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hätte ich mich vermutlich nicht getraut, mein Studienfach zu wechseln und
zur Mathematik zu finden.
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1. Introduction

The main theme in this thesis is, as the title suggests, electromagnetic scat-
tering. The behaviour of electromagnetic waves is described by Maxwell’s
equations. We will consider solutions, which are periodic in time. Therefore,
Maxwell’s equations reduce to a coupled system of partial differential equa-
tions with the two unknowns being the vector fields E and H, the electric and
magnetic field. A general electromagnetic scattering problem is depicted in

∂D

D

Ei

Es

E∞

Figure 1.1: Sketch of a scattering problem.

Figure 1.1. In the presence of an incident field Ei, a scatterer D gives rise to a
scattered field Es. This is described by boundary or transmission conditions
defined for the total field E = Es + Ei on the boundary ∂D of the scatterer.
The scattered field decays as the distance from the scatterer grows due to a
radiation condition. One can consider an expansion of the scattered field with
respect to how fast the solution is decaying. The leading order term with the
slowest decay is called far field pattern E∞.

Section 2 is centered around the well known mathematical treatment of several
scattering problems and serves as an introduction to electromagnetic scatter-
ing problems (see Section 2.1). We will introduce appropriate Sobolev spaces
(see Section 2.2) and present suitable weak formulations (see Section 2.4).
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1. Introduction

Section 3 is concerned with the following question: How do solutions of elec-
tromagnetic scattering problems behave with respect to perturbations of the
boundary ∂D? We will show, that solutions of several scattering problems are
differentiable with respect to the boundary. For the simplest case, the perfect
conductor, we will also show, that the solutions are twice differentiable. As
it turns out, the derivative of the far field pattern with respect to variations
of the boundary only depends on the domain derivative, which is a solution
to the scattering problem at hand with different inhomogeneous boundary
condition. We will provide a characterization of the domain derivative for
each considered scattering problem. A characterization of the second domain
derivative of the perfect conductor is also presented. Our chosen approach
relies heavily on the mathematical framework presented in Section 2.

In Section 4, we present an approach to actually reconstruct the shape of a
scattering object. We employ an iterative regularized Newton scheme to solve
the following, inverse problem: Given a far field pattern E∞ with respect to
one incident wave, how can we determine the shape ∂D of our scatterer? We
will show in detail, how one can set up such a scheme for the class of star
shaped domains with appropriate regularization. Since the scheme does not
depend on a specific scattering problem, it can be applied to every setting
from Section 2.1.

The interaction of the electric and magnetic field with the surrounding medium
is described by constitutive relations. Most materials, for example vacuum,
can be described by linear material laws with scalar coefficients. Often more
complex material laws are considered to model optical active media. One ex-
ample of optical activity is chirality. Considering incident fields of purely one
helicity, one can ask the following question: Can we obtain the response of
the scatterer with respect to incident fields of the opposite helicity by consid-
ering a rotated and mirrored image of the original scatterer? If the answer is
no, a scatterer is called chiral. Considering two chiral scatterer, the following
question arises: Which of these scatterer is more chiral?

In Section 5, we consider a new definition of chirality, proposed in [18]. They
define a measure of chirality which gives an answer to the question, how chiral
a scatterer is and potentially can be. We investigate this new measure of
chirality in the context of time-harmonic electromagnetic scattering. In order
to find scattering objects with high measure of chirality, one might think of
using a gradient type optimization scheme. It seems that the measure of
chirality lacks the necessary regularity. We will therefore propose a slightly
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modified measure of chirality, prove its higher regularity and investigate its
relation to the original measure of chirality.

In Section 6 we provide numerous numerical examples to illustrate the previ-
ous sections by using and extending the open source boundary element method
library BEMPP (https://bempp.com/), which provides the necessary imple-
mentations of boundary element spaces, potentials and boundary operators.
We present integral formulations for the scattering problems, which can also
be used to calculate domain derivatives. The boundary conditions that charac-
terize the domain derivatives involve traces and surface derivative operators.
We will present how these can be easily implemented. We will also show
several actual reconstructions, using the regularized iterative Newton scheme
presented in Section 4. To illustrate Section 5, we will show numerical calcu-
lations of the measure of chirality and its modification. First, we consider a
model problem, where we can find analytic expressions. Secondly, we will use
again BEMPP to calculate the measure of chirality and its modification for
an ensemble of perfectly conducting spheres.

Finally, we present in Appendix A in detail figures of the actual reconstructions
and show convergence plots of our BEMPP extensions, whose implementations
can be found in Appendix B.

3
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2. Maxwell’s equations

The mathematical foundation of our work is Maxwell’s equations, a system
of partial differential equations in time and space, which couples the scalar
charge density ρ and the vector valued electric field E , electric displacement
D, magnetic field H, magnetic flux density B and current density J :

∂B
∂t

+ curl E = 0,

∂D
∂t
− curlH = −J ,

divD = ρ,

divB = 0.

In general, D and B are functions of E and H. The behavior can be specified,
if one makes assumptions on the media. In the following, two special cases
will be considered. First, in linear, isotropic media, we have

D = εE , B = µH

with scalar electric permittivity ε and magnetic permeability µ. The second
case is the Drude-Born-Federov constitutive equations, where

D = ε(E + β curl E), B = µ(H+ β curlH)

with additional scalar chirality parameter β. We do only consider settings
without charges, i.e. ρ = 0. By Ohm’s law, we have furthermore

J = σE

with scalar conductivity σ. Furthermore we assume all vector fields to be
periodically in time with frequency ω. This allows the splitting

E(x, t) = Re
(
e−iωtÊ(x)

)
, H(x, t) = Re

(
e−iωtĤ(x)

)
,

with complex valued vector fields Ê and Ĥ, which we will call again electric
and magnetic field. Using this Ansatz, the time derivative becomes a multipli-
cation with −iω and we arrive at the time-harmonic Maxwell system, which
reads as

curl Ê − iωµĤ = 0, div εÊ = 0, (2.0.1)

curl Ĥ + (iωε− σ)Ê = 0, divµĤ = 0. (2.0.2)
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2. Maxwell’s equations

for linear, isotropic media and

curl Ê = iωµ(Ĥ + β curl Ĥ), div(ε(Ê + β curl Ê)) = 0, (2.0.3)

curl Ĥ = −iωε(Ê + β curl Ê), div(µ(Ĥ + β curl Ĥ)) = 0 (2.0.4)

for chiral media with σ ≡ 0. One important special case is the so called ho-
mogeneous medium, where all material parameters µ, ε, σ and β are constant.
In this case, we can introduce the constant wavenumber k ∈ C defined by

k2 = ω2εµ+ iωµσ = ω2µ(ε+ iσ/ω)

where we choose k > 0 if σ = 0 and Im k > 0 otherwise. Using the rescaling

E =
√
ε+ iσ/ωÊ, H =

√
µĤ

we arrive at the rescaled Maxwell system

curlE = ikH, curlH = −ik E. (2.0.5)

Closely connected to the Maxwell system is the Helmholtz equation

∆u+ k2u = 0,

which can be derived from the (acoustic) wave equation

∂2U(x, t)

∂t2
= c2∆U

which describes the amplitude U of an acoustic wave in space and time with
speed of sound c. Using again a time harmonic Ansatz U(x, t) = Re

(
e−iωtu(x)

)
,

one arrives at the Helmholtz equation with wavenumber k =
√

c
ω . The fol-

lowing Lemma illustrates the connection between the Helmholtz equation and
the Maxwell system (2.0.5).

Lemma 2.1. Let Ω ⊂ R3 be an open set. A vector field E ∈ C2(Ω,C3)
combined with H = 1

ik curlE is a solution of the Maxwell system (2.0.5) if
and only if E is a solution of

∆E + k2E = 0 and divE = 0 in Ω.

Proof. See [14, Theorem 6.4].

Instead of considering the Maxwell system, we can combine the two equa-
tions and consider the second order partial differential equations

curl curlE − k2E = 0 or curl curlH − k2H = 0.
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In homogeneous media, we can easily give explicit examples of solutions of the
Maxwell system. Choosing an arbitrary vector d of length one, i.e. d ∈ R3

with |d| = 1 and a complex vector p ∈ C3 with d · p = 0, direct calculation
shows that

E(x) = p eikd·x and H(x) = (d× p)eikd·x

are solutions of the Maxwell system. The pair (E,H) is called plane wave
with direction d and polarization p. Note that (E,H) are analytic solutions of
the Maxwell system in R3. Another type of solutions can be generated with
the help of the following Lemma.

Lemma 2.2. Let Ω ⊂ R3 be an open set and u a solution of ∆u + k2u = 0
in Ω. For p ∈ C3 set

E(x) = curl(p u(x)), H(x) =
1

ik
curlE(x).

The pair (E,H) is a solution of the Maxwell system in Ω.

Proof. We have divE = 0 in Ω, since we have div curlV = 0 for any vector
field V ∈ C2(Ω,R3). Furthermore, we have by curl curl = ∇ div−∆

−∆E(x) = curl curl curl(pu(x)) = − curl ∆(pu(x)) + curl∇div(pu(x)).

Since curl∇v = 0 for any v ∈ C2(Ω), we obtain from ∆u+ k2u = 0

−∆E(x) = − curl
(
p∆u(x)

)
= curl

(
k2pu(x)

)
= k2E(x).

With the help of Lemma 2.1 we conclude that (E,H) is a solution of the
Maxwell system.

As an example for such a solution to the Helmholtz equation, as used in
Lemma 2.2, we define the analytic function u by

u(x) = eikd·x

for some d ∈ R3 with |d| = 1. From

∂u(x)

∂xi
= ik di u(x), i = 1, 2, 3

we see ∆u+k2u = 0. The function u is also called (acoustic) plane wave with
direction d.

7



2. Maxwell’s equations

2.1. Obstacle scattering

In this section, we want to present the scattering problems, which are con-
sidered in this work. Before going into detail, let us first explain the general
setting. We are always considering scatterers represented by simply connected
bounded domains D ⊂ R3 which are surrounded by a homogeneous, linear,
isotropic material. This could be vacuum with constant ε0 > 0, µ0 > 0 and
σ = 0 for instance. In the presence of a pair of incident waves (Ei, Hi), an
analytic solution of the Maxwell system

curlE − ikH = 0, curlH + ik E = 0, (2.1.1)

with k = ω
√
ε0µ0 in all of R3, the scatterer gives rise to a pair of scattered

fields (Es, Hs), a solution to the Maxwell system (2.1.1) in R3 \ D. The
interaction of the scatterer, which may or may not be penetrable, with the
incident fields is modelled by boundary conditions on ∂D. In the case of a
penetrable scatterer, we have an additional pair of fields (E,H), solutions
of an Maxwell system in D, coupled by transmission conditions to (Es, Hs)
and (Ei, Hi). To enforce distinguishable behavior between the scattered and
incident fields, we impose a condition at infinity, the so called Silver-Müller
radiation condition (SMRC) which is given by

lim
|x|→∞

|x|
[
Hs(x)× x

|x|
− Es(x)

]
= 0. (2.1.2)

Considering a plane wave E(x) = p eikd·x, we have

H(x)× x− |x|E(x) =
(
(d× p)× x− |x|p

)
eikd·x

=
(
(x · d− |x|)p− (p · x)d

)
eikd·x.

The factor in front of the exponential function can only vanish, if x · d = |x|
and p · x = 0, since p · d = 0. This is the case, if and only if x = d, certainly
not uniformly for |x| → ∞. So plane waves do not satisfy the radiation
condition. This example illustrates, how the radiation condition enforces that
the scattered field behaves different than the incident field. In general, the
radiation condition ensures, that the scattered fields are outgoing solutions.
To be more precise, consider the solution Φ of the Helmholtz equation, given
by

Φ(x) =
e±ik|x|

|x|
,

which is for both signs a solution of the Helmholtz equation in R3 \ {0} and
describes a spherical wave. Remembering the time dependency, we arrive at
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2.1. Obstacle scattering

the solution of the wave equation

U(x, t) = Re

(
ei(±k|x|−ωt)

|x|

)
.

Now we see, that only the function with the positive sign describes an outgoing
solution. The gradient of Φ is given by

∇Φ(x) = (±ik)
e±ik|x|

|x|
x

|x|
− e±ik|x|

|x|2
x

|x|
= (±ik)Φ(x)

x

|x|
− e±ik|x|

|x|2
x

|x|
.

The difference between the ingoing and outgoing solution Φ is the sign of the
leading term in the asymptotic behaviour of the gradient. This motivates the
so called Sommerfeld radiation condition for acoustic scattering, given by

lim
|x|→∞

|x|
(
∇u · x

|x|
− iku

)
= 0. (2.1.3)

By Lemma 2.2, we can define solutions to the Maxwell system (2.1.1) for any
given p ∈ C3 by

E(x) = curl(pΦ(x)) = ∇Φ× p, H(x) =
1

ik
curlE(x), x ∈ R3 \ {0}.

Calculation and recalling the time dependency leads to

E(x, t) = Re
(
e−iωtE(x)

)
= Re

[( x
|x|
× p
)(±ik

|x|
− 1

|x|2
)

ei(±k|x|−ωt)

]
Again, we can distinguish ingoing and outgoing solutions by the sign of the
slowest decaying term. The corresponding magnetic field can be calculated to
be

ikH(x) = curlE(x)

= −k2Φ(x)
( x
|x|
×
( x
|x|
× p
))

+
1

|x|

(
∓ ik +

1

|x|

)[
3
(
p · x
|x|

) x
|x|
− p
]
Φ(x).

If we plug this into the radiation condition (2.1.2), we arrive at

|x|
[
H(x)× x

|x|
+ E(x)

]
= |x|Φ(x)

( x
|x|
× p
)[
± ik − ik +O

( 1

|x|

)]
,

which tends to zero for |x| → ∞, if and only if we have chosen the + sign
in the definition of Φ, which corresponds to an outgoing field E. This is of
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2. Maxwell’s equations

course just a motivation, why the radiation condition makes sense. In general,
the radiation condition ensures uniqueness of the solutions of the scattering
problems.

We will now state the four scattering problems considered in this work in
the classical form. Throughout this thesis, let D ⊂ R3 be open, bounded and
simply connected.

2.1.1. Perfect conductor

For the perfect conductor, we assume D to be impenetrable, i.e. there is no
electric and magnetic field inside D. The boundary value problem can then
be fully stated in the unbounded domain R3 \D and reads as

curlE = ikH, curlH = −ik E in R3 \D, (2.1.4a)

ν × E = 0 on ∂D, (2.1.4b)(
Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (2.1.4c)

where (Ei, Hi) is a solution of (2.1.1) in R3. Note, that the boundary condition

(2.1.4b) reads as ν × Ê = 0 as well in the original scaling, since we rescaled
the incident field as well.

2.1.2. Penetrable obstacle

Considering penetrable obstacles, we have an additional set of material
parameters εD, µD, σD ∈ C, which differ from µ0, ε0, i.e.(

µ0

ε0

)
6=
(

µD
εD + iσD/ω

)
.

Then we have a set of Maxwell’s equations in the unbounded domain R3 \
D as well as in the bounded domain D, which are coupled by transmission
conditions. The full scattering problem then reads as

curlE = iκH, curlH = −iκE in D, (2.1.5a)

curlE = ikH, curlH = −ik E in R3 \D, (2.1.5b)

1
√
ε0
ν × E

∣∣
+
− 1√

εD + iσD/ω
ν × E

∣∣
− = 0 on ∂D, (2.1.5c)

1
√
µ0
ν ×H

∣∣
+
− 1
√
µD

ν ×H
∣∣
− = 0 on ∂D, (2.1.5d)

10



2.1. Obstacle scattering(
Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (2.1.5e)

where (Ei, Hi) is a solution of (2.1.1) in R3 and κ = ω
√
µD(εD + iσD/ω)

denotes the interior wavenumber. Note, that the unintuitive transmission
conditions (2.1.5c) and (2.1.5d) imply continuity of the tangential components
of the electric and magnetic field in the original scaling

ν × Ĥ
∣∣
+
− ν × Ĥ

∣∣
− = 0 = ν × Ê

∣∣
+
− ν × Ê

∣∣
−.

2.1.3. Obstacles with impedance boundary condition

We consider again an impenetrable scatterer. On the boundary ∂D, we have
an additional material parameter, the (surface) impedance λ : ∂D → R which
we always assume to be positive, i.e. λ > 0. Then the scattering problem
with impedance boundary condition reads as

curlE = ikH, curlH = −ik E in R3 \D, (2.1.6a)

ν ×H = λ
(
ν × (E × ν)

)
on ∂D, (2.1.6b)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (2.1.6c)

where (Ei, Hi) is again a solution of (2.1.1) in R3. Note, that the boundary
condition (2.1.6b) is equivalent to the impedance boundary condition

ν × Ĥ = λ̂
(
ν × (Ê × ν)

)
on ∂D

in the original scaling with positive impedance λ̂ =
√
µ0√
ε0
λ > 0.

2.1.4. Chiral media

The Maxwell system for chiral media (2.0.3) does not allow the elegant
scaling. Introducing the chiral parameter β > 0 and additional εD, µD ∈ C,
the scattering from chiral media reads as

curlE = ikH, curlH = −ik E in R3 \D, (2.1.7a)

curlE = iκ(H + β curlH), curlH = iκ(E + β curlE) in D, (2.1.7b)

1
√
ε0
ν × E

∣∣
+
− 1
√
εD

ν × E
∣∣
− = 0 on ∂D, (2.1.7c)

1
√
µ0
ν ×H

∣∣
+
− 1
√
µD

ν ×H
∣∣
− = 0 on ∂D, (2.1.7d)
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2. Maxwell’s equations (
Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (2.1.7e)

where (Ei, Hi) is again a solution of (2.1.7a) in R3 and we have the exterior
and interior wavenumbers k = ω

√
ε0µ0 and κ = ω

√
µDεD, respectively. For

more details and how one can derive the boundary conditions from physical
laws for the various scattering cases, we refer to the detailed introduction in
[33].

2.2. Sobolev spaces

In our work, we consider weak solutions of the above stated scattering prob-
lems in H(curl,Ω) or in appropriate subspaces of H(curl,Ω). We will briefly
motivate this approach and present the necessary results. We will start by
defining Sobolev spaces in Ω.

2.2.1. Sobolev spaces

We start with a partial integration formula. Let u, v ∈ C1(Ω) and the
boundary ∂Ω be smooth enough. Then we have∫

Ω

u∇v dx+

∫
Ω

v∇udx =

∫
∂Ω

uvν ds. (2.2.1)

Motivated by this equation, we define: A function u ∈ L2(Ω) is said to possess
a weak gradient F ∈ L2(Ω,C3), if∫

Ω

u∇ϕdx = −
∫

Ω

Fϕdx, for all ϕ ∈ C∞0 (Ω).

Since F is unique, we use the usual notation ∇u = F . We define

H1(Ω) = {u ∈ L2(Ω) : u possesses a weak gradient in L2(Ω,C3)}.

This space is, together with the inner product

〈u, v〉H1(Ω) =

∫
Ω

(
uv +∇u · ∇v

)
dx,

a Hilbert space. For ϕ ∈ C1(Ω), one can define the trace operator γ by

γϕ = ϕ
∣∣
∂Ω
.

12



2.2. Sobolev spaces

Note that the left hand side of (2.2.1) makes sense for u, v ∈ H1(Ω). By
choosing the right space on the boundary ∂Ω, one can extend γ to a linear
bounded operator defined on H1(Ω). This extension requires some regularity
of the boundary. To be more precise the boundary ∂Ω has to be at least
Lipschitz. We will present this later. Analogously, one can define Sobolev
spaces of order m ∈ N. For α = (α1, α2, α3)> ∈ N3 we define the differential
operator Dα by

Dαϕ =
∂α1+α2+α3ϕ

∂xα1
1 ∂xα2

2 ∂xα3
3

, for ϕ ∈ C‖α‖(Ω),

where we define |α| by |α| = α1 + α2 + α3. A function u ∈ L2(Ω) is said to
possess a weak derivative f of order α ∈ N3 in L2(Ω), if there is a function
f ∈ L2(Ω) such that∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

gϕdx, for all ϕ ∈ C∞0 (Ω).

We use again the usual notation Dαu = g and define for m ∈ N the space

Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω) for all α ∈ N3 with |α| 6 m},

which is, together with the inner product

〈u, v〉Hm(Ω) =

∫
Ω

uv dx+
∑
α∈N3

‖α‖6m

∫
Ω

DαuDαv ds,

a Hilbert space. Considering smooth vector fields E, V : Ω→ C3, we have the
following partial integration formula:∫

Ω

(
curlE · V − curlV · E

)
dx =

∫
∂Ω

(ν × E) · (ν × (V × ν)) ds. (2.2.2)

Motivated by this equation, we define: A function E ∈ L2(Ω,C3) is said to
possess a weak curl F ∈ L2(Ω,C3), if∫

Ω

E · curlV ds =

∫
Ω

F · V ds for all V ∈ C∞0 (Ω,C3).

We define the space H(curl,Ω) as the subspace of those functions in L2(Ω,C3)
with weak curl in L2(Ω,C3), i.e.

H(curl,Ω) = {E ∈ L2(Ω,C3) : E possesses weak curl F ∈ L2(Ω,C3)}.

13



2. Maxwell’s equations

If F ∈ L2(Ω,C3) is the weak curl of E ∈ H(curl,Ω), we write again as usually
curlE = F . Together with the inner product

〈E, V 〉H(curl,Ω) = 〈E, V 〉L2(Ω,C3) + 〈curlE, curlV 〉L2(Ω,C3),

where 〈A,B〉L2(Ω,C3) =
∫

Ω
A · B dx denotes the inner product of L2(Ω,C3),

one finds that H(curl,Ω) is a Hilbert space. For functions ϕ ∈ C1(Ω,C3), one
can define the tangential traces γtϕ, γTϕ by

γtϕ = ϕ× ν
∣∣
∂D
, γTϕ = (ν × (ϕ× ν))

∣∣
∂D
.

Motivated by (2.2.2), one can extend these traces for E ∈ H(curl,Ω), if the
boundary is at least Lipschitz. We want to chose the right range space, such
that γt and γT are continuous and surjective. As it turns out, we need frac-
tional Sobolev spaces with negative index on the boundary ∂Ω. We will out-
line, how one defines these for bounded Lipschitz domains Ω, following closely
mainly [33] and also [6, 39]. For bounded domains with smooth boundaries,
one could use a more elegant different approach, see e.g. [40]. But this requires
some knowledge about unbounded operators on smooth manifolds. Therefore,
and because above defined scattering problems can be defined and solved for
bounded Lipschitz domains, we chose the more technical approach. Let us
start by defining Lipschitz domains.

2.2.2. Traces and Sobolev spaces on surfaces

A bounded set Ω ⊂ R3 is called Lipschitz domain, if the boundary can be
locally parameterized by a Lipschitz-continuous function. That means, for
every x ∈ ∂Ω there is an open neighborhood ω ⊂ R3 with x ∈ ω satisfying
the following properties. Let Bn(p, r) denote the ball of radius r and center
p in Rn. Then there exists a constant α > 0, a Lipschitz-continuous function
ψ : B2(0, α)→ [0, 1], a rotation R ∈ R3×3 and a translation z ∈ R3 such that
the following holds

∂Ω ∩ ω = {Rx+ z ∈ R3 : (x1, x2) ∈ B2(0, α), x3 = ψ(x1, x2)},
Ω ∩ ω = {Rx+ z ∈ R3 : (x1, x2) ∈ B2(0, α), x3 < ψ(x1, x2)},
ω \D = {Rx+ z ∈ R3 : (x1, x2) ∈ B2(0, α), x3 > ψ(x1, x2)}.

We define the parametrization Φ : B3(0, α)→ R3 by

Φ(x) = R

 x1

x2

ψ(x1, x2) + x3

+ z, x ∈ B3(0, α).
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2.2. Sobolev spaces

Then Φ : B2(0, α)× {0} → R3 is a local parametrization in ω and we have

∂Ω ∩ ω = {Φ(x) : x ∈ B2(0, α), x3 = 0},
Ω ∩ ω = {Φ(x) : x ∈ B2(0, α), x3 < 0},
ω \ Ω = {Φ(x) : x ∈ B2(0, α), x3 > 0}.

Note, that by Rademacher’s theorem ψ is almost everywhere differentiable
with |∇ψ| 6 L, where L denotes the Lipschitz constant of ψ. Some vector
calculus shows

∣∣∣ ∂Φ

∂x1
× ∂Φ

∂x2

∣∣∣ =
√

1 + |∇ψ|2, ν(y = Φ(x)) =
1√

1 + |∇ψ|2
R

−∂x1
ψ(x)

−∂x2
ψ(x)

1

 .

Since Ω is bounded we have that ∂Ω is compact. For every x ∈ ∂Ω we
have such a parametrization Φx : B2(0, αx) → R3 of an open neighborhood
ωx ⊂ R3. Since x ∈ ωx, we have ∂Ω ⊂ ∪x∈∂Ωωx. Since ∂Ω is compact, we can
choose a finite covering ω1, . . . , ωN with N ∈ N of ∂Ω, i.e. we need only N
parametrizations Φi, i = 1, . . . , N to describe the boundary ∂Ω. The boundary
∂Ω is called of class Ck, if we have in addition that all parametrizations ψ
satisfy ψ ∈ Ck. The boundary ∂Ω is called regular, if k = ∞. In order to
localize functions, we need the following theorem.

Theorem 2.3 (Partition of the Unity). Let K ⊂ R3 be a compact set. For
every finite open covering ωi, i = 1, . . . , N with N ∈ N, there exists λi ∈
C∞(R3) with suppλi ⊂ ωi i = 1, . . . , N , such that

N∑
i=1

λi(x) = 1, for all x ∈ K.

Now let u ∈ C(∂Ω). Let {λi} be a partition of the unity with respect to the
covering ∂Ω ⊂ ∪Ni=1ωi. Then u is represented by a sum of localized functions

vi : B2(0, αi) × {0} → C. First we write u =
∑N
i=1 λiu. For every function

ui = λiu we can define

vj(x) = uj(Φj(x)), x ∈ B2(0, αj)× {0}.

We can localize the L2(∂Ω)-norm by

‖u‖2L2(∂Ω) =

∫
∂Ω

|u(y)|2 ds =
m∑
j=1

∫
∂Ω∩ωi

λj(y)|u(y)|2 ds
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2. Maxwell’s equations

=

m∑
j=1

∫
B2(0,αj)

λj(Φj(x))|u(Φj(x))|2
√

1 + |∇ψj(x)|2 dx. (2.2.3)

From this we can see that u ∈ L2(Ω) if and only if x 7→
√
λj(Φj(x))u(Φj(x))

is in L2(B2(0, αj)). Note that λi is compactly supported in ωi and therefore vj
has compact support inB2(0, αj)×{0}. Thus, we can extend vj by zero outside
of B2(0, αj) to a continuous and periodic function vj ∈ Cper([−π, π]2). This
localization allows us to define Sobolev spaces on the boundary by means of
periodic Sobolev spaces in dimension two on some cube K with B2(0, αi) ⊂ K.
Finally, we finish the preparations of defining Sobolev spaces on the boundary
by defining the space Hs

per(K), the space of periodic Sobolev functions on
the cube K = (−π, π)2. For u ∈ L2(K), the Fourier coefficients un ∈ C for
n ∈ Z2 are defined as

un =
1

4π2

∫
K

u(x)e−in·x dx.

With these coefficients, we can define the Fourier series of u as the right hand
side of

u(x) =
∑
n∈Z2

unein·x.

The equality of this equation has to be understood in the L2(K) sense. A
partial derivative of u is formally given by

∂u

∂xi
=
∑
n∈Z2

iniunein·x, i = 1, 2.

Therefore we define for any real s > 0 the space

Hs
per(K) = {u ∈ L2(K) :

∑
n∈Z2

(1 + |n|2)s|un|2 <∞},

which is, together with the inner product

〈u, v〉Hsper(K) =
∑
n∈Z2

(1 + |n|2)sunvn

a Hilbert space. A finite sum

u(x) =
∑
n∈Z2

|n|6M

unein·x, x ∈ K, un ∈ C
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2.2. Sobolev spaces

is called trigonometric polynomial. We can also define H−sper(K) as the com-
pletion of the space of trigonometric polynoms with respect to the norm

‖u‖H−sper
=
∑
n

(1 + |n|2)−s|un|2,

where we sum over the finitely many Fourier coefficients un. We use (2.2.3)
to define Sobolev spaces with non-negative exponent s > 0 on the boundary
∂Ω as subspaces of L2(∂Ω). Define the space

Hs(∂D) = {u ∈ L2(∂Ω) : ũj ∈ Hs
per(K) for all j = 1, . . . , N}

where ũj denotes the localization of u, i.e.

ũj(x) =
√
λj(Φj(x))

√
1 + |∇ψj |2u(Φj(x)),

together with the associated norm

‖u‖2Hs(∂Ω) =

N∑
j=1

‖ũj‖2Hsper(K).

The norm depends on the choice of the parametrizations and partition of the
unity, but different choices lead to equivalent norms. We can also consider
Hs(∂Ω) with exponent −s. As it turns out, the spaces of exponents s and −s
are dual to each other. The dual pairing

H−s(∂Ω)〈·, ·〉Hs(∂Ω) : H−s(∂Ω)×Hs(∂Ω)→ C

is given by the extension of the L2(∂Ω) inner product, i.e. we have

H−s(∂Ω)〈u, v〉Hs(∂Ω) =

∫
∂Ω

uv ds,

if u ∈ L2(∂Ω) ∩H−s(∂Ω). As it turns out, one can extend γ continuously to
H1(Ω) and the range spaces are exactly the Sobolev spaces on the boundary
Hs(∂Ω) with s = 1

2 . We will summarize this in the following theorem.

Theorem 2.4 (Trace theorem I). The trace operator γ can be extended to a
linear bounded operator

γ : H1(Ω)→ H
1
2 (∂Ω).

Furthermore, γ is surjective and admits a bounded right inverse η : H
1
2 (∂Ω)→

H1(Ω), i.e.

u = γηu, for all u ∈ H 1
2 (∂Ω).
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2. Maxwell’s equations

Proof. See [33, Theorem 5.10].

Now we want to establish a trace theorem for functions E ∈ H(curl,Ω).
Motivated by the partial integration formula (2.2.2), the space of tangential
vector fields L2

t (∂Ω) defined by

L2
t (∂Ω) = {E ∈ L2(∂Ω,C3) : ν · E = 0 almost everywhere.}

seems to be a reasonable starting point. Analogously to the scalar case, we
want to localize functions E ∈ L2

t (∂Ω). Since we want to keep the structure
of tangential vector fields, we define

L2
t (K) = {E ∈ L2(K,C3) : E3 = 0 almost everywhere.}.

Now, using again a partition of the unity, we need to construct functions
Ẽi ∈ L2

t (K) such that we have E ∈ L2
t (∂Ω) if and only if Ẽi ∈ L2

t (K) for

i = 1, . . . , N . There are two sets of Ẽi, which satisfy our needs, given by

Ẽti (x) =

{√
1 + |∇ψi(x)|2

√
λi(Φi(x))F−1

i (x)E(Φi(x)), x ∈ B2(0, αi)

0 x ∈ K \B2(0, αi)
,

ẼTi (x) =

{√
1 + |∇ψi(x)|2

√
λi(Φi(x))F>i (x)E(Φi(x)), x ∈ B2(0, αi)

0 x ∈ K \B2(0, αi)
,

for x ∈ B2(0, αi) and by 0 in K \ B2(0, αi), where the matrix Fi is defined
column wise by

Fi(x) =

[
∂Φi(x)

∂x1

∣∣∣∣∣∂Φi(x)

∂x2

∣∣∣∣∣∂Φi(x)

∂x1
× ∂Φi(x)

∂x2

]
, x ∈ B2(0, αi).

We need both sets of localized functions, since the space H(curl,Ω) admits
two kinds of traces, which are in different spaces. Analogously to the scalar
space, we define the following vector valued periodic Sobolev spaces. We start
by defining the space of trigonometric vector polynomials T (K,C2) by

T (K,C2) = {u ∈ L2(K,C2) : u(x) =
∑
n∈Z2

|n|6M

unein·x, x ∈ K, un ∈ C2, M ∈ N}.

Next, we define two norms on T (K,C2) by

‖u‖Hsper(Div,K) =

√∑
n∈Z2

(1 + |n|2)s[|un|2 + |n · un|2],
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2.2. Sobolev spaces

‖u‖Hsper(Curl,K) =

√∑
n∈Z2

(1 + |n|2)s[|un|2 + |n× un|2],

where a × b = a1b2 − a2b1 for a, b ∈ C2. Then we define Hs
per(Div,K) and

Hs
per(Curl,K) for any s ∈ R by the completion of T (K,C2) with respect to the

the corresponding norm. Again, we define spaces on the boundary by localized
functions. We define for s ∈ R the spaces Hs(Div, ∂Ω) and Hs(Curl, ∂Ω) as
the completion of

{E ∈ L2
t (∂Ω) : Ẽtj ∈ H

s(Div,K), j = 1, . . . , N} and

{E ∈ L2
t (∂Ω) : ẼTj ∈ H

s(Curl,K), j = 1, . . . , N},

respectively, with respect to the norms

‖E‖Hs(Div,∂Ω) =

√√√√ N∑
j=1

‖Ẽtj‖2Hs(Div,K),

‖E‖Hs(Curl,∂Ω) =

√√√√ N∑
j=1

‖ẼTj ‖2Hs(Curl,K).

As it turns out, one can extend γt and γT continuously to H(curl,Ω) and the
range spaces are exactly the two spaces defined above with s = − 1

2 . We will
summarize this in the following theorem.

Theorem 2.5 (Trace theorem II). The trace operators γt and γT can be
extended to linear bounded operators

γt : H(curl,Ω)→ H−
1
2 (Div, ∂Ω), γT : H(curl,Ω)→ H−

1
2 (Curl, ∂Ω).

They both have bounded right inverses ηt and ηT . Furthermore, H−
1
2 (Div, ∂Ω)

and H−
1
2 (Curl, ∂Ω) are dual to each other, where the dual pairing

H−
1
2 (Div,∂Ω)

〈·, ·〉
H−

1
2 (Curl,∂Ω)

: H−
1
2 (Div, ∂Ω)×H− 1

2 (Curl, ∂Ω)→ C

is given by

H−
1
2 (Div,∂Ω)

〈E, V 〉
H−

1
2 (Curl,∂Ω)

=

∫
∂Ω

E · V ds,

if E ∈ L2
t (∂Ω) ∩H− 1

2 (Div, ∂Ω) and V ∈ L2
t (∂Ω) ∩H− 1

2 (Curl, ∂Ω). Further-
more, we have for E, V ∈ H(curl,Ω) the partial integration formula∫

Ω

(
curlV ·E−V ·curlE

)
dx =

H−
1
2 (Div,∂Ω)

〈γtE, γTV 〉
H−

1
2 (Curl,∂Ω)

. (2.2.4)

Proof. See [33, Theorems 5.24 and 5.26].
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2. Maxwell’s equations

2.2.3. Surface differential operators

In this section, we present several surface differential operators and their
extensions to Sobolev spaces. Since we want to define these operators as
classic differential operators, we assume just for this part, that Ω is a bounded
domain with boundary ∂Ω of class C2. Let u ∈ C1(∂Ω). Then we can define
the surface gradient Grad∂Ω by

Grad∂Ω u = ∇û− ∂û

∂ν
ν,

and the vectorial surface rotation
−−→
Curl∂Ω by

−−→
Curl∂Ωu = Grad∂Ω u× ν,

where û ∈ C1(U) denotes an arbitrary extension of u to an open set U such
that ∂Ω ⊂ U . Now let F ∈ C1(∂Ω,C3) be a tangential vector field, i.e.
F · ν = 0 on ∂Ω. Then we define the surface divergence Div∂Ω by

Div∂Ω F = div F̂ − ν · JF̂ ν,

where again F̂ ∈ C1(U,C3) denotes an extension of F to an open neighborhood
U of ∂Ω and JF̂ the Jacobian of F̂ . We also define for F the scalar surface
rotation Curl∂Ω by

Curl∂Ω F = curl F̂ · ν.

The surface gradient Grad∂Ω and the surface divergence Div∂Ω are coupled
by duality with respect to the L2(∂Ω) inner product, that is we have∫

∂Ω

uDiv∂Ω F ds = −
∫
∂Ω

F ·Grad∂Ω uds. (2.2.5)

The scalar surface rotation Curl∂Ω can be expressed by the surface divergence
Div∂Ω by

Div∂Ω(F × ν) = Curl∂Ω F, (2.2.6)

which could also be used as definition of Curl∂Ω. These operator motivate in
hindsight the definition of the trace spaces H−

1
2 (Curl, ∂Ω) and H−

1
2 (Div, ∂Ω).

Recall for smooth vector fields the partial integration formula (2.2.2). If V
is a gradient field, i.e. V = ∇u for some smooth function u, we arrive with
curl∇u = 0 at∫

Ω

curlE · ∇udx =

∫
∂Ω

(ν × E) ·Grad∂Ω uds = −
∫
∂Ω

Div∂Ω(ν × E)uds.
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2.2. Sobolev spaces

Again, the left hand side does make sense in H(curl,Ω), therefore the right
trace space has to include the fact, that the trace γtE admits surface diver-
gence. For smooth vector fields E, we have

ν × γTE = γtE on ∂Ω.

Therefore, γTE has to possess the surface rotation Curl∂Ω in the right trace
space. Recall the definition of Hs(Div,K) with K = (−π, π)2 for the lo-
calized tangential vector fields as the completion of the trigonometric vector
polynomials T (K,C2). K can be seen as surface of the three-dimensional cube
(−π, π)3. If we consider the trigonometric vector monomial

F (x) = fein·x, x =

(
x1

x2

)
∈ K, f =

(
f1

f2

)
∈ C2, n =

(
n1

n2

)
∈ Z2

we can easily extend F to a vector field defined on (−π, π)3 by forgetting the
third variable and setting the third component to zero, i.e.

