
On Improving Communication
Complexity in Cryptography

zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften
von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Lisa Maria Kohl

aus München

Tag der mündlichen Prüfung: 22. Oktober 2019

1. Referent: Prof. Dr. Dennis Hofheinz
2. Referentin: Prof. Dr. Elette Boyle

Acknowledgments

First and foremost, I would like to thank my advisor Dennis Hofheinz, who was the
most supportive advisor one could wish for. He gave me the confidence to ask any
question and encouraged me to bother him even with half-baked ideas he showed
impossible within seconds, thereby keeping me from wasting my time. He would
take an afternoon to explain me a paper, just to save me the time to read it. Thank
you, Dennis, for everything you taught me (in particular, your high-level view of
things), and for giving me all the freedom, support and help that made my PhD a
through-and-through joyful experience.
Secondly, I want to thank Elette Boyle, who greatly influenced me and who I see

as a role model. She is so positive and fun and welcoming that working with her was
easy from the very first moment. She would dedicate her time to day-long research
meetings, resulting in the most productive days of my life. She would always take
care to meet me where I was, when I was lost in a current discussion. Thank you,
Elette, for inviting me to Israel with open arms, for giving me a new perspective on
research and cryptography, for showing me that coffee shops are the best places to
work at, and for your continuing support and encouragement.
Next, I want to thank all my other co-authors, which I count myself very lucky

to have worked with. Romain Gay, who taught me to always look at the simplest
solution first. Jiaxin Pan, who is very caring both towards plants and people (thanks,
Jiaxin, for guiding us through Beijing restaurants and sorry for still not being able to
pronounce your name correctly). Julia Hesse, who always asks the right questions,
who I love sharing offices and apartments with, and whom I’m deeply thankful
to for continuing professional and personal advice. Peter Scholl, who seems to be
able to magically fix every research problem within a day. Niv Gilboa, who always
speaks precisely, resulting in very productive research discussions. Yuval Ishai, who
is incredibly friendly and dedicated, who there is so much to learn from (of which I
unfortunately know so little yet) and who I am very thankful to for the opportunity
to continue my research with as a postdoc. Geoffroy Couteau, who I admire for his
dedication to science in general, who makes me view the world in a different way with
every conversation, and who is very supportive both professionally and personally.
And Peter Rindal, who I envy for his programming superpowers.
I also want to thank my hopefully to-be co-authors, with whom I have (more or

less) ongoing research projects: Alon Rosen, who always kindly shares his wisdom
about research and life in general and who I hope to have many more opportunities
to learn from. Marshall Ball, who I find highly inspiring and always very much enjoy
spending time with, in particular for research and food (thank you, Marshall, for the
productive and fun research week and unforgettable food tour in New York City).
And Eylon Yogev, who is great to work with in particular for being very determined

in solving problems.
I also would like to thank every one of my colleagues at KIT for making me

look forward to going to office every day, I could not imagine a friendlier working
atmosphere. In particular, I want to thank Jessi for always listening, Thomas for
always being supportive and Bogdan for always helping.
And, of course, I would like to thank every one I met during my wonderful research

visit in Israel, in particular my fellow visitors, who made even the one-hour bus drive
to IDC worth it.
I would like to thank Ronald Cramer, from whom I learned so much, for super-

vising my Master’s thesis at CWI Amsterdam and for thereby taking great part in
manifesting the wish in me to start a research career in the field of cryptography.
And I would like to thank every one in the cryptology research group at the time
for making it such a fun experience.
In addition, I would like to thank every one in the crypto community for creating

the warm, friendly and open atmosphere that makes me look forward to every con-
ference, workshop and school. I met so many amazing people over the years, many of
which I’m happy to call friends now. I hope I will always be part of this community,
which already now feels like a big family. In particular, I would like to thank all
organizers of schools and workshops that I have profited from so greatly over the
years: The Workshop on Theory and Practice of Secure Multi-Party Computation
in Aarhus 2016 and in Bristol 2017, CrossFyre 2016, 2017 and 2019, the School on
Randomness in Barcelona 2016, the BIU Winter School 2018 and 2019, the Crypto
in the Galilee Workshop 2018, the Women in Theory Workshop 2018, the Beyond
Crypto Workshop 2018, the Bertinoro Workshop on Lower Bounds 2019 and the
New Roads to Cryptopia Workshop 2019.
Going further back in time, I would like to thank my math teacher Marianne

Gerny for her enthusiasm and her dedication to teach us way beyond what would
have been required, which greatly influenced me in my choice of studies and therefore
everything that followed.
I would like to thank the advisor of my Bachelor’s thesis Stefan Kühnlein, for his

great support and encouragement and for introducing me to the beautiful world that
is algebra. I also want to thank every one who made my studies such a joyful time,
both in and outside university at KIT and during the months I spent at NUS.
I would like to thank Derek Dreyer for taking me as an intern at MPI-SWS in

Saarbrücken, for showing me what research really is and for enabling me to go to a
conference for the first time. I also want to thank the PhD students who were there
at the time, for their support and the fun times I had.
Finally, I would like to thank my family and friends, who would bear me working

during vacations, patiently listen to my practice talks and always support me. There
is no way I would have made all this without their backing. I want to thank my
parents for always believing in me without putting any pressure or expectations on
me. I want to thank my brother for being the best brother imaginable and for his
incredible support. I want to thank my grandfather Wolfgang and my uncle Max
for showing true interest in my work and many interesting conversations. I want to
thank my best friend Lena for the fact that I can always count on her one hundred
percent. I want to thank Pia for distracting me when needed, I want to thank Lena
for encouraging me, and I want to thank Sarah for being there for me. I also want
to thank every one else I am lucky to call a friend for the support and for making

me the person I am today.
Unfortunately, time and space is not sufficient for giving every one the credit

that is deserved and that I would like to give. But when reading this, if you were
part of this journey you can be sure I thought of you at some point writing these
acknowledgments, and I also very much want to thank you.

Contents

1 Introduction 1

2 Preliminaries 25
2.1 Cryptography from Groups . 26
2.2 Cryptography from Lattices . 29
2.3 Basic Cryptographic Building Blocks 30
2.4 Public-Key Encryption . 31
2.5 Secret-Key Encryption . 32
2.6 Message Authentication Codes and Signatures 33
2.7 Homomorphic Secret Sharing . 35

3 CCA-Secure Public-Key Encryption 37
3.1 Qualified Proof Systems . 39
3.2 A Qualified Proof System for Or-Languages 42
3.3 Key Encapsulation Mechanisms . 53
3.4 Our Tightly Secure Key Encapsulation Mechanism 55

4 Structure-Preserving Signatures 73
4.1 A Publicly Verifiable Proof for Or-Languages 75
4.2 Our Core Lemma . 78
4.3 Our Tightly Secure Message Authentication Code Scheme 86
4.4 Our Tightly Secure Signature Scheme 89
4.5 Our Tightly Secure Structure-Preserving Signature Scheme 91

5 Homomorphic Secret Sharing 97
5.1 Computational Models . 99
5.2 Encryption with Nearly Linear Decryption 99
5.3 Properties of Encryption Schemes with Nearly Linear Decryption . . 100
5.4 Our HSS from Encryption with Nearly Linear Decryption 106
5.5 Extensions . 110
5.6 Instantiations and Efficiency Analysis 112
5.7 Applications . 114

6 Pseudorandom Correlation Generators 119
6.1 Defining Pseudorandom Correlation Generators 121
6.2 Impossibility of a Simulation-Based Definition 123
6.3 Applying PCGs in Protocols with Correlated Randomness 124
6.4 Our Generic Construction of a PCG 126
6.5 Our PCG for Authenticated Beaver Triples 129

Abstract

Cryptography grew to be much more than “the study of secret writing”. Modern
cryptography is concerned with establishing properties such as privacy, integrity and
authenticity in protocols for secure communication and computation. This comes
at a price: Cryptographic tools usually introduce an overhead, both in terms of
communication complexity (that is, number and size of messages transmitted) and
computational efficiency (that is, time and memory required). As in many settings
communication between the parties involved is the bottleneck, this thesis is concerned
with improving communication complexity in cryptographic protocols.
One direction towards this goal is scalable cryptography : In many cryptographic

schemes currently deployed, the security degrades linearly with the number of in-
stances (e.g. encrypted messages) in the system. As this number can be huge in
contexts like cloud computing, the parameters of the scheme have to be chosen con-
siderably larger—and in particular depending on the expected number of instances
in the system—to maintain security guarantees. We advance the state-of-the-art
regarding scalable cryptography by constructing schemes where the security guar-
antees are independent of the number of instances. This allows to choose smaller
parameters, even when the expected number of instances is immense.

• We construct the first scalable encryption scheme with security against active
adversaries which has both compact public keys and ciphertexts. In particular,
we significantly reduce the size of the public key to only about 3% of the
key-size of the previously most efficient scalable encryption scheme. (Gay,
Hofheinz, and Kohl, CRYPTO, 2017)

• We present a scalable structure-preserving signature scheme which improves
both in terms of public-key and signature size compared to the previously best
construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz,
Kohl, and Pan, EUROCRYPT, 2018)

Another important area of cryptography is secure multi-party computation, where
the goal is to jointly evaluate some function while keeping each party’s input private.
In traditional approaches towards secure multi-party computation either the com-

munication complexity scales linearly in the size of the function, or the computational
efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016)
introduced the notion of homomorphic secret sharing. Here, inputs are shared be-
tween parties such that each party does not learn anything about the input, and
such that the parties can locally evaluate functions on the shares. Homomorphic se-
cret sharing implies secure computation where the communication complexity only
depends on the size of the inputs, which is typically much smaller than the size of
the function.

A different approach towards efficient secure computation is to split the protocol
into an input-independent preprocessing phase, where long correlated strings are
generated, and a very efficient online phase. One example for a useful correlation
are authenticated Beaver triples, which allow to perform efficient multiplications in
the online phase such that privacy of the inputs is preserved and parties deviating
the protocol can be detected. The currently most efficient protocols implementing
the preprocessing phase require communication linear in the number of triples to be
generated. This results typically in high communication costs, as the online phase
requires at least one authenticated Beaver triple per multiplication.
We advance the state-of-the art regarding efficient protocols for secure computa-

tion with low communication complexity as follows.

• We construct the first homomorphic secret sharing scheme for computing arbi-
trary functions in NC1 (that is, functions that are computably by circuits with
logarithmic depth) which supports message spaces of arbitrary size, has only
negligible correctness error, and does not require expensive multiplication on
ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019)

• We introduce the notion of a pseudorandom correlation generator for gen-
eral correlations. Pseudorandom correlation generators allow to locally extend
short correlated seeds into long pseudorandom correlated strings. We show
that pseudorandom correlation generators can replace the preprocessing phase
in many protocols, leading to a preprocessing phase with sublinear communica-
tion complexity. We show connections to homomorphic secret sharing schemes
and give the first instantiation of pseudorandom correlation generators for
authenticated Beaver triples at reasonable computational efficiency. (Boyle,
Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019)

Chapter 1
Introduction

Due to the unparalleled rise of the Internet, cryptography has become essential in
our everyday life. Often unnoticed, cryptography takes care of many tasks we take
for granted: Cryptographic protocols ensure, for instance, that we have control over
who we talk to and who listens to our conversations.
A cryptographic milestone was the discovery of public-key cryptography in the

1970s, manifested in the protocol for secure key exchange published by Diffie and
Hellman in [DH76]. Prior to this discovery, all secure digital communication required
exchanging a secret via a secure channel ahead of time. This was feasible when
cryptography served mostly military purposes, but the world of today would be
unimaginable without public-key cryptography:

• Public-key encryption schemes enables secure communication via a public chan-
nel, where messages can be eavesdropped or even altered without an a priori
shared secret.

• Signatures ensure authentication and integrity, by making it publicly verifiable
that a message was sent by a certain person and is unaltered.

A major challenge we are facing today is privacy in the age of internet surveillance.
Without cryptography, we would be completely transparent to any eavesdropping en-
tity. Encryption solves the problem for personal communication, but many problems
require more advanced solutions. Consider for instance database queries: Looking
up an entry in an analog encyclopedia cannot be easily observed by third parties,
whereas from search queries to an online database one can derive possibly critical
information.
On top of reestablishing the premises of the physical world, cryptography can solve

tasks seemingly impossible. Cryptography allows researchers to compute on medical
data—for example, to find connections between genetic preconditions and certain
diseases—without learning anything apart from the considered correlation, thereby
preserving the parties’ privacy. This falls in the area of secure computation:

• Secure multi-party computation allows parties to evaluate a function on secret
inputs, such that each party learns nothing about the inputs of the other parties
except from what can be trivially derived from the function output.

For cryptographic research it is not sufficient to merely provide feasibility results;
in order to be utilized in practice and therefore have an impact on the real world,
cryptographic protocols are required to be efficient. The two main measures to con-
sider are computational and communication complexity. Computational complexity
describes the required resources, usually time and memory, used to execute the pro-
tocol, whereas communication complexity specifies the size and number of messages
needed to be sent between the involved parties.

1

1 Introduction

In many current cryptographic protocols, communication complexity is the bot-
tleneck: Protocols are expected to work even over low-bandwidth connections with
minimal latency for the parties involved; at the same time electronic devices come
with increasing computational power.
During my PhD, I have participated in advancing the state-of-the-art regarding

communication complexity in cryptographic protocols: on the one hand by con-
structing schemes for secure communication with shorter concrete parameters, on
the other hand by developing protocols which allow to reduce the communication in
protocols for secure computation of a broad class of functions considerably.

Improving Concrete Parameter Sizes. For long-term security guarantees, in
particular for sensitive applications like electronic voting, one is generally interested
in provably secure protocols instead of ad-hoc constructions. Unfortunately, un-
conditional security is impossible to achieve in many contexts—such as public-key
cryptography—without solving long-standing open problems in complexity theory.
For this reason, one usually settles for reducing the security of a cryptographic scheme
to the hardness of a well-known problem, as, for instance, factoring the product of
two large primes.

We consider a problem hard, if no adversary is able to solve it efficiently. As
computational power increases over time, also the notion of efficiency changes. For
this reason, we parametrize security by a security parameter λ. Currently, a problem
is considered hard if any (known) adversary requires at least 2100 or 2128 steps to
solve it. Note that this is referred to 100-bit or 128-bit security, respectively. To
clarify: Even the best publicly known supercomputer would take currently more
than a thousand centuries to break a problem satisfying 100-bit security.1

Security reductions from the security of a cryptographic scheme to the hardness
of the underlying problem often come with a loss L, that is, an adversary breaking
the scheme with some advantage ε, will break the underlying problem with success
probability ε/L. This loss L does critically affect the parameter choice for using the
scheme in practice.

For a typical example, consider a signature scheme that is secure based on the fac-
toring assumption with a security loss that equals the number of signatures queried
by the adversary. For choosing the parameters for a concrete instantiation, the
security loss has to be taken into account: In typical applications the number of
signatures can be in the order of 230, therefore, in order to achieve 128-bit security
for the signature scheme, we have to choose the length of the primes such that the
factoring assumptions withstands 158-bit attacks. In particular, in the described
example the concrete size of the public key and signatures crucially depends on the
number of expected signatures to be released. As this number might not even be
known at time of set-up, either one has to find an upper bound (thereby unnecessarily
increasing the size of the parameters) or possibly compromise long-term security.
A desirable goal is therefore to construct schemes with tight security reductions,

where the loss is constant or at most linear in the security parameter and in particular
independent of the number of instances in the system.2

This allows to choose parameters regardless of the number of signatures or encryp-

1As of November 2018, https://www.top500.org/lists/2018/11/.
2Note that to distinguish between a constant security loss and a loss linear in the security param-
eter, the latter is sometimes referred to as almost tight reduction.

2

tions to be issued, while at the same time preserving provable security guarantees.
This leads to shorter parameters in practice, thereby reducing the communication
complexity in protocols building on these schemes. Unfortunately, tightly secure
schemes are usually more difficult to construct and, as a result, often come with
larger parameters to begin with. Towards closing this gap, in this thesis the state-
of-the art is improved as follows:

• We construct the first actively3 secure encryption scheme with short public
key and ciphertexts, whose security can be tightly reduced to the underlying
assumption. Our scheme has a public-key size of only about 3% of the key size
of the previously best tight construction. In particular, we significantly reduce
the price to pay for scalable security by almost closing the gap to the most
efficient non-tight construction: Our encryption scheme has an overhead of only
one group element in the ciphertexts and four group elements in the public
key compared to the scheme of Kurosawa and Desmedt [KD04]. [GHK17]

• We present a structure-preserving4 signature scheme with tight security reduc-
tion, improving on the previous work in terms of public-key and signature sizes
(to about 40% and 56% of the sizes, respectively). [GHKP18]

Exploring NewWays Towards Succinct Secure Computation. In the setting
of secure computation, a change of the underlying paradigm of a cryptographic
protocol can lead to much more drastic improvements in terms of communication
complexity than can be achieved by merely reducing the size of parameters.
The most famous example for secure computation is the Millionaires’ Problem,

introduced by Yao in 1982 [Yao82a]: Two millionaires want to find out who is richer,
without leaking anything apart from this one bit of information to the other party.
Whereas the first solution proposed by Yao was not yet efficient, four years later
he proposed a protocol that allows to securely evaluate general circuits via garbling
[Yao86]: The idea is, roughly, that one party sends an encrypted circuit to the other
party together with the keys necessary for evaluation, such that the other party learns
the circuit output and nothing else. While this approach is computationally quite
efficient, the communication complexity scales with the size of the circuit, which is
typically large, and in particular much larger than the input sizes. This approach is
thus not practical when restricted to low-bandwidth networks.
Much later, in [Gen09] Gentry constructed one of the long-searched for holy grails

of cryptography, fully homomorphic encryption. Fully homomorphic encryption al-
lows the evaluation of arbitrary circuits on encrypted messages, thereby yielding a
protocol for secure computation with communication time linear in the input plus
output size: In short, one party can send its encrypted input to the other party,
who can homomorphically evaluate the circuit on the ciphertexts and send back the
encrypted output to the first party, who can decrypt to obtain the output. Unfortu-
nately, even the most current optimized procedures for multiplication on ciphertexts
are computationally expensive, and therefore the practical applicability of this ap-

3Here, active refers to the ability of adversaries to actively alter messages, whereas pure eaves-
dropping attacks are usually referred to as passive.

4A signature scheme is called structure-preserving, if it obeys a certain structure which makes it
nicely compose with other cryptographic building blocks.

3

1 Introduction

proach limited. Further, constructions of fully homomorphic encryption are only
known from a narrow set of so-called lattice-based assumptions.
To cope with these limitations, Boyle, Gilboa, and Ishai [BGI16a] took a dif-

ferent path to succinct secure computation via homomorphic secret sharing (HSS).
Homomorphic secret sharing can be viewed as a relaxation of fully homomorphic
encryption, where the inputs are separated into so-called secret shares such that a
single secret share completely hides the input, and such that further functions can
be locally evaluated on shares.

A very simple example of homomorphic secret sharing for the class of linear func-
tions is additive secret sharing: Here, a value s ∈ Zr is shared into a and b such
that a+ b = s mod r for some natural number r. Additive secret sharing allows the
parties to locally evaluate linear functions on the shares, i.e. functions f for which
f(a) + f(b) = f(a+ b) mod r.
To allow evaluating more complex classes of functions, Boyle et al. [BGI16a] con-

struct a homomorphic secret sharing for all functions in NC1 (i.e. the class of function
that can be computed by circuits with logarithmic depth) based on the decisional
Diffie-Hellman assumption, thereby breaking the circuit-size barrier for secure com-
putation based on a discrete logarithm type of assumption.
Unfortunately, their approach requires an expensive share-conversion operation

to be performed after each multiplication. Additionally, the share-conversion intro-
duces an inverse-polynomial5 correctness error and restricts their construction to
polynomial-sized input spaces.
On the other hand, even though homomorphic secret sharing was introduced as a

relaxation of fully-homomorphic encryption, all prior constructions based on lattices
build atop specific forms of fully-homomorphic encryption, and in particular require
expensive multiplications on ciphertexts [AJL+12, BGI15, DHRW16, BGI+18].

• We construct the first homomorphic secret sharing scheme based on lattices
that supports evaluation of arbitrary functions in NC1, supports an arbitrary
message space, comes with negligible6 correctness error and does not require
ciphertext multiplications. We show the practical applicability of our scheme
for the use case of privacy-preserving counting queries on distributed databases.
[BKS19]

In another line of work within secure computation, the protocol is split up in an
input-independent preprocessing phase, and a fast online phase [Bea92, BDOZ11,
DPSZ12, NNOB12, DZ13]. This approach is particularly appealing, when protocols
are required to be fast once the inputs are known, but can tolerate a comparatively
expensive preprocessing phase, as for instance electronic voting schemes.
The idea underlying these works is that the parties jointly set up long correlated

strings in the preprocessing phase, which are then used to implement a fast online
phase. One example are so-called “Beaver triples” [Bea92], which allow fast mul-
tiplication of shared values in the online phase. However, in existing works, the
preprocessing phase is usually very communication intensive and requires the par-
ties to save the long correlated strings until the online phase is initiated. A major

5in the security parameter
6A function is called negligible, if it vanishes faster than any inverse polynomial.

4

open question—leading to direct efficiency improvements in practice—is therefore,
how to perform preprocessing with less communication.

• We introduce the primitive of pseudorandom correlation generators for general
correlations. A pseudorandom correlation generator allows two parties to ex-
tend short correlated seeds into long correlated pseudorandom strings. We give
connections to homomorphic secret sharing schemes and provide concrete in-
stantiations for a number of useful correlations. We show that a pseudorandom
correlation generator can replace the preprocessing phase in many protocols for
secure computation, for instance in the protocol of Damgård et al. [DPSZ12].

Pseudorandom correlation generators can lead to a major improvement regard-
ing communication complexity, as jointly setting up short correlated seed re-
quires significantly less communication than generating long correlated strings
from scratch. Further, with our approach the parties only need to save a short
seed, which they can silently (that is, without any further communication) ex-
pand before engaging in an online protocol. Our work is the first construction
of practically efficient silent preprocessing for general purpose protocols for
secure computation. [BCG+19b]

Other Results. In the following I want to elaborate on related topics I worked on
during my time as a PhD student.
As public-key encryption is generally much less efficient than symmetric-key en-

cryption where the secret key is used both for en- and decryption, in real-world
applications usually a hybrid encryption scheme is employed: Namely, first a com-
mon key is established which can then be used for further communication. One
primitive to do so is non-interactive key exchange, where the parties can derive a
common key merely having knowledge of the other party’s public key. In general,
non-interactive primitives are desirable as they do not require an extra round of com-
munication, but therefore typically more challenging to construct: Indeed, Bader et
al. [BJLS16] showed that known non-interactive schemes like the Diffie-Hellman key
exchange [DH76] have a security loss inherently quadratic in the number of users. As
the number of users in real-world applications is typically large (say 230), this loss
critically affects the group size and therefore the concrete efficiency of the scheme.

• We give the first construction of non-interactive key-exchange with security
loss linear in the number of users. Further, we improve the bound of [BJLS16]
and show that for our scheme (and related schemes) this loss is inherent. This
gives a strong indication that constructing tightly secure non-interactive key
exchange is inherently difficult and seems therefore not the most promising ap-
proach towards constructing schemes with better concrete efficiency. [HHK18]

Another fundamental primitive is the notion of a pseudorandom function, which is
useful, for instance, to construct symmetric-key encryption. As the name suggests,
a pseudorandom function is a keyed function whose output looks random to any
bounded adversary given black-box access. Beyond secure communication, pseu-
dorandom functions have numerous applications. Extending pseudorandom func-
tions, Micali, Rabin, and Vadhan [MRV99] introduced the notion of a verifiable
random function: Here, the key holder can additionally prove correct function eval-
uation. This seeming contradiction to the pseudorandomness requirement can be

5

1 Introduction

achieved as follows. The key holder commits to the secret key (e.g. by giving it
in the exponent), and at time of evaluation provides a proof of correct evaluation
respective this commitment. The security requirement is quite strong: Even a mali-
ciously set-up key is required to commit the key holder to a unique function. While
this primitive finds many applications, for instance in the area of electronic cash
[MR02, ASM07, BCKL09], the requirement of unique provability makes it difficult
to construct. Up to the work of Hofheinz and Jager [HJ16] in 2016, no construction
with security reduction to a standard assumption (that is, hardness assumptions of
problems that are well-studied and believed to be difficult to solve) was known that
supports an exponential-size input space and achieves full adaptive7 security. On
the downside, their construction comes with a proof size linear in the input length.

• We give the first construction of a verifiable random function with security
based on a standard assumption, exponential-size input space and full adaptive
security, where proofs only comprise a sublinear number of group elements.
Our proof length is independent of the input length. Moreover, our construction
comes with the shortest proofs to date, even compared to constructions based
on non-standard assumptions, at the price of a larger public-key size.8 [Koh19]

Regarding secure computation, one of the most basic primitives is oblivious trans-
fer (OT) [Rab81, EGL85]. Oblivious transfer allows one party to receive 1-out-of-2
messages from another party such that the first party learns nothing about the other
message, and the second party learns nothing about the choice of the first party. It
was shown by Kilian [Kil88] that oblivious transfer implies secure computation of
arbitrary functions. Moreover, many protocols for efficient secure computation to-
day are built upon oblivious transfer. As these protocols typically require many OTs
(say millions), the construction of efficient oblivious transfer is an important task
for cryptographers. Similar to encryption, the most efficient protocols to-date follow
a hybrid approach called OT-extension: Assuming black-box access to a number
of base-OTs, many OTs are constructed using only cheap symmetric-key cryptogra-
phy. This approach was introduced by Beaver [Bea96], who constructed a 2-round
OT-extension protocol, but yet with poor concrete efficiency. Later, Ishai et al.
[IKNP03] presented the first efficient (but 3-round) protocol, whose paradigm, in
fact, still underlies the most efficient constructions of OT-extension today.

• Building upon the pseudorandom correlation generators of our work [BCG+19b],
we construct the first efficient 2-round OT-extension protocol. For the use case
of generating random OTs (that is, OTs with random choice bit and messages)
our approach improves communication complexity by more than a factor of
thousand compared to the protocol by Ishai et al. [IKNP03] for 10 million OTs.
Our protocol comes at the price of reduced computational efficiency, but we
still perform favorably over wide area network connections. In fact, over net-
works with a speed of 10 MBps, we improve the state-of-the-art time cost by
almost a factor of 50 for setting up 10 million random OTs. Further, we give

7Full adaptive adversaries are given access to the public key and can adaptively choose function
queries depending on previous output values, thereby best modeling reality.

8Note that for comparison we consider only constructions that support exponential-size input
space and come with full adaptive security.

6

a protocol achieving security against active adversaries at low additional cost
(estimated 10 – 20%). [BCG+19a]

Technical Overview

In the following we give a high-level overview of the techniques involved in this thesis.

Tight Security Reductions

The first to point out the importance of tight security reductions were Bellare,
Boldyreva, and Micali [BBM00]. Nevertheless, many state-of-the-art constructions
come with non-tight security reductions, as constructing schemes that allow tight
security reductions is challenging.
Why Proving Tight Security is Difficult. Broadly speaking, a security reduc-
tion transforms an adversary attacking the cryptographic scheme into an adversary
solving the underlying problem. To understand the difficulty of tight security re-
ductions, consider the example of signature schemes: We formulate security as an
experiment, where the adversary gets the public key and can adaptively query signa-
tures for an arbitrary number of chosen messages and finally has to provide a forgery.
We say a signature scheme is secure, if no probabilistic polynomial-time adversary is
able to successfully forge a signature for a fresh message with more than negligible
success probability.
In order to transform such an adversary to an adversary solving some computa-

tional problem, the reduction has to answer all signature queries while at the same
time being able to transform the signature given by a successful adversary into a
solution to the underlying problem. In particular, the reduction cannot compute
this signature itself, as otherwise it would efficiently solve the underlying problem,
contradicting its hardness. This difficulty is captured by the work of Coron [Cor02],
who proves that the security reduction of any signature scheme with unique signa-
tures to a non-interactive assumption has an inherent security loss in the number of
signing queries asked by the adversary.
A way to circumvent this lower bound is to allow every message to have several

valid signatures and partition the space of signatures such that

• for each message the reduction can produce a valid signature and

• for each message the reduction can turn the signature provided by the adver-
sary with constant probability into a solution to the underlying problem.

In particular, signatures the security reduction can generate and signatures that can
be transformed to a solution have to be indistinguishable to the adversary.
Constructing CCA-Secure Encryption Schemes. Going back to encryption,
constructing public-key encryption schemes which satisfy security against active ad-
versaries or more formally security against chosen-ciphertext attacks (CCA), is chal-
lenging even ignoring tightness. The ability to alter messages is modeled by giving
the adversary access to a decryption oracle, to which it can query arbitrary cipher-
texts. Finally, the adversary has to decide to which of his chosen messages was
encrypted by the security experiment (of course without using the decryption oracle
on the challenge ciphertext).

7

1 Introduction

Implementing the decryption oracle imposes a problem on the security reduction:
A reduction that knows the secret key cannot make use of the underlying adversary
(as it can decrypt the challenge message itself), while not in knowledge of the se-
cret key it cannot answer decryption queries of the adversary. For this reason the
first public-key encryption scheme with security against active adversaries was given
more than 10 years after the birth of public-key cryptography by Naor and Yung
[NY90]. The idea is to make the challenge ciphertext inconsistent, while allowing
only consistent queries to the decryption oracle, by adding a proof of well-formedness
to the ciphertexts.
Later, Cramer and Shoup [CS98] gave the first efficient construction, building on

a primitive they called hash proof system. A hash proof system for an NP language
L ⊆ X provides two different ways to generate a key k given a value x ∈ L: Either
given the public key and a witness for x ∈ L, or given the secret key only. Further,
for correctness it is required that both methods yield the same key, and for security
(also referred to as 1-universality) that even given access to the public key, the secret
evaluation for any x ∈ X \ L is distributed uniformly at random over the key space.
In particular, this means that even an unbounded adversary cannot extract the secret
key from the public key. In other words, even with knowledge of the public key the
secret key has some entropy (i.e. unpredictability) left.
Building upon the techniques of [CS98], in 2004 Kurosawa and Desmedt [KD04]

presented an encryption scheme, which is the most efficient CCA-secure encryption
scheme in this line of work until today: They replace the hash proof system of [CS98]
by a 2-universal hash proof system, for which security is guaranteed even seeing the
secret evaluation of one x ∈ X \L. Their public key consists of the hash proof system
public key, and ciphertexts are of the form (x,Enck(M)), where x ∈ L, k is the hash
proof key corresponding to x ∈ L and Enc is a symmetric authenticated encryption
scheme.
In the proof of security the key in the challenge ciphertext is switched to random

(by switching x ∈ L to x ∈ X\L), while decryption queries with x /∈ L can be
rejected: The only information the adversary has about the secret key is via the
public key and the single challenge query, thus an adversary submitting a valid
decryption query outside L contradicts 2-universality. Therefore, via the entropy
left in the hash proof system secret key (which is neither leaked by the public key
nor by decryption queries in L), the key in the challenge ciphertext looks random
from the adversaries point of view and therefore perfectly hides which of the challenge
messages is encrypted.

