) — (VATh)I} (v x V) ds
oD
+ ik/ Av x (Jgh+ JTE)) " (v x V) ds.
oD

Note, that at this point, we can already conclude that E’, together with
H = i curl £’ is a radiating solution of Maxwell’s equations, satisfying some
inhomogeneous impedance boundary condition, see , since we have no
differential operator applied to the test function V' € Hiyp(). To see, that
this function actually is given by , we start to summarize and simplify
the terms, using VATh = h, 8 — h] Gradpp A and the identity

Oh,,
ov'’

Divap(hy) + 2kh, = div(h) —

see e.g. [40, Theorem 2.5.20], as well as
Jph+ JJE=curlEx h+V(h'E),
combined with
curl(h x (v x E)) = hdiv(v x E) — (v x E)div(h) + Jp(v X E) — J,xgh
= hdiv(v x E) — (v x E)div(h) — (Juxe — J, 5)h
— (L wgh+J) (v x E)) + (Jn+ J, ) (v x E)
=hdiv(y x E) —curl(v x E) x h —V(h' (v x E))

Q. o
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3.4. Obstacles with impedance boundary condition

+ (=div(h)I + Jp + J; ) (v x E)
to get

(A(DivaD(hT) + 26, T — AT + Jn) — (V)\Th)I) (v x E)

_ _62}‘” (v x E) — b Gradon(\) (v x E) — Aewl(h x (v x E))
14
+ AMdiv(y x E) — Acurl(v x E) x h = AV(h' (v x E)).

Note that this calculation requires a smooth extension of v in a neighborhood
of 9D, which is possible, since 9D is regular, see [40, Section 2.5.6], where it
is shown, that one can choose an extension such that curl v = 0 and therefore

conclude by (2.2.6)

div(v x E) = ETcurlv —v' cwrl E = —v" curl E = Divyp (v x E)

the equivalence of the surface divergence and the regular divergence of v x E.
Using this, we arrive at

.

B(E',V) = / [Gradap(hT curl B) + k*(E x h)} (vx V)ds

oD

+ ik/ My x (curl E x h) + v x Gradap(hTE)) T (v x V) ds
oD

fik/ (vxE)T[- Orhy _ I Gradop A (v x V) ds
oD aV

- ik/ [Ah:Divyp(v x E) — Acurl(v x E) x h
oD

—Xeurl(h x (v x E)) — AGradap(h' (v x E))}T(l/ x V)ds.

Note, that in every scalar product F - (v x V') for some vector field F, we can
drop the normal part or add some normal component, i.e.

F-wxV)=F, -(vxV)=(F+av) (vxV),

where « is an arbitrary scalar function. We gather the terms involving surface
gradients as follows:

Gradgp(h'" curl E) + ik(Gradop A" h,)v x E + ikA Gradsp (h, (v x E))
=ik Gradpp (h, H,) + ik( Gradsp A x (v x E)) x h,

where we also used the impedance boundary condition. This leads to

B(E,V) = /

[ik Gradap (hy H,) + ik( Gradap A x (v x E)) x h,
oD
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3. Domain Derivatives

T __
FRAE xh)| (vxTV)ds

+ik [ Ay x (curl E x h) + v x Gradop(h' E)) " (v x V) ds
oD

—Hk/ aAh”(uxE)T(uxV)ds
op O

14

_ ik/ [AhT Divop (v x E) — Aewrl(v x E) x h
oD

— Acurl(h x (v x E)) T(1/ x V) ds.

Considering h x (v x E) = (ETh)v — h, E and again curlv = 0, we have
curl(h x (v x E)) =V(h"E) x v — Vh, x E — h, curl E
and therefore
B(E',V)
_ /d i {ik: Gradap (b, H,) + ik( Gradap A x (v x E)) x hy

T _
+K2(E x h)] (v x V) ds

OMh,
ov

+ik / [)\hT(curlE)l, Fcurl(v x E) x h
oD

T _
+ik/ [/\ux(curlExh)Jr (uxE)] (v x V) ds
oD
T _
“A\(Vhy, x E) — A, curlE} (v x V) ds.
Using v x (curl E x h) = hy, curl E — (curl E), h, we obtain

B(E',V)

T _
= / [ik GradaD(hl,H,,)—i—ik( Gradgp Ax (VXE)) xhr—&—kz(Exh)} (vxV)ds
oD

, O\, T
+ lk/ { (v x E) + Acurl(v x E) x h — \(Vh,, x E)} (v x V) ds.
oD 81/

Since we only do need the tangential part of Vh, x E, we calculate

(Vh, x E); = [(Gradap h, + %V) x (E,v+ ET)L
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3.4. Obstacles with impedance boundary condition

= F, Gradgp h, X v + %(y x E).

Recall the curvature operator R and its properties stated in Lemma [3.11] We
use the decomposition of curl £ into tangential and normal component

0
curl E = (Divgp E x v)v 4+ Gradpp E, X v + (R— 2K — a—)E X v,
v

see [40, Theorem 2.5.20], which leads to

curl(v x E) = (Divop E.)v + (R — 2Kk — ag)ET
v

Together with the formula

gET —curl ¥ x v = Gradgp F, — RE,,
v

see equation (5.4.50) in [40], we arrive at

) .
curl(v x E) x h = h,, [(R 2% — 5)ET} % v+ Divap (E,)(v x h)
=h, [Z(R—I—K)ET} xv—Gradop (E, ) xv—ikh, (H xv)xv+Divgp(E;)(vxh).

It is
[E] Gradgp A x h;|_= E] Gradap A(v x h)

and therefore with the boundary condition v x H = AE; and with the chain
rule for the surface divergence

ADivop(E,)(v x h) + (E] Gradgp \)(v x h) = Divop(AE,)(v x h)
=Divop(v x H)(v x h) =1ikE,(v x h).

Finally, we have with v x h, =v X h

[(GradaD Ax (v x B)) x h,] = (E] Gradyp \)(v x h)

and with v x v =0 and (h; x E;), =0
(Exh); =FE,(vxh)+h,(E xv).

If we consider all this, we arrive at
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3. Domain Derivatives

B(E',V) =ik [Gradap(h,,H,,) — AGradpp(h,E,) x v+ %(V x E)
oD

+ A [2(R — ) Er] X v — kM (H x v) x v) — ikh, (E x y)]T(y x V) ds,

or, equivalently,

B(E',V) = ik / [(maD(htu)+>\GradaD(hyEl,)

oD

)\ T
+ hu(5 Fik— 2A(R + n))ET ik Ay (H % y)] (v x (V x v)) ds.

Considering the derivation of the weak formulation (2.4.7]), we conclude

vx H — My x (E' xv)) = (map(hl,Hy) + AGradgp(h, E,)

o\
—_— 3 — — 3 (
+ h,,( ” +ik —2A(R m))ET +ikAh, H X v),

which finishes the proof. O

Note that again, as expected, the domain derivative E’ does only depend
on the normal component h, of the perturbation on the boundary 9D, in
contrast to the material derivative W, which depends on h in a neighborhood
of OD.

If one sets A = \g # 0, we arrive at the known characterization of E’, see
[30, 20]. For non-constant A, there is also a result on the shape derivative
with so-called generalized impedance boundary condition, see [10]. Their rep-
resentation of the shape derivative differs from ours. This is due to the fact,
that they use a different way of perturbing the scatterer, where the perturbed
scatterer inherits the impedance from the unperturbed scatterer. Recall that
we assumed A € C*(R?) instead, which is more general, since a perturbation
h of the scatterer D also changes the corresponding impedance.

The domain derivative does, as expected from the scalar case, see [25],
depend on A in a neighborhood of 0D, since the characterization involves the
normal derivative of A.

Due to the symmetry of Maxwell’s equations, one can conclude from this
result the domain derivative for the perfect conductor. Setting A = 0, the
impedance boundary condition becomes the perfect conducting boundary con-
dition for the magnetic field H. Since (F, H) is a solution of Maxwell’s equa-
tion if and only if (H,—FE) is a solution of Maxwell’s equations, we arrive at
the boundary condition for E’ of the perfect conductor by changing the role
of E and H and adding one minus sign, see Theorem
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4. Inverse scattering problems

Domain derivatives have been used to solve inverse scattering problems.
For the acoustic case, see for example [27] for the 2D case and [22] for the 3D
case. For the electromagnetic case, see [I0] for reconstructions of obstacles
with impedance boundary condition.

In this section we want to formulate the inverse problems and the Newton
schemes used to solve these. For numerical examples, we refer to Section [6.3
Recall that in each of the settings presented in Section [2.1] i.e. the scattering
from a perfect conductor, the scattering from a penetrable obstacle, the scat-
tering from an obstacle with impedance boundary condition or the scattering
from an obstacle consisting of chiral media, the bounded scatterer D C R3 is
surrounded by an homogeneous medium. In all cases, we imposed the Silver-
Miiller radiation condition, see for the scattered field (E*, H®). Due to
this radiation condition, the scattered field E° has in the unbounded domain
R3\ D the asymptotic behaviour

exk\x|

_ 1
 4r|z]

||

E*(2) [EOO(:%)—F(’)( )}, |z] — oo,

with & = a/|z|. Fs is called the electric far field pattern. It is an analytic
tangential vector field on the unit sphere S?, see [14, Theorem 6.8]. Fixing an

incident field (E*, H*) and a class of admissible boundaries ), we can define for
each scattering problem the non-linear (electric) boundary to far field operator

F:Y— L}S%, 0D~ E.,

where E, is the electric far field pattern with respect to the scatterer D with
boundary 0D. The inverse scattering problem then is the following: Given a
far field pattern E., € L7(S?), find D € Y such that the equation

F(0D) = Ew (4.0.1)
is satisfied. In the light of Section 3] we know F to be differentiable, i.e. we
have

1

Tl IF©Dn) = F(OD) = Ergllz2e =+ 0, h— 0. (4.0.2)

Here E!_ denotes the far field pattern of the domain derivative E’ with respect
the perturbation h € C'(R3,R3) with compact support and with respect to
the scatterer D C R3. If we choose a certain type of parametrizations ) in
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4. Inverse scattering problems

a subset of a normed space X, (4.0.2) means that the operator F possesses a
Frechét derivative for any admissible boundary 0D with

F'[0D]: X — L?(S?), F'[0Dlh=E/.

Since equation (4.0.1]) is ill posed, we use a regularized iterative Newton
scheme as follows. First, we choose a starting guess DY. In every itera-
tion ¢ € N, we aim to solve

F(0D}) = Es (4.0.3)
for a variation h. Since this is a non-linear equation we use the linearization
F(0D;,) =~ F(0D) + F'[0D]h.

Then, (4.0.3) becomes
F'[0D'h = E,, — F(0D"), (4.0.4)

which is now linear in the unknown variation h. We encounter two difficulties.
First, may not be uniquely solvable. Next, due to the ill-posedness of
the inverse problem and the unknown non-linear behaviour of F, we have to
apply some regularization to damp h, such that the updated scatterer

oD = 9D}, (4.0.5)

is again an admissible boundary. Both difficulties can be contemplated by
applying Tikhonov regularization. With some regularization parameter a > 0,

(4.0.4) becomes then
(F'[0D']*F'[0D"'] + oI)h = F'[0D']*(Ex — F(0D")). (4.0.6)

After updating D! = 9D}, we set i = i + 1 and solve again (4.0.6). We
stop our iteration, if the residual r;, defined by

r; = ||F(8D’) — Eoo||L2(S2),

falls below a chosen threshold. For more details on such regularized iterative
Newton schemes, see [31]. To our knowledge there are no known convergence
results for inverse scattering problems.

The implementation of this algorithm requires the computation of F and
F’ as well as its adjoint operator. We will avoid calculating the adjoint of the
derivative for our implementation by considering the adjoint of the discretized
operator F'. In general, one expects different results if one calculates first the
adjoint and discretizes then. In the next section, we want to present the semi-
discrete equation which arises from , where ) and L?(S?) are discretized
but the evaluation of F and F’ for some fixed boundary is not.
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4.1. The semi-discrete equation

4.1. The semi-discrete equation

For now, we are interested in the semi-discrete version of , where we
want to discretize ) but not F or F/. To ensure that F possesses a Frechét
derivative, we have to choose ) as an open set of a normed space X'. Now let
Y be the set of regular star shaped domains with center in the origin. The
boundaries can then be identified by positive smooth functions on the unit
sphere S? via spherical coordinates, i.e.

V20D={zcR®:x=r(d)d, decS?}
with some smooth function r : S — R~(. More precisely, we choose
Y={reC>®S?*:r>0}

in the normed space X = (C°°(S?) as domain for the boundary to far field
operator F. Recall the definition of the spherical surface harmonics Y,",
n € Ny, |m| < n, which are smooth and form a complete orthonormal system
in L2(S?,C), see Lemma Any function in this space can be written as a
series of spherical surface harmonics. Since we are interested in real-valued
functions, we choose for N € N the finite dimensional subspace Xy C &,
given by

N n N n
Xy ={reC® ) :r=> Y al'ReV;"+> > ArimY;"},

n=0m=0 n=1m=1

with dim(Xx) = (N + 1), which leads to the discretized set of admissible
boundaries Yy, given by functions r € Xy with r > 0. Now, we pick M € N
evaluation points 21, ...,2y € S? for the evaluation of the far field patterns.
Now, F(0D) = E reads as

F(a, ) = (Bso(21), ..., Boo(211)) € CM,
where o € R and B e

n<N,0<m<<nand 8, n <N, 1< m < n. Using the linearity of the
domain derivative, we can write

Z Z o F'[OD](Re Y,™) +Z Z BMF'[0D])(Im Y,™).

n=0m=0 n=1m=1

Again, using only finitely many evaluation points, we have for fixed n and m:

F'[0D](ReY;") = (EL (21;Re "), ..., EL (803 Re Y)) € CM
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4. Inverse scattering problems

F'[0D](ImY,") = (Bl (21;Re Y,™), ..., Bl (&3 ImY,")) € CPM,

where E’_(Z; h) denotes the far field of the domain derivative E’ with respect
to the perturbation h, evaluated in & € S2. Choosing the ordered basis B of
Xy, given by

B={ReY?,ReY?,Re Y], ..., Re Yy , ImY}, ImYy, ..., Im Y3},
we arrive at the representation matrix for the discretized operator F'[0D)]

F'[oD] : RN+D* _, ¢3xM

(F’[@D])ijk = (B (&5:h1)),,i=1,2,3,j=1,...., M, k=1,..., (N +1)?

where hj denotes the k-th element of 5. As mentioned before, we consider
now the adjoint operator of the discretized operator F’[0D], which is just
given by transposing and complex conjugation of F'[0D], i.e.