F (y) = (F (ŷ), 0)> ∈ C3, y ∈ (−π, π)3 ⊂ R3,

where ŷ = (y1, y2)> ∈ K. The surface divergence DivK F is then given by

DivK F (x) = i(n · f)ein·x.

This motivates the second term in the Hs(Div,K)-norm. For the surface
rotation CurlK F , we have analogously

CurlK F (x) =

0
0
1

 ·
 0

0
i(n1f2 − n2f1)

 ein·x = i(n× f)ein·x,

which motivates the second term in the Hs(Curl,K)-norm. The boundedness
of the surface divergence and the surface rotation is the reason, why these op-
erators can be extended to linear bounded operators between certain Sobolev
spaces on the boundary ∂Ω for Lipschitz domains. Since the above definitions
used boundaries of class C2, we have to redefine the surface differential op-
erators in the context of Lipschitz domains. We will summarize this in the
following theorem.

Theorem 2.6 (Surface differential operators). Let Ω be a bounded Lipschitz
domain with boundary ∂Ω. Let ψ ∈ H1(Ω). Then ∇ψ ∈ H(curl,Ω). We

define the bounded linear operators Grad∂Ω and
−−→
Curl∂Ω by

Grad∂Ω : H
1
2 (∂Ω)→ H−

1
2 (Curl, ∂Ω)
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2. Maxwell’s equations

−−→
Curl∂Ω : H

1
2 (∂Ω)→ H−

1
2 (Div, ∂Ω)

by

Grad∂Ω ϕ = γT∇ηϕ and
−−→
Curl∂Ωϕ = γt∇ηϕ.

We define the linear bounded functionals

Div∂Ω : H−
1
2 (Div, ∂Ω)→ H−

1
2 (∂Ω), Curl∂Ω : H−

1
2 (Curl, ∂Ω)→ H−

1
2 (∂Ω)

by

H−
1
2 (∂Ω)

〈Div∂Ω ϕ,ψ〉
H

1
2 (∂Ω)

=
H−

1
2 (Div,∂Ω)

〈−ϕ,Grad∂Ω ψ〉
H−

1
2 (Curl,∂Ω)

and

H−
1
2 (∂Ω)

〈Curl∂Ω ϕ,ψ〉
H

1
2 (∂Ω)

=
H−

1
2 (Div,∂Ω)

〈
−−→
Curl∂Ωψ,−ϕ〉

H−
1
2 (Curl,∂Ω)

for all ψ ∈ H 1
2 (∂Ω).

Proof. Since curl∇ϕ = 0 in L2(Ω) for ϕ ∈ H1(Ω), see [39, Theorem 3.40],

we have ∇ηϕ ∈ H(curl,Ω). The boundedness of Grad∂Ω and
−−→
Curl∂Ω follows

from the boundedness of η : H
1
2 (∂Ω) → H1(Ω). The boundedness of Div∂Ω

and Curl∂Ω follows immediately. If ϕ can be extended to a smooth function
in the neighborhood of ∂Ω, then Grad∂Ω, defined as in this theorem, is just
the classic surface gradient, which does not depend on the extension, see [33,
Lemma A.19]. By a density argument we conclude that the definition of the
surface differential operators in this theorem does not depend on the choice
of η.

2.3. Analytic solutions and the Calderón operator

The scattering problems defined in Section 2.1 are formulated in unbounded
domains in R3. In this section, a summary of [39, Section 9.3], we want
to present the framework, which allows us to consider weak formulations of
those scattering problems in bounded domains in R3. This is possible, since
we can find explicit representations of solutions of Maxwell’s equations in
linear isotropic homogeneous media, such as vacuum. Recall, that we always
assumed our scatterer to be surrounded by such a medium. In this section,
let R > 0 be large enough, that the scatterer D lies completely in the ball
of radius R centered in 0, i.e. D ⊂ BR(0). We are considering the following
scattering problem

curlEs − ikHs = 0 in R3 \BR(0), (2.3.1a)
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2.3. Analytic solutions and the Calderón operator

curlHs + ik Es = 0 in R3 \BR(0), (2.3.1b)

ν × Es = g on ∂BR(0), (2.3.1c)

(Es, Hs) satisfies SMRC, (2.3.1d)

for a tangential vector field g. For now, we will assume g to be smooth. Later
on, we want to choose g = ν × Ês, where Ês is the solution of the scattering
problem restricted to BR(0). As we have seen before, see Lemma 2.1, the
Maxwell system is closely connected to the Helmholtz equation. In order to
find explicit solutions of (2.3.1a)-(2.3.1d), we start by finding solutions of the
Helmholtz equation

∆u+ k2u = 0, (2.3.2)

using spherical coordinates (r, θ, ϕ) defined by

R3 3 x =

r sin θ cosϕ
r sin θ sinϕ
r cos θ

 , r > 0, θ ∈ [0, π], ϕ ∈ [0, 2π].

Since we want to exploit the structure of the spherical coordinates, we make
an Ansatz by separation of variables, i.e. u(x) = u(r, θ, ϕ) = u1(r)u2(θ, ϕ).
Then (2.3.2) reads as

1

r2

[ ∂
∂r

(
r2 ∂u1

∂r

)
+k2r2u1

]
u2+

[ 1

r2 sin θ

∂

∂θ

(
sin θ

∂u2

∂θ

)
+

1

r2 sin2 θ

∂2u2

∂ϕ2

]
u1 = 0,

(2.3.3)
or, using the representation of the Laplace-Beltrami operator in spherical co-
ordinates

1

u1

[ ∂
∂r

(
r2 ∂u1

∂r

)
+ k2r2u1

]
+

1

u2
∆∂B1(0)u2 = 0. (2.3.4)

Noticing, that the first summand is a function of only r and the second one
of only θ and ϕ, the sum can only be zero, if there is a constant η ∈ C such
that

∆∂B1(0)u2 = ηu2 (2.3.5a)

∂

∂r

(
r2 ∂u1

∂r

)
+ (k2r2 + η)u1 = 0 (2.3.5b)

Note that (2.3.5b) is an ordinary differential equation for r > 0 and (2.3.5a)
is the eigenvalue problem for the Laplace-Beltrami operator. For an arbitrary
η ∈ C, this is not solvable. We present the solutions of (2.3.5a) in the following
theorem. For completeness, we define the Legendre polynomials Pn of order
n ∈ N0 by

Pn(t) =
(−1)n

2nn!

dn

dtn
(1− t2)n, t ∈ [−1, 1]
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2. Maxwell’s equations

and the mth associated Legendre functions of order n by

Pmn (t) = (1− t2)
m
2

( d

dt

)m
Pn(t), m = 0, 1, 2, . . . , n, t ∈ [−1, 1].

Furthermore, we define the spherical harmonics Y mn by

Y mn (θ, ϕ) =

√
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimϕ

for n ∈ N0 and m ∈ Z with |m| 6 n. We have the following theorem.

Theorem 2.7 (Eigenvalues of ∆∂B1(0)). For any n ∈ N0 and m ∈ Z with
|m| 6 n we have

∆∂B1(0)Y
m
n = −n(n+ 1)Y mn ,

i.e. the spherical harmonics of order n are the eigenfunctions of the Laplace-
Beltrami operator with respect to the eigenvalue −n(n+ 1). The set

{Y mn : n ∈ N0, m ∈ Z, |m| 6 n}

is a complete orthonormal system in L2(∂B1(0)).

Proof. See for example Section 2.4.1 in [40].

Due to this result, we only have to find solutions of (2.3.5b) for η = −n(n+
1), n ∈ N0. Using the change of variables t = kr, one finds two families of
solutions, the spherical Bessel functions of order n ∈ N0, given by

jn(t) =

∞∑
l=0

(−1)l

2ll!

tn+2l

(−2n+ 1)(−2n+ 3) · · · (−2n+ 2l − 1)
, t ∈ R,

and the spherical Neumann function of order n ∈ N0, given by

yn(t) = − (2n)!

2nn!

∞∑
l=0

(−1)l

2ll!

t2l−n−1

(−2n+ 1)(−2n+ 3) · · · (−2n+ 2l − 1)

for t > 0. Note the singularity of the Neumann functions for t → 0. The
linear combination

h(1)
n = jn + iyn, h(2)

n = jn − iyn, n ∈ N0
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2.3. Analytic solutions and the Calderón operator

are called spherical Hankel functions of order n ∈ N0 of the first and second
kind. These functions and their derivatives have the following asymptotic
behaviour

h(1,2)
n (t) =

1

t
e±i(t−nπ2 −

π
2 ) +O

( 1

t2

)
,(

h(1,2)
n

)′
(t) =

1

t
e±i(t−nπ2 ) +O

( 1

t2

)
,

(2.3.6)

where the positive sign corresponds to the spherical Hankel function of the
first kind, and the minus sign to the spherical Hankel function of the second
kind, see [14, Section 2.4]. We conclude, that we have constructed to families
of functions, namely

umn (x) = jn(kr)Y mn (θ, ϕ), vmn (x) = h(1)
n (kr)Y mn (θ, ϕ), n ∈ N0, |m| 6 n,

where the umn satisfy the Helmholtz equation in R3 and the vmn in R3 \ {0}.
Using the asymptotic behaviour of the vmn , one can show the following lemma.

Lemma 2.8. For n ∈ N0 and m ∈ Z with |m| 6 n, we have that vmn satisfies
the Sommerfeld radiation condition (2.1.3).

Proof. This follows from the asymptotic behaviour of the Hankel functions
(2.3.6), for more details see [14, Theorem 2.9].

Recall our goal to construct explicit solution of the scattering problem
(2.3.1a)-(2.3.1d). Using our set of solutions of the Helmholtz equation, we
arrive at the family of vector wave functions, defined in spherical coordinates
by

Mm
n (x) =

1√
n(n+ 1)

curl(x jn(kr)Y mn (θ, ϕ)), x ∈ R3,

Nm
n (x) =

1√
n(n+ 1)

curl(xh(1)
n (kr)Y mn (θ, ϕ)), x ∈ R3 \ {0}.

These are called Debye potentials and define solutions of the system (2.1.1) in
R3 and R3 \ {0}, resp. by the following lemma.

Lemma 2.9. Let u be a solution of the Helmholtz equation

∆u+ k2u = 0

Then E(x) = curl(xu(x)) is a solution of

curl2E − k2E = 0.
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2. Maxwell’s equations

Proof. Let u be a solution of the Helmholtz equation, i the identity, i.e. i(x) =
x and E(x) = curl

(
u(x)i(x)

)
. Using the vector calculus identity

curl(F ×G) = F div(G)−Gdiv(F ) + JFG− JGF

for some sufficiently smooth vector fields F,G, we have

curl2E = curl3(u i) = curl2(∇u× i)
= curl

(
3∇u−∆u i+ J∇ui− Ji∇u

)
= k2 curl(u i) + curl(J∇ui).

Since

J∇ui = (J∇u − J>∇u)i+ (J>∇ui+ J>i ∇u)− J>i ∇u
= curl(∇u)× i+∇(∇u>i)−∇u,

we conclude

curl2E − k2E = 0.

Inspired by the observation

curl(xu(x)) = ∇u× x,

one can see, that the vector wave functions Mm
n and Nm

n can be interpreted
as tangential vector fields on B1(0). Since we have

δrnδ
s
m =

∫
∂B1(0)

Y mn Y sr ds = −n(n+ 1)

∫
∂B1(0)

∆∂B1(0)Y
m
n Y sr ds

= n(n+ 1)

∫
∂B1(0)

Grad∂B1(0) Y
m
n ·Grad∂B1(0) Y sr ds,

we find that the spherical surface harmonics Umn , V mn , defined for x̂ ∈ S2 by

Umn (x̂) =
1√

n(n+ 1)
Grad∂B1(0) Y

m
n (x̂)

V mn (x̂) = x̂× Umn (x̂)

form an orthonormal system in the space of tangential vector fields, which we
denote by L2

t (∂B1(0)). One can also show completeness.
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2.3. Analytic solutions and the Calderón operator

Lemma 2.10. The set of spherical surface harmonics

{Umn , V mn , n ∈ N, m ∈ Z, |m| 6 n}

is a complete orthonormal system in L2
t (∂B1(0)).

Proof. See for example [14, Theorem 6.23].

The main difference between the vector wave functions Mm
n and Nm

n (and
their curls) is the asymptotic behaviour, as stated in the following lemma.

Lemma 2.11. The functions Nm
n , 1

ik curlNm
n are radiating solution of the

Maxwell system in R3 \ {0}.

Proof. See [14, Theorem 6.24].

Now, we have all the ingredients to state the main theorem of this section.
Recall, that our main goal was to find explicit representations of a radiating
solution of Maxwell’s equations outside some ball of radius R, see (2.3.1a)-
(2.3.1d).

Theorem 2.12. Let Es be a solution of (2.3.1a)-(2.3.1d). Then Es has the
representation

Es(x) =

∞∑
n=1

n∑
m=−n

(
amn N

m
n (x) + bmn

1

ik
curlNm

n (x)
)
, |x| > R.

The series converges uniformly on compact subsets. For the magnetic field,
we have

Hs(x) =

∞∑
n=1

n∑
m=−n

(
amn

1

ik
curlNm

n (x)− bmn Nm
n (x)

)
, |x| > R.

Conversely, if the tangential component of this series converge in L2 on the
sphere of radius R, then the series itself converges uniformly on compact sub-
sets of |x| > R. In this case, the series represent a radiating solution to the
Maxwell system.

Proof. See [14, Theorem 6.25].

If we consider the corresponding interior problem

curl2E − k2E = 0 in BR(0), (2.3.7a)

ν × E = g on ∂BR(0), (2.3.7b)
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2. Maxwell’s equations

we have analogous representation as in the theorem above

E(x) =

∞∑
n=1

n∑
m=−n

(
amnM

m
n (x) + bmn

1

ik
curlMm

n (x)
)
, |x| < R,

H(x) =

∞∑
n=1

n∑
m=−n

(
amnM

m
n (x) + bmn

1

ik
curlMm

n (x)
)
, |x| < R.

These representations allow us, to calculate explicit representations of our
scattering problems from Section 2.1, if we restrict ourselves to the special
case D = BR(0). These formulas, which will be presented in Section 2.3.1,
are immensely important as a first step of the verification of our numerical
experiments.

For now, we will continue presenting the framework for the Calderón op-
erator. In Section 2.2.2, we defined the Sobolev space H−

1
2 (Div, ∂Ω) for the

boundary of a bounded Lipschitz domain. For the special case, where Ω is a
ball of some radius, i.e. Ω = BR(0), one can give a more direct definition,
using the orthonormal systems in L2(∂BR(0)) and L2

t (∂BR(0)). First, any
given U ∈ L2

t (∂BR(0)) can be written by Lemma 2.10 as

U(x) =

∞∑
n=1

n∑
m=−n

(
amn U

m
n (x̂) + bmn V

m
n (x̂)

)
, x ∈ BR(0), x̂ =

x

|x|
∈ S2

with coefficients amn , b
m
n ∈ C, n ∈ N, |m| 6 n. Since the Umn and V mn are

orthonormal, we have

‖U‖2L2
t (∂BR(0)) = R4

∞∑
n=1

n∑
m=−n

(
|amn |2 + |bmn |2

)
.

We can calculate the surface divergence of Umn by

Div∂B1(0) U
m
n =

1√
n(n+ 1)

Div∂B1(0) Grad∂B1(0) Y
m
n

=
1√

n(n+ 1)
∆∂B1(0)Y

m
n = −

√
n(n+ 1)Y mn .

We have Div∂B1(0) V
m
n = 0 by considering for n, k ∈ N and m, l ∈ Z with

|m| 6 n and |l| 6 k∫
∂B1(0)

Y lk Div∂B1(0) V
m
n ds = −

∫
∂B1(0)

V mn ·Grad∂B1(0) Y
l
k ds
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2.3. Analytic solutions and the Calderón operator

= −
∫
∂B1(0)

V mn · U lk ds = 0.

We can define Hs(Div, ∂BR(0)) for s ∈ R as the completion of the space of
tangential vector fields of the form

U =
∑
n

n∑
m=−n

(
amn U

m
n + bmn V

m
n

)
,

where the sum over n is finite with respect to the norm

‖U‖2Hs(Div,∂BR(0)) =

∞∑
n=1

n∑
m=−n

[
(n(n+ 1))s+1|amn |2 + (n(n+ 1))s|bmn |2

]
.

Consider for g ∈ H− 1
2 (Div, ∂BR(0)), given by

g =

∞∑
n=1

n∑
m=−n

(
αmn U

m
n + βmn V

m
n

)
(2.3.8)

the exterior spherical scattering problem (2.3.1a) - (2.3.1d) for some coeffi-
cients αmn , β

m
n ∈ C, n ∈ N, |m| 6 n. By Theorem 2.12, we make the Ansatz(

Es

Hs

)
(x) =

∞∑
n=1

n∑
m=−n

[
amn

(
Nm
n

1
ik curlNm

n

)
(x) + bmn

(
1
ik curlNm

n

−Nm
n

)
(x)
]
.

(2.3.9)
In order to match the boundary condition ν × Es = g, we have to calculate
the traces ν × Nm

n and ν × 1
ik curlNm

n explicitly. This is done by using the
representation of curl in spherical coordinates. We omit the calculation and
present the result. We have

Nm
n (x) = −h(1)

n (kR)V mn (x̂)

and

1

ik
curlNm

n (x)

=

√
n(n+ 1)

ikR
h(1)
n (kR)Y mn (x̂)x̂+

1

ikR
(h(1)
n (kR) + k|x|(h(1)

n )′(kR))Umn ,

for x = Rx̂, R > 0, x̂ ∈ S2, see [14, Section 6.5]. Therefore, the boundary
values are given by

ν ×Nm
n (x) = h(1)

n (kR)Umn (x̂),
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2. Maxwell’s equations

ν × 1

ik
curlNm

n (x) =
1

ikR

(
h(1)
n (kR) + kR(h(1)

n )′(kR)
)
V mn .

for x = Rx̂, x̂ ∈ S2. If we compare the coefficients in

0 = ν × Es − g =

∞∑
n=1

n∑
m=−n

(amn h
(1)
n (kR)− αmn )Umn

+

∞∑
n=1

n∑
m=−n

( bmn
ikR

(h(1)
n (kR) + kR(h(1)

n )′(kR))− βmn
)
V mn

we find, that the coefficients amn and bmn of the solution are formally given by

amn =
αmn

h
(1)
n (kR)

, bmn =
ikRβmn

h
(1)
n (kR) + kR(h

(1)
n )′(kR)

. (2.3.10)

We conclude this with the following lemma.

Lemma 2.13. Let k ∈ R. For any g ∈ H− 1
2 (Div, ∂BR(0)) with the represen-

tation (2.3.8), the unique solution Es, Hs of (2.3.1a) - (2.3.1d) is given by
(2.3.9) with the coefficients defined in (2.3.10).

Proof. By Theorem 2.12, we only have to check if the coefficients amn , bmn are

well defined. Assume h
(1)
n (kR) = 0 for some n ∈ N. Since k,R > 0, we have

by h
(1)
n = jn + iyn that jn(kR) = yn(kR) = 0. This is a contradiction to the

Wronskian

jn(z)y′n(z)− j′n(z)yn(z) =
1

z2
, z ∈ C. (2.3.11)

Therefore amn is well defined. Analogously, if h
(1)
n (kR) + kR(h

(1)
n )′(kR) = 0,

we have jn(kR) + kRj′n(kR) = 0 and yn + kRy′n(kR) = 0. This leads to

−kRy′n(kR)jn(kR) = −kRj′n(kR)yn(kR).

Again by the Wronskian, we conclude

0 = kR(y′n(kR)jn(kR)− yn(kR)j′n(kR)) =
1

kR
,

a contradiction.

We now define the Calderón operator Λ as follows. Given a function λ in
H−

1
2 (Div, ∂BR(0)), we define Λλ = x̂×Hs, where the pair (Es, Hs) satisfies
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2.3. Analytic solutions and the Calderón operator

(2.3.1a) - (2.3.1d) with g = λ. Due to our representations, we can define Λλ
in terms of the coefficients αmn , βmn in the representation

λ =

∞∑
n=1

n∑
m=−n

(
αmn U

m
n + βmn V

m
n

)
by

Λλ = x̂×Hs =

∞∑
n=1

n∑
m=−n

[
αmn
ikR

h
(1)
n (kR) + kR(h

(1)
n )′(kR)

h
(1)
n (kR)

V mn

− ikRβmn
h

(1)
n (kR)

h
(1)
n (kR) + kR(h

(1)
n )′(kR)

Umn

]
.

The next theorem is a summary of the properties of Λ.

Theorem 2.14. The Calderón Operator

Λ : H−
1
2 (Div, ∂BR(0)) 7→ H−

1
2 (Div, ∂BR(0))

is linear and bounded.

Proof. See [39, Theorem 9.21].

The Calderón operator will help us in Section 2.4 to incorporate the Silver-
Müller radiation condition into the weak formulation. For now, we continue
to present analytic solutions to scattering problems, since that requires the
same Ansatz and the comparison of coefficients, as we have done to define the
Calderón operator.

2.3.1. Analytic solutions

Throughout this section, we consider positive wavenumbers k > 0 and the
scatterer D = BR(0) for some R > 0. Furthermore, we will always use the
decomposition(

Ei

Hi

)
(x) =

∞∑
n=1

n∑
m=−n

[
αmn

(
Mm
n

1
ik curlMm

n

)
(x) + βmn

(
1
ik curlMm

n

−Mm
n

)
(x)

]
(2.3.12)

of the incoming field in a neighborhood of ∂D, which holds on any compact set.
We already stated the solution to the spherical perfect conductor in Lemma
2.13 and continue with the impedance boundary condition.

31



2. Maxwell’s equations

Lemma 2.15. Let k, λ ∈ R. For any pair of incoming fields with represen-
tation (2.3.12), the unique solution of (2.1.6a) - (2.1.6c) is given by(

Es

Hs

)
(x) =

∞∑
n=1

n∑
m=−n

[
amn

(
Nm
n

1
ik curlNm

n

)
(x) + bmn

(
1
ik curlNm

n

−Nm
n

)
(x)

]
,

where the coefficients amn , bmn ∈ C are given by

amn = −αmn
jn(kR) + kR j′n(kR) + iλkRjn(kR)

h
(1)
n (kR) + kR (h

(1)
n )′(kR) + iλkRh

(1)
n (kR)

bmn = −βmn
λ
(
jn(kR) + kR j′n(kR)

)
+ ikR jn(kR)

λ
(
h

(1)
n (kR) + kR (h

(1)
n )′(kR)

)
+ ikRh

(1)
n (kR)

for n ∈ N, |m| 6 n.

Proof. If we plug in the Ansatz for the incoming and scattered field into the
boundary condition

ν × (Hs +Hi) = λν ×
(
(Es + Ei)× ν

)
and use ν × (U × ν) = U for tangential vector fields as well as ν × V mn = Umn ,
we can conclude the representations of amn and bmn by comparing coefficients.
We have to check, whether the denominator in the claimed representations
can vanish. Let the denominator of the representation of αmn vanish for some
n ∈ N. Then we define the scalar function

un(x) = Rh(1)
n (k|x|)Y mn

( x
|x|

)
, x 6= 0.

By Lemma 2.8, we have hat un is a radiating solution of

∆u+ k2u = 0, in R3 \BR(0),

∂u

∂ν
+ λ̂u = 0, on ∂BR(0),

with λ̂ = 1+ikλR
R . We have by [13, Theorem 3.37], that any radiating solution

has to vanish, i.e. un ≡ 0. This is a contradiction. Analogously, defining

un = λRh
(1)
n (k|x|)Y mn (x/|x|) and considering λ̂ = λ+ikR

λR , we conclude that
also the second denominator can not vanish.

We continue with the scattering from penetrable obstacles. Since we now
have additionally a non trivial electric and magnetic field inside of the scat-
terer, we have to expand our Ansatz. The vector wave functions depend of
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2.3. Analytic solutions and the Calderón operator

course on the wavenumber. The scattering from penetrable obstacles involves
two wavenumbers, the exterior k and the interior κ. Therefore, we will denote
this by Mm

n (x, k) and Mm
n (x, κ), respectively. κ is called interior (Dirichlet)

eigenvalue, if the boundary value problem

curl2E − κ2E = 0, in BR(0)

ν × E = 0, on ∂BR(0)

admits non-trivial solutions. For the next theorem we assume, that κ is no
interior eigenvalue.

Lemma 2.16. Let εD, ε0, µD and µ0 ∈ R and σD = 0. Furthermore, let
κ be no interior Dirichlet eigenvalue. For any pair of incoming fields with
representation (2.3.12), the unique solution of (2.1.5a) - (2.1.5e) is given by(

Es

Hs

)
(x) =

∞∑
n=1

n∑
m=−n

[
amn

(
Nm
n

1
ik curlNm

n

)
(x, k) + bmn

(
1
ik curlNm

n

−Nm
n

)
(x, k)

]

for x ∈ R3 \D and by(
E
H

)
(x) =

∞∑
n=1

n∑
m=−n

[
cmn

(
Mm
n

1
ik curlMm

n

)
(x, κ) + dmn

(
1
ik curlMm

n

−Mm
n

)
(x, κ)

]

for x ∈ D, where the coefficients amn , bmn , cmn , dmn ∈ C are the unique solutions
of the linear systems

Amn
(
amn bmn cmn dmn

)>
= emn

with the matrix Amn ∈ C4×4 given by

Amn =


Hn(kR) −

√
ε0
εD

µ0

µD
Jn(κR) 0 0

h
(1)
n (kR) −

√
ε0
εD
jn(κR) 0 0

0 0 Hn(kR) −
√

µ0

µD
ε0
εD
Jn(κR)

0 0 h
(1)
n (kR) −

√
µ0

µD
jn(κR)

 ,

where we abbreviated Jn(z) = jn(z)+zj′n(z) and Hn(z) = h
(1)
n (z)+z(h

(1)
n )′(z).

The right hand side emn ∈ C4 is given by

emn = −
(
Jn(kR)αmn −jn(kR)αmn −Jn(kR)βmn −jn(kR)βmn

)>
.
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2. Maxwell’s equations

Proof. We plug in our Ansatz into the transmission conditions. This leads
by orthogonality of the vector spherical harmonics to the decoupled linear
systems stated above. We will now prove that the linear system is always
uniquely solvable. The determinant of Amn is given by the product of the
determinant of the upper left block, given by

−
√
ε0

εD

(
Hn(kR)jn(κR)− µ0

µD
Jn(κR)h(1)

n (kR)
)

(2.3.13)

and the lower right block, given by

−
√
µ0

µD

(
Hn(kR)jn(κR)− ε0

εD
Jn(κR)h(1)

n (kR)
)
. (2.3.14)

Assuming detAmn = 0, we have that one of the determinants (2.3.13) or
(2.3.14) has to be zero. Let (2.3.13) be zero. Since all material parameter
are real valued, we can split it into real and imaginary part and arrive at

0 =
(

1− µ0

µD

)
jn(kR)jn(κR) + kR jn(κR)j′n(kR)− µ0

µD
κR j′n(κR)jn(kR),

(2.3.15)

0 =
(

1− µ0

µD

)
yn(kR)jn(κR) + kR jn(κR)y′n(kR)− µ0

µD
κR j′n(κR)yn(kR).

(2.3.16)

Since κ is no interior eigenvalue, we have jn(κR) 6= 0 for all n ∈ N, since
otherwise Mm

n (x, κ) is a non-trivial solution of the interior Dirichlet problem.
If jn(kR) were zero, we could conclude by (2.3.15) that jn(κR) has to be
zero, since j′n(kR) can not also be zero by the Wronskian. So jn(kR) can not
vanish for any n ∈ N. Similarly, if yn(kR) = 0, we can conclude y′n(kR) = 0
by (2.3.16), which also can not be. So we can divide the first equation by the
product of jn(kR) and jn(κR) and the second one by the product of yn(kR)
and jn(κR) and subtract them. This yields with the Wronskian (2.3.11)

0 = kR
(
j′n(kR)yn(kR)− jn(kR)y′n(kR)

)
= − 1

kR
,

a contradiction. Repeating the same argument with (2.3.14), we conclude
detAmn 6= 0.

Our Ansatz uses solutions of the Maxwell system (2.0.5) and then matches
the boundary conditions. This does not work directly for chiral media. One
can transform solutions of the scattering from chiral media (2.1.7a) - (2.1.7e) to
solutions of a certain transmission problem, see [5]. This will also be addressed
later in Section 5.
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2.4. Weak formulations

2.4. Weak formulations

In this section, we want to present the formulations for the scattering prob-
lems. We start with the perfect conductor. As mentioned above, we can
consider Lipschitz domains. So let D be a bounded, simply connected Lips-
chitz domain. Let R > 0 be large enough such that D ⊂ BR(0) and define
the open set Ω = BR(0) \D. Note that Ω has the two connected boundaries
∂D and ∂BR(0).

2.4.1. Perfect conductor

Recall the scattering problem of the perfect conductor (2.1.4a) - (2.1.4c):

curlE = ikH, curlH = −ik E in R3 \D, (2.4.1a)

ν × E = 0 on ∂D, (2.4.1b)(
Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC. (2.4.1c)

The first equation (2.4.1a) does make sense for E,H inH(curl,Ω). The bound-

ary condition (2.4.1b) can be understood as γtE = 0 in H−
1
2 (Div, ∂D). There-

fore, we choose the closed subspace

Hpc(Ω) := {E ∈ H(curl,Ω) : γtE = 0}. (2.4.2)

For now, let (E,H) be a pair of smooth solutions of (2.4.1a) - (2.4.1c) and let
V be a smooth vector field with ν × V = 0 on ∂D. We multiply the second
equation of (2.4.1a) with V and use the partial integration formula (2.2.2) and
arrive at

0 =

∫
Ω

(curlH + ikE) · V dx

=

∫
Ω

(
H · curlV + ikE ·V

)
dx−

∫
∂D

(ν×H) ·V ds+

∫
∂BR(0)

(ν×H) ·V ds.

Note the minus sign in front of the boundary integral over ∂D since the out-
wards directed normal vector to ∂D is pointing into Ω. The first boundary
integral vanishes, since ν×V = 0. On the second one, we employ the Calderón
operator by

ν ×H = ν × (Hs +Hi)

= Λ(ν × Es) + ν ×Hi = Λ(ν × E) + ν ×Hi − Λ(ν × Ei).
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2. Maxwell’s equations

Furthermore, we use the first equation of (2.4.1a) to remove H from the equa-
tion. After multiplying with ik, we arrive finally at∫

Ω

(
curlE · curlV − k2E · V

)
dx+ ik

∫
∂BR(0)

Λ(ν × E) · V ds

=

∫
∂BR(0)

(
ikΛ(ν × Ei)− ν × curlEi

)
· V ds. (2.4.3)

Note, that we have removed the magnetic field from the equation and that the
equation can be extended to E, V ∈ Hpc(Ω). Note that the boundary integrals

become the dual pairings between the trace spaces H−
1
2 (Div, ∂BR(0)} and

H−
1
2 (Curl, ∂BR(0)}. We define the bounded sesquilinear form A : Hpc(Ω) ×

Hpc(Ω) → C and the antilinear map ` : Hpc(Ω) → C such that (2.4.3) reads
as

A(E, V ) = `(V ). (2.4.4)

A weak solution of the scattering from a perfect conductor is then a function
E ∈ Hpc(Ω) such that (2.4.3) holds for all V ∈ Hpc(Ω). There exists always
a unique solution of (2.4.4), see [39, Theorem 10.7].

2.4.2. Obstacle with impedance boundary condition

Recall the scattering problem involving obstacles with impedance boundary
condition (2.1.6a) - (2.1.6c):

curlE = ikH, curlH = −ik E in R3 \D, (2.4.5a)

ν ×H = λ
(
ν × (E × ν)

)
on ∂D, (2.4.5b)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC. (2.4.5c)

The boundary condition (2.4.5b) can not be extended for E,H ∈ H(curl,Ω)
since the traces γt and γT have different range spaces, see Theorem 2.5. We
have to impose additional regularity of the solutions in order to formulate a
weak formulation as opposed to the perfect conductor case. The space

Himp(Ω) = {E ∈ H(curl,Ω) : ν × E ∈ L2
t (∂D)}, (2.4.6)

equipped with the inner product

〈·, ·〉Himp(Ω) = 〈·, ·〉H(curl,Ω) + 〈ν × ·, ν × ·〉L2(∂D)

seems reasonable. Again, let (E,H) be a pair of smooth solutions of (2.4.5a) -
(2.4.5c) and V be a smooth vector field. Multiplying the Maxwell system with
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2.4. Weak formulations

V , partial integration formula (2.2.2) and applying the boundary condition
(2.4.5b) leads to

0 =

∫
Ω

(
H ·curlV +ikE ·V

)
dx−

∫
∂D

λ
(
ν×(E×ν)

)
·V ds+

∫
∂BR(0)

(ν×H)·V ds.

We apply again the Calderón operator on the outer boundary ∂BR(0) and
remove H from the first volume integral by the first equation of the Maxwell
system (2.4.5a). This leads finally to∫

Ω

(
curlE · curlV − k2E · V

)
dx+ ik

∫
∂BR(0)

Λ(ν × E) · V ds

− ik

∫
∂D

λ(ν × E) · (ν × V ) ds = `(V ). (2.4.7)

Note that (2.4.7) can be extended to E, V ∈ Himp(Ω). The boundary integral
on ∂BR(0) becomes again the dual pairing between the range spaces of the
trace operators γt, γT . The boundary integral over ∂D is well defined, since
ν×E, ν×V ∈ L2

t (∂D). We define the bounded sesquilinear form B : Himp(Ω)×
Himp(Ω)→ C such that (2.4.7) reads as

B(E, V ) = `(V ). (2.4.8)

A weak solution of the scattering problem from an obstacle with impedance
boundary condition is a function E ∈ Himp(Ω) such that (2.4.8) holds for all
V ∈ Himp(Ω). There exists always a unique solution of (2.4.8), see [9].

2.4.3. Chiral media

We define the piecewise constant parameters εr, µr, βr : R3 \ ∂D → C by

εr(x) =

{
εD
ε0
, x ∈ D

1, x /∈ D
, µr(x) =

{
µD
µ0
, x ∈ D

1, x /∈ D

and

βr(x) =

{
β, x ∈ D
0, x /∈ D

.

Using the scaling E =
√
ε0Ê and H =

√
µ0Ĥ, the scattering from chiral media

(2.1.7a) - (2.1.7e) can be formulated as{
curlE = ikµr(H + βr curlH)

curlH = −ikεr(E + βr curlE)
in R3 \ ∂D (2.4.9a)
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2. Maxwell’s equations

ν × E
∣∣
+
− ν × E

∣∣
− = 0, ν ×H

∣∣
+
− ν ×H

∣∣
− = 0 on ∂D (2.4.9b)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC. (2.4.9c)

As usual, k = ω
√
ε0µ0 denotes the exterior wavenumber. Note that for β = 0,

this scattering problems becomes the scattering from a penetrable obstacle
with σD = 0. Considering again smooth solutions (E,H) of (2.4.9a) - (2.4.9c)
and a smooth vector field V , we start with the second equation of the Maxwell
system (2.4.9a), multiply it by V and use partial integration (2.2.2) in D and
Ω. Note, that due to the jumps in the coefficients, we can not expect (E,H)
to be smooth in R3, but only smooth in D and R3 \D. This leads to

0 =

∫
BR(0)

(
H · curlV + ikεr(E + βr curlE) · V

)
dx

+

∫
∂D

(ν ×H
∣∣
+
− ν ×H

∣∣
−) · V ds+

∫
∂BR(0)

ν ×H · V ds. (2.4.10)

The boundary integral on ∂D vanishes due to the transmission condition
(2.4.9b). We use a combination of the Maxwell system (2.4.9a) to remove
H from the volume integrals and apply the Calderón operator on the bound-
ary. We arrive, after multiplying with ik, at∫

BR(0)

[( 1

µr
− k2β2

rεr

)
curlE · curlV − k2εrβr

(
E · curlV + curlE · V

)]
dx

−
∫
BR(0)

k2εrE · V dx+ ik

∫
∂BR(0)

Λ(ν × E) · V ds = `(V ). (2.4.11)

Note that (2.4.11) can be extended to E, V ∈ H(curl, BR(0)). We define the
bounded sesquilinear form C : H(curl, BR(0))×H(curl, BR(0))→ C such that
(2.4.11) reads as

C(E, V ) = `(V ). (2.4.12)

A weak solution of the scattering problem for an obstacle consisting of chiral
media is a function E ∈ H(curl, BR(0)) such that (2.4.12) holds for all V ∈
H(curl, BR(0)). Unique solvability of the scattering problem has been shown
for C2 boundaries in [5].
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3. Domain Derivatives

This chapter is concerned with the following question: How do the solu-
tions of the scattering problems presented in Section 2.1 behave with respect
to variations of the boundary ∂D. We will show that, under certain assump-
tions on the regularity of the boundary and the regularity of the perturbations
of the boundary, we have differentiability of the solutions with respect to the
boundary. There have been used several approaches successfully in order to
answer this question for acoustic and electromagnetic scattering. One is based
on boundary integral equations and investigations on the behaviour of the po-
tentials. For acoustic scattering, see [43, 45]. For electromagnetic scattering,
we refer to [44, 16]. Another approach, based on representation formulas, is
presented for the acoustic case in [36] and was later applied to electromag-
netic cases in [34, 20, 10]. A unified approach for acoustic and electromagnetic
scattering using techniques from differential geometry was recently presented
in [30]. Our approach, based on variational formulations, was first used for
the acoustic scattering from an obstacle with Dirichlet boundary conditions
in [32] and later extended and generalized in [25]. This approach as also been
successfully used to characterize the shape derivative for the scattering from
a penetrable obstacle in the electromagnetic case, see [26]. In this section, we
apply and extend the techniques used in [26] to the scattering problems from
Section 2.1. For the perfect conductor, we also prove the existence and give
a characterization of the second derivative, following again the methods used
for acoustic scattering in [25, 27].

supph

∂D

∂Dh

∂BR(0)

Figure 3.1: Kite D perturbed by h.

