
CORSIKA 8 – Towards a modern framework for the simulation of extensive air
showers

Maximilian Reininghaus1,2 and Ralf Ulrich1on behalf of the CORSIKA 8 developers
1Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
2Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

Abstract. Current and future challenges in astroparticle physics require novel simulation tools to achieve higher
precision and more flexibility. For three decades the FORTRAN version of CORSIKA served the community
in an excellent way. However, the effort to maintain and further develop this complex package is getting
increasingly difficult. To overcome existing limitations, and designed as a very open platform for all particle
cascade simulations in astroparticle physics, we are developing CORSIKA 8 based on modern C++ and Python
concepts. Here, we give a brief status report of the project.

1 Introduction

CORSIKA [1, 2] is the most widely used, actively main-
tained code for Monte Carlo air shower simulation cur-
rently available. In spite of its development having started
almost 30 years ago [3], it is still frequently extended
and improved, with major updates released roughly once
per year consisting mostly of improvements in the various
interaction models shipped with CORSIKA. Completely
new features, however, are developed only rarely nowa-
days, also due to the complexity of the code posing a ma-
jor obstacle to their implementation: Originally written
and optimized to be used only in simulations for the KAS-
CADE experiment [4], and therefore designed to meet the
corresponding requirements, it was not intended to serve
as the general purpose tool into which it has evolved. Its
monolithic structure makes modifications or extensions of
the code very difficult. Besides that, CORSIKA is writ-
ten in FORTRAN 77, which can no longer be considered
the lingua franca within the domains of high energy and
astroparticle physics, and suffers from a number of restric-
tions, e.g. the lack of dynamic memory or object orienta-
tion, and is therefore unattractive to learn, causing a lack
of qualified and motivated contributors.

Although the C++ add-ons COAST [5] or recently
dynstack [6] help to remedy parts of these issues to a cer-
tain degree, there are still many wishes by users for exten-
sions that simply cannot be accommodated for with rea-
sonable effort. It is clearly a disadvantage to wrap mod-
ern extensions around the existing "dinosource" [7] code
in comparison to fundamentally re-designing the whole
framework in a consistent way.

For that reason, we reached the decision that the time
has come to start a project to develop a next-generation
code, with the focus on the aspects modularity, flexibil-
ity, ease of use and extensibility, efficiency, and reliabil-
ity from the beginning. Of course, a key element of the

new project is to keep the expertise gained and include
all the lessons learned from the last decades. While the
name is chosen to abide, the distinction between the legacy
and next-generation CORSIKA is made through the ver-
sion number, initially CORSIKA 8 for the latter. We con-
sider CORSIKA 8 to be more of a framework for simulat-
ing particle cascades rather than an air-shower-only tool,
therefore extending the applicability to wider domains of
research.

To a large extent, our goals and plans are outlined
in ref. [8] and their implementation is currently ongoing
work. Here, we present an overview of the most important
aspects of the design.

2 Building blocks

CORSIKA 8 is developed using modern C++ accompa-
nied by Python tools. The main building blocks of COR-
SIKA 8 are displayed in fig. 1 together with their relations
to each other.

2.1 Particle stack

The particle stack contains the particles in memory which
are currently in the course of being propagated. In its
most basic incarnation the stack provides access to the par-
ticles’ four-momenta, four-positions, and particle codes,
but an easy extension of additional properties like statis-
tical weight, as necessary e.g. for thinning algorithms, is
straightforward. It is envisaged to provide optional access
to the history of the particle offering a much deeper insight
into its "ancestor" generations than it is currently possible
with the corresponding feature [9] of legacy CORSIKA.
The particle stack is read from and written to by the pro-
cess sequence, as well as the transport procedure.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

EPJ Web of Conferences 210, 02011 (2019) https://doi.org/10.1051/epjconf/201921002011
UHECR 2018



environment

transportparticle stack

process
sequence

provide target
and medium

provid e m
e dium

 
prope

rties

add, d elete
, 

m
odif y pa

rt icles

provid
e pro

pertie s 
of cur rent p

articl e

provide dE/dX, cross section

lim
it step length

perform
 process

access & modify 
current particle

Figure 1. Main building blocks of CORSIKA 8. The relationships and dependencies between the blocks are shown as arrows.
Each of these major blocks is by itself a modular system of algorithms. Basically all functionality can be replaced by alternative
modules/implementation in a very straightforward way. This also means future extensions can be included easily.

2.2 Process sequence

The process sequence represents the physical processes
modeled in the simulation and is composed of all the
physics modules which the user chooses to enable (e.g.
hadronic and electromagnetic interaction models, emis-
sion of Cherenkov light or radio). All these modules
must conform to the same interfaces and are treated on
the same level. We distinguish mainly between continu-
ous processes and discrete processes (see fig. 2). While
the first ones are meant to model effects which happen
along the trajectory between to steps of the particle (like
energy losses or Cherenkov light emission), the second
type of processes typically represents interactions and de-
cays. Furthermore, a special class of processes is reserved
for the cases in which a particle transits the boundary be-
tween two media.