F'[9D]* : C*M  RVHD?
(F'[oD]") . = (B, (:i’k,hi))j
with i = 1,...(N+1)2, j = 1,...,3 and k = 1,...,M. The product of

F'[0D]*F’'[0D] is then given by the complex quadratic (N + 1)% x (N + 1)?
matrix, given by

ijk

M
(F'[OD]*F'[0D]), = > | EL &k hi) - EL (&5 hy) € C.

k=1
The discretized version of the identity operator I in is just given by the
identity matrix Iy 41)2. Instead of I, we choose a different penalty matrix J,
which is also a diagonal matrix and the entries are given by (J)gr = 1+ A(k),
k=1,...,(N+1)2 Here, A(k) is the corresponding eigenvalue of the spherical
harmonic Y, associated to the k-th basis element of B, i.e.

A(k) :=n(n+1), such that hy =ReY,"” or ImYy'.

This corresponds to an H?2(S?)-penalty term. The H?(S?)-norm is equivalent
to the graph norm || - |[a_, of the Laplace-Beltrami Operator Ag» : H?*(S?) —
L?(S?), given by

[ - HASZ = || - llz2(s2) + [1As2 - ||22(s2),

see for example the introduction in [41]. Using an HZ2-penalty, which corre-
sponds to the curvature of the boundary, instead of a L?-penalty is known to

96



4.1. The semi-discrete equation

improve the results for inverse acoustic scattering problems for star shaped do-
mains, see [25]. We observed similar improvements for inverse electromagnetic
scattering problems.

So, solving the Tikhonov equation after discretization of ) becomes
solving a linear system of (N + 1)? equations. The solution

h=(an,Bn)" = (ad,ad,...,aN,B1,8),...,BN)T e CV+D* (411
of the semi-discrete system
(F’[aD]*F’ [9D] + aJ)h = F/[0D]" (Ex — F(0D))

is in general complex-valued, since both the right hand side and the system
matrix are complex-valued. In every iteration, we have to update our bound-
ary, see . After discretization, every boundary 0D? is given by a vector
of coefficients (af, 3"). We update the boundary dD? by discarding the imag-
inary part of A in . The coefficients of 9D'*! are then given by

(o', B8 = (o' + Reay, B' + Re ).

Full discretization requires additionally the numerical evaluation of F(9D)
and F'[0D], which will be addressed in Sections [6.1| and
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5. Electromagnetic chirality

This section is concerned with so-called electromagnetic chirality, which will
be rigorously defined later. It is a phenomenon appearing in electromagnetic
scattering, where the scatterer treats incident waves differently according to
their helicity. Until recently, the definition of chirality was just a question of
geometry. An object is called (geometrically) achiral, if it is invariant under
some reflection by a plane, combined with translations and rotations and
chiral, if that is not the case. This is a purely binary criterium. A scatterer
is either chiral or not. In [I8], a new definition of electromagnetic chirality
was presented, which can also quantify the chiral behaviour. Objects, which
are in this sense maximally electromagnetic chiral, are of great interest for
applications, since such scatterer are invisible for a certain type of incident
fields. In [2], this definition was put into the mathematical context of time-
harmonic electromagnetic scattering. Some connections of electromagnetic
chirality to geometrical properties were proven and examples presented. We
will summarize the main definitions and results in Section 5.1l The author of
this thesis was involved in the numerical part of [2], which will be presented
in Section One of the examples indicates, that the proposed measure of
chirality is only continuous and not differentiable and can therefore not be
used in a Newton scheme to find scatterers with high measure of chirality.
We therefore suggest in Section [5.2] a new measure of chirality and discuss its
properties.

5.1. Definition and measurement

All definitions, theorems and proofs in this section are directly from [2].
Recall the Maxwell system in a homogeneous, isotropic material (2.1.1)), given
by

curl E —ikH =0, curlH +ikE =0. (5.1.1)

A simple solution to this system is a plane wave, defined by

() 0= (404) "

with amplitude A € C? and direction d € S? with d- A = 0. A Herglotz wave
pair V[A] is a superposition of plane waves with respect to a tangential vector
field A € L?(S?), i.e.
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5. Electromagnetic chirality

In general, a solution to the Maxwell system is said to be left (or right) cir-
cularly polarized, if along a line in the direction of propagation, the real part
of the amplitude performs an anticlockwise (or clockwise) circular motion.
The amplitude of the electric and magnetic field of a plane wave are always
perpendicular. Let € R? be an observation point. If the amplitudes of the
electric and magnetic field perform a circular motion, then the magnetic field
at x has to be +/— the electric field if we move one quarter of the wavelength
A =27 /k in the direction d of propagation, i.e.

F(d x A = £H(z) = E(x + (V\/4)d) = ide*@®,

i.e. the amplitude satisfies id x A = £ A. Since a Herglotz wave pair is a su-
perposition of plane waves, we have V[A] is left (or right) circularly polarized,
if A € L?(S?) is an eigenfunction for the eigenvalue +1 (or —1) of the operator

C:L}(S*) — L?(S), CA(d) =id x A(d), decS>
The eigenspaces of C for the eigenvalues +1 are given by
VE={A+CA: Ac L}(SH}. (5.1.2)
These eigenspaces satisfy
L} (S =Vvtev-, VvtiVv-

with orthogonal projections P* : L?(S?) — V*, given by P* = (Z+C)/2. We
say a Herglotz wave pair V[A] has helicity +1 if A € V*. So for a Herglotz
wave pair, we have an explicit and simple criterium, whether its circularly
polarized or not. Since Herglotz wave pairs form a dense set in the space
of solutions of the Maxwell system on any compact set, see [12], we only
consider these solutions. By the orthogonal decomposition of L?(S?) into the
eigenspaces V* of C, we can decompose any Herglotz wave pair V[A] into a
sum of two Herglotz wave pairs, one having helicity +1 and the other one
having helicity —1. This splitting can be transferred to the solutions: Let
B C R? be a bounded set. If A € V* then V[A] € H(curl, B) x H(curl, B)
satisfies
V[A] € WH(B) x WE(B),
where the spaces W*(B) are given by
W*(B) = {U € H(curl, B) : curlU = +kU}.

Note, that for any solution (E, H) € H(curl, B) x H(curl, B) of the Maxwell
system ([5.1.1)) the linear combinations

Et=FE+iH, E =E—iH
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satisfy E* € W*(B), i.e. the electric field £ admits the decomposition
1.

into fields of helicity +1 and —1. Let us now consider the following scattering
problem: A Herglotz wave pair V[A] is scattered by a bounded scatterer
D C R3. This gives rise to a scattered field (E*, H*), a solution to the Maxwell
system in R3 \ D, satisfying the radiation condition . Note that we do
not restrict ourselves to one of the special cases presented in Section [2.1} our
assumptions hold true for all of them. The far field pattern of a Herglotz wave
pair is then given by the far field operator F, given by

F: LX(S?) — L#(S?),
]-‘A(:?:):/ FEoo(i,d,A(d))ds(d), % €S>
SQ

Here we used the notion F (&, d, A) for the electric far field pattern E, with
respect to an incident plane wave with direction d € S? and amplitude A € C3,
evaluated in # € S2. The next theorem states, that the helicity of scattered
fields due to incident Herglotz wave pairs can be observed in the far field
patterns.

Theorem 5.1. The far field patterns Ex, Hx are elements of V* if and only
if for any bounded open set B such that B C R3\ D we have E*, H®> €¢ W*(B).

Proof. See [2| Theorem 2.4]. O

Using the above projections P*, we can decompose the far field operator
F into four operators, i.e.

F=Ft+Ft- 4+ Ft+F -

with FP? = PPFP1 for any pair p, g € {+, —}. Each of the projected operators
describes the scattering only considering incidents fields of one helicity and
scattered fields of one helicity. Now we can finally define the scatterer D to be
electromagnetically achiral, if there exist unitary operators U; in L?(S?) with
U;C =—-CuU;, j=1,...,4 such that

FHt = F U, Ft=UFt U,

holds. If this is not the chase, the scatterer is called electromagnetically chiral.
Before defining on how to measure how electromagnetically chiral a scatterer
is, we first have a look at a geometrical property of a scatterer, which can
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5. Electromagnetic chirality

imply achirality. Recall a scatterer D being called geometrically achiral, if
there is € R3 and an orthogonal matrix J € R3*3 with det.J = —1 such
that D = x + JD. This means that D is invariant under some reflection
by a plane combined with translations and rotations. We have the following
theorem.

Theorem 5.2. If the scatterer D is geometrically achiral and either penetrable
or a perfect conductor then D 1is also electromagnetically achiral.

Proof. See [2, Theorem 3.2]. O

The context of electromagnetic chirality extends the usual geometric defi-
nition. The measure of chirality is motivated by the following observation in
[18]: Let (o, z;,y;) be a singular system of the electromagnetically achiral far
field operator F and (o% o} K j ,y] 1) a singular system of F?4 for p,q € {+, —}
with decreasing sequences of singular values. Then we have

Frro=UhF lhp=> o5 (Usp,x; Nhy; "~
jeN

ZJ (pﬂUZI >u1yj__
jeN

for any ¢ € LZ(S?). Therefore, the singular values of F ™ and 7~ coincide.
This is the motivation to define the measure of chirality x(F) as

=

NF) = (1075 = (7Dl +11077) = (07O )

Note that this measure is well defined, since F is an integral operator with
smooth kernel and is therefore known to have at least exponentially decreasing
singular values, see [35, Theorem 15.20].

5.2. Smooth measure of chirality

Our first goal is to investigate the regularity of x. In this section, let ¢y be
the space of real-valued sequences with limit 0 and ¢? be space of real-valued
square-summable sequences. In the next theorem, we state some well-known
results about singular values for the readers convenience.

Theorem 5.3 (Singular system). Let X,Y be Hilbert spaces and K, L : X —
Y be linear compact operators. Then there exists a sequence (14;)en and some
orthonormal systems (z;)jen in X and (y;)en in'Y with

Ky = pjy;, Ky = pya.
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5.2. Smooth measure of chirality

There is an g € N(K) for any x € X such that we have
w=x0+ Y (v,a5)z5, Ko=) pulwa;)y;. (5.2.1)
JjeN JEN

The representation of x is called singular value decomposition. The non-
negative numbers p; = p;(K) are called singular values. It is

lim p;(K)=0.

j—o0

If we order the singular values such that p;(K) > pj1(K) holds for every
7 € N, we have additionally

pi(K) = K[, pnsi(K) = inf  sup  [[Kgl, neN.
P1setn unH--.iwn
oll=

For the singular values of the sum of two compact operators, we have
tntm+1(K + L) < i1 (K) + prm1(L), n,m=0,1,2,.... (5.2.2)

The triple (u;,x;,y;) is called singular system of K.

Proof. See [35, Theorem 15.16 and 15.17]. O

We define the singular value decomposition operator S, which maps a com-
pact operator K onto its sequence of singular values p,;(K). A direct conse-
quence of the previous theorem is the following. We denote by K(X,Y) the
space of compact operators from X to Y.

Lemma 5.4. The singular value decomposition operator
S: K:(X, Y) — Co, K (/J,j(K))jeN
is Lipschitz continuous.

Proof. Let K,L € K(X,Y). Considering (5.2.2) with n = 0 we have for
m=0,1,2,...

/J’m-‘rl(K) = M7rL+1(K — L+ L)
fmt1(L) = pimy1 (L — K + K)

This leads to || K — L|| = pu1 (K — L) > |

[S(K) —S(L)]loo = Sup i (K) — pi

Ml(K - L) + M?rH—l(L)?
in(L = K) + i (K).

L) — p;(K)| for all i € N. Therefore

<
<

—~

L) <m(K - L) = |K - L,

—~

i.e. S is Lipschitz continuous with Lipschitz constant 1. O
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5. Electromagnetic chirality

Note that S is not a linear operator, since singular values are always non-
negative, i.e. S(—K) = S(K) for any compact operator K € IC(X,Y). As
mentioned above, the decrease of the singular values of far field operators
is at least exponential, in particular they are elements of ¢2. The class of
compact operators with square-summable singular values are called Hilbert
Schmidt operators. We denote the space of Hilbert Schmidt operators between
separable Hilbert spaces X and Y with #(X,Y’), which is by means of the
next theorem again a Hilbert space.

Theorem 5.5. Let (e;); be an arbitrary complete orthonormal system in X.
We define for Hy, Hs € H(X,Y)

(Hi, Hy)us = Y (Hiej, Haej)y
JEN

Then (H(X,Y), (-, -)us) is a Hilbert space. The inner product does not depend
on the choice of the orthonormal system (e;);en. We have

VEN < H s = IS 2 = (Y ()
JEN
for any H € H(X,Y).
Proof. See 49, Theorem VI.6.2]. O

Next, we show that S is continuous from H(X,Y) to £2. This is due to the
following inequality.