Before we start, we present some notations used throughout this section.
Let h denote a small C1 vector field, compactly supported in a neighborhood
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3. Domain Derivatives

of ∂D. We will use this vector field as a perturbation of the scatterer D.
Given a set M ⊂ R3, we denote by Mh the corresponding set perturbed by h,
i.e.

Mh = {x+ h(x) : x ∈M}.

We will always assume ‖h‖C1(R3,R3) to be small such that the transformation

x 7→ ϕ(x) = x+ h(x)

is a diffeomorphism. We will consider solutions of the scattering problems
with respect to the scatterer D and Dh and investigate their behavior for
‖h‖C1(R3,R3) → 0. We will use the shortened notation ‖h‖C1 for the norm
‖h‖C1(R3,R3). Recall the weak formulations for the scattering problems defined
in a bounded domain, where the outer boundary is the surface of BR(0) for
some R > 0, see Section 2.4. Throughout this section, we will always assume,
that the compact support of h is in BR(0), i.e h ≡ 0 in a neighborhood of
∂BR(0). This is always possible by choosing R large enough. See Figure 3.1
for an example.

Considering M and Mh related by the transformation ϕ, we define for a
function f : Mh → Rd with d ∈ N the function f̃ : M → Rd by

f̃(x) =
(
f ◦ ϕ

)
(x) = f(ϕ(x)) = f(x+ h(x)).

We can decompose a continuous vector field F : ∂D → C3 into normal and
tangential components by

F = Fτ + Fνν = ν × (F × ν) + (F · ν)ν.

Note, that formally γTF = Fτ holds, but the left hand side might be an
element of H−

1
2 (Curl, ∂D). We will use the notation Fτ for a tangential

vector field in L2
t (∂D) and γTF for the tangential trace in H−

1
2 (Curl, ∂D) of

a vector field in H(curl,Ω).

3.1. Perfect conductor

Let E denote the weak solution of the scattering from the perfect conductor
D, i.e.

A(E, V ) = `(V )

for all V ∈ Hpc(Ω). Let Eh ∈ Hpc(Ωh) denote the weak solution of the
scattering problem with respect to the perturbed scatterer Dh, i.e.∫

Ωh

(
curlEh·curlVh−k2Eh·Vh

)
dx−ik〈ΛγtEh, γTVh〉∂BR(0) = `(Vh) (3.1.1)

40



3.1. Perfect conductor

for all Vh ∈ Hpc(Ωh). Note that only the domain of the volume integral
changed. We can not directly compare the solutions Eh and E, since they are
in different function spaces. The idea is to use a transformation on Eh 7→ Êh
to arrive at a function Êh ∈ Hpc(Ω). This is done by the curl conserving
transformation, given by

Êh(x) = J>ϕ (x)Ẽh(x) = (I + J>h (x))Eh(x+ h(x)), (3.1.2)

which is used in finite element theory for H(curl,Ω), see [39, Section 3.9]. We
denote the Jacobian of ϕ with Jϕ. Note, that we have seen this transformation

in Section 2.2.2, where we used it to localize vector fields. The curl of Êh and
of Ẽh with respect to the untransformed coordinates are connected by

curl∼ Ẽh =
1

det Jϕ
Jϕ curl Êh (3.1.3)

and we have Eh ∈ H(curl,Ωh) if and only if Êh ∈ H(curl,Ω), see [39, Corollary
3.58]. This holds also for the space of solutions.

Lemma 3.1. Let Eh ∈ Hpc(Ωh) and Êh defined by (3.1.2). Then we have

Êh ∈ Hpc(Ω).

Proof. We only need to show γtÊh = 0 on ∂D. Let Vh ∈ H(curl,Ωh). We
have by (2.2.4) and applying change of variables x 7→ ϕ(x)

〈γtÊh, γT V̂h〉∂Ω =

∫
Ω

(
curl V̂h · Êh − curl Êh · V̂h

)
dx

=

∫
Ω

( 1

det(Jϕ)
curl V̂h

>
J>ϕ J

−>
ϕ Êh −

1

det(Jϕ)
curl Êh

>
J>ϕ J

−>
ϕ V̂h

)
det(Jϕ) dx

=

∫
Ω

(
Ẽh · curl∼ Ṽh − curl∼ Ẽh · Ṽh

)
det(Jϕ) dx

=

∫
Ωh

(
curlVh · Eh − Vh · curlE

)
dy = 〈γtEh, γTVh〉∂Ωh ,

where V̂h ∈ H(curl,Ω) is defined in the same way as Êh, i.e.

V̂h = J>ϕ Ṽh.

We have ∂Ω = ∂D ∪ ∂BR(0) and ∂Ωh = ∂Dh ∪ ∂BR(0). Note γtÊh = γtEh
on ∂BR(0). Therefore we arrive at

〈γtÊh, γT V̂h〉∂D = 〈γtEh, γTVh〉∂Dh = 0

for any Vh ∈ H(curl,Ωh) and therefore γtÊh = 0 on ∂D.
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3. Domain Derivatives

This allows us to apply the change of variables x 7→ ϕ(x) to (3.1.1). Together

with the transformation (3.1.2), we arrive at the weak formulation for Êh ∈
Hpc(Ω), given by∫

Ω

(
curl Êh

> J>ϕ Jϕ

det(Jϕ)
curlV − k2Êh

>
det(Jϕ)J−1

ϕ J−>ϕ V
)

dx

− ik〈ΛγtÊh, γTV 〉∂BR(0) = `(V )

for all V ∈ Hpc(Ω). We define the bounded sesquilinear form Ah : Hpc(Ω) ×
Hpc(Ω)→ C such that the equation above reads as

Ah(Êh, V ) = `(V ). (3.1.4)

To understand the asymptotic behaviour of Êh for h→ 0 in C1, it is important
to investigate the coefficients in the weak formulation, which depend on h.
The linearizations presented in the following lemma are the main ingredient
to prove first continuity and later differentiability of the solution with respect
to the perturbation h.

Lemma 3.2. We have the following asymptotic behavior for ‖h‖C1 → 0:

J>ϕ Jϕ

det(Jϕ)
= I(1− div h) + Jh + J>h +O(‖h‖2C1),

det(Jϕ)J−1
ϕ J−>ϕ = I(1 + div h)− Jh − J>h +O(‖h‖2C1).

Proof. Recall ϕ(x) = x+ h(x) and therefore we have Jϕ = I + Jh. By

(I + Jh)(I − Jh) = (I − Jh)(I + Jh) = I +O(‖h‖2C1)

we see J−1
ϕ = I −Jh +O(‖h‖2C1). By the rule of Sarrus, one can see that only

the product of the diagonal entries is relevant for the linearization of detJϕ
and we arrive at

det(Jϕ) =

3∏
i=1

(1 + ∂xihi) +O(‖h‖2C1) = 1 + div h+O(‖h‖2C1).

By considering again

(1 + div h)(1− div h) = 1 +O(‖h‖2C1),

we conclude
1

det(Jϕ)
= 1− div h+O(‖h‖2C1).

The claim of the lemma follows by combining these linearizations.
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3.1. Perfect conductor

In the next theorem, we show continuity of the solution with respect to the
perturbation h ∈ C1.

Theorem 3.3. Let E ∈ Hpc(Ω) be the solution of (2.4.4), i.e. a weak solution

of the scattering problem from a perfect conductor and Ê ∈ Hpc(Ω) a solution
of (3.1.4). Then we have

lim
‖h‖C1→0

‖E − Êh‖H(curl,Ω) = 0.

Proof. We consider the bounded linear operators A,Ah : Hpc(Ω) → Hpc(Ω),
implicitly defined by the Riesz representation theorem, satisfying

〈AE, V 〉H(curl,Ω) = A(E, V ), 〈AhE, V 〉H(curl,Ω) = Ah(E, V )

and let L ∈ H(curl,Ω) such that `(V ) = 〈L, V 〉H(curl,Ω). The weak formu-

lations A(E, V ) = `(V ) and Ah(Ê, V ) = `(V ) are then equivalent to the
operator equations

AE = L, AhÊh = L.

We will show convergence of Ah to A in the operator norm. Let V ∈ Hpc(Ω).
Then we have

‖(Ah −A)V ‖2H(curl,Ω)

= 〈AhV, (Ah −AV )〉H(curl,Ω) − 〈AV, (Ah −A)V 〉H(curl,Ω)

= Ah(V, (Ah −A)V )−A(V, (Ah −A)V )

=

∫
Ω

[
curlV >

( J>ϕ Jϕ

det(Jϕ)
− I
)

(Ah −A)V

− k2V >
(

det(Jϕ)J−1
ϕ J−>ϕ − I

)
(Ah −A)V

]
dx.

By Cauchy-Schwarz and Lemma 3.2 we conclude

‖(Ah −A)V ‖2H(curl,Ω) 6 C‖h‖C1‖V ‖H(curl,Ω)‖(Ah −A)V ‖H(curl,Ω).

and therefore
‖Ah −A‖ → 0, for ‖h‖C1 → 0.

Since A(E, V ) = `(V ) for all V ∈ Hpc(Ω) is uniquely solvable with

‖E‖H(curl,Ω) 6 C‖`‖H(curl,Ω)? ,

see [39, Theorem 10.7], we find A to possess a bounded inverse. With the Per-

turbation Theorem, see [35, Theorem 10.1], we conclude ‖Êh−E‖H(curl,Ω) → 0
as ‖h‖C1 → 0.
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3. Domain Derivatives

Using the linearizations from Lemma 3.2, we can prove the first differentia-
bility result.

Theorem 3.4. Let E ∈ Hpc(Ω) be the solution of (2.4.4) and Êh ∈ Hpc(Ω)
of (3.1.4). Then there exists a function W ∈ Hpc(Ω), depending linearly and
continuously on h ∈ C1, such that

lim
‖h‖C1→0

1

‖h‖C1

‖Êh − E −W‖H(curl,Ω) = 0.

Proof. Motivated by

A(Êh − E, V ) = A(Êh, V )− `(V ) = A(Êh, V )−Ah(Êh, V ) (3.1.5)

for any V ∈ Hpc(Ω) and looking closely at the linearizations, we define W ∈
Hpc(Ω) for a given perturbation h as the solution of

A(W,V ) =

∫
Ω

[
curlE>

(
div(h)I − Jh − J>h

)
curlV

+ k2E>
(

div(h)I − Jh − J>h
)
V
]

dx

for all V ∈ Hpc(Ω). Using (3.1.5), we calculate

A(Êh − E −W,V ) = A(Êh, V )−Ah(Êh, V )−A(W,V )

=

∫
Ω

curl Êh
>(
I −

J>ϕ Jϕ

det(Jϕ)
−
(

div(h)I − Jh − J>h
))

curlV dx

− k2

∫
Ω

Êh
>(
I − J−1

ϕ J−>ϕ det(Jϕ) +
(

div(h)I − Jh − J>h
))
V dx

+

∫
Ω

curl(Êh − E)>
(

div(h)I − Jh − J>h
)

curlV dx

+ k2

∫
Ω

(Êh − E)>
(

div(h)I − Jh − J>h
)

curlV dx

for any V ∈ Hpc(Ω). Using first the linearizations from Lemma 3.2, then
applying Cauchy-Schwarz and finally the continuity from Theorem 3.3, we
finally conclude

1

‖h‖C1

A(Êh − E −W,V )

6 C
(
‖Êh‖H(curl,Ω)O(‖h‖C1) + ‖Êh − E‖H(curl,Ω)

)
‖V ‖H(curl,Ω) → 0,
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3.1. Perfect conductor

as h→ 0 in C1, i.e.

1

‖h‖C1

‖Êh − E −W‖H(curl,BR(0)) → 0

as h→ 0 in C1(R3,R3).

The function W ∈ Hpc(Ω) is called material derivative of E with respect
to the perturbation h. Note that W is not a solution of Maxwell’s equations.
Furthermore, W depends on all values of h in Ω. One would expect a shape
derivative to depend only on h

∣∣
∂D

. Both issues are solved by considering
the so called domain derivative E′, which is a radiating solution of Maxwell’s
equations and depends only on h

∣∣
∂D

. The domain derivative can be extracted
from W . We introduce the notation E(x, h) = Eh(x) and set E(x, 0) = E(x).
To motivate the following theorem, consider the formal Taylor expansion

Êh(x) =
(
I + J>h (x)

)
Eh(x+ h(x)) =

(
I + J>h (x)

)
E(x+ h(x), h)

=
(
I + J>h (x)

)(
E(x, 0) + JE(x)h(x) +

d

dh
E(x) +O(‖h‖2C1)

)
= E(x) +

d

dh
E(x) + JE(x)h(x) + J>h (x)E(x) +O(‖h‖2C1). (3.1.6)

In the previous theorem, we formally derived

W =
d

dh
Êh.

This motivates the definition E′ = d
dhE = W−J>h E−JEh. The next theorem

shows, that this is the right choice to define the domain derivative E′. This
decomposition requires additional regularity of the boundary, since we need
higher regularity of our solutions. First, we show the following lemma.

Lemma 3.5. Let ∂D be of class Cm+1 for some m ∈ N. Any weak solu-
tion (E,H) ∈ Hpc(Ω)×H(curl,Ω) of the scattering from a perfect conductor
satisfies (E,H) ∈ Hm(Ω,C3)×Hm(Ω,C3).

Proof. The proof is an application of [1, Corollary 2.15]. They show, that if
∂D is of class Cm+1 for some integer m ∈ N, the spaces

{E ∈ L2(Ω,C3) : curlE ∈Hm−1(Ω,C3),

divE ∈ Hm−1(Ω) and ν × E ∈ Hm− 1
2 (∂D,C3)},

{E ∈ L2(Ω,C3) : curlE ∈Hm−1(Ω,C3),

divE ∈ Hm−1(Ω) and ν · E ∈ Hm− 1
2 (∂D)}
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3. Domain Derivatives

are both continuously embedded in Hm(Ω,C3). First, we observe divE =
divH = 0 ∈ L2(Ω,C3) by Maxwell’s equations. By the boundary condition
γtE = 0, we immediately conclude E ∈ H1(Ω,C3) since E is an element of
the first space. Again by the boundary condition, we have

H · ν =
1

ik
curlE · ν =

1

ik
Div∂D(E × ν) = 0,

see (2.2.6), i.e. H ∈ H1(Ω,C3) sinceH is an element of the second space. Now,
we have curlE, curlH ∈ H1(Ω,C3) by Maxwell’s equations. We can repeat
the argument and conclude E,H ∈ H2(Ω,C3). By induction we conclude
E,H ∈ Hm(Ω,C3).

Now we can prove the decomposition of the material derivative.

Theorem 3.6. Let ∂D be of class C2. In the setting of Theorem 3.4, we
have E′ = W − J>h E − JEh ∈ H(curl,Ω). E′ can be uniquely extended to the
radiating weak solution of Maxwell’s equations

curlE′ − ikH ′ = 0, curlH ′ + ik E′ = 0

in R3 \D with boundary condition

ν × E′ =
−−→
Curl∂D(hνEν)− ikhνγTH on ∂D. (3.1.7)

Proof. We define E′ = W − J>h E − JEh. Since the boundary ∂D is of class
C2, we have E,H in H1(Ω) with vanishing tangential trace of the electric field

by Lemma 3.5. By the Trace Theorem 2.4, we have E
∣∣
∂D
∈ H 1

2 (∂D,C3). The

normal vector field is in C1(∂D, S2) and therefore Eν = E · ν ∈ H 1
2 (∂D). By

Theorem 2.6 we have
−−→
Curl∂D(hνEν) ∈ H− 1

2 (Div, ∂D). Since H ∈ H1(Ω), we

have also γTH ∈ H−
1
2 (Div, ∂D). We conclude, that the boundary condition

is well defined for E′ ∈ H(curl,Ω). Since E ∈ H1(Ω,C3), we have E′ =
W − J>h E − JEh ∈ L2(Ω,C3). Some basic vector calculus shows

curl(J>h E + JEh) = curl
(
(JE − J>E )h+∇(h>E)

)
= curl(curlE × h) = div(h) curlE + JcurlE − Jh curlE. (3.1.8)

Note that H = 1
ik curlE ∈ H1(Ω,C3) and therefore curlE′ ∈ L2(Ω,C3). So

we conclude E′ ∈ H(curl,Ω). Since ν ×W = 0 on ∂D, we find

ν × E′ = −ν × (JEh+ J>h E) = −ν × (JEh− J>E h)− ν × (J>h E + J>E h)

= −ν × (curlE × h)− ν ×∇(h>E).
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3.1. Perfect conductor

Since ν × E = 0 and with ν ×∇ = ν ×Grad∂D = −
−−→
Curl∂D on ∂D we have

−ν ×∇(h>E) =
−−→
Curl(hνEν).

Furthermore, we have ν × (curlE×h) = ik
(
ν × (H ×h)

)
. Using a× (b× c) =

(a · c)b− (a · b)c and the decomposition of h and H into normal and tangential
component, we find

ν × (curlE × h) = ik(hνHτ +Hνhτ ).

From (2.2.6) with F = E we find Hν = 0 and therefore conclude the boundary
condition

ν × E′ =
−−→
Curl∂D(hνEν)− ikhνγTH. (3.1.9)

To see that E′, together with H ′ = 1
ik curlE′ is a radiating solution of

Maxwell’s equation, we start by noticing

A(F, V ) =

∫
Ω

(
curlF>curlV − k2F>V

)
dx− ik〈Λ(γtF ), γTV 〉∂BR(0)

=

∫
Ω

(curl2 F − k2F )>V dx− ik〈Λ(γtF )− γtG,V 〉∂BR(0) = 0,

for any pair of radiating solutions (F,G) of Maxwell’s equations and any
V ∈ Hpc(Ω), since Λ(γtF ) = γtG and ν × V = 0 on ∂D. Therefore, since we
already have shown the boundary condition (3.1.9), we only need to show

A(E′, V ) = A(W − J>h E − JEh, V ) = 0

for any V ∈ Hpc(Ω). Let V ∈ Hpc(Ω). Then

A(W,V )−A(J>h E + JEh, V )

=

∫
Ω

(
curlE>

(
div(h)I − Jh− J>h

)
curlV + k2E>

(
div(h)I − Jh− J>h

)
V
)

dx

−
∫

Ω

(
curl(J>h E + JEh)>curlV − k2(J>h E + JEh)>V

)
dx. (3.1.10)

Using again (3.1.8), we find

A(W,V )−A(J>h E + JEh, V )

= k2

∫
Ω

(
JEh+ div(h)E − JhE

)>
V dx

−
∫

Ω

(
JcurlEh+ J>h curlE

)>
curlV dx.
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3. Domain Derivatives

From divE = 0 in R3 \D, we conclude

curl(E × h) = div(h)E + JEh− JhE

and therefore

A(W,V )−A(J>h E + JEh, V )

= k2

∫
Ω

curl(E × h)>V dx−
∫

Ω

(
JcurlEh+ J>h curlE

)>
curlV dx.

With Maxwell’s equations we compute the identity

JcurlEh+ J>h curlE =
(
JcurlE − J>curlE

)
h+ J>curlEh+ J>h E

=
(

curl curlE
)
× h+∇(h> curlE) = k2

(
E × h

)
+∇(h> curlE).

Together with

div
(
(E × h)× V

)
= curl(E × h)>V − (E × h)curlV

we conclude

A(W,V )−A(J>h E + JEh, V )

= k2

∫
Ω

div
(
(E × h)× V

)
dx−

∫
Ω

∇(h> curlE)>curlV dx

=

∫
Ω

div
[
k2
(
E × h

)
× V − (h> curlE)curlV

]
dx.

Since h is compactly supported in BR(0), we have h ≡ 0 on ∂BR(0). We
apply the divergence theorem in Ω to the right hand side of the last equation
and get

A(W,V )−A(J>h E + JEh, V )

=

∫
∂D

(
(h> curlE)(ν>curlV )− k2

(
(E × h)× V

)>
ν
)

ds.

Note the sign change, since ν outwards drawn normal vector to D. The first
term vanishes, since

ν>curlV = Curl∂D V = Div∂D(V × ν) = 0,

see (2.2.6) and since V ∈ Hpc(Ω) has vanishing tangential trace on ∂D. For
the second term, we compute
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3.1. Perfect conductor

(
(E × h)× V

)
· ν = (E · V )(h · ν)− (V · h)(E · ν) = (h×E) · (ν × V ) = 0

and therefore conclude

A(E′, V ) = A(W,V )−A(J>h E + JEh, V ) = 0

for all V ∈ Hpc(Ω), which finishes the proof.

3.1.1. The second domain derivative

In this section, we present the characterization of the second domain deriva-
tive of the perfect conductor. Some difficulties arise, which can be treated
successfully in the same way as in the case of acoustic scattering, see [27]. We
will present the procedure. The first observation is the following: Considering
two small variations h1, h2 with compact support in BR(0), we arrive at the
perturbed boundary

(∂Dh2
)h1

= {y = ϕ1(ϕ2(x)) = x+ h2(x) + h1(x+ h2(x)) : x ∈ ∂D}.

This variation is not symmetric in h1 and h2, a property one expects from
a second derivative, see [17, Chapter VIII.12]. Let E′i[∂D] be the domain
derivative of the perfect conductor with respect to the variation hi, i = 1, 2
and the scatterer ∂D. Our goal is to find a radiating solution of Maxwell’s
equations E′′, depending continuously on h1 and h2, being symmetric with
respect to h1 and h2, satisfying

lim
‖h2‖→0

1

‖h2‖
sup
‖h1‖=1

∥∥E′
h1◦ϕ−1

2
[∂Dh2 ]− E′h1

[∂D]− E′′
∥∥ = 0.

Together with the Taylor expansion

h1 ◦ ϕ−1
2 = h1 − Jh1

h2 +O(‖h2‖2)

we arrive at the characterization

E′′ = (E′1)′2 − E′h (3.1.11)

with h = Jh1
h2. We dropped the dependency of the scatterer, since all terms

are with respect to ∂D. The first term on the right hand side of (3.1.11) is the
domain derivative with respect to the variation h2 of the domain derivative
with respect to the variation h1. This is the unknown function, which we
have to determine. The second term E′h is the previous calculated domain
derivative with respect to the variation h = Jh1

h2. In this section, we will
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3. Domain Derivatives

prove the existence of E′′ and provide a characterization, which highlights the
symmetry of E′′ with respect to h1 and h2.

Let Wi ∈ H(curl,Ω) denote the material derivative of the perfect conductor
∂D with respect to the variation hi, i = 1, 2. Recall the weak formulation

A(Wi, V ) =

∫
Ω

(
curlE>curlV − k2E>V

)
dx+ ik〈Λ(ν × E), V 〉|x|=R

=

∫
Ω

(
curlE>AicurlV + k2E>AiV

)
dx, (3.1.12)

where we used the abbreviation Ai for the symmetric matrix given by

Ai = div(hi)I − Jhi − J>hi .

As before we denote by W̃1 ∈ H(curl,Ωh2
) the solution of (3.1.12) with Ωh2

instead of Ω. We define

Ŵ1,h2
= J>ϕ2

W̃1 ∈ Hpc(Ω)

The function Ŵ1,h2 solves

∫
Ω

(
curl Ŵ>1,h2

(J>ϕ2
Jϕ2

det Jϕ2

)
curlV − k2Ŵ>1,h2

(
det(Jϕ2)J−1

ϕ2
J−>ϕ2

)
V

)
dx

+ ik〈Λ(ν × Ŵ1,h2), V 〉|x|=R

=

∫
Ω

(
curl Ê>h2

(J>ϕ2
Ã1Jϕ2

det Jϕ2

)
curlV + k2Êh2

(
det(Jϕ2)J−1

ϕ2
Ã1J

−>
ϕ2

)
V

)
dx.

(3.1.13)

Note that in contrast to the first domain derivative, we had to transform the
right hand side as well. Again, we have used the notation

Ã1(x) = A1(ϕ2(x)) = A1(x+ h2(x)).

We need the following lemma, which characterizes the linearizations of the
new matrices in the equation above.

Lemma 3.7. Let A ∈ C1(R3,R3×3) and ϕ(x) = x + h(x) with h ∈ C1

sufficiently small. Then we have

J>ϕ ÃJϕ

det Jϕ
= A+ J>h A+AJh − div(h)A+A′(h) +O(‖h‖2C1),
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3.1. Perfect conductor

det(Jϕ)J−1
ϕ ÃJ−>ϕ = A− JhA−AJ>h + div(h)A+A′(h) +O(‖h‖2C1),

where the matrix A′(h) ∈ C(R3,R3×3) is given by (A′(h))ij = h>∇Aij, i, j =
1, . . . , 3.

Proof. The linearization follows from combining the linearizations in Lemma
3.2 and the Taylor expansion

Aij(x+ h(x)) = Aij(x) + h>∇Aij(x) +O(‖h‖2C1)

for the coefficients of the matrix A.

With this Lemma, we can proof continuity of Ŵ1,h2 with respect to h2.

Theorem 3.8. Let W1 ∈ Hpc(Ω) be the solution of (3.1.12) and Ŵ1,h2
∈

Hpc(Ω) a solution of (3.1.13). Then we have

lim
‖h2‖C1→0

‖W1 − Ŵ1,h2
‖H(curl,Ω) = 0.

Proof. The proof is done very similar as in Theorem 3.3 with the additional
consideration of the linearization of the right hand side. Let `h1

(V ) denote
the right hand side of (3.1.12) with i = 1 and let `h2,h1

(V ) denote the right
hand side of (3.1.13). Recall the notation Ah2 for the sesquilinear form, such

that the left hand side of (3.1.13) is given by Ah2(Ŵ1,h2 , V ). Then we have

A(Ŵ1,h2
−W1, V ) = A(Ŵ1,h2

, V )−Ah2
(Ŵ1,h2

, V ) + `h1,h2
(V )− `h2

(V )

±
∫

Ω

(
curl Ê>h2

A1 curlV + k2Ê>h2
A1V

)
dx.

This leads to

A(Ŵ1,h2 −W1, V )

=

∫
Ω

(
curl Ŵ1,h2

(
I −

J>ϕ2
Jϕ2

det Jϕ2

)
curlV

− k2Ŵ>1,h2

(
I − det Jϕ2

J−1
ϕ2
J−>ϕ2

)
V

)
dx

+

∫
Ω

(
curl Ê>h2

(J>ϕ2
Ã1Jϕ2

det Jϕ2

−A1

)
curlV

+ k2Ê>h2

(
det Jϕ2J

−1
ϕ2
Ã1J

−>
ϕ2
−A1

)
V

)
dx
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3. Domain Derivatives

+

∫
Ω

(
curl(Ê>h2

− E)>A1curlV + k2(Êh2
− E)>A1V

)
dx.

By Lemma 3.7 and Theorem 3.3, we conclude

A(Ŵ1,h2
−W1, V )→ 0, h2 → 0 in C1.

By again a perturbation argument, we conclude

lim
‖h‖C1→0

‖Ŵ1,h2 −W1‖H(curl,Ω) = 0.

We prove differentiability of Ŵ1,h2 ∈ H(curl,Ω) with respect to h2 ∈ C1.

Theorem 3.9. Let W1 ∈ Hpc(Ω) be the solution of (3.1.12) and Ŵ1,h2 ∈
Hpc(Ω) of (3.1.13). Then there exists a function W ′1 ∈ Hpc(Ω), depending
linear and continuous on h2 ∈ C1, such that

lim
‖h2‖C1→0

1

‖h2‖C1

‖Ŵ1,h2
−W1 −W ′1‖H(curl,Ω) = 0.

Proof. By considering Lemma 3.7 and observing the differences occurring in
the proof of the previous theorem, we define W ′1 ∈ Hpc(Ω) as the solution of

A(W ′1, V ) =

∫
Ω

(
curlW>1 A2curlV + k2W>1 A2V

)
dx

+

∫
Ω

(
curlW>2 A1V + k2W>2 A1V

)
dx

+

∫
Ω

curlE>
(
J>h2

A1 +A1Jh2
− div(h2)A1 +A′1(h2)

)
curlV dx

+ k2

∫
Ω

E>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx.

We consider the difference A(Ŵ1,h2
−W1−W ′1, V ) and add some smart zeros.

This leads to

A(Ŵ1,h2
−W1 −W ′1, V )

= A(Ŵ1,h2
, V )−Ah2

(Ŵ1,h2
, V ) + `h1,h2

(V )−A(W1, V )−A(W ′1, V )

±
∫

Ω

(
Ŵ1,h2

A2curlV − k2Ŵ1,h2
A2V

)
dx
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3.1. Perfect conductor

±
∫

Ω

(
curl Ê>h2

A1curlV + k2Ê>h2
A1V

)
dx

±
∫

Ω

curl Ê>h2

(
J>h2

A1 +A1Jh2
− div(h2)A1 +A′1(h2)

)
dx

± k2

∫
Ω

Ê>h2

(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx.

We gather the terms, such that we can apply Cauchy-Schwarz, the lineariza-
tion Lemmata 3.2 and 3.7, and Theorem 3.3 by

A(Ŵ1,h2 −W1 −W ′1, V )

=

∫
Ω

curl Ŵ1,h2

(
I −

J>ϕ2
Jϕ2

det Jϕ2

−A2

)
curlV dx

− k2

∫
Ω

Ŵ>1,h2

(
I − det Jϕ2J

−1
ϕ2
J−>ϕ2

+A2

)
V dx

+

∫
Ω

(
curl(Ŵ1,h2

−W1)>A2curlV − k2(Ŵ1,h2
−W1)>A2V

)
dx

+

∫
Ω

curl Ê>h2

(J>ϕ2
Ã1Jϕ2

det Jϕ2

−A1 − J>h2
A1

−A1Jh2 + div(h2)I −A′1(h2)
)

curlV dx

+ k2

∫
Ω

Ê>h2

(
det(Jϕ2)J−1

ϕ2
Ã1J

−>
ϕ2
−A1

+ Jh2
A1 +A1J

>
h2
− div(h2)I −A′1(h2)

)
V dx

+

∫
Ω

(
curl

(
Êh2
− E −W2

)>
A1curlV + k2(Êh2

− E −W2)>A1V
)

dx

+

∫
Ω

curl
(
Êh2
− E

)>(
J>h2

A1 +A1Jh2
− div(h2)A1 +A′1(h2)

)
curlV dx

+ k2

∫
Ω

(
Êh2 − E

)>(− Jh2A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx.

This leads finally with some constant C > 0 to

A(Ŵ1,h2
−W1 −W ′1, V )

6 C
(
‖Ŵ1,h2

‖O(‖h2‖2C1) + ‖Ŵ1,h2
−W1‖O(‖h2‖C1)

+ ‖Êh2
‖O(‖h2‖2C1) + o(‖h2‖C1) + ‖Êh2

− E‖O(‖h2‖C1)
)
‖V ‖,
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3. Domain Derivatives

where the non specified norms are always the H(curl,Ω)-norm. Again by a
perturbation argument, we conclude

lim
‖h2‖C1→0

1

‖h2‖C1

‖Ŵ1,h2
−W1 −W ′1‖H(curl,Ω) = 0.

Note that W ′1 ∈ Hpc(Ω) is the material derivative with respect to h2 of the
material derivative with respect to h1 and contains by linearity the domain
derivative with respect to h2 of the domain derivative with respect to h1,
noted by (E′1)′2. Similar to the first domain derivative, we consider the formal

Taylor expansion of Ŵ1,h2 :

Ŵ1,h2
(x) = (I + J>h2

(x))W1,h2
(x+ h2(x))

= (I + J>h2
(x))W1(x+ h2(x), h2)

=
(
I + J>h2

(x)
)(
W1(x, 0) + JW1

(x)h2(x) +
d

dh2
W1(x) +O(‖h2‖2)

)
.

With W1 = E′1 + J>h1
E + JEh1 we have

d

dh2
W1 = (E′1)′2 + J>h1

E′2 + JE′2h1.

We have formally calculated

W ′1 =
d

dh2
Ŵ1,h2 .

This motivates the Ansatz

(E′1)′2 = W ′1 − J>h2
W1 − JW1h2 − J>h1

E′2 − JE′2h1,

which will be proven in the next theorem. Similar to the first domain deriva-
tive, this decomposition holds only, if we assume higher regularity of the
boundary.

Theorem 3.10. Let ∂D be regular. In the setting of Theorem 3.9, let

(E′1)′2 = W ′1 − J>h2
W1 − JW1

h2 − J>h1
E′2 − JE′2h1.

Then (E′1)′2 ∈ H(curl,Ω) is a radiating solution of Maxwell’s equations.
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3.1. Perfect conductor

Proof. Similar to the proof of the first domain derivative, we define (E1)′2 by
the right hand side of equation stated in the theorem, i.e.

(E′1)′2 = W ′1 − J>h2
W1 − JW1h2 − J>h1

E′2 − JE′2h1,

which defines by Lemma 3.5 a function in H(curl,Ω). Note, that the proof of
Lemma 3.5 shows, that a sufficiently smooth solution (E,H) to the scattering
problem implies also high regularity of the domain derivative E′ and therefore
also high regularity of the material derivative W .

To see, that this is a radiating solution of Maxwell’s equations, we will show
A
(
(E′1)′2, V

)
= 0 for all V ∈ H(curl,Ω). Since the material derivatives Wi,

i = 1, 2 do not satisfy Maxwell’s equations, we want to remove them from the
above expression. We have

Wi = E′i + J>hiE + JEhi = E′i +∇(h>i E) + curlE × hi.

From this, we can calculate the curl of the material derivative by

curlWi = curlE′i + curl
(

curlE × hi
)

= curlE′i + curlE div(hi) +
(
JcurlE − J>curlE

)
hi

+
(
J>curlEhi + J>hi curlE)−

(
Jhi + J>hi

)
curlE

= curlE′i +Ai curlE + k2(E × hi) +∇(h>i curlE).

In the proof for the first domain derivative, we have shown, that if F ∈
H1(Ω,C3) is a solution of Maxwell’s equations, i.e. divF = 0 and curl2 F −
k2F = 0, then we have for any V ∈ Hpc(Ω) and i = 1, 2∫

Ω

(
curlF>AiV + k2F>AiV

)
dx−A(J>hiF + JFhi, V ) = 0. (3.1.14)

Note, that we did not use the boundary condition of ν × E = 0 in the proof
but only ν × V = 0. Therefore, we can apply (3.1.14) with F = E′j and i 6= j,
i.e. we have∫

Ω

(
curlE′>j AiV + k2E′>j AiV

)
dx−A(J>hiE

′
j + JE′jhi, V ) = 0

for i, j = 1, 2, i 6= j. In order to eliminate W1 from the terms we subtracted
from (E′1)′2 in the definition, we consider

J>h2
W1 + JW1

h2 = J>h2
E′1 + JE′1h2 + J>h2

J>h1
E + J>h2

JEh1 + JJ>h1E+JEh1
h2.

The last two terms can be written as
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3. Domain Derivatives

J>h2
JEh1 + JJ>h1E+JEh1

h2

= ∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ curl

(
curlE × h1

)
× h2.

This leads to

J>h2
JEh1 + JJ>h1E+JEh1

h2

= ∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+
(
A1 curlE

)
× h2

+ k2(E × h1)× h2 +∇
(
h>1 curlE

)
× h2.

Now we consider

A
(
(E′1)′2, V

)
= A(W ′1, V )−A(J>h1

E′2 + JE′2h1 − J>h2
W1 − JW1

h2, V )

=

∫
Ω

(
curlW>1 A2curlV + k2W>1 A2V

)
dx

+

∫
Ω

(
curlW>2 A1curlV + k2W>2 A1V

)
dx

+

∫
Ω

curlE>
(
J>h2

A1 +A1Jh2
− div(h2)A1 +A′1(h2)

)
curlV dx

+ k2

∫
Ω

E>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx

−A(J>h1
E′2 + JE′2h1, V )−A(J>h2

E′1 + JE′1h2, V )

−A(J>h2
J>h1

E + J>h2
JEh1 + JJ>h1E+JEh1

h2, V ).

We use our previous calculations to get

A
(
(E′1)′2

)
, V )

=

∫
Ω

(
curlE′>1 A2curlV + k2E′>1 A2V

)
dx−A(Jh2

E′1 + JE′1h2, V )︸ ︷︷ ︸
=0

+

∫
Ω

(
curlE′>2 A1curlV + k2E′>2 A1V

)
dx−A(Jh1E

′
2 + JE′2h1, V )︸ ︷︷ ︸

=0

+

∫
Ω

(
A2 curlE + k2(E × h2) +∇(h>2 curlE)

)
A1curlV dx

+

∫
Ω

(
A1 curlE + k2(E × h1) +∇(h>1 curlE)

)
A2curlV dx
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3.1. Perfect conductor

+ k2

∫
Ω

(
curlE × h2 +∇(h>2 E)

)>
A1V dx

+ k2

∫
Ω

(
curlE × h1 +∇(h>1 E)

)>
A2V dx

+

∫
Ω

curlE>
(
J>h2

A1 +A1Jh2
− div(h2)A1 +A′1(h2)

)
curlV dx

+ k2

∫
Ω

E>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx

−
∫

Ω

curl
[
(A1 curlE)× h2 + k2(E × h1)× h2

+∇(h>1 curlE)× h2

]>
curlV dx

+ k2

∫
Ω

[
∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx.