Towards Tightly Secure Encryption. Going from single- to multi-ciphertext
security with this approach though, where the adversary is allowed to ask many
challenge queries, a problem occurs. Classically, single-ciphertext security implies
multi-ciphertext security via a hybrid argument, but this entails a security loss pro-
portional to the number of challenge ciphertexts. The problem proving a tight se-
curity reduction is due to the following: The entropy necessary to reject decryption
queries outside L is limited, namely the entropy left in the hash proof system secret
key given the corresponding public key and one statement outside L. In particular,
this entropy is not sufficient when many challenge ciphertexts are switched to ran-
dom. For the proof to carry over to the multi-ciphertext setting, one would require
(Q+ 1)-universality of the underlying hash proof system, where Q is the number of

8

challenge ciphertexts asked by the adversary, which is a priori unbounded.
To overcome this issue, Gay et al. [GHKW16] replace the 2-universal hash proof

system by a λ-universal hash proof system, which can be thought of a combination
of λ individual 1-universal hash proof systems (where the i-th hash proof system
secret key is chosen depending on the i-th bit of the statement x in bit representa-
tion9). Now, the secret key can be gradually randomized via a partitioning argument.
Roughly, in the i-th step the security reduction proceeds as follow: Half the cipher-
texts are switched to some language L0, and the other half to some language L1

(depending on the i-th bit of the statement x itself—note that the circularity issue
arising can be resolved via re-sampling or by only hashing part of the statement).
Then, the hash proof system key is randomized by adding a random offset that
shows up in all ciphertexts (i.e. challenge ciphertexts and decryption queries) with
x ∈ L0, and, subsequently, another random offset that shows up in all ciphertexts
with x ∈ L1. The λ-universality of the hash proof system ensures that during ran-
domization ill-formed decryption queries (that is, roughly, decryption queries that
do not follow the partitioning) can be rejected. After λ steps, each ciphertext has
a freshly randomized secret key, and thus all decryption queries outside L can be
rejected, again via an entropy argument. Finally, all challenge ciphertexts can be
switched to random at once, using the re-randomizability of the decisional Diffie-
Hellman assumption.
The problem of this approach is that the partitioning is static depending on the

i-th bit of the statement itself with all entropy for partitioning part of the public
key. This entails a large public key (of size linear in the security parameter).

How to Achieve Compact Parameters. In our work [GHK17] we follow the
basic idea of Gay et al. [GHKW16], but use the adaptive partitioning strategy of
Hofheinz [Hof12] to achieve short ciphertexts and public keys. In [Hof12] the parti-
tioning dynamically depends on a single bit of information in the ciphertext, which
can be used for different partitionings throughout the proof. In particular, proving
well-formedness of ciphertexts now only requires a proof about this bit of informa-
tion, leading to significantly shorter keys. On the other hand, the statement to be
proven about this bit is non-linear, and thus requires a more complex proof system.
For this reason, the work of Hofheinz [Hof12] uses an explicit pairing10-based des-
ignated verifier proof of an or-like language (i.e. the disjunction of two languages).
This has two shortcomings: First, evaluating pairings is expensive and second, the
proof itself adds an extra 3 elements to the ciphertexts.
A main challenge of our work was thus to construct a compact pairing-free proof

for an or-like language. In the following we give an overview of the proof for the
disjunction L ∪ L0. Observe that honestly generated ciphertexts will always lie
in L (switching to x ∈ L0 is only necessary during the security reduction). It is
thus sufficient to construct a proof system, such that only statements x ∈ L can
be proven honestly. The difficulty is to ensure that even an adversary given access
to an arbitrary number of proofs for x ∈ L0 cannot successfully forge a proof for
x /∈ L ∪ L0. We solve this by combining two hash proof system evaluations in such
a way, that one “blinds” the other if and only if x ∈ L0. Thus, by randomizing one

9To obtain a λ-bit representation of x, one can apply a suitable collision resistant hash function
to x.

10A pairing is a non-degenerate bilinear mapping from two groups into a target group.

9

1 Introduction

hash proof system evaluation, the entropy in the other hash proof system secret key
is protected even given many proofs for statements x ∈ L0.
The resulting proof system adds only one extra group element to ciphertexts. We

therefore almost meet the original scheme of Kurosawa and Desmedt in terms of
ciphertext and public-key size.

Structure-Preserving Signatures. Next, we turn our attention to a special
type of signatures: A signature scheme is called structure preserving if its public
keys, messages and signatures consist only of group elements, and verification can
be expressed as equations over some cyclic group, which is usually required to be
pairing-friendly. The motivation being that structure-preserving signatures nicely
combine with the efficient non-interactive zero knowledge proofs by Groth and Sahai
[GS08] and similar proof systems. This makes them widely applicable, for instance as
key ingredient in building efficient group signatures [LPY15], anonymous credential
systems [BCKL08] and electronic voting schemes [GL07].
Despite their importance, before our work there existed only two constructions

of structure-preserving signature schemes with tight security reduction to the un-
derlying problem [HJ12, AHN+17]. Moreover, both come with significantly worse
parameters than non-tight structure-preserving signatures or even tight standard sig-
nature schemes. The difficulty in constructing structure-preserving signatures with
tight security reductions seems to stem from the partitioning techniques usually
applied, which do not easily carry over to the structure-preserving setting.
In [GHKP18] we show how to obtain structure-preserving signatures with signifi-

cantly shorter parameters, building on techniques described previously. Further, we
improve the security loss from O (λ) to O (logQ), where λ is the security parameter,
and Q is the number of signing queries asked by the adversary (polynomial in λ).

From Encryption to Signatures. In order to make our techniques from [GHK17]
applicable to a broader setting, we distill the main randomization technique in a core
lemma: Given a hash proof system for a language L0, together with an or-proof for
the language L0 ∪ L1, we can gradually randomize the hash proof system secret
key, such that in the end each instance (later corresponding to a signature) has an
individually randomized secret key. We observe that by enumerating the number of
instances from 1 to Q in the reduction, we can improve the tightness from λ to logQ
by partitioning according to the counter instead of applying a collision resistant hash
function to the instance.
The core lemma allows us to derive a message authentication scheme (MAC)—the

symmetric analogue to a signature scheme, where the secret key is used for signing
and verification. More precisely, our MAC is the linear combination of two hash proof
system evaluations with the message as coefficient, where for our encryption scheme
a collision resistant hash of the statement itself was used. The technique of trans-
forming an encryption scheme (or, more precisely, a key encapsulation mechanism)
into a MAC is due to Dodis et al. [DKPW12].
While this is an important step towards structure-preserving signatures, two prob-

lems are yet to address: First, verification is only possible to a designated verifier.
And second, the described technique only supports authenticating messages in Zp
(where p is the group order) and is therefore not structure-preserving.
For public verification we build on the generic transformation of Bellare and Gold-

wasser [BG90]. Basically, the idea is to commit to the hash proof system secret key

10

Reference |pk| |ct| − |m| sec. loss assumption pairing
[CS03] 3 3 O(Q) DDH no
[KD04, HK07] k + 1 k + 1 O(Q) k-LIN (k ≥ 1) no
[HJ12] O(1) O(λ) O(1) DLIN yes
[LJYP14, LPJY15] O(λ) 47 O(λ) DLIN yes
[AHY15] O(λ) 12 O(λ) DLIN yes
[GCD+16, HKS15] O(λ) 6k O(λ) k-LIN (k ≥ 1) yes
[GHKW16] 2λk 3k O(λ) k-LIN (k ≥ 1) no
[Hof17] 2k(k + 5) k + 4 O(λ) k-LIN (k ≥ 2) yes
[Hof17] 20 28 O(λ) DCR —
Ours [GHK17] 6 3 O(λ) DDH no

k2(k + 1) + 4k k(k + 2) O(λ) k-LIN(k ≥ 2) no

Figure 1.1: Comparison amongst CCA-secure encryption schemes, where Q is the
number of ciphertexts, |pk| denotes the size (in groups elements) of the public key,
and |ct| − |m| denotes the ciphertext overhead, ignoring smaller contributions from
symmetric-key encryption. Here, DDH stands for the decisional Diffie-Hellman as-
sumption, and k-LIN for the k-Linear assumption, corresponding to DDH for k = 1
and Decision Linear (DLIN) for k = 2.

in the public key, thereby making the hash proof system evaluation publicly verifi-
able via a pairing equation. Further, the or-proof used to achieve a tight security
reduction in the core lemma has to be publicly verifiable. For this purpose we use an
instantiation of Ràfols [Ràf15], building upon the techniques of Groth, Sahai, and
Ostrovsky [GOS12]. Note that the publicly verifiable or-proof makes up the major
part in our signatures, namely 10 out of 14 group elements, while for our encryption
scheme one extra group element in the ciphertexts is sufficient.
Finally, in order to obtain signature structure-preserving signatures, we have to

replace the 2-universal hash proof system by one that allows to embed messages
in the underlying group. The idea is to replace the pairwise independent function
underlying the hash proof system by a structure-preserving one, such that the core
lemma is still applicable. This results in a structure-preserving signature scheme,
whose security can be tightly reduced to the symmetric external Diffie-Hellman
(SXDH) assumption. Note that the same technique was used already in the con-
text of structure-preserving signatures by Kiltz, Pan, and Wee [KPW15], without
yielding a tight security reduction though.

Related Work. It took more than 10 years from the introduction of tightness
by Bellare, Boldyreva, and Micali [BBM00], until the first tightly secure encryption
scheme was proposed by Hofheinz and Jager [HJ12]. More efficient schemes followed
[ADK+13, CW13, BKP14, LJYP14, HKS15, LPJY15, AHY15, GCD+16, Hof16,
Hof17, GHKW16]. The first pairing-free construction was proposed by Gay et al.
[GHKW16], but with a public key consisting of about 200 group elements. We give
an comparison to selected previous works in Figure 1.1 (taken almost verbatim from
our work [GHK17]).
In case of structure-preserving signatures the gap regarding the instance size was

even larger. The only efficient instantiation with tight security reduction before our
work was due to Abe et al. [AHN+17] with 25 elements in the signature. For a
comparison with selected tight and non-tight constructions we refer to Figure 1.2
(taken almost verbatim from our work [GHKP18]). Note that the construction of

11

1 Introduction

Reference |M | |σ| |pk| sec. loss assumption
[HJ12] 1 10`+ 6 13 8 DLIN
[ACD+16] (n1, 0) (7, 4) (5, n1 + 12) Q SXDH, XDLIN
[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLIN2

[KPW15] (n1, 0) (6, 1) (0, n1 + 6) 2Q2 SXDH
[JR17] (n1, 0) (5, 1) (0, n1 + 6) Q logQ SXDH
[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) 80λ SXDH
[JOR18] (n1, 0) (11, 6) (7, n1 + 16) 116λ SXDH
Ours [GHKP18] (n1, 0) (8, 6) (2, n1 + 9) 6 logQ SXDH
[AJOR18] (n1, 0) (6, 6) (n1 + 11, 2n1 + 12) 36 logQ SXDH
[AJO+19] (n1, 0) (7, 4) (2, n1 + 11) 6 logQ SXDH

Figure 1.2: Comparison of standard-model structure-preserving signature schemes (in
their most efficient variants). Here, we restrict ourselves to unilateral schemes (with
messages over G1). The notation (x1, x2) denotes x1 elements in G1 and x2 elements
in G2. |M |, |σ|, and |pk| denote the size of messages, signatures, and public keys
(measured in group elements). “Sec. loss” denotes the multiplicative factor that the
security reduction to “assumption” loses, where we omit dominated and additive fac-
tors. (Here, “generic” means that only a proof in the generic group model is known.)
For the tree-based scheme HJ12, ` denotes the depth of the tree (which limits the
number of signing queries to 2`). Q denotes the number of adversarial signing queries,
and λ is the security parameter.

Jutla, Ohkubo, and Roy [JOR18], which can be viewed as a direct improvement of
[AHN+17], was concurrent and independent to our work.

Recent Developments. Quite recently, a number of works constructed tight
public-key encryption satisfying additional security properties.

Building on our work [GHK17], Lyu et al. [LLHG18] give the first public-key
encryption scheme with compact public key which enjoys tight simulation-based
security under chosen-ciphertext and selective-opening attacks.11

Further, Han et al. [HLLG19] present a tight construction of a leakage-resilient
public-key encryption, where the adversary is allowed to receive some leakage on
the ciphertexts. This requires different techniques, as our proof system does not
guarantee security when partial information of the secret key is leaked.
Abe et al. [AJOR18] provide the construction of a special kind of non-interactive

proof system for linear-subspace languages with compact parameters that reduces
tightly to the underlying assumption. This has applications both in public-key
encryption and structure-preserving signatures: First, it gives a tight public-key
encryption scheme with public-verifiability where everyone can verify that a given
ciphertext decrypts to a valid plaintext. Second, it implies structure-preserving sig-
natures with shorter signatures, but at the cost of larger public keys. Quite recently
Abe et al. [AJO+19] constructed structure-preserving signatures comprising only 11
group elements and almost matching our public-key size.

Open Problems. There is still a gap between non-tight an tight constructions
for both public-key encryption and structure-preserving signatures. For structure-
preserving signatures it seems feasible to reduce the signature size further by con-
structing a more efficient publicly verifiable or-proof. It is not clear though, whether
there is an inherent barrier to meet the size of non-tight constructions.

11A scheme is called selective-opening secure, if, given a set of ciphertexts and openings (including
randomness) for a subset of these ciphertexts, the unopened ciphertexts are still hiding.

12

x

y

Share

x, y

x, y

Evalf

Evalf

f(x, y)

f(x, y)

+ f(x, y)

Figure 1.3: How to use homomorphic secret sharing for succinct secure computation.
Here x and y denote the input values, and x and x the shares hold by parties P0 and
P1, respectively. “Share” denotes a secure protocol for sharing the inputs and Evalf
denotes the procedure for locally evaluating the function f on the shares.

For encryption it is a very interesting open question whether there exist a tight
construction which meets the ciphertext size of the scheme of Kurosawa and Desmedt
(particularly with compact public key). This would either require a hash proof
system like building block for the or-proof (with short public key)—with possibly
interesting applications in other areas of cryptography, or require fundamentally new
techniques allowing a tight security reduction.

Succinct Secure Computation

Regarding communication complexity of protocols for secure computation, there
are two aspects to consider: The size of messages exchanged, as well as the round
complexity, that is, the number of sequential messages sent between parties. In the
following we give an overview of our advances constructing protocols with succinct
communication, where in particular the size of the messages to be exchanged is
independent of the circuit size of the function to be computed.

Homomorphic Secret Sharing. Secret sharing describes splitting up a secret
into two (or more) shares, such that each share on its own does not leak anything
about the secret, but altogether the secret can be recovered. Homomorphic secret
sharing is a variant of secret sharing, where functions can be evaluated locally on
the shares, resulting in a secret sharing of the function output. We consider the
special case of homomorphic secret sharing with additive reconstruction, where the
final secret sharing is required to be additive.
Following Boyle et al. [BGI16a], homomorphic secret sharing is one promising ap-

proach towards succinct secure computation: First, the parties engage in a protocol
for securely sharing their input values. Note that the communication required for
setting up the secret shares only depends on the input size and is in particular inde-
pendent of the size of the circuit for computing the function. Now, the parties can
locally evaluate the function on their respective shares and add up the output values
to the final result. We give a depiction in Figure 1.3.12

Even though homomorphic secret sharing can be viewed as a relaxation of fully
homomorphic encryption, somewhat surprisingly all previous constructions of homo-

12Figures taken (with minor modifications) from presentation by the author on “HSS from lattices
without FHE”, NYC Crypto Day, January 2019.

13

1 Introduction

morphic secret sharing schemes based on lattices are actually at least as complex as
fully-homomorphic encryption schemes.
In our work [BKS19] we present new techniques that yield the first lattice-based

2-party homomorphic secret sharing scheme for the class of functions in NC1 that
avoids expensive ciphertext multiplications. In the following we give an overview of
the techniques involved.

Cryptography from Lattices. A lattice is a discrete subgroup of the n-dimensional
space of real numbers. Lattices are interesting from a cryptographic view point, as
certain problems in lattices (such as finding the shortest vector) are not known to be
efficiently solvable. Lattice-based cryptography was kicked-off with the work of Ajtai
[Ajt96], who gave the construction of collision resistant hash function which can be
reduced to solving a lattice problem in the worst case. Since then numerous crypto-
graphic building blocks have been constructed from lattices. Building cryptography
on the hardness of lattice problems is particularly appealing, as—other than more
classical assumptions like the decisional Diffie-Hellman assumption—lattice problems
are not known to become significantly easier with quantum computers. Another rea-
son for their popularity is that fully homomorphic encryption can be constructed
from lattices [Gen09].

The idea underlying lattice-based encryption schemes is, roughly, that it is conjec-
tured to be hard to distinguish a lattice vector which is perturbed (by adding a small
noise) from a truly random vector. Using such a perturbed lattice vector to blind
the message allows the holder of the secret key to recover the plaintext up to the
added noise. In order to allow exact recovery of the message, one can, for instance,
“blow up” messages multiplying a factor q/r, where q is the ciphertext modulus and
r the plaintext modulus. It is relatively straightforward to see that (by the prop-
erty of the underlying lattice) adding ciphertexts directly translates to adding the
underlying plaintexts. For multiplication, on the other hand, one has to work a bit
harder. In fact, to handle an unbounded number of multiplications, advanced and
computationally expensive techniques such as key-switching and modulus-reduction
are necessary. The problem is, roughly, that multiplication leads to a very rapid
growth of the noise.
Homomorphic Secret Sharing without FHE. To avoid this source of ineffi-

ciency, an obvious question is: Can we construct homomorphic secret sharing from
lattices without fully homomorphic encryption? Here, without fully homomorphic
encryption refers to avoiding expensive ciphertext multiplication with the goal of
efficient secure 2-party computation and 2-server private information retrieval.
In our work [BKS19], we answer this question affirmatively. Towards our con-

struction, let us first take a closer look at homomorphic secret sharing from thresh-
old fully homomorphic encryption. In threshold fully homomorphic encryption, key
generation returns secret key shares sk0, sk1 together with a public key pk, such that
Decsk0(Encpk(m)) + Decsk1(Encpk(m)) = m mod r. Now, giving each party one of
the secret key shares allows to homomorphically evaluate a function on the shares,
and finally recovering the output by exchanging the final shares. Note that even
though both parties hold a secret key share throughout evaluation, it is only used for
decryption in the end.
We observe that we can avoid expensive ciphertext multiplication by using the

secret key share also during evaluation itself. More precisely, we replace multiplica-

14

Zq

0

q/2

z0

z1

z

Zq

0

q/2

z0

z1

z

Figure 1.4: Graphic representation of rounding. Here, z0 ← Zq and z1 = z − z0

mod q. On the left, z ∈ Zq is arbitrary (which, in general, leads to a rounding error
with constant probability). On the right, z ≈ (q/2) · x mod q for x = 1. In this case,
rounding is successful unless z0 falls into the bad area marked in black.

tion by a distributed decryption. This has several advantages: First, we do not have
to deal with noise growth. Depending on the setting this allows to choose smaller
parameters for the underlying ring, and therefore leads to a reduction in communi-
cation complexity compared to approaches from fully (or somewhat) homomorphic
encryption. Second, distributed decryption turns out to be more efficient in practice,
which on its own can lead to an estimated speed-up of about an order of magnitude
for carrying out multiplications.
To understand our approach, note that decryption in lattice-based schemes is

usually of the following form (e.g. [LPR13]): First, a bilinear function (say LDec) is
applied to the secret key and the ciphertext. This yields (q/r) ·x+e mod q, where x
is the plaintext and e is a small noise term. Finally, rounding to the closest multiple
of q/r allows to recover the plaintext. Let sk0, sk1 be key shares of the secret key
with sk0 + sk1 = sk mod q and c an encryption of x. Then, by bilinearity of LDec,
we have

LDecsk0(c) + LDecsk1(c) = (q/r) · x+ e mod q,

and, similarly, for “small” y it holds

LDecy·sk0(c) + LDecy·sk1(c) = (q/r) · x · y + e · y ≈ (q/r) · x · y mod q.

This is the basic idea, of how giving the parties key shares of y · sk, allows to perform
a multiplication via distributed decryption.
In order to recover the exact message though, it is left to perform the rounding

on the shares. In general, given a sum z0 + z1 = z mod q, rounding on secret shares
yields an error with constant probability. Luckily, in our case we know z ≈ (q/r) · x
for some x which allows to apply a trick of Dodis et al. [DHRW16]: If r � q,
z0 ←R Zq, z1 = z − z0 mod q and z ≈ (q/r) · x, then with high probability over
the choice of z0 it holds Round(z0) + Round(z1) = Round(z) mod q. For a graphic
representation (for r = 2), we refer to Figure 1.4.12

This is still not sufficient, as it only allows to perform one multiplication on
ciphertexts. In order to perform another multiplication, the parties need shares
of x · y · sk mod q (instead of x · y mod r). Introducing sk into the equation is
comparatively simple by encrypting x · sk instead of x alone. In general, encrypting
the secret key itself requires a stronger assumption, namely that security of the
encryption scheme holds even for messages depending on the secret key. In our

15

1 Introduction

0

zz0 z1

− r−1
2

r−1
2

Figure 1.5: Graphic representation of lifting. Here, z0 ← Zr, z1 = z − z0 mod r for
|z| � r. Lifting is successful unless z0 falls into the bad area marked in black.

context, though, this comes for free: As observed by Brakerski et al. in [BV11]
encryption schemes with nearly linear decryption (as described) already satisfy this
stronger security notion. Even more, we observe that generating encryptions of x · sk
is straightforward even without knowledge of the secret-key, allowing parties to share
their inputs e.g. in the setting of secure computation.
A problem more challenging is the change of modulus. As the secret key shares

are modulo r, we would have to continue with a ciphertext modulo r and plaintext
modulo r1 for some r1 � r for the next multiplication. This would lead to a leveled
HSS scheme q � r � r1 � · · · � r` with superpolynomial drop in each level (in
order for the rounding to work)—in particular, we would only be able to perform a
constant number of multiplications somewhat efficiently.
We avoid the above conundrum, by (quite literally) doing nothing.13 More pre-

cisely, we observe that whenever the plaintext is much smaller than the plaintext
modulus (more precisely, when |x · y · sk| � r), we can switch the modulus to any
modulus of our choice (here q), again with negligible correctness error. We call this
technique lifting. The idea is that if |x · y · sk| is small, then a random sharing of
x·y ·sk mod r is with high probability actually a sharing over Z and thus correctness
is preserved respective arbitrary moduli. For a graphic representation we refer to
Figure 1.5.12

Altogether, our HSS has three levels: B � r � q/B. As long as the magnitude of
our program (that is, all intermediary evaluation steps) are bounded by B, we are
guaranteed correctness with overwhelming probability. Note that we only support
restricted multiplications, where one factor is an input value. This limits our con-
structions to functions that can be computed by so-called restricted multiplication
straight-line programs. This includes for instance all functions that can by computed
by circuits of logarithmic depth, and branching programs.
Application of our HSS Scheme to Private Information Retrieval. For an
efficiency comparison to somewhat homomorphic encryption (where only a bounded
number of multiplications are supported) we consider generalized private-information
retrieval. Private information retrieval (PIR) was introduced by Chor et al. in
[CGKS95] and is one approach towards privacy-preserving database queries: As-
suming servers that do not communicate with each other each holding a copy of the
database, PIR allows to query the database without an individual server receiving
any information about the content of the queries. Here, we consider the special case
of 2-server PIR. While simple queries (like equality conditions and range-queries)
can be efficiently supported by HSS construction for the family of point functions
[GI14, BGI16b, WYG+17], our HSS allows to support more advanced queries, as
for instance counting queries, conjunctive keyword search and pattern matching. As
13Sentence taken verbatim from [BKS19].

16

Depth N log q security
1 4096 102 145.1
5 4096 164 85.53
10 8192 252 111.9

B N log q security
2 4096 137 103.3

264 8192 267 104.9
2256 16384 655 84.60

Figure 1.6: Private information retrieval for conjunctive keyword counting query, com-
parison. On the left hand side parameter choice for BFV ([Bra12, FV12]) with plain-
text modulus 2. (Here, 10 gives a lower bound on the required depth.) “N ” denotes
the dimension of the underlying ring, “q” the ciphertext modulus and “security” the
security level (in bit). On the right hand side we give the parameter choice for our
HSS, where B denotes the program magnitude. As we do not have to account for the
noise growth we get by with smaller parameters.

example consider the following. Given a database with entries of length 128 bit, each
associated with a list of 10 keywords and given a list of 4 keywords: How long does
it take to privately count all database entries which are associated to all 4 given key-
words? While the approach based on somewhat homomorphic encryption with BFV
[Bra12, FV12] requires communication cost of estimated 314 MB and computation
time of about 300 seconds, we estimate that with our HSS this task can be solved with
only about a third of the communication (roughly 107 MB) and two orders of mag-
nitude less computation (only about 2.5 seconds). The reason is that the arithmetic
circuit computing this function has a multiplicative depth of dlog(128 · 10 · 4)e = 13
and thus the parameters of the somewhat homomorphic encryption scheme have to
be chosen accordingly larger to account for the noise growth. For our scheme, on
the other hand, the size of the parameters depend on the program magnitude only.
As all multiplications can be performed over bits, this allows us to choose smaller
modulus and ring dimension. Additionally, our multiplication is a comparatively
cheap distributed decryption instead of a ciphertext multiplication. For a choice
of the underlying parameters we refer to Figure 1.6 (taken with modifications from
[BKS19]).
Pseudorandom Correlation Generators. A different approach to secure multi-
party computation is taken in protocols in the preprocessing model. Here, in an input-
independent preprocessing phase correlated random strings are generated, which are
then used to implement a very efficient online phase. An example for a useful
correlation are Beaver triples, that is, additive secret shares of tuples (a, b, ab). In
the online phase Beaver triples allow to efficiently multiply values that are additively
secret shared between the parties. The idea is that a and b can serve as one-time-
pads to “encrypt” real input values x and y. As this strategy requires one Beaver
triple per multiplication, during preprocessing many of such (random) triples have to
be generated. For this reason the preprocessing phase in such protocols is typically
slow and requires a huge amount of communication. Further, saving the correlated
random strings takes up a large space in memory for each of the parties.
In the case of secure communication, the problem of exchanging and saving long

random strings to encrypt long messages can be solved with a pseudorandom gen-
erator: Given a short random seed, the parties can each locally expand this seed to
obtain a long pseudorandom string, which can then be used as a one-time pad to
encrypt long messages.
The notion of a pseudorandom correlation generator (PCG) transfers this idea

17

1 Introduction

SILENT

P0

k0

local expansion

R0

P1

short corr. seeds

long corr. strings

local expansion

k1

R1

setup requires
little communication

Figure 1.7: How to use pseudorandom correlation generators for silent preprocessing.
Parties that might want to engage in a protocol for secure computation in the future
can engage in a protocol for setting up the short seeds. Once the parties know that
a computation is going to take place soon, they can expand their short seeds without
further communication. The expansion can be followed by an efficient online phase
once the inputs are known, where the generated correlated randomness is consumed.

to the more general setting of secure computation: Given short correlated seeds,
the parties can each expand their seed into long correlated pseudorandom strings,
e.g. for the correlation of Beaver triples. Replacing the preprocessing phase in a
protocol for secure computation comes with two advantages: First, setting up the
short correlated seeds requires significantly less communication. Second, the parties
only have to save short seeds, which can be silently expanded to long pseudorandom
strings whenever the parties want to engage in a secure computation. For a depiction
of the preprocessing phase based on pseudorandom correlation generators we refer
to Figure 1.7.14

In our work [BCG+19b], we advance the state-of-the art both theoretically and
practically: Building on a result of [GI99] we show that, unfortunately, pseudoran-
dom correlation generators can not replace correlated randomness in all applications.
And, even more, that there exist protocols not only for randomized but also for deter-
ministic functionalities that become insecure when instantiated with pseudorandom
correlation generators. The reason is, roughly, that the short seed gives an “ex-
planation” of the long string that can not be computed efficiently given the long
pseudorandom string only (as this would violate pseudorandomness).
We circumvent this impossibility by giving an indistinguishability-based security

definition of pseudorandom correlation generators, and show that this definition
suffices to replace the preprocessing phase in all protocols for secure computation that
satisfy a slightly stronger security notion. Fortunately, natural protocols for secure
computation already satisfy this notion, which allows to plug-in PCGs directly in a
wide number of applications. Further, we show connection between pseudorandom
correlation generators and homomorphic secret sharing schemes.
On the applied side, we give efficient instantiations for a number of useful cor-

relations in the context of secure computation, such as oblivious transfer, one-time
correlated truth tables, general low-degree polynomials and Beaver triples. For an
overview we refer to Figure 1.8.15

In this thesis we focus on the definition of pseudorandom correlation generators,

14Figure taken (with modifications) from a presentation by the author on “Circumventing Lower
Bounds: Efficient 2-Round OT Extension”, Bertinoro Workshop on Lower Bounds, July 2019.

15This overview is taken with modifications from [BCG+19b].

18

Correlation assumption efficiency
OT LPN 1M OT/s
OTTT PRG -
deg-d LPN -
degree-d/2 LPN/MQ + deg-d HSS -
deg-2 over small ring LPN+ SXDH 5 OLE/s
deg-d MQ+ RLWE 6000 ABT/s
multiparty VOLE LPN -
multiparty OT/ Beaver triple LPN+ SXDH/MQ+ RLWE -

Figure 1.8: Overview of new PCG constructions in [BCG+19b]. OT stands for ran-
dom oblivious transfer, OTTT for authenticated one-time truth-table correlation, OLE
for oblivious linear evaluation (over a constant size ring) and ABT for authenticated
Beaver triples. LPN stands for learning parity with noise, PRG for an arbitrary pseu-
dorandom generator, MQ for multivariate quadratic, SXDH for symmetric external
Diffie-Hellman and RLWE for learning with errors over rings. Efficiency gives the
(approximate) cost over one core of a standard laptop.

present a generic construction of pseudorandom correlation generators from a ho-
momorphic secret sharing scheme together with a suitable pseudorandom generator,
and show how to instantiate this pseudorandom correlation generator from lattices
for the correlation of authenticated Beaver triples. Authenticated Beaver triples are
Beaver triples which are additionally authenticated with a message authentication
code. This allows to implement protocols for secure computation even in the pres-
ence of parties that deviate from the protocol specification. An example for such a
protocol is the so-called SPDZ-protocol [DPSZ12]. Here, the final result is rejected
unless the corresponding MAC (for which the key is shared between the parties)
verifies. This guarantees correct execution, unless a party guessed the MAC key
correctly. In the following we give an overview of the high-level ideas involved.

Defining Pseudorandom Correlation Generators. Typically, security proofs
for multi-party computation protocols follow the simulation paradigm (introduced in
[GMW87]): The desired behavior is modeled as an ideal functionality, and a protocol
is said to be secure if for all efficient real-world adversaries there exists an efficient
simulator who can reproduce the attack in the ideal world, that is, only interacting
with the ideal functionality. In particular, everything a dishonest party can learn
during the protocol execution must be explicitly modeled by the ideal functionality.
As we want to use PCGs as a plug-in replacement in protocols for secure computa-

tion, it would be natural to give a simulation-based definition, requiring that in any
secure protocol execution the use of long correlated strings can be replaced by short
correlated PCG seeds. Unfortunately, as sketched in [GI99], this notion turns out to
be too strong to be realizable in a non-trivial way: As a counter-example consider the
simple protocol, where one party samples a pair of long correlated strings (R0,R1)
and sends R1 to the other party, who outputs R1. Replacing the correlated strings
by short correlated seeds creates the following problem for the simulator: Given only
the output R1 of the protocol, a simulator reproducing a real transcript would have
to efficiently generate a short seed k1 that can be expanded to R1. Now, if the PCG
construction is non-trivial (i.e. the entropy of a uniformly sampled R1 exceeds the
length of the key k1), this contradicts the pseudorandomness of R1.