Theorem 5.6 (Von Neumann inequality). Let Hqi,Hs € H(X,Y). Then

|(Hy, Ho)us| <Y i (H1)pj(Ha) = (S(Hy), S(Hz))e2. (5.2.3)
jeN

Proof. See [19]. O
Now we can prove S to be again continuous.
Lemma 5.7. The singular value decomposition operator
S H(X,Y) =02 Hw (uj(H));

is Lipschitz continuous.
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5.2. Smooth measure of chirality

Proof. Let K,L € H(X,Y). Then we have
IS(K) = S(L)[I72 = D |ns (K) — s (D)
JEN
=> (K + > (L) =2 pi(K

JEN JjEN JjEN

Note that the first two series converge since K, L € H(X,Y) and the last by
Cauchy-Schwarz. We apply von Neumann’s trace inequality (5.2.3)) to the last
term to get

Re(K, Lyus < |(K, Lyus| <> i (K
JjeN

and therefore
IS(K) = S(D)|17: < IK|fis + | Lllfis — 2Re(K, Lyns = | K — L[s-

By taking the root we find S to be Lipschitz continuous with Lipschitz constant
1. O

The Lipschitz constant 1 is the best we can hope for. This can easily seen
by considering for any compact operator K and small € > 0 the difference

S((1+¢)K) — S(K) =eS(K).

We also can not expect S to be differentiable. Consider Hilbert spaces X and
Y with € X and y € Y with ||z|| = |jy]| = 1. We define the operators
K,L:X =Y by

K=0, L= <',£Zf>y.

They are in particular Hilbert Schmidt operators and we have for o # 0

1 1 |

= (S(K +aL) - S(K)) = —S(aL) = >,

~(S(K +aL) = S(K)) = —S(aL) = =

Since ||/« does not converge for @« — 0, we find S to be not differentiable in
K = 0. Let K be an operator with finite dimensional range, which is neither
surjective nor injective. This means, there is an & € X, ||Z|| = 1 with K& =0
andag ey, ||g|| =1 with § L K(X). Let K be given by the singular value

decomposition
N

Ko=) p(z,z;)y;

j=1
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5. Electromagnetic chirality

for x € X with NV € N. We define the operator L : X — Y by

N
UN A\ A
Lz = Zuj (x,x)y; + 7(33,3;)3/

Jj=1
Since the singular values are decreasing, we have for « sufficiently small

(S0 +an) = 5()) = (apr,-amw. '“';‘N)

which again does not converge for o — 0. We have shown, that S : H(X,Y) —
£? is not differentiable on the set of operators with finite dimensional range,
which is dense in H(X,Y), see [49] Theorem VI.6.2].

We turn our attention again to the measure of chirality x in the context of
Hilbert Schmidt operators. From now on, let X be a separable Hilbert space
with two orthogonal subspaces V* and V ~, satisfying

X=Vtatv-

and with orthogonal projections P* : X — V*. Recall the notation FP4 =
PPFP1 for any pair p,q € {+,—}. Let us abbreviate H(X) = H(X, X) and
consider the abstract functional

X :H(X) = R,
X(F) = \JIS(F++) = S(F=)|% + | S(F+-) = S(F-)]2,

which is of course the measure of chirality, if we set X = L?(S?) and consider
the spaces V* defined in (5.1.2)). Before addressing the regularity of y, we
formulate a Pythagorean theorem for Hilbert Schmidt operators.

Lemma 5.8. Let F € H(X). Then
IFlfs = 1F ¥ llhs + 17~ s + 1 s + 17 s
Proof. Let F,G € H(X). We will show
(FP, G715 = bryfys(FP9, GP) s

for all p,q,7,s € {+,—}. Let (e;)en be any complete orthonormal system in
X. By definition, we have

(FP1,G™ s = Z(quej7 G™ej)x.

jEN
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5.2. Smooth measure of chirality

If r # p, then we have FPle; € VP L V" 5 G"®¢; and every summand vanishes.
If s # g, we chose complete orthonormal systems (u;);en of V® and (v;)en of
V4. The union of (u;);en and (vj);en is then a complete orthonormal system
of X and we have

(FP9,G"*)us = Y (FPle;, G™ej) x

jEN
= (<qu%'7 G"uj) x + (FPj, G”%‘)X)'
JEN v
-0 =0
The claimed equation follows from F = F*+ + F*— + F~t 4+ F——, O

With this lemma, we immediately conclude, that the measure of chirality
X(F) is bounded by the Hilbert Schmidt norm | F|lus for any F € H(X).
In order to investigate higher regularity of y, one would be interested in the
following question: Can one give estimates for the singular values of FP¢
for p,q € {+,—}, if one knows the singular values of F. Unfortunately, a
simple example shows, that this is in general not the case. We consider a
two dimensional case. Let z7, 27 € X withat L a7, [27||x =27 ||lx = 1
and V* = span{z*}. The orthogonal projections P* are then given by
P* = (-, 2%)xxT. We define for ;1 > 0 the linear operators Fy, Fy, given by

Note, that the singular values of F; and F, coincide, i.e. we have S(F}) =
S(F3) = p, but we have

S =5

for all p,q € {+,—} and

S(Fy ) =8y ) =0, S =857 =L
V2
This means, the singular values of any operator F' can be evenly distributed
to the projected operators, but it can also happen, that they are concentrated
on some of the projected operators. Now we will prove the continuity of the
measure of chirality.

Theorem 5.9. x : H(X) — R is continuous.
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5. Electromagnetic chirality

Proof. Let F,F,, € H(X), n € N with F,, — F in H(X) as n — co. We are
using again the fact, that we can choose the complete orthonormal system in
the Hilbert Schmidt norm in a convenient way. Let (z;)jen be a complete
orthonormal system of V¢ for a fixed ¢ € {4, —}, which we complete to a
complete orthonormal system of X. Then we have for a fixed p € {+, -}

1EP s = D IPPEPa|? < Y 1PPFa|* < ) I1Fz)* = | F s,
JeN JEN JjeN
since ||PP|| = 1. This means, we have

||qu qu”HS ||F F HHS_>O n — 0Q.

In other words, the mapping F' — PPFP? = FP? mapping from H(X) onto
itself is continuous with respect to the Hilbert Schmidt norm. The measure
of chirality x is a composition of continuous mappings, since

F) = \/HS(P+FP+) —~S(P=FP7)||7 + [|S(PTFP~) = S(P=FPT)||%
and therefore continuous. O

As mentioned before, we can not expect differentiability of the measure
of chirality y, since it takes differences of singular values and these singular
values do not depend differentiable on the operator with respect to the Hilbert
Schmidt norm. First, we make the following observation. Let F € H(X). We
have x(F) < ||F|lus and

)2 =37 (5 (F ) = iy (P )+ g (F ) = iy (F)[)
jeN
_Z( (F+H)? j(F+_)2+Mj(F_+)2+uj(F__)2)
JEN

-2y ( (FF )i (F~7) + Mj(F+_)Mj(F_+))
JeN

The first series is by Lemma[5.8] just the squared Hilbert Schmidt norm of F,
ie.

NP2 = |1FliEs =23 (s (PO (F7) 4y (FF s (F)). - (5.2.4)
jEN

Since singular values are non-negative and decreasing, we have x(F) = || F||lus
if and only if either F*+ or F~~ and either F~F or F™~ vanish. We call
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5.2. Smooth measure of chirality

such a far field operator maximally electromagnetically chiral. In each case
the scatterer is invisible with respect to one helicity. Any modification of y
should still have this property. We apply Cauchy Schwarz to . This
leads to the modified measure of chirality xus, given by

X:H(X) - R,

xus(F) = \/HF||12{s = 2(IF+ usl =~ llus + [1F~F us £+~ |lns)-

Note, that instead of measuring the difference of every singular value of the
corresponding projected operator, we just measure Hilbert Schmidt norms of
the projected operators. This will yield higher regularity.

Lemma 5.10. xpus : H(X) — R is continuous.
Proof. Let F € H(X). Then by Lemma [5.8] we have
1F s = 1 F i + 1F~ s + 1F7 s + 15 [ls:

This yields

aiis (F) =/ (1F++ lus — 1P lus)? + (1P s — [ F—+llus)?.  (5.2.5)

Therefore, xyps is well-defined, since the radicand is non-negative. As seen
before, the mapping F' — PPF P? is continuous from H(X) onto itself. This
yields, together with the continuity of the Hilbert Schmidt norm || - ||gs, the
result. O

The modified measure of chirality yps is bounded and yields the same
maximally electromagnetically chiral scatterers as .

Lemma 5.11. We have xus(F) < | F|lus for any F € H(X). Let F € H(X)
with ||F|lus = 1. Then

X(F) =1 xus(F) = 1.

Proof. Obviously, yus(F) is bounded by ||F||gs for any F € H(X). Let
F € H(X) with ||F|lus = 1. As mentioned above, from (5.2.4]), we have
X(F) =1, if and only if one of the following cases holds true:

(i) F** =0and F'~ =0, (i) F** =0 and F~+ =0,
(i) F~~ =0and F*~ =0, (iv) F~~ =0and F~ T =0.

In exactly these cases we have xus(F') = 1, since the non-positive summand
—2(|F*|us |7~ [lus + [[F~* |us[| 7+~ [[us) vanishes. 0

109



5. Electromagnetic chirality

The zeros of the measure of chirality y are also the zeros of the modified
measure of chirality yps, as the following Lemma shows.

Lemma 5.12. Let F € H(X). Then
X(F) :Oist(F) =0.

Proof. Let F € H(X) with x(F) = 0. Then ||[F**|gs = |[|[F~ " |lus and
|F*~|lus = ||F~"||us, since the singular values coincide. With (5.2.5), we
conclude xps(F) = 0. O

There can be additional zeros of xugs, as the following example shows. Let
X = R3 and V* = lin{ej, e} and V~ = lin{es}, where e; denotes for i =
1,2, 3 the i-th standard unit vector. We define the linear operator F : R? — R3

by

We have p1 (FT+) = po(FT+) = 1 and py (F~~) = /2. Additionally, we have
F~+ = F*= =0. This leads to

xus(F) = | [IFlfs —2([[FF llus [|F~ [las + [|F* [lusllF~lus ) =0,
——— ——— —_——
=14+142 -3 -3 -0

but x(F) = /(1 —v/2)2 4+ 12 £ 0.

Since even the modified measure of chirality takes the root, we can not ex-
pect any higher global regularity than yus being continuous. We will therefore
consider the squared modified measure of chirality. Even then, it contains the
Hilbert Schmidt norm and therefore can not be differentiable. But we can
prove x%4g to have some local regularity.

Lemma 5.13. The squared modified measure of chirality x%4g : H(X) — R,
given by

xis(F) = I Fls = 2(IF sl P~ s + 1P~ lus 1 F*~ s )

is locally Lipschitz.

Proof. Let p,q € {+,—} and F € H(X). We consider the continuous function

NUE) = [ F*[as = [|PPFP?||as.
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5.2. Smooth measure of chirality

Let additionally G € H(X). We have
(NUE) = MU < [[PP(F = G)PYlus < [|F = Gllus.
For p,q,r, s € {+,—}, we define the product of two of these functionals by
Tpa(F) = XUF)A™(F) = [|[PPFP|us || P"FP*||us.
Then

1pg () = Mg (G)| = [APU(F)A(F) = AP(G)A"(G))]

= [AUE)AN(F) = APUG)A™ (F) + APUG)A™ (F) — XP(G)N(F)
A (E)AP(E) = APUG)| + AP G) A (F) = A™(G))

([I1Flus + 1Gllus) | F — Gllus.

Let now H € H(X), e > 0 and F,G € B.(H). Then, we define the constant
Cu = 2(||H||us +¢€). From

NN

Mpg(F) = Mg (G)] < C || F — Gllus

we conclude 7,2 to be locally Lipschitz. With

I1FIlEs = IGEs| = (1Fllus + |1Gllas)| | Fllus — IGllas| < CullF — Gllns

we conclude X12-IS to be locally Lipschitz, since it is the sum of locally Lipschitz
functions. O

Note that X%{s being locally Lipschitz has strong implications of its regular-
ity in the context of non-smooth analysis and optimization, see for example
[1T, Chapter 10]. Despite being not necessary differentiable, locally Lipschitz
functions admit so called generalized gradients, which can be used to identify
descent directions for non-smooth optimization, see again [I1, Chapter 10].
We define the following optimization problem, called chiral optimization prob-
lem:

Let f,g: H(X) — R defined by

SH) =2(|H " |usl|H™ " lus + 1H* " [Jus||H ™ |lus),
g(H) = [|H||fs — 1.

The optimization problem then reads as:

Minimize f(H) subject to g(H) =0
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5. Electromagnetic chirality

on the set of far field operators. Since f is locally Lipschitz, a non-smooth
multiplier rule can be applied, see [11, Theorem 10.47]. However, the applica-
tion of a suitable optimization scheme and the implementation thereof is not
part of this thesis. We will finish this chapter with some small results and
remarks.

Lemma 5.14. Let S = {F € H(X) : ||Fllus = 1}. The chiral optimiza-
tion has infinitely many minimizers F* € S. The set of minimizers is path
connected.

Proof. As mentioned above, we have f(F) = 0 for F' € S, if and only if one
row or one column in the representation matrix of F', given by

FHtt -
iy
vanishes. Let F' € S be a minimizer with F*+ # 0 and F*— = F~
+

0 and G € S be a minimizer with G~ # 0 and G~ = G*
Then I': [0,1] — H(X), given by

I(t) = (COS(t?T/Q)F++ sin(m/g)G+—>

-
+

OH

=G~

0 0

defines a continuous path with I'(0) = F and I'(1) = G. Since the second row
vanishes, we have f(I'(¢)) =0, i.e. I'(t) is for every t € [0, 1] a minimizer and
by Lemma [5.§]

g(L(t)) = cos*(tm/2) || Ffis + sin®(t7/2) | Glls — 1 =0,

ie. T'(t) C S for t € [0,1]. Similar, if we have F' € S with vanishing second
row, we define the path

++ 7+ I —i+—
vy = Iy R VIS

0 0

Then again g(I'(¢)) = 0 for each ¢ € [0,1] and I'(1) has only the entry in the
upper left corner. Two operators F, G with only one entry can be transformed
into each other via a rotation in the plane by the angle « defined by cos(a) =
(F,G)ps. With these prototype paths we can construct now paths from any
minimizer to another. O

We want to emphasize at this point that this Lemma does not state, that
there is a scatterer D, such that its associated far field operator F' satisfies
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5.2. Smooth measure of chirality

X(F) = ||F||las. If we restrict ourselves to one scattering problem and a certain
type of geometries, it is still not clear, how the set of far field operators does
look like. Since the function f from the chiral optimization involves norms, it
is differentiable, whenever none of these norms vanish.