Recall Ai = div(hi)I − Jhi − J>hi . Therefore, we have

A2A1 +A1A2 = 2 div(h2)A1 − Jh2
A1 − J>h2

A1 −A1Jh2
−A1J

>
h2
,

which leads to

A
(
(E′1)′2), V

)
= k2

∫
Ω

E>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)
V dx

+

∫
Ω

curlE>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)

curlV dx

+

∫
Ω

(
k2(E × h2) +∇(h>2 curlE)

)
A1curlV dx

+

∫
Ω

(
k2(E × h1) +∇(h>1 curlE)

)
A2curlV dx

+ k2

∫
Ω

(
curlE × h2 +∇(h>2 E)

)>
A1V dx

+ k2

∫
Ω

(
curlE × h1 +∇(h>1 E)

)>
A2V dx

−
∫

Ω

curl
[
(A1 curlE)× h2 + k2(E × h1)× h2

+∇(h>1 curlE)× h2

]>
curlV dx
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3. Domain Derivatives

+ k2

∫
Ω

[
∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx. (3.1.15)

For vector fields E, V, h and a symmetric matrix A we can show the following
identities by using elementary calculus:

div
(
(h>E)V

)
= (h>E) div(V ) + V >J>h E + V >J>E h,

div
(
(h>V )AE

)
= (h>V ) div(AE) + E>AJ>h V + E>AJ>V h,

div
(
(h>E)AV

)
= (h>E) div(AV ) + V >AJ>h E + V >AJ>E h,

div
(
(E>AV )h

)
= E>AV div(h) + h>J>EAV + E>A′(h)V + E>AJV h.

Together with the identity (JF − J>F )G = curlF × G for two vector fields F
and G, we have

curlE>
(
− Jh2

A1 −A1J
>
h2

+ div(h2)A1 +A′1(h2)
)

curlV

=− div
[
(h>2 curlE)A1curlV + (h>2 curlV )A1 curlE − (curlE>A1curlV )h2

]
+ (h>2 curlV ) div(A1E) + (h>2 curlE) div(A1curlV )

+ (A1 curlE)>(curl curlV × h2)− k2(E × h2)>A1curlV , (3.1.16)

since curl curlE = k2E. Similarly, we have

E>
(
− Jh2A1 −A1J

>
h2

+ div(h2)A1 +A′1(h2)
)
V

=− div
[
(h>2 E)A1V + (h>2 V )A1E + (E>A1V )h2

]
+ (h>2 V ) div(A1E)

+ (h>2 E) div(A1V )− (A1E)>(curlV × h2)− (curlE × h2)>A1V
(3.1.17)

and

div
(

(h>2 E)A1V
)

= (h>2 E) div(A1V +∇(h>2 E)>A1V , (3.1.18)

div
(

(h>2 curlE)A1curlV
)

= (h>2 curlE) div(A1curlV )

+∇(h>2 curlE)>A1curlV . (3.1.19)

Combining (3.1.16), (3.1.17), (3.1.18) and (3.1.19) and inserting the result
into (3.1.15) yields

A
(
(E′1)′2, V

)

58



3.1. Perfect conductor

=

∫
Ω

div
[
(curlE>A1curlV )h2 − (h>2 curlV A1 curlE)

]
dx

+

∫
Ω

(
(h>2 curlV ) div(A1 curlE)

− (A1 curlE)>(curl curlV × h2)
)

dx

+ k2

∫
Ω

div
[
(E>A1V )h2 − (h>2 V )A1E

]
dx

+ k2

∫ (
(h>2 V ) div(A1E)− (A1E)(curlV × h2)

)
dx

+

∫
Ω

(
k2(E × h1) +∇(h>1 curlE)

)>
A2curlV dx

+ k2

∫
Ω

(
curlE × h1 +∇(h>1 E)

)>
A2V dx

−
∫

Ω

curl
(

(A1 curlE)× h2 + k2(E × h1)× h2

+∇(h>1 curlE)× h2

)>
curlV dx

+ k2

∫
Ω

[
∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx.

By the Theorem of Gauß, we have∫
Ω

div
[
(curlE>A1curlV )h2 − (h>2 curlV )A1 curlE

]
dx

= −
∫
∂D

(
h2,ν(curlE>A1curlV )− (A1 curlE)ν(h>2 curlV )

)
ds,

since h1, h2 are compactly supported in Ω. On the other hand, using the
partial integration formula for the curl operator (2.2.2), we have∫

Ω

(
− (A1 curlE)>(curl curlV × h2)− curl

(
(A1 curlE)× h2

)>
curlV

)
=

∫
Ω

(
(A1 curlE × h2)>curl curlV − curl

(
(A1 curlE)× h2

)>
curlV

)
dx

=−
∫
∂D

(ν × curlV )>
(
(A1 curlE)× h2

)
ds.
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3. Domain Derivatives

Note that in both cases we have used the outwards directed normal vector ν
to ∂D, which points inwards Ω. In the boundary integral, we only need the
tangential component of (A1 curlE)× h2, which is given by

[(A1 curlE)× h2]τ = (A1 curlE)ν(ν × h2)−
(
ν × (A1 curlE)

)
h2,ν .

Since the tangential trace of V vanishes on ∂D, i.e. ν × V = 0, we have
(curlV )ν = −Div(ν × V ) = 0. Therefore we have

(ν × curlV )>
(
(A1 curlE)× h2

)
= (h>2 curlV )(A1 curlE)ν − h2,ν(curlE>A1curlV ).

We finally conclude∫
Ω

div
[
(curlE>A1curlV )h2 − (h>2 curlV )A1 curlE

]
dx

−
∫

Ω

(
(A1 curlE)>(curl curlV×h2)−curl

(
(A1 curlE)×h2

)>
curlV

)
dx = 0.

A second application of the Theorem of Gauß leads together with ν × E =
ν × V = 0, i.e E = Eνν, V = V νν on ∂D to∫

Ω

div
[
(E>A1V )h2 − (h>2 V )A1E

]
dx

= −
∫
∂D

(
(ν>A1ν)h2,νEνV ν − (ν>A1ν)h2,νEνV ν

)
ds = 0.

We have achieved

A
(
(E′1)′2, V

)
=

∫
Ω

(
(h>2 curlV ) div(A1 curlE) + k2(h>2 V ) div(A1E)

)
dx

− k2

∫
Ω

(
(A1E)>(curlV × h2)

)
dx

+ k2

∫
Ω

(
curlE × h1 +∇(h>1 E)

)>
A2V dx

+

∫
Ω

(
k2(E × h1) +∇(h>1 curlE)

)>
A2curlV dx

−
∫

Ω

curl
(
k2(E × h1)× h2 +∇(h>1 curlE)× h2

)>
curlV dx

+ k2

∫
Ω

[
∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ (A1 curlE)× h2
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3.1. Perfect conductor

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx.

We take a closer look at the term curl
(
(E × h1) × h2

)
. Similar calculations

as before lead to

curl
(
(E × h1)× h2

)
=A2(E × h1)− h2 div(E × h1) +∇

(
h>2 (E × h1)

)
+ curl(E × h1)× h2

=A2(E × h1)− h2 div(E × h1) +∇
(
h>2 (E × h1)

)
+ (A1E)× h2 +

(
∇(h>1 E)

)
× h2 + (curlE × h1)× h2.

This leads to

A
(
(E′1)′2, V

)
=

∫
Ω

(
(h>2 curlV ) div(A1 curlE) + k2(h>2 V ) div(A1E)

)
dx

+

∫
Ω

(
∇(h>1 curlE) + k2 curlE × h1 + k2∇(h>1 E)

)>
A2V dx

−
∫

Ω

curl
(
∇(h>1 curlE)× h2

)>
curlV dx

+ k2

∫
Ω

[
div(E × h1)h2 −∇

(
h>2 (E × h1)

)
−∇(h>1 E)× h2 − (curlE × h1)× h2

]>
curlV dx

+ k2

∫
Ω

[
∇
(
h>2
(
∇(h>1 E) + curlE × h1

))
+ (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx.

Again with the Theorem of Gauß, we have∫
Ω

∇
(
h>2 (E × h1)

)>
curlV dx = −

∫
Ω

div
[
∇
(
h>2 (E × h1))× V

]
dx

=

∫
∂D

ν>
(
∇
(
h>2 (E × h1)

)
× V

)
ds =

∫
∂D

∇
(
h>2 (E × h1)

)>
(ν × V ) ds = 0.

and similarly ∫
Ω

∇
(
h>2 ∇(h>1 curlE)

)>
curlV dx = 0.

The last term occurs by considering

curl
(
∇(h>1 curlE)× h2)
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3. Domain Derivatives

= A2∇(h>1 curlE)− h2∆(h>1 curlE) +∇
(
h>2 ∇(h>1 curlE)

)
.

This leads to

A
(
(E′1)′2, V

)
=

∫
Ω

(h>2 curlV )
(

div(A1 curlE) + ∆(h>1 curlE)
)

dx

+ k2

∫
Ω

(h>2 V )
(

div(A1E) + ∆(h>1 E)
)

dx+ k2

∫
Ω

(
curlE × h1

)>
A2V dx

+ k2

∫
Ω

[
∇
(
h>2 (curlE × h1)

)
+ (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2

]>
V dx

+ k2

∫
Ω

(
div(E × h1)h2 − (curlE × h1)× h2

)>
curlV dx.

We apply again the partial integration formula (2.2.2) in the following way∫
Ω

(
(curlE × h1)× h2

)>
curlV dx =

∫
Ω

(
(curlE × h1)× h2

)>
V dx.

The term on the right hand side can be calculated by

curl
(
(curlE × h1)× h2

)
=A2(curlE × h1)− div(curlE × h1)h2 + (A1 curlE)× h2

+ k2(E × h1)× h2 +∇(h>1 curlE)× h2 +∇
(
h>2 (curlE × h1)

)
,

which leads to

A
(
(E′1)′2, V

)
= k2

∫
Ω

(h>2 V )
(

div(A1E) + ∆(h>1 E) + div(curlE × h1)
)

dx

+

∫
Ω

(h>1 curlV )
(

div(A1 curlE) + ∆(h>1 curlE) + k2 div(E × h1)
)

dx.

Since divE = 0 and curl curlE = k2E we have with some basic vector calculus
the identities

0 = div
(

curl(E × h1)
)

= div(A1E) + ∆(h>1 E) + div(curlE × h1),

0 = div
(

curl(curlE × h1)
)

= div(A1 curlE)∆(h>1 curlE) + k2 div(E × h1).

With these identities, we finally conclude

A
(
(E′1)′2, V

)
= A(W ′1 − J>h1

E′2 − JE′2h1 + J>h2
W1 + JW1

h2, V ) = 0

for all V ∈ Hpc(Ω), i.e. (E′1)′2 is a radiating solution to Maxwell’s equations.
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3.1. Perfect conductor

The domain derivative (E′1)′2 ∈ H(curl,Ω) with respect to the perturbation
h2 of the material derivative E′1 with respect to the perturbation h1 is, as a
solution to the scattering problem, fully determined by its trace ν × (E′1)′2 on
∂D. Since W1 ∈ Hpc(Ω), we have

ν × (E′1)′2 = ν ×
[
− J>h1

E′2 − JE′2h1 − J>h2
W1 − JW1h2

]
.

With these boundary values, we can calculate the boundary values of the sec-
ond domain derivative. Our goal is to find a characterization, which shows the
symmetry of the second domain derivative with respect to the perturbations
h1 and h2. In order to formulate the characterization, we need to define the
curvature operator R and the (mean) curvature κ. For more details, see [40,
Section 2.5.6]. Let Γ be a smooth surface of a bounded and simply connected
domain Ω. Then there is an open neighborhood U of Γ, such that for every
x ∈ U there is exactly one x̂ ∈ Γ which satisfies

|x̂− x| = min
u∈Γ
|u− x|.

This allows us to extend ν : Γ → S2 to U by setting ν(x) = ν(x̂). Note that
ν(x) = ν(x+ sν) for x ∈ Γ and s sufficiently small. Furthermore, we have for
any x ∈ U with x /∈ Γ

ν(x) = ±∇|x− x̂|,
where the sign depends on whether x lies in Ω or in R3 \ Ω. This implies
curl ν = 0. Now, we can define the curvature operator R : Γ → R3×3 by
R(x) = Jν(x), x ∈ Γ. We state the most important properties in the following
lemma.

Lemma 3.11. Let Γ be a smooth surface. The curvature operator R is sym-
metric and is acting only on the tangential plane, i.e.

R(x)ν(x) = 0, x ∈ Γ.

Proof. Let v ∈ R3. Then symmetry of R follows from

Rh = Jνh = (Jν − J>ν )h+ J>ν h = curl ν︸ ︷︷ ︸
=0

×h+ J>ν h = R>h.

For x ∈ Γ, we have
1 = |ν(x)|

and therefore

0 = ∇(|ν(x)|2) = ∇(ν(x) · ν(x)) = 2J>ν (x)ν(x) = 2R(x)ν(x),

since R is symmetric.
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3. Domain Derivatives

We define the mean curvature κ : Γ→ R by

κ =
1

2
div(ν). (3.1.20)

Note that the definition of the mean curvature in [20, 23, 24] has a different
sign. We have chosen the plus sign to be consistent with [25, 27, 40].

Theorem 3.12. Let ∂D be regular. The second domain derivative E′′ is a
radiating solution to Maxwell’s equations, satisfying the boundary condition

ν × E′′ =− ν ×
[

Grad
(
h>1 E

′
2 + h>2 E

′
1

)
+ curlE′2 × h1 + curlE′1 × h2

]
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,νh2,ν

∂Eν
∂ν

]
+ ik h1,νh2,ν

(
R− 2κ− ∂

∂ν

)
Hτ

+ h1,ν
−−→
Curl∂D

[
h>2,τ

∂Eτ
∂ν

]
+ h2,ν

−−→
Curl∂D

[
h>1,τ

∂Eτ
∂ν

]
+
(
h>1,τ Grad∂D Eν

)−−→
Curl∂Dh2,ν +

(
h>2,τ Grad∂D Eν

)−−→
Curl∂Dh1,ν

on ∂D.

Proof. Recall the characterization of the trace of the second domain derivative
(3.1.11), which reads as

ν × E′′ = ν × (E′1)′2 − ν × E′h,

where h = Jh1h2. From Theorem 3.6, we know

ν × E′h =
−−→
Curl∂D

((
ν>Jh1h2

)
Eν

)
− ik

(
ν>Jh1h2

)
Hτ .

It is

ν>Jh1
h2 = (ν>Jh1

ν)h2,ν + ν>Jh1
h2,τ

= h2,ν ν
>(∇h1,ν − J>ν h1

)
+ h>2,τ

(
J>h1

ν + J>ν h1 − Jnu>h1

)
= h2,ν

∂h1,ν

∂ν
− h2,νh

>
1 Jνν︸︷︷︸

=Rν=0

+h>2τ Grad∂D h1,ν − h>2,τRh1,τ .

We have therefore

ν × E′h = −ik
(
h2,ν

∂h1,ν

∂ν
+ h>2,τ Grad∂D h1,ν

)
Hτ + ik

(
h2,τRh1,τ

)
Hτ
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3.1. Perfect conductor

+
−−→
Curl∂D

[
Eν
(
h2,ν

∂h1,ν

∂ν
+ h>2,τ Grad∂D h1,ν

)]
−
−−→
Curl∂D

[(
h2,τRh1,τ

)
Eν

]
.

As seen before, we have

ν × (E′1)′2 = ν ×
[
− J>h1

E′2 − JE′2h1 − J>h2
W1 − JW1

h2

]
.

We use Wi = E′i + J>hiE + JEhi for i = 1, 2 to find

ν × (E′1)′2 = −ν ×
[

Grad∂D
(
h>1 E

′
2 + h>2 E

′
1

)
+ curlE′2 × h1 + curlE′1 × h2

]
− ν ×

[
Grad∂D

(
h>2
(
∇(h>1 E) + curlE × h1

))
+ curl(curlE × h1)× h2

]
.

We have identified some terms, which are not symmetric in h1 and h2. We
take a closer look at these. We have, as seen before,

curl(curlE×h1)×h2 = (A1 curlE)×h2 +k2(E×h1)×h2 +∇(h>1 curlE)×h2.

Since ν × E = 0 on ∂D, we have

− ν ×Grad∂D
(
h>2 ∇(h>1 E)

)
=
−−→
Curl∂D

(
h>2,τ Grad∂D(h>1 E) + h2,ν

∂h>1 E

∂ν

)
= Grad∂D

(
h>2,τ Grad∂D(h1,νEν) + h2,ν

∂(h1,νEν + h>1,τEτ )

∂ν

)
and therefore

− ν ×Grad∂D
(
h>2 ∇(h>1 E)

)
=
−−→
Curl∂D

(
Eνh

>
2,τ Grad∂D h1,ν

+ h1,νh
>
2,τ Grad∂D Eν + h1,ν h2,ν

∂Eν
∂ν

+ h2,ν Eν
∂h1,ν

∂ν
+ h2,νh

>
1,τ

∂Eτ
∂ν

)
.

Next, we consider

ν ×
(
(E × h1)× h2

)
= Eν h2,ν(ν × h1)

as well as

ν ×
(

Grad∂D(h>1 curlE)× h2

)
= ik h2,ν Grad∂D(h>1,τHτ )− ik

∂h>1,τHτ

∂ν
h2,τ

and since 0 = (curlE)ν , i.e. curlE = ikHτ we have

ν ×
(
(A1 curlE)× h2

)
= ik h2,νA1Hτ − ik(ν>A1Hτ )h2,τ
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3. Domain Derivatives

and finally

ν ×Grad∂D
(
h>2 (curlE × h1)

)
=
−−→
Curl∂D

(
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

)
.

We plug these identities into (3.1.11) to get

ν × E′′ =
−−→
Curl∂D

(
h>1 E

′
2 + h>2 E

′
1

)
− ν ×

(
curlE′2 × h1 + curlE′1 × h2

)
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,ν h2,ν

∂Eν
∂ν

]
+
−−→
Curl∂D

[
h1,ν h

>
2,τ GradEν + h2,ν h

>
1,τ

∂Eτ
∂ν

]
−
−−→
Curl∂D

[
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

]
− ik

(
h2,ν A1Hτ − (ν>A1Hτ )h2,τ

)
− k2Eν h2,ν(ν × h1)

− ikh2,ν Grad∂D(h1,τHτ )

+ ikh2,τ

∂h>1,τHτ

∂ν
+ ik

(
h2,ν

∂h1,ν

∂ν
+ h>2,τ Grad∂D h1,ν

)
Hτ .

Note, that the first two lines are already as stated in the theorem. For any
vector field F , we have

∂Fτ
∂ν

= curlF × ν + Grad∂D Fν −RFτ ,

see equation (5.4.50) in [40]. Recall A1 = div(h1)I −Jh1
−J>h1

. Therefore, we
have

ν>A1Hτ = −H>τ
(
Jh1

+ J>h1

)
ν = −H>τ Grad∂D h1,ν −H>τ Rh1,τ −H>τ

∂h1

∂ν
.

We have
∂h1

∂ν
− ∂h1,τ

∂ν
=
∂h1,νν

∂ν
= h1,ν

∂ν

∂ν︸︷︷︸
=Rν=0

+ν
∂h1,ν

∂ν
,

and therefore (
ν>A1Hτ ) +

∂h>1,τHτ

∂ν
= −H>τ Grad∂D h1,ν .

Additionally, using div(H) = 0 and Hν = 0, we have

A1H
∣∣
τ

= curl(H × h1)
∣∣
τ
−Grad∂D(h>1,τHτ )− ik Eν(ν × h1).
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3.1. Perfect conductor

This leads to

ν × E′′ =
−−→
Curl∂D

(
h>1 E

′
2 + h>2 E

′
1

)
− ν ×

(
curlE′2 × h1 + curlE′1 × h2

)
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,ν h2,ν

∂Eν
∂ν

]
+
−−→
Curl∂D

[
h1,ν h

>
2,τ Grad∂D Eν + h2,ν h

>
1,τ

∂Eτ
∂ν

]
−
−−→
Curl∂D

[
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

]
− ik h2,ν curl(H × h1)

+ ik
(
h2,ν

∂h1,ν

∂ν
Hτ + Grad∂D(h1,ν)× (Hτ × h2,τ )

)
.

For a vector field F , the tangential part of the curl operator is given by

curlF
∣∣
τ

=
−−→
Curl∂DFν +

(
R− 2κ− ∂

∂ν

)
(F × ν),

see [40, Theorem 2.5.20]. We want to apply this identity for F = H×h1. It is
(H×h1)×ν = Hνh1−h1,νHτ = −h1,νHτ and (H×h1)ν = 1

ik curlE>(h1×ν).
Therefore, we have

ikh2,ν curl(H × h1)
∣∣
τ

= h2,ν
−−→
Curl∂D

(
curlE>(h1 × ν)

)
− ikh1,ν h2,ν

(
R− 2κ

)
Hτ + ikh1,νh2,ν

∂Hτ

∂ν
+ ikh2,ν

∂h1,ν

∂ν
Hτ .

We arrive at

ν × E′′ =
−−→
Curl∂D

(
h>1 E

′
2 + h>2 E

′
1

)
− ν ×

(
curlE′2 × h1 + curlE′1 × h2

)
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,ν h2,ν

∂Eν
∂ν

]
+ ikh1,ν h2,ν

(
R− 2κ− ∂

∂ν

)
Hτ

+
−−→
Curl∂D

[
h1,ν h

>
2,τ Grad∂D Eν + h2,ν h

>
1,τ

∂Eτ
∂ν

]
−
−−→
Curl∂D

[
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

]
− h2,ν

−−→
Curl∂D

(
curlE>(h1 × ν)

)
+ ik

(
Grad∂D(h1,ν)× (Hτ × h2,τ )

)
.

67



3. Domain Derivatives

Since Eτ = ν × (E × ν) = 0 on ∂D, we have

ν × E′′ =
−−→
Curl∂D

(
h>1 E

′
2 + h>2 E

′
1

)
− ν ×

(
curlE′2 × h1 + curlE′1 × h2

)
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,ν h2,ν

∂Eν
∂ν

]
+ ikh1,ν h2,ν

(
R− 2κ− ∂

∂ν

)
Hτ

+
−−→
Curl∂D

[
h1,ν h

>
2,τ

∂Eτ
∂ν

+ h2,ν h
>
1,τ

∂Eτ
∂ν

]
−
−−→
Curl∂D

[
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

]
− curlE>(ν × h1)

−−→
Curl∂D(h2,ν)

+ ik
(

Grad∂D(h1,ν)× (Hτ × h2,τ )
)
.

With

ikGrad∂D(h1,ν)× (Hτ × h2,τ ) = − curlE>(ν × h2)
−−→
Curl∂D(h1,ν),

we finally arrive at a symmetric characterization, i.e.

ν × E′′ =
−−→
Curl∂D

(
h>1 E

′
2 + h>2 E

′
1

)
− ν ×

(
curlE′2 × h1 + curlE′1 × h2

)
− ik

(
h>2,τRh1,τ

)
Hτ +

−−→
Curl∂D

[(
h>2,τRh1,τ

)
Eν + h1,ν h2,ν

∂Eν
∂ν

]
+ ikh1,ν h2,ν

(
R− 2κ− ∂

∂ν

)
Hτ

+
−−→
Curl∂D

[
h1,ν h

>
2,τ

∂Eτ
∂ν

+ h2,ν h
>
1,τ

∂Eτ
∂ν

]
−
−−→
Curl∂D

[
h2,ν curlE>(ν × h1)− h1,ν(ν × h2)> curlE

]
− curlE>(ν × h1)

−−→
Curl∂D(h2,ν)− curlE>(ν × h2)

−−→
Curl∂D(h1,ν).

Considering again only the tangential part of curlE and using ν ×E = 0, we
arrive at the in the theorem stated equation.

We do not claim this characterization to be the most elegant or the shortest
characterization of E′′. Our goal was to present a characterization of the sec-
ond domain derivative as a scattering problem with inhomogeneous boundary
condition, where the boundary condition depends on the solution (E,H) and
is symmetric with respect to the perturbations h1 and h2.
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3.2. Penetrable obstacles

3.2. Penetrable obstacles

The existence and characterization of the domain derivative for the scat-
tering from penetrable obstacles using the weak formulation Ansatz has been
shown in [26]. For completeness and since we will use the domain derivative in
Section 4 and talk about numerical implementation in Section 6.3, we present
the final result. The differences in the formulation are due to a different rescal-
ing of Maxwell’s equations. To keep the formulas short, we further assume
σD = 0. Since we have to consider traces on ∂D from inside and outside of
D, we denote with γ+

T , γ
+
t the traces defined on H(curl, BR(0) \D) and with

γ−T , γ
−
t the traces defined on H(curl, D).

Theorem 3.13. Let ∂D be of class C1. The domain derivative (E′, H ′) of the
scattering problem (2.1.5a) - (2.1.5e) is given by the radiating weak solution
of

curlE′ = iκH ′, curlH ′ = −iκE′ in D, (3.2.1)

curlE′ = ikH ′, curlH ′ = −ik E′ in R3 \D, (3.2.2)

with transmission conditions

1
√
ε0
ν × E′

∣∣
+
− 1
√
εD

ν × E′
∣∣
− =

1
√
ε0

(−−→
Curl∂D(hνEν

∣∣
+

)− ikhνγ
+
TH

)
− 1
√
εD

(−−→
Curl∂D(hνEν

∣∣
−)− iκγ−T H

)
(3.2.3)

and

1
√
µ0
ν ×H ′

∣∣
+
− 1
√
µD

ν ×H ′
∣∣
− =

1
√
µ0

(−−→
Curl∂D(hνHν |+) + ikhνγ

+
T E
)

− 1
√
µD

(−−→
Curl∂D(hνHν |−) + iκhνγ

−
T E
)

(3.2.4)

3.3. Chiral media

In this section, we present the domain derivative for the scattering from
chiral media, which is an extension of the result in [26]. Since the scattering
problem is solvable for C2 boundaries, we will always assume ∂D to be of
class C2. Let again E denote the weak solution of the scattering problem
from chiral media, i.e.

C(E, V ) = `(V )
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3. Domain Derivatives

for all V ∈ H(curl, BR(0)). Let Eh ∈ H(curl, BR(0)) denote the weak solution
of the scattering from chiral media with respect to the by h ∈ C2

0 (BR(0),R3)
perturbed scatterer Dh, i.e.∫

BR(0)

( 1

µr,h
− k2β2

r,hεr,h

)
curlE>h curlV dx

−k2

∫
BR(0)

εr,hβ
2
r,h(E>h curlV + curlE>h V ) dx

−k2

∫
BR(0)

εr,hE
>V dx− ik〈Λ(γtE), γTV 〉∂BR(0) = `(V ),

where µr,h, εr,h and βr,h denote the piecewise constant functions with respect
to the perturbed scatterer Dh, e.g. βr,h = 0 outside of Dh and βr,h = β inside
of Dh. In contrast to the scattering from a perfect conductor, the function Eh
does lie in the same function spaces as E, but the weak formulation depends
implicitly on Dh, e.g. the integrals containing βr,h are effectively integrals
over Dh. We again apply the transformation (3.1.2), i.e.

Êh = J>ϕ Ẽh

and use change of variables x 7→ ϕ(x) = x+h(x). This leads to the perturbed
weak formulation

Ch(Êh, V ) = `(V ) (3.3.1)

for all V ∈ H(curl, BR(0)) with the bounded sesquilinear form

Ch : H(curl, BR(0))×H(curl, BR(0))→ C,

defined by

Ch(E, V ) =

∫
BR(0)

( 1

µ̃r,h
− k2β̃2

r,hε̃r,h

)
curlE>

J>ϕ Jϕ

det(Jϕ)
curlV dx

− k2

∫
BR(0)

ε̃r,hE
> det(Jϕ)J−1

ϕ J−>ϕ V dx

− k2

∫
BR(0)

β̃r,hε̃r,h
(

curlE>V + E>curlV
)

dx− ik〈Λ(γtE), γTV 〉∂BR(0).

Note, that in the mixed products curlE>V and by symmetry E>curlV , the
Jacobians or its inverse of ϕ and the determinant det(ϕ) of the change of
variables cancel due to (3.1.3). We chose the notation εr,h, µr,h and βr,h,
since one can extend the following results to inhomogeneous media, where

70



3.3. Chiral media

these coefficients are assumed to be constant outside of D and for example
differentiable and real-valued in D, see e.g. [39, Section 4.2]. Then, one can
prove the following theorem in the same way, but has to consider the Taylor
expansions

β̃r,h(x) = βr(x) +∇β(x) · h(x) +O(‖h‖2C1). (3.3.2)

for all occurring coefficients. Since this only adds additional terms to our
calculations and yields no further insight, we restrict ourselves to the case of
piecewise constant coefficients µr, εr and but βr|D ∈ C1(D). Analogously to
the perfect conductor, we can prove the following theorem.

Theorem 3.14. Let E ∈ H(curl, BR(0)) be the solution of (2.4.12) and Êh ∈
H(curl, BR(0)) a solution of (3.3.1). Then we have

lim
‖h‖C1→0

‖E − Êh‖H(curl,BR(0) = 0.

Proof. The proof is similar to the proof of Theorem 3.3. We again define
bounded linear operators C,Ch : H(curl, BR(0)) → H(curl, BR(0)) by the
Riesz representation theorem, such that

〈CE, V 〉H(curl,BR(0)) = C(E, V ), 〈ChE, V 〉H(curl,BR(0)) = Ch(E, V )

for all E, V ∈ H(curl, BR(0)) and L ∈ H(curl, BR(0)) such that `(V ) =
〈L, V 〉H(curl,BR(0)). This leads to

‖(Ch − C)E‖2H(curl,BR(0)) = Ch(E, (Ch − C)E)− C(E, (Ch − C)E)

=

∫
BR(0)

curlE>
(
α̃r

J>ϕ Jϕ

det Jϕ
− αrI

)
curl(Ch − C)E dx

− k2

∫
BR(0)

E>
(
J−1
ϕ J−>ϕ det(Jϕ)ε̃r,h − εI

)
(Ch − C)E dx

− k2

∫
BR(0)

(
(ε̃r,hβ̃r,h − εrβr)

(
E>curl(Ch − C)E + curlE>(Ch − C)E

))
dx

with α̃r = 1
µ̃r,h
− k2ε̃r,hβ̃2

r,h and αr = 1
µr
− k2εrβ

2
r,h. Considering the lin-

earizations of the matrices in these integrals in the same way as in the proof
of Theorem 3.3 together with the Taylor expansions of the form (3.3.2), we
conclude

ε̃r,hβ̃r,h − εrβr = εr∇β>h+O(‖h‖2C1) = O(‖h‖C1)

and analogously

α̃r
J>ϕ Jϕ

det Jϕ
− αrI = O(‖h‖C1(R3,R3)
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3. Domain Derivatives

as well as

J−1
ϕ J−>ϕ det(Jϕ)ε̃r,h − εrI = O(‖h‖C1(R3,R3).

With the same arguments as in the proof of Theorem 3.3, we conclude

‖Êh − E‖H(curl,BR(0)) → 0, h→ 0 in C1,

which finishes the proof.

We continue by proving the existence of the material derivative.

Theorem 3.15. Let ∂D be of class C2. Let E ∈ H(curl, BR(0)) be the

solution of (2.4.12) and Êh ∈ H(curl, BR(0)) of (3.3.1). Then there exists a
function W ∈ H(curl, BR(0)), depending linearly and continuously on h ∈ C1,
such that

lim
‖h‖C1→0

1

‖h‖C1

‖Êh − E −W‖H(curl,BR(0)) = 0.

Proof. Again, the motivation of the material derivative W ∈ H(curl, BR(0))
comes from considering the difference

C(Êh − E, V ) = C(Êh, V )− `(V ) = C(Êh, V )− Ch(Êh, V )

for any V ∈ H(curl, BR(0)). We define W ∈ H(curl, BR(0)) for a given
perturbation h ∈ C1 as the solution of

C(W,V ) =

∫
BR(0)

curlE>
( 1

µr
− k2εrβ

2
r

)(
div(h)I − Jh − J>h

)
curlV dx

+

∫
BR(0)

2k2βrεr(∇β>r h) curlE>curlV dx

+ k2

∫
BR(0)

εrE
>
(

div(h)I − Jh − J>h
)
V dx

+ k2

∫
BR(0)

εr(∇β>r h)(curlE>V + E>curlV dx

for all V ∈ H(curl, BR(0)). Note the additional terms in comparison with the

perfect conductor due to the Taylor expansion of β̃r,h and β̃2
r,h. Similarly to

Theorem 3.4, we continue by considering the difference

C(Êh − E −W,V ) = C(Êh, V )− `(V )− C(W,V )

= C(Êh, V )− Ch(Êh, V )− C(W,V ),
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3.3. Chiral media

which by adding a smart zero leads to

C(Êh − E −W,V )

=

∫
BR(0)

curl Êh
>[( 1

µr
− k2β2

rεr

)(
I − div(h)I + Jh + J>h

)
− 2k2εrβr(∇β>h)I −

( 1

µ̃r,h
− k2ε̃r,hβ̃2

r,h

) J>ϕ Jϕ
det Jϕ

]
curlV dx

− k2

∫
BR(0)

Êh
(
εr(I + div(h)I − Jh − J>h )− ε̃r,hJ−1

ϕ J−>ϕ det Jϕ
)
V dx

− k2

∫
BR(0)

(
βrεr + εr(∇β>h)− ε̃r,hβ̃r,h

)(
curl Êh

>
V + Êh

>
curlV

)
dx

+

∫
BR(0)

curl(Êh − E)>
[( 1

µr
− k2εrβ

2
r

)(
div(h)I − Jh − J>h )

+ 2k2εrβr(∇β>h)
)]

curlV dx

+ k2

∫
BR(0)

(Êh − E)>
(
εr(div(h)I − Jh − J>h )

)
V dx

+ k2

∫
BR(0)

(εr∇β>h)
(
(Êh − E)>curlV + curl(Êh − E)>V

)
dx.

Using the linearizations from Lemma 3.2 and the Taylor expansion of β̃r to-
gether with Cauchy-Schwarz leads to

C(Êh − E −W,V ) 6 C
[
‖Êh‖H(curl,BR(0))O(‖h‖2C1)

+ ‖Êh − E‖H(curl,BR(0))O(‖h‖C1)
]
‖V ‖H(curl,BR(0))

for some constant C > 0. With the previous theorem, we conclude

1

‖h‖C1

‖Êh − E −W‖H(curl,BR(0)) → 0

for h→ 0 in C1, which finishes the proof.

The function W ∈ H(curl, BR(0)) is again called material derivative of
E with respect to the perturbation h. We can again extract the domain
derivative E′, as the following theorem shows.

Theorem 3.16. Let ∂D be of class C2. In the setting of Theorem 3.15, we
define E′ = W − J>h E − JEh. Then E′|D ∈ H(curl, D) and E′|BR(0)\D ∈
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3. Domain Derivatives

H(curl, BR(0) \D can be uniquely extended to the radiating weak solution of
the scattering problem from chiral media, i.e.

curlE′ = ikµr(H
′+βr curlH ′), curlH ′ = −ikεr(E

′+βr curlE′) in R3\∂D

where H ′ is defined by a combination of these equations. E′ and H ′ satisfy
the transmission boundary conditions

[ν × E′]± =
[−−→
Curl∂D(hνEν)− hν(ν × (curlE × ν))

]
±

[ν ×H ′]± =
[−−→
Curl∂D(hνHν) + hν(ν × (curlH × ν))

]
±.

Proof. The proof is similar to the proof of Theorem 3.6 and an extension of
[26, Theorem 4.1]. First, the regularity of ∂D yields classic smooth solutions
E|D, H|D ∈ C1(D,C3) ∩ C(D,C3) and E|BR(0)\D, H|BR(0)\D ∈ C1(BR(0) \
D,C3)∩C(BR(0)\D), see [5, Theorem 3]. Therefore E′ = W −J>h E−JEh ∈
L2(BR(0)) is well defined. By considering again

curl
(
J>h E + JEh) = div(h) curlE + JcurlE − Jh curlE

we conclude E′|D ∈ H(curl, D) and E′|BR(0)\D ∈ H(curl, BR(0)\D), since by

combining the Maxwell system in chiral media (2.4.9a), we have

(1− k2µrεrβ
2
r ) curlE = ikµrH + k2µrεrβrE

and therefore differentiability of curlE inside of D and in BR(0)\D. Similarly
to the characterization of the domain derivative for the scattering from a
perfect conductor, we consider the difference

C(E′, V ) = C(W,V )− C(J>h E + JEh, V )

=

∫
BR(0)

curlE>
(
αr(div(h)I − Jh − J>h ) + 2k2εrβr(∇β>r h)I

)
curlV dx

+ k2

∫
BR(0)

εrE
>(div(h)I − Jh − J>h )V dx

+ k2

∫
BR(0)

εr(∇β>r h)(curlE>V + E>curlV dx

−
∫
BR(0)

αr curl(J>h E + JEh)>curlV + k2

∫
BR(0)

εr(J
>
h E + JEh)>V dx

+ k2

∫
BR(0)

εrβr
(

curl(J>h E + JEh)>V + (J>h E + JEh)>curlV dx,

(3.3.3)
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3.3. Chiral media

where again αr = 1
µr
− k2β2

rεr. Note the vanishing boundary integrals on

∂BR(0) of the second term, due to the compact support of h in BR(0). We
are going to summarize these terms. In order to keep track of all terms, we
introduce the notation

C(E′, V ) =:

∫
BR(0)

(
T>1 curlV + T>2 V

)
dx, (3.3.4)

where the terms T1 and T2 are implicitly defined such that equations (3.3.3)
and (3.3.4) are the same. We start by simplifying the integrals containing T2.
We are using

curl(J>h E + JEh) = curl(curlE × h) and ∇(h>E) = J>h E + J>E h, (3.3.5)

which yields∫
BR(0)

V
>
T2 dx = k2

∫
BR(0)

εrV
>[

(div(h)I − Jh − J>h )E

+ (∇β>r h) curlE +∇(h>E) + (JE − J>E )h+ βr curl(curlE × h)
]

dx.