19

1 Introduction

We thus have to fall back into an indistinguishability-based notion. Intuitively, we
require that the correlated pseudorandom strings “look like” real correlated strings
(correctness) and the seeds do not leak “too much” about the others party output
(security). More precisely, we model the first condition as being computationally
indistinguishable from correlated strings chosen uniformly at random. For security,
we require that a party cannot learn more from their short seed about the others
party output, than they can trivially derive from their own output. We show that this
security notion is sufficient to directly apply PCGs to a large number of protocols,
including [BDOZ11, DPSZ12] based on preprocessed (authenticated) Beaver triples.

Constructing Pseudorandom Correlation Generators. In order to instantiate
PCGs for additive correlations, that is, correlations where R0,R1 are subject to
R0 + R1 = f(X) for some function f and input X, we give a generic construction
by combining a HSS scheme with an “HSS-friendly” pseudorandom generator PRG
expanding a short seed k to a long pseudorandom string X. The idea is as follows:
Given a homomorphic secret sharing scheme for the function f ◦PRG, key generation
chooses a short k at random, and shares the key into HSS shares k0 and k1. Now,
for expansion the parties homomorphically evaluate f ◦ PRG on their respective key
share. By correctness of the HSS, the outputs add up to f(X) for X = PRG(k) as
required, and, by security, the parties learn nothing about the others party share
apart from the obvious. Note that the actual challenge lies in instantiating this
approach efficiently, as all known efficient HSS constructions only support a limited
class of functions. For this reason it is challenging to find a suitable pseudorandom
generator. Note that an obvious choice like the low-degree PRG by Goldreich [Gol00,
MST03] in fact yields a very inefficient instantiation (see [CDM+18]).
For generating additive shares of authenticated Beaver triples, we instantiate the

generic construction with a lattice-based homomorphic secret sharing scheme and
a pseudorandom generator based on the multivariate quadratic (MQ) assumption.
The MQ assumption states, roughly, that evaluating a system of m > n quadratic
equations in n variables over a finite field F on a random point looks pseudorandom.
Note that using an MQ-based PRG limits the stretch to subquadratic, as in case
m ≥ n2 the system of quadratic equations can be solved efficiently via linearization
[KPG99]. The reason we still use this PRG is to achieve reasonable computational
efficiency.
Regarding the HSS, we use a hybrid scheme based on somewhat homomorphic

encryption and our construction from [BKS19] for the most efficient instantiation.
This allows to stretch about 3 GB of key material to a total of about 17 GB of
authenticated Beaver triples over a large finite field at an estimated rate of more
than 6000 authenticated Beaver triples per second.

Related Work. The underlying framework of our homomorphic secret sharing
scheme is similar to the construction by Boyle et al. [BGI16a]: Input values are
represented by encryptions, memory values are represented by secret shares and it is
only possible to multiply an input value with amemory value. Remarkably, compared
to the work of Boyle et al. our share-conversion which is necessary to apply after
each multiplication is conceptually simpler and much more efficient. Further, it
comes with negligible correctness error, and allows to support even superpolynomial
input space (by choosing r and q accordingly).
Pseudorandom correlation generators (PCGs) for very simple correlations (that

20

is, multi-party linear correlations) were first discussed by Gilboa and Ishai in 1999
[GI99]. After the birth of this primitive though there was no progress for almost 20
years—which can be explained possibly by the lack of the right cryptographic tools
at the time or the belief that efficient pseudorandom generators are a building block
“too good to be true”.
Constructions by [HIJ+16, BCG+17, Sch18] for more complex correlations fol-

lowed, but the first efficient pseudorandom correlation generator was given by Boyle
et al. [BCGI18] for the correlation of vector oblivious linear evaluation, where a
receiver learns a linear combination (of its own choice) of two vectors hold by the
sender.
Open Questions. A major open question is constructing efficient homomorphic
secret sharing schemes going beyond 2 parties. As described by Benhamouda et al.
in [BDIR18], there is an inherent barrier going from 2 to 3 parties for the scheme
of [BGI16a]. Also for our construction, this seems to be challenging: Both, the
rounding and lifting trick do not carry over to the 3-party setting. In fact, either
would lead to a constant correctness error for 3 or more parties.
Another interesting question regards the ciphertext size: Can one get a HSS from

lattices without FHE with polynomial modulus? Again, our techniques seem not ap-
plicable, because they would come with a noticeable correctness error in this setting.
As the research towards efficient pseudorandom correlation generators is relatively

young, there is a huge number of questions yet to answer. A dream goal would be
to construct a true efficient pseudorandom correlation function with exponential (or
at least large polynomial) stretch, where correlated randomness can be generated
iteratively, whenever needed. This would allow parties to communicate securely
without further preprocessing for life time.

21

List of Publications

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Peter Rindal and Peter Scholl. Efficient Two-Round OT Exten-
sion and Silent Non-Interactive Secure Computation. In:
ACM CCS 2019. ACM Press, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient Pseudorandom Correlation Gen-
erators: Silent OT Extension and More. In: CRYPTO 2019.
LNCS, vol 11694. Springer, Cham.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic Secret
Sharing from Lattices Without FHE. In: EUROCRYPT 2019.
LNCS, vol 11477. Springer, Cham.

[Koh19] Lisa Kohl. Hunting and Gathering - Verifiable Random Func-
tions from Standard Assumptions with Short Proofs. In:
Public-Key Cryptography – PKC 2019. LNCS, vol 11443. Springer,
Cham.

[HHK18] Julia Hesse, Dennis Hofheinz, Lisa Kohl. On Tightly Secure
Non-Interactive Key Exchange. In: CRYPTO 2018. LNCS,
vol 10992. Springer, Cham.

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, Jiaxin Pan. More Ef-
ficient (Almost) Tightly Secure Structure-Preserving Sig-
natures. In: EUROCRYPT 2018. LNCS, vol 10821. Springer,
Cham.

[GHK17] Romain Gay, Dennis Hofheinz, Lisa Kohl. Kurosawa-Desmedt
Meets Tight Security. In: CRYPTO 2017. LNCS, vol 10403.
Springer, Cham.

23

Chapter 2
Preliminaries

In this chapter we introduce basic cryptographic concepts and notation used through-
out this thesis. In particular, we explain the two main cryptographic assumptions,
with groups and lattices as underlying mathematical structure, respectively: In the
first part of this thesis we work in prime-order groups, where given a group element
it is assumed to be hard to compute the discrete logarithm respective to a given gen-
erator. We require even more, namely that it is hard to distinguish the product in
the exponent from a truly random group element, given the factors in the exponent
only. This is the classical and well-studied decisional Diffie-Hellman assumption (or,
generalizing to higher dimensions, the matrix Diffie-Hellman assumption).
The second part of the thesis, on the other hand, builds on the more recent as-

sumption that it is hard to solve certain problems in lattices, with the advantage
of conjectured security even in the presence of quantum computers. For efficiency
we will work with ideal lattices, which are a generalization of cyclic lattices. The
corresponding assumption is the learning with errors over rings assumption.
Subsequently, we introduce basic security notions for hash functions, pseudoran-

dom generators, public-key encryption schemes, signatures and homomorphic secret
sharing schemes. For more specialized concepts, we give the preliminaries in the
chapter itself.
Note that the preliminaries are in large parts taken verbatim from our works

[GHK17], [GHKP18], [BKS19] and [BCG+19b].

Basic Notation. By λ ∈ N we denote the security parameter. We say a function
negl : N → R≥0 is negligible, if for all polynomials poly ∈ N[X] there exists an
n0 ∈ N such that negl(n) < 1/poly(n) for all n ≥ n0. Throughout we consider all
parameters to implicitly depend on λ, e.g. by ` ∈ N we actually consider ` to be a
function ` : N→ N, but simply write ` in order to refer to `(λ). We say ` ≤ poly(λ),
if there exists a polynomial p[X] ∈ N[X] and a λ0 ∈ N such that for all λ ≥ λ0 we
have `(λ) ≤ poly(λ). If no such polynomial exist, we write ` ≥ λω(1).
For an arbitrary set S, by x←R S we denote the process of sampling an element

x from S uniformly at random. For any distribution D by d ← D we denote the
process of sampling an element d according to the distribution D. We say that P is
probabilistic polynomial time (PPT), if P is a probabilistic algorithm with running
time polynomial in λ. We use y ← P(x) to denote that y is assigned the output of
P running on input x. For a deterministic algorithm we sometimes use the notation
y := P(x) instead. We generalize P to vectors of inputs in a straightforward way:
P is run independently on each entry of the vector (with independent random coins
if P is randomized).
For any bit string τ ∈ {0, 1}∗, we denote by τi the i-th bit of τ and by τ|i ∈ {0, 1}i

the bit string comprising the first i bits of τ . Similarly, for any element m ∈ Zp (for

25

2 Preliminaries

some p ∈ N), we denote by mi ∈ {0, 1} the i-th bit of m’s bit representation and by
m|i ∈ {0, 1}i the bit string comprising the first i bits of m’s bit representation. For
` ∈ N and p a prime, by Fp` we denote a finite field consisting of p` elements. For
a real number x ∈ R, by bxe ∈ Z we denote the element closest to x ∈ R, where we
round up when the first decimal place of x is 5 or higher.
Vector and Matrix Notation. We denote vectors by bold lower-case letters and
matrices by bold upper-case letters. We interpret vectors as column-vectors. For a
vector x ∈ R`, by xi we refer to the i-th entry (for i ∈ {1, . . . , `}).
Let p be a prime. Let k, ` ∈ N such that ` > k. Then for any matrix A ∈ Z`×kp , we

write A ∈ Zk×kp for the upper square matrix of A, and A ∈ Z(`−k)×k
p for the lower

`− k rows of A. With

span(A) := {Ar | r ∈ Zkp} ⊂ Z`p,

we denote the span of A.
For vectors v ∈ Z2k

p , by v ∈ Zkp we denote the vector consisting of the upper k
entries of v and accordingly by v ∈ Zkp we denote the vector consisting of the lower
k entries of v.

As usual by A> ∈ Zk×`p we denote the transpose of A and if ` = k and A is
invertible by A−1 ∈ Z`×`p we denote the inverse of A.
For ` ≥ k by A⊥ we denote a matrix in Z`×(`−k)

p with A>A⊥ = 0 and rank `− k.
We denote the set of all matrices with these properties as

orth(A) := {A⊥ ∈ Z`×(`−k)
p | A>A⊥ = 0 and A⊥ has rank `− k}.

Finally, for l = k we denote the trace ofA, that is the sum of the diagonal elements
of A, by

trace(A) :=
k∑
i=1

Ai,i.

2.1 Cryptography from Groups

Let GGen be a PPT algorithm that on input 1λ returns a description G = (G, p, P)
of an additive cyclic group G of order p for a 2λ-bit prime p, whose generator is P .

We use the representation of group elements introduced in [EHK+13]. Namely, for
a ∈ Zp, define [a] = aP ∈ G as the implicit representation of a in G. More generally,
for a matrix A = (aij) ∈ Z`×kp we define [A] as the implicit representation of A in
G:

[A] :=

a11P ... a1kP

a`1P ... a`kP

 ∈ G`×k

Note that from [a] ∈ G it is hard to compute the value a if the discrete logarithm
assumption holds in G. Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can
efficiently compute [ax] ∈ G and [a+ b] ∈ G.
For matrices A ∈ Zl×kp ,B ∈ Zl×kp , by [A,B] we denote the composed matrix[
A
B

]
∈ G2l×k. Further, by

span([A]) := {[A]r | r ∈ Zkp} ⊂ Gl

26

2.1 Cryptography from Groups

we denote the span of [A] in Gl and by

trace([A]) :=

[
k∑
i=1

Ai,i

]
the trace of [A] in G.

Let BGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description PG = (G1,G2, GT , p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic group of order p for a 2λ-bit prime p, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 × G2 → GT is an efficiently com-
putable (non-degenerate) bilinear map. Define PT := e(P1, P2), which is a generator
of GT . Again, we use implicit representation of group elements. For i ∈ {1, 2, T} and
a ∈ Zp, we define [a]i = aPi ∈ Gi as the implicit representation of a in Gi. Given
[a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two matrices A,
B with matching dimensions, we define e([A]1, [B]2) := [AB]T ∈ GT .
We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) assump-

tion from [EHK+13].

Definition 1 (Matrix distribution). Let k, ` ∈ N, with ` > k and p be a 2λ-bit
prime. We call D`,k a matrix distribution if it outputs matrices in Z`×kp of full rank
k in polynomial time.

In the following we only consider matrix distributions D`,k, where for all A ←R

D`,k the first k rows of A form an invertible matrix. We also require that in case
` = 2k for any two matrices A0,A1 ←R D2k,k the matrix (A0 | A1) has full rank
with overwhelming probability. In the following we will denote this probability by
1 − ∆D2k,k

. Note that if (A0 | A1) has full rank, then for any A⊥0 ∈ orth(A0),
A⊥1 ∈ orth(A1) the matrix (A⊥0 | A⊥1) ∈ Z2k×2k

p has full rank as well, as otherwise
there would exists a non-zero vector v ∈ Z2k

p \{0} with (A0 | A1)>v = 0. Further,
by similar reasoning (A⊥0)>A1 ∈ Zk×kp has full rank.
The D`,k-Matrix Diffie-Hellman problem is, for a randomly chosen A←R D`,k, to

distinguish the between tuples of the form ([A], [Aw]) and ([A], [u]), wherew←R Zkp
and u←R Z`p.

Definition 2 (D`,k-Matrix Diffie-Hellman D`,k-MDDH). Let D`,k be a matrix dis-
tribution. We say that the D`,k-Matrix Diffie-Hellman (D`,k-MDDH) assumption
holds relative to a prime order group G if for all PPT adversaries A,

Advmddh
G,D`,k,A(λ) : = |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]|

≤ negl(λ),

where the probabilities are taken over G := (G, p, P)←R GGen(1λ),A←R D`,k,w←R

Zkp,u←R Z`p.

For Q ∈ N, W ←R Zk×Qp and U ←R Z`×Qp , we consider the Q-fold D`,k-MDDH
assumption, which states that distinguishing tuples of the form ([A], [AW]) from
([A], [U]) is hard. That is, a challenge for the Q-fold D`,k-MDDH assumption con-
sists of Q independent challenges of the D`,k-MDDH Assumption (with the same A
but different randomness w). In [EHK+13] it is shown that the two problems are
equivalent, where the reduction loses at most a factor `− k.

27

2 Preliminaries

Lemma 3 (Random self-reducibility of D`,k-MDDH, [EHK+13]). Let `, k, Q ∈ N
with ` > k and Q > ` − k. For any PPT adversary A, there exists an adversary B
such that T (B) ≈ T (A) +Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,D`,k,A(λ) ≤ (`− k) ·Advmddh

G,D`,k,B(λ) +
1

p− 1
.

Here

AdvQ-mddh
G,D`,k,A(λ) := |Pr[A(G, [A], [AW]) = 1]− Pr[A(G, [A], [U]) = 1]| ,

where the probability is over G := (G, p, p) ←R GGen(1λ), A ←R U`,k,W ←R Zk×Qp

and U←R Z`×Qp .

The uniform distribution is a particular matrix distribution that deserves special
attention, as an adversary breaking the U`,k-MDDH assumption can also distinguish
between real MDDH tuples and random tuples for all other possible matrix distri-
butions.

Definition 4 (Uniform distribution). Let `, k ∈ N, with ` ≥ k, and a prime p. We
denote by U`,k the uniform distribution over all full-rank `×k matrices over Zp. Let
Uk := Uk+1,k.

Lemma 5 (D`,k-MDDH ⇒ U`,k-MDDH, [EHK+13]). Let D`,k be a matrix distri-
bution. For any adversary A on the U`,k-distribution, there exists an adversary B on
the D`,k-assumption such that T (B) ≈ T (A) and Advmddh

G,U`,k,A(λ) = Advmddh
G,D`,k,B(λ).

We state a tighter random-self reducibility property for case of the uniform distri-
bution.

Lemma 6 (Random self-reducibility of U`,k-MDDH, [EHK+13]). Let `, k, Q ∈ N
with ` > k. For any PPT adversary A, there exists an adversary B such that
T (B) ≈ T (A) +Q · poly(λ) with poly(λ) independent of T (A), and

AdvQ-mddh
G,U`,k,A(λ) ≤ Advmddh

G,U`,k,B(λ) +
1

p− 1
.

We also recall this property of the uniform distribution, stated in [GHKW16].

Lemma 7 (Uk-MDDH ⇔ U`,k-MDDH). Let `, k ∈ N, with ` > k. For any adver-
sary A, there exists an adversary B (and vice versa) such that T (B) ≈ T (A) and
Advmddh

G,U`,k,A(λ) = Advmddh
G,Uk,B(λ).

For k ∈ N we define Dk := Dk+1,k.
The Kernel-Diffie-Hellman assumption Dk-KMDH [MRV16] is a natural computa-

tional analogue of the Dk-MDDH Assumption.

Definition 8 (Dk-Kernel Diffie-Hellman assumption Dk-KMDH). Let Dk be a ma-
trix distribution. We say that theDk-Kernel Diffie-Hellman (Dk-KMDH) assumption
holds relative to a prime order group Gi for i ∈ {1, 2} if for all PPT adversaries A,

Advkmdh
PG,Gi,D`,k,A(λ) : = Pr[c>A = 0 ∧ c 6= 0 | [c]3−i ←R A(PG, [A]i)]

≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ← BGen(1λ),
and A←R Dk.

28

2.2 Cryptography from Lattices

Note that we can use a non-zero vector in the kernel of A to test membership in
the column space of A. This means that the Dk-KMDH assumption is a relaxation
of the Dk-MDDH assumption, as captured in the following lemma from [MRV16].

Lemma 9 ([MRV16]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KMDH.

In this paper, we are particularly interested in the case k = 1, which corresponds
to the DDH assumption, that we recall here.

Definition 10 (DDH). We say that the DDH assumption holds relative to a prime
order group G if for all PPT adversaries A,

Advddh
G,A(λ) : = |Pr[A(G, [a], [r], [ar]) = 1]− Pr[A(G, [a], [r], [b]| ≤ negl(λ),

where the probabilities are taken over G := (G, p, P)←R GGen(1λ), a, b, r ←R Zp.

Note that the DDH assumption is equivalent to D2,1-MDDH, where D2,1 is the
distribution that outputs matrices

(
1
a

)
, for a←R Zp chosen uniformly at random.

For PG = (G1,G2, GT , p, P1, P2, e), assuming D2,1-MDDH relative to G1 and rel-
ative to G2, corresponds to the symmetric external Diffie-Hellman (SXDH) assump-
tion.

2.2 Cryptography from Lattices

A lattice is a discrete subgroup of Rn (for n ∈ N). Lattice-based cryptography
was initiated by the work of Ajtai [Ajt96], who gave the construction of a collision
resistant hash function whose hardness can be reduced to solving a lattice problem
in the worst case.
The learning with errors (LWE) problem, which states that it is hard to distin-

guish noisy linear combinations from truly random ones, was introduced by Regev
in 2005 [Reg05], who also showed connections of the LWE assumption to worst-
case lattice problems via a quantum reduction. Later, classical reductions followed
[Pei09, BLP+13], and since numerous cryptographic building blocks have been con-
structed whose hardness can be reduced to LWE. Apart from the worst-case hard-
ness, cryptography based on lattices is appealing, as—opposed to cryptography from
groups—lattice problems seem to persist quantum attacks and thus give long-term
security guarantees.

Definition 11 (Learning With Errors (LWE)). Let d ∈ poly(λ) q ≥ 2 be an integer,
and Zq = Z/(qZ). Let Derr be an error distribution over Z and Dsk be a secret key
distribution over Zd. Let s← Dsk. The LWEd,q,Derr,Dsk

problem is to distinguish the
following two distributions over Zdq × Zq:

• ODerr,s: Output (a, b) where a← Zdq , e← Derr and b = 〈a, s〉+ e mod q

• U : Output (a, u)← Zdq × Zq

Formally, for a PPT adversary A we define the advantage

Advlwe
d,q,Derr,Dsk

(λ) = | Pr
s←Dsk

[AODerr,s(λ) = 1]− Pr
s←Dsk

[AU (λ) = 1]|.

29

2 Preliminaries

Additionally, we work with ideal lattices, where the additional algebraic structure
can be exploited for more efficient instantiations [LPR13]. More precisely, through-
out our underlying ring will be of the form R := Z[X]/(XN + 1) for N ∈ poly(λ) a
power of 2. Note that we restrict N to powers of 2 to keep the analysis simpler.

Definition 12 (Learning With Errors over Rings (RLWE)). Let N ∈ poly(λ) be a
power of 2, q ≥ 2 be an integer, R = Z[X]/(XN + 1) and Rq = R/(qR). Let Derr be
an error distribution over R and Dsk be a secret key distribution over R. Let s← Dsk.
The RLWEN,q,Derr,Dsk

problem is to distinguish the following two distributions over
R2
q :

• ODerr,s: Output (a, b) where a← Rq, e← Derr and b = a · s+ e mod q.

• U : Output (a, u)← R2
q .

Formally, for a PPT adversary A we define the advantage

Advrlwe
N,q,Derr,Dsk

(λ) = | Pr
s←Dsk

[AODerr,s(λ) = 1]− Pr
s←Dsk

[AU (λ) = 1]|.

If Derr = Dsk, we simply write RLWEN,q,Derr .

For x ∈ R the maximum norm of x is defined as ‖x‖∞ := maxN−1
i=0 |xi|, where

xi ∈ Z such x =
∑N−1

i=0 xiX
i mod XN + 1. For B ∈ N, we denote [R]B := {x ∈

R | ‖x‖∞ ≤ B}. More generally, for an interval I ⊆ Z, we write R|I to denote all
elements of R that have only coefficients in I.
For r ∈ N, by Rr we denote R/(rR). Note that we consider Rr as elements for

which all coefficients are in the interval (−br/2e , . . . , b(r − 1)/2e].

2.3 Basic Cryptographic Building Blocks

A hash function generator is a probabilistic polynomial time algorithm H that, on
input 1λ, outputs an efficiently computable function H : {0, 1}∗ → {0, 1}λ, unless
domain and co-domain are explicitly specified.

Definition 13 (Collision resistance). We say that a hash function generator H
outputs collision resistant functions H, if for all PPT adversaries A and H←R H(1λ)
it holds

AdvCR
H,A(λ) := Pr

[
x 6= x′ ∧ H(x) = H(x′) | (x, x′)← A(1λ,H)

]
≤ negl(λ).

We say a hash function is collision resistant if it is sampled from a collision resistant
hash function generator.

Definition 14 (Universality). We say a hash function generator H is universal, if
for every x, x′ ∈ {0, 1}∗ with x 6= x′ it holds

Pr
[
h(x) = h(x′) | h←R H(1λ)

]
=

1

2λ
.

We say a hash function is universal if it is sampled from a universal hash function
generator.

30

2.4 Public-Key Encryption

Lemma 15 (Leftover Hash Lemma [ILL89]). Let X ,Y be sets, ` ∈ N and h : X → Y
be a universal hash function. Then for all X ←R X , U ←R Y and ε > 0 with
log |X | ≥ log |Y|+ 2 log ε we have

∆ ((h, h(X)), (h, U)) ≤ 1

ε
,

where ∆ denotes the statistical distance.

Another very basic cryptographic building block that we use for constructing pseu-
dorandom correlation generators is a pseudorandom generator.

Definition 16 (Pseudorandom Generator). Let X ,Y be sets. We say PRG : X → Y
is a pseudorandom generator (PRG), if for all PPT adversaries A the advantage

Advprg
PRG,A :=

∣∣∣Pr[A(1λ,PRG(X)) = 1 | X ←R X]− Pr[A(1λ, Y) = 1 | Y ←R Y]
∣∣∣

is negligible in λ.

2.4 Public-Key Encryption

Definition 17 (Public-key encryption). A public-key encryption scheme is a tuple
of three PPT algorithms (Gen,Enc,Dec) such that:

Gen(1λ) : On input of the security parameter λ in unary representation, returns a
pair (pk, sk) of a public and a secret key.

Enc(pk,M) : On input of the public key pk and a message M , returns a ciphertext
C.

Dec(sk, C) : On input of the secret key sk and ciphertext C, returns a message M
or a special rejection symbol ⊥.

We say PKE := (Gen,Enc,Dec) is perfectly correct , if for all λ ∈ N,

Pr[Dec(sk,Enc(pk,M)) = M] = 1,

where the probability is over (pk, sk)←R Gen(1λ) , C ←R Enc(pk,M).

Note that we always implicitly assume the secret key to contain the public key.

Definition 18 (Multi-ciphertext CCA security). For any public-key encryption
scheme PKE = (Gen,Enc,Dec) and any stateful adversary A, we define the following
security experiment:

Expcca
PKE,A(λ):

(pk, sk)←R Gen(1λ)
b←R {0, 1}
Cenc := ∅
b′ ←R AOenc(·,·),Odec(·)(pk)
if b = b′ return 1
else return 0

Oenc(M0,M1):
if |M0| = |M1|
C ←R Enc(pk,Mb)
Cenc := Cenc ∪ {C}
return C

Odec(C):
if C /∈ Cenc
M := Dec(sk, C)
return M

else return ⊥

31

2 Preliminaries

Exppr
PKE,A(λ) :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOenc(·)(1λ, pk)
if β = β′ return 1
else return 0

Oenc(m) :
if β = 0
c← PKE.Enc(pk,m)
return c

else
c←R C
return c

Figure 2.1: Security challenge experiment for pseudorandomness of ciphertexts.

We say PKE is IND-CCA secure, if for all PPT adversaries A, the advantage

Advcca
PKE,A(λ) :=

∣∣∣∣Pr[Expcca
PKE,A(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

In our work [BKS19], we use a different security notion. Namely, we require that
ciphertexts look pseudorandom.

Definition 19 (Pseudorandomness of ciphertexts). We say a public-key encryption
scheme PKE := (PKE.Gen,PKE.Enc,PKE.Dec) with ciphertext space C satisfies pseu-
dorandomness of ciphertexts or simply PKE is secure, if for every PPT adversary A
the advantage

Advpr
PKE,A(λ) :=

∣∣∣∣Pr
[
Exppr

PKE,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ, where Exppr

PKE,A(λ) is as defined in Figure 2.1.

2.5 Secret-Key Encryption

In a secret-key encryption scheme, the key for en- and decryption is the same.

Definition 20 (Secret-key encryption). A secret-key encryption scheme is a tuple
of three PPT algorithms (Gen,Enc,Dec) such that:

Gen(1λ) : On input of the security parameter λ in unary representation, returns a
secret key sk.

Enc(sk,M) : On input of the secret key sk and a message M , returns a ciphertext
C.

Dec(sk, C) : On input of the secret key sk and ciphertext C, returns a message M
or a special rejection symbol ⊥.

We say PKE := (Gen,Enc,Dec) is perfectly correct , if for all λ ∈ N,

Pr[Dec(sk,Enc(sk,M)) = M] = 1,

where the probability is over sk←R Gen(1λ) , C ←R Enc(pk,M).

For the secret-key version of our homomorphic secret sharing in [BKS19], the
underlying encryption scheme has to satisfy KDM-security defined in the following.

32

2.6 Message Authentication Codes and Signatures

Expkdm
SKE,Υ,A(λ) :

sk← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOenc(·)(1λ)
if β = β′ return 1
else return 0

Oenc(f) :
if β = 0
c← PKE.Enc(sk, f(sk))
return c

else
c← PKE.Enc(sk, 0)
return c

Figure 2.2: Security challenge experiment for KDM security with respect to the family
of functions Υ.

Definition 21 (KDM Security). We say SKE is key dependent message (KDM)
secure (see e.g.[BHHO08], also known as circular secure) with respect to the family
of functions Υ from the secret key space of SKE to the message space of SKE, if for
every PPT adversary A that only queries f ∈ Υ the probability

Advkdm
SKE,Υ,A(λ) :=

∣∣∣∣Pr
[
Expkdm

SKE,Υ,A(λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ, where Expkdm

SKE,Υ,A(λ) is as defined in Figure 2.2.

2.6 Message Authentication Codes and Signatures

Definition 22 (MAC). A message authentication code (MAC) is a tuple of PPT
algorithms MAC := (Gen,Tag,Ver) such that:

Gen(1λ): On input of the security parameter λ in unary represenation, generates
public parameters pp and a secret key sk.

Tag(pp, sk,m): On input of public parameters pp, the secret key sk and a message
m ∈M, returns a tag tag.

Ver(pp, sk,m, tag): On input of the public parameters pp, secret key sk , message
m and tag tag, outputs a bit b ∈ {0, 1} (corresponding to the validity of tag
respective to m).

We sayMAC is perfectly correct , if for all λ ∈ N,allm ∈M and all (pp, sk)← Gen(1λ)
we have

Ver(pp, sk,m,Tag(pp, sk,m)) = 1.

Definition 23 (EUF-CMA security). Let MAC := (Gen,Tag,Ver) be a MAC. For
any adversary A, we define the following experiment:

Expeuf-cma
MAC,A (λ):

(pp, sk)← Gen(1λ)
Qtag := ∅
(m?, tag?)← AOtag(·)(pp)
if m? /∈ Qtag ∧ Over(m

?, tag?) = 1
return 1

else return 0

Otag(m):
Qtag := Qtag ∪ {m}
tag← Tag(pp, sk,m)
return tag

Over(m, tag):
b← Ver(pp, sk,m, tag)
return b

33

2 Preliminaries

The adversary is restricted to one call to Over. We say that a MAC scheme MAC
is EUF-CMA secure, if for all PPT adversaries A,

Adveuf-cma
MAC,A (λ) := Pr[Expeuf-cma

MAC,A (λ) = 1] ≤ negl(λ).

Note that in our notion of EUF-CMA security, the adversary gets only one forgery
attempt. This is due to the fact that we employ the MAC primarily as a building
block for our signature. Our notion suffices for this purpose, as an adversary can
check the validity of a signature itself.

Definition 24 (Signature). A signature scheme is a tuple of PPT algorithms SIG :=
(Gen, Sign,Ver) such that:

Gen(1λ): On input of the security parameter λ in unary representation, generates
a pair (pk, sk) of keys.

Sign(sk,m): On input of the secret key sk and a messagem ∈M, returns a signature
σ.

Ver(pk,m, σ): On input of a verification key pk, messagem and signature σ, outputs
a bit b ∈ {0, 1} (corresponding to the validity of σ respective to m).

We say that SIG is perfectly correct , if for all λ ∈ N,all m ∈ M and all (pk, sk) ←
Gen(1λ),

Ver(pk,m,Sign(sk,m)) = 1.

In bilinear pairing groups, we say a signature scheme SIG is structure-preserving if its
public keys, signing messages, signatures contain only group elements and verification
proceeds via only a set of pairing product equations.

Note that we always implicitly assume the secret key to contain the public key.

Definition 25 (EUF-CMA security). For a signature scheme SIG := (Gen, Sign,Ver)
and any adversary A, we define the following experiment:

Expeuf-cma
SIG,A (λ):

(pk, sk)← Gen(1λ)
Qsign := ∅
(m?, σ?)← AOsign(·)(pk)
if m? /∈ Qsign ∧ Ver(pk,m?, σ?) = 1

return 1
else return 0

Osign(m):
Qsign := Qsign ∪ {m}
σ ← Sign(sk,m)
return σ

We say that a signature scheme SIG is EUF-CMA, if for all PPT adversaries A,

Adveuf-cma
SIG,A (λ) := Pr[Expeuf-cma

SIG,A (λ) = 1] ≤ negl(λ).