Lemma 5.15. Let O = {F € H(X) : FP? # 0 for all p,q € {+,—}}. Then
f: O —= R is differentiable with

F~ " |lus LI s I
'[FIG =2 HiReFﬁ““,GJFJr Re(F~~,G
f'1F] <||F++HHS { JHS HF s ¢ VHS
1E* s s gty o IE s poi e
+ Re(F~*, G+ Re(Ft—,G*
T s 5 s s

for F € O and G € H(X).

Proof. For any p,q € {+,—}, we consider \PY(F) = (PPFPY PPFP%)yg
Then we have for F,G € H(X)

MN4(F +tG) — \PU(F) = 2t Re(PPFP?, PPGP%)ys + t*(PPGPY, PPGP)yg

We conclude (AP?)'[F]G = 2 Re(FP9, GP¥)yyg. The claim follows by the product
and chain rule. O

The literature is not consistent on how to define directional derivatives.
Following [I1], a directional derivative F’(z;y) of a mapping F : X — Y
between normed spaces X and Y at a point € X in direction y € X is, if it
exists, the following limit:

Py — 1 PO = F@)
’ t—0+ t ’

Note that some authors, see [29] [48], require ¢ — 0 in the limit. Then, less
functions possess a directional derivative. By the above definition, we conclude
by

thm *(||(F+tG)quHS — [|FP|us) = |G?||us

that the function f from the chiral optimization admits in every point the
directional derivative in every direction.
Finally, we observe that f has no local minimizers on O.

Lemma 5.16. We have f'[F] # 0 for every F € O.
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5. Electromagnetic chirality

Proof. Assume f'[F] = 0 for some F' € O. Then choosing G = F* and
considering Lemma [5.8] we conclude

F— __
0= pipiptt = Mo ot pvye P s P s,
| F++|lus

So either F*T =0 or =~ = 0, a contradiction. O
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In this section, we present numerical examples illustrating the previous sec-
tions. The common theme of Section [l and [l is that we have to solve electro-
magnetic scattering problems. In Section[4] we have to calculate the solution
(E, H) of the scattering problem numerically, as well as the domain derivative
E’. Since the domain derivative E’ is again a solution of the same scatter-
ing problem as (E, H), the same techniques can be used. But the boundary
condition of the domain derivative contains the solution (E, H) of the scatter-
ing problem, see Theorems [3.6] and and involves surface differential
operators as well as curvature terms. In Section 5] we have to calculate a
discretization of the far field operator F. This means, we have to choose a
convenient basis of L?(S?) and calculate the far field for many elements of
this basis. In Section we presented the weak formulations of the scatter-
ing from a perfect conductor and from an obstacle with impedance boundary
condition. So one could naturally choose a finite element approach in order
to solve these equations, see [39]. We chose a boundary integral equations
approach. Looking closely at the boundary conditions of the domain deriva-
tives, we identify the traces of the solutions (F, H) and terms with surface
differential operators applied to the solution. Therefore an integral equation
approach, where these traces are the unknowns seems reasonable. On the
other hand we avoid having a three-dimensional computational region, which
changes at every iteration of the Newton scheme. Lastly, at the beginning of
this work, there was to the best of our knowledge no open source finite element
library available, which satisfied all of our needs. The actual implementations
are carried out in the open source Galerkin boundary element methods li-
brary BEMPP (https://bempp.com/). For an overview of the library, see
[47). We start by presenting the derivation of boundary integral equations for
the considered scattering problems. See [50), Section 3.3] for an overview of
such equations and for more details we refer to [7} [§].

6.1. Integral equations of scattering problems

We consider the Maxwell system
curl E =ik H, cwlH =—-ikFE

with wavenumber k € R in some region ) with boundary 0€2. We start this
section with the famous Stratton-Chu representation formula. In order to do
this, we define the magnetic or Neumann-trace

N H(curlz,Q) — H_%(Div,aﬁ),
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1
YN = —curly x v.
ik

The term magnetic comes from the fact, that if (¢, i curl ) is a solution of
the Maxwell system, then vy is the trace of the magnetic field. By Theorem
we have that vy is continuous. Let ® denote the fundamental solution of
the three-dimensional Helmholtz equation Au + k?u = 0, i.e.

1 eik|r_y‘

0} -
(@,y) = P—

Then we define the electric potential

1

£o(w) =k | o@(@.9)ds(s) = 5V [ Divon os)0(a.y) ds(y).

as well as the magnetic potential

Hp(x) = curl / o()B(x, ) ds(y).

o0

We want to motivate the names electric and magnetic potential. Let ¢ be a
smooth tangential vector field. We define F = £p. Then

curl E(z) = ik curl/ o(x)®(z,y) ds(y) = ik Heo(x).
a0
On the other hand, if we define H = Hp, we have

curl H(x) = curl curl /69 o(y)P(z,y) ds(y)

— (Vdiv-A) /8 )0y ds(y)

:k2/ e(y)@(z,y)ds(y) +V [ divy (0(y)®(x,y)) ds(y)
o0 o0

:k2/ o(y)®(x, y) ds(y )+V <p( ) - Vae®(z,y) ds(y)
oN

:k2/89<p<1>(:1cyds V/ y)Vy®(x,y)ds(y).

Since @ is a tangential vector field, the integrand of the second integral be-
comes p(y) - Gradgg ®(z,y). We apply the partial integration formula for the
surface gradient (2.2.5)) and arrive at

curl H(z) = —ik Ep(x) = —ik E(x).
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6.1. Integral equations of scattering problems

In other words: For any ¢ € C}(99,C?), the pair (Ep, Hep) forms a solution
to the Maxwell system.
In order to state the continuity result for these potentials, we need to define

additional function spaces. Let LIQOC(Q) be the space of locally square integrable

functions, i.e. E € L2 _(Q) if and only if E € L?() for any bounded set

/) loc
Q C Q. Of course, if Q is bounded itself, we have L2 _(Q) = L*(Q2). Similarly
we define the spaces of locally square integrable H (curl, 2) functions

Hyoo(curl, Q) = {E € L2 (Q) : curl E € L} ()}

Finally, we define the space of functions E € L?(, C?) which posses weak
curlcurl E € L?(2,C?) and the space of those functions which are additionally
square integrable by

H(curl®, Q) = {E € H(curl,Q) : curlcurl E € L?(Q,C3)},
Hyoe(curl?, Q) = {E € Hyo(curl, Q) : curlcurl E € L2 (Q,C?)}.

loc

Theorem 6.1. The electric and magnetic potential are continuous as map-
pings from H~2(Div,8Q) to Hiee(curl®, Q).

Proof. See [[7l, Theorem 5. O

With these definitions, we can now state the Stratton-Chu representation
formula, which motivates in hindsight the definition of the electric and mag-
netic potentials.

Theorem 6.2 (Stratton-Chu). Let FE € Hloc(curIQ,Q) be a solution of the
Mazwell system in Q. If Q) is bounded, then we have

E =HyE +EywE in H(curl®, Q).

If Q is the exterior of some bounded domain and E satisfies additionally the
Silver-Miiller radiation condition, then

E = —HwE — EyNE in Hige(curl?, Q).
Proof. See [7, Theorem 6. O

For the moment, we assume that (2 is a bounded domain with boundary
99. For ¢ € Hipe(curl®, QJR™\ Q) we denote by v, , 75 the interior traces,
ie.

e =7(0ly) € H2(Div,09), ~ye =n(#|,) € H #(Div,09)
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and by ;" 'yj'{', the exterior traces. We introduce the notation
hele =7T¢ =779

for the jump of some trace v on the boundary 02 and the notation

{ro}s = %(7*@ +77 )

for the mean of some trace 7. The potentials map H_%(Div7 o) onto the
space Hioe(curl?, QJR? \ Q). We can therefore take interior and exterior
traces of the potentials. These traces satisfy the following jump relations.

Theorem 6.3. We have
€ele = [yvHele =0 and  [ywE] = [nHele = —¢
for p € H~: (Div, 09).
Proof. See [7l, Theorem 7]. O

We use the traces of the electric and magnetic potentials to define the
electric boundary operator E by taking the mean of the tangential traces, i.e.

E: H 2 (Div,09) — H™ 2 (Div, 09Q),
= {n€ols

and analogously the magnetic boundary operator H by
H : H ?(Div, Q) — H~?(Div, 09),
¢ = {1He}e.

The interior and exterior traces of the potentials and the boundary operators
are coupled in the following way.

Lemma 6.4. We have
1€ =E, Vi€ = %I +H,
WH = %I +H, vEiH = —E.
Proof. These relations follow from the jump relations in Theorem and

from
{wéte =H, {wH}s=-E. (6.1.1)
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6.1. Integral equations of scattering problems

From the calculations shown in the motivation on naming the potentials, we
conclude by a density argument

WE=1H, INH = -7,
which shows (6.1.1]). O

We define the multitrace operator A by

A= (% E)

With the multitrace operator, we finally define the ezterior and interior
Calderdn projector

C* : H % (Div,09)> — H™ 3 (Div, 90)?
by the matrix
1 +H FE
+ _ - — 2
Ct=JIFA ( o liH)

All the above potentials and operators depend on the corresponding wavenum-
ber. Considering penetrable objects with interior and exterior wavenumber k
and x, we will denote the dependency for example by & and &, for the electric
potential with respect to the interior and exterior wavenumber. In the context
of the perfect conductor and the scattering from an obstacle with impedance
boundary condition where only one wavenumber occurs, we will just write £
for the electric potential. The traces of solutions of the Maxwell system are
exactly eigenfunctions of the Calderén projector.

Theorem 6.5. Let Q be a bounded domain and E € Hyoe(curl®, QJR? \ Q)
be a solution of the Mazwell system in 2 and R\ Q and also satisfying the
Silver-Miiller radiation condition. Then we have

+ +
E E
ct (7 ) — (” ) . 6.1.2
(ﬁE YwE (6.1.2)

On the other hand, any pair a,b € H~=(Div, Q) with C?(a,b)T = (a,b)T
for p € {+,—} can be identified as the traces of a solution E € H(curl®, Q) if
p=— and E € H(curl®, R3\ Q) if p = + of the Mazwell system, i.e. a ='E
and b = AR E. In the exterior case, E satisfies the Silver-Miiller radiation
condition.
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Proof. Let E € H loe(curl?, QJR?\ Q) be a solution of the Maxwell system in
Q) and R? \ ), satisfying the radiation condition. By Stratton-Chu, we have

E=Hy E+EvGE in H(curl?, Q)

and
E=—HyE—HyyE in Hye(curl®, R®\ Q).

Taking the exterior and interior tangential trace *yti of the corresponding
equation and considering the jump relations from Lemma [6.4] we arrive at
the first equation of (6.1.2). Taking the exterior and interior magnetic trace

vf, yields the second one. Let now the pair a,b € H*%(Div,ﬁﬂ) satisfy
C (a,b)" = (a,b)". We define a vector field E € H(curl®, Q) by

E=Ha+ &b

and set H = - curl E. Then (E, H) is a solution of the Maxwell system in §
with

1
N E =~ Ha+ v, Eb = (51 n H)a L Eb=a,

1
B = yyHa +yEb = —Ea + (51 n H)b —,

since these are just the two equations of C~(a,b)" = (a,b)". One can argue
similarly for the exterior case. O

6.1.1. Perfect conductor

Let D be a bounded Lipschitz domain and k£ € R. Recall the scattering
problem for the perfect conductor, which reads as

curl B =ik H®, curl H® = —ik E* in R*\ D, (6.1.3a)
vx E°+vxE' =0, ondD, (6.1.3b)
lim |a|[H*(2) x — — E*(2)] =0, (6.1.3¢)

where the pair (EY, H') is a solution of (6.1.3a)) in R3. To get an integral
equation, there are in general two established approaches. The first one,
called indirect, starts by making an Ansatz, for example

Ef(x) = —EX(z), x€R3*\D
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6.1. Integral equations of scattering problems

for some to be determined \ € H*%(Div,aﬁ). Then, one applies the trace
and injects the boundary condition ([6.1.3b)), which yields the so called indirect
electric field integral equation (EFIE), given by

E\ = E. (6.1.4)

Note that in contrast to the exterior problem ([6.1.3a]) - (6.1.3c]), the indirect
EFIE (6.1.4)) is not always uniquely solvable. Unique solvability depends on

whether k is a so called interior eigenvalue of D, see [7, Definition 4]. From
now on, we will always assume, that that is not the case. This is not a
strong assumption, since these critical values of k& form a discrete sequence
accumulating at infinity. Of course, we can also choose the magnetic potential
in our Ansatz, i.e.
Ef(x) = H\(z), x€R*\D,

which leads to the so called indirect magnetic field integral equation (MFIE),
given by

(%1 n H))\ = . (6.1.5)

Recall (" Es,%f,Es) being an eigenfunction of the Calderén projector C*.
The direct approach starts by considering the first equation of

+Es +Es
ct (W ) = ('Vt ) . 6.1.6
WE) T \igE o0

By the boundary condition, only 'ylffEs is unknown. This leads to direct
electric field integral equation (EFIE), given by

E\ = (%I + H)%*Ei (6.1.7)

for the unknown Neumann trace A\ = v E® € H~2(Div,8Q). Finally, con-
sidering the second equation of (6.1.6)), we arrive at the direct magnetic field
integral equation (MFIE), given by

(%1 + H)/\ = —En, F (6.1.8)

for the unknown Neumann trace A = y{E* € H ~2(Div, 8Q). Considering
calculation time, the indirect approach profits from a cheap right hand side,
since only the magnetic or the electric boundary integral operator have to be
assembled. On the other hand, if one is interested in the magnetic trace ’y]'{',ES,
for example to calculate the boundary condition of the domain derivative, see
7 then the direct approach profits from the fact, that the unknown \ is
exactly the magnetic trace V;{,ES.
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6.1.2. Penetrable Obstacles

Let again D C R3 be a bounded Lipschitz domain. Recall the scattering
from a penetrable obstacle: Let x > 0 denote the interior and k > 0 the
exterior wavenumber. Furthermore, we have the interior material coefficients
pp,ep > 0 and the exterior material coefficients jug, o > 0, see Section 2:1.2]
Then the full scattering problem reads as:

curl E =ik H, curlH = —ikE inD, (6.1.9a)
curl E=ik H, curlH =—ikE inR*\ D, (6.1.9b)
\/%VXE’+—\/%VXE|:O on 0D, (6.1.9¢)
\/%OuxHh—\//lTDyxm:o on 4D, (6.1.9d)
(gi) = (g B} ij%) satisfies SMRC, (6.1.9e)

where (E?, H') satisfies (6.1.9b)) in R®. We define the scaling matrix S by

NG
S = Vel 0 .
0 Mg

VAD
Then the transmission conditions (6.1.9¢|) and (6.1.9d) read as
. N _
<7§(Es +Ef)) _ (;% E) g <% E> (61.10)
s i ) — - : s
Y (B + EY) \/,%VNE WE

Let C* be the exterior Calderén projector with respect to the exterior wave-
number k£ and C~ the interior Calderén projector with respect to the interior
wavenumber k, i.e.