We further use

(JE − J>E )h = curlE × h

and

curl(E × h) = div(h)E − div(E)h+ JEh− JhE

to get∫
BR(0)

V
>
T2 dx = k2

∫
BR(0)

εrV
>[

curl(E × h) + div(E)h− JEh− J>h E

+ (∇β>r h) curlE +∇(h>E) + curlE × h+ βr curl(curlE × h)
]

dx.

Using again

−JEh− J>h E = −∇(h>E)− curlE × h

we arrive at∫
BR(0)

V
>
T2 dx = k2

∫
BR(0)

εrV
>(

curl(E × h) + div(E)h

+ (∇β>r h) curlE + βr curl(curlE × h)
)

dx.
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3. Domain Derivatives

Considering the formula

curl(A×B) = Adiv(B)− div(A)B + JAB − JBA (3.3.6)

for vector fields A and B together with the product rule for the Jacobian of
the product of some scalar function αr and a vector field B

JαrA = αrJA +AJαr = αrJA +A∇α>r ,

we find

curl(β curlE × h) = β curl(curlE × h)− (curlE>∇βr)h+ (curlE∇β>r )h.

Note (∇β>r h) curlE = (curlE∇β>r )h. From Maxwell’s equations in chiral
media, we see

div(E) = −∇β>r curlE.

This leads finally to∫
BR(0)

V
>
T2 dx = k2

∫
BR(0)

εr curl
(
(E + β curlE)× h

)>
V dx.

Now, we consider the integral∫
BR(0)

curlV
>
T1 dx

=

∫
BR(0)

curlV
>[
αr
(

div(h)I − Jh − J>h
)

curlE

+ 2k2εrβr(∇β>r h) curlE + k2εr(∇β>r h)E

− αr curl(J>h E + JEh) + k2εrβr(J
>
h E + JEh)

]
dx.

First, we use again (3.3.5), which yields∫
BR(0)

curlV
>
T1 dx

=

∫
BR(0)

[
αr
(

div(h)I − Jh − J>h
)

curlE

+ k2εrβr(∇β>r h) curlE + k2εr(∇β>r h)E

− αr curl(curlE × h) + εrβrk
2∇(h>E) + k2εrβr curlE × h

]
dx
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3.3. Chiral media

With (3.3.6) we find

div(h) curlE − J>h curlE + JcurlEh = curl(curlE × h)

and therefore∫
BR(0)

curlV
>
T1 dx

=

∫
BR(0)

curlV
>[
αr
(
− J>h curlE − JcurlEh

)
+ 2k2εrβr(∇β>r h) curlE

+ k2εr(∇β>r h)E + k2βrεr∇(h>E) + k2εrβr curlE × h
]

dx.

We continue by considering

αr(−J>h curlE − JcurlEh) = −αr∇(h> curlE)− αr curl curlE × h
=−∇

(
αr(h

> curlE)
)

+ (h> curlE)∇αr
− curl(αr curlE)× h+ (∇αr × curlE)× h

=−∇
(
αr(h

> curlE)
)
− curl(αr curlE)× h+ (∇α>r h) curlE.

Recall αr = 1
µr
− k2εrβ

2
r and therefore ∇αr = −2k2εrβr∇βr. Instead of

considering the first order system (2.4.9a) for the two unknown solutions E and
H, one can consider the following second order partial differential equation,
where only the electric field appears:

curl
(
αr curlE

)
− k2εrE − k2εrβr curlE − k2εr curl(βrE) = 0. (3.3.7)

This can be achieved by plugging the second equation from (2.4.9a) into the
first, then applying the curl operator and again using the second equation
from (2.4.9a). One can easily see, that the weak formulation of this second
order partial differential equation is again given by the bounded sesquilinear
form C. We need this strong formulation to continue our calculations. Using
(3.3.7), we find

αr(−J>h curlE − JcurlEh)

=−∇
(
αr(h

> curlE)
)

+ (∇α>r h) curlE − k2εrE × h
− k2εrβr curlE × h− k2εr curl(βrE)× h

Together with

curl(βrE)× h =βr curlE × h+
(
∇βr × E

)
× h
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3. Domain Derivatives

=βr curlE × h− (h>E)∇βr +
(
∇β>r h)E

we arrive at∫
BR(0)

curlV
>
T1 dx

=

∫
BR(0)

curlV
>[−∇(αr(h

> curlE)) + k2βrεr∇(h>E) + k2εrβr curlE × h

− k2εr(E × h)− 2k2εrβr curlE × h+ k2εr(h
>E)∇βr

]
dx

=

∫
BR(0)

curlV
>[∇(h>(k2εrβrE − αr curlE))

− k2εr(E + βr curlE)× h
]

dx.

Recalling (3.3.4), we finally have

C(E′, V ) =

∫
BR(0)

V
>(
k2εr curl

(
(E + βr curlE)× h

))
dx

+

∫
BR(0)

curlV
>(∇(h>(k2εrβrE − αr curlE)

)
− k2εr(E + βr curlE)× h

)
dx.

Using the identities

∇f> curlG = div(f curlG) and div(F ×G) = curlF>G− F> curlG

for some scalar function f and vector fields F and G, we get

C(E′, V ) =

∫
BR(0)

(
div
[(
h>(k2εrβrE − αr curlE)

)
curlV

]
+ div

[
k2εr

(
(E + βr curlE)× h

)
× V

])
dx.

Now, we can apply the Theorem of Gauß. Note, that due to the discontinuities
of αr, εr and βr, we have to apply the theorem in D and in BR(0). Since h is
compactly supported in BR(0), no boundary integrals on ∂BR(0) occur. This
leads to

C(E′, V ) =

∫
∂D

[(
h>(k2εrβrE − αr curlE)

)
ν>curlV
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3.3. Chiral media

− k2εrν
>
((

(E + βr curlE)× h
)
× V

)]
±

ds. (3.3.8)

From the definition of the weak formulation (2.4.10) and (2.4.11), we see that
E′ is a solution of the scattering problem from chiral media that satisfies the
radiation condition. Comparing (2.4.10) to (3.3.8), we see

C(E′, V ) = −ik

∫
∂D

[ν ×H ′]>±
(
ν × (V × ν)

)
ds.

Combining equations (2.2.5) and (2.2.6), we have∫
∂D

uν> curlF ds =

∫
∂D

Grad∂D u
>(ν × F ) ds

and therefore with (a× b)>c = −(c× b)>a we find

C(E′, V ) =

∫
∂D

[
Grad∂D

(
h>(k2εrβrE − αr curlE)

)
+ k2εr(E + βr curlE)× h

]>
±(ν × V ) ds.

From Maxwell’s equations in chiral material, we have

ikH = αr curlE − k2εrβrE and curlH = −ikεr(E + βr curlE),

which leads to

C(E′, V ) = −ik

∫
∂D

[
Grad∂D(h>H)− curlH × h

]>
±(ν × V ) ds.

Considering the expansion

H = Hτ +Hνν = (ν × (H × ν)) + (H · ν)ν

and since [ν×H]± = 0, we have Grad∂D(h>H) = Grad∂D(hνHν). This leads
to

C(E′, V ) = −ik

∫
∂D

[
− ν ×Grad(hνHν) + ν × (curlH × h)

]>
±(ν × (V × ν)) ds.

Recall
−−→
Curl∂D · = Grad∂D · × ν. Finally, we compute

[ν × (curlH × h)]± = [hν curlH]± − [h(curlH)ν ]±

= hν [curlH)]± + hτ [Div∂D ν ×H]± = hν [curlH)]±.
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3. Domain Derivatives

With this, we conclude

[ν ×H ′]± =
[−−→
Curl∂D(hνHν) + hν(ν × (curlH × ν))

]
±.

Since [ν ×W ]± = 0 on ∂D, we have

[ν × E′]± = −
[
ν × (JEh+ J>h E)

]
±.

Using JEh + J>h E = curlE × h + ∇(h>E) together with [ν × E]± = 0 we
conclude

[ν × E′]± =
[−−→
Curl∂D(hνEν)− hν(ν × (curlE × ν))

]
±.

This result is in line with Theorem 3.13 from Section 3.2, the domain deriva-
tive for penetrable obstacle, since we have curlE = −iκH and curlH = iκE
and curlE = −ikH in D and curlH = ikE in R3 \D if βr ≡ 0. The remaining
difference is due to the different scaling of the solutions.

3.4. Obstacles with impedance boundary condition

In this section, we present the domain derivative for the scattering from
an bounded obstacle with impedance boundary condition. We extend the
techniques used in [26] and in [25], for which boundaries of class C2 are needed.
The higher regularity is needed for two reasons. First, the weak formulation
involves boundary integrals on ∂D. In order to linearize the deformation of
such integrals and, the boundary has to be at least of class C2. In order to
characterize the domain derivative, we need again the solution to be in H1

and therefore the boundary to at least of class C1. Our actual calculations
rely heavily on equations formulated in [40], where regular boundaries are
assumed. Here, lower regularity assumptions might be possible. Let again
E ∈ Himp(Ω) denote the weak solution of the scattering problem, i.e.

B(E, V ) = `(V )

for all V ∈ Himp(Ω), see (2.4.8) in Section 2.4.2. Let Eh ∈ Himp(Ωh) denote
the weak solution of the scattering problem with respect to the perturbed
scatterer Dh, i.e.∫

Ωh

(
curlE>h curlV − k2E>h V

)
dx− ik〈ΛγtEh, γTV 〉∂BR(0)
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3.4. Obstacles with impedance boundary condition

− ik

∫
∂Dh

λ(νh × Eh)>(νh × V ) ds = `(V ). (3.4.1)

We have to comment on the regularity of the impedance λ : ∂D → R. By
perturbing the boundary ∂D, we have to define λ : ∂Dh → R. Since any
y ∈ ∂Dh is given by y = x + h(x) for exactly one x ∈ ∂D, one could define
λ(y = x + h(x)) = λ(x). This case has been considered in [10]. We want to
consider the more general setting, where we also allow λ to change. Therefore
we will assume from now on λ ∈ C1(R3).

Note, that in contrast to the scattering from a perfect conducting or pen-
etrable obstacle, we have to consider the additional integral over the surface
∂Dh. With νh : ∂Dh → S2, we denote the outwards drawn normal vector field
with respect to ∂Dh. The normal vectors of ∂D and ∂Dh are related. This is
illustrated by the following lemma.

Lemma 3.17. Let ∂D be of class C1. Let x ∈ ∂D and ν(x) the normal
vector of ∂D at x. Let further νh(ϕ(x)) be the normal vector of ∂Dh at
ϕ(x) = x+ h(x). Then

νh(x+ h(x)) = νh(ϕ(x)) =
J−>ϕ ν(x)

|J−>ϕ ν(x)|
.

Proof. Let Φ : S ⊂ R2 → ∂D be a local parametrization of ∂D with Φ(0) = x.
We can define by

Φ̂ : S → R3, Φ̂(x̂) = Φ(x̂) + h(Φ(x̂))

a local parametrization of ∂Dh with Φ̂(0) = x+ h(x). We define

ν̂ := J−>ϕ ν(x)

and claim ν̂ to be orthogonal to ∂Dh at x + h(x). By the chain rule, we
compute for i ∈ {1, 2}

∂Φ̂

∂xi
(0) =

∂Φ

∂xi
(0) + Jh(Φ(x̂)

∂Φ

∂xi
(0) = (I + Jh(x))

∂Φ

∂xi
(0) = Jϕ(x)

∂Φ

∂xi
(0).

Therefore, we have

ν̂ · ∂Φ̂

∂xi
(0) = ν(x)>J−1

ϕ (x)Jϕ(x)
∂Φ

∂xi
(0) = ν(x) · ∂Φ

∂xi
(0) = 0,

for i = 1, 2, since ∂Φ
∂xi

(0) is a tangential vector at x = Φ(0). Additionally, ν̂ is
outwards directed, since ν̂ → ν for h → 0 and ν̂ depends continuously on h.
Therefore, ν̂ is up to normalization the claimed normal vector.
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3. Domain Derivatives

We employ again the change of variables x 7→ ϕ(x) to transform the integrals
over Ωh in (3.4.1) to integrals over Ω. For the surface integral on ∂Dh, we
define the surface functional determinant Detϕ implicitly by∫

∂Dh

ds =

∫
∂D

Detϕds,

see [25, Section 2.3]. If Φ : S ⊂ R3 is a global parametrization of ∂D, i.e.

Φ(S) = ∂D and Φ̂ : S ⊂ R3 of ∂Dh, i.e. Φ̂ = Φ + h ◦ Φ, then one finds the
explicit representation of Detϕ in local coordinates by considering∫

∂Dh

ds =

∫
S

∣∣∣ ∂Φ̂

∂x1
(x)× ∂Φ̂

∂x2
(x)
∣∣∣dx

=

∫
S

∣∣∣ ∂Φ̂
∂x1

(x)× ∂Φ̂
∂x2

(x)
∣∣∣∣∣∣ ∂Φ

∂x1
(x)× ∂Φ

∂x2
(x)
∣∣∣︸ ︷︷ ︸

=:Detϕ

∣∣∣ ∂Φ

∂x1
(x)× ∂Φ

∂x2
(x)
∣∣∣dx =

∫
∂D

Detϕds.

For non global parametrizations, one defines Detϕ using a partition of unity
in a point x ∈ ∂D by the above fraction for any parametrization which maps
to x. We will see, that this definition does not depend on the choice of the
parametrization.

We use again the transformation (3.1.3)

Êh = J>ϕ Ẽh.

Note that the proof of Lemma 3.1 yields Êh ∈ Himp(Ω). The boundary
integral in (3.4.1) transforms then with Lemma 3.17 as follows∫

∂Dh

λ(νh × Eh)>(νh × Vh) ds =

∫
∂D

λ̃(ν̃h × Ẽh)>(ν̃h × Ṽh) Detϕds

=

∫
∂D

λ̃(J−>ϕ ν × J−>ϕ Êh)>(J−>ϕ ν × J−>ϕ V̂h)
Detϕ

|J−>ϕ ν|2
ds.

We use the identity

(Au)× (Av) = det(A)A−>(u× v)

for an invertible matrix A ∈ R3×3 and u, v ∈ R3, which can be seen from(
(Au)× (Av)

)
· w = det(Au|Av|w) = det(A) det(u|v|A−1w)
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3.4. Obstacles with impedance boundary condition

= det(A)(u× v) · (A−1w) = det(A)
(
A−>(u× v)

)
· w,

to get∫
∂Dh

λ(νh × Eh)>(νh × Vh) ds

=

∫
∂D

λ̃(ν × Êh)>J>ϕ Jϕ(ν × V̂h)
Detϕ

det(Jϕ)2|J−>ϕ ν|2
ds.

The following lemma helps us to simplify the last term and shows, that the
Definition of the surface functional determinant Det(ϕ) does not depend on
the chosen parametrization.

Lemma 3.18. Let ∂D be of class C1. Then we have

Detϕ

det Jϕ|J−>ϕ ν|
≡ 1 on ∂D.

Proof. Recall the proof of Lemma 3.1. There we have shown, that the follow-
ing holds: ∫

∂Dh

γtE
>
h γTVh ds =

∫
∂D

γtÊh
>
γT V̂h ds.

On the other hand, we have∫
∂Dh

γtE
>
h γTVh ds =

∫
∂Dh

(νh × Eh)>Vh ds =

∫
∂D

(ν̃h × Ẽh)>Ṽh Detϕds

=

∫
∂D

(J−>ϕ ν × J−>ϕ Êh)>(J−>ϕ V̂h)
Detϕ

|J−>ϕ ν|
ds

=

∫
∂D

(ν × Êh)>V̂h
Detϕ

det Jϕ|J−>ϕ ν|
ds.

So we conclude
Detϕ

det Jϕ|J−>ϕ ν|
≡ 1.

Note, that we have shown

Det(ϕ) = det(Jϕ)|J−>ϕ ν|,

an explicit representation of the surface functional determinant.
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3. Domain Derivatives

In conclusion, we have shown that Eh ∈ Himp(Ωh) is a weak solution of the

scattering from the perturbed scatterer Dh if and only if Êh ∈ Himp(Ω) is a
solution of∫

Ω

(
curl Êh

> J>ϕ Jϕ

det Jϕ
curlV − k2Êh

>
det JϕJ

−1
ϕ J−>ϕ V

)
dx

− ik

∫
∂D

λ̃γtÊh
> J>ϕ Jϕ

Detϕ
γtV ds+ ik〈Λ(γtÊh), γTV 〉∂BR(0) = `(V ) (3.4.2)

for all V ∈ Himp(Ω). We define the bounded sesquilinear form

Bh : Himp(Ω)×Himp(Ω)→ C

such that (3.4.2) reads as

Bh(Êh, V ) = `(V ) for all V ∈ Himp(Ω). (3.4.3)

To investigate the behaviour of Êh as h → 0 in C1, we need the following
additional linearization.

Lemma 3.19. Let ∂D be of class C2 and let λ ∈ C1(R3). Then

λ̃

Detϕ
= λ(1−Div∂D(hτ )− 2κhν) +∇λ>h+O(‖h‖2C1(R3,R3))

for h→ 0 in C1.

Proof. By Lemma 3.18, we have

Det(ϕ) = detJϕ|J−>ϕ ν|.

From the proof of Lemma 3.2, we conclude

det Jϕ = 1 div(h) +O(‖h‖2C1) and J−>ϕ = I − J>h +O(‖h‖2C1).

We use the representation of the divergence operator

div(h) = Div∂D(hτ ) + 2κhν +
∂hν
∂ν

,

see [40, Theorem 2.5.20], and compute

∂hν
∂ν

= ν>Jhν + h>Jνν︸ ︷︷ ︸
=0

= ν>Jhν,
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3.4. Obstacles with impedance boundary condition

since R = Jν acts on the tangential plane, see Lemma 3.11. We consider the
Taylor expansion

|J−>ϕ ν| = 1− ν>Jhν +O(‖h‖2C1)

and arrive at

Det(ϕ) = 1 + Div∂D hτ + 2κhν +O(‖h‖2C1).

The claim follows with the Taylor expansion

λ̃ = λ+∇λ>h+O(‖h‖2C1).

Recall κ being the mean curvature, defined in (3.1.20). Now, we are able
to prove continuity of the solution with respect to the boundary in the same
way as before.

Theorem 3.20. Let ∂D be of class C2. If E ∈ Himp(Ω) is the solution of

(2.4.8) and Êh ∈ Himp(Ω) a solution of (3.4.3), then we have

lim
‖h‖C1→0

‖Êh − E‖Himp(Ω) = 0.

Proof. Let B,Bh : Himp(Ω) → Himp(Ω) be the bounded linear operators,
given by the Riesz representation theorem, satisfying

B(E, V ) = 〈BE, V 〉Himp(Ω), Bh(E, V ) = 〈BhE, V 〉Himp(Ω)

for all E, V ∈ Himp(Ω). Then we have

‖(Bh −B)E‖2Himp(Ω) = Bh(E, (Bh −B)E)− B(E, (Bh −B)E).

By the definition of B and Bh, the linearizations from Lemma 3.2 and 3.19,
together with the Cauchy-Schwarz inequality, we conclude

‖(Bh −B)E‖2Himp(Ω)

=

∫
Ω

[
curlE>

( J>ϕ Jϕ
det Jϕ

− I
)

curl(Bh −B)E

− k2E>(J−1
ϕ J−>ϕ det Jϕ − I)(Bh −B)E

]
dx

− ik

∫
∂D

γtE
>
(
λ̃
J>ϕ Jϕ

Detϕ
− λI

)
γt(Bh −B)E ds
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3. Domain Derivatives

6 C‖h‖C1‖E‖Himp(Ω)‖(Bh −B)E‖Himp(Ω).

We see Bh → B for ‖h‖C1 → 0 and therefore, by a perturbation argument
similar to Theorem 3.3, we conclude

‖Êh − E‖Himp(Ω) → 0, h→ 0 in C1.

As before, we continue by proving the existence of the material derivative
by taking a closer look at the linearizations from Lemma 3.2 and Lemma 3.19.

Theorem 3.21. Let ∂D be of class C2. Let E ∈ Himp(Ω) be the solution

of (2.4.8) and Êh ∈ Himp(Ω) of (3.4.3). Then there exists a function W ∈
Himp(Ω), depending linearly and continuously on h ∈ C1, such that

lim
‖h‖C1→0

1

‖h‖C1

‖Êh − E −W‖Himp(Ω) = 0.

Proof. Similar to the previous cases, we define W ∈ Himp(Ω) as the unique
solution of

B(W,V ) =

∫
Ω

curlE>
(

div(h)I − J>h − Jh)curlV dx

+

∫
Ω

k2E>
(

div(h)I − J>h − Jh
)
V dx

− ik

∫
∂D

γtE
>
(
λ(Div∂D(hτ ) + 2κhν)I − λ(Jh + J>h )− (∇λ>h)I

)
γtV ds

for all V ∈ Himp(Ω). We have

B(Êh − E −W,V ) = B(Êh, V )− `(V )− B(W,V )

= B(Êh, V )− Bh(Êh, V )− B(W,V ),

since B(E, V ) = `(V ) = Bh(Êh, V ) and conclude by considering

B(Êh − E −W,V )

=

∫
Ω

curl Êh
>(
I −

J>ϕ Jϕ

det Jϕ
− (div(h)I − Jh − J>h )

)
curlV dx

− k2

∫
Ω

Êh
>(
I − J−1

ϕ J−>ϕ det Jϕ + (div(h)I − J>h − Jh)
)
V dx
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− ik

∫
∂D

γtÊh
>(
λI − λ̃

J>ϕ Jϕ

Detϕ
− λ(Div∂D(hτ ) + 2κhν)I

+ λ(J>h + Jh) + (∇λ>h)I
)
γtV ds

+

∫
Ω

curl(Êh − E)>(div(h)I − Jh − J>h )curlV dx

+ k2

∫
Ω

(Êh − E)>(div(h)I − Jh − J>h )V dx

− ik

∫
∂D

γt(Êh − E)
(
λ(Div∂D(hτ ) + 2κhν)I

− λ(Jh + J>h )− (∇λ>h)I
)
γtV ds,

where we added a smart zero and together with the linearizations from Lem-
mata 3.2 and 3.19

1

‖h‖C1

B(Êh − E −W,V )

6 C
(
‖Êh‖Himp(Ω)O(‖h‖C1) + ‖Êh − E‖Himp(Ω)

)
‖V ‖Himp(Ω)

for ‖h‖C1 → 0. As in Theorem 3.4, we conclude

lim
‖h‖C1

1

‖h‖C1

‖Êh − E −W‖Himp(Ω) = 0.

Motivated again by the formal Taylor expansion (3.1.6), we can extract
the domain derivative E′ in the same way as for the perfect conductor, see
Theorem 3.6.

Theorem 3.22. Let ∂D be regular. In the setting of Theorem 3.20, we have
E′ = W−J>h E−JEh ∈ Himp(Ω). E′ can be uniquely extended to the radiating
weak solution of Maxwell’s equations

curlE′ − ikH ′ = 0, curlH ′ + ikE′ = 0

in R3 \D satisfying the impedance boundary condition

ν ×H ′ − λ
(
ν × (E′ × ν)

)
=
−−→
Curl∂D(hνHν) + λGrad∂D(Eνhν)

+ hν

(∂λ
∂ν

+ ik − 2λ(R− κI)
)(
ν × (E × ν)

)
+ ikλhν(H × ν). (3.4.4)
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3. Domain Derivatives

Proof. The proof uses heavily calculations already done in [26], which we
also used for the domain derivative of the perfect conductor in Theorem 3.6.
First, since the boundary is analytic, we have E,H ∈ H2(Ω), see for example
[15, Section 4.5d] and [10, Proposition 2.2]. To be more precise, they show

E,H ∈ Hs(Ω), if ∂Ω is of class Cs+1. Therefore, we have
−−→
Curl∂D(hνHν) and

Grad∂D(hνEν) in L2
t (∂D), i.e. the right hand side of (3.4.4) is well defined in

L2
t (∂D). As usual, after defining E′ = W − J>h E − JEh ∈ Himp(Ω), we start

by considering
B(E′, V ) = B(W,V )− B(J>h E + JEh).

Since the terms in B(W,V ) involving volume integrals over Ω are exactly the
same as in the proof of the characterization of the domain derivative of the
perfect conductor, see equation (3.1.10) in the proof of Theorem 3.6, we have

B(E′, V ) =

∫
∂D

[
Grad∂D(h> curlE) + k2(E × h)

]>
(ν × V ) ds

− ik

∫
∂D

(ν×E)>
[
λ(Div∂D(hτ ) + 2κhν)I−λ(Jh+J>h )− (∇λ>h)I

]
(ν×V ) ds

+ ik

∫
∂D

λ
(
ν × (JEh+ J>h E)

)>
(ν × V ) ds.

Note, that at this point, we can already conclude that E′, together with
H ′ = 1

ik curlE′ is a radiating solution of Maxwell’s equations, satisfying some
inhomogeneous impedance boundary condition, see (2.4.7), since we have no
differential operator applied to the test function V ∈ Himp(Ω). To see, that
this function actually is given by (3.4.4), we start to summarize and simplify
the terms, using ∇λ>h = hν

∂λ
∂ν − h

>
τ Grad∂D λ and the identity

Div∂D(hτ ) + 2κhν = div(h)− ∂hν
∂ν

,

see e.g. [40, Theorem 2.5.20], as well as

JEh+ J>h E = curlE × h+∇(h>E),

combined with

curl(h× (ν × E)) = hdiv(ν × E)− (ν × E) div(h) + Jh(ν × E)− Jν×Eh
= hdiv(ν × E)− (ν × E) div(h)− (Jν×E − J>ν×E)h

− (J>ν×Eh+ J>h (ν × E)) + (Jh + J>h )(ν × E)

= hdiv(ν × E)− curl(ν × E)× h−∇(h>(ν × E))
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3.4. Obstacles with impedance boundary condition

+ (−div(h)I + Jh + J>h )(ν × E)

to get(
λ(Div∂D(hτ ) + 2κhν)I − λ(J>h + Jh)− (∇λ>h)I

)
(ν × E)

= −∂λhν
∂ν

(ν × E)− h>τ Grad∂D(λ)(ν × E)− λ curl(h× (ν × E))

+ λhdiv(ν × E)− λ curl(ν × E)× h− λ∇(h>(ν × E)).

Note that this calculation requires a smooth extension of ν in a neighborhood
of ∂D, which is possible, since ∂D is regular, see [40, Section 2.5.6], where it
is shown, that one can choose an extension such that curl ν = 0 and therefore
conclude by (2.2.6)

div(ν × E) = E> curl ν − ν> curlE = −ν> curlE = Div∂D(ν × E)

the equivalence of the surface divergence and the regular divergence of ν ×E.
Using this, we arrive at

B(E′, V ) =

∫
∂D

[
Grad∂D(h> curlE) + k2(E × h)

]>
(ν × V ) ds

+ ik

∫
∂D

λ(ν × (curlE × h) + ν ×Grad∂D(h>E))>(ν × V ) ds

− ik

∫
∂D

(ν × E)>
[
− ∂λhν

∂ν
− h>τ Grad∂D λ

]>
(ν × V ) ds

− ik

∫
∂D

[
λhτ Div∂D(ν × E)− λ curl(ν × E)× h

− λ curl(h× (ν × E))− λGrad∂D(h>(ν × E))
]>

(ν × V ) ds.

Note, that in every scalar product F · (ν × V ) for some vector field F , we can
drop the normal part or add some normal component, i.e.

F · (ν × V ) = Fτ · (ν × V ) = (F + αν) · (ν × V ),

where α is an arbitrary scalar function. We gather the terms involving surface
gradients as follows:

Grad∂D(h> curlE) + ik(Grad∂D λ
>hτ )ν × E + ikλGrad∂D(h>τ (ν × E))

=ikGrad∂D(hνHν) + ik
(

Grad∂D λ× (ν × E)
)
× hτ ,

where we also used the impedance boundary condition. This leads to

B(E′, V ) =

∫
∂D

[
ikGrad∂D(hνHν) + ik

(
Grad∂D λ× (ν × E)

)
× hτ
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+ k2(E × h)
]>

(ν × V ) ds

+ ik

∫
∂D

λ(ν × (curlE × h) + ν ×Grad∂D(h>E))>(ν × V ) ds

+ ik

∫
∂D

∂λhν
∂ν

(ν × E)>(ν × V ) ds

− ik

∫
∂D

[
λhτ Div∂D(ν × E)− λ curl(ν × E)× h

− λ curl(h× (ν × E))
]>

(ν × V ) ds.

Considering h× (ν × E) = (E>h)ν − hνE and again curl ν = 0, we have

curl(h× (ν × E)) = ∇(h>E)× ν −∇hν × E − hν curlE

and therefore

B(E′, V )

=

∫
∂D

[
ikGrad∂D(hνHν) + ik

(
Grad∂D λ× (ν × E)

)
× hτ

+ k2(E × h)
]>

(ν × V ) ds

+ ik

∫
∂D

[
λν × (curlE × h) +

∂λhν
∂ν

(ν × E)
]>

(ν × V ) ds

+ ik

∫
∂D

[
λhτ (curlE)ν + λ curl(ν × E)× h

− λ(∇hν × E)− λhν curlE
]>

(ν × V ) ds.

Using ν × (curlE × h) = hν curlE − (curlE)νh, we obtain

B(E′, V )

=

∫
∂D

[
ikGrad∂D(hνHν)+ik

(
Grad∂D λ×(ν×E)

)
×hτ+k2(E×h)

]>
(ν×V ) ds

+ ik

∫
∂D

[∂λhν
∂ν

(ν × E) + λ curl(ν × E)× h− λ(∇hν × E)
]>

(ν × V ) ds.

Since we only do need the tangential part of ∇hν × E, we calculate

(∇hν × E)τ =
[
(Grad∂D hν +

∂hν
∂ν

ν)× (Eνν + Eτ )
]
τ
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3.4. Obstacles with impedance boundary condition

= Eν Grad∂D hν × ν +
∂hν
∂ν

(ν × E).

Recall the curvature operator R and its properties stated in Lemma 3.11. We
use the decomposition of curlE into tangential and normal component

curlE = (Div∂D E × ν)ν + Grad∂D Eν × ν +
(
R− 2κ− ∂

∂ν

)
E × ν,

see [40, Theorem 2.5.20], which leads to

curl(ν × E) = (Div∂D Eτ )ν +
(
R− 2κ− ∂

∂ν

)
Eτ .

Together with the formula

∂

∂ν
Eτ − curlE × ν = Grad∂D Eν −REτ ,

see equation (5.4.50) in [40], we arrive at

curl(ν × E)× h = hν

[(
R− 2κ− ∂

∂ν

)
Eτ

]
× ν + Div∂D(Eτ )(ν × h)

= hν

[
2(R+κ)Eτ

]
×ν−Grad∂D(Eν)×ν−ikhν(H×ν)×ν+Div∂D(Eτ )(ν×h).

It is [
E>τ Grad∂D λ× hτ

]
τ

= E>τ Grad∂D λ(ν × h)

and therefore with the boundary condition ν ×H = λEτ and with the chain
rule for the surface divergence

λDiv∂D(Eτ )(ν × h) + (E>τ Grad∂D λ)(ν × h) = Div∂D(λEτ )(ν × h)

= Div∂D(ν ×H)(ν × h) = ikEν(ν × h).

Finally, we have with ν × hτ = ν × h[(
Grad∂D λ× (ν × E)

)
× hτ

]
τ

= (E>τ Grad∂D λ)(ν × h)

and with ν × ν = 0 and (hτ × Eτ )τ = 0

(E × h)τ = Eν(ν × h) + hν(E × ν).

If we consider all this, we arrive at

91



3. Domain Derivatives

B(E′, V ) = ik

∫
∂D

[
Grad∂D(hνHν)− λGrad∂D(hνEν)× ν +

∂λ

∂ν
(ν × E)

+ λhν
[
2(R− κ)Eτ

]
× ν − ikλhν((H × ν)× ν)− ikhν(E × ν)

]>
(ν × V ) ds,

or, equivalently,

B(E′, V ) = ik

∫
∂D

[−−→
Curl∂D(hνHν) + λGrad∂D(hνEν)

+ hν

(∂λ
∂ν

+ ik − 2λ(R+ κ)
)
Eτ + ikλhν(H × ν)

]>
(ν × (V × ν)) ds.

Considering the derivation of the weak formulation (2.4.7), we conclude

ν ×H ′ − λ(ν × (E′ × ν)) =
−−→
Curl∂D(hνHν) + λGrad∂D(hνEν)

+ hν

(∂λ
∂ν

+ ik − 2λ(R− κ)
)
Eτ + ikλh(

νH × ν),

which finishes the proof.

Note that again, as expected, the domain derivative E′ does only depend
on the normal component hν of the perturbation on the boundary ∂D, in
contrast to the material derivative W , which depends on h in a neighborhood
of ∂D.

If one sets λ ≡ λ0 6= 0, we arrive at the known characterization of E′, see
[30, 20]. For non-constant λ, there is also a result on the shape derivative
with so-called generalized impedance boundary condition, see [10]. Their rep-
resentation of the shape derivative differs from ours. This is due to the fact,
that they use a different way of perturbing the scatterer, where the perturbed
scatterer inherits the impedance from the unperturbed scatterer. Recall that
we assumed λ ∈ C1(R3) instead, which is more general, since a perturbation
h of the scatterer D also changes the corresponding impedance.

The domain derivative does, as expected from the scalar case, see [25],
depend on λ in a neighborhood of ∂D, since the characterization involves the
normal derivative of λ.

Due to the symmetry of Maxwell’s equations, one can conclude from this
result the domain derivative for the perfect conductor. Setting λ ≡ 0, the
impedance boundary condition becomes the perfect conducting boundary con-
dition for the magnetic field H. Since (E,H) is a solution of Maxwell’s equa-
tion if and only if (H,−E) is a solution of Maxwell’s equations, we arrive at
the boundary condition for E′ of the perfect conductor by changing the role
of E and H and adding one minus sign, see Theorem 3.6.
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4. Inverse scattering problems

Domain derivatives have been used to solve inverse scattering problems.
For the acoustic case, see for example [27] for the 2D case and [22] for the 3D
case. For the electromagnetic case, see [10] for reconstructions of obstacles
with impedance boundary condition.

In this section we want to formulate the inverse problems and the Newton
schemes used to solve these. For numerical examples, we refer to Section 6.3.
Recall that in each of the settings presented in Section 2.1, i.e. the scattering
from a perfect conductor, the scattering from a penetrable obstacle, the scat-
tering from an obstacle with impedance boundary condition or the scattering
from an obstacle consisting of chiral media, the bounded scatterer D ⊂ R3 is
surrounded by an homogeneous medium. In all cases, we imposed the Silver-
Müller radiation condition, see (2.1.2) for the scattered field (Es, Hs). Due to
this radiation condition, the scattered field Es has in the unbounded domain
R3 \D the asymptotic behaviour

Es(x) =
eik|x|

4π|x|

[
E∞(x̂) +O

( 1

|x|

)]
, |x| → ∞,

with x̂ = x/|x|. E∞ is called the electric far field pattern. It is an analytic
tangential vector field on the unit sphere S2, see [14, Theorem 6.8]. Fixing an
incident field (Ei, Hi) and a class of admissible boundaries Y, we can define for
each scattering problem the non-linear (electric) boundary to far field operator

F : Y → L2
t (S2), ∂D 7→ E∞,

where E∞ is the electric far field pattern with respect to the scatterer D with
boundary ∂D. The inverse scattering problem then is the following: Given a
far field pattern E∞ ∈ L2

t (S2), find ∂D ∈ Y such that the equation

F(∂D) = E∞ (4.0.1)

is satisfied. In the light of Section 3, we know F to be differentiable, i.e. we
have

1

‖h‖C1

‖F(∂Dh)− F(∂D)− E′∞‖L2(S2) → 0, h→ 0. (4.0.2)

Here E′∞ denotes the far field pattern of the domain derivative E′ with respect
the perturbation h ∈ C1(R3,R3) with compact support and with respect to
the scatterer D ⊂ R3. If we choose a certain type of parametrizations Y in
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4. Inverse scattering problems

a subset of a normed space X , (4.0.2) means that the operator F possesses a
Frechét derivative for any admissible boundary ∂D with

F′[∂D] : X → L2
t (S2), F′[∂D]h = E′∞.

Since equation (4.0.1) is ill posed, we use a regularized iterative Newton
scheme as follows. First, we choose a starting guess ∂D0. In every itera-
tion i ∈ N, we aim to solve

F(∂Di
h) = E∞ (4.0.3)

for a variation h. Since this is a non-linear equation we use the linearization

F(∂Dh) ≈ F(∂D) + F′[∂D]h.