34

2.7 Homomorphic Secret Sharing

2.7 Homomorphic Secret Sharing

We consider homomorphic secret sharing (HSS) as introduced in [BGI16a]. By de-
fault, throughout this thesis, the term HSS refers to a public-key variant of HSS.
Unlike [BGI16a], we do not need to consider non-negligible δ error failure probability.

Definition 26 (Homomorphic Secret Sharing). A (2-party, public-key) Homomor-
phic Secret Sharing (HSS) scheme for a class of programs P over a ring R with
input space I ⊆ R consists of PPT algorithms (HSS.Gen,HSS.Enc,HSS.Eval) with
the following syntax:

• HSS.Gen(1λ): On input a security parameter 1λ, the key generation algorithm
outputs a public key pk and a pair of evaluation keys (ek0, ek1).

• HSS.Enc(pk, x): Given public key pk and secret input value x ∈ I, the encryp-
tion algorithm outputs a ciphertext ct.

• HSS.Eval(b, ekb, (ct
(1), . . . , ct(ρ)), P, β): On input party index b ∈ {0, 1}, evalu-

ation key ekb, vector of ρ ciphertexts, a program P ∈ P with ρ input values
and an integer β ≥ 2, the homomorphic evaluation algorithm outputs yb ∈ Rβ ,
constituting party b’s share of an output y ∈ Rβ .

The algorithms (HSS.Gen,HSS.Enc,HSS.Eval) should satisfy the following correct-
ness and security requirements:

Correctness: For all λ ∈ N, for all x(1), . . . , x(ρ) ∈ I, for all programs P ∈ P with
size |P | ≤ poly(λ) and P (x(1), . . . , x(ρ)) 6= ⊥, for integer β ≥ 2, for (pk, ek0, ek1)
← HSS.Gen(1λ) and for ct(i) ← HSS.Enc(1λ, pk, x(i)) we have

Prcor
HSS,(x(i))i,P,β

(λ) := Pr
[
y0 + y1 = P (x(1), . . . , x(ρ)) mod β

]
≥ 1− λ−ω(1),

where
yb ← HSS.Eval(b, ekb, (ct

(i))i, P, β)

for b ∈ {0, 1} and where the probability is taken over the random coins of
HSS.Gen, HSS.Enc and HSS.Eval.

Security: For all security parameters λ ∈ N, for all PPT adversaries A that on
input 1λ output a bit b ∈ {0, 1} (specifying which encryption key to corrupt),
and input values x0, x1 ∈ I, we require the following advantage to be negligible
in λ:

Advsec
HSS,A(λ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

A(inputb) = β

∣∣∣∣∣∣∣∣∣∣
(b, x0, x1, state)← A(1λ),
β ← {0, 1},
(pk, (ek0, ek1))← HSS.Gen(1λ),
ct← HSS.Enc(pk, xβ),
inputb := (state, pk, ekb, ct)

− 1

2

∣∣∣∣∣∣∣∣∣∣
.

Within applications, we additionally consider a secret-key variant of HSS.

Definition 27 (Secret-key HSS). Secret-key HSS is a weaker notion of HSS, where
the role of the public key pk is replaced by a secret key sk and where HSS.Enc is
replaced by the following algorithm.

35

2 Preliminaries

• HSS.Share(sk, x): Given secret key sk and secret input value x ∈ I, the en-
cryption algorithm outputs a pair of shares (sh0, sh1).

The correctness and security requirements are as above, but where HSS.Enc is re-
placed by HSS.Share and ct(i), ct are replaced by sh

(i)
b , shb, respectively.

36

Chapter 3
CCA-Secure Public-Key Encryption

In this chapter we present a variation of the encryption scheme of Kurosawa and
Desmedt [KD04] whose security can be tightly reduced to the decisional Diffie-
Hellman assumption. Building on the works of [GHKW16, Hof17] we achieve a
tight security reduction via a partitioning argument. In the center of our construc-
tion is a compact and efficient pairing-free designated-verifier proof system for the
disjunction of two linear languages, which serves as a proof of well-formedness. We
start this chapter with a brief overview.
The Decisional Diffie-Hellman assumption. The cryptographic assumption we
build on in this chapter is the decisional Diffie-Hellman (DDH) assumption. This
can be formulated as hardness of deciding subset membership of a linear language:
Let L := {[a] · r | r ∈ Zp} ⊆ G2 for [a] ∈ G2. Then, the DDH assumption states that
it is hard to distinguish an element [t]←R L from an element [t]←R G2. A property
which makes the DDH assumption nicely applicable in the context of tight security
is its random-self reducibility: Given a DDH-instance [t], one can re-randomize this
instance by computing [t′] := [a] · α + [t] · β for α, β ←R Zp. If [t] ∈ L, then [t′] is
distributed uniformly random in L. Further, if [t] /∈ L, then [a], [t] is a basis of G2

and thus [t′] distributed uniformly random in G2. Therefore, single-instance DDH
tightly implies multi-instance DDH.
The Scheme of Kurosawa and Desmedt. The encryption scheme of Kurosawa
and Desmedt [KD04] can be described as follows:

pars = [a] ∈ G2

sk = (k0,k1) ∈ Z2×2
p

pk = ([k>0 a], [k>1 a]) ∈ G2

To encrypt a message M , the sender computes

[t]←R L
[k] = [k>0 a] · r +H([t]) · [k>1 a] · r

and returns

([t],Enc[k](M)),

where H : G2 → Zp is a collision resistant hash function and Enc is a symmetric
authenticated encryption scheme. The receiver in knowledge of the secret key can
decrypt by computing [k] as

[k] = k>0 · [t] +H([t]) · k>1 · [t].

37

3 CCA-Secure Public-Key Encryption

Note that computing [k] can be viewed as evaluating a 2-universal hash proof
system for the language L: Even given the public key and the key for a statement
[t] /∈ L, the secret keys k0,k1 carry enough entropy for the key [k] to be distributed
uniformly at random for statements [t′] /∈ L.

The security reduction to the decisional Diffie-Hellman assumption proceeds as fol-
lows: First, it always uses the secret key to compute [k] for the challenge ciphertext.
Now, as the witness r is not necessary anymore to compute the challenge ciphertext,
the reduction can switch the statement in the challenge ciphertext to uniformly at
random from G2 (instead of L). By the decisional Diffie-Hellman assumption this
change is not noticeable to any bounded adversary.
Next, the 2-universality allows to reject all decryption queries with statement

outside L: As the key [k] in such decryption queries looks uniformly random from
the point of the adversary, any such queries would with overwhelming probability be
rejected by the symmetric authenticated encryption scheme Enc. Finally, the entropy
left in k0,k1 can be used to argue that the key [k] in the challenge ciphertext looks
uniformly at random from the point of the adversary and therefore perfectly hides
the encrypted message.
Towards a Tight Security Reduction. Even though the decisional Diffie-
Hellman assumption is re-randomizable, going from single- to multi-ciphertext se-
curity introduces a security loss for the scheme of Kurosawa-Desmedt: Given many
ciphertexts outside L, the security reduction cannot reject decryption queries out-
side L anymore, because the entropy in k0,k1 is limited. To overcome this issue, we
follow the strategy of [GHKW16] to gradually randomize k0, such that finally each
ciphertext has a individually randomized secret key. Once the key is fully random-
ized, we can reject decryption queries with [t] /∈ L and security of the scheme follows
via re-randomizability of the decisional Diffie-Hellman assumption.
To randomize k0 we proceed as follows: Similar to [GHKW16] in the i-th hybrid

we add a random offset to half of the ciphertexts (with statement in some language
L0 = {[a0] ·r | r ∈ Zp}) and a random offset to the other half of the ciphertexts (with
statement in some language L1 = {[a1] · r | r ∈ Zp}). By choosing the offset in the
left-kernel of a0 (and a1), this change does not show up in the challenge ciphertexts
itself. The problem are decryption queries: In ill-formed decryption queries that do
not respect the partitioning, this change would be detectable by an adversary. We
solve this problem (similar to [Hof17]) by adding a proof of well-formedness to the
ciphertexts, enforcing [t] ∈ L ∪ L0 ∪ L1.
Compact Pairing-Free Or-Proof. Our proof system for the simpler language
[t] ∈ L ∪ L0 can be described as follows. The public key consists of two hash proof
system public keys for the linear language L of the form [k>x a], [k>y a]. The idea is
to use the evaluation of the first hash proof system to blind the second evaluation
whenever [t] ∈ L0. This can be done by computing a linear combination of two
vectors which are linearly dependent if and only if [t] ∈ L0. More precisely, a proof
will be of the form

π = [a0] · x+ [t] · y,

where x and y are derived from the keys [k>x t] and [k>y t], respectively.
Now, even given many proofs for statements [t] ∈ L and [t] ∈ L0, there is entropy

left in the secret key k>y that only shows up on statements [t] /∈ L ∪ L0, as this
entropy is hidden by x whenever the vectors [a0] and [t] are linearly dependent.

38

3.1 Qualified Proof Systems

Note that the proof only adds one group element to the ciphertext size, as we can
add one part of the proof to the key used for encryption. We show that the adversary
will not be able to provide a valid ciphertext for statements outside L0 ∪ L1.
Roadmap. We start this chapter by formally defining the notion of qualified proof
system in Section 3.1. We want to note that this slightly weird security notion is
due to our instantiation and just what we need for our encryption scheme. We
give an instantiation based on DDH (and more generally, k-Lin) which only adds
one group element (resp. k2 group elements) to ciphertexts in Section 3.2. We
present our encryption scheme as key encapsulation mechanism (KEM), formally
separating the key derivation from the symmetric encryption. We give a definition
of key encapsulation mechanisms in 3.3 and present our construction in Section 3.4.
The following is taken verbatim (with minor changes) from our work [GHK17].

3.1 Qualified Proof Systems

We consider a combination of a designated verifier proof system and a hash proof
system. Combined proofs consist of a proof Π and a key K, where the key K can
be recovered by the verifier with a secret key and the proof Π. The key K can be
part of the key in the key encapsulation mechanism presented later and thus will not
enlarge the ciphertext size.

Definition 28 (Proof system). Let L = {Lpars} be a family of languages indexed by
the public parameters pars, with Lpars ⊆ Xpars and an efficiently computable witness
relationR. A proof system for L is a tuple of PPT algorithms (PGen,PPrv,PVer,PSim)
such that:

PGen(1λ): On input of the security parameter λ in unary representation, generates
a public key ppk and a secret key psk.

PPrv(ppk, x, w): Given a word x ∈ L and a witness w with R(x,w) = 1, determin-
istically outputs a proof Π and a key K.

PVer(ppk, psk, x,Π): On input ppk, psk, x ∈ X and Π, deterministically outputs a
verdict b ∈ {0, 1} and in case b = 1 additionally a key K, else ⊥.

PSim(ppk, psk, x): Given the keys ppk, psk and a word x ∈ X , deterministically
outputs a proof Π and a key K.

Our definition of a qualified proof system is a variant of “benign proof systems”
given in [Hof17] tailored to our purposes. Compared to benign proof systems, our
proof systems feature an additional “key derivation” stage, and satisfy a weaker
soundness requirement (that is of course still sufficient for our purpose). We need
to weaken the soundness condition (compared to benign proof systems) in order to
prove soundness of our instantiation.
We will consider soundness relative to a language Lsnd ⊇ L. An adversary trying

to break soundness has access to an oracle simulating proofs and keys for statements
randomly chosen from Lsnd \ L and a verification oracle, which only replies other
than ⊥ if the adversary provides a valid proof and has a high a-priori knowledge of
the corresponding key. The adversary wins if it can provide a valid verification query

39

3 CCA-Secure Public-Key Encryption

outside Lsnd. The adversary loses immediately if it provides a valid verification query
in Lsnd\L. This slightly weird condition is necessitated by our concrete instantiation
which we do not know how to prove sound otherwise. We will give more details in
the corresponding proof in Section 3.2. The weaker notion of soundness still suffices
to prove our KEM secure, because we employ soundness at a point where valid
decryption queries in Lsnd \ L end the security experiment anyway.

Definition 29 (Qualified proof system). Let PS = (PGen,PPrv, PVer,PSim) be
a proof system for a family of languages L = {Lpars}. Let Lsnd = {Lsnd

pars} be a
family of languages, such that Lpars ⊆ Lsnd

pars. We say that PS is Lsnd-qualified, if the
following properties hold:

Completeness: For all possible public parameters pars, for all words x ∈ L, and
all witnesses w such that R(x,w) = 1, we have

Pr[PVer(ppk, psk, x,Π) = (1,K)] = 1,

where the probability is taken over (ppk, psk) ←R PGen (1λ) and (Π,K) :=
PPrv(ppk, x, w).

Uniqueness of the proofs: For all possible public parameters pars, all key pairs
(ppk, psk) in the output space of PGen (1λ), and all words x ∈ L, there
exists at most one Π such that PVer(ppk, psk, x,Π) outputs the verdict 1.

Perfect zero-knowledge: For all public parameters pars, all key pairs (ppk, psk) in
the range of PGen(1λ), all words x ∈ L, and all witnesses w with R(x,w) = 1,
we have

PPrv(ppk, x, w) = PSim(ppk, psk, x).

Constrained Lsnd-soundness: For any stateful PPT adversary A, we consider the
following soundness game (where PSim and PVer are implicitly assumed to
have access to ppk):

Expcsnd
PS,A(λ):

(ppk , psk)←R PGen(1λ)
AOsim,Over(·,·,·)(1λ, ppk)
if Over returned lose

return 0
if Over returned win

return 1
return 0

Osim:
x←R Lsnd\L
(Π,K)← PSim(psk, x)
return (x,Π,K)

Over(x,Π, pred):
(v,K) := PVer(psk, x,Π)
if v = 1 and pred(K) = 1

if x ∈ L
return K

else if x ∈ Lsnd

return lose and
abort

else return win and
abort

else return ⊥

Let Qver be the total number of oracle queries to Over and predi be the predicate
submitted by A on the i-th query. The adversary A loses and the experiment
aborts if the verification oracle answers lose on some query of A. The adversary
A wins, if the oracle Over returns win on some query (x,Π, pred) of A with
x /∈ Lsnd and the following conditions hold:

40

3.1 Qualified Proof Systems

• The predicate corresponding to the i-th query is of the form predi : K ∪
{⊥} → {0, 1} with predi(⊥) = 0 for all i ∈ {1, . . . , Qver}.
• For all environments E having at most running time of the described

constrained soundness experiment, we require that

uncertsnd
A (λ) :=

1

Qver

Qver∑
i=1

PrK∈K[predi(K) = 1 when A runs in E]

is negligible in λ.

Note that in particular the adversary cannot win anymore after the verification
oracle replied lose on one of its queries, as in this case the experiment directly
aborts and outputs 0. Let Advsnd

Lsnd,PS,A(λ) := Pr[Expcsnd
PS,A(λ) = 1], where

the probability is taken over the random coins of A and Expcsnd
PS,A. Then we

say constrained Lsnd-soundness holds for PS, if for every PPT adversary A,
Advsnd

Lsnd,PS,A(λ) = negl(λ).

To prove security of the key encapsulation mechanism later, we need to switch
between two proof systems. Intuitively this provides an additional degree of freedom,
allowing to randomize the keys of the challenge ciphertexts gradually. To justify this
transition, we introduce the following notion of indistinguishable proof systems.

Definition 30 (Lsnd-indistinguishability of two proof systems). Let L ⊆ Lsnd

be (families of) languages. Let PS0 := (PGen0,PPrv0,PVer0, PSim0) and PS1 :=
(PGen1,PPrv1,PVer1,PSim1) proof systems for L. For every adversary A, we define
the following experiment (where PSimb and PVerb are implicitly assumed to have
access to ppk):

ExpPS−ind
Lsnd,PS0,PS1,A

(λ):

b←R {0, 1}
(ppk, psk)← PGenb(1

λ)

b′ ← AObsim,Obver(·,·)(ppk)
if b = b′ return 1
else return 0

Obsim:
x←R Lsnd\L
(Π,K)← PSimb(psk, x)
return (x,Π,K)

Obver(x,Π, pred):
(v,K) := PVerb(psk, x,Π)
if v = 1 and pred(K) = 1
and x ∈ Lsnd

return K
else return ⊥

As soon as A has submitted one query which is replied with lose by the verification
oracle, the experiment aborts and outputs 0.
We define the advantage function

AdvPS-ind
Lsnd,PS0,PS1,A(λ) :=

∣∣∣∣Pr
[
ExpPS−ind

Lsnd,PS0,PS1,A
(λ) = 1

]
− 1

2

∣∣∣∣ .
We say PS0 and PS1 are Lsnd-indistinguishable, if for all (unbounded) algorithms A
the advantage AdvPS-ind

L,PS0,PS1,A(λ) is negligible in λ.

Note that we adopt a different (and simpler) definition for the verification or-
acle in the indistinguishability game than in the soundness game, in particular it
leaks more information about the keys. We can afford this additional leakage for
indistinguishability, but not for soundness.

41

3 CCA-Secure Public-Key Encryption

In order to prove security of the key encapsulation mechanism presented in Sec-
tion 3.4, we will require one proof system and the existence of a second proof system
it can be extended to. We capture this property in the following definition.

Definition 31 (Lext-extensibility of a proof system). Let L ⊆ Lsnd ⊆ Lext be three
(families of) languages. An Lsnd-qualified proof system PS for language L is said
to be Lext-extensible if there exists a proof system PS′ for L that complies with
Lext-constrained soundness and such that PS and PS′ are Lsnd-indistinguishable.

3.2 A Qualified Proof System for Or-Languages

In the following sections we explain how the public parameters parsPS are sampled,
how our system of or-languages is defined and how to construct a qualified proof
system complying with constrained soundness respective to these languages.
First, we need to choose a k ∈ N depending on the assumption we use to prove

security of our constructions. We invoke GGen(1λ) to obtain a group description G =
(G, p, P) with |G| ≥ 22λ. Next, we sample matrices A←R D2k,k and A0 ←R U2k,k,
where we assume without loss of generality that A0 is full rank. Let H0 and H1 be
universal hash function generators returning functions of the form h0 : Gk2+1 → Zk×kp

and h1 : Gk+1 → Zkp respectively. Let h0 ←R H0 and h1 ←R H1.
Altogether, we define the public parameters for our proof system to comprise

parsPS := (k,G, [A], [A0], h0, h1).

We assume from now that all algorithms have access to parsPS without explicitly
stating it as input.
Additionally, let A1 ∈ Z2k×k

p be a matrix distributed according to U2k,k with the
restriction A0 = A1. Then, we define the languages

L : = span([A]),

Lsnd : = span([A]) ∪ span([A0]),

Lext : = span([A]) ∪ span([A0]) ∪ span([A1]).

A crucial building block for the key encapsulation mechanism will be a proof
system PS that is Lsnd-qualified and Lext-extensible. We give a construction based
on Dk2+1,k-MDDH in the following section.
Our goal is to construct an Lsnd-qualified proof system for L based on Dk2+1,k-

MDDH for any matrix distribution Dk2+1,k (see Theorem 1). We give the proof
system PS := (PGen, PPrv, PVer, PSim) for L in Fig. 3.1.We prove in Theorem 32
that PS indeed meets our requirements. In case k = 1 a combined proof requires
a single group element for the proof plus an additional group element for the key.
Intuitively, our combined proofs consist of a hash proof system respective to the
language L which is protected by a special kind of encryption (depending on the
statement itself) to preserve soundness even in the presence of many simulated proofs
for statements in Lsnd. Note that it suffices to compute merely the diagonal of
[K] instead of the full matrix. With the current presentation we aim to improve
readability.

42

3.2 A Qualified Proof System for Or-Languages

PGen(1λ):

KX ←R Z(k2+1)×2k
p

Ky ←R Z(k+1)×2k
p

ppk := ([KXA], [KyA])
psk := (KX,Ky)
return (ppk, psk)

PVer(ppk, psk, [t], [π?]):
X := h0(KX[t]) ∈ Zk×kp

y := h1(Ky[t]) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
if [π] = [π?] return (1, [κ])
else return (0,⊥)

PPrv(ppk, [t], r):
X := h0([KXA]r) ∈ Zk×kp

y := h1([KyA]r) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
return ([π], [κ])

PSim(ppk, psk, [t]):
X := h0(KX[t]) ∈ Zk×kp

y := h1(Ky[t]) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
return ([π], [κ])

Figure 3.1: Lsnd-qualified proof system PS for L.

Theorem 32. If the Dk2+1,k-MDDH assumption holds in G, and h0, h1 are univer-
sal hash functions, then the proof system PS described in Fig. 3.1 is Lsnd-qualified.
Further, the proof system PS is Lext-extensible.

Proof. Completeness and perfect zero-knowledge follow straightforwardly from the
fact that for all t = [A]r for an r ∈ Zkp it holds [KXA]r = KX[t] and [KyA]r =
Ky[t].
Uniqueness of the proofs follows from the fact that the verification algorithm

computes a unique proof [π] and aborts if [π] 6= [π?].
We prove in Theorem 33 that PS satisfies constrained Lsnd-soundness.
For Lext-extensibility we refer to Section 3.2. In Fig. 3.4, we describe a proof

system PS′ for L, in Theorem 34 we prove that PS and PS′ are Lsnd-indistinguishable,
and in Theorem 35 that PS′ complies with constrained Lext-soundness.

Lemma 33 (Constrained Lsnd-soundness of PS). If the Dk2+1,k-MDDH assumption
holds in G and h0 and h1 are universal hash functions, then the proof system described
in Fig. 3.1 complies with constrained Lsnd-soundness. Namely, for any adversary A
against Lsnd-soundness, there exists an adversary B such that T (B) ≈ T (A)+(Qsim+
Qver) · poly(λ) and

Advsnd
Lsnd,PS,A(λ) ≤ Advmddh

G,B,Dk2+1,k
(λ) +Qver · uncertsnd

A (λ)

+ (Qsim +Qver + 1) · 2−Ω(λ),

where Qsim, Qver are the number of calls to Osim and Over respectively, uncertsnd
A (λ)

describes the uncertainty of the predicates provided by A and poly is a polynomial
function, independent of T (A).

43

3 CCA-Secure Public-Key Encryption

#
sim. X for
[t] ∈ Lsnd\L ver. [K] for [t] /∈ L game

knows remark

G0 X := h0 (KX[t]) [A0] ·X + [t] · y> Lsnd-soundn.
game w/o lose

G1 X := h0 (KX[t]) A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A,A0

win. chances
increase

G2
u←R Zk2+1

p ,
X := h0([u])

A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A,A0 Dk2+1,k-MDDH

G3 X←R Zk×kp A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A,A0

Theorem 15
(LOHL)

Figure 3.2: Overview of the proof of Lsnd-constrained soundness of PS. The first
column shows how X is computed for queries to Osim. The second column shows how
the pre-key [K] is computed by the verifier in queries to Over for [t] /∈ L. Recall that
the key [κ] is the trace of [K].

Note that, as explained in Section 3.3, in the proof of IND-CCA security of the
final hybrid encryption scheme (where we will employ constrained Lsnd-soundness
of PS to prove IND-CCCA security of our KEM), the term uncertsnd

A (λ) will be
statistically small, so we can afford to get a security loss of Qver ·uncertsnd

A (λ) without
compromising tightness.

Proof. We prove Lsnd-soundness of PS via a series of games, described in Fig. 3.2.
We start by giving a short overview of the proof. One can view [π,K] as a special
kind of encryption of y. The idea is to first randomize X used in simulated proofs
of statements [t] ∈ Lsnd \ L, using the Dk2+1,k-MDDH assumption and the Leftover
Hash Lemma (Theorem 15). This will make the encryption [π,K] lossy if and only
if [t] ∈ span([A0]). Namely, for [t] = [A0r] we have [π,K] = [A0] ·X + [t] · y> =
[A0](X + r · y>) and thus y, and in particular Ky, are completely hidden by the
randomized X.
In the final proof step we can thus argue that simulation queries leak no informa-

tion about Ky apart from what is already contained in the public key and therefore
an adversary cannot do better than guessing [κ] for a statement outside Lsnd.
We start with the constrained Lsnd-soundness game, which we refer to as game

G. In the following we want to bound the probability

ε := Advsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).

Transition G G0: From game G0 on, on a valid verification query ([t],Π, pred)
the verification oracle will not return lose and abort anymore, but instead
simply return ⊥. This can only increase the winning chances of an adversary
A. Thus we obtain

ε ≤ ε0.

44

3.2 A Qualified Proof System for Or-Languages

Transition G0 G1: We show that ε1 ≥ ε0. The difference between G0 and G1

is that from game G1 on the oracle Over, on input ([t],Π, pred), first checks if
[t] ∈ span([A]). If this is the case, Over behaves as in game G0. Otherwise, it
does not check if [π?] = [π] anymore, and it computes

[K] = A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y>,

where y is computed as in G0. Note that this computation requires to know
A0, but not KX, since X is not computed explicitly. This will be crucial for
the transition to game G2.

Again we have to show that this can only increase the winning chances of the
adversary. In particular, we have to show that this change does not affect the
adversaries view on non-winning queries.

First, from game G0 on the verification oracle Over always returns ⊥ on queries
from Lsnd\L, and thus games G0 and G1 only differ when Over is queried on
statements with [t] /∈ Lsnd. Therefore, it remains to show that for any query
([t], [π?], pred) to Over with [t] /∈ Lsnd, we have that if the query is winning in
G0, then it is also winning in G1. Suppose ([t], [π?],pred) satisfies the winning
condition in G0. Then, it must hold true that [π?] = [A0] ·X + [t] · y> and
pred (trace([K?])) = 1 for [K?] = [A0] ·X + [t] · y>.
In G1, the pre-key is computed as

A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> = [A0] ·X + [t] · y> = [K?],

and thus the query is also winning in G1.

Note that for this step it is crucial that we only require a weakened soundness
condition of our proof systems (compared to benign proof systems [Hof17]).
Namely, if instead the verification oracle in the soundness experiment Over

returned the key [κ] for valid statements [t] ∈ Lsnd\L, we could not argue that
the proof transition does necessarily at most increase the winning chances of
an adversary. This holds true as in game G1 on a statement [t] ∈ Lsnd\L
with non-valid proof (but with valid predicate respective to the proof) the key
would be returned, whereas in game G0 “⊥” would be returned.

Transition G1 G2: In this transition, we use the Dk2+1,k-MDDH assumption to
change the way X is computed in simulated proofs. More precisely, we will
proceed in intermediary games G1.1, G1.2 and G1.3 (see Figure 3.3).

First, as KX and K′X + U(A⊥)> for U←R Z(k2+1)×k
p and A⊥ ∈ orth(A) are

distributed equally, we have
ε1.1 = ε1.

Second, with overwhelming probablity over the choices of A, A0, the matrix
(A⊥)>A0 ∈ Zk×kp is invertible, which implies that (KX + U(A⊥)>)A0 is dis-

tributed uniformly random over Z(k2+1)×k
p (even under knowledge of [KXA]).

Thus, switching between (KX + U(A⊥)>)A0 and WB(B
k
)−1 is statistically

indistinguishable to A (where B
k ∈ Zk×kp denotes the upper square matrix of

45

3 CCA-Secure Public-Key Encryption

G1, G1.1, G1.2 , G1.3 , G2 :

KX ←R Z(k2+1)×2k
p

K′X ←R Z(k2+1)×2k
p

U←R Z(k2+1)×k
p , A⊥ ∈ orth(A)

KX := K′X + U(A⊥)>

B←R Z(k2+1)×k
p

W←R Z(k2+1)×(k2+1)
p

Ky ←R Z(k+1)×2k
p

ppk := ([KXA], [KyA])
psk := (KX,Ky)
AOsim,Over(·,·,·)(1λ, ppk)
if Over returned win

return 1
else return 0

Osim:
r←R Zkp
[t] := [A0]r

[t] := [A0]Br
k

X := h0(KX[t])

X := h0(W[Br])

u←R Zk2+1
p

X := h0([u])

y := h1(Ky[t])

[π] := [A0] ·X + [t] · y>
[K] := [A0] ·X + [t] · y>
[κ] := trace([K])
return ([t], [π], [κ])

Over([t], [π
?], pred) for [t] /∈ L:

y := h1(Ky[t])

[K] := A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y>

[κ] := trace([K])
if pred[κ] = 1

if x ∈ L return [κ]
if x /∈ Lsnd return win and abort

else return ⊥

Figure 3.3: Games G1,G1.1,G1.2,G1.3,G2 in the proof of Lemma 33, where the ver-
ification oracle for [t] ∈ L is omitted. For Br ∈ Zk2+1

p by Br
k ∈ Zkp we denote the

vector comprising the upper k entries.

B). Further, we have that r←R Zkp is distributed equally to Br
k for r← Zkp,

B←R Z
(k2+1)×k
p and

X = h0(KX[ti]) = h0((K′X + U(A⊥)>)[A0Br
k
]) ≡s h0(WB(B

k
)−1[Br

k
])

= h0(W[Br]).

This yields
|ε1.2 − ε1.1| ≤ 2−Ω(λ).

Next, we reverse transition G1 G1.1. Note that this change does not affect
the public key or any verification query (as from game G1 on for verification
queries outside span(A) the key KX is not employed anymore) or any simula-
tion query (as from game G1.2 on the key KX is not employed anymore) and
we thus obtain

ε1.3 = ε1.2.

Now, let ([B], [h1, . . . ,hQsim]) be a Qsim-fold Uk2+1,k-MDDH challenge. First,

B picks A and A0 as described in Section 3.2, draws KX ←R Z(k2+1)×2k
p and

46

3.2 A Qualified Proof System for Or-Languages

Ky ←R Z(k+1)×2k
p and sends [A], [A0] and ppk := ([KXA], [KyA]) to A.

Further, B chooses a matrix W←R Z(k2+1)×(k2+1)
p .

Verification queries are answered by B according to Over.

On the i-th query to Osim, for all i ∈ {1, . . . , Qsim}, the adversary B defines
[ti] := A0[hi]

k
to be the i-th simulated ciphertext (where [hi]

k ∈ Gk denotes
the vector consisting of the first k entries of [hi]) and proceeds the simulation
with Xi := h0(W[hi]). In case B was given a real Uk2+1,k-MDDH tuple, that
is there exist si ∈ Zkp such that [hi] = [B]si for all i ∈ {1, . . . , Qsim}, the
adversary B simulates game G1.2.

In case the adversary was given a random challenge instead, the vectors hi
are distributed uniformly over Zk2+1

p and the adversary simulates a game sta-

tistically close to G2 (as r ←R Zkp is distributed equally to Br
k for r ← Zkp,

B←R Z
(k2+1)×k
p).

Finally, by Theorem 6 and Theorem 5, together with the previous observations
we obtain an adversary B′ such that T (B′) ≈ T (A) + (Qver + Qsim) · poly(λ)
and

|ε2 − ε1| ≤ Advmddh
G,Dk2+1,k,B′

(λ) + 2−Ω(λ).

Note that in order to prove this transition we require that in the definition of
constrained soundness the simulation oracle returns random challenges (oth-
erwise we would not be able to embed the Dk2+1,k-MDDH challenge into sim-
ulation queries). This is another reason why we cannot directly employ the
notion of benign proof systems [Hof17].

Transition G2 G3: As h0 is universal, we can employ the Leftover Hash Lemma
(Theorem 15) to switch (h0, h0([u])) to (h0,U) in all simulation queries, where
U←R Zk×kp . A hybrid argument yields

|ε2 − ε3| ≤ Qsim/p.

Game G3: We show that ε3 ≤ Qver · uncertsnd
A (λ), where Qver is the number of

queries to Over and uncertsnd
A (λ) describes the uncertainty of the predicates

provided by the adversary as described in Theorem 29.