1 1
Ct=-I-A;,, C =-I+A,.
B ks 5 +
Then we have by Theorem

o' (45)- (i5) © (:8)- (:5)
nE? WwE)’ Yo B InE
We apply this to (6.1.10) to get

- %E> _ ot <%+E5> (’V?EZ)
sc (™) =c R ).
('YNE THE WE
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6.1. Integral equations of scattering problems

We apply again the transmission condition (6.1.10)) to remove the interior
traces and get

o +(Es + Ez) ,7+Es ,erEi
SC™S 1<7t( ; 1)_C+< t 5)+< t 1)
TN (B + B WE VN E
We gather the traces of the incoming and the scattered field, to finally have

_ TEs 1 _ TE!
(SA.S™' + Ay) @];VE) - (51— SA,S 1) (%E> , (6.1.11)

a boundary integral formulation of (6.1.9a]) - (6.1.9¢]), see also [42]. This
integral equation is always uniquely solvable, see [7, Theorem 12] and often
called PMCHWT (Poggio-Miller-Chan-Harrington- Wu-Tsai).

Of course, one could remove the exterior traces instead of the interior ones
and get a boundary integral formulation, where v, E and vy FE are the un-
knowns. But from a scattering problem point of view, we are more interested
in the scattered field FE*.

6.1.3. Obstacles with impedance boundary condition

Let D C R? be a bounded Lipschitz domain and let k& > 0 denote the
wavenumber. Recall the scattering problem from an obstacle with impedance
boundary condition:

curl E =ik H, cwlH = —ikE inR*\D (6.1.12a)
vx H=Avx(Exv)) ond (6.1.12b)
<§S> = <1§ B f[’) satisfies SMRC, (6.1.12¢)

where (E?, H) is a solution of (6.1.12al) in R3. We choose the direct approach
to get an integral equation of ([6.1.12a))-(6.1.12¢). From the Stratton-Chu
formula, see Theorem we have

Ef(z) = —HyE(z) — EyvE(z), = €R3\D. (6.1.13)

Since the incoming field (E?, H?) is a solution of the Maxwell system (6.1.12al)
in D, we have again by the Stratton-Chu formula

0= —HyE"(zx) - EywE'(z), zecR*\D. (6.1.14)

Applying the trace v to (6.1.13)) and (6.1.14) and considering the jump rela-
tions of the potentials, see Lemma [6.4] yields

. . 1
WWE =nE' +wE*+0=yE"+ (51 - H)%E —EwE.
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We apply the boundary condition (6.1.12bf) to get
1 ,
ifytE +HvyFE — E[)\(V X 'ytE)} =vwE",
or, equivalently formulated for the scattered field

1 , ,
§%W+&hﬁﬁ—Ep@x%EﬂyzEMﬂw+Mux%Hﬂ, (6.1.15)

where we have used
1 ) )
(51-H)wE' —EywE =0,

which can be seen from applying the trace 7, to equation . Note that
the only unknown in the integral equation is the Dirichlet trace v, E°.
The integral equation is called (impedance boundary condition) electric field
integral equation (IBC-EFIE), since the unknown is the trace of the electric
field, see [38].

This formulation does not require A to be constant. The main difference
to the integral equations of the perfect conductor is the rotation of the trace
v E?, given by v x v FE®. Note that the rotation is directly applied to the
unknown. An indirect approach using some Ansatz would have led to an
integral equation, where the rotation is applied to the boundary operator. We
chose the integral equation for our implementation.

6.1.4. Implementational details and examples

In this section, we want to present the results for the implemented integral
equations for the scattering from a perfect conductor, from a penetrable ob-
stacle and from an obstacle with impedance boundary condition. The direct
and indirect EFIE and MFIE can be implemented in BEMPP by a few lines
of code. This, together with preconditioning tools, which allow the use of fast
iterative solvers is presented in detail in [46]. An actual implementation in
BEMPP of the coupled integral equation for the scattering from a
penetrable obstacle can be found in the tutorials on the homepage of BEMPP
(https://bempp.com). For the implementation of the integral equation for
the scattering from an obstacle with impedance boundary condition ,
we need additionally the rotation operator R, which is given by

Ryre =yre xv=mp (6.1.16)
for some vector field p. Note that

Ryp = mp X v = —y70.
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Considering formally

/’yT<p~%z/)ds:/ (vx (exv)) (Yxv)ds
oD oD

:/aD (Y xv)d /w (p xv)ds

—/ (yx(1/;><u))~(ap><y)ds:—/ Yo - Y1 ds,
aD aD

we see that the negative dual pairing —(vi, yr¥)op between H™= (Div,0D)
and its dual space H~2 (Curl, D), see Theorem can be seen as the weak
formulation for the rotation operator R and can easily be implemented and
tested in BEMPP. For the implementation, see Section in Appendix
The convergence plot can be seen in Figure in Appendix [A]

Since we are not only interested in just solving scattering problems, but
also want to use the solution to calculate for example the domain derivative,
we need to verify the accuracy of our solutions. For an arbitrary scatterer D
and incoming wave (E?, H'), we do not have an analytic expression for the
scattered field and therefore can not verify our solution. Recall the vector wave
functions used in Section to present analytic solutions of the scattering
problems. If we chose the scatterer D = Br(0) and the incoming wave, given
by

Ei(z) = o MY (2 )—I—ﬁN CUI"IMN( )s

for some fixed N € N and |m| < N and coefficients o!, 84 € C, then we
know the solution, which is just given by

1
E°(x) faNNN( )+b%EcurlN]]\\,4(x),

where the coefficients a%f , b%f are given, depending on the scattering problem
under consideration, by the Lemmata [2.13] for the perfect conductor, for
the obstacle with impedance boundary condition, or for the scattering
from a penetrable obstacle. These functions are well suited for testing the
chosen size of the elements of the grid, since they are highly oscillating for
large N and M. The resulting convergence plots for the direct MFIE E6.1.8 ,
for the integral equation for the scattering from a penetrable obstacle ((6.1.11

and for the integral equation for the scattering from an obstacle with
impedance boundary condition can be seen in the figures and [A7]
For the implementations of and 7 we refer to the tutorials on
the homepage of BEMPP (https://bempp.com). For the implementation of
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with constant A\, see Section Note that the accuracy of the
solution for incident fields with small N differs significantly from the accuracy
of the solution for incident fields with larger N but shows the same behaviour
of convergence.

6.2. Numerical evaluation of chiral measures

Recall the far field operator F from Section [5| for one of the scattering
problems stated in Section defined by

F:L{(S%) — LE(S?),
]-‘A(:?:):/ Foo(i,d, A(d))ds(d), % €S?
SQ

where FEoo(%,d, A) denotes the electric far field pattern E., with respect to an
incident plane wave with direction d € S? and amplitude A € C3. FA is the
far field pattern with respect to the incident Herglotz wave pair V[A], defined

by
VIAl(2) /S (d f%gd)) kT do(d), @ € R,

for A € LZ(S?). In order to discretize F, we want to choose a complete or-
thonormal system in L?(S?), which allows an easy calculation of the projected
operators FP9, which are given for p,q € {+,—} by

FPV9 5 VP A PPFPIA,

where P* is the orthogonal projection from L?(S?) onto V* and V7 is the
eigenspace of the operator CA(d) = id x A(d) with respect to the eigenvalue
+1. They satisfy

LASH=VrteVv-, ViLiLV".
Recall the spherical surface harmonics U, VI, defined for n € N and |m| < n

by
1
UM (d) = ————=Gradg2 Y,)"(d), V,*(d) =d x U*(d),
nn+1)

which form a complete orthonormal system in L?(S?), see Lemma We
define the linear combinations

AT = UM V™, BT = UM iV,
Then we have for any n € N and |m| <n

i(dx A7) =id x U™ —d x (d x U"(d)) = U™(d) +iV,™(d) = A™,
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i.e. the A" are eigenfunctions of C with respect to the eigenvalue 1. Anal-
ogously, the B]" are eigenfunctions of C with respect to the eigenvalue —1.
The sets {A™} and {B”} form complete orthogonal systems in V* and V~,
respectively. They are therefore well suited to discretize F for our purposes.
As a first example, we revisit the scattering from chiral media, see Section

214
6.2.1. The chiral ball

Recall the scattering from chiral media in the scaling presented in Section
[2:43] given by
, inR*\ 0D  (6.2.1a)
curl H = —ike, (E + B, curl E)
vx Bl —vxE|_=0, vxH| —vxH|_=0 ondD (6.2.1b)

E? E—FE' .
(HS> = (H— H1> satisfies SMRC.  (6.2.1c)

{CurlE = iky,(H + B, curl H)

Here again, p,, e, and (3, denote the piecewise constant material parameter,
given by
&b e D £D -y e D
er(z) =< &0’ —_, x) = q Ho —
(@) {1’ op mW {17 veD

and

_JB, €D
B’"(I){o, r¢ D’

and k denotes the wavenumber. Considering the special case of the chiral ball
D = B;(0), we aim to find an analytic expression of the measure of chirality x
and the smooth measure of chirality ygs. First, we make some observations.
Following [4], we consider the linear combinations

E* =E+iH
instead of the field (E, H). One finds that E* satisfy the equations
curlcurl E* — kiEi =0, inR?,

where the piecewise constant wavenumber k4 is given by

{k in R3\ D
ki: ’

k¥ inD
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with
R [Erlirk
1T ek
This shows, that there are two critical points gt
namely

it for the chiral parameter (3,

P
crit — \/‘mk :

If g = Biit, then we have K = k, i.e. the interior wavenumber for the fields

of helicity 41 is the same as the exterior wavenumber. In other words, the

scatterer is invisible for incident fields of helicity +1. We expect the measure

of chirality x and the modified measure of chirality xygs to be maximal for

these values of 8. Let F denote the far field operator with respect to the

scattering from chiral media with D = B;(0). Let the tangential vector field
A € L?(S?) be given by

=3 ) (apay + 5B,
n=1m=

Then it is shown in [28], that F A is given by

8

n

(47)% o AT mpm
= A Z Z (’yn(lﬂi A +'Yn( )/Bn Bn)v

n=1m=—-n

where
(k) = W
an) = (1 = 3 )in (IR R) + BD ()1 () — G ().

Note that the chiral ball preserves helicity, i.e. we have F7~ = F~T = 0 for
any 3. F has the eigenvalues A\!, A2, n € N, given by
(4)?