Then, (4.0.3) becomes

F′[∂Di]h = E∞ − F(∂Di), (4.0.4)

which is now linear in the unknown variation h. We encounter two difficulties.
First, (4.0.4) may not be uniquely solvable. Next, due to the ill-posedness of
the inverse problem and the unknown non-linear behaviour of F, we have to
apply some regularization to damp h, such that the updated scatterer

∂Di+1 = ∂Di
h (4.0.5)

is again an admissible boundary. Both difficulties can be contemplated by
applying Tikhonov regularization. With some regularization parameter α > 0,
(4.0.4) becomes then(

F′[∂Di]∗F′[∂Di] + αI
)
h = F′[∂Di]∗(E∞ − F(∂Di)). (4.0.6)

After updating ∂Di+1 = ∂Di
h, we set i = i + 1 and solve again (4.0.6). We

stop our iteration, if the residual ri, defined by

ri = ‖F(∂Di)− E∞‖L2(S2),

falls below a chosen threshold. For more details on such regularized iterative
Newton schemes, see [31]. To our knowledge there are no known convergence
results for inverse scattering problems.

The implementation of this algorithm requires the computation of F and
F′ as well as its adjoint operator. We will avoid calculating the adjoint of the
derivative for our implementation by considering the adjoint of the discretized
operator F′. In general, one expects different results if one calculates first the
adjoint and discretizes then. In the next section, we want to present the semi-
discrete equation which arises from (4.0.6), where Y and L2(S2) are discretized
but the evaluation of F and F′ for some fixed boundary is not.
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4.1. The semi-discrete equation

4.1. The semi-discrete equation

For now, we are interested in the semi-discrete version of (4.0.6), where we
want to discretize Y but not F or F′. To ensure that F possesses a Frechét
derivative, we have to choose Y as an open set of a normed space X . Now let
Y be the set of regular star shaped domains with center in the origin. The
boundaries can then be identified by positive smooth functions on the unit
sphere S2 via spherical coordinates, i.e.

Y 3 ∂D = {x ∈ R3 : x = r(d) d, d ∈ S2}

with some smooth function r : S2 → R>0. More precisely, we choose

Y = {r ∈ C∞(S2) : r > 0}

in the normed space X = C∞(S2) as domain for the boundary to far field
operator F. Recall the definition of the spherical surface harmonics Y mn ,
n ∈ N0, |m| 6 n, which are smooth and form a complete orthonormal system
in L2(S2,C), see Lemma 2.7. Any function in this space can be written as a
series of spherical surface harmonics. Since we are interested in real-valued
functions, we choose for N ∈ N the finite dimensional subspace XN ⊂ X ,
given by

XN = {r ∈ C∞(S2) : r =

N∑
n=0

n∑
m=0

αmn ReY mn +

N∑
n=1

n∑
m=1

βmn ImY mn },

with dim(XN ) = (N + 1)2, which leads to the discretized set of admissible
boundaries YN , given by functions r ∈ XN with r > 0. Now, we pick M ∈ N
evaluation points x̂1, . . . , x̂M ∈ S2 for the evaluation of the far field patterns.
Now, F(∂D) = E∞ reads as

F(α, β) = (E∞(x̂1), . . . , E∞(x̂M )) ∈ C3×M ,

where α ∈ R
(N+1)(N+2)

2 and β ∈ R
N(N+1)

2 denote the vectors of coefficients αmn ,
n 6 N , 0 6 m 6 n and βmn , n 6 N , 1 6 m 6 n. Using the linearity of the
domain derivative, we can write

F′[∂D]h =

N∑
n=0

n∑
m=0

αmn F′[∂D](ReY mn ) +

N∑
n=1

n∑
m=1

βmn F′[∂D](ImY mn ).

Again, using only finitely many evaluation points, we have for fixed n and m:

F′[∂D](ReY mn ) =
(
E′∞(x̂1; ReY mn ), . . . , E′∞(x̂M ; ReY mn )

)
∈ C3×M ,
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F′[∂D](ImY mn ) =
(
E′∞(x̂1; ReY mn ), . . . , E′∞(x̂M ; ImY mn )

)
∈ C3×M ,

where E′∞(x̂;h) denotes the far field of the domain derivative E′ with respect
to the perturbation h, evaluated in x̂ ∈ S2. Choosing the ordered basis B of
XN , given by

B = {ReY 0
0 ,ReY 0

1 ,ReY 1
1 , . . . ,ReY NN , ImY 1

1 , ImY 1
2 , . . . , ImY NN },

we arrive at the representation matrix for the discretized operator F′[∂D]

F′[∂D] : R(N+1)2 → C3×M(
F′[∂D]

)
ijk

=
(
E′∞(x̂j ;hk)

)
i
, i = 1, 2, 3, j = 1, . . . ,M, k = 1, . . . , (N + 1)2,

where hk denotes the k-th element of B. As mentioned before, we consider
now the adjoint operator of the discretized operator F′[∂D], which is just
given by transposing and complex conjugation of F′[∂D], i.e.

F′[∂D]∗ : C3×M → R(N+1)2(
F′[∂D]∗

)
ijk

=
(
E′∞(x̂k, hi)

)
j

with i = 1, . . . (N + 1)2, j = 1, . . . , 3 and k = 1, . . . ,M . The product of
F′[∂D]∗F′[∂D] is then given by the complex quadratic (N + 1)2 × (N + 1)2

matrix, given by

(
F′[∂D]∗F′[∂D]

)
ij

=

M∑
k=1

E′∞(x̂k;hi) · E′∞(x̂k;hj) ∈ C.

The discretized version of the identity operator I in (4.0.6) is just given by the
identity matrix I(N+1)2 . Instead of I, we choose a different penalty matrix J,
which is also a diagonal matrix and the entries are given by (J)kk = 1 + λ(k),
k = 1, . . . , (N+1)2. Here, λ(k) is the corresponding eigenvalue of the spherical
harmonic Y mn , associated to the k-th basis element of B, i.e.

λ(k) := n(n+ 1), such that hk = ReY mn or ImY mN .

This corresponds to an H2(S2)-penalty term. The H2(S2)-norm is equivalent
to the graph norm ‖ · ‖∆S2

of the Laplace-Beltrami Operator ∆S2 : H2(S2)→
L2(S2), given by

‖ · ‖∆S2
= ‖ · ‖L2(S2) + ‖∆S2 · ‖L2(S2),

see for example the introduction in [41]. Using an H2-penalty, which corre-
sponds to the curvature of the boundary, instead of a L2-penalty is known to
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improve the results for inverse acoustic scattering problems for star shaped do-
mains, see [25]. We observed similar improvements for inverse electromagnetic
scattering problems.

So, solving the Tikhonov equation (4.0.6) after discretization of Y becomes
solving a linear system of (N + 1)2 equations. The solution

h = (αh, βh)> = (α0
0, α

0
1, . . . , α

N
N , β

1
1 , β

1
2 , . . . , β

N
N )> ∈ C(N+1)2 (4.1.1)

of the semi-discrete system(
F′[∂D]∗F′[∂D] + αJ

)
h = F′[∂D]∗

(
E∞ − F(∂D)

)
is in general complex-valued, since both the right hand side and the system
matrix are complex-valued. In every iteration, we have to update our bound-
ary, see (4.0.5). After discretization, every boundary ∂Di is given by a vector
of coefficients (αi, βi). We update the boundary ∂Di by discarding the imag-
inary part of h in (4.1.1). The coefficients of ∂Di+1 are then given by

(αi+1, βi+1) = (αi + Reαh, β
i + Reβh).

Full discretization requires additionally the numerical evaluation of F(∂D)
and F′[∂D], which will be addressed in Sections 6.1 and 6.3.

97





5. Electromagnetic chirality

This section is concerned with so-called electromagnetic chirality, which will
be rigorously defined later. It is a phenomenon appearing in electromagnetic
scattering, where the scatterer treats incident waves differently according to
their helicity. Until recently, the definition of chirality was just a question of
geometry. An object is called (geometrically) achiral, if it is invariant under
some reflection by a plane, combined with translations and rotations and
chiral, if that is not the case. This is a purely binary criterium. A scatterer
is either chiral or not. In [18], a new definition of electromagnetic chirality
was presented, which can also quantify the chiral behaviour. Objects, which
are in this sense maximally electromagnetic chiral, are of great interest for
applications, since such scatterer are invisible for a certain type of incident
fields. In [2], this definition was put into the mathematical context of time-
harmonic electromagnetic scattering. Some connections of electromagnetic
chirality to geometrical properties were proven and examples presented. We
will summarize the main definitions and results in Section 5.1. The author of
this thesis was involved in the numerical part of [2], which will be presented
in Section 6.2. One of the examples indicates, that the proposed measure of
chirality is only continuous and not differentiable and can therefore not be
used in a Newton scheme to find scatterers with high measure of chirality.
We therefore suggest in Section 5.2 a new measure of chirality and discuss its
properties.

5.1. Definition and measurement

All definitions, theorems and proofs in this section are directly from [2].
Recall the Maxwell system in a homogeneous, isotropic material (2.1.1), given
by

curlE − ikH = 0, curlH + ik E = 0. (5.1.1)

A simple solution to this system is a plane wave, defined by(
E
H

)
(x) =

(
A

d×A

)
eikd·x

with amplitude A ∈ C3 and direction d ∈ S2 with d · A = 0. A Herglotz wave
pair V [A] is a superposition of plane waves with respect to a tangential vector
field A ∈ L2

t (S2), i.e.

V [A](x) =

(
E[A]
H[A]

)
(x) =

∫
S2

(
A(d)

d×A(d)

)
eikd·x ds(d).
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In general, a solution to the Maxwell system is said to be left (or right) cir-
cularly polarized , if along a line in the direction of propagation, the real part
of the amplitude performs an anticlockwise (or clockwise) circular motion.
The amplitude of the electric and magnetic field of a plane wave are always
perpendicular. Let x ∈ R3 be an observation point. If the amplitudes of the
electric and magnetic field perform a circular motion, then the magnetic field
at x has to be +/− the electric field if we move one quarter of the wavelength
λ = 2π/k in the direction d of propagation, i.e.

∓(d×A)eikd·x = ∓H(x)
!
= E(x+ (λ/4)d) = iAeikd·x,

i.e. the amplitude satisfies id × A = ±A. Since a Herglotz wave pair is a su-
perposition of plane waves, we have V [A] is left (or right) circularly polarized,
if A ∈ L2

t (S2) is an eigenfunction for the eigenvalue +1 (or −1) of the operator

C : L2
t (S2)→ L2

t (S), CA(d) = id×A(d), d ∈ S2.

The eigenspaces of C for the eigenvalues ±1 are given by

V ± = {A± CA : A ∈ L2
t (S2)}. (5.1.2)

These eigenspaces satisfy

L2
t (S2) = V + ⊕ V −, V + ⊥ V −

with orthogonal projections P± : L2
t (S2)→ V ±, given by P± = (I±C)/2. We

say a Herglotz wave pair V [A] has helicity ±1 if A ∈ V ±. So for a Herglotz
wave pair, we have an explicit and simple criterium, whether its circularly
polarized or not. Since Herglotz wave pairs form a dense set in the space
of solutions of the Maxwell system on any compact set, see [12], we only
consider these solutions. By the orthogonal decomposition of L2

t (S2) into the
eigenspaces V ± of C, we can decompose any Herglotz wave pair V [A] into a
sum of two Herglotz wave pairs, one having helicity +1 and the other one
having helicity −1. This splitting can be transferred to the solutions: Let
B ⊂ R3 be a bounded set. If A ∈ V ± then V [A] ∈ H(curl, B) × H(curl, B)
satisfies

V [A] ∈W±(B)×W±(B),

where the spaces W±(B) are given by

W±(B) = {U ∈ H(curl, B) : curlU = ±kU}.

Note, that for any solution (E,H) ∈ H(curl, B)×H(curl, B) of the Maxwell
system (5.1.1) the linear combinations

E+ = E + iH, E− = E − iH
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5.1. Definition and measurement

satisfy E± ∈W±(B), i.e. the electric field E admits the decomposition

E =
1

2
(E+ + E−)

into fields of helicity +1 and −1. Let us now consider the following scattering
problem: A Herglotz wave pair V [A] is scattered by a bounded scatterer
D ⊂ R3. This gives rise to a scattered field (Es, Hs), a solution to the Maxwell
system in R3 \D, satisfying the radiation condition (2.1.2). Note that we do
not restrict ourselves to one of the special cases presented in Section 2.1, our
assumptions hold true for all of them. The far field pattern of a Herglotz wave
pair is then given by the far field operator F , given by

F : L2
t (S2)→ L2

t (S2),

FA(x̂) =

∫
S2
E∞(x̂, d, A(d)) ds(d), x̂ ∈ S2.

Here we used the notion E∞(x̂, d, A) for the electric far field pattern E∞ with
respect to an incident plane wave with direction d ∈ S2 and amplitude A ∈ C3,
evaluated in x̂ ∈ S2. The next theorem states, that the helicity of scattered
fields due to incident Herglotz wave pairs can be observed in the far field
patterns.

Theorem 5.1. The far field patterns E∞, H∞ are elements of V ± if and only
if for any bounded open set B such that B ⊂ R3\D we have Es, Hs ∈W±(B).

Proof. See [2, Theorem 2.4].

Using the above projections P±, we can decompose the far field operator
F into four operators, i.e.

F = F++ + F+− + F−+ + F−−

with Fpq = PpFPq for any pair p, q ∈ {+,−}. Each of the projected operators
describes the scattering only considering incidents fields of one helicity and
scattered fields of one helicity. Now we can finally define the scatterer D to be
electromagnetically achiral , if there exist unitary operators Uj in L2

t (S2) with
UjC = −CUj , j = 1, . . . , 4 such that

F++ = U1F−−U2, F−+ = U3F+−U4

holds. If this is not the chase, the scatterer is called electromagnetically chiral.
Before defining on how to measure how electromagnetically chiral a scatterer
is, we first have a look at a geometrical property of a scatterer, which can
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5. Electromagnetic chirality

imply achirality. Recall a scatterer D being called geometrically achiral , if
there is x ∈ R3 and an orthogonal matrix J ∈ R3×3 with detJ = −1 such
that D = x + JD. This means that D is invariant under some reflection
by a plane combined with translations and rotations. We have the following
theorem.

Theorem 5.2. If the scatterer D is geometrically achiral and either penetrable
or a perfect conductor then D is also electromagnetically achiral.

Proof. See [2, Theorem 3.2].

The context of electromagnetic chirality extends the usual geometric defi-
nition. The measure of chirality is motivated by the following observation in
[18]: Let (σj , xj , yj) be a singular system of the electromagnetically achiral far
field operator F and (σpqj , x

pq
j , y

pq
j ) a singular system of Fpq for p, q ∈ {+,−}

with decreasing sequences of singular values. Then we have

F++ϕ = U1F−−U2ϕ =
∑
j∈N

σ−−j 〈U2ϕ, x
−−
j 〉U1y

−−
j

=
∑
j∈N

σ−−j 〈ϕ,U
∗
2x
−−
j 〉U1y

−−
j

for any ϕ ∈ L2
t (S2). Therefore, the singular values of F++ and F−− coincide.

This is the motivation to define the measure of chirality χ(F) as

χ(F) =
(
‖(σ++

j )− (σ−−j )‖2`2 + ‖(σ+−
j )− (σ−+

j )‖2`2
) 1

2

.

Note that this measure is well defined, since F is an integral operator with
smooth kernel and is therefore known to have at least exponentially decreasing
singular values, see [35, Theorem 15.20].

5.2. Smooth measure of chirality

Our first goal is to investigate the regularity of χ. In this section, let c0 be
the space of real-valued sequences with limit 0 and `2 be space of real-valued
square-summable sequences. In the next theorem, we state some well-known
results about singular values for the readers convenience.

Theorem 5.3 (Singular system). Let X,Y be Hilbert spaces and K,L : X →
Y be linear compact operators. Then there exists a sequence (µj)j∈N and some
orthonormal systems (xj)j∈N in X and (yj)j∈N in Y with

Kxj = µjyj , K∗yj = µjxj .
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5.2. Smooth measure of chirality

There is an x0 ∈ N (K) for any x ∈ X such that we have

x = x0 +
∑
j∈N
〈x, xj〉xj , Kx =

∑
j∈N

µj〈x, xj〉yj . (5.2.1)

The representation of x is called singular value decomposition. The non-
negative numbers µj = µj(K) are called singular values. It is

lim
j→∞

µj(K) = 0.

If we order the singular values such that µj(K) > µj+1(K) holds for every
j ∈ N, we have additionally

µ1(K) = ‖K‖, µn+1(K) = inf
ψ1,...ψn

sup
ϕ⊥ψ1,...,ψn

‖ϕ‖=1

‖Kϕ‖, n ∈ N.

For the singular values of the sum of two compact operators, we have

µn+m+1(K + L) 6 µn+1(K) + µm+1(L), n,m = 0, 1, 2, . . . . (5.2.2)

The triple (µj , xj , yj) is called singular system of K.

Proof. See [35, Theorem 15.16 and 15.17].

We define the singular value decomposition operator S, which maps a com-
pact operator K onto its sequence of singular values µj(K). A direct conse-
quence of the previous theorem is the following. We denote by K(X,Y ) the
space of compact operators from X to Y .

Lemma 5.4. The singular value decomposition operator

S : K(X,Y )→ c0, K 7→ (µj(K))j∈N

is Lipschitz continuous.

Proof. Let K,L ∈ K(X,Y ). Considering (5.2.2) with n = 0 we have for
m = 0, 1, 2, . . .

µm+1(K) = µm+1(K − L+ L) 6 µ1(K − L) + µm+1(L),

µm+1(L) = µm+1(L−K +K) 6 µ1(L−K) + µm+1(K).

This leads to ‖K−L‖ = µ1(K−L) > |µi(L)−µi(K)| for all i ∈ N. Therefore

‖S(K)− S(L)‖∞ = sup
i∈N
|µi(K)− µi(L)| 6 µ1(K − L) = ‖K − L‖,

i.e. S is Lipschitz continuous with Lipschitz constant 1.
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5. Electromagnetic chirality

Note that S is not a linear operator, since singular values are always non-
negative, i.e. S(−K) = S(K) for any compact operator K ∈ K(X,Y ). As
mentioned above, the decrease of the singular values of far field operators
is at least exponential, in particular they are elements of `2. The class of
compact operators with square-summable singular values are called Hilbert
Schmidt operators. We denote the space of Hilbert Schmidt operators between
separable Hilbert spaces X and Y with H(X,Y ), which is by means of the
next theorem again a Hilbert space.

Theorem 5.5. Let (ej)j be an arbitrary complete orthonormal system in X.
We define for H1, H2 ∈ H(X,Y )

〈H1, H2〉HS =
∑
j∈N
〈H1ej , H2ej〉Y .

Then (H(X,Y ), 〈·, ·〉HS) is a Hilbert space. The inner product does not depend
on the choice of the orthonormal system (ej)j∈N. We have

‖H‖ 6 ‖H‖HS = ‖S(H)‖`2 =
(∑
j∈N

µ2
j (H)

) 1
2

for any H ∈ H(X,Y ).

Proof. See [49, Theorem VI.6.2].

Next, we show that S is continuous from H(X,Y ) to `2. This is due to the
following inequality.

Theorem 5.6 (Von Neumann inequality). Let H1, H2 ∈ H(X,Y ). Then

|〈H1, H2〉HS| 6
∑
j∈N

µj(H1)µj(H2) = 〈S(H1),S(H2)〉`2 . (5.2.3)

Proof. See [19].

Now we can prove S to be again continuous.

Lemma 5.7. The singular value decomposition operator

S : H(X,Y )→ `2, H 7→ (µj(H))j

is Lipschitz continuous.
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5.2. Smooth measure of chirality

Proof. Let K,L ∈ H(X,Y ). Then we have

‖S(K)− S(L)‖2`2 =
∑
j∈N
|µj(K)− µj(L)|2

=
∑
j∈N

µj(K)2 +
∑
j∈N

µj(L)2 − 2
∑
j∈N

µj(K)µj(L).

Note that the first two series converge since K,L ∈ H(X,Y ) and the last by
Cauchy-Schwarz. We apply von Neumann’s trace inequality (5.2.3) to the last
term to get

Re〈K,L〉HS 6 |〈K,L〉HS| 6
∑
j∈N

µj(K)µj(L)

and therefore

‖S(K)− S(L)‖2`2 6 ‖K‖2HS + ‖L‖2HS − 2 Re〈K,L〉HS = ‖K − L‖2HS.

By taking the root we find S to be Lipschitz continuous with Lipschitz constant
1.

The Lipschitz constant 1 is the best we can hope for. This can easily seen
by considering for any compact operator K and small ε > 0 the difference

S
(
(1 + ε)K

)
− S(K) = εS(K).

We also can not expect S to be differentiable. Consider Hilbert spaces X and
Y with x ∈ X and y ∈ Y with ‖x‖ = ‖y‖ = 1. We define the operators
K,L : X → Y by

K = 0, L = 〈·, x〉y.

They are in particular Hilbert Schmidt operators and we have for α 6= 0

1

α

(
S(K + αL)− S(K)

)
=

1

α
S(αL) =

|α|
α
.

Since |α|/α does not converge for α→ 0, we find S to be not differentiable in
K = 0. Let K be an operator with finite dimensional range, which is neither
surjective nor injective. This means, there is an x̂ ∈ X, ‖x̂‖ = 1 with Kx̂ = 0
and a ŷ ∈ Y , ‖ŷ‖ = 1 with ŷ ⊥ K(X). Let K be given by the singular value
decomposition

Kx =

N∑
j=1

µj〈x, xj〉yj
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5. Electromagnetic chirality

for x ∈ X with N ∈ N. We define the operator L : X → Y by

Lx =

N∑
j=1

µj〈x, xj〉yj +
µN
2
〈x, x̂〉ŷ.

Since the singular values are decreasing, we have for α sufficiently small

1

α

(
S(K + αL)− S(K)

)
=

1

α

(
αµ1, . . . , αµN ,

|α|µN
2

)
,

which again does not converge for α→ 0. We have shown, that S : H(X,Y )→
`2 is not differentiable on the set of operators with finite dimensional range,
which is dense in H(X,Y ), see [49, Theorem VI.6.2].

We turn our attention again to the measure of chirality χ in the context of
Hilbert Schmidt operators. From now on, let X be a separable Hilbert space
with two orthogonal subspaces V + and V −, satisfying

X = V + ⊕⊥ V −

and with orthogonal projections P± : X → V ±. Recall the notation F pq =
P pFP q for any pair p, q ∈ {+,−}. Let us abbreviate H(X) = H(X,X) and
consider the abstract functional

χ : H(X)→ R,

χ(F ) =
√
‖S(F++)− S(F−−)‖2`2 + ‖S(F+−)− S(F−+)‖2`2 ,

which is of course the measure of chirality, if we set X = L2
t (S2) and consider

the spaces V ± defined in (5.1.2). Before addressing the regularity of χ, we
formulate a Pythagorean theorem for Hilbert Schmidt operators.

Lemma 5.8. Let F ∈ H(X). Then

‖F‖2HS = ‖F++‖2HS + ‖F−+‖2HS + ‖F+−‖2HS + ‖F−−‖2HS.

Proof. Let F,G ∈ H(X). We will show

〈F pq, Grs〉HS = δrpδqs〈F pq, Gpq〉HS

for all p, q, r, s ∈ {+,−}. Let (ej)j∈N be any complete orthonormal system in
X. By definition, we have

〈F pq, Grs〉HS =
∑
j∈N
〈F qpej , Grsej〉X .
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5.2. Smooth measure of chirality

If r 6= p, then we have F pqej ∈ V p ⊥ V r 3 Grsej and every summand vanishes.
If s 6= q, we chose complete orthonormal systems (uj)j∈N of V s and (vj)j∈N of
V q. The union of (uj)j∈N and (vj)j∈N is then a complete orthonormal system
of X and we have

〈F pq, Grs〉HS =
∑
j∈N
〈F pqej , Grsej〉X

=
∑
j∈N

(
〈F pquj︸ ︷︷ ︸

=0

, Grsuj〉X + 〈F pqvj , Grsvj︸ ︷︷ ︸
=0

〉X
)
.

The claimed equation follows from F = F++ + F+− + F−+ + F−−.

With this lemma, we immediately conclude, that the measure of chirality
χ(F ) is bounded by the Hilbert Schmidt norm ‖F‖HS for any F ∈ H(X).
In order to investigate higher regularity of χ, one would be interested in the
following question: Can one give estimates for the singular values of F pq

for p, q ∈ {+,−}, if one knows the singular values of F . Unfortunately, a
simple example shows, that this is in general not the case. We consider a
two dimensional case. Let x+, x− ∈ X with x+ ⊥ x−, ‖x+‖X = ‖x−‖X = 1
and V ± = span{x±}. The orthogonal projections P± are then given by
P± = 〈·, x±〉Xx±. We define for µ > 0 the linear operators F1, F2, given by

F1x =
µ

2
〈x, x+ + x−〉X(x+ + x−)

F2x =
µ√
2
〈x, (x+ + x−)〉Xx+.

Note, that the singular values of F1 and F2, coincide, i.e. we have S(F1) =
S(F2) = µ, but we have

S(F pq1 ) =
µ

2

for all p, q ∈ {+,−} and

S(F−+
2 ) = S(F−−2 ) = 0, S(F++

2 ) = S(F+−
2 ) =

µ√
2
.

This means, the singular values of any operator F can be evenly distributed
to the projected operators, but it can also happen, that they are concentrated
on some of the projected operators. Now we will prove the continuity of the
measure of chirality.

Theorem 5.9. χ : H(X)→ R is continuous.
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Proof. Let F, Fn ∈ H(X), n ∈ N with Fn → F in H(X) as n → ∞. We are
using again the fact, that we can choose the complete orthonormal system in
the Hilbert Schmidt norm in a convenient way. Let (xj)j∈N be a complete
orthonormal system of V q for a fixed q ∈ {+,−}, which we complete to a
complete orthonormal system of X. Then we have for a fixed p ∈ {+,−}

‖F pq‖2HS =
∑
j∈N
‖P pFP qxj‖2 6

∑
j∈N
‖P pFxj‖2 6

∑
j∈N
‖Fxj‖2 = ‖F‖2HS,

since ‖P p‖ = 1. This means, we have

‖F pq − F pqn ‖HS 6 ‖F − Fn‖HS → 0, n→∞.

In other words, the mapping F 7→ P pFP q = F pq mapping from H(X) onto
itself is continuous with respect to the Hilbert Schmidt norm. The measure
of chirality χ is a composition of continuous mappings, since

χ(F ) =
√
‖S(P+FP+)− S(P−FP−)‖2`2 + ‖S(P+FP−)− S(P−FP+)‖2`2

and therefore continuous.

As mentioned before, we can not expect differentiability of the measure
of chirality χ, since it takes differences of singular values and these singular
values do not depend differentiable on the operator with respect to the Hilbert
Schmidt norm. First, we make the following observation. Let F ∈ H(X). We
have χ(F ) 6 ‖F‖HS and

χ(F )2 =
∑
j∈N

(
|µj(F++)− µj(F−−)|2 + |µj(F+−)− µj(F−+)|2

)
=
∑
j∈N

(
µj(F

++)2 + µj(F
+−)2 + µj(F

−+)2 + µj(F
−−)2

)
− 2

∑
j∈N

(
µj(F

++)µj(F
−−) + µj(F

+−)µj(F
−+)

)
The first series is by Lemma 5.8 just the squared Hilbert Schmidt norm of F ,
i.e.

χ(F )2 = ‖F‖2HS − 2
∑
j∈N

(
µj(F

++)µj(F
−−) + µj(F

+−)µj(F
−+)

)
. (5.2.4)

Since singular values are non-negative and decreasing, we have χ(F ) = ‖F‖HS

if and only if either F++ or F−− and either F−+ or F+− vanish. We call
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such a far field operator maximally electromagnetically chiral. In each case
the scatterer is invisible with respect to one helicity. Any modification of χ
should still have this property. We apply Cauchy Schwarz to (5.2.4). This
leads to the modified measure of chirality χHS, given by

χ : H(X)→ R,

χHS(F ) =
√
‖F‖2HS − 2

(
‖F++‖HS‖F−−‖HS + ‖F−+‖HS‖F+−‖HS

)
.

Note, that instead of measuring the difference of every singular value of the
corresponding projected operator, we just measure Hilbert Schmidt norms of
the projected operators. This will yield higher regularity.

Lemma 5.10. χHS : H(X)→ R is continuous.

Proof. Let F ∈ H(X). Then by Lemma 5.8, we have

‖F‖2HS = ‖F++‖2HS + ‖F−−‖2HS + ‖F+−‖2HS + ‖F−+‖2HS.

This yields

χHS(F ) =

√(
‖F++‖HS − ‖F−−‖HS

)2
+
(
‖F+−‖HS − ‖F−+‖HS

)2
. (5.2.5)

Therefore, χHS is well-defined, since the radicand is non-negative. As seen
before, the mapping F 7→ P pFP q is continuous from H(X) onto itself. This
yields, together with the continuity of the Hilbert Schmidt norm ‖ · ‖HS, the
result.

The modified measure of chirality χHS is bounded and yields the same
maximally electromagnetically chiral scatterers as χ.

Lemma 5.11. We have χHS(F ) 6 ‖F‖HS for any F ∈ H(X). Let F ∈ H(X)
with ‖F‖HS = 1. Then

χ(F ) = 1⇔ χHS(F ) = 1.

Proof. Obviously, χHS(F ) is bounded by ‖F‖HS for any F ∈ H(X). Let
F ∈ H(X) with ‖F‖HS = 1. As mentioned above, from (5.2.4), we have
χ(F ) = 1, if and only if one of the following cases holds true:

(i) F++ = 0 and F+− = 0, (ii) F++ = 0 and F−+ = 0,

(iii) F−− = 0 and F+− = 0, (iv) F−− = 0 and F−+ = 0.

In exactly these cases we have χHS(F ) = 1, since the non-positive summand
−2(‖F++‖HS‖F−−‖HS + ‖F−+‖HS‖F+−‖HS) vanishes.
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The zeros of the measure of chirality χ are also the zeros of the modified
measure of chirality χHS, as the following Lemma shows.

Lemma 5.12. Let F ∈ H(X). Then

χ(F ) = 0⇒ χHS(F ) = 0.

Proof. Let F ∈ H(X) with χ(F ) = 0. Then ‖F++‖HS = ‖F−−‖HS and
‖F+−‖HS = ‖F−+‖HS, since the singular values coincide. With (5.2.5), we
conclude χHS(F ) = 0.

There can be additional zeros of χHS, as the following example shows. Let
X = R3 and V + = lin{e1, e2} and V − = lin{e3}, where ei denotes for i =
1, 2, 3 the i-th standard unit vector. We define the linear operator F : R3 → R3

by

F =

(
F++ F+−

F−+ F−−

)
=

(1 0
0 1

) (
0
0

)
(
0 0

) √
2

 ∈ R3×3.

We have µ1(F++) = µ2(F++) = 1 and µ1(F−−) =
√

2. Additionally, we have
F−+ = F+− = 0. This leads to

χHS(F ) =

√√√√‖F‖2HS︸ ︷︷ ︸
=1+1+2

−2
(
‖F++‖HS︸ ︷︷ ︸

=
√

2

‖F−−‖HS︸ ︷︷ ︸
=
√

2

+ ‖F+−‖HS‖F−+‖HS︸ ︷︷ ︸
=0

)
= 0,

but χ(F ) =
√

(1−
√

2)2 + 12 6= 0.

Since even the modified measure of chirality takes the root, we can not ex-
pect any higher global regularity than χHS being continuous. We will therefore
consider the squared modified measure of chirality. Even then, it contains the
Hilbert Schmidt norm and therefore can not be differentiable. But we can
prove χ2

HS to have some local regularity.

Lemma 5.13. The squared modified measure of chirality χ2
HS : H(X) → R,

given by

χ2
HS(F ) = ‖F‖2HS − 2

(
‖F++‖HS‖F−−‖HS + ‖F−+‖HS‖F+−‖HS

)
is locally Lipschitz.

Proof. Let p, q ∈ {+,−} and F ∈ H(X). We consider the continuous function

λpq(F ) = ‖F pq‖HS = ‖P pFP q‖HS.
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5.2. Smooth measure of chirality

Let additionally G ∈ H(X). We have

|λpq(F )− λpq(G)| 6 ‖P p(F −G)P q‖HS 6 ‖F −G‖HS.

For p, q, r, s ∈ {+,−}, we define the product of two of these functionals by

ηrspq(F ) = λpq(F )λrs(F ) = ‖P pFP q‖HS‖P rFP s‖HS.

Then

|ηrspq(F )− ηrspq(G)| = |λpq(F )λrs(F )− λpq(G)λrs(G)|
= |λpq(F )λrs(F )− λpq(G)λrs(F ) + λpq(G)λrs(F )− λpq(G)λrs(F )|
6 λrs(F )|λpq(F )− λpq(G)|+ λpq(G)|λrs(F )− λrs(G)|
6
(
‖F‖HS + ‖G‖HS

)
‖F −G‖HS.

Let now H ∈ H(X), ε > 0 and F,G ∈ Bε(H). Then, we define the constant
CH = 2(‖H‖HS + ε). From

|ηrspq(F )− ηrspq(G)| 6 CH‖F −G‖HS

we conclude ηrspq to be locally Lipschitz. With∣∣‖F‖2HS − ‖G‖2HS

∣∣ = (‖F‖HS + ‖G‖HS)
∣∣‖F‖HS − ‖G‖HS

∣∣ 6 CH‖F −G‖HS

we conclude χ2
HS to be locally Lipschitz, since it is the sum of locally Lipschitz

functions.

Note that χ2
HS being locally Lipschitz has strong implications of its regular-

ity in the context of non-smooth analysis and optimization, see for example
[11, Chapter 10]. Despite being not necessary differentiable, locally Lipschitz
functions admit so called generalized gradients, which can be used to identify
descent directions for non-smooth optimization, see again [11, Chapter 10].
We define the following optimization problem, called chiral optimization prob-
lem:
Let f, g : H(X)→ R defined by

f(H) = 2
(
‖H++‖HS‖H−−‖HS + ‖H+−‖HS‖H−+‖HS

)
,

g(H) = ‖H‖2HS − 1.

The optimization problem then reads as:

Minimize f(H) subject to g(H) = 0
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5. Electromagnetic chirality

on the set of far field operators. Since f is locally Lipschitz, a non-smooth
multiplier rule can be applied, see [11, Theorem 10.47]. However, the applica-
tion of a suitable optimization scheme and the implementation thereof is not
part of this thesis. We will finish this chapter with some small results and
remarks.

Lemma 5.14. Let S = {F ∈ H(X) : ‖F‖HS = 1}. The chiral optimiza-
tion has infinitely many minimizers F ∗ ∈ S. The set of minimizers is path
connected.

Proof. As mentioned above, we have f(F ) = 0 for F ∈ S, if and only if one
row or one column in the representation matrix of F , given by

F =

(
F++ F+−

F−+ F−−

)
vanishes. Let F ∈ S be a minimizer with F++ 6= 0 and F+− = F−+ = F−− =
0 and G ∈ S be a minimizer with G+− 6= 0 and G−− = G++ = G−+ = 0.
Then Γ : [0, 1]→ H(X), given by

Γ(t) =

(
cos(tπ/2)F++ sin(tπ/2)G+−

0 0

)
defines a continuous path with Γ(0) = F and Γ(1) = G. Since the second row
vanishes, we have f(Γ(t)) = 0, i.e. Γ(t) is for every t ∈ [0, 1] a minimizer and
by Lemma 5.8

g(Γ(t)) = cos2(tπ/2)‖F‖2HS + sin2(tπ/2)‖G‖2HS − 1 = 0,

i.e. Γ(t) ⊂ S for t ∈ [0, 1]. Similar, if we have F ∈ S with vanishing second
row, we define the path

Γ(t) =

F++

√
1 + t

‖F+−‖2HS

‖F++‖2HS

√
1− tF+−

0 0

 .

Then again g(Γ(t)) = 0 for each t ∈ [0, 1] and Γ(1) has only the entry in the
upper left corner. Two operators F,G with only one entry can be transformed
into each other via a rotation in the plane by the angle α defined by cos(α) =
〈F,G〉HS. With these prototype paths we can construct now paths from any
minimizer to another.

We want to emphasize at this point that this Lemma does not state, that
there is a scatterer D, such that its associated far field operator F satisfies
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5.2. Smooth measure of chirality

χ(F ) = ‖F‖HS. If we restrict ourselves to one scattering problem and a certain
type of geometries, it is still not clear, how the set of far field operators does
look like. Since the function f from the chiral optimization involves norms, it
is differentiable, whenever none of these norms vanish.

Lemma 5.15. Let O = {F ∈ H(X) : F pq 6= 0 for all p, q ∈ {+,−}}. Then
f : O → R is differentiable with

f ′[F ]G = 2

(
‖F−−‖HS

‖F++‖HS
Re〈F++, G++〉HS +

‖F++‖HS

‖F−−‖HS
Re〈F−−, G−−〉HS

+
‖F+−‖HS

‖F−+‖HS
Re〈F−+, G−+〉HS +

‖F−+‖HS

‖F+−‖HS
Re〈F+−, G+−〉HS

)

for F ∈ O and G ∈ H(X).

Proof. For any p, q ∈ {+,−}, we consider λpq(F ) = 〈P pFP q, P pFP q〉HS.
Then we have for F,G ∈ H(X)

λpq(F + tG)− λpq(F ) = 2tRe〈P pFP q, P pGP q〉HS + t2〈P pGP q, P pGP q〉HS.

We conclude (λpq)′[F ]G = 2 Re〈F pq, Gpq〉HS. The claim follows by the product
and chain rule.

The literature is not consistent on how to define directional derivatives.
Following [11], a directional derivative F ′(x; y) of a mapping F : X → Y
between normed spaces X and Y at a point x ∈ X in direction y ∈ X is, if it
exists, the following limit:

F ′(x; y) = lim
t→0+

F (x+ ty)− F (x)

t
.

Note that some authors, see [29, 48], require t → 0 in the limit. Then, less
functions possess a directional derivative. By the above definition, we conclude
by

lim
t→0+

1

t

(
‖(F + tG)pq‖HS − ‖F pq‖HS

)
= ‖Gpq‖HS

that the function f from the chiral optimization admits in every point the
directional derivative in every direction.