We use a hybrid argument over the Qver queries to Over. To that end, we
introduce games G3.i for i = 0, . . . , Qver, defined as G3 except that for its first
i queries Over answers ⊥ on any query ([t], [π], pred) with [t] /∈ Lsnd. We have
ε3 = ε3.0, ε3.Qver = 0 and we show that for all i = 0, . . . , Qver − 1 it holds

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi+1(K) = 1] + 2−Ω(λ),

where predi+1 is the predicate contained in the (i+ 1)-st query to Over.

Games G3.i and G3.(i+1) behave identically on the first i queries to Over. An
adversary can only distinguish between the two, if it manages to provide a
valid (i+ 1)-st query ([t], [π], pred) to Over with [t] /∈ Lsnd. In the following we
bound the probability of this happening.

47

3 CCA-Secure Public-Key Encryption

From queries to Osim and the first i queries to Over the adversary can only learn
valid tuples ([t], [π], [κ]) with [t] ∈ Lsnd. As explained in the beginning, such
combined proofs reveal nothing about Ky beyond what is already revealed
in the public key, as either [t] = [Ar] for an r ∈ Zkp and y = h1([Kyt]) =

h1([KyA]r) or [t] = [A0r] and [π,K] = [A0](X+ r ·y>). In the former case y
itself reveals no more about Ky than the public key, while in the latter case y
is hidden by the fully randomized X.

For any [t] /∈ Lsnd, y = h1([Kyt]) computed by Over is distributed statistically
close to uniform from the adversaries point of view because of the following.
First we can replace Ky by Ky + U(A⊥)> for U ←R Z(k+1)×k

p and A⊥ ∈
orth(A) as both are distributed identically. By our considerations, this extra
term is neither revealed through the public key nor through the previous queries
to Osim and Over.

Now Theorem 15 (Leftover Hash Lemma) implies that the distribution of y
is statistically close to uniform as desired. Since [t] /∈ span([A0]) we have
[a] := [t]− [A0]A

−1
0 [t] 6= 0. In other words, there exists an i ∈ {1, . . . , k} such

that [a]i 6= 0 and thus [a]i · yi is distributed uniformly at random from the
adversary’s point of view. Recall that the key [κ] is computed as

[κ] := trace

A0A
−1
0 [π?] +

(
[t]−A0A

−1
0 [t]

)
︸ ︷︷ ︸

6=0

·y>


by Over, so in particular [κ] consists of [a]i · yi plus independent summands
and is thus distributed uniformly at random over Zp as well.

Altogether, we obtain

ε3 ≤ Qver · uncertsnd
A (λ) +Qver · 2−Ω(λ).

Extensibility to a Three-Way Or-Proof. In the following we prove that the
proof system in Fig. 3.1 satisfies Lext-extensibility (see Theorem 31). This will enable
us to employ soundness, even in the presence of many simulated proofs for statements
in

Lext := span([A]) ∪ span([A0]) ∪ span([A1]).

In this section we implicitly assume all algorithms to have access to parsPS′ :=
(parsPS, [A1]).

We describe a proof system PS′ for L in Fig. 3.4. We prove that it is Lsnd-
indistinguishable to PS in Theorem 34, and prove that it complies with constrained
Lext-soundess in Theorem 35.

Lemma 34 (Lsnd-indistinguishability). The proof systems PS and PS′ described
in Fig. 3.1 and Fig. 3.4, resp., are Lsnd-indistinguishable. That is, for every (un-
bounded) adversary A we have AdvPS-ind

Lsnd,PS,PS′,A(λ) = 2−Ω(λ).

48

3.2 A Qualified Proof System for Or-Languages

PGen′(1λ):

KX,K
′
X ←R Z(k2+1)×2k

p

Ky,K
′
y ←R Z(k+1)×2k

p

A⊥ ∈ orth(A)
ppk := ([KXA], [KyA])

psk := (KX,Ky, K
′
X , K′y , A

⊥)

return (ppk, psk)

P̃Ver(ppk, psk, [t], [π?]):
if [t]>A⊥ = [0]

X := h0(KX[t]) ∈ Zk×kp

y := h1(Ky[t]) ∈ Zkp
else

X := h0(K′X [t]) ∈ Zk×kp

y := h1(K′y [t]) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
if [π] = [π?] return (1, [κ])
else return (0,⊥)

PPrv′(ppk, [t], r):
X := h0([KXA]r) ∈ Zk×kp

y := h1([KyA]r) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
return ([π], [κ])

PSim′(ppk, psk, [t]):
if [t]>A⊥ = [0]

X := h0(KX[t]) ∈ Zk×kp

y := h1(Ky[t]) ∈ Zkp
else

X := h0(K′X [t]) ∈ Zk×kp

y := h1(K′y [t]) ∈ Zkp
[π] := [A0] ·X + [t] · y> ∈ Gk×k

[K] := [A0] ·X + [t] · y> ∈ Gk×k

[κ] := trace([K]) ∈ G
return ([π], [κ])

Figure 3.4: Lext-qualified proof system PS′ for L.

Proof. PS only differs from PS′ for statements [t] /∈ L, and since we are interested in
Lsnd-indistinguishability, it suffices to consider [t] ∈ span([A0]). To argue that the
two proof systems are statistically indistinguishable for statements [t] ∈ span([A0]),
we use the following.
First, KX and KX + U(A⊥)> are identically distributed for KX ←R Z(k2+1)×2k

p ,
U ←R Z(k2+1)×k

p , and A⊥ ∈ orth(A). Note that the extra term U(A⊥)> does not
show up in either the pk or in oracle-queries of the Lsnd-indistinguishability game for
statements [t] ∈ span([A]) since for all t ∈ span(A) we have (KX + U(A⊥)>)t =
KXt.
Further, for all t ∈ span(A0), A⊥0 ∈ orth(A0), we have

U(A⊥)
>
t =

(
U(A⊥)

>
+ U0(A⊥0)

>)
t,

where U,U0 ←R Z(k2+1)×k
p .

With probability 1 − 2−Ω(λ) over the choices of A,A0 the vectors in A⊥ and
A⊥0 together form a basis of Z2k

p , in which case the matrix U(A⊥)
>

+ U0(A⊥0)
> is

distributed uniformly random over Z(k2+1)×2k
p .

In conclusion, with overwhelming probability over the choice of the public param-
eters we obtain that for all t ∈ span(A0), (KXA,KXt) is identically distributed to

49

3 CCA-Secure Public-Key Encryption

(KXA,K′Xt), where K′X ←R Z(k2+1)×2k
p is chosen uniformly at random, indepen-

dently of KX.
By the same reasoning we obtain that for all t ∈ span(A0), for an independently

and uniformly at random chosen key K′y ←R Z(k+1)×2k
p the tuples (KyA,Kyt) and

(KyA,K
′
yt) are statistically close with overwhelming probability.

This proves the lemma.

The techniques used in the following to prove constrained Lext-soundness of PS′

are very similar to the ones presented in the proof of Theorem 33.

Lemma 35 (Constrained Lext-soundness of PS′). If the Dk2+1,k-MDDH assumption
holds in G and h0 and h1 are universal hash functions, then the proof system described
in Fig. 3.4 complies with constrained Lext-soundness. Namely, for any adversary A
against Lext-soundness, there exists an adversary B such that T (B) ≈ T (A)+(Qsim+
Qver) · poly(λ) and

Advsnd
Lext,PS′,A(λ) ≤ Advmddh

G,B,Dk2+1,k
(λ) +Qver · uncertsnd

A (λ)

+ (Qsim +Qver + 1) · 2−Ω(λ),

where Qsim, Qver are the number of calls to Osim and Over respectively, uncertsnd
A (λ)

describes the uncertainty of the predicates provided by A and poly is a polynomial
function independent of T (A).

Proof. We prove the Lext-soundness of PS′ via a series of games, described in Fig. 3.5.
The proof is very similar to the proof of Theorem 33.
We start with the Lext-constrained soundness game, which we refer to as game G.

In the following we want to bound the probability

ε := Advsnd
PS,A(λ).

We denote the probability that the adversary A wins the game Gi by

εi := AdvGi,A(λ).

We omit the proof of the game transitions G G0 and G0 G1, as they follow
the proof of Theorem 33 almost verbatim.

Transition G1 G2: This transition is similar to the transition G1 G2 of The-
orem 33.Again, we proceed via a series of intermediary games G1.1,G1.2 and
G1.3.

In game G1.1 we change the way K′X is computed, namely we replace K′X by
K
′
X +U0 · (A⊥0)>+U1 · (A⊥1)> for U0,U1 ←R Z(k2+1)×k

p , A⊥0 ∈ orth(A0) and
A⊥1 ∈ orth(A1). As both are distributed equally we obtain

ε1.1 = ε1.

In game G1.2 we change the way X is computed, namely we additionally draw
B ←R Z(k2+1)×k

p and W0,W1 ←R Z(k2+1)×(k2+1)
p during set-up. For a sim-

ulation query from now we first choose b ←R {0, 1} to decide whether to

50

3.2 A Qualified Proof System for Or-Languages

#
sim. X for
[t] ∈ Lext\L ver. [K] for [t] /∈ L game

knows remark

G0 X := h0 (K′X[t]) [A0] · x + [t] · y> A
Lext-soundn.
game w/o lose

G1 X := h0 (K′X[t]) A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A, A0

win. chances
increase

G2
u←R Zk2+1

p ,
X := h0([u])

A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A, A0, A1 Dk2+1,k-MDDH

G3 X←R Zk×kp A0A
−1
0

(
[π?]− [t] · y>

)
+ [t] · y> A, A0, A1

Theorem 15
(LOHL)

Figure 3.5: Overview of the proof of Lext-constrained soundness of PS. The first
column shows how X is computed for queries to Osim with [t] ∈ Lext\L. The second
column shows how the pre-key [K] computed by the verifier in queries to Over for
[t] /∈ L. Recall that the key is computed as [κ] := trace([K]). The third column
“game knows” gives an overview of which non-public information need to be known
by the game respective to A, A0 and A1.

return [t] ∈ Lsnd\L or [t] ∈ Lext\Lsnd. This yields the correct distribution as
|Lsnd\L| = |Lext\Lsnd|. We then choose r ←R Zkp and set [t] := [Ab] · Br

k

(where Br
k denotes the vector comprising the upper k entries of Br. Further,

we set X to be X := h0(Wb[Br]). To see that game G1.1 and game G1.2 are
statistically close, note that r←R Zkp is distributed equally to Br

k for r← Zkp,
B ←R Z

(k2+1)×k
p . Further, with overwhelming probablity over the choices of

A0, A1 the matrices (A⊥1)> ·A0 ∈ Zk×kp and (A⊥0)> ·A1 ∈ Zk×kp are invertible,
which implies that (K′X+U0·(A⊥0)>+U1·(A⊥1)>)·A0 = (K′X+U1·(A⊥1)>)·A0

is distributed uniformly random over Z(k2+1)×k
p and stochastic independent of

(K′X+U0 ·(A⊥0)>+U1 ·(A⊥1)>) ·A1 = (K′X+U0 ·(A⊥0)>) ·A1. Thus switching
between (K′X + U1−β · (A⊥1−β)>) ·Aβ and Wβ · B · (B

k
)−1 for β ∈ {0, 1} is

statistically indistinguishable to A (where Bk ∈ Zk×kp denotes the upper square
matrix of B). This yields

X = h0(K′X[ti])

≡s h0((K′X + U1−b · (A⊥1−b)>) · [AbBr
k
])

≡s h0(Wb ·B · (B
k
)−1 · [Br

k
])

= h0(Wb · [Br]).

and thus
|ε1.2 − ε1.1| ≤ 2−Ω(λ).

Next, we reverse transitionG1 G1.2, that is we chooseK′X ←R Z(kk+1)times2k
p

again. This change does not show up, as from game G1.2 on K′X is not em-
ployed anymore. We thus have ε1.3 = ε1.2.

51

3 CCA-Secure Public-Key Encryption

Next we want to bound transition G1.3 G2 by bounding the advantage
of an adversary A distinguishing between G1.3 and G2. To this end let
([B], [h1, . . . ,hQsim]) be a Qsim-fold Uk2+1,k-MDDH challenge. First, B picks

A,A0,A1 as described in Section 3.2 and further drawsKX,K
′
X ←R Z(k2+1)×2k

p

and Ky,K
′
y ←R Z(k+1)×2k

p . Next, B send [A], [A0], [A1] and ppk := ([KXA],

[KyA]) to A. Further, B chooses W0,W1 ← Z(k2+1)×(k2+1)
p at random.

Verification queries are answered by B according to the verification oracle Over

in game G1.

On the i-th query to Osim, for all i ∈ [Qsim], the adversary B first choses
b ←R {0, 1} to decide whether to return [t] ∈ Lsnd\L or [t] ∈ Lext\Lsnd. The
adversary then sets the i-th simulation element to equal [ti] := Ab[hi]

k
(where

[hi]
k ∈ Gk denotes the upper k entries of [hi]) and continues the simulation

with Xi := h0(Wb[hi]).

Now in case of a real Uk2+1,k-MDDH challenge, the adversary B simulates game
G1.3.

In case the adversary was given a random challenge, the vectors hi are dis-
tributed uniformly over Zk2+1

p and the adversary simulates a game statistically
close to G2.

Finally, by Theorem 7 and Theorem 5 together with our previous observations,
we obtain an adversary B′ such that T (B′) ≈ T (A) + (Qver + Qsim) · poly(λ)
and

|ε2 − ε1| ≤ Advmddh
G,Dk2+1,k,B′

(λ) + 2−Ω(λ).

Transition G2 G3: As h0 is universal, we can employ the Leftover Hash Lemma
(Theorem 15) to switch (h0, h0([u])) to (h0,U) in all simulation queries, where
U←R Zk×kp . A hybrid argument yields

|ε2 − ε3| ≤ Qsim/p.

Game G3: We show that ε3 ≤ Qver · uncertsnd
A (λ), where Qver is the number of

queries to Over and uncertsnd
A (λ) describes the uncertainty of the predicates

provided by the adversary as described in Theorem 29.

Similar to game G3 in Theorem 33 we use a hybrid argument over the Qver

queries to Over. To that end, we introduce games G3.i for i = 0, . . . , Qver,
defined as G3 except that for its first i queries Over answers ⊥ on any query
([t], [π], pred) with [t] /∈ Lext. We have ε3 = ε3.0, ε3.Qver = 0 and we show that
for all i = 0, . . . , Qver − 1 it holds

|ε3.i − ε3.(i+1)| ≤ Pr
K∈K

[predi+1(K) = 1] + 2−Ω(λ),

where predi+1 is the predicate contained in the (i+ 1)-st query to Over.

Games G3.i and G3.(i+1) behave identically on the first i queries to Over. An
adversary can only distinguish between the two, if it manages to provide a
valid (i+ 1)-st query ([t], [π], pred) to Over with [t] /∈ Lext. In the following we
bound the probability of this happening.

52

3.3 Key Encapsulation Mechanisms

From queries to Osim and the first i queries to Over the adversary can only
learn valid tuples ([t], [π], [κ]) with [t] ∈ Lext. Such combined proofs reveal
nothing about K′y beyond [K′yA1]. This holds as either [t] = [Ar] for an
r ∈ Zkp, in which case K′y is not employed at all, or [t] = [A0r] and [π,K] =

[A0](X + r · y>) and thus y (and therefore K′y) is completely hidden by the
randomized X, or [t] = [A1r], in which case only [K′yA1] is revealed.

For any [t] /∈ Lext, y = h1([K′yt]) computed by Over is thus distributed sta-
tistically close to uniform from the adversary’s point of view. Namely, we can
replace K′y by K′y +U(A⊥1)> for U←R Z(k+1)×k

p and A⊥1 ∈ orth(A1) as both
are distributed identically. By our considerations, this extra term is neither
revealed through the public key nor through the previous queries to Osim and
Over.

Now Theorem 15 (Leftover Hash Lemma) implies that the distribution of y
is statistically close to uniform as desired. Since [t] /∈ span([A0]) we have
[a] := [t]− [A0]A

−1
0 [t] 6= 0. In other words, there exists an i ∈ {1, . . . , k} such

that [a]i 6= 0 and thus [a]i · yi is distributed uniformly at random from the
adversaries point of view. Recall that the key [κ] is computed as

[κ] := trace

A0A
−1
0 [π?] +

(
[t]−A0A

−1
0 [t]

)
︸ ︷︷ ︸

6=0

·y>


by Over, so in particular [κ] consists of [a]i · yi plus independent summands
and is thus distributed uniformly over Zp as well.

Altogether, we obtain

ε3 ≤ Qver · uncertsnd
A (λ) +Qver · 2−Ω(λ).

3.3 Key Encapsulation Mechanisms

One way of constructing a public-key encryption scheme is via a key encapsulation
mechanism (KEM). More precisely, by the results of [HK07], a KEM satisfying the
security notion of indistinguishability against constrained chosen-ciphertext attacks
(IND-CCCA) [HK07] together with an arbitrary authenticated symmetric encryp-
tion scheme, yields an IND-CCA secure hybrid encryption scheme.1 Roughly speak-
ing, the CCCA security experiment, in contrast to the CCA experiment, makes an
additional requirement on decryption queries. Namely, in addition to the ciphertext,
the adversary has to provide a predicate implying some partial knowledge about the
key to be decrypted. The idea of hybrid encryption and the notion of a KEM was
first formalized in [CS03].

Definition 36 (Key encapsulation mechanism). A key encapsulation mechanism is
a tuple of PPT algorithms (KGen,KEnc,KDec) such that:

1The corresponding reduction is tight also in the multi-user and multi-ciphertext setting. Suitable
(one-time) secure symmetric encryption schemes exist even unconditionally [HK07].

53

3 CCA-Secure Public-Key Encryption

KGen(1λ): On input of the security parameter λ in unary representation, generates
a pair (pk, sk) of keys.

KEnc(pk): On input pk, returns a ciphertext C and a symmetric key K ∈ K(λ),
where K(λ) is the key-space.

KDec(sk, C): On input of the secret key sk and a ciphertext C returns a key K ∈
K(λ) or a special rejection symbol bot.

We say (KGen,KEnc,KDec) is perfectly correct , if for all λ ∈ N,

Pr[KDec(sk, C) = K] = 1,

where (pk, sk) ←R Gen(1λ), (K,C) ←R KEnc(pk) and the probability is taken over
the random coins of Gen and KEnc.
Note that we always implicitly assume the secret key to contain the public key.

As mentioned above, for constrained chosen ciphertext security, the adversary
has to have some knowledge about the key upfront in order to make a decryption
query. As in [HK07] we will use a measure for the uncertainty left and require it
to be negligible for every query, thereby only allowing decryption queries where the
adversary has a high prior knowledge of the corresponding key. We now provide a
formal definition.

Definition 37 (Multi-ciphertext IND-CCCA security). For any key encapsulation
mechanism KEM = (KGen,KEnc,KDec) and any stateful adversary A , we define the
following experiment:

Expccca
KEM,A(λ):

(pk, sk)←R KGen(1λ)
b←R {0, 1}
Cenc := ∅
b′ ←R AOenc,Odec(·,·)(pk)
if b = b′ return 1
else return 0

Oenc:
K0 ←R K(λ)
(C,K1)←R KEnc(pk)
Cenc := Cenc ∪ {C}
return (C,Kb)

Odec(predi, Ci):
Ki := KDec(sk, Ci)
if Ci /∈ Cenc and
if predi(Ki) = 1
return Ki

else return ⊥

Here predi : K(λ) 7→ {0, 1} denotes the predicate sent in the i-th decryption query,
which is required to be provided as the description of a polynomial time algorithm
(which can be enforced for instance by requiring it to be given in form of a cir-
cuit). Let further Qdec be the number of total decryption queries made by A during
the experiment, which are independent of the environment (hereby we refer to the
environment the adversary runs in) without loss of generality. The uncertainty of
knowledge about the keys corresponding to decryption queries is defined as

uncertA(λ) :=
1

Qdec

Qdec∑
i=1

PrK←RK(λ)[predi(K) = 1].

We say that the key encapsulation mechanism KEM is IND-CCCA secure, if for
all PPT adversaries with negligible uncertA(λ), for the advantage we have

Advccca
KEM,A(λ) :=

∣∣∣∣Pr[Expccca
KEM,A(λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ).

54

3.4 Our Tightly Secure Key Encapsulation Mechanism

KGen(1λ):
(ppk, psk)←R PGen(1λ)
k0,k1 ←R Z2k

p

return
pk := (ppk, [k>0 A], [k>1 A])
sk := (psk,k0,k1)

KEnc(pk):
r←R Zkp
[t] := [A]r
(Π, [κ]) := PPrv(ppk, [t], r)
τ := H([t])
return

C := ([t],Π)
K := ([k>0 A] + τ [k>1 A])r + [κ]

KDec(pk, sk, C) :
parse C := ([t],Π)
(b, [κ]) := PVer(psk, [t],Π)
if b = 0 return ⊥
τ := H([t])
return K := (k0 + τk1)>[t] + [κ]

Figure 3.6: Construction of the KEM

Note that the term uncertA(λ) in the final reduction (proving IND-CCA security
of the hybrid encryption scheme consisting of an unconditionally one-time secure
authenticated encryption scheme and an IND-CCCA secure KEM) is statistically
small (due to the fact that the symmetric building block is unconditionally secure).
Thus we are able obtain a tight security reduction even if the term uncertA(λ) is
multiplied by the number of encryption and decryption queries in the security loss
(as it will be the case for our construction).

3.4 Our Tightly Secure Key Encapsulation Mechanism

In this section we present our CCCA-secure KEM that builds upon a qualified proof
system for the OR-language as presented in Section 3.2.

Ingredients. Let parsPS be the public parameters for the underlying qualified proof
system comprising G = (G, p, P) and A,A0 ∈ Z2k×k

p . Recall that L = span([A]),
Lsnd = span([A]) ∪ span([A0]) and Lext = span([A]) ∪ span([A0]) ∪ span([A1]) (for
A1 ∈ Z2k×k

p). Let furtherH be a collosion resistant hash function generator returning
functions of the form H : Gk → {0, 1}λ and let H←R H. We will sometimes interpret
values τ ∈ {0, 1}λ in the image of H as elements in Zp via the map τ 7→

∑λ
i=1 τi ·2i−1.

In the following we assume that all algorithms implicitly have access to the public
parameters parsKEM := (parsPS,H).

Proof systems. We employ an Lsnd-qualified and Lext-extensible proof system
PS := (PGen,PPrv,PVer,PSim) for the language L as provided in Fig. 3.1. We
additionally require that the key space is a subset of G, which is satisfied by our
construction in Section 3.2.

Construction. The construction of the KEM is given in Fig. 3.6.

Efficiency. When using our qualified proof system from Section 3.2 to instantiate
PS, the public parameters comprise 4k2 group elements (plus the descriptions of the

55

3 CCA-Secure Public-Key Encryption

group itself and three hash functions). Further public keys and ciphertexts of our
KEM contain k3 + k2 + 4k, resp. k2 + 2k group elements.

We stress that our scheme does not require pairings and can be implemented with
k = 1, resulting in a tight security reduction to the DDH assumption in G. As in
this case the upper entries of the matrix A is 1, we get by with 3 group elements in
the public parameters. Further, note that in case k = 1 public keys and ciphertexts
contain 6, resp. 3 group elements. Compared to the GHKW scheme [GHKW16], our
scheme thus has ciphertexts of the same size, but significantly smaller public keys.
Without any optimizations, encryption and decryption take 2k3 + 5k2 + 5k, resp.

3k3 +4k2 +9k exponentiations (2k2 for computing [t], 2k3 +3k2 +3k for computing π
and [κ] and 2k for computing K, resp. 3k3 + 4k2 + 5k for verifying π and computing
[κ] and 4k for computing K). For DDH this results in 11 resp. 16 exponentiations
(in encryption one exponentiation can be saved due to the form of A). Since most
of these are multi-exponentiations, however, there is room for optimizations. In
comparison, encryption and decyption in the GHKW scheme take 3k2 + k, resp. 3k
exponentiations (plus about λk group operations for encryption, and again with
room for optimizations). The main reason for our somewhat less efficient operations
is the used qualified proof system. We explicitly leave open the construction of a
more efficient proof system.

To turn the KEM into a IND-CCA secure hybrid encryption scheme, we require
a quantitatively stronger security of the symmetric building block than [GHKW16].
Namely, the uncertainty uncertA(λ) in our scheme has a stronger dependency on the
number of queries (Qenc ·Qdec instead of Qenc +Qdec). This necessitates to increase
the key size of the authenticated encryption scheme compared to [GHKW16]. Note
though that one-time secure authenticated encryption schemes even exist uncondi-
tionally and therefore in the reduction proving security of the hybrid encryption
scheme, the uncertainty uncertA(λ) will be statistically small.

Theorem 38 (Security of the KEM). If PS is Lsnd-qualified and Lext-extensible
to PS′, if H is a collision resistant hash function and if the D2k,k-MDDH assump-
tion holds in G, then the key encapsulation mechanism KEM described in Fig. 3.6
is perfectly correct and IND-CCCA secure. More precisely, for every IND-CCCA
adversary A that makes at most Qenc encryption and Qdec decryption queries, there
exist adversaries Bmddh, Bsnd, Bind, Bsnd′ and Bcr with running time T (Bmddh) ≈
T (Bsnd) ≈ T (Bind) ≈ T (Bsnd′) ≈ T (Bcr) ≈ T (A) + (Qenc + Qdec) · poly(λ) respec-
tively T (Bsnd′) ≈ T (A) + (Qenc + Qenc · Qdec) · poly(λ) where poly is a polynomial
independent of T (A), and such that

Advccca
KEM,A(λ) ≤ 1

2
·Advsnd

Lsnd,PS,Bsnd(λ) +
1

2
·Advind

Lsnd,PS,PS′,Bind(λ)

+ (2λ+ 2 + k) ·Advmddh
G,D2k,k,Bmddh(λ)

+
λ

2
·Advsnd

Lext,PS′,Bsnd′ (λ)

+
λ+ 2

2
·Qenc ·Qdec · uncertA(λ)

+ Advcr
H,Bcr(λ) +Qenc · 2−Ω(λ).

Proof. We use a series of games to prove the claim. We denote the probability that

56

3.4 Our Tightly Secure Key Encapsulation Mechanism

ch. t ch. [κ] Odec checks remark

G0 A PPrv IND-CCCA

G1 A PPrv τ fresh coll. resist. of H

G2 A PSim τ fresh ZK of PS

G3 A0 PSim τ fresh D2k,k-MDDH

G4 A0 PSim τ fresh, [t] ∈ span([A]) Lemma 39

G5 A0 rand τ fresh, [t] ∈ span([A]) D2k,k-MDDH

Figure 3.7: Security of the KEM. Here column “ch. t” refers to the vector computed
by Oenc as part of the challenge ciphertexts, where A indicates that [t]←R span([A]),
for instance. Column “ch. [κ]” refers to the key computed byOenc as part of the keyK.
In the column “Odec checks” we describe whatOdec checks on input C = (pred, ([t],Π))
additionally to C /∈ Cenc and pred(K) = 1. By a fresh tag τ := H([t]) we denote a tag
not previously used in any encryption query. In case the check fails, the decryption
oracle outputs ⊥.

the adversary A wins the i-th Game Gi by εi. An overview of all games is given in
Fig. 3.7.
The goal is to randomize the keys of all challenge ciphertexts and thereby reducing

the advantage of the adversary to 0. The methods employed here for a tight security
reduction require us to ensure that Odec aborts on ciphertexts which are not in
the span of [A], as we will no longer be able to answer those. The justification of
this step relies crucially on the additional consistency proof Π and is outsourced in
Theorem 39.

Game G0: This game is the IND-CCCA security game (Theorem 37).

Transition G0 G1: From game G1 on, we restrict the adversary to decryption
queries with a fresh tag, that is, a tag which has not shown up in any previous
encryption query. There are two conceivable bad events, where the adversary
reuses a tag.

The first event is due to a collision of the hash function. That is, A provides
a decryption query ([t],Π), such that there exists a challenge ciphertext [t′]
from a previous encryption query with [t] 6= [t′], but H([t]) = H([t′]). In that
case we can straightforwardly employ A to obtain an adversary B attacking
the collision resistance of H in time T (B) ≈ T (A) + (Qenc +Qdec) · poly(λ) for
a polynomial poly independent of T (A). Thereby we obtain an upper bound
on the described event of Advcr

H,B(λ).

In the second event, A provides a valid decryption query ([t],Π), such that
[t] = [t′] for a previous challenge ciphertext [t′] 6= [t]. By the properties of
PS, the proof corresponding to a ciphertext [t] is unique, which in particular
implies [t] /∈ span([A]). We bound the probability that A submits a valid

57

3 CCA-Secure Public-Key Encryption

decryption query ([t],Π) such that [t] /∈ span([A]) by Qdec · uncertA(λ), using
a series of hybrids: For i = 0, . . . , Qdec let G0.i be defined like G0, except Odec

checks the freshness of τ for the first i queries and operates as in game G0

from the (i+1)-st query on. Note that game G0.0 equals G0 and game G0.Qdec

equals G1. We show that for all i ∈ {0, . . . , Qdec − 1}:

|ε0.i − ε0.(i+1)| ≤ Pr
K←RK

[predi+1(K) = 1].

Game G0.i and game G0.(i+1) only differ when the (i + 1)-st query to Odec

is valid with [t] = [t′] for a previous challenge ciphertext [t′] 6= [t]. As all
challenge ciphertexts are in span([A]), they do not reveal anything about k0

beyond the public key [k>0 A]. Thus, for [t] /∈ span([A]), the value k>0 [t] looks
uniformly random from the adversary’s point of view, proving the claimed
distance between game G0.i and game G0.(i+1). Altogether we obtain

|ε0 − ε1| ≤ Advcr
H,B(λ) +Qdec · uncertA(λ).

Transition G1 G2: From G2 on, the way challenge ciphertexts are computed is
changed. Namely, the simulation algorithmen PSim(psk, [t]) is used instead of
PPrv(ppk, [t], r) to compute (Π, [κ]). Since for all challenge ciphertexts we have
[t] ∈ L, the proofs and keys are equal by the perfect zero-knowledge property
of PS, and thus we have

ε1 = ε2.

Transition G2 G3: Game G3 is like G2 except the vectors [t] in the challenge
ciphertexts are chosen randomly in the span of [A0].

We first employ the Qenc-fold D2k,k-MDDH assumption to tightly switch the
vectors in the challenge ciphertexts from span([A]) to uniformly random vec-
tors over G2k. Next we use the Qenc-fold U2k,k-MDDH assumption to switch
these vectors from random to [A0r].

To be specific, we build adversaries B, B′ such that for a polynomial poly
independent of T (A) we have T (B) ≈ T (B′) ≈ T (A) + (Qenc +Qdec) · poly(λ)
and

|ε2 − ε3| ≤ AdvQenc-mddh
G,D2k,k,B (λ) + AdvQenc-mddh

G,U2k,k,B′ (λ).

Let ([A], [v1| . . . |vQenc]) with [A] ∈ G2k×k and [V] := [v1| . . . |vQenc] ∈ G2k×Qenc

be the Qenc-fold D2k,k-MDDH challenge received by B. Then, the adversary B
samples (ppk, psk) ←R PGen(1λ), k0,k1 ←R Z2k

p , b ←R {0, 1} and sends the
public key pk := (ppk, [k>0 A], [k>1 A]) to A.
On the i-th query to Oenc, B sets the challenge ciphertext to [t] := [vi], next
computes τ := H([t]), (Π, [κ]) := PSim(psk, [vi]) and finally K1 := (k>0 +
τk>1)[t] (and K0 ←R K(λ) as usual). As B has generated the secret key itself,
for decryption queries it can simply follow KDec(pk, sk, C).