%L(K;*'), A2 =i

47)?
)\1 —_ (
1 n L

" k

(k7), neN.
The eigenvalues A\, i = 1,2 have the multiplicity 2n + 1. The corresponding

eigenfunctions are given by A™ for A! and by B for A2 for m = —n,...,n.
The projected operator F™+ and F~~ are given by

++ - LZ(SQ) m

n=1m=-n (§2
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F A= oz A B pn
Z 2 N ||Bm||L2 "

n=1m=-n (S?)
Note that since F is diagonal in the orthonormal basis
{AT AT 22y, Bi' /IBR 22 (s2), m €N, m = —n, ... n},

the singular values of F are given by the absolute value of the eigenvalues.
The measure of chirality y is then given by

(F) = (ISF) = SF R+ ISET) = SEIR)

TS S e b))

n=1m=-—n

= (S @n+ 1))~ halsON)?)

n=1

[N

Similarly, the modified measure of chirality yys is given by

Nl

xus(F) = (I1F s = 2017 s F~ s + 17 aasl|F~ ) )

_ 167T (Z 2n+1 )2_’_7”(,{—)2}

(i 2n + 1)vn(k )2);(i(2n+1)'yn(n)2);>2,

n=1

We can numerically evaluate x(F) and yus(F) by cutting off these series at
some N € N. In Figure [A:8] we plotted the graph of the normalized squared
measure of chirality and also the normalized squared modified measure of
chirality subject to the chiral parameter 8 € (0, 5.,;,). As expected, we have
X(F) =0 for f = 0 and therefore also xus(F) = 0; and x(F) =1 for f = B_;;
and therefore xug(F) =1 for 8 = ;. This behaviour illustrates Lemmata
and Also, we can see xgs(F) < x(F). The measure of chirality
X(F) has a critical point at B, where it seems to be not differentiable. The
reason for this is, that for f = B, we have v,(k~) =~ 0 except for a few
n € N. Note that the modified measure of chirality xus(F) is smooth at B,
but significantly lower. Figure[A.9|shows the same situation as Figure[A.§] but
zoomed in in a neighborhood of 8_;,. Note that neither x(F) nor xus(F) are

crit®
differentiable in B_. , which was expected, since F~~ vanishes for 5 = §_

crit? crit”
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6.2.2. Chiral configuration of achiral spheres

For more complex geometries, there are no analytic expressions of yus(F)
and x(F) available. We have to rely on discretizations of the far field operator
F and use the singular values of the discretization in order to calculate x(F)
and yus(F). In the following, let F be the far field operator with respect to the
scattering from a perfect conductor, a penetrable obstacle or an obstacle with
impedance boundary condition. Numerical solutions with respect to these
scattering problems were presented in Section Since the far field F maps
the space L?(S?) onto itself, we get a natural discretization by considering for
some fixed N € N

F:Vy— VN,

where the 2N? 4+ 4N dimensional space Vi is given by
Vy = span{U™, V™ :n < N, |m| < n} C L (S?).

For every tangential vector field U, V" with n < N and |m| < n, we have
to solve the scattering problem with the incident field given by the Herglotz
wave pair VU] and V[V{], respectively. Since a Herglotz wave pair V[A]
with A € L?(S?) is a superposition of plane waves, i.e.

V[A|(z) = /S (d f(j@ et ds(d), xeR?,

we consider first the expansion of a plane wave into vector wave functions, i.e.
for some p € C3 and d € S? with d - p = 0, we consider

oikd-@ Zl ; ( ™M™ (z +5m—cur1Mm( )) (6.2.2)

In order to find expressions for the unknown coefficients ;' and 3", recall
the definition of the vector wave functions. We have

My (@) = —ju(klz) V3" (@/|2]), = €R®

and
Lo — VA D
G e M (@) = VU )Y )
+ g G Bl + Wil () U @b, @ € R
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We define # = x/|z| and multiply the equation (6.2.2)) with U™ (7) = U, ™ (%)
and V;™(Z) = V,7™(Z) and integrate with respect to T over the unit sphere
S2. Since the U™ and V,™ form an orthonormal system, this yields

/p V, (@) M ds(3) = —all j (k). (6.2.3)
[ U @97 @) = 7 (ialblel) + M) (62

Recall a Herglotz wave pair V[A] for A € L?(S?) being the superposition of
electromagnetic plane waves. We call v[g] for g € L?(S?) given for x € R? by

vlal(@) = [ ald)easta)

a (acoustic) Herglotz wave function. We identify the left hand sides as Herglotz
wave functions, evaluated at |x|d € R3, i.e.

o Vi @et i @) = ofp- Vi fald),
[ 2 Ve @67 as(@) = op- Uzl

In order to determine the coefficients o, 37", we consider the asymptotic
behaviour of the left and right hand side in (6.2.3)) and (6.2.4]). For the Herglotz
wave functions on the left hand side, we have for = rd, with » > 0 and d € S?

the asymptotic behavior

ikr —ikr

lal(rd) = =2 g(@ - + T gy + 0 )

for r — oo, see [3]. For the spherical Bessel function j, and its derivative j/,
we use the asymptotic behaviour for the spherical Hankel functions of the first
and second kind, see (2.3.6)), together with the relation

1 1
Jnlt) = SV (0 + HD (W), t£0,

to find

(_i)n+1 eikr in+1 e—ikr

In(kr) = 2k 1 2k r +O(ri2)’

, B (_l)n eik:r ie—ikr i
Inlkr) = 2k 7 + 2k r +O(r2>
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6. Numerical examples

etikr
T

for r — oo, see [14], Section 2.4]. We compare the coefficients in front of

in (6.2.3]), which yields

ol = —dxi" p- Vo (d),
ay = —4n(=i)" p- V7" (=d).
Since V7™ (—d) = (—=1)"V,;™(d), see [33, Lemma 2.12], we conclude
ap = —4ri" (p-V,™(d)), neN,|lm|<n

Similarly, we conclude
Bt =4mi® (p-U,™(d)), neN,|m/<n
In conclusion, we have for a plane wave the expansion
1
MM (z)—(p-U, ™(d)) T curl M;”(x))

lkm:_MZ Z( (d)) M

m=—n

into vector wave functions. We insert this representation into the definition
of the Herglotz wave pair, which yields for the electric field the expansion

)22y M ()

E[A :-47TZ Z (

1
+ (A, Un )LQ(SQ) % curlM ( ))
Recall that we want to discretize the far field operator by considering the basis

B={U",V," :n < N,|m| <n}

for some fixed N € N. Given an element Ay € Vy, i.e

N n
A= N (upup + oV,

n=1m=-—n

we have found a representation for the corresponding incident field, namely

— curl M (x ))

N
x) = _47r,;11n Z (v:L”M;”(m) —u! k

m=—n"

which we use to evaluate the incident field on the boundary of the obstacle
Note, that we can use our numerical experiments from Section in order
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6.2. Numerical evaluation of chiral measures

to choose an appropriate N € N, since they involved exactly these incident
fields. By expanding the far field pattern £°° as well with respect to elements
of B, we arrive at a discretization of the far field operator F with respect to
the basis B. If we order the basis B by

B={u/ v, ul,uy2,... . UuN, vt VY

we arrive at a representation matrix of the discrete far field operator F €
(C(2N2+4N)><(2N2+4N)7 given by

uu uv
F= <VU VV)’

with UU, UV, VU, VV € CN’+2N)x(N*+2N)  The first letter of the block
corresponds to the expansion of the far field into U, or V,)* and the second
letter corresponds to the expansion of the incident field into U or V,;*. For
example, we have

UVip = (FV7 U ) pegsey.

So by solving 2N?2 4 4N scattering problems and expanding each of the far
fields into 2N2? + 4N vector spherical harmonics, we arrive at a discretization
of the far field operator F. In order to evaluate the chiral measure x and the
modified chiral measure yps, we need the far field operator F decomposed

into - .
f f -
F= <]:'—+ ]:'——>

which is the representation with respect to the ordered basis [3\, given by
B ={U"+iV™ U™ —iV™ : n < N, |m| < n}

The corresponding basis change matrix M, which maps elements of B onto B
and its inverse can easily be identified by

(1 1 11T I
M_<iI —11>7 M _2(1 iI)'

<]:++ Ft-

‘We then have
_ a1
T+ ]____> =M "FM

and we can easily calculate the singular values of these operators and therefore
the measure of chirality xy and also the modified measure of chirality ypgs. As
an example, we have chosen four perfectly conducting spheres with different
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6. Numerical examples

diameters located on the corner points of a tetrahedron. Recall, that we
expect x to be zero by Theorem if the constellation of these spheres is
geometrically achiral. To illustrate this, we fix three of the radii by setting
ry = %, ro = % and r3 = 1 while varying r4 in the interval [r1, 7). If 74 equals
71 Or 79, the scatterer becomes geometrically achiral. Figure shows the
configuration of the spheres and Figure shows the plots of the measure
of chirality x and the modified measure of chirality ypus, relative to its Hilbert
Schmidt norm. Calculations were done with wavenumber k& = v/10 and with
N =5,ie. F € C*0, Note, that the overall relative chirality of the four
perfectly conducting spheres is very low and far from the theoretical maximal
value 1. Also note that each combination of three sphere form an geometrically
achiral scatterer, i.e. only the scattering due to multiple scattering of the
entire ensemble of all four spheres yields the chiral behaviour. As expected, x
has significantly lower values for the cases r4 = 1 and r4 = 7. The modified
measure of chirality ypg is even lower and admits an additional local minimum

for r4 ~ 0.625.

6.3. Numerical solutions of inverse scattering problems

Recall the iterative Newton scheme from Section[d] In every iteration i € N,
we need to solve (4.0.6)), given by

(F'[0D']*F'[0D"] + oI)h = F'[0D']*(Ex — F(9D")),

where F'[0D"]h is the far field pattern of the domain derivative E’ with respect
to the scatterer D’ and the perturbation k. In Section we presented how
to solve scattering problems. Since the domain derivative E’ is a radiating
solution of Maxwell’s equations, we can use the same integral equations used to
solve the scattering problem in order to calculate the domain derivative E’ by
changing the right hand side. Recall the inhomogeneous Dirichlet boundary
condition of the domain derivative E’ of the perfect conductor, see ,
given by

vx E' = Curlyp(h,E,) — ikh, yrH, (6.3.1)

the inhomogeneous impedance boundary condition of the domain derivative
E’ of the scatterer with impedance boundary condition, see (3.4.4]), given by

vx H —Avx (E'xv)) = CuriaD(hl,Hl,) + AGradsp(h, E,)

N .
+hy (5 +ik — 2\(R — n))’yTE + ikAhy, v H,
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6.3. Numerical solutions of inverse scattering problems

and the inhomogeneous transmission conditions of the domain derivative E’,
H' of the scattering from a penetrable obstacle, see (3.2.3) and (3.2.4), given
by

1 1
—vxE —VXE’L:

Veo = VED ((maD(hVE”‘Jr) —ikh, 7 H)

1
VEo

1

€D

((map(h,,El,L) - if{’y}H)

and

1 1 1
 UxH| - —uxH| =— (Curl hyH,|.) + ikh, +E)
|_ \//To an( \+) YT

Vio T
- % (ﬁaD(hVHVL) +inh, 7 E).

In the following, we will present precisely how we implemented and tested the
assembly of these right hand sides. Since we do not have analytic expressions
at hand to compare our discretizations to, it is crucial to test every step in
order to control the resulting error. We start with the perfect conductor.

The first step in order to calculate the right hand side of is the
calculation of the tangential projection of the magnetic field v H and the
normal component of the electric field F,, = E-v. If we use a direct approach,
the unknown A of our integral equation is given by A = ywE = H X v.
Application of the Rotation operator R, see for the definition, Section
in Appendix [B] for the implementation and Figure in Appendix [A] for
the convergence plot, yields access to (v x (H xv)). Using an indirect approach
and the Ansétze

EP=—-EX and FE°=HA

leads with the jump relations from Lemma, [6.4] the representations
1
ywE® = (51 — H)/\ and YvE° = —E\,

respectively. By means of R, we get again access to (v x (H x v)). For the
normal component of the electric field F,, we use the relation ([2.2.6) with
F = H together with curl H = —ikF, i.e.

Divop(H x v) = —ikE,.

For a smooth enough tangential vector field U and a scalar function v, we
have

/ U-Gradapvds:—/ vDivgp U ds,
oD oD
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6. Numerical examples

see . The left hand side can be seen as weak formulation for the negative
surface divergence — Divgp and the right hand side as weak formulation for
the surface gradient Gradsp. The surface gradient and the surface divergence
can easily be implemented and tested in BEMPP. For the implementations, see
Section [B23]in Appendix [B] and for an error plot see Figure [A:2]in Appendix
[A] Finally, we need to calculate the product of the normal component of the
perturbation kA and the normal component of the electric field E, i.e. h,FE,
and the product of the normal component h and the tangential projection of
the magnetic field H, i.e. h, (v x (H x v)). Note that h is given analytically,
but h,, E, and (v x (H x v)) only as discretizations. In order to represent the
discrete product f -4 g of two functions f and g in a chosen basis of functions
(i), we make the Ansatz

frag= Zai(bia

and consider the L? projection of the left and right hand side onto the basis
functions ¢;, i.e. we solve the linear system

61(0) - (F(a)g(a) ds(o) = ai [ ou(a)oy(o)dsfa) 5= 1.

oD oD

For the case f = h,, g = E,, we choose a basis of scalar functions and for
f=hy, g=(vx (H xv)), we choose a basis of vector valued functions. The
implementation of this scheme can be seen in Section [B:4]in Appendix [B] and
the resulting convergence plot in Figure [A-3]in Appendix [A] With these tools,
we are able to calculate the boundary condition for the domain derivative E’
by calculating

v x E' = R Gradyp(ikh, Div(H x v)) +ikh, R(H x v),

where we have a stable discretization for every operator and since we have
access to the trace H x v. Note, that we need no additional tools to calculate
the inhomogeneous transmission conditions for the domain derivative of the
scattering from a penetrable obstacle.

For the scattering from an obstacle with impedance boundary condition, we
have calculate additionally the curvature operator R and the mean curvature
k. Recall the definitions

1
R=J, and k= 5 div(v) on 0D.

From J,v = 0, see Lemma we conclude % = 0 and since R = R we
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6.3. Numerical solutions of inverse scattering problems

arrive for any vector field F at

F - Gradgp 1r
RE = | F-Gradgprs | . (6.3.2)
F - Gradgp v3

For the mean curvature, we use the relation

—Aopxri =2k, 1=1,...,3,
see [37], to calculate
1g 1
~5 Zyi Aogpx; = ~5 ZHVE = klv]? = k. (6.3.3)
i=1 i=1

The left hand side of can easily implemented in BEMPP with the tools,
we already presented, since it is just the combination of (discrete) summation,
multiplication and the application of the Laplace-Beltrami operator Agp. For
the implementation of , we need two additional routines, first, the dis-
crete scalar product between two vector fields and then the mapping, which
maps the triple (f1, f2, f3) of scalar functions f;, i = 1,...,3 to the vector
field, where the i-th component is given by f;, i =1,...,3, i.e.

fi
fi, fo, far= | f2
f3

We implement the scalar product and the above mapping in the same way as
the product of functions by the means of L? projections. The implementations
can be seen in Listing [I0] and [[T] in Appendix [B] and an error plot in Figure
in Appendix [A]

Finally, we have presented all necessary tools in order to fully discretize the
equation presented at the beginning of this section. We finish this chapter and
also this thesis by presenting numerous actual reconstructions in the following
section.