Finally, we observe that f has no local minimizers on O.

Lemma 5.16. We have f ′[F ] 6= 0 for every F ∈ O.
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5. Electromagnetic chirality

Proof. Assume f ′[F ] = 0 for some F ∈ O. Then choosing G = F++ and
considering Lemma 5.8, we conclude

0 = f ′[F ]F++ =
‖F−−‖HS

‖F++‖HS
Re〈F++, F++〉HS = ‖F−−‖HS‖F++‖HS.

So either F++ = 0 or F−− = 0, a contradiction.
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6. Numerical examples

In this section, we present numerical examples illustrating the previous sec-
tions. The common theme of Section 4 and 5 is that we have to solve electro-
magnetic scattering problems. In Section 4, we have to calculate the solution
(E,H) of the scattering problem numerically, as well as the domain derivative
E′. Since the domain derivative E′ is again a solution of the same scatter-
ing problem as (E,H), the same techniques can be used. But the boundary
condition of the domain derivative contains the solution (E,H) of the scatter-
ing problem, see Theorems 3.6, 3.13 and 3.22 and involves surface differential
operators as well as curvature terms. In Section 5, we have to calculate a
discretization of the far field operator F . This means, we have to choose a
convenient basis of L2

t (S2) and calculate the far field for many elements of
this basis. In Section 2.4, we presented the weak formulations of the scatter-
ing from a perfect conductor and from an obstacle with impedance boundary
condition. So one could naturally choose a finite element approach in order
to solve these equations, see [39]. We chose a boundary integral equations
approach. Looking closely at the boundary conditions of the domain deriva-
tives, we identify the traces of the solutions (E,H) and terms with surface
differential operators applied to the solution. Therefore an integral equation
approach, where these traces are the unknowns seems reasonable. On the
other hand we avoid having a three-dimensional computational region, which
changes at every iteration of the Newton scheme. Lastly, at the beginning of
this work, there was to the best of our knowledge no open source finite element
library available, which satisfied all of our needs. The actual implementations
are carried out in the open source Galerkin boundary element methods li-
brary BEMPP (https://bempp.com/). For an overview of the library, see
[47]. We start by presenting the derivation of boundary integral equations for
the considered scattering problems. See [50, Section 3.3] for an overview of
such equations and for more details we refer to [7, 8].

6.1. Integral equations of scattering problems

We consider the Maxwell system

curlE = ikH, curlH = −ik E

with wavenumber k ∈ R in some region Ω with boundary ∂Ω. We start this
section with the famous Stratton-Chu representation formula. In order to do
this, we define the magnetic or Neumann-trace

γN : H(curl2,Ω)→ H−
1
2 (Div, ∂Ω),
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γNϕ =
1

ik
curlϕ× ν.

The term magnetic comes from the fact, that if (ϕ, 1
ik curlϕ) is a solution of

the Maxwell system, then γNϕ is the trace of the magnetic field. By Theorem
2.5, we have that γN is continuous. Let Φ denote the fundamental solution of
the three-dimensional Helmholtz equation ∆u+ k2u = 0, i.e.

Φ(x, y) =
1

4π

eik|x−y|

|x− y|
.

Then we define the electric potential

Eϕ(x) = ik

∫
∂Ω

ϕ(x)Φ(x, y) ds(y)− 1

ik
∇
∫
∂Ω

Div∂Ω ϕ(y)Φ(x, y) ds(y),

as well as the magnetic potential

Hϕ(x) = curl

∫
∂Ω

ϕ(y)Φ(x, y) ds(y).

We want to motivate the names electric and magnetic potential. Let ϕ be a
smooth tangential vector field. We define E = Eϕ. Then

curlE(x) = ik curl

∫
∂Ω

ϕ(x)Φ(x, y) ds(y) = ikHϕ(x).

On the other hand, if we define H = Hϕ, we have

curlH(x) = curl curl

∫
∂Ω

ϕ(y)Φ(x, y) ds(y)

= (∇ div−∆
) ∫

∂Ω

ϕ(y)Φ(x, y) ds(y)

= k2

∫
∂Ω

ϕ(y)Φ(x, y) ds(y) +∇
∫
∂Ω

divx
(
ϕ(y)Φ(x, y)

)
ds(y)

= k2

∫
∂Ω

ϕ(y)Φ(x, y) ds(y) +∇
∫
∂Ω

ϕ(y) · ∇xΦ(x, y) ds(y)

= k2

∫
∂Ω

ϕΦ(x, y) ds(y)−∇
∫
∂Ω

ϕ(y)∇yΦ(x, y) ds(y).

Since ϕ is a tangential vector field, the integrand of the second integral be-
comes ϕ(y) ·Grad∂Ω Φ(x, y). We apply the partial integration formula for the
surface gradient (2.2.5) and arrive at

curlH(x) = −ik Eϕ(x) = −ik E(x).
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6.1. Integral equations of scattering problems

In other words: For any ϕ ∈ C1
t (∂Ω,C3), the pair (Eϕ,Hϕ) forms a solution

to the Maxwell system.
In order to state the continuity result for these potentials, we need to define

additional function spaces. Let L2
loc(Ω) be the space of locally square integrable

functions, i.e. E ∈ L2
loc(Ω) if and only if E ∈ L2(Ω̃) for any bounded set

Ω̃ ⊂ Ω. Of course, if Ω is bounded itself, we have L2
loc(Ω) = L2(Ω). Similarly

we define the spaces of locally square integrable H(curl,Ω) functions

Hloc(curl,Ω) = {E ∈ L2
loc(Ω) : curlE ∈ L2

loc(Ω)}.

Finally, we define the space of functions E ∈ L2(Ω,C3) which posses weak
curl curlE ∈ L2(Ω,C3) and the space of those functions which are additionally
square integrable by

H(curl2,Ω) = {E ∈ H(curl,Ω) : curl curlE ∈ L2(Ω,C3)},
Hloc(curl2,Ω) = {E ∈ Hloc(curl,Ω) : curl curlE ∈ L2

loc(Ω,C3)}.

Theorem 6.1. The electric and magnetic potential are continuous as map-
pings from H−

1
2 (Div, ∂Ω) to Hloc(curl2,Ω).

Proof. See [7, Theorem 5].

With these definitions, we can now state the Stratton-Chu representation
formula, which motivates in hindsight the definition of the electric and mag-
netic potentials.

Theorem 6.2 (Stratton-Chu). Let E ∈ Hloc(curl2,Ω) be a solution of the
Maxwell system in Ω. If Ω is bounded, then we have

E = HγtE + EγNE in H(curl2,Ω).

If Ω is the exterior of some bounded domain and E satisfies additionally the
Silver-Müller radiation condition, then

E = −HγtE − EγNE in Hloc(curl2,Ω).

Proof. See [7, Theorem 6].

For the moment, we assume that Ω is a bounded domain with boundary
∂Ω. For ϕ ∈ Hloc(curl2,Ω

⋃
Rn \Ω) we denote by γ−t , γ−N the interior traces,

i.e.

γ−t ϕ = γt
(
ϕ
∣∣
Ω

)
∈ H− 1

2 (Div, ∂Ω), γ−Nϕ = γN
(
ϕ
∣∣
Ω

)
∈ H− 1

2 (Div, ∂Ω)
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6. Numerical examples

and by γ+
t , γ+

N the exterior traces. We introduce the notation

[γϕ]± = γ+ϕ− γ−ϕ

for the jump of some trace γ on the boundary ∂Ω and the notation

{γϕ}± =
1

2
(γ+ϕ+ γ−ϕ)

for the mean of some trace γ. The potentials map H−
1
2 (Div, ∂Ω) onto the

space Hloc(curl2,Ω
⋃
R3 \ Ω). We can therefore take interior and exterior

traces of the potentials. These traces satisfy the following jump relations.

Theorem 6.3. We have

[γtEϕ]± = [γNHϕ]± = 0 and [γNEϕ] = [γtHϕ]± = −ϕ

for ϕ ∈ H− 1
2 (Div, ∂Ω).

Proof. See [7, Theorem 7].

We use the traces of the electric and magnetic potentials to define the
electric boundary operator E by taking the mean of the tangential traces, i.e.

E : H−
1
2 (Div, ∂Ω)→ H−

1
2 (Div, ∂Ω),

ϕ 7→ {γtEϕ}±

and analogously the magnetic boundary operator H by

H : H−
1
2 (Div, ∂Ω)→ H−

1
2 (Div, ∂Ω),

ϕ 7→ {γtHϕ}±.

The interior and exterior traces of the potentials and the boundary operators
are coupled in the following way.

Lemma 6.4. We have

γ±t E = E, γ±NE = ∓1

2
I + H,

γ±t H = ∓1

2
I + H, γ±NH = −E.

Proof. These relations follow from the jump relations in Theorem 6.3 and
from

{γNE}± = H, {γNH}± = −E. (6.1.1)
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6.1. Integral equations of scattering problems

From the calculations shown in the motivation on naming the potentials, we
conclude by a density argument

γNE = γtH, γNH = −γtE ,

which shows (6.1.1).

We define the multitrace operator A by

A =

(
H E
−E H

)
.

With the multitrace operator, we finally define the exterior and interior
Calderón projector

C± : H−
1
2 (Div, ∂Ω)2 → H−

1
2 (Div, ∂Ω)2

by the matrix

C± =
1

2
I∓A =

(
1
2I∓H ∓E
±E 1

2I∓H

)
.

All the above potentials and operators depend on the corresponding wavenum-
ber. Considering penetrable objects with interior and exterior wavenumber k
and κ, we will denote the dependency for example by Ek and Eκ for the electric
potential with respect to the interior and exterior wavenumber. In the context
of the perfect conductor and the scattering from an obstacle with impedance
boundary condition where only one wavenumber occurs, we will just write E
for the electric potential. The traces of solutions of the Maxwell system are
exactly eigenfunctions of the Calderón projector.

Theorem 6.5. Let Ω be a bounded domain and E ∈ Hloc(curl2,Ω
⋃

R3 \ Ω)
be a solution of the Maxwell system in Ω and R3 \ Ω and also satisfying the
Silver-Müller radiation condition. Then we have

C±
(
γ±t E
γ±NE

)
=

(
γ±t E
γ±NE

)
. (6.1.2)

On the other hand, any pair a, b ∈ H−
1
2 (Div, ∂Ω) with Cp(a, b)> = (a, b)>

for p ∈ {+,−} can be identified as the traces of a solution E ∈ H(curl2,Ω) if
p = − and E ∈ H(curl2,R3 \Ω) if p = + of the Maxwell system, i.e. a = γptE
and b = γpNE. In the exterior case, E satisfies the Silver-Müller radiation
condition.
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Proof. Let E ∈ Hloc(curl2,Ω
⋃
R3 \Ω) be a solution of the Maxwell system in

Ω and R3 \ Ω, satisfying the radiation condition. By Stratton-Chu, we have

E = Hγ−t E + Eγ+
NE in H(curl2,Ω)

and

E = −Hγ+
t E −Hγ−NE in Hloc(curl2,R3 \ Ω).

Taking the exterior and interior tangential trace γ±t of the corresponding
equation and considering the jump relations from Lemma 6.4, we arrive at
the first equation of (6.1.2). Taking the exterior and interior magnetic trace

γ±N yields the second one. Let now the pair a, b ∈ H−
1
2 (Div, ∂Ω) satisfy

C−(a, b)> = (a, b)>. We define a vector field E ∈ H(curl2,Ω) by

E = Ha+ Eb

and set H = 1
ik curlE. Then (E,H) is a solution of the Maxwell system in Ω

with

γ−t E = γ−t Ha+ γ−t Eb =
(1

2
I + H

)
a+ Eb = a,

γ−NE = γ−NHa+ γ−NEb = −Ea+
(1

2
I + H

)
b = b,

since these are just the two equations of C−(a, b)> = (a, b)>. One can argue
similarly for the exterior case.

6.1.1. Perfect conductor

Let D be a bounded Lipschitz domain and k ∈ R. Recall the scattering
problem for the perfect conductor, which reads as

curlEs = ikHs, curlHs = −ik Es in R3 \D, (6.1.3a)

ν × Es + ν × Ei = 0, on ∂D, (6.1.3b)

lim
|x|→∞

|x|
[
Hs(x)× x

|x|
− Es(x)

]
= 0, (6.1.3c)

where the pair (Ei, Hi) is a solution of (6.1.3a) in R3. To get an integral
equation, there are in general two established approaches. The first one,
called indirect, starts by making an Ansatz, for example

Es(x) = −Eλ(x), x ∈ R3 \D
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6.1. Integral equations of scattering problems

for some to be determined λ ∈ H− 1
2 (Div, ∂Ω). Then, one applies the trace

and injects the boundary condition (6.1.3b), which yields the so called indirect
electric field integral equation (EFIE), given by

Eλ = γtE
i. (6.1.4)

Note that in contrast to the exterior problem (6.1.3a) - (6.1.3c), the indirect
EFIE (6.1.4) is not always uniquely solvable. Unique solvability depends on
whether k is a so called interior eigenvalue of D, see [7, Definition 4]. From
now on, we will always assume, that that is not the case. This is not a
strong assumption, since these critical values of k form a discrete sequence
accumulating at infinity. Of course, we can also choose the magnetic potential
in our Ansatz, i.e.

Es(x) = Hλ(x), x ∈ R3 \D,
which leads to the so called indirect magnetic field integral equation (MFIE),
given by (1

2
I + H

)
λ = γtE

i. (6.1.5)

Recall (γ+
t E

s, γ+
NE

s) being an eigenfunction of the Calderón projector C+.
The direct approach starts by considering the first equation of

C+

(
γ+
t E

s

γ+
NE

s

)
=

(
γ+
t E

s

γ+
NE

s

)
. (6.1.6)

By the boundary condition, only γ+
NE

s is unknown. This leads to direct
electric field integral equation (EFIE), given by

Eλ =
(1

2
I + H

)
γ+
t E

i (6.1.7)

for the unknown Neumann trace λ = γ+
NE

s ∈ H− 1
2 (Div, ∂Ω). Finally, con-

sidering the second equation of (6.1.6), we arrive at the direct magnetic field
integral equation (MFIE), given by(1

2
I + H

)
λ = −Eγ+

t E
i (6.1.8)

for the unknown Neumann trace λ = γ+
NE

s ∈ H−
1
2 (Div, ∂Ω). Considering

calculation time, the indirect approach profits from a cheap right hand side,
since only the magnetic or the electric boundary integral operator have to be
assembled. On the other hand, if one is interested in the magnetic trace γ+

NE
s,

for example to calculate the boundary condition of the domain derivative, see
(3.1.7), then the direct approach profits from the fact, that the unknown λ is
exactly the magnetic trace γ+

NE
s.
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6.1.2. Penetrable Obstacles

Let again D ⊂ R3 be a bounded Lipschitz domain. Recall the scattering
from a penetrable obstacle: Let κ > 0 denote the interior and k > 0 the
exterior wavenumber. Furthermore, we have the interior material coefficients
µD, εD > 0 and the exterior material coefficients µ0, ε0 > 0, see Section 2.1.2.
Then the full scattering problem reads as:

curlE = iκH, curlH = −iκE inD, (6.1.9a)

curlE = ikH, curlH = −ik E in R3 \D, (6.1.9b)

1
√
ε0
ν × E

∣∣
+
− 1
√
εD

ν × E
∣∣
− = 0 on ∂D, (6.1.9c)

1
√
µ0
ν ×H

∣∣
+
− 1
√
µD

ν ×H
∣∣
− = 0 on ∂D, (6.1.9d)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (6.1.9e)

where (Ei, Hi) satisfies (6.1.9b) in R3. We define the scaling matrix S by

S =

( √
ε0√
εD

I 0

0
√
µ0√
µD

I

)
.

Then the transmission conditions (6.1.9c) and (6.1.9d) read as(
γ+
t (Es + Ei)
γ+
N (Es + Ei)

)
=

( √
ε0√
εD
γ−t E√

µ0√
µD
γ−NE

)
= S

(
γ−t E
γ−NE

)
. (6.1.10)

Let C+ be the exterior Calderón projector with respect to the exterior wave-
number k and C− the interior Calderón projector with respect to the interior
wavenumber κ, i.e.

C+ =
1

2
I−Ak, C− =

1

2
I + Aκ.

Then we have by Theorem 6.5

C+

(
γ+
t E

s

γ+
NE

s

)
=

(
γ+
t E

s

γ+
NE

s

)
, C−

(
γ−t E
γ−n E

)
=

(
γ−t E
γ−NE

)
.

We apply this to (6.1.10) to get

SC−
(
γ−t E
γ−NE

)
= C+

(
γ+
t E

s

γ+
NE

s

)
+

(
γ+
t E

i

γ+
NE

i

)
.
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6.1. Integral equations of scattering problems

We apply again the transmission condition (6.1.10) to remove the interior
traces and get

SC−S−1

(
γ+
t (Es + Ei)
γ+
N (Es + Ei)

)
= C+

(
γ+
t E

s

γ+
NE

s

)
+

(
γ+
t E

i

γ+
NE

i

)
.

We gather the traces of the incoming and the scattered field, to finally have(
SAκS

−1 + Ak

)(γ+
t E

s

γ+
NE

s

)
=
(1

2
I− SAκS

−1
)(γ+

t E
i

γ+
NE

i

)
, (6.1.11)

a boundary integral formulation of (6.1.9a) - (6.1.9e), see also [42]. This
integral equation is always uniquely solvable, see [7, Theorem 12] and often
called PMCHWT (Poggio-Miller-Chan-Harrington-Wu-Tsai).

Of course, one could remove the exterior traces instead of the interior ones
and get a boundary integral formulation, where γ−t E and γ−NE are the un-
knowns. But from a scattering problem point of view, we are more interested
in the scattered field Es.

6.1.3. Obstacles with impedance boundary condition

Let D ⊂ R3 be a bounded Lipschitz domain and let k > 0 denote the
wavenumber. Recall the scattering problem from an obstacle with impedance
boundary condition:

curlE = ikH, curlH = −ik E in R3 \D (6.1.12a)

ν ×H = λ
(
ν × (E × ν)

)
on ∂Ω (6.1.12b)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC, (6.1.12c)

where (Ei, Hi) is a solution of (6.1.12a) in R3. We choose the direct approach
to get an integral equation of (6.1.12a)-(6.1.12c). From the Stratton-Chu
formula, see Theorem 6.2, we have

Es(x) = −HγtE(x)− EγNE(x), x ∈ R3 \D. (6.1.13)

Since the incoming field (Ei, Hi) is a solution of the Maxwell system (6.1.12a)
in D, we have again by the Stratton-Chu formula

0 = −HγtEi(x)− EγNEi(x), x ∈ R3 \D. (6.1.14)

Applying the trace γt to (6.1.13) and (6.1.14) and considering the jump rela-
tions of the potentials, see Lemma 6.4 yields

γtE = γtE
i + γtE

s + 0 = γtE
i +
(1

2
I−H

)
γtE −EγNE.
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We apply the boundary condition (6.1.12b) to get

1

2
γtE + HγtE −E

[
λ(ν × γtE)

]
= γtE

i,

or, equivalently formulated for the scattered field

1

2
γtE

s + HγtE
s −E

[
λ(ν × γtEs)

]
= E

[
γNE

i + λ(ν × γtEi)
]
, (6.1.15)

where we have used (1

2
I−H

)
γtE

i −EγNE
i = 0,

which can be seen from applying the trace γt to equation (6.1.14). Note that
the only unknown in the integral equation (6.1.15) is the Dirichlet trace γtE

s.
The integral equation is called (impedance boundary condition) electric field
integral equation (IBC-EFIE), since the unknown is the trace of the electric
field, see [38].

This formulation does not require λ to be constant. The main difference
to the integral equations of the perfect conductor is the rotation of the trace
γtE

s, given by ν × γtEs. Note that the rotation is directly applied to the
unknown. An indirect approach using some Ansatz would have led to an
integral equation, where the rotation is applied to the boundary operator. We
chose the integral equation (6.1.15) for our implementation.

6.1.4. Implementational details and examples

In this section, we want to present the results for the implemented integral
equations for the scattering from a perfect conductor, from a penetrable ob-
stacle and from an obstacle with impedance boundary condition. The direct
and indirect EFIE and MFIE can be implemented in BEMPP by a few lines
of code. This, together with preconditioning tools, which allow the use of fast
iterative solvers is presented in detail in [46]. An actual implementation in
BEMPP of the coupled integral equation (6.1.11) for the scattering from a
penetrable obstacle can be found in the tutorials on the homepage of BEMPP
(https://bempp.com). For the implementation of the integral equation for
the scattering from an obstacle with impedance boundary condition (6.1.15),
we need additionally the rotation operator R, which is given by

RγTϕ = γTϕ× ν = γtϕ (6.1.16)

for some vector field ϕ. Note that

Rγtϕ = γtϕ× ν = −γTϕ.
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Considering formally∫
∂D

γTϕ · γtψ ds =

∫
∂D

(ν × (ϕ× ν)) · (ψ × ν) ds

=

∫
∂D

ϕ · (ψ × ν) ds = −
∫
∂D

ψ · (ϕ× ν) ds

= −
∫
∂D

(ν × (ψ × ν)) · (ϕ× ν) ds = −
∫
∂D

γtϕ · γTψ ds,

we see that the negative dual pairing −〈γtϕ, γTψ〉∂D between H−
1
2 (Div, ∂D)

and its dual space H−
1
2 (Curl, ∂D), see Theorem 2.5, can be seen as the weak

formulation for the rotation operator R and can easily be implemented and
tested in BEMPP. For the implementation, see Section B.1 in Appendix B.
The convergence plot can be seen in Figure A.1 in Appendix A.

Since we are not only interested in just solving scattering problems, but
also want to use the solution to calculate for example the domain derivative,
we need to verify the accuracy of our solutions. For an arbitrary scatterer D
and incoming wave (Ei, Hi), we do not have an analytic expression for the
scattered field and therefore can not verify our solution. Recall the vector wave
functions used in Section 2.3.1 to present analytic solutions of the scattering
problems. If we chose the scatterer D = BR(0) and the incoming wave, given
by

Ei(x) = αMNM
M
N (x) + βMN

1

ik
curlMm

N (x),

for some fixed N ∈ N and |m| 6 N and coefficients αMN , β
M
N ∈ C, then we

know the solution, which is just given by

Es(x) = aMN N
M
N (x) + bMN

1

ik
curlNM

N (x),

where the coefficients aMN , b
M
N are given, depending on the scattering problem

under consideration, by the Lemmata 2.13 for the perfect conductor, 2.15 for
the obstacle with impedance boundary condition, or 2.16 for the scattering
from a penetrable obstacle. These functions are well suited for testing the
chosen size of the elements of the grid, since they are highly oscillating for
large N and M . The resulting convergence plots for the direct MFIE (6.1.8),
for the integral equation for the scattering from a penetrable obstacle (6.1.11)
and for the integral equation (6.1.15) for the scattering from an obstacle with
impedance boundary condition can be seen in the figures A.5, A.6 and A.7.
For the implementations of (6.1.8) and (6.1.11), we refer to the tutorials on
the homepage of BEMPP (https://bempp.com). For the implementation of
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(6.1.15) with constant λ, see Section B.2. Note that the accuracy of the
solution for incident fields with small N differs significantly from the accuracy
of the solution for incident fields with larger N but shows the same behaviour
of convergence.

6.2. Numerical evaluation of chiral measures

Recall the far field operator F from Section 5 for one of the scattering
problems stated in Section 2.1, defined by

F : L2
t (S2)→ L2

t (S2),

FA(x̂) =

∫
S2
E∞(x̂, d, A(d)) ds(d), x̂ ∈ S2,

where E∞(x̂, d, A) denotes the electric far field pattern E∞ with respect to an
incident plane wave with direction d ∈ S2 and amplitude A ∈ C3. FA is the
far field pattern with respect to the incident Herglotz wave pair V [A], defined
by

V [A](x)

∫
S2

(
A(d)

d×A(d)

)
eikd·x ds(d), x ∈ R3,

for A ∈ L2
t (S2). In order to discretize F , we want to choose a complete or-

thonormal system in L2
t (S2), which allows an easy calculation of the projected

operators Fpq, which are given for p, q ∈ {+,−} by

Fpq : V q → V p, A 7→ P pFP qA,

where P± is the orthogonal projection from L2
t (S2) onto V ± and V ± is the

eigenspace of the operator CA(d) = id × A(d) with respect to the eigenvalue
±1. They satisfy

L2
t (S2) = V + ⊕ V −, V + ⊥ V −.

Recall the spherical surface harmonics Umn , V
m
n , defined for n ∈ N and |m| 6 n

by

Umn (d) =
1√

n(n+ 1)
GradS2 Y

m
n (d), V mn (d) = d× Umn (d),

which form a complete orthonormal system in L2
t (S2), see Lemma 2.10. We

define the linear combinations

Amn = Umn + iV mn , Bmn = Umn − iV mn .

Then we have for any n ∈ N and |m| 6 n

i(d×Amn ) = id× Umn − d× (d× Umn (d)) = Umn (d) + iV mn (d) = Amn ,
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i.e. the Amn are eigenfunctions of C with respect to the eigenvalue 1. Anal-
ogously, the Bmn are eigenfunctions of C with respect to the eigenvalue −1.
The sets {Amn } and {Bmn } form complete orthogonal systems in V + and V −,
respectively. They are therefore well suited to discretize F for our purposes.
As a first example, we revisit the scattering from chiral media, see Section
2.1.4.

6.2.1. The chiral ball

Recall the scattering from chiral media in the scaling presented in Section
2.4.3, given by {

curlE = ikµr(H + βr curlH)

curlH = −ikεr(E + βr curlE)
in R3 \ ∂D (6.2.1a)

ν × E
∣∣
+
− ν × E

∣∣
− = 0, ν ×H

∣∣
+
− ν ×H

∣∣
− = 0 on ∂D (6.2.1b)(

Es

Hs

)
=

(
E − Ei
H −Hi

)
satisfies SMRC. (6.2.1c)

Here again, µr, εr and βr denote the piecewise constant material parameter,
given by

εr(x) =

{
εD
ε0
, x ∈ D

1, x /∈ D
, µr(x) =

{
µD
µ0
, x ∈ D

1, x /∈ D

and

βr(x) =

{
β, x ∈ D
0, x /∈ D

.

and k denotes the wavenumber. Considering the special case of the chiral ball
D = B1(0), we aim to find an analytic expression of the measure of chirality χ
and the smooth measure of chirality χHS. First, we make some observations.
Following [4], we consider the linear combinations

E± = E ± iH

instead of the field (E,H). One finds that E± satisfy the equations

curl curlE± − k2
±E
± = 0, in R3,

where the piecewise constant wavenumber k± is given by

k± =

{
k in R3 \D
κ± in D

,
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with

κ± =

√
εrµrk

1∓√εrµrkβ
.

This shows, that there are two critical points β±crit for the chiral parameter β,
namely

β±crit = ∓
√
εrµr − 1
√
εrµrk

.

If β = β±crit, then we have κ± = k, i.e. the interior wavenumber for the fields
of helicity ±1 is the same as the exterior wavenumber. In other words, the
scatterer is invisible for incident fields of helicity ±1. We expect the measure
of chirality χ and the modified measure of chirality χHS to be maximal for
these values of β. Let F denote the far field operator with respect to the
scattering from chiral media with D = B1(0). Let the tangential vector field
A ∈ L2

t (S2) be given by

A =

∞∑
n=1

n∑
m=−n

(αmn A
m
n + βmn B

m
n ).

Then it is shown in [28], that FA is given by

FA =
(4π)2i

k

∞∑
n=1

n∑
m=−n

(
γn(κ+)αmn A

m
n + γn(κ−)βmn B

m
n

)
,

where

γn(κ) =
Re dn(κ)

dn(κ)

dn(κ) =
( 1

κ
− 1

k

)
jn(κ)h(1)

n (k) + h(1)
n (k)j′n(κ)− jn(κ)h(1)′

n (k).

Note that the chiral ball preserves helicity, i.e. we have F+− = F−+ = 0 for
any β. F has the eigenvalues λ1

n, λ2
n, n ∈ N, given by

λ1
n = i

(4π)2

k
γn(κ+), λ2

n = i
(4π)2

k
γn(κ−), n ∈ N.

The eigenvalues λin, i = 1, 2 have the multiplicity 2n+ 1. The corresponding
eigenfunctions are given by Amn for λ1

n and by Bmn for λ2
n for m = −n, . . . , n.

The projected operator F++ and F−− are given by

F++A =

∞∑
n=1

n∑
m=−n

λ1
n

〈A,Amn 〉L2
t (S2)

‖Amn ‖2L2
t (S2)

Amn
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F−−A =

∞∑
n=1

n∑
m=−n

λ2
n

〈A,Bmn 〉L2
t (S2)

‖Bmn ‖2L2
t (S2)

Bmn

Note that since F is diagonal in the orthonormal basis

{Amn /‖Amn ‖L2
t (S2), B

m
n /‖Bmn ‖L2

t (S2), n ∈ N, m = −n, . . . , n},

the singular values of F are given by the absolute value of the eigenvalues.
The measure of chirality χ is then given by

χ(F) =
(
‖S(F++)− S(F−−)‖2`2 + ‖S(F+−)− S(F−+)‖2`2

) 1
2

=
16π2

k

( ∞∑
n=1

n∑
m=−n

[
|γn(κ+)| − |γn(κ−)|

]2) 1
2

=
16π2

k

( ∞∑
n=1

(2n+ 1)
[
|γn(κ+)| − |γn(κ−)|

]2) 1
2

.

Similarly, the modified measure of chirality χHS is given by

χHS(F) =
(
‖F‖2HS − 2

(
‖F++‖HS‖F−−‖HS + ‖F+−‖HS‖F−+‖HS

)) 1
2

=
16π2

k

( ∞∑
n=1

(2n+ 1)
[
γn(κ+)2 + γn(κ−)2

]
− 2
( ∞∑
n=1

(2n+ 1)γn(κ+)2
) 1

2
( ∞∑
n=1

(2n+ 1)γn(κ−)2
) 1

2

) 1
2

.

We can numerically evaluate χ(F) and χHS(F) by cutting off these series at
some N ∈ N. In Figure A.8, we plotted the graph of the normalized squared
measure of chirality and also the normalized squared modified measure of
chirality subject to the chiral parameter β ∈ (0, β−crit). As expected, we have
χ(F) = 0 for β = 0 and therefore also χHS(F) = 0; and χ(F) = 1 for β = β−crit

and therefore χHS(F) = 1 for β = β−crit. This behaviour illustrates Lemmata
5.11 and 5.12. Also, we can see χHS(F) 6 χ(F). The measure of chirality

χ(F) has a critical point at β̂, where it seems to be not differentiable. The

reason for this is, that for β = β̂, we have γn(κ−) ≈ 0 except for a few

n ∈ N. Note that the modified measure of chirality χHS(F) is smooth at β̂,
but significantly lower. Figure A.9 shows the same situation as Figure A.8, but
zoomed in in a neighborhood of β−crit. Note that neither χ(F) nor χHS(F) are
differentiable in β−crit, which was expected, since F−− vanishes for β = β−crit.
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6.2.2. Chiral configuration of achiral spheres

For more complex geometries, there are no analytic expressions of χHS(F)
and χ(F) available. We have to rely on discretizations of the far field operator
F and use the singular values of the discretization in order to calculate χ(F)
and χHS(F). In the following, let F be the far field operator with respect to the
scattering from a perfect conductor, a penetrable obstacle or an obstacle with
impedance boundary condition. Numerical solutions with respect to these
scattering problems were presented in Section 6.1. Since the far field F maps
the space L2

t (S2) onto itself, we get a natural discretization by considering for
some fixed N ∈ N

F : VN → VN ,

where the 2N2 + 4N dimensional space VN is given by

VN = span{Umn , V mn : n 6 N, |m| 6 n} ⊂ L2
t (S2).

For every tangential vector field Umn , V mn with n 6 N and |m| 6 n, we have
to solve the scattering problem with the incident field given by the Herglotz
wave pair V [Umn ] and V [V mN ], respectively. Since a Herglotz wave pair V [A]
with A ∈ L2

t (S2) is a superposition of plane waves, i.e.

V [A](x) =

∫
S2

(
A(d)

d×A(d)

)
eikd·x ds(d), x ∈ R3,

we consider first the expansion of a plane wave into vector wave functions, i.e.
for some p ∈ C3 and d ∈ S2 with d · p = 0, we consider

p eikd·x =

∞∑
n=1

n∑
m=−n

(
αmnM

m
n (x) + βmn

1

ik
curlMm

n (x)
)
. (6.2.2)

In order to find expressions for the unknown coefficients αmn and βmn , recall
the definition of the vector wave functions. We have

Mm
n (x) = −jn(k|x|)V mn (x/|x|), x ∈ R3

and

1

ik
curlMm

n (x) =

√
n(n+ 1)

ik|x|
jn(k|x|)Y mn (x/|x|) x

|x|

+
1

ik|x|
(
jn(k|x|) + k|x|j′n(k|x|)

)
Umn (x/|x|), x ∈ R3.
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6.2. Numerical evaluation of chiral measures

We define x̂ = x/|x| and multiply the equation (6.2.2) with Umn (x̂) = U−mn (x̂)
and V mn (x̂) = V −mn (x̂) and integrate with respect to x̂ over the unit sphere
S2. Since the Umn and V mn form an orthonormal system, this yields∫

S2
p · V −mn (x̂)eik|x|d·x̂ ds(x̂) = −αmn jn(k|x|), (6.2.3)∫

S2
p · U−mn (x̂)eik|x|d·x̂ ds(x̂) = βmn

( 1

ik|x|
jn(k|x|) +

1

i
j′n(k|x|)

)
. (6.2.4)

Recall a Herglotz wave pair V [A] for A ∈ L2
t (S2) being the superposition of

electromagnetic plane waves. We call v[g] for g ∈ L2(S2) given for x ∈ R3 by

v[g](x) =

∫
S2
g(d)eikx·d ds(d)

a (acoustic) Herglotz wave function. We identify the left hand sides as Herglotz
wave functions, evaluated at |x|d ∈ R3, i.e.∫

S2
p · V −mn (x̂)eik|x|d·x̂ ds(x̂) = v[p · V −mn ](|x|d),∫

S2
p · U−mn (x̂)eik|x|d·x̂ ds(x̂) = v[p · U−mn ](|x|d).

In order to determine the coefficients αmn , βmn , we consider the asymptotic
behaviour of the left and right hand side in (6.2.3) and (6.2.4). For the Herglotz
wave functions on the left hand side, we have for x = rd, with r > 0 and d ∈ S2

the asymptotic behavior

v[g](rd) = −2πi

k
g(d)

eikr

r
+

2πi

k
g(−d)

e−ikr

r
+O

( 1

r2

)
for r →∞, see [3]. For the spherical Bessel function jn and its derivative j′n,
we use the asymptotic behaviour for the spherical Hankel functions of the first
and second kind, see (2.3.6), together with the relation

jn(t) =
1

2
h(1)
n (t) +

1

2
h(2)
n (t), t 6= 0,

to find

jn(kr) =
(−i)n+1

2k

eikr

r
− in+1

2k

e−ikr

r
+O

( 1

r2

)
,

j′n(kr) =
(−i)n

2k

eikr

r
+

in

2k

e−ikr

r
+O

( 1

r2

)
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for r →∞, see [14, Section 2.4]. We compare the coefficients in front of e±ikr

r
in (6.2.3), which yields

αmn = −4π in p · V −mn (d),

αmn = −4π(−i)n p · V −mn (−d).

Since V −mn (−d) = (−1)nV −mn (d), see [33, Lemma 2.12], we conclude

αmn = −4π in
(
p · V −mn (d)

)
, n ∈ N, |m| 6 n.

Similarly, we conclude

βmn = 4π in
(
p · U−mn (d)

)
, n ∈ N, |m| 6 n.

In conclusion, we have for a plane wave the expansion

p eikd·x = −4π

∞∑
n=1

in
n∑

m=−n

((
p·V −mn (d)

)
Mm
n (x)−

(
p·U−mn (d)

) 1

ik
curlMm

n (x)
)

into vector wave functions. We insert this representation into the definition
of the Herglotz wave pair, which yields for the electric field the expansion

E[A](x) = −4π

∞∑
n=1

in
n∑

m=−n

(
(A, V mn )L2(S2)M

m
n (x)

+ (A,Umn )L2(S2)
1

ik
curlMm

n (x)
)
.

Recall that we want to discretize the far field operator by considering the basis

B = {Umn , V mn : n 6 N, |m| 6 n}

for some fixed N ∈ N. Given an element AN ∈ VN , i.e.

A =

N∑
n=1

n∑
m=−n

(
umn U

m
n + vmn V

m
n

)
,

we have found a representation for the corresponding incident field, namely

Ei(x) = −4π

N∑
n=1

in
∑

m=−nn

(
vmn M

m
n (x)− umn

1

ik
curlMm

n (x)
)
,

which we use to evaluate the incident field on the boundary of the obstacle.
Note, that we can use our numerical experiments from Section 6.1, in order
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6.2. Numerical evaluation of chiral measures

to choose an appropriate N ∈ N, since they involved exactly these incident
fields. By expanding the far field pattern E∞ as well with respect to elements
of B, we arrive at a discretization of the far field operator F with respect to
the basis B. If we order the basis B by

B = {U−1
1 , U0

1 , U
1
1 , U

−2
2 , . . . , UNN , V

−1
1 , . . . , V NN },

we arrive at a representation matrix of the discrete far field operator F ∈
C(2N2+4N)×(2N2+4N), given by

F =

(
UU UV
V U V V

)
,

with UU , UV , V U , V V ∈ C(N2+2N)×(N2+2N). The first letter of the block
corresponds to the expansion of the far field into Umn or V mn and the second
letter corresponds to the expansion of the incident field into Umn or V mn . For
example, we have

UV11 = (FV −1
1 , U−1

1 )L2(S2).