In case [V] = [AR], B perfectly simulates game G2. In case [V] is uniformly
random over G2k×Qenc , B simulates an intermediary game H, where the chal-
lenge ciphertexts are chosen uniformly at random. Analogously we construct
an adversary B′ on the Qenc-fold U2k,k-MDDH assumption, who simulates game

58

3.4 Our Tightly Secure Key Encapsulation Mechanism

H if [V] is uniformly at random over G2k×Qenc , and game G3, if [V] = [A0R].
Altogether this proves the claim stated above.

Finally, from Theorem 6 (random self-reducibility of U2k,k-MDDH), Theorem 5
(D2k,k-MDDH ⇒ U2k,k-MDDH), and Theorem 3 (random self-reducibility of
D2k,k-MDDH), we obtain an adversary B′′ such that T (B′′) ≈ T (A) + (Qenc +
Qdec) · poly(λ) where poly is independent of T (A) and

|ε2 − ε3| ≤ (1 + k) ·Advmddh
G,D2k,k,B′′(λ) +

2

p− 1
.

Transition G3 G4: We now restrict the adversary to decryption queries with [t] ∈
span([A]). For the justification we refer to Theorem 39 .

Transition G4 G5: In game G5, we change the keys [κ] computed by Oenc to
random over G. This is justified as follows.

Firstly, we can replace k0 by k0 + A⊥u with u ←R Zkp and A⊥ ∈ orth(A),
as those are identically distributed. Note that this change does neither affect
the public key, nor the decryption queries, since for all t ∈ span(A), t>(k0 +

A⊥u) = t>k0. Thus, the term A⊥u only shows up when Oenc computes the
value [(A⊥u)>A0r] for r ←R Zkp as part of the key K1 (the key that is not
chosen at random by the security experiment).

Secondly, the distributions (A⊥u)>A0 and v> ←R Z1×k
p are 1− 2−Ω(λ)-close.

Altogether, we obtain that Oenc, on its j-th query for each j ∈ [Qenc], can
compute key K1 for rj ←R Zkp, and v←R Zkp as

K1 :=
[
(k0 + τk1)>A0rj

]
+ [v>rj] + [κ].

We then switch from ([rj], [v
>rj]) to ([rj], [zj]), where zj is a uniformly random

value over G, using the Qenc-fold Uk-MDDH assumption as follows. On input
([B], [h1| . . . |hQenc]) with B←R Uk (that is B ∈ Z(k+1)×k

p) and h1, . . . ,hQenc ∈
Zk+1
p , B samples (ppk, psk) ←R PGen(1λ), k0,k1 ←R Z2k

p , b ←R {0, 1} and
sends the public key pk := (ppk, [k>0 A], [k>1 A]) to A. In the following for all
j ∈ Qenc let [hj] ∈ Gk comprise the upper k entries and [hj] ∈ G the (k+ 1)-st
entry of [hj] and similar for [B] let [B] ∈ Gk×k be the upper square matrix of
[B] and [B] ∈ G1×k comprise the last row.

On the j-th encryption query, B sets [t] := A0[hj] (and thus [rj] := [hj]) and
computes the key as

K1 :=
[
(k0 + τk1)> t

]
+ [hj] + [κ].

The adversary B can answer decryption queries as usual using k0, as decryption
queries outside L are rejected.

Now if ([B], [h1| . . . |hQenc]) was a real Uk-MDDH challenge, we have hj = Bsj

for a sj ←R Zkp and thus we have rj = Bsj and [hj] = [B]sj = [B]B
−1

rj .

Note that the distribution of [B]B
−1 is statistically close to the distribution

59

3 CCA-Secure Public-Key Encryption

of v> and therefore B simulates game G4. In case hj was chosen uniformly
at random from Zk+1

p , the adversary B simulates game G5 instead. In the end
adversary B can thus forward the output of A to its own experiment.

Finally, Theorem 5, Theorem 6 and Theorem 7 yield the existence of an ad-
versary B′ such that T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ) where poly is a
polynomial independent of T (A), and

|ε4 − ε5| ≤ Advmddh
G,D2k,k,B′(λ) + 2−Ω(λ).

Game G5: In this game, the keys K1 computed by Oenc are uniformly random, since
the value [κ] which shows up in K1 := [(k0 +τk1)>t]+[κ] is uniformly random
for each call to Oenc. The same holds true for the keys K0 which are chosen
at random from K(λ) throughout all games. Therefore, the output of Oenc is
now independent of the bit b chosen in Expccca

KEM,A(λ). This yields

ε5 = 0.

Lemma 39. The security games G3 and G4 defined for the proof of Theorem 38
(security of the KEM, see Figure 3.7) are computationally indistinguishable. More
precisely, for every IND-CCCA adversary A that makes at most Qenc encryption
and Qdec decryption queries, there exist adversaries Bsnd, Bind, Bmddh and Bsnd′

with running time T (Bsnd) ≈ T (Bind) ≈ T (Bmddh) ≈ T (A) + (Qenc +Qdec) · poly(λ)
respectively T (Bsnd′) ≈ T (A)+(Qenc+Qenc·Qdec)·poly(λ), where poly is a polynomial
independent of T (A), and such that

ε3 ≤ ε4 +
1

2
·Advsnd

Lsnd,PS,Bsnd(λ) +
1

2
·Advind

Lsnd,PS,PS′,Bind(λ)

+ 2λ ·Advmddh
G,D2k,k,Bmddh(λ) +

λ

2
·Advsnd

Lext,PS′,Bsnd′ (λ)

+
λ+ 2

2
·Qenc ·Qdec · uncertA(λ) +Qenc · 2−Ω(λ).

Proof. From game G4 on, decryption queries outside the span of [A] will always be
answered with ⊥ independently of the corresponding proof Π.
Games G3 and G4 behave the same, as long as an adversary A does not manage

to submit a decryption query (pred, ([t],Π)) with [t] /∈ span([A]), on which Odec

does not abort in G3.
In the following we will introduce probabilities conditioned on the bit b, which

determines whether the encryption oracle returns uniformly random keys or real
keys. Namely for i ∈ {3, 4} and β ∈ {0, 1} let εi|β denote the probability that A
wins game Gi under the condition that b = β was drawn by the challenger. We
prove that G3 and G4 are computationally indistinguishable, by a case analysis,
depending on the bit b.

For b = 0: the encryption oracle Oenc of the experiment Expind−ccca
KEM,A (λ) returns

keys chosen uniformly at random from K(λ), thus, all the adversary can informa-
tion theoretically learn about k0 is [k>0 A] from the public key. We can use the

60

3.4 Our Tightly Secure Key Encapsulation Mechanism

remaining entropy from k0 to argue that the adversary A can only submits queries
(pred, ([t],Π)) to Odec, for which the corresponding key does not satisfies pred.
Namely, we replace k0 by k0 + A⊥u for A⊥ ∈ orth(A), and u ←R Zkp as both

are distributed identically. This change does not affect the public key, but for all
[t] /∈ span([A]) we have: [t]>A⊥ 6= 0, and [t]>A⊥u is uniformly random over G.
Therefore, the probability that the decryption oracle accepts a query (pred, ([t],Π))
with [t] /∈ span([A]), in G3 for b = 0, is bounded by PrK∈K[pred(K) = 1]. Via a
hybrid argument across all decryption queries, we obtain

|ε3|0 − ε4|0| ≤ Qdec · uncertA(λ).

For b = 1: In the following we will call a query critical, if it is of the form
(pred, ([t],Π)) with [t] /∈ span([A]) and the decryption oracle does not abort in the
respective game. Our goal is to bound the event of A submitting such a query. More
precisely, we give the corresponding game H0 in Fig. 3.8, where A gets the public
key pk as input and access to the oracles Oenc and Odec. A wins if the decryption
oracle returns critical query at some point. Note that except for the altered winning
condition, the oracles behave as in game G3 for b = 1. We denote the probability
that the adversary A wins game Hx by εH.x. Note that we have

|ε3|1 − ε4|1| ≤ εH.0

and thus altogether we obtain

|ε3 − ε4| ≤
1

2
· (εH.0 +Qdec · uncertA(λ)) .

In the following we will bound εH.0 via a sequence of games. We give an overview
of the games in Fig. 3.9.
We will always assume that the freshness of τ is checked by the decryption oracle

(and the query is answered with ⊥ if it fails). In all games, an adversary wins if it
manages to submit a critical query.

Transition H0 H1: We will first reject decryption queries outside Lsnd. We jus-
tify this employing the constrained soundness of PS. Let A be an adversary
distinguishing between games H0 and H1, that is an adversary submitting a
successful decryption query outside Lsnd in H0. Then we construct an adver-
sary B breaking constrained Lsnd-soundness of PS as follows.

On receiving the public key ppk of PS, the adversary B samples k0,k1 ←R Z2k
p ,

and sends pk := (ppk, [k>0 A], [k>1 A]) to A.

On an encryption query of A, the adversary B can employ its simulation oracle
Osim to obtain ([t],Π, [κ]) with [t] ∈ span([A0]). The adversary B now com-
putes τ := H([t]) and sets C := ([t],Π) and K := (k0 + τk1)>[t] + [κ]. Finally
B returns (C,K) to A.

To answer A’s queries to Odec of the form (pred, ([t],Π)), we distinguish the
following cases, where we use that B has access to A and A0. In all cases
B computes τ := H([t]) and defines the predicate pred′ : K 7→ pred((k0 +
τk1)>[t] +K). Next B queries Over on ([t],Π, pred′).

61

3 CCA-Secure Public-Key Encryption

ExpHx
KEM,A(λ):

(pk, sk)←R KGen(1λ)

v←R Z2k
p

Cenc := ∅
AOenc,Odec(·,·)(pk)
if Odec returned critical query

return 1
else return 0

Oenc:
r←R Zkp
[t] := [A0]r
τ := H([t])
(Π, [κ]) := PSim(ppk, psk, [t])
C := ([t],Π)

K :=
(
k0 + τk1 +v

)>
[t] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([t],Π)):
(v, [κ]) := PVer(psk, [t],Π)
τ := H([t])
if ([t],Π) /∈ Cenc and v = 1 and τ is fresh

if [t] ∈ span([A])
K := (k0 + τk1)> [t] + [κ]
if pred(K) = 1
return K

else if [t] ∈ span([A0])

K :=
(
k0 + τk1 +v

)>
[t] + [κ]

if pred(K) = 1
return critical query and abort

return ⊥

Figure 3.8: Games H0, H1 and H2

In case [t] ∈ span([A]), the oracle returns either ⊥ or a key [κ] to B. In the
former case B forwards ⊥ to A, in the latter the key K := (k0 + τk1)>[t] + [κ].

If [t] ∈ span([A0]), the oracle Over returns either ⊥ or the adversary B has
lost the constrained soundness game. In the former case, B forwards ⊥ to A.
In the latter case the adversary A managed to submit a critical query in both
games H0 and H1 and thus did not succeed in distinguishing between the two.

Finally, if [t] /∈ span([A]) ∪ span([A0]), the oracle Over returns either ⊥ (in
which case B sends ⊥ to A), or the adversary B has win the constrained
soundness game. Only in the last case does A distinguish between H0 and H1.

Altogether we obtain an adversary B breaking the constrained Lsnd-soundness
of PS in time T (B) ≈ T (A)+(Qenc +Qdec) ·poly(λ), where poly is a polynomial

62

3.4
O
ur

T
ightly

Secure
K
ey

E
ncapsulation

M
echanism

#
proof
system ch. kenc

∆ (τ)
kdec

∆ (τ, [t]) used by Odec on [c]
for which [c]>A⊥ 6= [0]

Odec checks
game
knows remark

H0 PS 0 0 A

H1 PS 0 0 [t] ∈ Lsnd A, A0,A1 Lsnd-soundness

H2 PS v v [t] ∈ Lsnd A,A0,A1 statistical

H3 PS′ v v [t] ∈ Lsnd A,A0,A1 Lext-extensibility

H4 PS′ v v A win. chances increase

H5 PS′ F(τ)
{
F(τ (j))

}
A see Figure 3.11

Figure 3.9: Security of the KEM. Column “proof system” describes the underlying proof system used, where PS′ is a Lext-qualified proof
system, such that PS and PS′ are Lsnd-indistinguishable. Column “ch. kenc

∆ (τ)” refers to the vector kenc
∆ (τ) used by Oenc when computing

the key K := [(k0 + τk1 + kenc
∆ (τ))>t] + [κ] for challenge ciphertexts. v denotes a value in Z2k

p chosen uniformly random, F : {0, 1}λ → Z2k
p

denotes a random function and τ := H([t]). In the next column, we describe kdec
∆ (τ, [t]) used by Odec when computing the set of valid keys

SK :=
{(

k0 + τk1 + kdec
∆ (τ (j), [t])

)>
[t] + [κ] τ (j) ∈ Qdec

}
on queries containing [t] such that t>A⊥ 6= 0. Here τ (j) ∈ Qdec for j ∈ {1, . . . , Qenc}

denotes the tag from the j-th encryption query. By the set notation we want to imply that the decryption oracle accepts a predicate if it
evaluates to 1 on any key in SK . The column “Odec checks” refers to additional checks performed on decryption queries ahead of decryption.
We always assume Odec checks the freshness of τ and therefore not list it explicitely in the table. In case any of the checks fails, Odec returns
⊥. The column “game knows” refers to what the game must know with respect to A, A0 and A1.

63

3 CCA-Secure Public-Key Encryption

independent of T (A), such that

|εH.0 − εH.1| ≤ Advsnd
Lsnd,PS,B(λ).

Transition H1 H2: We alter the oracles in game H2 as described in Fig. 3.8,
where the same v ←R Z2k

p is used across all oracle calls. The appearance
of the extra random term v in encryption and decryption queries with [t] ∈
span([A0]) is justified as follows. In an intermediary game we first replace k0

by k0 + A⊥u, where A⊥ ∈ orth(A) and u ←R Zkp. This transition does not
change the view of the adversaries as the keys k0 and k0 + A⊥u are both
distributed uniformly random over Z2k

p .

Note that this change neither affects the public key, nor the keys computed by
Odec when queried on inputs containing [t] ∈ span([A]), since (k0+A⊥u)>[t] =
k>0 [t].

Next for A⊥0 ∈ orth(A0) and u0 ←R Zkp we replace k0 + A⊥u by k0 + A⊥u +

A⊥0 u0 in all encryption queries and decryption queries with [t] ∈ span([A0]),
which does not change the adversary’s view, since we have (A⊥u)>[t] =
(A⊥u + A⊥0 u0)>[t].

With probability 1 − 2−Ω(λ) over the choices of A,A0 the column vectors of
A⊥ and A⊥0 together form a basis of Z2k

p , and thus A⊥u+A⊥0 u0 is distributed
uniformly random over Z2k

p with overwhelming probability and can be replaced
by v← Z2k

p .

This yields
|εH.1 − εH.2| ≤ 2−Ω(λ).

Transition H2 H3: By the Lext-extensibility of PS, there exists a proof system
PS′, such that PS and PS′ are Lsnd-indistinguishable. From game H3 on, we
replace PS by PS′.

From an adversary A distinguishing between those to games, we can construct
an adversary B breaking the Lsnd-indistinguishability as follows, where B has
either access to the oracles O0

sim and O0
ver of PS, or to the oracles O1

sim and
O1

ver of PS′ and has to distinguish between the two cases.

Note that we do not change the distribution of [t] in simulation queries in this
step, that is in both games [t] is chosen uniformly at random from span([A0]).

On receiving the public key ppk of PS, the adversary B samples k0,k1 ←R Z2k
p ,

and sends pk := (ppk, [k>0 A], [k>1 A]) to A. Now B can employ its simulation
oracle Oβsim to answer decryption queries.

To answer A’s queries to Odec of the form (pred, ([t],Π)), we distinguish the
following cases, where we use that B has access to A and A0. All queries
outside of Lsnd to the decryption oracle are answered with ⊥ by B. In case
[t] ∈ Lsnd the adversary B computes τ := H([t]) and defines the predicate
pred′ : K 7→ pred((k0 + τk1)>[t] + K). Next B queries Oβver on ([t],Π, pred′),
to get either a key [κ], or ⊥. In the former case, B checks if [t] ∈ span([A]),
if this is the case, it returns the key K := (k0 + τk1)>[t] + [κ] to A, if this is

64

3.4 Our Tightly Secure Key Encapsulation Mechanism

Oenc:
r←R Zkp
[t] := [A0]r
τ := H([t])
(Π, [κ]) := PSim′(ppk, psk, [t])
C := ([t],Π)

K :=
(
k0 + τk1 + Fi(τ|i)

)>
[t] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([t],Π)):
(v, [κ]) := PVer′(psk, [t],Π)
τ? := H([t])
if ([t],Π) /∈ Cenc and v = 1 and τ is fresh

if [t] ∈ span([A])
K := (k0 + τ?k1)> [t] + [κ]
if pred(K) = 1
return K

else
SK :=

{(
k0 + τ?k1 + Fi(τ|i)

)>
[t] + [κ] τ ∈ Qenc

}
if ∃K ∈ SK such that pred(K) = 1
return critical query and abort

return ⊥

Figure 3.10: Oracles in Game H4.i.0

not the case it returns critical query, and ends the game. In the latter case, B
sends ⊥ to A.
The adversary B now simulates game H2 in case β = 0 and game H3 in case
β = 1, thus B can forward the output of A to its experiment.

Altogether we obtain thus an adversary B breaking the Lsnd-indistinguishability
of PS and PS′ in time T (B) ≈ T (A) + (Qenc +Qdec) · poly(λ), where poly is a
polynomial independent of T (A), such that

|εH.2 − εH.3| ≤ AdvPS-ind
Lsnd,PS,PS′,B(λ),

Transition H3 H4: From game H4 on, we again allow decryption queries outside
Lsnd. This can only increase the winning chances of the adversary, as it does
not change the view on non-critical queries. We thus have εH.3 ≤ εH.4.

Transition H4 H5: To justify the transition from gameH4 to gameH5 we employ
a hybrid argument comprising a number of games. We give an overview of these
games in Fig. 3.11 and prove the reduction in the following.

Game H4.i.0: For i = 0, . . . , λ, in H4.i.0 the adversary has access to the oracles
Oenc and Odec defined as described in Fig. 3.10, where by Fi : {0, 1}i →
Z2k
p we denote a random function applied to the first i bits τ|i of τ .

65

3
C
C
A
-Secure

P
ublic-K

ey
E
ncryption

ch. [t] ch. kenc
∆ (τ)

kdec
∆ (τ, [t]) used by Odec on [c]
for which [c]>A⊥ 6= [0]

Odec checks
game
knows remark

H4.i.0 [A0] Fi(τ|i)
{
Fi(τ

(j)
|i)
}

A H4.0.0 = H4

H4.i.1 [Aτi+1] Fi(τ|i)
{
Fi(τ

(j)
|i)
}

A D2k,k-MDDH

H4.i.2 [Aτi+1] Fi(τ|i)
{
Fi(τ

(j)
|i)
}

[t] ∈ Lext A, A0,A1 Lext-soundness

H4.i.3 [Aτi+1]

τi+1 = 0 :

A⊥0 F̃
(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i)

τi+1 = 1 :

A⊥0 F
(0)
i (τ|i) + A⊥1 F̃

(1)
i (τ|i)

if [t] ∈ span([A0]) :{
A⊥0 F̃

(0)
i (τ

(j)
|i) + A⊥1 F

(1)
i (τ

(j)
|i)

}
if [t] ∈ span([A1]) :{
A⊥0 F

(0)
i (τ

(j)
|i) + A⊥1 F̃

(1)
i (τ

(j)
|i)

} [t] ∈ Lext A,A0,A1 change of basis

H4.i.4 [Aτi+1] Fi+1(τ|i+1)

{
Fi+1(τ

(j)
|i d[t])

}
[t] ∈ Lext A,A0,A1 conceptual

H4.i.5 [Aτi+1] Fi+1(τ|i+1)
{
Fi+1(τ

(j)
|i d[t])

}
A,A0,A1 win. chances increase

H4.i.6 [Aτi+1] Fi+1(τ|i+1)
{
Fi+1(τ

(j)
|i b), b ∈ {0, 1}

}
A win. chances increase

H4.i.7 [Aτi+1] Fi+1(τ|i+1)

{
Fi+1(τ

(j)
|i+1)

}
A

F hard to guess on
non-queried values

Figure 3.11: Hybrid Games for Randomization. Columns are almost according to Figure 3.9. Additionally column “ch. [t]” refers to the
vector computed by Oenc as part of the challenge ciphertexts, where A indicates that t ←R span(A), for instance. For i = 0, . . . , λ by
Fi : {0, 1}i → Z2k

p and further by F
(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i : {0, 1}i → Zkp we denote random functions, such that for all ρ ∈ {0, 1}i and for a choice

A⊥0 ∈ orth([A0]) and A⊥1 ∈ orth([A1]) we have Fi(ρ) = A⊥0 F
(0)
i (ρ) + A⊥1 F

(1)
i (ρ). Apart from this relation we require the functions to be

independent. We set d[t] = 0 if [t] ∈ span([A0]) and d[t] = 1 if [t] ∈ span([A1]). We always assume Odec checks the freshness of τ and therefore
do not list it explicitly in the table. In case any of the checks fails, Odec returns ⊥.

66

3.4 Our Tightly Secure Key Encapsulation Mechanism

Note that in previous games (H0 to H4), for a statement [t] /∈ span([A]),
Odec(pred, ([t],Π)) computes one key K when the proof Π is valid, and
return this key if pred(K) = 1.

In gameH4.i.0, instead, the decryption oracle will accept a query (pred, ([t],Π))
outside span([A]) as critical, if additionally to a valid proof Π, the corre-
sponding predicate pred evaluates to 1 on any of the keys in the set

SK :=
{[(

k0 + τ?k1 + Fi(τ|i)
)>

t
]

+ [κ] τ ∈ Qenc

}
,

where τ? := H([t]) and Qenc denotes the set of tags previously computed
by Oenc. As for i = 0 the function Fi = F0 is a constant random value in
Z2k
p , independent from its input τ , we have H4.0.0 = H4. Also note that

H4.λ.0 = H5.

Transition H4.i.0 H4.i.1: For i = 0, . . . , λ − 1, H4.i.1 is defined as H4.i.0

except Oenc computes ciphertexts of the form [t] := [Aτi+1r], where τi+1

denotes the (i + 1)-st bit of τ , instead of [A0r] in H4.i.0. We justify this
transition by applying the U2k,k-MDDH assumption twice. First we use it
once with respect to [A0] to tightly switch vectors from [A0r] to uniform
random vectors over G2k. For the next step first note that a U2k,k-MDDH
challenge ([A0], [v]) can be efficiently transformed into a U2k,k-MDDH
challenge ([A1], [v′]), such that a real MDDH challenge [v] = [A0r] is
transformed into [v′] = [A1r], and a uniform [v] is transformed into a
uniform [v′].

This is obtained simply by picking U ←R Zk×kp and defining [A1] as
[A1] := [A0], [A1] := U[A0], [v′] := [v], and [v′] := U[v]. With proba-
bility 1− k · 2−Ω(λ) over the choices of A0 ←R U2k,k, A0 is full rank, and
UA0 is uniformly random over Zk×kp .

Given ([A0], [v]), we can compute the tag τ := H([v]) and, depending
on τi+1, decide whether we have to switch to ([A1], [v′]). Note that this
does not affect the tag, as it only depends on [v]. Now applying the Qenc-
fold U2k,k-MDDH a second time allows to change to challenge ciphertexts
of the form [Aτi+1r] as desired. Further note that simulating Odec only
requires knowing A⊥, which is independent of A0 and A1, and therefore,
does not compromise the U2k,k-MDDH assumption with respect to those
matrices.

Finally, employing Theorem 6 (random self-reducibility of the Qenc-fold
U2k,k-MDDH assumption) and Theorem 5 (D2k,k-MDDH⇒ U2k,k-MDDH),
we obtain an adversary B such that T (B) ≈ T (A)+(Qenc +Qdec) ·poly(λ)
for a polynomial poly independent of T (A), and such that

|εH.4.i.0 − εH.4.i.1| ≤ 2 ·Advmddh
G,D2k,k,B(λ) +

2

p− 1
.

Transition H4.i.1 H4.i.2: For i = 0, . . . , λ−1, the change introduced inH4.i.2

is that Odec(pred, ([t],Π)) checks whether [t] ∈ Lext (note that this can be
checked efficiently given A0 and A1). If this is the case, Odec continues as

67

3 CCA-Secure Public-Key Encryption

in H4.i.1, otherwise, it returns ⊥. This change can only be detected if the
adversary A manages to submit a valid decryption query with [t] /∈ Lext.
We bound this event by constructing an adversary B from A attacking
the constrained Lext-soundness of PS′.

On receiving the public parameters ppk of the proof system, B chooses
k0,k1 ← Z2k

p and sends the public key pk := (ppk, [k>0 A], [k>1 A]) to A.
For answering encryption queries of A, the adversary B first employs
its simulation oracle to obtain ([t],Π, [κ]). Recall that Osim of PS re-
turns challenges with [t] ∈ span([A0]) ∪ span([A1]). The adversary then
computes τ := H([t]) and if [t] /∈ span([Aτi+1]) it rejects and queries
the simulation oracle again. As [A0] = [A1], τi+1 is independent of the
span in which [t] lies. Therefore B rejects with probability merely 1/2
and thus requires only poly(λ) ∈ O(λ) time to obtain a query of the
desired form with probability 2−Ω(λ) (otherwise it aborts), where poly
is a polynomial independent of T (A). Finally B sets C := ([t],Π) and
K := (k0 + τk1 + Fi(τ|i))

>[t] + [κ] and returns (C,K) to A.
To answer a decryption query (pred, ([t],Π)) the adversary B has to query
its verification oracle for each distinct value Fi(τ

(j)
|i), where τ (j) ∈ Qenc,

until the simulation oracle replies something other than ⊥. Note that
Fi can take at most 2i values, so for small i the number of simulation
queries will be much less than Qenc in general. Nevertheless to keep the
bound simpler, we will bound the total running time of the adversary
B to answer decryption queries by Qdec · Qenc · poly(λ), where poly is a
polynomial independent of T (A).

Namely, on a decryption query (pred, ([t],Π)), the adversary B com-
putes the tag τ? := H([t]) as usual and defines for all τ (j) ∈ Qenc with
distinct images Fi(τ

(j)
|i) additional predicates predj : G → {0, 1},K 7→

pred
(

(k0 + τ?k1 + Fi(τ
(j)
|i))>[t] +K

)
. Then for each j ∈ [|Qenc|] adver-

sary B queries ([t],Π, predj) to its verification oracle Over, and does the
following.

In case [t] ∈ span([A]), the oracle Over returns either ⊥ or a key [κ]. In
the former case B forwards ⊥ to A, in the latter the key K := (k0 +
τ?k1)>[t] + [κ].

In case [t] ∈ span([A0]) ∪ span([A1]), Over either returns ⊥, or the ad-
versary B loses the constrained soundness game. In case B has not lost,
it forwards ⊥ to A. Otherwise A managed to submit a critical query
in respect to both games H4.i.1 and H4.i.2 and did thus not succeed in
distinguishing between the two.

Finally, in case [t] /∈ Lext, Over either returns ⊥, which B forwards to
A, or it returns "win" to B. Note that only in this case A managed to
submit a valid query outside Lsnd and therefore managed to distinguish
between the two games.

Altogether we obtain an adversary B breaking Lext-constrained soundness
in time T (B) ≈ T (A) + (Qenc + Qenc · Qdec) · poly(λ), where poly is a

68

3.4 Our Tightly Secure Key Encapsulation Mechanism

Oenc:
r←R Zkp
[t] := [A0]r
τ := H([t])
(Π, [κ]) := PSim′(ppk, psk, [t])
C := ([t],Π)

K :=
(
k0 + τk1 + kenc

∆ (τ)
)>

[t] + [κ]

Cenc := Cenc ∪ {C}
return (C,K)

Odec(pred, ([t],Π)):
(v, [κ]) := PVer′(psk, [t],Π)
τ? := H([t])
if ([t],Π) /∈ Cenc and v = 1 and τ is fresh

if [t] ∈ span([A])
K := (k0 + τ?k1)> [t] + [κ]
if pred(K) = 1
return K

else if [t] ∈ span([A0]) ∪ span([A1])

SK :=

{(
k0 + τ?k1 + kdec

∆ (τ, [t])
)>

[t] + [κ] τ ∈ Qenc

}
if ∃K ∈ SK such that pred(K) = 1
return critical query and abort

return ⊥

Figure 3.12: Oracles in Game H4.i.3

polynomial independent of T (A), such that

|εH.4.i.1 − εH.4.i.2| ≤ Advsnd
Lext,PS′,B(λ) +Qenc · 2−Ω(λ).

Transition H4.i.2 H4.i.3: As described in Fig. 3.12, game H4.i.3, the oracle
Oenc computes the key using an additional summand kenc

∆ (τ) for τ :=

H([t]). Similarly, Odec uses a vector kdec
∆ (τ, [t]) for τ ∈ Qenc. In encryption

queries kenc
∆ (τ) for τ := H([t]) is defined as

kenc
∆ (τ) :=

{
A⊥0 F̃

(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i), if τi+1 = 0

A⊥0 F
(0)
i (τ|i) + A⊥1 F̃

(1)
i (τ|i), if τi+1 = 1,

where A⊥0 ∈ orth([A0]), A⊥1 ∈ orth([A1]) and F
(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i :

{0, 1}i → Zkp are independent random functions, such that Fi(τ|i) =

A⊥0 F
(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i). Note that with probability 1 − 2−Ω(λ) over

the choices of A0,A1 the column vectors of A⊥0 and A⊥1 form a basis of
Z2k
p and thus such F

(0)
i , F(1)

i exist. Further for any bit b ∈ {0, 1}, and
t ∈ span(Ab) we have

kenc
∆ (τ)>t =

(
kenc

∆ (τ) + A⊥b F̃
(b)
i

)>
t.

69

3 CCA-Secure Public-Key Encryption

Thus the change of the encryption oracle is merely conceptional.

The same holds true for the decryption oracle, where we compute the set
of admissible keys depending on [t]. Namely, for each tag τ ∈ Qenc, we
define kdec

∆ (τ, [t]) as

kdec
∆ (τ, [t]) :=

{
A⊥0 F̃

(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i), if [t] ∈ span([A0])

A⊥0 F
(0)
i (τ|i) + A⊥1 F̃

(1)
i (τ|i), if [t] ∈ span([A1])

Therefore, H4.i.2 and H4.i.3 are identically distributed and we obtain

εH.4.i.2 = εH.4.i.3.

Transition H4.i.3 H4.i.4: In game H4.i.4, for i = 0, . . . , λ− 1 we define

Fi+1 : {0, 1}i+1 → Z2k
p

as

Fi+1(τ|i+1) :=

{
A⊥0 F̃

(0)
i (τ|i) + A⊥1 F

(1)
i (τ|i), if τi+1 = 0

A⊥0 F
(0)
i (τ|i) + A⊥1 F̃

(1)
i (τ|i), if τi+1 = 1.

Note that this defines a random function, when F
(0)
i ,F

(1)
i , F̃

(0)
i , F̃

(1)
i :

{0, 1}i → Zkp are independent random functions.

Similarly, in decryption queries for τ ∈ Qdec we use Fi+1 as defined above
applied to τ|id[t], where d[t] is defined as

d[t] :=

{
0, if [t] ∈ span([A0])

1, if [t] ∈ span([A1]).