6.3.1. Reconstructions

We have successfully run reconstructions for penetrable obstacles and im-
penetrable obstacles, either being a perfect conductor or an obstacle with
impedance boundary condition. In each case, we considered exact and also
noisy data. The results for the penetrable obstacle have already been pub-
lished in [21].

For each setting, we considered the following shapes, see Figure [6.1
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6. Numerical examples

1. A rounded cuboid, implicitly given by

(7)) +(G) + () =
1 T2 T3
with some exponent n € N, positive radius d > 0 and side lengths

r1,T2,73 > 0.

2. A peanut-shaped object, implicitly given by
2

T 2 T2 2 2
(R(2x3/d)> + (R(2x3/d)> = 4’
with R: [~1,1] — R, given by R(z) = 2 — 2 cos (32).

:
0.5
0
-0.5
-1
?\v//f

0 0
1 1

Figure 6.1: The rounded cuboid (on the left) and the peanut shaped object
(on the right).

Our implementation requires smooth star shaped objects. Therefore we
picked the rounded cuboid to have an object close to the non-smooth cuboid
and the peanut-shaped object to test the reconstruction of non-convex ob-
jects. In order to cancel possible positive effects due to symmetry, we applied
a translation such that the center of the two star shaped objects does not coin-
cide with the center of our star shaped reconstruction in 0. We generated the
exact data Es = F(9D) for 0D being the boundary of the rounded cuboid or
the peanut shaped object by picking 168 evaluation points #;, ¢ = 1,...,168
on the unit sphere S?, i.e. the discrete version of E, is an element of C3*168,
In order to avoid an inverse crime, we ran calculations of the exact data with
meshes unrelated to those used in the reconstruction and yielding a higher
accuracy. In the case of the perfect conductor, we used also a different inte-
gral equation. In the case of noisy data, we multiplied every component of
the discrete far field E,, € C3*1%® with some perturbation factor of the form

14 6Me”™2,
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6.3. Numerical solutions of inverse scattering problems

where A1, Az are on (0, 1) uniformly distributed random numbers and the noise
level § > 0. We call this noise up to . The effective noise level o5 is given
by
o — 1B — EL

[ Ecc

Since the noisy far field E2, is no longer a (discrete) tangential vector field
on the unit sphere S?, one might think of cancelling the nontangential parts
of Ego before starting the iterative Newton scheme, but since we apply the
adjoint of F[0D'] on the right hand side of , the nontangential parts get
canceled automatically. For the calculation of deg, we did not see any relevant
difference, if we just considered the tangential part of E2_.

Exact shape D Best approximation using N =2  Best approximation using N = 4

Best approximation using N =6  Best approximation using N =8  Best approximation using N = 10

Figure 6.2: Best approximation of the rounded cuboid using (N + 1)? basis
functions.

As an initial guess, we have chosen the ball of radius 1, i.e. Dy = B1(0) =
{z € R3 ||z|| < 1}. We have observed that we have to either increase the
regularization parameter « drastically or use some a priori information about
the size of the scatterer for successful reconstructions. Also, we need the a
priori information, that the origin 0 € R? is a possible star shaped center.

We have chosen the regularization parameter a by experience. Using too
small parameters, especially in the case of noisy data, leads to updates of
the parametrization, where negative radii occur, i.e. degenerated objects.
But above some critical level, we have observed robust constructions for both
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6. Numerical examples

scattering objects. Using larger than necessary « slows down the reconstruc-
tion speed. In the case of exact data, we have used « = 3. In the case of
noisy data with § = 0.3, which lead to deg ~ 0.13, we have used o = 7 for
the peanut-shaped and o = 12 for the rounded cuboid. Reconstructions of
the rounded cuboid with o« = 7 and for the peanut-shaped object with o = 3
failed nearly every time.

In order to evaluate the reconstructions, we need to know what is the best
reconstruction we can expect. Choosing a fixed number of basis elements for
the reconstruction, we can calculate the L?(S?) projection of the parametriza-
tion onto these elements. This is, in a sense, the best reconstruction we can
hope for. In Figure [6.2] one can see the best approximation of the rounded
cuboid using different numbers of basis elements.

Relative error of the far field
10 T T T T

—sa—rounded cuboid, 6 =0

—»—rounded cuboid, § = 0.3
peanut-shaped object, § = 0

—+— peanut-shaped object, § = 0.3

25

Iterations

Figure 6.3: Residuals of the reconstruction of the peanut-shaped object and
the rounded cuboid with exact and noisy data.

As incident field, we have considered a plane wave (E*, H), given by

E? (P ikd-a 3
(HZ)(x)_(dxp)e , zeR.

To avoid any positive effects due to symmetry of the object with respect to
the direction d, we have chosen

1+i 1 1
p= 2 and d=—= 12
~1+ i vId 3
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6.3. Numerical solutions of inverse scattering problems

We start by presenting the results for the scattering from a penetrable obstacle.
We have chosen the material parameters

e, =21, p, =10, k=10472, = 1.5175,

which corresponds to the scattering of Teflon (CoF4) illuminated by VHF
radiation with wavelength of 6m. We applied noise up to § = 0.3, which lead
to the effective noise level o = 0.13 for the rounded cuboid and deg ~ 0.12
for the peanut-shaped object. We have chosen N = 7, i.e. (N +1)? = 64 basis
functions for the reconstructions. In Figure the normalized residuals

B~ (DY)

' [ Bl

are plotted. We ran 21 iterations without stopping rule. Observe the relatively
large initial error ro with rg & 1.0 for the peanut. As expected, after some
iterations, the residuals stay on the same level. Note that for exact data, the
final errors are significantly lower in comparison to the results for noisy data.
In Section [A-4] of the Appendix [A] the actual reconstructions are presented
exemplary after 1, 2, 7 and 21 iterations in Figures [A.14] and for the
peanut-shaped object and in Figures [A12] and [A7T3] for the rounded cuboid.
As expected from the residuals, see Figure[6.3] the biggest improvement occurs
in the first few iterations. Note, that the algorithm has difficulties in recon-
structing the non-convex part of the peanut-shaped object in the case of noisy
data. This is due to the high noise level. In Figure [A7T6] the reconstruction
of the peanut-shaped object with § = 0.1 is presented. Note the much better
reconstructed non-convex part but the remaining indention in the direction of
the plane wave, which is a known phenomena in inverse acoustic scattering,
see [25].

There is hardly any difference in the performance or the result of the re-
constructions obtained for penetrable or perfectly conducting obstacles. One
might argue, that the reconstruction of the rounded cuboid with impedance
boundary condition, as seen in Figure with N = 6, i.e. (N +1)2 =49
basis functions, with the material parameter

k:%? and A= 1.1,

with regularization parameter ¢« = 3 and the same incident plane wave as
before shows a better performance as the reconstructions before, but we do
not want to claim that this is the case in general.
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A. Figures

A.1. Surface operators

Trace transformation R
107 - - - —
—©6— Relative error of ;0 — Ryre
————— Convergence order 1
— — — Convergence order 2

Relative error

108
0.1 015 0.2 03 04 05

Average diameter of the elements of the mesh

Figure A.1: The relative error between the discretizations of v:¢ and Ry
on the unit sphere with ¢(z) = (22 4+ z9, 23, —21) .

143



A. Figures

Surface gradient and divergence

107 - - i T
1072 i
_
@)
—
o~
)
)
>
.%.
< g
108 |
—O— Gradg:Y"" — /n(n+ 1)U™
—6— Divge:U™ + /n(n+ 1)Y,"
————— Convergence order 1
— — — Convergence order 2
10 ' ' ' N

0.1 0.15 0.2 03 04 0.5
Average diameter of the elements of the mesh

Figure A.2: Relative error of Gradg: Y, — \/n(n+ 1)U™ and Divg: U™ +

n(n 4+ 1)Y,” on the unit sphere plotted against the element size
h of the mesh for n =2 and m = 1.
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A.1. Surface operators

Discrete multiplication

Relative error

—O—fag
—x—f 4G |
————— Convergence order 1 ]
— — — Convergence order 2
Convergence order 3

107

1 0-6 I 1 1 1 1
0.1 0.15 0.2 03 04 05
Average diameter of the elements of the mesh

Figure A.3: Relative errors of the discrete multiplication -4 of the functions f

and ¢g and of the function f with the vector field G against the
element size h of the mesh.
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Mapping f,g,h+— (f,9,h)"

102 '

Relative error

4 —O6— Relative error
————— Convergence order 1
— — — Convergence order 2

.I 0—4 1 1 1 1 1
0.1 0.15 0.2 03 04 05
Average diameter of the elements of the mesh

Figure A.4: Relative error of the discrete composition (f,g,h) " of the discrete

functions f, g, h and the discretized vector field (f,g,h)", plotted
against the element size h of the mesh.
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A.2. Integral equations

A.2. Integral equations

Perfect conductor
10° . . , : .

=
o
5

— o N=1,M=0
— o N=2,M=-1
N=3M=2 ||

— o N=4M=4 | ]
. —6O—N=5 M=-2
e o—N=6M=1
e —6—N=7,M=3
) [ — Conv. order 1
— — — Conv. order 2

102

Relative error of the unknown vy E*

1 0—3 1 I 1 I I

0.1 0.15 0.2 03 04 05
Average diameter of the elements of the mesh

Figure A.5: Scattering from a perfect conducting sphere 0D = dBg(0) with

R = 1.1 with wavenumber & = +/3.6, using the direct MFIE
li It is af‘v/f =2 and ﬂ]]{f[ =1.3.
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Penetrable obstacle

—_
o
o

=
o
25

—6—N=1,M=0
—6—N=2,M=-1
N=3, M=2 .
— o N=4,M=4 | ]
—6—N=5 M=-2
O—N=6,M=1
—6—N=7,M=3
————— Conv. order 1
— — — Conv. order 2

Relative error of the unknowns v E*, vy E*
3
N

1 0.3 1 Il 1 L 1
0.1 0.15 0.2 03 04 05
Average diameter of the elements of the mesh

Figure A.6: Scattering from a penetrable sphere 0D = 0Br(0) with R = 1.1,
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with material parameters g = 1.8, ep = 1.5, pug = 2.0, up = 1.5
and w = 1.0, using the boundary integral equation (6.1.11)). It is
a¥ =2 and B = 1.3.



A.2. Integral equations

0 Impedance boundary condition
1 0 T T T T T T

=,

o
by
T

FaVa's.a
\
\
\

Relative error of the unknown ~; £°

107 9//@ ;
—6—N=1,M=0
—6—N=2,M=-1
§ N=3, M=2
—6—N=4,M=4
10734 —6—N=5M=-2| 4
O—N=6,M=1 1
—6—N=7,M=3
————— Conv. order 1
— — — Conv. order 2
10 : : : —

0.1 0.15 0.2 03 04 05
Average diameter of the elements of the mesh

Figure A.T: Scattering from a sphere 0D = 0Bg(0) with R = 1.1 with
impedance boundary condition and constant A = 0.9 and
wavenumber k = /3.6, using the boundary integral equation
(6.1.15). It is adf =2 and B =1.3.
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A.3. Measuring chirality

1 T T | T T
X(F2/1Flgs 4 1
0.9 11— — —xus(F)*/ I F g y
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\
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0.6
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03}
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L L

6 0.08 0.1 0.12

0 0.02 0.04 .0
Figure A.8: Relative squared (modified) measure of chirality of the chiral ball

D = B1(0) with £ = v/10 and p, = &, = 1.5. The series were cut
at N = 100.
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A.3. Measuring chirality

X1 F g
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Figure A.9: Relative squared (modified) measure of chirality as in Figure
but zoomed in in the neighborhood of 8

crit*
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2 2

Figure A.10: Geometric constellation of the four perfectly conducting spheres.
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A.3. Measuring chirality
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Figure A.11: The relative (modified) measure of chirality in dependency of the

radius r4.
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A.4. Reconstructions

Exact shape D

Initial guess Dy

2 2
Tteration 7

NN
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0 0

Cut planes z =0 and x =y

2 2
Cut with plane z =0

I 0
I D

1
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0 0
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Iteration 1

gt/ 2
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2 2
Iteration 21

2 2

Cut with plane x =y
. D
I D

2
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Figure A.12: Reconstructing the rounded cuboid with 64 shape functions and
exact data. The black arrow indicates the direction of the inci-

dent plane wave.
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Exact shape D

Initial guess Dy

2 2
Iteration 7

NS

— -
0 0

Cut planes z =0and z =y
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0 0
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2 2
Cut with plane z =0
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A.4. Reconstructions

Tteration 1

=y
0 0

2 2
Iteration 21

Figure A.13: Reconstructing the rounded cuboid with 64 shape functions and
noisy data with 6 = 0.3. The black arrow indicates the direction

of the incident plane wave.
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2

Exact shape D
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1 0 0 -1

-1 1
Iteration 2

\/.
1 0 0 -1

- 1
Cut planes z =0 and z =y

Initial guess D,

1 0 0 -1

Bl 1
Iteration 7

1 0 0 -1
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Cut with plane z =0
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Tteration 1

<>
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-1 1
Iteration 21
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T ; % -1
Cut with plane z =y

I D
Dy

1 0 0 -1

-1 1

Figure A.14: Reconstruction of the peanut-shaped object with 64 shape func-
tions and exact data.

156



Exact shape D
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1 0 0 -1

-1 1
Iteration 2
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tions and noisy data with § = 0.3.