So by solving 2N2 + 4N scattering problems and expanding each of the far
fields into 2N2 + 4N vector spherical harmonics, we arrive at a discretization
of the far field operator F . In order to evaluate the chiral measure χ and the
modified chiral measure χHS, we need the far field operator F decomposed
into

F =

(
F++ F+−

F−+ F−−
)

which is the representation with respect to the ordered basis B̂, given by

B̂ = {Umn + iV mn , Umn − iV mn : n 6 N, |m| 6 n}

The corresponding basis change matrix M , which maps elements of B onto B̂
and its inverse can easily be identified by

M =

(
I I
iI −i I

)
, M−1 =

1

2

(
I −iI
I iI

)
.

We then have (
F++ F+−

F−+ F−−
)

= M−1FM

and we can easily calculate the singular values of these operators and therefore
the measure of chirality χ and also the modified measure of chirality χHS. As
an example, we have chosen four perfectly conducting spheres with different
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diameters located on the corner points of a tetrahedron. Recall, that we
expect χ to be zero by Theorem 5.2, if the constellation of these spheres is
geometrically achiral. To illustrate this, we fix three of the radii by setting
r1 = 1

2 , r2 = 1√
2

and r3 = 1 while varying r4 in the interval [r1, r2]. If r4 equals

r1 or r2, the scatterer becomes geometrically achiral. Figure A.10 shows the
configuration of the spheres and Figure A.11 shows the plots of the measure
of chirality χ and the modified measure of chirality χHS, relative to its Hilbert
Schmidt norm. Calculations were done with wavenumber k =

√
10 and with

N = 5, i.e. F ∈ C70×70. Note, that the overall relative chirality of the four
perfectly conducting spheres is very low and far from the theoretical maximal
value 1. Also note that each combination of three sphere form an geometrically
achiral scatterer, i.e. only the scattering due to multiple scattering of the
entire ensemble of all four spheres yields the chiral behaviour. As expected, χ
has significantly lower values for the cases r4 = r1 and r4 = r2. The modified
measure of chirality χHS is even lower and admits an additional local minimum
for r4 ≈ 0.625.

6.3. Numerical solutions of inverse scattering problems

Recall the iterative Newton scheme from Section 4. In every iteration i ∈ N,
we need to solve (4.0.6), given by(

F′[∂Di]∗F′[∂Di] + αI
)
h = F′[∂Di]∗(E∞ − F(∂Di)),

where F′[∂Di]h is the far field pattern of the domain derivative E′ with respect
to the scatterer Di and the perturbation h. In Section 6.1, we presented how
to solve scattering problems. Since the domain derivative E′ is a radiating
solution of Maxwell’s equations, we can use the same integral equations used to
solve the scattering problem in order to calculate the domain derivative E′ by
changing the right hand side. Recall the inhomogeneous Dirichlet boundary
condition of the domain derivative E′ of the perfect conductor, see (3.1.7),
given by

ν × E′ =
−−→
Curl∂D(hνEν)− ikhν γTH, (6.3.1)

the inhomogeneous impedance boundary condition of the domain derivative
E′ of the scatterer with impedance boundary condition, see (3.4.4), given by

ν ×H ′ − λ
(
ν × (E′ × ν)

)
=
−−→
Curl∂D(hνHν) + λGrad∂D(hνEν)

+ hν

(∂λ
∂ν

+ ik − 2λ(R− κ)
)
γTE + ikλhν γtH,
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and the inhomogeneous transmission conditions of the domain derivative E′,
H ′ of the scattering from a penetrable obstacle, see (3.2.3) and (3.2.4), given
by

1
√
ε0
ν × E′

∣∣
+
− 1
√
εD

ν × E′
∣∣
− =

1
√
ε0

(−−→
Curl∂D(hνEν

∣∣
+

)− ikhνγ
+
TH

)
− 1
√
εD

(−−→
Curl∂D(hνEν

∣∣
−)− iκγ−T H

)
and

1
√
µ0
ν ×H ′

∣∣
+
− 1
√
µD

ν ×H ′
∣∣
− =

1
√
µ0

(−−→
Curl∂D(hνHν |+) + ikhνγ

+
T E
)

− 1
√
µD

(−−→
Curl∂D(hνHν |−) + iκhνγ

−
T E
)
.

In the following, we will present precisely how we implemented and tested the
assembly of these right hand sides. Since we do not have analytic expressions
at hand to compare our discretizations to, it is crucial to test every step in
order to control the resulting error. We start with the perfect conductor.

The first step in order to calculate the right hand side of (6.3.1) is the
calculation of the tangential projection of the magnetic field γTH and the
normal component of the electric field Eν = E ·ν. If we use a direct approach,
the unknown λ of our integral equation is given by λ = γNE = H × ν.
Application of the Rotation operator R, see (6.1.16) for the definition, Section
B.1 in Appendix B for the implementation and Figure A.1 in Appendix A for
the convergence plot, yields access to (ν×(H×ν)). Using an indirect approach
and the Ansätze

Es = −Eλ and Es = Hλ
leads with the jump relations from Lemma 6.4 the representations

γNE
s =

(1

2
I−H

)
λ and γNE

s = −Eλ,

respectively. By means of R, we get again access to (ν × (H × ν)). For the
normal component of the electric field Eν , we use the relation (2.2.6) with
F = H together with curlH = −ikE, i.e.

Div∂D(H × ν) = −ikEν .

For a smooth enough tangential vector field U and a scalar function v, we
have ∫

∂D

U ·Grad∂D v ds = −
∫
∂D

vDiv∂D U ds,
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see (2.2.5). The left hand side can be seen as weak formulation for the negative
surface divergence −Div∂D and the right hand side as weak formulation for
the surface gradient Grad∂D. The surface gradient and the surface divergence
can easily be implemented and tested in BEMPP. For the implementations, see
Section B.3 in Appendix B and for an error plot see Figure A.2 in Appendix
A. Finally, we need to calculate the product of the normal component of the
perturbation h and the normal component of the electric field E, i.e. hνEν
and the product of the normal component h and the tangential projection of
the magnetic field H, i.e. hν(ν × (H × ν)). Note that h is given analytically,
but hν , Eν and (ν× (H×ν)) only as discretizations. In order to represent the
discrete product f ·d g of two functions f and g in a chosen basis of functions
(φi), we make the Ansatz

f ·d g =
∑
i

αiφi,

and consider the L2 projection of the left and right hand side onto the basis
functions φi, i.e. we solve the linear system∫

∂D

φj(x) · (f(x)g(x)) ds(x) = αi

∫
∂D

φi(x)φj(x) ds(x), j = 1, . . . .

For the case f = hν , g = Eν , we choose a basis of scalar functions and for
f = hν , g = (ν × (H × ν)), we choose a basis of vector valued functions. The
implementation of this scheme can be seen in Section B.4 in Appendix B and
the resulting convergence plot in Figure A.3 in Appendix A. With these tools,
we are able to calculate the boundary condition for the domain derivative E′

by calculating

ν × E′ = R Grad∂D(ikhν Div(H × ν)) + ikhνR(H × ν),

where we have a stable discretization for every operator and since we have
access to the trace H × ν. Note, that we need no additional tools to calculate
the inhomogeneous transmission conditions for the domain derivative of the
scattering from a penetrable obstacle.

For the scattering from an obstacle with impedance boundary condition, we
have calculate additionally the curvature operator R and the mean curvature
κ. Recall the definitions

R = Jν and κ =
1

2
div(ν) on ∂D.

From Jνν = 0, see Lemma 3.11, we conclude ∂ν
∂ν = 0 and since R = R> we
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6.3. Numerical solutions of inverse scattering problems

arrive for any vector field F at

RF =

F ·Grad∂D ν1

F ·Grad∂D ν2

F ·Grad∂D ν3

 . (6.3.2)

For the mean curvature, we use the relation

−∆∂Dxi = 2κ νi, i = 1, . . . , 3,

see [37], to calculate

− 1

2

3∑
i=1

νi ∆∂Dxi = −1

2

3∑
i=1

κ ν2
i = κ|ν|2 = κ. (6.3.3)

The left hand side of (6.3.3) can easily implemented in BEMPP with the tools,
we already presented, since it is just the combination of (discrete) summation,
multiplication and the application of the Laplace-Beltrami operator ∆∂D. For
the implementation of (6.3.2), we need two additional routines, first, the dis-
crete scalar product between two vector fields and then the mapping, which
maps the triple (f1, f2, f3) of scalar functions fi, i = 1, . . . , 3 to the vector
field, where the i-th component is given by fi, i = 1, . . . , 3, i.e.

f1, f2, f3 7→

f1

f2

f3

 .

We implement the scalar product and the above mapping in the same way as
the product of functions by the means of L2 projections. The implementations
can be seen in Listing 10 and 11 in Appendix B, and an error plot in Figure
A.4 in Appendix A.

Finally, we have presented all necessary tools in order to fully discretize the
equation presented at the beginning of this section. We finish this chapter and
also this thesis by presenting numerous actual reconstructions in the following
section.

6.3.1. Reconstructions

We have successfully run reconstructions for penetrable obstacles and im-
penetrable obstacles, either being a perfect conductor or an obstacle with
impedance boundary condition. In each case, we considered exact and also
noisy data. The results for the penetrable obstacle have already been pub-
lished in [21].

For each setting, we considered the following shapes, see Figure 6.1:
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1. A rounded cuboid, implicitly given by(x1

r1

)n
+
(x2

r2

)n
+
(x3

r3

)n
= dn

with some exponent n ∈ N, positive radius d > 0 and side lengths
r1, r2, r3 > 0.

2. A peanut-shaped object, implicitly given by( x1

R(2x3/d)

)2

+
( x2

R(2x3/d)

)2

+ x2
3 =

d2

4
,

with R : [−1, 1]→ R, given by R(z) = 3
5 −

2
5 cos

(
π
2 z
)
.

Figure 6.1: The rounded cuboid (on the left) and the peanut shaped object
(on the right).

Our implementation requires smooth star shaped objects. Therefore we
picked the rounded cuboid to have an object close to the non-smooth cuboid
and the peanut-shaped object to test the reconstruction of non-convex ob-
jects. In order to cancel possible positive effects due to symmetry, we applied
a translation such that the center of the two star shaped objects does not coin-
cide with the center of our star shaped reconstruction in 0. We generated the
exact data E∞ = F(∂D) for ∂D being the boundary of the rounded cuboid or
the peanut shaped object by picking 168 evaluation points x̂i, i = 1, . . . , 168
on the unit sphere S2, i.e. the discrete version of E∞ is an element of C3×168.
In order to avoid an inverse crime, we ran calculations of the exact data with
meshes unrelated to those used in the reconstruction and yielding a higher
accuracy. In the case of the perfect conductor, we used also a different inte-
gral equation. In the case of noisy data, we multiplied every component of
the discrete far field E∞ ∈ C3×168 with some perturbation factor of the form

1 + δλ1e2πiλ2 ,
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6.3. Numerical solutions of inverse scattering problems

where λ1, λ2 are on (0, 1) uniformly distributed random numbers and the noise
level δ > 0. We call this noise up to δ. The effective noise level δeff is given
by

δeff =
‖E∞ − Eδ∞‖
‖E∞‖

.

Since the noisy far field Eδ∞ is no longer a (discrete) tangential vector field
on the unit sphere S2, one might think of cancelling the nontangential parts
of Eδ∞ before starting the iterative Newton scheme, but since we apply the
adjoint of F[∂Di] on the right hand side of (4.0.6), the nontangential parts get
canceled automatically. For the calculation of δeff, we did not see any relevant
difference, if we just considered the tangential part of Eδ∞.

Figure 6.2: Best approximation of the rounded cuboid using (N + 1)2 basis
functions.

As an initial guess, we have chosen the ball of radius 1, i.e. D0 = B1(0) =
{x ∈ R3, ‖x‖ 6 1}. We have observed that we have to either increase the
regularization parameter α drastically or use some a priori information about
the size of the scatterer for successful reconstructions. Also, we need the a
priori information, that the origin 0 ∈ R3 is a possible star shaped center.

We have chosen the regularization parameter α by experience. Using too
small parameters, especially in the case of noisy data, leads to updates of
the parametrization, where negative radii occur, i.e. degenerated objects.
But above some critical level, we have observed robust constructions for both
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scattering objects. Using larger than necessary α slows down the reconstruc-
tion speed. In the case of exact data, we have used α = 3. In the case of
noisy data with δ = 0.3, which lead to δeff ≈ 0.13, we have used α = 7 for
the peanut-shaped and α = 12 for the rounded cuboid. Reconstructions of
the rounded cuboid with α = 7 and for the peanut-shaped object with α = 3
failed nearly every time.

In order to evaluate the reconstructions, we need to know what is the best
reconstruction we can expect. Choosing a fixed number of basis elements for
the reconstruction, we can calculate the L2(S2) projection of the parametriza-
tion onto these elements. This is, in a sense, the best reconstruction we can
hope for. In Figure 6.2, one can see the best approximation of the rounded
cuboid using different numbers of basis elements.

Figure 6.3: Residuals of the reconstruction of the peanut-shaped object and
the rounded cuboid with exact and noisy data.

As incident field, we have considered a plane wave (Ei, Hi), given by(
Ei

Hi

)
(x) =

(
p

d× p

)
eikd·x, x ∈ R3.

To avoid any positive effects due to symmetry of the object with respect to
the direction d, we have chosen

p =

 1 + i
2

−1 + 1
3 i

 and d =
1√
14

1
2
3

 .
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We start by presenting the results for the scattering from a penetrable obstacle.
We have chosen the material parameters

εr = 2.1, µr = 1.0, k = 1.0472, κ = 1.5175,

which corresponds to the scattering of Teflon (C2F4) illuminated by VHF
radiation with wavelength of 6m. We applied noise up to δ = 0.3, which lead
to the effective noise level δeff ≈ 0.13 for the rounded cuboid and δeff ≈ 0.12
for the peanut-shaped object. We have chosen N = 7, i.e. (N+1)2 = 64 basis
functions for the reconstructions. In Figure 6.3, the normalized residuals

ri :=
‖E∞ − F(∂Di)‖

‖E∞‖

are plotted. We ran 21 iterations without stopping rule. Observe the relatively
large initial error r0 with r0 ≈ 1.0 for the peanut. As expected, after some
iterations, the residuals stay on the same level. Note that for exact data, the
final errors are significantly lower in comparison to the results for noisy data.
In Section A.4 of the Appendix A, the actual reconstructions are presented
exemplary after 1, 2, 7 and 21 iterations in Figures A.14 and A.15 for the
peanut-shaped object and in Figures A.12 and A.13 for the rounded cuboid.
As expected from the residuals, see Figure 6.3, the biggest improvement occurs
in the first few iterations. Note, that the algorithm has difficulties in recon-
structing the non-convex part of the peanut-shaped object in the case of noisy
data. This is due to the high noise level. In Figure A.16 the reconstruction
of the peanut-shaped object with δ = 0.1 is presented. Note the much better
reconstructed non-convex part but the remaining indention in the direction of
the plane wave, which is a known phenomena in inverse acoustic scattering,
see [25].

There is hardly any difference in the performance or the result of the re-
constructions obtained for penetrable or perfectly conducting obstacles. One
might argue, that the reconstruction of the rounded cuboid with impedance
boundary condition, as seen in Figure A.17 with N = 6, i.e. (N + 1)2 = 49
basis functions, with the material parameter

k =

√
5

2
and λ = 1.1,

with regularization parameter α = 3 and the same incident plane wave as
before shows a better performance as the reconstructions before, but we do
not want to claim that this is the case in general.
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A.1. Surface operators

Figure A.1: The relative error between the discretizations of γtϕ and RγTϕ
on the unit sphere with ϕ(x) = (x2

1 + x2, x
3
2,−x1)>.
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Figure A.2: Relative error of GradS2 Y
m
n −

√
n(n+ 1)Umn and DivS2 U

m
n +√

n(n+ 1)Y mn on the unit sphere plotted against the element size
h of the mesh for n = 2 and m = 1.
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A.1. Surface operators

Figure A.3: Relative errors of the discrete multiplication ·d of the functions f
and g and of the function f with the vector field G against the
element size h of the mesh.
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Figure A.4: Relative error of the discrete composition (f, g, h)> of the discrete
functions f, g, h and the discretized vector field (f, g, h)>, plotted
against the element size h of the mesh.
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A.2. Integral equations

Figure A.5: Scattering from a perfect conducting sphere ∂D = ∂BR(0) with
R = 1.1 with wavenumber k =

√
3.6, using the direct MFIE

(6.1.8). It is αMN = 2 and βMN = 1.3.
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Figure A.6: Scattering from a penetrable sphere ∂D = ∂BR(0) with R = 1.1,
with material parameters ε0 = 1.8, εD = 1.5, µ0 = 2.0, µD = 1.5
and ω = 1.0, using the boundary integral equation (6.1.11). It is
αMN = 2 and βMN = 1.3.
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Figure A.7: Scattering from a sphere ∂D = ∂BR(0) with R = 1.1 with
impedance boundary condition and constant λ = 0.9 and
wavenumber k =

√
3.6, using the boundary integral equation

(6.1.15). It is αMN = 2 and βMN = 1.3.
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A.3. Measuring chirality

Figure A.8: Relative squared (modified) measure of chirality of the chiral ball
D = B1(0) with k =

√
10 and µr = εr = 1.5. The series were cut

at N = 100.
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A.3. Measuring chirality

Figure A.9: Relative squared (modified) measure of chirality as in Figure A.8,
but zoomed in in the neighborhood of β−crit.
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Figure A.10: Geometric constellation of the four perfectly conducting spheres.
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A.3. Measuring chirality

Figure A.11: The relative (modified) measure of chirality in dependency of the
radius r4.
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A.4. Reconstructions

Figure A.12: Reconstructing the rounded cuboid with 64 shape functions and
exact data. The black arrow indicates the direction of the inci-
dent plane wave.
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A.4. Reconstructions

Figure A.13: Reconstructing the rounded cuboid with 64 shape functions and
noisy data with δ = 0.3. The black arrow indicates the direction
of the incident plane wave.
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Figure A.14: Reconstruction of the peanut-shaped object with 64 shape func-
tions and exact data.
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A.4. Reconstructions

Figure A.15: Reconstruction of the peanut-shaped object with 64 shape func-
tions and noisy data with δ = 0.3.
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Figure A.16: Reconstruction of the peanut-shaped object with 64 shape func-
tions and noisy data with δ = 0.1.
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Figure A.17: Reconstruction of the rounded cuboid with impedance boundary
condition.
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B. Implementations

In this appendix, we want to present some implementations and tools used
throughout the thesis to expand the functionality of BEMPP (https://bempp.
com). Note that these code snippets might not work in future versions. They
were implemented and tested with BEMPP 3.3.1 and Python 2.7. We fre-
quently use the Numpy library (https://numpy.org/). In order to work,
every code snippet needs the following imports:

Listing 1: Basic imports

1 import bempp . api
2 import numpy as np

B.1. Rotation operator

We start with presenting the implementation of the rotation operator R,
defined by

RγTϕ = γTϕ× ν = γtϕ

for some smooth enough vector field ϕ. This operator can be implemented by
the lines presented in the Listing 2.

Listing 2: Implementation of the rotation operator R

1 def t r a c e t r an s f o rmat i on ( domain , range , dua l to range , l a b e l=”
TRACETRANSFORMATION” , parameters=None ) :

2 return bempp . api . ope ra to r s . boundary . spa r s e . maxwe l l i d en t i t y (
domain , range , dua l to range , l a b e l=labe l , parameters=
parameters )

The errors in Figure A.1 were calculated by using Listing 3 and varying the
variable H, which defines the average diameter of the elements, used for the
mesh approximating the unit sphere.

Listing 3: Testing the rotation operator R

1 H = 0.15
2 Wavenumber = 1 .0
3 Grid = bempp . api . shapes . sphere (h=H)
4 MT = bempp . api . ope ra to r s . boundary . maxwell . mu l t i t r a c e op e r a t o r (Grid

, Wavenumber)
5 e l e c t r i c s p a c e , magnet ic space = MT. domain spaces
6 e l e c t r i c d u a l , magnet ic dual = MT. dua l t o r ang e spa c e s
7 TangentialToTrace = t r a c e t r an s f o rmat i on ( e l e c t r i c s p a c e ,

e l e c t r i c s p a c e , e l e c t r i c d u a l )
8 def FunTrace (x , n , d , r ) :
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B. Implementations

9 Vector = np . array ( [ x [ 0 ]∗∗2 + x [ 1 ] , x [ 2 ] ∗ ∗ 3 , −x [ 1 ] ] )
10 r [ : ] = np . c r o s s ( Vector , n )
11 def FunTangential (x , n , d , r ) :
12 Vector = np . array ( [ x [ 0 ]∗∗2 + x [ 1 ] , x [ 2 ] ∗ ∗ 3 , −x [ 1 ] ] )
13 r [ : ] = np . c r o s s (n , np . c r o s s ( Vector , n ) )
14 Tangent ia l = bempp . api . GridFunction ( e l e c t r i c s p a c e , fun=

FunTangential )
15 Trace = bempp . api . GridFunction ( e l e c t r i c s p a c e , fun=FunTrace )
16 Test = TangentialToTrace ∗ Tangent ia l
17 Error = (Test−Trace ) . l2 norm ( ) / Trace . l2 norm ( )

B.2. IBC-EFIE

Recall the boundary integral equation (6.1.15), given by

1

2
γtE

s + HγtE
s −E

[
λ(ν × γtEs)

]
= E

[
γNE

i + λ(ν × γtEi)
]
.

We used the lines presented in Listing 4 to solve this integral equation for
constant λ. Note that we have used functions and operators defined above in
Appendix B.1, especially the multitrace operator MT. The results can be seen
in Figure A.7. Lines 6 and 8 have to be filled with the implementations of the
Dirichlet trace γtE

i and Neumann trace γNE
i respectively.

Listing 4: Implementation of the IBC-EFIE.

1 Impedance = 2 .0
2 Nu = −t r a c e t r an s f o rmat i on ( e l e c t r i c s p a c e , magnet ic space ,

magnet ic dual )
3 ID = bempp . api . ope ra to r s . boundary . spa r s e . mu l t i t r a c e i d e n t i t y (Grid ,

spaces= 'maxwell ' )
4 OP = 0.5 ∗ ID [ 0 , 0 ] + MT[ 0 , 0 ] − Impedance ∗ MT[ 0 , 1 ] ∗ Nu
5 def Di r i c h l e t I n c i d e n t (x , n , d , r ) :
6 r [ : ] = . . . # Define D i r i c h l e t t race .
7 def NeumannIncident (x , n , d , r ) :
8 r [ : ] = . . . # Define Neumann trace .
9 Inc identTrace s = (bempp . api . GridFunction ( e l e c t r i c s p a c e , fun=

D i r i c h l e t I n c i d e n t ) , bempp . api : GridFunction ( magnet ic space , fun
=NeumannIncident ) )

10 r h s f un c t i o n = Inc identTrace s [ 1 ] + Impedance ∗ Nu ∗ Inc identTrace s
[ 0 ]

11 RHS = MT[ 0 , 1 ] ∗ r h s f un c t i o n
12 Solut ion , = bempp . api . l i n a l g . gmres (OP, RHS)
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B.3. Surface differential operators

Recall the relation (2.2.5), given by∫
∂D

vDiv∂D U ds = −
∫
∂D

U ·Grad∂D v ds.

We therefore implement the surface gradient by the lines in Listing 5 and
analogously the surface divergence in Listing 6.

Listing 5: Implementation of the surface gradient

1 def s u r f a c e g r ad i e n t ( domain , range , dua l to range ,
2 l a b e l=”SURFACE GRADIENT” , symmetry=”no symmetry” ,
3 parameters=None ) :
4 from bempp . api . ope ra to r s . boundary . spa r s e import

ope r a t o r f r om func t o r s
5 from bempp . api . assembly . f unc t o r s import

s imp l e t e s t t r i a l i n t e g r a n d f u n c t o r
6 from bempp . api . assembly . f unc t o r s import

s u r f a c e d i v e r g e n c e f un c t o r
7 from bempp . api . assembly . f unc t o r s import

s c a l a r f u n c t i o n v a l u e f u n c t o r
8 return −ope r a t o r f r om func t o r s ( domain , range , dua l to range ,

s u r f a c e d i v e r g e n c e f un c t o r ( ) ,
s c a l a r f u n c t i o n v a l u e f u n c t o r ( ) ,
s imp l e t e s t t r i a l i n t e g r a n d f u n c t o r ( ) , l abe l , symmetry ,
parameters )

Listing 6: Implementation of the surface divergence.

1 def s u r f a c e d i v e r g en c e ( domain , range , dua l to range , l a b e l=”
SURFACE DIVERGENCE” , symmetry=”no symmetry” , parameters=None ) :

2 from bempp . api . ope ra to r s . boundary . spa r s e import
ope r a t o r f r om func t o r s

3 from bempp . api . assembly . f unc t o r s import
hd i v f un c t i o n va l u e f un c t o r

4 from bempp . api . assembly . f unc t o r s import
s imp l e t e s t t r i a l i n t e g r a n d f u n c t o r

5 from bempp . api . assembly . f unc t o r s import
s u r f a c e g r a d i e n t f u n c t o r

6 return −ope r a t o r f r om func t o r s ( domain , range , dua l to range ,
s u r f a c e g r a d i e n t f u n c t o r ( ) , hd i v f un c t i o n va l u e f un c t o r ( ) ,
s imp l e t e s t t r i a l i n t e g r a n d f u n c t o r ( ) , l abe l , symmetry ,

parameters )

We use the relations

GradS2 Y
m
n =

√
n(n+ 1)Umn and DivS2 U

m
n = −

√
n(n+ 1)Y mn
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in order to test our implementations. The errors in Figure A.2 were calculated
by using the lines in Listing 7 and varying the variable H, which defines the
average diameter of the elements, used for the mesh approximating the unit
sphere.

Listing 7: Testing the surface gradient and divergence.

1 H = 0.15
2 Wavenumber = 1 .0
3 N = 2
4 M = 1
5 Grid = bempp . api . shapes . sphere (h=H)
6 MT = bempp . api . ope ra to r s . boundary . maxwell . mu l t i t r a c e op e r a t o r (Grid

, Wavenumber)
7 VecSpace = MT. domain spaces [ 0 ]
8 ScaSpace = bempp . api . f un c t i on spac e (Grid , ”B−P” , 1)
9 def Ynm(x , n , d , r ) :

10 r [ : ] = . . . # To be f i l l e d .
11 def Unm(x , n , d , r ) :
12 r [ : ] = . . . # To be f i l l e d .
13 fun = bempp . api . GridFunction ( ScaSpace , fun=Ynm)
14 Fun = bempp . api . GridFunction (VecSpace , fun=Unm)
15 SurfGrad = su r f a c e g r ad i e n t ( ScaSpace , VecSpace , VecSpace )
16 SurfDiv = su r f a c e d i v e r g en c e (VecSpace , ScaSpace , ScaSpace )
17 Test1 = SurfGrad ∗ fun
18 Test2 = SurfDiv ∗ Fun
19 Error1 = ( Test1 − np . s q r t (N∗(N+1) ) ∗ Fun) . l2 norm ( ) / Test1 .

l2 norm ( )
20 Error2 = ( Test2 + np . s q r t (N∗(N+1) ) ∗ fun ) . l2 norm ( ) / Test2 .

l2 norm ( )

B.4. Products of functions

The implementation of the product of two functions is given by the code
shown in Listing 8. The errors in Figure A.3 were calculated by the lines of
code shown in Listing 9 and varying the variable H, which again defines the
average diameter of the elements, used for the mesh approximating the unit
sphere. The functions fun_1, fun_2, fun_3 define the three functions f , g,
G, given by

f(x) = x2
1 + x2 − x1x3, g(x) = x1x2x3 + x1 − x2

3

and by

G(x) = ν(x)×

x1x2

x2x3

x1x3
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for x ∈ ∂D = S2. We then compute the discrete products fg and fG and
compare it to the discretizations of fg and fG, respectively.

Listing 8: Implementation of the discrete multiplication of functions

1 def f unc t i on produc t ( f , g , t r i a l s p a c e , t e s t s p a c e ) :
2 from bempp . api . i n t e g r a t i o n import

g au s s t r i a n g l e p o i n t s and we i gh t s
3 from bempp . api . u t i l s import combined type
4 accuracy orde r = bempp . api . g l oba l pa ramete r s . quadrature . f a r .

s i n g l e o r d e r
5 points , weights = gau s s t r i a n g l e p o i n t s and we i gh t s (

accuracy orde r )
6 i f f . space . g r i d != g . space . g r id :
7 raise ValueError ( ' f and g must be de f ined on the same gr id

' )
8 e l em en t l i s t = l i s t ( t e s t s p a c e . g r i d . l e a f v i ew . e n t i t y i t e r a t o r

(0 ) )
9 dtype = combined type ( f . dtype , g . dtype )

10 r e s u l t = np . z e r o s ( t e s t s p a c e . g l oba l do f count , dtype=dtype )
11 for element in e l em en t l i s t :
12 dofs , mu l t i p l i e r s =
13 t e s t s p a c e . g e t g l o b a l d o f s ( element , do f we ight s=True )
14 n l o c a l b a s i s f u n s = len ( mu l t i p l i e r s )
15 for index in range ( n l o c a l b a s i s f u n s ) :
16 c o e f f s = np . z e r o s ( n l o c a l b a s i s f u n s )
17 c o e f f s [ index ] = 1
18 i n t e g r a t i on e l emen t s = element . geometry .

i n t e g r a t i on e l emen t s ( po in t s )
19 ba s i s v a l u e s = t e s t s p a c e . e v a l u a t e l o c a l b a s i s ( element

, po ints , c o e f f s )
20 f p r od g = f . eva luate ( element , po in t s ) ∗ g . eva luate (

element , po in t s )
21 p rod t ime s ba s i s = np .sum( f p r od g ∗ ba s i s v a l u e s ,

ax i s=0)
22 l o c a l r e s = np .sum( p r od t ime s ba s i s ∗ weights ∗

i n t e g r a t i on e l emen t s )
23 r e s u l t [ do f s [ index ] ] += mu l t i p l i e r s [ index ] ∗ l o c a l r e s
24 return bempp . api . GridFunction ( t r i a l s p a c e ,
25 dua l space=te s t spa c e , p r o j e c t i o n s=r e s u l t )

Listing 9: Testing the discrete multiplication of functions

1 H = 0.15
2 Grid = bempp . api . shapes . sphere (h=HH)
3 MT = bempp . api . ope ra to r s . boundary . maxwell . mu l t i t r a c e op e r a t o r (Grid

, Wavenumber)
4 VecSpace = MT. domain spaces [ 0 ]
5 ScaSpace = bempp . api . f un c t i on spac e (Grid , ”B−P” , 1
6 def fun 1 (x , n , d , r ) :
7 r [ 0 ] = x [ 0 ]∗∗2 + x [ 1 ] − x [ 2 ] ∗ x [ 1 ]

165



B. Implementations

8 def fun 2 (x , n , d , r ) :
9 r [ 0 ] = x [ 0 ] ∗ x [ 1 ] ∗ x [ 2 ] + x [ 0 ] − x [ 2 ]∗∗2

10 def fun 3 (x , n , d , r ) :
11 vec = np . array ( [ x [ 0 ] ∗ x [ 1 ] , x [ 1 ] ∗ x [ 2 ] , x [ 2 ] ∗ x [ 0 ] ] )
12 r [ : ] = np . c r o s s (n , vec )
13 def fun p (x , n , d , r ) :
14 r [ 0 ] = (x [ 0 ]∗∗2 + x [ 1 ] − x [ 2 ] ∗ x [ 1 ] ) ∗ ( x [ 0 ] ∗ x [ 1 ] ∗ x [ 2 ] + x

[ 0 ] − x [ 2 ] ∗ ∗ 2 )
15 def fun P (x , n , d , r ) :
16 vec = np . array ( [ x [ 0 ] ∗ x [ 1 ] , x [ 1 ] ∗ x [ 2 ] , x [ 2 ] ∗ x [ 0 ] ] )
17 r [ : ] = np . c r o s s (n , vec ) ∗ ( x [ 0 ]∗∗2 + x [ 1 ] − x [ 2 ] ∗ x [ 1 ] )
18 Fun 1 = bempp . api . GridFunction ( ScaSpace , fun=fun 1 )
19 Fun 2 = bempp . api . GridFunction ( ScaSpace , fun=fun 2 )
20 Fun 3 = bempp . api . GridFunction (VecSpace , fun=fun 3 )
21 Fun p = bempp . api . GridFunction ( ScaSpace , fun=fun p )
22 Fun P = bempp . api . GridFunction (VecSpace , fun=fun P )
23 Test 1 = func t i on produc t (Fun 1 , Fun 2 , ScaSpace , ScaSpace )
24 Test 2 = func t i on produc t (Fun 1 , Fun 3 , VecSpace , VecSpace )
25 Error 1 = ( Test 1−Fun p ) . l2 norm ( ) / Test 1 . l2 norm ( )
26 Error 2 = ( Test 2−Fun P) . l2 norm ( ) / Test 2 . l2 norm ( )

B.5. Scalar product and composition

The implementation of the scalar product F ·G between to vector fields F
and G is achieved in the same way as the product of two functions. The only
difference lies in choosing a scalar test and trial space and in changing line
(20) in Listing 8, such that the local product of F and G is summed up. This
is shown in Listing 10.

Listing 10: Implementation of the scalar product.

1 def s c a l a r p r oduc t ( f , g , t r i a l s p a c e , t e s t s p a c e ) :
2 # The same as in func t i on produc t .
3 f p r od g = np .sum( f . eva luate ( element , po in t s ) ∗ g . eva luate ( element

, po in t s ) , ax i s=0)
4 # The same as in func t i on produc t .

Similarly, we implement the routine, which takes three functions f, g, h and
generates vector field (f, g, h)> by the lines presented in Listing 11, where we
again have to only adapt some lines of Listing 8.

Listing 11: Implementation of the composition.

1 def compos i t ion ( f , g , h , t r i a l s p a c e , t e s t s p a c e ) :
2 # One add i t i ona l func t i on as argument . The r e s t as be f o r e .
3 ba s i s v a l u e s = t e s t s p a c e . e v a l u a t e l o c a l b a s i s ( element , po ints ,

c o e f f s )
4 fgh = np . z e r o s ( ( 3 , 3 ) , dtype = dtype )
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5 fgh [ 0 , 0 : 3 ] = f . eva luate ( element , po in t s )
6 fgh [ 1 , 0 : 3 ] = g . eva luate ( element , po in t s )
7 fgh [ 2 , 0 : 3 ] = h . eva luate ( element , po in t s )
8 p rod t ime s ba s i s = np .sum( fgh ∗ ba s i s v a l u e s , ax i s=0)
9 # The r e s t again as in func t i on produc t .

In order to test this implementation, we use the lines presented in Listing
12. The errors presented in Figure A.4 were calculated by varying the variable
H, the size of the elements of the mesh. Note that the discretized function fgh

and Test are tangential vector fields, since the test and trial space consists of
tangential vector fields.

Listing 12: Testing the composition mapping.

1 H = 0.15
2 Wavenumber = 1 .0
3 Grid = bempp . api . shapes . sphere (h=H)
4 MT = bempp . api . ope ra to r s . boundary . maxwell . mu l t i t r a c e op e r a t o r (Grid

, Wavenumber)
5 VecSpace = MT. domain spaces [ 0 ]
6 ScaSpace = bempp . api . f un c t i on spac e (Grid , ”B−P” , 1)
7 def f u n f (x , n , d , r ) :
8 r [ 0 ] = 1 j ∗ x [ 0 ]∗∗2
9 def fun g (x , n , d , r ) :

10 r [ 0 ] = x [ 1 ] − x [ 2 ]
11 def fun h (x , n , d , r ) :
12 r [ 0 ] = x [ 0 ] ∗ x [ 2 ] ∗ x [ 1 ]
13 def f un fgh (x , n , d , r ) :
14 r [ : ] = np . array ( [ 1 j ∗ x [ 0 ] ∗ ∗ 2 , x [ 1 ] − x [ 2 ] , x [ 0 ] ∗ x [ 2 ] ∗ x [ 1 ] ] )
15 f = bempp . api . GridFunction ( ScaSpace , fun=fun f )
16 g = bempp . api . GridFunction ( ScaSpace , fun=fun g )
17 h = bempp . api . GridFunction ( ScaSpace , fun=fun h )
18 fgh = bempp . api . GridFunction (VecSpace , fun=fun fgh )
19 Test = compos it ion ( f , g , h , VecSpace , VecSpace )
20 Error = ( fgh − Test ) . l2 norm ( ) / fgh . l2 norm ( )
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[16] M. Costabel and F. Le Louër. Shape derivatives of boundary integral
operators in electromagnetic scattering. part i: Shape differentiability
of pseudo-homogeneous boundary integral operators. Integral Equations
and Operator Theory, 72(4):509–535, Apr 2012.

[17] J. Dieudonne. Foundations of Modern Analysis. Pure and Applied Math-
ematics. Academic Press Inc., New York and London, 1960.

[18] I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl. Objects of max-
imum electromagnetic chirality. Phys. Rev. X, 6:031013, 2016.

[19] R. D. Grigorieff. A note on von Neumann’s trace inequality. Mathema-
tische Nachrichten, 151(1):327–328, 1991.

[20] H. Haddar and R. Kress. On the Fréchet derivative for obstacle scatter-
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