As the changes again are merely conceptional, we have

εH.4.i.3 = εH.4.i.4.

Transition H4.i.4 H4.i.5: From game H4.i.5 on, we again allow decryption
queries outside Lext. This can only increase the winning chances of the
adversary, because it does not change the view on non-critical queries.
We thus have

εH.4.i.4 ≤ εH.4.i.5.

Transition H4.i.5 H4.i.6: Game H4.i.6, for i = 0, . . . , λ − 1, is identical to
H4.i.5, except for Odec, which now computes the set of valid keys as

SK :=

{(
k0 + τ?k1 + Fi+1(τ|i b)

)>
[t] τ ∈ Qenc, b ∈ {0, 1}

}
Note that this set includes the set of keys computed in H4.i.5. Therefore,
this increases the probability of the adversary to submit a critical query,
while not changing its view on non-critical queries. In conclusion,

εH.4.i.5 ≤ εH.4.i.6.

70

3.4 Our Tightly Secure Key Encapsulation Mechanism

Transition H4.i.6 H4.i.7: Game H4.i.7, for i = 0, . . . , λ − 1, is identical to
H4.i.6, except for Odec, which now computes the set of valid keys as

SK :=

{(
k0 + τ?k1 + Fi+1(τ|i τi+1)

)>
[t] τ ∈ Qenc,

}
.

It suffices to show that with all but negligible probability, there is no key
in SK which corresponds to a tag τ ∈ Qenc and a bit b ∈ {0, 1} such that
τ|ib ∈ {0, 1}i+1 is not the prefix of any tag in Qenc, and that satisfies pred.
We proceed via a hybrid argument over all queries to Odec. To that end,
we introduce intermediate games H4.i.6.j for j = 0, . . . , Qdec, defined as
H4.i.6, except that Odec proceeds as in game H4.i.7 on its j-th last queries.
We show that:

H4.i.6 = H4.i.6.0 ≈s H4.i.6.1 ≈s . . . ≈s H4.i.6.Qdec
= H4.i.7,

where by ≈s we denote statistical closeness. We show that for all j =
0, . . . , Qdec − 1,

|εH.4.i.6.j − εH.4.i.6.j+1| ≤ Qenc · Pr
K←RK

[predj+1(K) = 1].

This is because for all tags τ ∈ Qenc and b ∈ {0, 1} such that τ|ib ∈
{0, 1}i+1 is not prefix of any τ ∈ Qenc, the value Fi+1(τ|ib) is a random
value, uniform over Zkp, independent of A’s view before its (j+1)-st query
to Odec. Summing up, we obtain

|εH.4.i.6 − εH.4.i.7| ≤ Qenc ·Qdec · uncertA(λ).

Transition H4.i.7 H4.(i+1).0: For i = 0, . . . , λ− 1, in H4.(i+1).0 the challenge
ciphertexts are switched back to the span of [A0] independent of the tag
τ , the transition is thus the reverse to H4.i.0 H4.i.1. More precisely, we
first tightly switch all challenges of the form [Aτi+1r] to uniform random
vectors over G2k and then back to vectors in the span of [A0]. From
an adversary A detecting this change, we can construct an adversary
B attacking the Qenc-fold U2k,k-MDDH assumption as follows. On in-
put ([A0], [v1| · · · |vQenc]) with [A0] ∈ G2k×k and [V] := [v1| · · · |vQenc] ∈
G2k×Qenc , the adversary B chooses U ← Zk×kp and sets [A1] such that
[A1] = [A0] and [A1] = U[A0]. With probability 1 − k · 2−Ω(λ) over the
choices of A0 ←R U2k,k, A0 is full rank, and UA0 is uniformly random
over Zk×kp .

Further B chooses the rest of the public parameters as in Section 3.2 and
generates the public and secret keys of the KEM by invoking KGen on
input 1λ. On the j-th query of A to Oenc, B computes τ := H([vj]). In
case τi+1 = 0, the adversary continues answering the decryption query
with [t] := [vj]. In case τi+1 = 1, the adversary instead sets [t] such
that [t] = [vj] and [t] = U[vj]. In case [V] was uniformly random over
G2k×Qenc , the adversary B simulates the intermediary game, where all
challenge ciphertexts are chosen uniformly random. If instead for each

71

3 CCA-Secure Public-Key Encryption

j ∈ {1, . . . , Qenc} there exists an rj ∈ Zkp such that [vj] = [A0]rj , the
adversary simulates game H4.i.7, as in this case for all j ∈ {1, . . . , Qenc}
we have [tj] = [Aτi+1rj].

Now we can employ the Qenc-fold U2k,k-MDDH assumption a second time
to tightly switch back the challenge ciphertexts from random to the span
of [A0].

Finally, using Theorem 6 (random self-reducibility of the U2k,k-MDDH
assumption) and Theorem 5 (D2k,k-MDDH ⇒ U2k,k-MDDH), we obtain
an adversary B′ such that T (B′) ≈ T (A) + (Qenc + Qdec) · poly(λ) for a
polynomial poly independent of T (A), and such that

|εH.4.i.5 − εH.4.(i+1).0| ≤ 2 ·Advmddh
G,D2k,k,B′(λ) +

2

p− 1
.

Game H5: We now show that an adversary has only negligible chances to win
H5 := H4.λ.7. We argue as follows.

First, for u←R Zkp the tuples(
k1,
(
Fλ(τ)

)
τ∈{0,1}λ

)
and

(
k1 − A⊥u ,

(
Fλ(τ) + τA⊥u

)
τ∈{0,1}λ

)
are distributed identically.

Second, the set of tags computed by Oenc and the set of tags computed
by Odec are disjoint (recall that we established this in game G1 in the
proof of Theorem 38).

Note that u does not show up when Oenc computes challenge keys, since
in this case

K =
(
k0 + τ

(
k1 −A⊥u

)
+ Fλ(τ) + τA⊥u

)>
[t]

= (k0 + τk1 + Fλ(τ))> [t] ,

that is, the extra terms cancel each other out.

On the contrary, an extra term appears when Odec is queried on an input
that contains [t] such that t>A⊥ 6= 0, since Odec computes τ? := H([t])
and the set of keys as

SK :=

{(
k0 + τ?k1 + Fλ(τ) + (τ? − τ)A⊥u

)>
[t] τ ∈ Qenc

}
.

As we require tags to be fresh, we have τ? /∈ Qenc and therefore the
term (τ? − τ)(A⊥u)>t is uniformly random over Zp. Thus, the marginal
distribution of each key in SK is uniform over G. Using a hybrid argument
over all queries to Odec, we hence obtain

|εH.5| ≤ Qdec ·Qenc · uncertA(λ).

72

Chapter 4
Structure-Preserving Signatures

Building on the techniques presented in the previous chapter, we continue with giv-
ing a tightly secure structure-preserving signature scheme. Recall that a signature
scheme is structure-preserving if messages and signatures consist of group elements
only, and its signing and verification algorithm can be expressed as (pairing) equa-
tions over a cyclic group.
Overview of our Strategy. The main idea towards our construction is to distill
the proof technique of [Hof17, GHK17] in a core lemma, which makes it more easily
transferable to the context of signatures. Building on the core lemma, we construct a
tightly secure (but not yet structure-preserving) message authentication code. This
is similar to the approach to constructing a tightly secure identity based encryption
scheme by Blazy, Kiltz, and Pan [BKP14]. To convert the message authentication
code we adapt the generic transformation of Bellare and Goldwasser [BG90]. This
yields an almost structure-preserving signature scheme, but where the message is an
element in Zp instead of a group element. We solve this by using a slightly different
equation for computing signatures. A similar strategy was used by Kiltz, Pan, and
Wee [KPW15] to construct structure-preserving signatures, but not in the context
of tight security.
Our Core Lemma. In the core lemma we follow the randomization strategy called
“adaptive partitioning” introduced by [Hof17], but with significantly smaller security
loss of only O (logQ) instead of O (λ), where Q is the number of queries made by
the adversary. The idea of the core lemma is as follows: Let L0 := {[a0] · r | r ∈ Zp}
and L1 := {[a1] · r | r ∈ Zp} be two (public) languages where [a0], [a1] ∈ G2. Let
k0 ∈ Z2

p be a hash proof system secret key and let statements be of the form

([t], [k>0 t],Π),

where [t] ∈ L0 and Π is a proof of well-formedness (that is [t] ∈ L0 ∪ L1).
Then, the core lemma allows to gradually randomize the secret key k0, such that

finally each statement has a freshly randomized secret key. In the proof of security
for the message authentication code and signature schemes this will allow to finally
argue (using a purely information-theoretic argument) that an adversary has only
negligible chance to provide a valid verification query on a fresh message.
The adversary we consider in the core lemma can query evaluations for random

statements and ask for validity of statements. The adversary wins, if the verification
oracle returns valid on a fresh statement.
Using the techniques of [Hof17, GHK17] we show that the randomization of the

secret key can only increase the chances of the adversary to win. The idea is in
each step to switch half of the statements to L1. Then, a fresh random offset is
added to all statements in L0, and another fresh random offset to all statements

73

4 Structure-Preserving Signatures

in L1, such that the change is not detectable on evaluation queries. Similar to
[Hof17, GHK17] we cannot ensure that the adversary follows the partitioning, but
by the proof of well-formedness we can reject any verification query with statement
outside L0∪L1, which will be sufficient for the proof to go through. Our security loss
is only O (logQ), because—different to [Hof17, GHK17]—we enumerate the queries
and partition according to the i-th bit of the query number (instead of the hash of
the statement).
Note that here the disjunction of two languages L0 ∪ L1 is sufficient, because the

adversary does not have access to the hash proof system public key itself. Even in
our signature scheme, a sort of “public commitment” to the hash proof system secret
key is sufficient to verify signatures. In the context of encryption schemes, on the
other hand, the hash proof system public key is necessary for encryption and thus
has to be part of the public key. Therefore, randomization of the secret key can take
place only “outside” the basic language L.
Our Tightly Secure MAC. Recall that for our encryption scheme of the previous
scheme, we derive the key for symmetric authenticated encryption on a statement
[t] ∈ L0 as

[k] = k>0 [t] + µ · k>1 [t],

where k0,k1 ∈ Z2
p and µ = H([t]) for a collision resistant hash functionH : G2 → Zp.

By a generic construction of Dodis et al. [DKPW12] replacing µ by the message
M ∈ Zp to be authenticated yields a message authentication code. Instead of directly
reducing the security of the MAC to our key encapsulation mechanism, we use the
core lemma to prove security. As mentioned this allows us to use a proof for the
language [t] ∈ L0 ∪ L1 (without requiring extensibility to a third language).

Our Tightly Secure Signatures. To make the MAC publicly verifiable we use an
optimized version of the generic transformation of Bellare and Goldwasser [BG90].
Roughly, a public commitment to the secret key is added to the public key, which
allows to publicly verify validity via a pairing product equation.
Further, the proof for well-formedness has to be publicly verifiable. For this pur-

pose we use a proof by Ràfols [Ràf15], which is based on the idea of Groth, Ostrovsky
and Sahai [GOS12]: To prove the disjunction of languages L0,L1, one gives a proof
for [t] ∈ L0 and a proof for [t] ∈ L1, where one of the proofs is simulated (that is,
one proof can be computed without knowledge of the witness). The public setup
ensures that at least on of the statements has to be proven honestly.
For structure-preserving signatures we have to replace the equation

[k] = k>0 [t] + µ · k>1 [t]

such that we can sign messages [M] ∈ G and still apply the core lemma for the proof
of security. Our new equation will be of the form

[k] = k>0 [t] + k>1

[
M
1

]
.

As the first part is not affected, we can still apply the core lemma to randomize k0

and finally prove security using the pairwise independence of the second part of the
equation (as a function of [M]), as for the MAC and signature scheme.

74

4.1 A Publicly Verifiable Proof for Or-Languages

Roadmap. We start by providing the formal definition of non-interactive zero-
knowledge proofs and giving an instantiation based on [GOS12, Ràf15] in Section 4.1.
In Section 4.2 we present our core lemma and in Section 4.3 we show how it yields a
tightly-secure message authentication code. In Section 4.4 we turn the message au-
thentication code into a signature by making the evaluation of the hash proof system
publicly verifiable. Finally, in Section 4.5 we provide our structure-preserving signa-
ture scheme and explain how our construction can be transformed into a signature
scheme in the bilateral setting.
The following is taken verbatim (with minor changes) from our work [GHKP18].

4.1 A Publicly Verifiable Proof for Or-Languages

As signatures have to be publicly verifiable, this has to hold true also for the proof
of consistency. We therefore build on non-interactive zero-knowledge proofs, as in-
troduced in [BFM88].
Non-interactive zero-knowledge proofs. In the following we present the defi-
nition from [GS08].

Definition 40 (Non-interactive zero-knowledge proof [GS08]). We consider a family
of languages L = {Lpars} with efficiently computable witness relation RL. A non-
interactive zero-knowledge proof (NIZK) for L is a tuple of PPT algorithms PS :=
(PGen,PTGen,PPrv,PVer,PSim) such that:

PGen(1λ, pars): On input of the security parameter λ and the public parameters,
generates a common reference string crs.

PTGen(1λ, pars): On input of the security parameter λ and the public parameters,
generates a common reference string crs and additionally a trapdoor td.

PPrv(crs, x, w): Given the common reference string crs, a word x ∈ L and a witness
w with RL(x,w) = 1, outputs a proof Π ∈ P.

PVer(crs, x,Π): On input crs, x ∈ L and Π outputs a verdict b ∈ {0, 1}.

PSim(crs, td, x): Given a crs with corresponding trapdoor td and a word x ∈ L,
outputs a proof Π.

Further we require the following properties to hold.

Completeness: For all possible public parameters pars, all λ ∈ N, all words x ∈ L,
and all witnesses w such that RL(x,w) = 1, we have

Pr[PVer(crs, x,Π) = 1] = 1,

where the probability is taken over crs← PGen (1λ, pars) and Π← PPrv(crs, x, w).

Composable zero-knowledge: For all PPT adversaries A we have that

Advkeygen
PS,A (λ) :=

∣∣∣Pr[A(1λ, crs) = 1 | crs← PGen(1λ, pars)]

−Pr[A(1λ, crs) = 1 | (crs, td)← PTGen(1λ, pars)]
∣∣∣ ≤ negl(λ).

75

4 Structure-Preserving Signatures

PGen(1λ, pars):
D←R Dk, z←R Zk+1

p \span(D)
//recall Dk := Dk+1,k

crs := (pars, [D]2, [z]2)
return crs

PPrv(crs, [x]1, r):
let j ∈ {0, 1} s.t. [x]1 = [Aj]1 · r
v←R Zkp
[z1−j]2 := [D]2 · v
// ([D]2, [z1−j]2) trapdoor crs
[zj]2 := [z]2 − [z1−j]2
// crs guaranteeing soundness
S0,S1 ←R Zk×kp

[Cj]2 := Sj · [D]>2 + r · [zj]>2
//commitment to r with rand. Sj
[Πj]1 := [Aj]1 · Sj
//proof for x = Ajr
[C1−j]2 := S1−j · [D]>2
//commitment to 0 with rand. S1−j
[Π1−j]1 := [A1−j]1 · S1−j − [x]1 · v>
//trapdoor proof for x = A1−jr
return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

PTGen(1λ, pars):
D←R Dk, u←R Zkp
z := D · u
crs := (pars, [D]2, [z]2), td := u
return (crs, td)

PVer(crs, [x]1, ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})):
[z1]2 := [z]2 − [z0]2
if for all i ∈ {0, 1} it holds
e([Ai]1, [Ci]2)
=e([Πi]1, [D]>2) + e([x]1, [zi]

>
2)

//check Ai ·Ci
?
= Πi ·D> + x · z>i

return 1
else return 0

PSim(crs, td, [x]1):
parse td =: u
v←R Zkp
[z0]2 := [D]2 · v
[z1]2 := [z]2 − [z0]2
S0,S1 ←R Zk×kp

[C0]2 := S0 · [D]>2
[Π0]1 := [A0]1 · S0 − [x]1 · v>
[C1]2 := S1 · [D]>2
[Π1]1 := [A1]1 · S1 − [x]1 · (u− v)>

return ([z0]2, ([Ci]2, [Πi]1)i∈{0,1})

Figure 4.1: NIZK argument for Lsnd ([GOS12, Ràf15]).

Further, for all x ∈ L with witness w such that RL(x,w) = 1, the following
are identically distributed:

PPrv(crs, x, w) and PSim(crs, td, x),

where (crs, td)←R PTGen(1λ).

Perfect soundness: For all crs in the range of PGen(1λ, pars), for all words x /∈ L
and all proofs Π it holds PVer(crs, x,Π) = 0.

In the following, we recall an instantiation of a NIZK for an or-language first given
in [GOS12] and later generalized in [Ràf15] for more general languages. This NIZK
will be a crucial part of all our constructions, allowing to employ the randomization
techniques from [AHN+17, GHK17, Hof17] to obtain a tight security reduction.

Public Parameters. Let PG ← BGen(1λ). Let k ∈ N. Let A0,A1 ←R D2k,k. We
define the public parameters to comprise

pars := (PG, [A0]1, [A1]1).

76

4.1 A Publicly Verifiable Proof for Or-Languages

We consider k ∈ N to be chosen ahead of time, fixed and implicitly known to all
algorithms (recall that in practice, k = 1 for SXDH, k = 2 for DLIN).
Or-Proof ([GOS12, Ràf15]). In Figure 4.1 we present a non-interactive zero-
knowledge proof for the OR-language

Lsnd := {[x]1 ∈ Z2k
p | ∃r ∈ Zkp : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

Note that this OR-proof is implicitly given in [GOS12, Ràf15]. For the sake of
completeness we recall the proof here.

Lemma 41. If the Dk-MDDH assumption holds in the group G2, then the proof
system PS := (PGen,PTGen,PPrv,PVer,PSim) as defined in Figure 4.1 is a non-
interactive zero-knowledge proof for Lsnd. More precisely, for every adversary A
attacking the composable zero-knowledge property of PS, we obtain an adversary B
with T (B) ≈ T (A) +Qprove · poly(λ) and

Advzk
PS,A(λ) ≤ Advmddh

PG,G2,Dk,B(λ).

Proof. Completeness: Let j ∈ {0, 1} such that [x]1 = [Aj]1 · r. Further, let
([z0]2, ([Ci]2, [Πi]1)i∈{0,1}) be returned by PPrv on input crs, [x]1 and r.

e([Aj]1, [Cj]2) = e([Aj]1,Sj · [D]>2 + r · [zj]>2) = [Aj · Sj ·D>]T + [Aj · r · z>j]T

= [Πj ·D>]T + [x · z>j]T = e([Πj]1, [D]>2) + e([x]1, [zj]
>
2)

and further

e([A1−j]1, [C1−j]2) = e([A1−j]1,S1−j · [D]>2) = [A1−j · S1−j ·D>]T

= [(A1−j · S1−j − x · v> + x · v>) ·D>]T

= [Π1−j ·D>]T + [x · z>1−j]T
= e([Π1−j]1, [D]>2) + e([x]1, [z1−j]

>
2).

Composable zero-knowledge: LetA be a PPT adversary, attacking the zero-knowledge
property. We build a PPT adversary B such that T (B) ≈ T (A) and

Advzk
PS,A(λ) ≤ Advmddh

PG,G2,Dk,B(λ) +
1

p
.

Upon receiving its MDDH challenge (PG, [D]2, [z]2), B samples A0,A1 ←R

D2k,k and forwards the common reference string crs := ((PG, [A0]1, [A1]1), [D]2,
[z]2) to A. When B receives a real MDDH tuple, that is, when there exists
u ∈ Zkp such that [z]2 := [Du]2, B simulates a crs as output by PTGen(1λ, pars).
The other case is when B receives [z]2 ←R Gk+1

2 . In that case, using the
fact that the uniformly random distribution over Zk+1

p and the uniformly
random distribution over Zk+1

p \ span(D) are 1/p-statistically close distri-
butions, since D is of rank k, we can conclude that B simulates the crs as
output by PGen(1λ, pars), within a 1/p statistical distance. Overall, we get:
Advzk

PS,A(λ) ≤ Advmddh
PG,G2,Dk,B(λ) + 1

p .

77

4 Structure-Preserving Signatures

Now, we proceed to prove that for all [x]1 ∈ Lsnd with witness r ∈ Zkp,

{PPrv(crs, [x]1, r), (crs, td)← PTGen(1λ, pars)}

is identically distributed to

{PSim(crs, td, [x]1), (crs, td)← PTGen(1λ, pars)},

which concludes the proof.

First, note that PPrv and PSim compute the vectors [z0]2 and [z1]2 in the exact
same way, i.e. for all j ∈ {0, 1}, zj := Dvj where v0,v1 are uniformly random
over Zkp subject to v0 + v1 = u (recall z := Du). Second, on input [x]1 :=
[Ajr]1, for some j ∈ {0, 1}, PPrv(crs, [x]1, r) computes [C1−j]2 and [Π1−j]1
exactly as PSim, that is: [C1−j]2 = S1−j [D

>]2 and [Π1−j]1 = [A1−j]1S1−j −
[x]1 · v>1−j . The algorithm PPrv(crs, [x]1, r) additionally computes [Cj]2 =

Sj [D
>]2 + r · [z>j]2 and [Πj]1 = [Aj]1Sj , with Sj ←R Zk×kp . Since the following

are identically distributed:

Sj and Sj − r · v>j ,

for Sj ←R Zk×kp , we can re-write the commitment and proof computed by

PPrv(crs, [x]1, r) as [Cj]2 = Sj [D
>]2 − r · v>j [D>]2 + r · [z>j]2 = [SjD

>]2 and

[Πj]1 = [Aj]1Sj − [Ajr · v>j D>]2 = [AjSj]1 − [x · z>j]2, which is exactly as
the output of PSim.

Perfect soundness: Since z = z0+z1 /∈ span(D), there is a j ∈ {0, 1} such that zj /∈
span(D). This implies that there exists a d⊥ ∈ Zk+1

p such that D>d⊥ = 0, and
z>j d

⊥ = 1. Furthermore, as the row vectors of D together with zj form a basis
of Zk+1

p , we can write [Cj]2 := [Sj ·D> + r · z>j]2 for some Sj ∈ Zk×kp , r ∈ Zkp.
Multiplying the verification equation by d⊥ thus yields [Ajr]1 = [x]1, which
proves a successful forgery outside Lsnd impossible.

4.2 Our Core Lemma

We start this work by providing our so-called core lemma, which captures the es-
sential randomization technique from [AHN+17, Hof17, GHK17]. We can employ
this lemma to prove the security of our MAC and (structure-preserving) signature
schemes. Essentially, the core lemma shows that the term [k>0 t]1 is pseudorandom.
We give the corresponding formal experiment in Figure 4.2.

Lemma 42 (Core lemma). If the D2k,k-MDDH assumption holds in G1 and the tuple
of algorithms PS := (PGen,PTGen,PPrv,PVer) is a non-interactive zero-knowledge
proof system for Lsnd, then going from experiment Expcore

0,A (λ) to Expcore
1,A (λ) can

(up to negligible terms) only increase the winning chances of an adversary. More
precisely, for every adversary A, there exist adversaries B, B′ with running time
T (B) ≈ T (B′) ≈ T (A) +Q · poly(λ) such that

Advcore
0,A (λ) ≤ Advcore

1,A (λ) + ∆core
A (λ),

78

4.2 Our Core Lemma

Expcore
β,A (λ), for β ∈ {0, 1}:

ctr := 0
PG ← BGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)
k0 ←R Z2k

p

pp := (PG, [A0]1, crs)
tag← AOtag()(pp)
return Over(tag)

Otag():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)

[u′]1 := (k0 +β · F(ctr))>[t]1
tag := ([t]1,Π, [u

′]1)
return tag

Over(tag) :
parse tag = ([t]1,Π, [u

′]1)
b← PVer(crs, [t]1,Π)
if b = 1 and ∃ctr′ ≤ ctr :

[u′]1 = (k0 +β · F(ctr′))>[t]1
return 1

else return 0

Figure 4.2: Experiment for the core lemma. Here, F : Zp → Z2k
p is a random function

computed on the fly. We highlight the difference between Expcore
0,A and Expcore

1,A in gray.

where

∆core
A (λ) :=(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

+ (2dlogQe+ 2) ·AdvZK
PS,B′(λ)

+ dlogQe ·∆D2k,k
+

4dlogQe+ 2

p− 1
+
dlogQe ·Q

p
.

Recall that by definition of the distribution D2k,k (Section 2.5), the term ∆D2k,k
is

statistically small.

Proof outline. Since the proof of Theorem 42 is rather complex, we first outline our
strategy. Intuitively, our goal is to randomize the term u′ used by oracles Otag and
Over (i.e., to change this term from k>0 t to (k0+F(ctr))>t for a truly random function
F). In this, it will also be helpful to change the distribution of t ∈ Z2k

p in tags handed
out by Otag as needed. (Intuitively, changing t can be justified with the D2k,k-MDDH
assumption, but we can only rely on the soundness of PS if t ∈ span(A0)∪span(A1).
In other words, we may assume that t ∈ span(A0) ∪ span(A1) for any of A’s Over

queries, but only if the same holds for all t chosen by Otag.)
We will change u′ using a hybrid argument, where in the i-th hybrid we set u′ =

(k>0 + Fi(ctr|i))
>t for a random function Fi on i-bit prefixes, and the i-bit prefix

ctr|i of ctr. (That is, we introduce more and more dependencies on the bits of ctr.)
To move from hybrid i to hybrid i + 1, we proceed again along a series of hybrids
(outsourced into the proof of Theorem 43),and perform the following modifications:
Partitioning. First, we choose t ∈ span(Actri+1) in Over, where ctri+1 is the (i+1)-th

bit of ctr. As noted above, this change can be justified with the D2k,k-MDDH
assumption, and we may still assume t ∈ span(A0) ∪ span(A1) in every Otag

query from A.

79

4 Structure-Preserving Signatures

G0, G1, G2, G3.i :

ctr := 0
PG ← BGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)

(crs, td)← PTGen(1λ, pars)

k0,k1 ←R Z2k
p

pp := (PG, [A0]1, crs)
tag← AOtag()(pp)
return Over(tag)

Otag():
ctr := ctr + 1
r←R Zkp
[t]1 := [A0]1r

[t]1 ←R G2k
1

Π← PPrv(crs, [t]1, r)

Π← PSim(crs, td, [t]1)

[u′]1 := (k0 +Fi(ctr|i))>[t]1

return tag := ([t]1,Π, [u
′]1)

Over(tag):
parse tag =: ([t]1,Π, [u

′]1)
b← PVer(crs, [t]1,Π)
if b = 1 and ∃ctr′ ≤ ctr :

[u′]1 = (k0 + Fi(ctr
′
|i))>[t]1

return 1
else return 0

Figure 4.3: Games G0,G1,G2,G3.i for i ∈ {0, . . . , dlogQe − 1}, for the proof of the
core lemma (Lemma 42). Fi : {0, 1}i → Z2k

p denotes a random function, and ctr|i
denotes the i-bit prefix of the counter ctr written in binary. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked
by a solid (dotted, gray) frame.

Decoupling. At this point, the values u′ computed in Otag and Over are either of
the form u′ = (k>0 + Fi(ctr|i))

>A0r or u′ = (k>0 + Fi(ctr|i))
>A1r (depending

on t). Since Fi : {0, 1}i → Z2k
p is truly random, and the matrix A0||A1 ∈

Z2k×2k
p has linearly independent columns (with overwhelming probability), the

two possible subterms Fi(ctr|i)
>A0 and Fi(ctr|i)

>A1 are independent. Thus,
switching to u′ = (k>0 + Fi+1(ctr|i+1))>t does not change A’s view at all.

After these modifications (and resetting t), we have arrived at the (i+ 1)-th hybrid,
which completes the proof. However, this outline neglects a number of details,
including a proper reasoning of PS proofs, and a careful discussion of the decoupling
step. In particular, an additional complication arises in this step from the fact that
an adversary may choose t ∈ span(Ab) for an arbitrary bit b not related to any
specific ctr. This difficulty is the reason for the somewhat surprising “∃ctr′ ≤ ctr”
clause in Over.

Proof of Theorem 42. We proceed via a series of hybrid games G0, . . . ,G3.dlogQe,
described in Figure 4.3, and we denote by εi the advantage of A to win Gi, that is
Pr[Gi(A, 1λ) = 1], where the probability is taken over the random coins of Gi and
A.

Game G0: We have G0 = Expcore
0,A (λ) and thus by definition:

ε0 = Advcore
0,A (λ).

80

4.2 Our Core Lemma

Transition G0 G1: Game G1 is as G0, except that crs is generated by PTGen in-
stead of PGen. Because the output of PSim and PPrv are identically distributed
on a crs ←R PTGen (see Theorem 40), we can argue that the crs distribution
is the only difference in these two games. This difference is justified by the
zero-knowledge of PS. Namely, we build an adversary B on the composable
zero-knowledge property of PS as follows. The adversary B obtains crs from its
own experiment instead of calling PGen, samples A0 ←R D2k,k, and forwards
pars := (PG, [A0]1, crs) to A. Then B samples k0,k1 ←R Z2k

p , thanks to which
it can answer Otag and Over queries. Note that B simulates G0 in case it was
given a crs generated by PGen, whereas it simulates G1 in case it was given a
crs generated by PTGen. Thus, B is such that T (B) ≈ T (A) +Q · poly(λ) and

|ε0 − ε1| ≤ AdvZK
PS,B(λ).

Transition G1 G2: We can switch [t]1 to random over G1 by applying the D2k,k

assumption. More precisely, let A be an adversary distinguishing between
G1 and G2 and let B be an adversary given a Q-fold D2k,k-MDDH challenge
(PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Now B sets up the game for A similar
to G1, but instead choosing A0 ←R D2k,k, it uses its challenge matrix [A0]1
as part of the public parameters pars. Further, to answer tag queries B sets
[ti]1 := [zi]1 and computes the rest accordingly. This is possible as the proof
Π is simulated from game G1 on. In case B was given a real D2k,k-challenge, it
simulates G1 and otherwise G2. Lemma 3 yields the existence of an adversary
B1 with T (B1) ≈ T (A) +Q · poly(λ) and

|ε1 − ε2| ≤ k ·Advmddh
PG,G1,D2k,k,B1(λ) +

1

p− 1
.

Transition G2 G3.0: As for all ctr ∈ N we have F0(ctr|0) = F0(ε) and k0 is
distributed identically to k0 + F0(ε) for k0 ←R Z2k

p we have

ε2 = ε3.0.

Transition G3.i G3.(i+1): For the proof of this transition we refer to Lemma 43,
which states that for every adversary A there exist adversaries Bi, B′i with
running time T (Bi) ≈ T (B′i) ≈ T (A) +Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k ·Advmddh
PG,G1,D2k,k,Bi(λ) + 2AdvZK

PS,B′i
(λ)

+ ∆D2k,k
+

4

p− 1
+
Q

p
.

Transition G3.dlogQe Expcore
1,A (λ): It is left to reverse the changes introduced in the

transitions from gameG0 to gameG2 to end up at the experiment Expcore
1,A (1λ).

In order to do so we introduce an intermediary game G4, where we set [t] :=
[A0]1r for r ←R Zkp. This corresponds to reversing transition G1 G2. By
the same reasoning for every adversary A we thus obtain an adversary B3.dlogQe
with T (B3.dlogQe) ≈ T (A) +Q · poly(λ) such that

|ε3.dlogQe − ε4| ≤ k ·Advmddh
PG,G1,D2k,k,B3.dlogQe(λ) +

1

p− 1
.