Discrete processes need to provide interaction lengths
or decay times as a function of the particle currently being
propagated (implicitly having access to information about
the local environment of the particle through its location).
In addition, in case one of the discrete processes is the
chosen to be in fact performed, that specific process can
then modify the particle stack, typically by deleting the
projectile from the stack and placing new secondaries of
the interaction onto the stack.

Instead of providing an interaction length, continuous
processes are individually required to provide a maximum
step-size. This is useful, inter alia, to limit energy losses to
a tolerable amount between two steps, which would other-
wise invalidate the interaction length calculated previously
using the particle energy at the beginning of the step. Con-
tinuous processes are provided with the current particle to-
gether with the trajectory up to its endpoint determined
from a number of criteria (see below) including the above-
mentioned limited step-size. In contrast to the random na-
ture of discrete processes, they are always performed.

2.3 Environment

One of the most prominent features of CORSIKA 8 is
the flexible definition of the medium and its properties in
which the particles propagate. In particular, it will be pos-
sible to simulate not only pure air showers but also show-
ers penetrating the ground and propagating further through
ice, water, rock, or other media. A key premise of this
endeavour is the ability to compose the environment out
of several different (sub-)volumina with different physi-
cal properties. In this regard, CORSIKA 8 follows similar
concepts as the well-known Geant4 toolkit [10–12], with
the major difference perhaps being that we do not limit
ourselves to homogeneous media.

Figure 3 illustrates this idea together with a sketch of
the current implementation. We provide very simple vo-
lumina, in the beginning only spheres and cuboids, which
the user has to furnish with models of its physical proper-
ties (in the figure symbolized by the different colors) and
then assemble them into the volume tree. The structure
of the volume tree represents geometrical containment,
i.e., volumes fully contained by a bigger volume are child
nodes of the bigger volume. The root node is always the
Universe volume which is equivalent to a sphere with infi-
nite radius. By relaxing the condition of full containment,
it is possible to cut the child volume along the boundary
of its parent. Furthermore, it is necessary to treat cases of
overlapping nodes specially in order to avoid ambiguities.
We achieve this by having references to other volumes that
are to be excluded from a given volume node, in the figure
indicated by the dashed arrows. The tree structure allows
relatively fast queries of which actual volume contains a
given point.

As a second element of the environment, it is fore-
seen in the design to conveniently change and extend the
number of physical properties represented in the medium
model. As a first step, we provide interfaces for query-

2

EPJ Web of Conferences 210, 02011 (2019) https://doi.org/10.1051/epjconf/201921002011
UHECR 2018



discrete processes

continuous processes

medium transition

Figure 2. Discrete (blue dots) and continuous (green lines) processes during particle transport. The sampled random locations of dis-
crete processes, which can be interactions, decays or boundary crossings (red square), determines the regime for continuous processes.

ing mass density, fractional elementary composition, and
magnetic field only. As soon as physics modules e.g. for
Cherenkov or radio emission requiring the index of refrac-
tion are added to CORSIKA 8, this additional property can
then easily be included. For runs without these processes
enabled, however, a definition will not be required.

2.4 Transport

At the heart of CORSIKA 8 lies the transport code which,
making use of the aforementioned building blocks, propa-
gates the particles one by one, most likely producing sec-
ondaries, until the simulation finishes – by construction as
soon as no particles are left.

The first step consists of proposing a trajectory, start-
ing at the current position of the particle and initially ex-
tending to the next point of intersection with a volume
boundary. We currently restrict ourselves to linear trajec-
tories since in that case the calculations of intersections
with spheres and cuboids reduce to solving polynomial
equations of at most second order. For helices, which
would be a natural choice for trajectories of charged par-
ticles in slowly varying magnetic fields, already the cal-
culation of intersections with planes requires a non-trivial
numerical treatment [13].

As second step, the maximum step-size is then further
limited by, depending on the environment, up to two con-
ditions concerning the numerical accuracy of the proce-
dure. One limit regards the accuracy of integrating the
equations of motion in the magnetic field to make sure
that the trajectory will not deviate too much from the true,
helix-like solution. This is obviously superfluous in the ab-
sence of a magnetic field or for neutral particles. The sec-
ond limit pertains to the calculation of grammage X along
the trajectory within the medium with a given density dis-
tribution %(x), i.e.