A.4. Reconstructions

Tteration 1
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-1 1
Iteration 21
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Cut with plane z =y
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1 0 0 -1

-1 1

Figure A.15: Reconstruction of the peanut-shaped object with 64 shape func-
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Figure A.16: Reconstruction of the peanut-shaped object with 64 shape func-
tions and noisy data with § = 0.1.
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Figure A.17: Reconstruction of the rounded cuboid with impedance boundary
condition.
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B. Implementations

In this appendix, we want to present some implementations and tools used
throughout the thesis to expand the functionality of BEMPP (https://bempp.
com)). Note that these code snippets might not work in future versions. They
were implemented and tested with BEMPP 3.3.1 and Python 2.7. We fre-
quently use the Numpy library (https://numpy.org/). In order to work,
every code snippet needs the following imports:

Listing 1: Basic imports

import bempp. api
import numpy as np

B.1. Rotation operator

We start with presenting the implementation of the rotation operator R,
defined by

Ryrp =rp X v =
for some smooth enough vector field ¢. This operator can be implemented by
the lines presented in the Listing

Listing 2: Implementation of the rotation operator R

def trace_transformation (domain, range_, dual_to_range, label="
TRACE.TRANSFORMATION” , parameters=None) :
return bempp.api.operators.boundary.sparse._maxwell_identity (
domain, range_, dual_to_range, label=label, parameters=
parameters)

The errors in Figure were calculated by using Listing [3] and varying the
variable H, which defines the average diameter of the elements, used for the
mesh approximating the unit sphere.

Listing 3: Testing the rotation operator R

H=0.15

Wavenumber = 1.0

Grid = bempp. api.shapes.sphere (h=H)

MT = bempp. api.operators.boundary.maxwell. multitrace_operator (Grid
, Wavenumber )

electric_space , magnetic_.space = MI.domain_spaces

electric_.dual , magnetic.dual = MT. dual_to_range_spaces

TangentialToTrace = trace_transformation(electric_space ,
electric_space , electric_dual)

def FunTrace(x,n,d,r):

161


https://bempp.com
https://bempp.com
https://numpy.org/

© 0 N o U s

B. Implementations

Vector = np.array ([x[0]*%2 + x[1], x[2]**3, —x[1] ])
r[:] = np.cross(Vector, n)

def FunTangential (x,n,d,r):
Vector = np.array ([x[0]**2 + x[1], x[2]**3, —x[1] ])

r[:] = np.cross(n, np.cross(Vector, n))

Tangential = bempp.api.GridFunction(electric_space , fun=
FunTangential)

Trace = bempp.api.GridFunction(electric_space , fun=FunTrace)

Test = TangentialToTrace x Tangential
Error = (Test—Trace).l2_norm () / Trace.l2_norm ()

B.2. IBC-EFIE

Recall the boundary integral equation (6.1.15]), given by
1 , , , . ‘
5’)/,5E5 +Hv,E® —E[Av x 2E®)| = E[ywE' + A(v x v.E")].

We used the lines presented in Listing [] to solve this integral equation for
constant A\. Note that we have used functions and operators defined above in
Appendix especially the multitrace operator MT. The results can be seen
in Figure[A77] Lines[6 and [§ have to be filled with the implementations of the
Dirichlet trace ¢ E? and Neumann trace vy E’ respectively.

Listing 4: Implementation of the IBC-EFIE.

Impedance = 2.0

Nu = —trace_transformation (electric_space , magnetic_space,
magnetic_dual)

ID = bempp.api.operators.boundary.sparse. multitrace_identity (Grid,
spaces='maxwell ")

OP = 0.5 % ID[0,0] + MT[0,0] — Impedance * MT[0,1] * Nu

def DirichletIncident (x,n,d,r):
r[:] = ... # Define Dirichlet trace

def NeumannIncident(x,n,d,r):
r[:] = ... # Define Neumann trace

IncidentTraces = (bempp.api.GridFunction(electric_space , fun=
DirichletIncident), bempp.api: GridFunction (magnetic_space, fun
=NeumannlIncident))

rhs_function = IncidentTraces[1] + Impedance % Nu % IncidentTraces
(0]

RHS = MT[0,1] = rhs_function

Solution, _ = bempp.api.linalg.gmres(OP, RHS)

162



AW N e

o

B.3. Surface differential operators

B.3. Surface differential operators

Recall the relation ([2.2.5)), given by

/ vDivaDUds:—/ U - Gradgp v ds.
oD aD

We therefore implement the surface gradient by the lines in Listing [5| and
analogously the surface divergence in Listing [6]

Listing 5: Implementation of the surface gradient

def surface_gradient (domain, range_, dual_to_range,

label="SURFACE_GRADIENT” , symmetry="no_symmetry” ,

parameters=None) :

from bempp.api.operators.boundary.sparse import
operator_from_functors

from bempp.api.assembly.functors import
simple_test_trial_integrand_functor

from bempp.api.assembly.functors import
surface_divergence_functor

from bempp. api.assembly.functors import
scalar_function_value_functor

return —operator_from_functors (domain, range., dual_to_range ,
surface_divergence_functor (),
scalar_function_value_functor (),
simple_test_trial_integrand_functor (), label, symmetry,
parameters)

Listing 6: Implementation of the surface divergence.

def surface_divergence (domain, range., dual_to_range, label="

SURFACEDIVERGENCE” ; symmetry="no_symmetry” , parameters=None) :

from bempp.api.operators.boundary.sparse import
operator_from_functors

from bempp. api.assembly.functors import
hdiv_function_value_functor

from bempp.api.assembly.functors import
simple_test_trial_integrand_functor

from bempp.api.assembly.functors import
surface_gradient_functor

return —operator_from_functors (domain, range., dual_to_range,
surface_gradient_functor (), hdiv_function_value_functor (),

simple_test_trial_integrand_functor (), label, symmetry,

parameters)

‘We use the relations

Gradg: V)" = /n(n+ 1)U and Divg U* = —/n(n+1)Y,"
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in order to test our implementations. The errors in Figure were calculated
by using the lines in Listing [7] and varying the variable H, which defines the
average diameter of the elements, used for the mesh approximating the unit
sphere.

Listing 7: Testing the surface gradient and divergence.

H=0.15
Wavenumber = 1.0
N=2

M=1

Grid = bempp. api.shapes.sphere (h=H)

MT = bempp. api.operators.boundary.maxwell. multitrace_operator (Grid
, Wavenumber )

VecSpace = MI'.domain_spaces [0]

ScaSpace = bempp.api.function_space (Grid, "B-P”, 1)

def Ynm(x,n,d,r):

r[:] = ... # To be filled.
def Unm(x,n,d,r):
r[:] = ... # To be filled.

fun = bempp. api.GridFunction (ScaSpace, fun=Ynm)

Fun = bempp. api. GridFunction (VecSpace, fun=Unm)

SurfGrad = surface_gradient (ScaSpace, VecSpace, VecSpace)

SurfDiv = surface_divergence (VecSpace, ScaSpace, ScaSpace)

Testl = SurfGrad * fun

Test2 = SurfDiv % Fun

Errorl = (Testl — np.sqrt (N*(N+1)) * Fun).l2_norm () / Testl.
12_norm ()

Error2 = (Test2 + np.sqrt (Nx(N+1)) * fun).l2_norm () / Test2.
12_norm ()

B.4. Products of functions

The implementation of the product of two functions is given by the code
shown in Listing [8] The errors in Figure [AZ3] were calculated by the lines of
code shown in Listing [9] and varying the variable H, which again defines the
average diameter of the elements, used for the mesh approximating the unit
sphere. The functions fun_1, fun_2, fun_3 define the three functions f, g,
G, given by

f(z) = 33% + 29 — 2173, 9(2) = T1T273 + 11 — 95%
and by
T1X9

G(z) =v(z) x | waws
Tr1x3
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for x € 0D = S%2. We then compute the discrete products fg and fG and
compare it to the discretizations of fg and fG, respectively.

19

20

21

22

23
24

Listing 8: Implementation of the discrete multiplication of functions

def function_product(f, g, trial_space, test_space):

from bempp.api.integration import
gauss_triangle_points_and_weights
from bempp.api.utils import combined_type

accuracy_order = bempp.api.global_parameters.quadrature. far.
single_order

points , weights = gauss_triangle_points_and_weights(
accuracy-order)

if f.space.grid != g.space.grid:
raise ValueError('f and g must be defined on the same grid

1

element_list = list (test_space.grid.leaf_view.entity_iterator

(0))

dtype = combined_type(f.dtype, g.dtype)
result = np.zeros(test_space.global_dof_count , dtype=dtype)
for element in element_list:
dofs, multipliers =
test_space.get_global_dofs (element, dof_weights=True)

n_local_basis_funs = len(multipliers)
for index in range(n-local_basis_funs):
coeffs = np.zeros(n_local_basis_funs)
coeffs [index] =1
integration_elements = element.geometry.
integration_elements (points)
basis_values = test_space.evaluate_local_basis (element
, points, coeffs)
f_prod_-g = f.evaluate(element, points) x g.evaluate (
element, points)
prod_times_basis = np.sum(f_prod_g * basis_values,
axis=0)
local_res = np.sum(prod_times_basis x weights =*
integration_elements)
result [dofs[index]] += multipliers[index] * local_res

return bempp.api.GridFunction(trial_space ,
dual_space=test_space , projections=result)

Listing 9: Testing the discrete multiplication of functions

w

S-S

H=0.15

Grid = bempp.api.shapes.sphere (h=H)

MT = bempp. api.operators.boundary. maxwell. multitrace_operator (Grid
, Wavenumber)

VecSpace = MT.domain_spaces [0]

ScaSpace = bempp.api.function_space (Grid, "B-P”, 1

def fun_1(x,n,d,r):
r[0] = x[0]*%x2 + x[1] — x[2]*xx[1]
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def fun_2(x,n,d,r):

r[0] = x[0] * x[1] * x[2] + x[0] — x[2]*%2

def fun_-3(x,n,d,r):
vec = np.array ([ x[0] » x[1], x[1] * x[2], x[2] * x[0] ])
r[:] = np.cross(n, vec)

def fun_p(x,n,d,r):
r[0] = (x[0]**2 + x[1] — x[2]*x[1]) * (x[0] =* x[1] * x[2] + x
[0] — x[2]%%2)
def fun_P(x,n,d,r):
vec = np.array ([ x[0] % x[1], x[1] * x[2], x[2] * x[0] ])
r[:] = np.cross(n, vec) x (x[0]*x2 4+ x[1] — x[2]xx[1])
Fun_1 = bempp. api.GridFunction (ScaSpace, fun=fun_1)
Fun_2 = bempp. api.GridFunction (ScaSpace, fun=fun_2)
Fun_3 = bempp. api.GridFunction (VecSpace, fun=fun_3)
Fun_p = bempp. api.GridFunction (ScaSpace, fun=fun_p)
Fun_P = bempp. api. GridFunction (VecSpace, fun=fun_P)
Test_-1 = function_product(Fun_.1, Fun_2, ScaSpace, ScaSpace)
Test-2 = function_product (Fun_1, Fun.3, VecSpace, VecSpace)
Error-1 = (Test-1—Fun_p).12_norm () / Test-1.12_norm ()
Error.2 = (Test.2—Fun_P).12_norm () / Test_2.12_norm ()

B.5. Scalar product and composition

The implementation of the scalar product F' - G between to vector fields F
and G is achieved in the same way as the product of two functions. The only
difference lies in choosing a scalar test and trial space and in changing line
in Listing 8] such that the local product of F and G is summed up. This
is shown in Listing

Listing 10: Implementation of the scalar product.

def scalar_product(f, g, trial_space, test_space):

# The same as in function_product.

f_prod_g = np.sum(f.evaluate(element, points) * g.evaluate(element
, points), axis=0)

# The same as in function_product.

Similarly, we implement the routine, which takes three functions f, g, h and
generates vector field (f,g,h) " by the lines presented in Listing where we
again have to only adapt some lines of Listing

Listing 11: Implementation of the composition.

def composition(f, g, h, trial_space, test_space):

# One additional function as argument. The rest as before.

basis_values = test_space.evaluate_local_basis (element, points,
coeffs)

fgh = np.zeros((3,3), dtype = dtype)
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fgh[0,0:3] = f.evaluate(element, points)
fgh[1,0:3] = g.evaluate(element, points)
fgh[2,0:3] = h.evaluate (element, points)
prod_times_basis = np.sum(fgh * basis_values, axis=0)

# The rest again as in function_product.

In order to test this implementation, we use the lines presented in Listing
[[2] The errors presented in Figure [A-4] were calculated by varying the variable
H, the size of the elements of the mesh. Note that the discretized function fgh
and Test are tangential vector fields, since the test and trial space consists of
tangential vector fields.

Listing 12: Testing the composition mapping.

H=0.15

Wavenumber = 1.0

Grid = bempp.api.shapes.sphere (h=H)

MT = bempp. api.operators.boundary. maxwell. multitrace_operator (Grid
, Wavenumber)

VecSpace = MT.domain_spaces [0]

ScaSpace = bempp.api.function_space (Grid, "B-P”, 1)

def fun_f(x,n,d,r):
r[0] = 1) % x[0]*x2

def fun_g(x,n,d,r):

r[0] = x[1] — x[2]
def fun_h(x,n,d,r):
r[0] = x[0]*xx[2]*xx[1]
def fun_fgh(x,n,d,r):
r[:] =np.array ([ 1j = x[0]*x2, x[1] — x[2], x[0]*x[2]*x[1] ])

f = bempp. api.GridFunction (ScaSpace, fun=fun_f)

g = bempp. api.GridFunction (ScaSpace, fun=fun_g)

h = bempp. api.GridFunction (ScaSpace, fun=fun_h)

fgh = bempp.api.GridFunction (VecSpace, fun=fun_fgh)
Test = composition(f, g, h, VecSpace, VecSpace)
Error = (fgh — Test).l12_norm () / fgh.l2_norm ()
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