X =
∫

trajectory

%(x) ds. (1)

This can be done analytically exact only for very specific
density distributions, e.g. a homogeneous one. For the

general case, one needs to deal with either numerical inte-
gration or approximations: a suitable approach can be to
approximate the density distribution % in the vicinity of the
starting point x0 of the trajectory using Taylor’s expansion,
say to second order,

%(x0 + δx) = %(x0) +
(
∇|x0
%
)
· δx

+
1
2
δxT H|x0

δx + O
(
δx3
)
, (2)

where H denotes the Hesse matrix of % and δx is a small
piece along the trajectory. Then, the problem reduces to
the integration of a polynomial and δx would be limited
to a certain length by requiring the estimated error of the
approximation to be smaller than a given value.

The next step consists of randomly sampling the next
location of the discrete processes. Decay points are sam-
pled from an exponential distribution in length, whereas
for interaction points the exponentially distributed vari-
able is grammage. To determine the location of the inter-
action, grammage needs to be converted back to length.
Hence, an accurate conversion between these two vari-
ables is required. Afterwards, continuous processes are
performed along the trajectory up to either its endpoint
given by the limiting conditions described above, or the
interaction point of the closest discrete process, which will
be performed subsequently.

3 Conclusions and outlook

The development of CORSIKA 8 is in a very active stage.
The project is completely open to input from the commu-
nity. Any participation and collaboration will lead to a
better tool for astroparticle physics for the next decades.

We are committed to provide a reliable, stable, accu-
rate and flexible framework. The design as a framework,
in contrast to a single-purpose program, makes it clear that
the range of future applications could be far beyond just
simulating extensive air shower cascades. It is also up
to the community to define what is needed and what is
scientifically useful. The inherent complexity of particle
shower development in materials requires a very careful

3

EPJ Web of Conferences 210, 02011 (2019) https://doi.org/10.1051/epjconf/201921002011
UHECR 2018



Universe

cuboid sphere

sphere sphere cuboid

cuboid

Figure 3. An example environment composed of different volumes with different physical properties indicated by color (left). In the
implementation, these are assembled in a tree structure (right).

validation of each ingredient and input model, best with
dedicated data. We aim to facilitate a better understanding
and study of the relationship between these fundamental
ingredients and the final physics observables.

The first intermediate development snapshots of COR-
SIKA 8 are already available on our gitlab server [14] and
can be obtained freely from there. We welcome any com-
ments or, even better, participation/discussion in further
developing this project. It is our plan to have a first ver-
sion suitable for limited and specialized physics studies
available already in 2019.

Acknowledgements

M.R. acknowledges support by the DFG-funded Doctoral
School “Karlsruhe School of Elementary and Astroparticle
Physics: Science and Technology”.

References

[1] J.N. Capdevielle et al., Tech. rep. KfK-4998,
Kernforschungszentrum Karlsruhe (1992),
doi:10.5445/IR/270033168

[2] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz,
T. Thouw, Tech. rep. FZKA-6019, Forschungszen-
trum Karlsruhe (1998), https://publikationen.
bibliothek.kit.edu/270043064

[3] H.J. Gils, D. Heck, J. Oehlschlaeger, G. Schatz,
T. Thouw, A. Merkel, Comput. Phys. Commun. 56,
105 (1989)

[4] H.O. Klages et al., Nucl. Phys. B Proc. Suppl. 52, 92
(1997)

[5] R. Ulrich, COAST (2006), https://web.ikp.kit.
edu/rulrich/coast.html

[6] D. Baack, Tech. rep., Technische Universität Dort-
mund (2016), doi:10.17877/DE290R-19158

[7] S.P. Zwart, Science 361, 979 (2018), 1809.02600
[8] R. Engel, D. Heck, T. Huege, T. Pierog, M. Rein-

inghaus, F. Riehn, R. Ulrich, M. Unger, D. Veberič,
Comput. Softw. Big Sci. 3, 2 (2019), 1808.08226

[9] D. Heck, R. Engel, Tech. rep. FZKA-
7495, Forschungszentrum Karlsruhe (2009),
https://publikationen.bibliothek.kit.
edu/270078292

[10] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.
Instrum. Meth. A 506, 250 (2003)

[11] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270
(2006)

[12] J. Allison et al., Nucl. Instrum. Meth. A 835, 186
(2016)

[13] Y. Nievergelt, SIAM Rev. 38, 136 (1996)
[14] https://gitlab.ikp.kit.edu

4

EPJ Web of Conferences 210, 02011 (2019) https://doi.org/10.1051/epjconf/201921002011
UHECR 2018

https://doi.org/10.5445/IR/270033168
https://publikationen.bibliothek.kit.edu/270043064
https://publikationen.bibliothek.kit.edu/270043064
https://web.ikp.kit.edu/rulrich/coast.html
https://web.ikp.kit.edu/rulrich/coast.html
https://doi.org/10.17877/DE290R-19158
https://publikationen.bibliothek.kit.edu/270078292
https://publikationen.bibliothek.kit.edu/270078292
https://gitlab.ikp.kit.edu

	Introduction
	Building blocks
	Particle stack
	Process sequence
	Environment
	Transport

	Conclusions and outlook