81

4 Structure-Preserving Signatures

As [t]1 is now chosen from span([A0]1) again, we can switch back to honest
generation of the common reference string crs. As in transition G0 G1 for
an adversary A we obtain an adversary B4 with T (B4) ≈ T (A) + Q · poly(λ)
and

|ε4 −Advcore
1,A (λ)| ≤ AdvZK

PS,B4(λ).

Lemma 43 (G3.i G3.(i+1)). If the D2k,k-MDDH assumptions holds in G1, and
the tuple PS := (PGen,PTGen,PPrv,PVer) is a non-interactive zero-knowledge proof
system for Lsnd, then for all i ∈ {0, . . . , dlogQe − 1} between G3.i and G3.(i+1) as
defined in Figure 4.7 the winning chances of an adversary can only increase (up to
negligible terms). More precisely, for every adversary A there exist adversaries Bi,
B′i with running times T (Bi) ≈ T (B′i) ≈ T (A) +Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k ·Advmddh
PG,G1,D2k,k,Bi(λ) + 2AdvZK

PS,B′i
(λ)

+ ∆D2k,k
+

4

p− 1
+
Q

p
.

Proof. We proceed via a series of hybrid games Hi.j for i ∈ {0, . . . , dlogQe − 1},
j ∈ {1, . . . , 8}, described in Figure 4.4, and we denote by ε̂i.j the advantage of A to
win Hi.j . We give an overview of the transitions in Figure 4.5.

Transition G3.i Hi.1: We switch [t]1 from chosen uniformly at random by Otag

to [Actri+1r]1 for r←R Zkp, where ctri+1 is the i+ 1’st bit of the binary repre-
sentation of ctr, using the D2k,k-MDDH assumption twice. More precisely, we
introduce an intermediary game Hi.0, where we choose [ti]1 as

[ti]1 =

{
[A0ri] for ri ←R Zkp if ctri+1 = 0

[ui]1 for ui ←R Z2k
p else

.

Let A be an adversary distinguishing between G3.i and Hi.0 and let B be
an adversary receiving a Q-fold MDDH-challenge (PG, [A0]1, [z1]1, . . . , [zQ]1)
as input. Then B sets up the game for A similar to game G3.i, where he
embeds [A0]1 into the public parameters pars. Further, whenever obtaining a
simulation query ctr with ctr|i+1 = 0, B sets [ti] := [zi]1 and otherwise follows
G3.i. Similar, we can reduce the transition from game Hi.0 to Hi.1 to the
D2k,k-MDDH assumption. Applying Lemma 3 yields an adversary Bi.0 with
T (Bi.0) ≈ T (A) +Q · poly(λ) such that:

|ε3.i − ε̂i.1| ≤ 2k ·Advmddh
PG,G1,D2k,k,Bi.0(λ) +

2

p− 1
.

Transition Hi.1 Hi.2: In this step we reverse the transition from game G0 to G1

in Theorem 44. Namely, we generate crs using PGen instead of PTGen, and we
use the fact that proofs generated by PSim or PPrv are identically distributed
when crs ←R PTGen(1λ, pars). Note that it is possible to use the algorithm
PPrv, as from game Hi.1 on, we choose all [t]1 in tag queries from L with
corresponding witness and can thus honestly generate proofs.

82

4.2 Our Core Lemma

Hi.1 Hi.2, Hi.3, Hi.4 −Hi.6 , Hi.7 , Hi.8 :

ctr := 0
PG ← BGen(1λ)
A0,A1 ←R D2k,k

(crs, td)← PTGen(1λ, pars)

crs← PGen(1λ, pars)

k0,k1 ←R Z2k
p

pp := (PG, [A0]1, crs)
tag← AOtag()(pp)
return Over(tag)

Otag():
ctr := ctr + 1
r←R Zkp
[t]1 := [Actri+1]1r
Π← PSim(crs, td, [t]1)

Π← PPrv(crs, [t]1, r)

[u′]1 := [(k0+Fi(ctr|i))
>t]1

[u′]1 := [(k0 + Fi+1(ctr|i+1))>t]1

tag := ([t]1,Π, [u
′]1)

return tag

Over(tag) :
parse tag =: ([t]1,Π, [u

′]1)
b← PVer(crs, [t]1,Π)
S := {Fi(ctr′|i) : ctr′ ≤ ctr}
Game Hi.4:
S := { Fi+1(ctr′|i|d[t]) : ctr′ ≤ ctr}
Game Hi.5:
S := {Fi+1(ctr′|i|b) : ctr′ ≤ ctr, b ∈ {0, 1} }
Game Hi.6 −Hi.8:
S := {Fi+1(ctr′|i+1) : ctr′ ≤ ctr}

if [t]1 ∈ span([A0]) ∪ span([A1]) and b = 1

and ∃w ∈ S : [u′]1 = (k0+w)>[t]1
return 1

else return 0

Figure 4.4: Games Hi.j for i ∈ {0, . . . , dlogQe − 1}, j ∈ {1, . . . , 8}, for the proof of
Lemma 43. Here, Fi : {0, 1}i → Z2k

p denotes a random function, ctr|i denotes the i-bit
string that is a prefix of ctr written in binary, and ctri is the i’th bit of ctr written
in binary. We have d[t] = 0 if t ∈ span(A0), and d[t] = 1 if t ∈ span(A1). In each
procedure, the components inside a solid (dotted, gray) frame are only present in the
games marked by a solid (dotted, gray) frame. For the intermediate transitions from
game Hi.4 to game Hi.6 we use dark gray highlighting to emphasize the respective
differences.

Therefore, by the same reasoning as for G0 G1 there exists an adversary
Bi.1 such that T (Bi.1) ≈ T (A) +Q · poly(λ) and

|ε̂i.1 − ε̂i.2| ≤ AdvZK
PS,Bi.1(λ).

Transition Hi.2 Hi.3: From game Hi.3 on we introduce an additionally check
in the verification oracle. Namely, Over checks that [t]1 ∈ span([A0]1) ∪

83

4 Structure-Preserving Signatures

span([A1]1). As the crs is generated by PGen, we can employ the perfect
soundness of PS to obtain

ε̂i.2 = ε̂i.3.

Transition Hi.3 Hi.4: Let A⊥0 ∈ orth(A0) and A⊥1 ∈ orth(A1). We introduce an
intermediary game Hi.3.1, where we replace the random function Fi : {0, 1}i →
Z2k
p by

F′i : {0, 1}i → Z2k
p , F′i(ν) :=

(
A⊥0 |A⊥1

)(Γi(ν)
Υi(ν)

)
,

where ν ∈ {0, 1}i is a i-bit string and Γi,Υi : {0, 1}i → Zkp are two independent
random functions. With probability 1 −∆D2k,k

the matrix (A⊥0 |A⊥1) has full
rank. In this case, going from game Hi.3 to game Hi.3.1 consists merely in
a change of basis, thus, these two games are perfectly indistinguishable. We
obtain |ε̂3.i − ε̂3.i.1| ≤ ∆D2k,k

.

We now define

Fi+1 : {0, 1}i+1 → Z2k
p , Fi+1(ν) :=


(
A⊥0 |A⊥1

)(Γ′i(ν|i)

Υi(ν|i)

)
if νi+1 = 0

(
A⊥0 |A⊥1

)(Γi(ν|i)

Υ′i(ν|i)

)
else

,

where Γ′i,Υ
′
i : {0, 1}i → Zkp are fresh independent random functions. Now Fi+1

constitutes a random function {0, 1}i+1 → Z2k
p .

Replacing F′i(ctr|i) by Fi+1(ctr|i+1) does not show up in any of the tag queries,
as we have

Fi+1(ctri+1)>[t]1 = Fi+1(ctri+1)>[Actri+1]1r

=

{
Γ′i(ctr|i)A

⊥
0 [A0]1r + Υi(ctr|i)A

⊥
1 [A0]1r if ctri+1 = 0

Γi(ctr|i)A
⊥
0 [A1]1r + Υ′i(ctr|i)A

⊥
1 [A1]1r else

=

{
Υi(ctr|i)A

⊥
1 [A0]1r if ctri+1 = 0

Γi(ctr|i)A
⊥
0 [A1]1r else

= F′i(ctr|i)
>[Actri+1]1r.

In the verification oracle we check [t]1 ∈ span([A0]) ∪ span([A1]), define
d[t] = 0 if t ∈ span(A0) and d[t] = 1 if t ∈ span(A1) and replace Fi(ctr|i)
by Fi+1(ctr|i|d[t]). Thus, by similar reasoning as for tag queries, the change
does not show up in the final verification query either.

Altogether, we obtain
|ε̂3.3 − ε̂3.4| ≤ ∆D2k,k

.

Transition Hi.4 Hi.5: From game Hi.5 on, we extend the set S in the verification
oracle from Si.4 := {Fi+1(ctr′|i|d[t]) : ctr′ ≤ ctr} to Si.5 := {Fi+1(ctr′|i|b) : ctr′ ≤
ctr, b ∈ {0, 1}}. That is, we regard a verification query ([t]1,Π, [u

′]1) as valid, if

84

4.2
O
ur

C
ore

Lem
m
a

crs← [t]1
in Otag

Π←
in Otag

[u′]1 = (k0 + ·)>[t]1
in Otag

S := {· : ctr′ ∈ Qtag}
in Over

check on [t]1
in Over

game
knows remark

G3.i PTGen ←R G2k
1 PSim Fi(ctr|i) Fi(ctr

′
|i) - - Game G3.i

Hi.1 PTGen = [Actri+1]1r PSim Fi(ctr|i) Fi(ctr
′
|i) - - D2k,k-MDDH

Hi.2 PGen = [Actri+1]1r PPrv Fi(ctr|i) Fi(ctr
′
|i) - - ZK of PS

Hi.3 PGen = [Actri+1]1r PPrv Fi(ctr|i) Fi(ctr
′
|i) [t]1

?
∈ Lsnd A0, A1 SND of PS

Hi.4 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr′|i|d[t]) [t]1
?
∈ Lsnd A0, A1 statistical

Hi.5 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr′|i|b), b ∈ {0, 1} [t]1
?
∈ Lsnd A0, A1 incr. chances

Hi.6 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr′|i+1) [t]1
?
∈ Lsnd A0, A1 statistical

Hi.7 PGen = [Actri+1]1r PPrv Fi+1(ctr|i+1) Fi+1(ctr′|i+1) - - SND of PS

Hi.8 PTGen = [Actri+1]1r PSim Fi+1(ctr|i+1) Fi+1(ctr′|i+1) - - ZK of PS

G3.(i+1) PTGen ←R G2k
1 PSim Fi+1(ctr|i+1) Fi+1(ctr′|i+1) - - D2k,k-MDDH

Figure 4.5: Overview of the transitions in the proof of Lemma 43. We highlight the respective changes between the games in gray. In the
third column, r is chosen at random from Zkp and ctri+1 denotes the i + 1’st bit of the bit representation of ctr ∈ Zp. In the fifth and sixth
column, the dot · represents the gap filled by the respective entries in the table. Further, Fi : {0, 1}i → Z2k

p , Fi+1 : {0, 1}i → Z2k
p are random

functions and ctr|i and ctr|i+1 denote the bit strings consisting of the first i respectively the first i+ 1 bits of the bit representation of ctr ∈ N.
Further, we have d[t] = 0 if t ∈ span(A0), and d[t] = 1 if t ∈ span(A1). For the seventh column, recall that Lsnd := span([A0]1) ∪ span([A1]1).
In the remark we give the justification for the respective transition from the previous game to the current game.

85

4 Structure-Preserving Signatures

there exists a ctr′ ≤ ctr such that [u′]1 = (k0 +Fi+1(ctr′|i|b))
>[t]1 for b ∈ {0, 1}

arbitrary, instead of requiring b = d[t] (where d[t] = 0 if t ∈ span(A0) and
d[t] = 1 if t ∈ span(A1)). As changing the verification oracle does not change
the view of the adversary before providing its output and as we have Si.4 ⊆ Si.5,
the transition from game Hi.4 to game Hi.5 can only increase the chance of the
adversary. We thus have

ε̂i.4 ≤ ε̂i.5.

Transition Hi.5 Hi.6: The difference between game Hi.5 and game Hi.6 is that in
the latter we only regard a verification query ([t]1,Π, [u]1) valid, if there exists
a ctr′ ≤ ctr such that [u]1 = (k0 + Fi+1(ctr′|i|ctr

′
i+1))>[t]1 (instead of allowing

the last bit to be arbitrary). As the only way an adversary can learn the image
of Fi+1 on a value is via tag queries and Fi+1 is a random function, a union
bound over the elements in Qtag yields

|ε̂i.5 − ε̂i.6| ≤
Q

p
.

Transition Hi.6 Hi.7: The oracleOver does not perform the additional check [t]1 ∈
span([A0]1)∪ span([A1]1) anymore from game Hi.7 on. This is justified by the
soundness of PS. As in transition Hi.2 Hi.3 we obtain

ε̂i.6 = ε̂i.7.

Transition Hi.7 Hi.8: This transition is similar to transitionG0 toG1 in Theorem
44. Namely, for an adversary A distinguishing the two games, we can employ
the composable zero-knowledge property of PS to obtain an adversary Bi.7 such
that T (Bi.8) ≈ T (A) +Q · poly(λ) and

|ε̂i.7 − ε̂i.8| ≤ AdvZK
PS,Bi.7(λ).

Transition Hi.8 G3.(i+1): We switch [t]1 generated by Otag to uniformly random
over G2k

1 , using the D2k,k-MDDH assumption first on [A0]1, then on [A1]1.
Similarly than for the transition G3.i Hi.1, we obtain an adversary Bi.8 with
T (Bi.8) ≈ T (A) +Q · poly(λ) such that

|ε̂i.8 − ε3.(i+1)| ≤ 2k ·Advmddh
PG,G1,D2k,k,Bi.8(λ) +

2

p− 1
.

4.3 Our Tightly Secure Message Authentication Code
Scheme

Let k ∈ N and let PS := (PGen,PTGen,PPrv,PSim) a non-interactive zero-knowledge
proof for Lsnd as defined in Section 4.1. In Figure 4.6 we provide a MAC MAC :=
(Gen,Tag,Ver) whose security can be tightly reduced to D2k,k-MDDH and the secu-
rity of the underlying proof system PS.

86

4.3 Our Tightly Secure Message Authentication Code Scheme

Gen(1λ):
PG ← BGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
sk := (k0,k1)
return (pp, sk)

Tag(pp, sk, µ ∈ Zp):
parse pp =: (PG, [A0]1, crs)
r←R Zkp
[t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)
[u]1 := (k0 + µk1)>[t]1
tag := ([t]1,Π, [u]1)
return tag

Ver(pp, sk, µ ∈ Zp, tag) :
parse tag =: ([t]1,Π, [u]1)
b← PVer(crs, [t]1,Π)
if b = 1 and [u]1 6= [0]1
and [u]1 = (k0 + µk1)>[t]1
return 1

else return 0

Figure 4.6: Tightly secure MAC MAC := (Gen,Tag,Ver) from the D2k,k-MDDH as-
sumption.

Theorem 44 (EUF-CMA security of MAC). If the D2k,k-MDDH assumptions holds
in G1, and the tuple PS := (PGen,PTGen,PPrv,PVer) is a non-interactive zero-
knowledge proof system for Lsnd, then the MAC MAC := (Gen,Tag,Ver) provided
in Figure 4.6 is EUF-CMA secure. Namely, for any adversary A, there exists an
adversary B with running time T (B) ≈ T (A) + Q · poly(λ), where Q is the number
of queries to Otag, poly is independent of Q, and

Adveuf-cma
MAC,A (λ) ≤ ∆core

B (λ) +
Q

p
.

Proof. We prove the claim via a series of games, described in Figure 4.7. For i ∈
{0, 1}, by εi we denote the advantage of A to win gameGi, that is Pr[Gi(A, 1λ) = 1],
where the probability is taken over the random coins of Gi and A.

Game G0: We define game G0 to be the EUF-CMA security game Expeuf-cma
A (λ) and

have thus
ε0 = Adveuf-cma

MAC,A (λ).

Transition G0 G1: Let A be an adversary distinguishing between G0 and G1.
Then we construct an adversary B with T (B) ≈ T (A) +Q ·poly(λ) allowing to
break the core lemma (Lemma 42) as follows. On input pp from Expcore

β (1λ,B)

the adversary B forwards pp to A. Then, B samples k1 ←R Z2k
p . Afterwards,

on a tag query µ from A, B queries its own Otag oracle (which takes no input),
receives ([t]1,Π, [u

′]1), computes [u]1 := [u′]1 + µk>1 [t]1, and answers with
([t]1,Π, [u]1). Finally, given the forgery

(
µ?, tag? := ([t]1,Π, [u

?]1)
)
from A, if

µ? /∈ Qtag and [u?]1 6= [0]1, then the adversary B sends tag′ := ([t]1,Π, [u
?]1 +

µk>1 [t]1) to its experiment (otherwise an invalid tuple). Then we have ε0 =
Advcore

0,B (λ) and ε1 = Advcore
1,B (λ). The core lemma yields

Advcore
0,B (λ) ≤ Advcore

1,B (λ) + ∆core
B (λ)

87

4 Structure-Preserving Signatures

G0, G1 :
Qtag := ∅
ctr := 0
PG ← BGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)
k0,k1 ←R Z2k

p

pp := (PG, [A0]1, crs)
(µ?, tag?)← AOtag(·)(pp)
if µ? /∈ Qtag

and Over(µ
?, tag?) = 1

return 1
else return 0

Otag(µ):
Qtag := Qtag ∪ {µ}
ctr := ctr + 1

r←R Zkp
[t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)

[u]1 := (k0 + µk1 +F(ctr))>[t]1

tag := ([t]1,Π, [u]1)
return tag

Over(µ
?, tag?) :

parse tag? =: ([t]1,Π, [u]1)
b← PVer([t]1,Π)

if b = 1 and [u]1 6= [0]1 and ∃ctr′ ≤ ctr :

[u]1 = (k0 + µ?k1 +Fi(ctr
′))>[t]1

return 1
else return 0

Figure 4.7: Games G0 (corresponding to the EUF-CMA security experiment) and
game G1 for the EUF-CMA proof of MAC in Figure 4.6. F : {0, 1}dlogQe → Z2k

p

denotes a random function, applied on ctr written in binary. The instructions inside a
solid frame are only present in game G1.

and thus we obtain
ε0 − ε1 ≤ ∆core

B (λ).

Game G1: We now prove that any adversary A has only negligible chances to win
game G1 using the randomness of F together with the pairwise independence
of µ 7→ k0 + µk1.

Let
(
µ?, tag?

)
be the forgery of A. we can replace k1 by k1−v for v←R Z2k

p ,
as both are distributed identically. Next, for all j ≤ Q we can replace F(j) by
F(j) + µ(j) · v for the same reason. This way, Otag(µ(j)) computes

[u(j)]1 : = [(k0 + µ(j)k1 −µ(j)v + F(j) +µ(j)v)>t(j)]1

= [(k0 + µ(j)k1 + F(j)>t(j)]1,

and Over

(
[µ?]2, tag

? := ([t]1,Π, [u])
)
checks if there exists a counter i ∈ Qtag

such that:

[u]1 = [(k0 + µ?k1 −µ?v + F(i) +µ(i)v)>t]1

= [(k0 + µ?k1 + F(i)>t?]1 +[(µ(i) − µ?)v>t]1 .

For the forgery to be successful, it must hold µ? /∈ Qtag and [u] 6= 0 (and thus
[t]1 6= [0]1). Therefore, each value computed by Over is (marginally) uniformly
random over G1.

88

4.4 Our Tightly Secure Signature Scheme

Gen(1λ):
PG ← BGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)
A←R Dk
K0,K1 ←R Z2k×(k+1)

p

pk := (PG, [A0]1, crs,
[A]2, [K0A]2, [K1A]2)

sk := (K0,K1)
return (pk, sk)

Sign(pk, sk, µ ∈ Zp):
r←R Zkp
[t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)
[u]1 := (K0 + µK1)>[t]1
σ := ([t]1,Π, [u]1)
return σ

Ver(pk, µ ∈ Zp, σ) :
parse tag =: ([t]1,Π, [u]1)
b← PVer(crs, [t]1,Π)
if b = 1 and [u]1 6= [0]1 and e([u]>1 , [A]2)

= e([t]>1 , [K0A]2 + µ[K1A]2)
return 1

else return 0

Figure 4.8: Tightly UF-CMA secure signature scheme SIG.

As the verification oracle checks for all counters i ≤ Q, applying the union
bound yields

ε1 ≤
Q

p
.

4.4 Our Tightly Secure Signature Scheme

In this section, we present a signature scheme SIG for signing messages from Zp,
described in Figure 4.8, whose UF-CMA security can be tightly reduced to the
D2k,k-MDDH and Dk-MDDH assumptions.
SIG builds upon the tightly secure MAC from Section 4.3, and functions as a

stepping stone to explain the main ideas of the upcoming structure-preserving sig-
nature in Section 4.5. Recall that our MAC outputs tag = ([t]1,Π, [u]1), where Π is
a (publicly verifiable) NIZK proof of the statement t ∈ span(A0) ∪ span(A1), and
u = (k0 + µk1)>t has an affine structure. Hence, alternatively, we can also view
our MAC as an affine MAC [BKP14] with t ∈ span(A0) ∪ span(A1) and a NIZK
proof for that. Similar to [BKP14], we use (tuned) Groth-Sahai proofs to make [u]1
publicly verifiable. Similar ideas have been used to construct efficient quasi-adaptive
NIZK for linear subspace [KW15, JR14], structure-preserving signatures [KPW15],
and identity-based encryption schemes [BKP14].

Theorem 45 (Security of SIG). If PS := (PGen,PPrv,PVer,PSim) is a non-interactive
zero-knowledge proof system for Lsnd, then the signature scheme SIG described in
Figure 4.8 is EUF-CMA secure under the D2k,k-MDDH and Dk-MDDH assump-
tions. Namely, for any adversary A, there exist adversaries B,B′ with running time
T (B) ≈ T (B′) ≈ T (A) +Q · poly(λ), where Q is the number of queries to Osign, poly
is independent of Q, and

Adveuf-cma
SIG,A (λ) ≤ Adveuf-cma

MAC,B (λ) + Advmddh
PG,G2,Dk,B′(λ).

89

4 Structure-Preserving Signatures

G0, G1, G2 :

Qsign := ∅
PG ← BGen(1λ)
A0,A1 ← D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(1λ, pars)
A←R Dk
a⊥ ∈ orth(A)

K0,K1 ←R Z2k×(k+1)
p

k0,k1 ←R Z2k
p

pk := (PG, [A0]1, crs,
[A]2, [K0A]2, [K1A]2)

sk := (K0,K1)
(µ?, σ?)←R AOsign(·)(pk)
if µ? /∈ Qsign

and Over(µ
?, σ?) = 1

return 1
else return 0

Osign(µ):
Qsign := Qsign ∪ {µ}
r←R Zkp
[t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)

[u]1 := (K0 + µK1)>[t]1 +a⊥(k0 + µk1)>[t]1
σ := ([t]1,Π, [u]1)
return σ

Over(µ
?, σ?):

parse σ? := ([t]1,Π, [u]1)
b← PVer(pk, [t]1,Π)
if b = 1 and [u]1 6= [0]1 and
e([u]>1 , [A]2) = e([t]>1 , [K0A]2 + µ[K1A]2)

[u]1 = (K0 + µ?K1)>[t]1 +a⊥(k0 + µ?k1)>[t]1

return 1
else return 0

Figure 4.9: Games G0 (correspdonding to the EUF-CMA experiment) to G2 for prov-
ing Theorem 45. Note that only in G0 the pairing equation is used for verification. In
game G1 und G2 the oracle verifies [u]1 directly instead (as described in the boxed
instruction). The gray instructions are only added in game G2.

By using the KMDH assumption, we verify the forgery with the signing key; then
we introduce the MAC in the kernel of A. Since we always know A over Zp, we
extract the MAC tag from the forgery and break the MAC security. The proof idea
is similar, but weaker than [BKP14].

Proof. We proceed via a series of hybrid games, described in Figure 4.9. By εi we
denote the advantage ofA to winGi, that is Pr[Gi(A, 1λ) = 1], where the probability
is taken over the random coins of Gi and A.

Game G0: We define game G0 to be the EUF-CMA security experiment, and thus
have

ε0 = Expeuf-cma
SIG,A (λ).

Transition G0 G1: Here we change the verification oracle as described in Fig. 4.9.
Note that a pair (µ?, σ?) that passes Over in G1 always passes the Over in G0.
Thus, to bound |ε0 − ε1|, it suffices to bound the probability that A produces
(µ?, σ?) that passes Over in G0 but not in G1. We write σ? := ([t]1,Π, [u]1),
and the verification equation in Expeuf-cma

SIG,A (λ) as:

e([u]>1 , [A]2) = e([t]>1 , [(K0 + µ?K1)A]2)

⇔ e([u]1 − [t]>1 (K0 + µ?K1), [A]2) = 0

90

4.5 Our Tightly Secure Structure-Preserving Signature Scheme

Observe that for any (µ?, ([t]1,Π, [u]1)) that passes the verification equation
in G0 but not in G1 the value

[u]1 − [t]>1 (K0 + µ?K1)

is a non-zero vector in the kernel of A.

Thus we can construct an adversary B with T (B) ≈ T (A) +Q · poly(λ) on the
Dk-KMDH assumption from A as follows. On receiving (PG, [A]2) from the
Dk-KMDH experiment, B can sample all other parameters itself and simulate
G0 for A. If A outputs the tuple (µ?, ([t]1,Π, [u]1)), then B outputs the value
[u]1 − [t]>1 (K0 + µ?K1) to its own experiment.

Finally, Lemma 9 yields an adversary B′ with T (B′) ≈ T (B) ≈ T (A) + Q ·
poly(λ) and

|ε0 − ε1| ≤ Advmddh
PG,G2,Dk,B′(λ).

Transition G1 G2: For i ∈ {0, 1} we can replace Ki by Ki + ki(a
⊥)> for a⊥ ∈

orth(A) and ki ←R Z2k
p , as both are distributed identically. Further, as (a⊥)> ·

A = 0, this change does not show up in the public key pk. Thus, we have

ε1 = ε2.

Transition Game G2: We can use the EUF-CMA security of MAC given in Figure
4.6 to bound the probability of an adversary winning game G2. Let A be an
adversary on G2. We construct an adversary B with T (B) ≈ T (A)+Q ·poly(λ)
on the EUF-CMA security of MAC as follows.

On input pp = (PG, [A0]1, crs) of Expeuf-cma
A (λ) adversary B samples A ←R

Dk+1,k and K0,K1 ←R Z2k×(k+1)
p , chooses a⊥ ∈ orth(A) and forwards pk :=

(PG, [A0]1, crs, [A]2, [K0A]2, [K1A]2) to A.
On a signing query µ of A, the adversary B queries its own tag oracle to obtain
tag = ([t]1,Π, [u]1). Then, B computes [u]1 := (K0 + µK1)>[t]1 + a⊥[u]1 and
forwards σ := ([t]1,Π, [u]1) to A.
Let (µ?, σ?) be a forgery of A with σ? = ([t?]1,Π

?, [u?]1). Then B computes
[u′]1 := (K0 + µ?K1)>[t]1 and (if possible) chooses [u?]1 such that a⊥[u?]1 =
[u?]1 − [u′]1 (note that this doable efficiently given a⊥) Finally, B outputs
(µ?, tag?) with tag? := ([t?]1,Π

?, [u?]1). If (µ?, σ?) was a successful forgery
of A then, by the definition of game G1, (µ?, tag?) is a successful forgery in
Expeuf-cma

A (λ). This yields

ε2 ≤ Adveuf-cma
MAC,B (λ).

4.5 Our Tightly Secure Structure-Preserving Signature
Scheme

In this section we present a structure-preserving signature scheme SPS, described
in Figure 4.10, whose security can be tightly reduced to the D2k,k-MDDH and Dk-
MDDH assumptions. It builds upon the tightly secure signature presented in Section

91

4 Structure-Preserving Signatures

Gen(1λ):
PG ← BGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
crs← PGen(pars, 1λ)
A←R Dk
K0 ←R Z2k×(k+1)

p

K←R Z(n+1)×(k+1)
p

pk := (PG, [A0]1, crs, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
return (pk, sk)

Sign(pk, sk, [m]1 ∈ Gn
1):

r←R Zkp [t]1 := [A0]1r
Π← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 + K>
[
m
1

]
1

return σ := ([t]1,Π, [u]1)

Ver(pk, σ, [m]1):
parse σ := ([t]1,Π, [u]1)
b← PVer(pk, [t]1,Π)
if b = 1 and e([u]>1 , [A]2)

= e([t]>1 , [K0A]2) + e(

[
m
1

]>
1

, [KA]2)

return 1
else return 0

Figure 4.10: Tightly UF-CMA secure structure-preserving signature scheme SPS with
message space Gn1 .

4.4 by using a similar idea of [KPW15]. Precisely, we view µ as a label and the main
difference between both schemes is that in the proof we do not need to guess which
µ the adversary may reuse for its forgery, and thus our security proof is tight.

Theorem 46 (Security of SPS). If PS := (PGen,PTGen,PVer,PSim) is a non-
interactive zero-knowledge proof system for Lsnd, the signature scheme SPS described
in Fig. 4.10 is EUF-CMA secure under the D2k,k-MDDH and Dk-MDDH assumptions.
Namely, for any adversary A, there exist adversaries B,B′ with running time T (B) ≈
T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of queries to Osign, poly is
independent of Q, and

Adveuf-cma
SPS,A (λ) ≤ ∆core

B (λ) + Advmddh
PG,G2,Dk,B′(λ) +

Q

pk
+
Q

p
.

When using PS from Section 4.1, we obtain

Adveuf-cma
SPS,A (λ) ≤(4kdlogQe+ 2) ·Advmddh

PG,G1,D2k,k,B(λ)

+ (2dlogQe+ 3) ·Advmddh
PG,G2,Dk,B′(λ) + dlogQe ·∆D2k,k

+
4dlogQe+ 2

p− 1
+

(Q+ 1)dlogQe+Q

p
+
Q

pk
.

Strategy. In a nutshell, we will embed a “shadow MAC” in our signature scheme,
and then invoke the core lemma to randomize the MAC tags computed during signing
queries and the final verification of A’s forgery. A little more specifically, we will
embed a term k>0 t into the A-orthogonal space of each u computed by Osign and
Over. (Inuitively, changes to this A-orthogonal space do not influence the verification
key, and simply correspond to changing from one signing key to another signing key
that is compatible with the same verification key.) Using our core lemma, we can
randomize this term k>0 t to (k0 +F(ctr))>t for a random function F and a signature

92

4.5 Our Tightly Secure Structure-Preserving Signature Scheme

G1, G2, G3, G4, G5 :

Qsign := ∅
ctr := 0 , c̃tr←R [Q]

PG ← BGen(1λ)
A0,A1 ←R D2k,k

pars := (PG, [A0]1, [A1]1)
A←R Dk
a⊥ ∈ orth(A)

crs← PGen(pars, 1λ)

K0 ←R Z2k×(k+1)
p

k0 ←R Z2k
p

K←R Z(n+1)×(k+1)
p

pk := (crs, pars, [A]2,
[K0A]2, [KA]2)

sk := (K0,K)
([m?]1, σ

?)←R AOsign(·)(pk)
if [m?]1 /∈ Qsign

and Over([m
?]1, σ

?) = 1
return 1

else return 0

Osign([m]1 ∈ Gn
1):

Qsign := Qsign ∪ {[m]1}
ctr := ctr + 1

r←R Zkp, r←R (Zkp)∗ , [t]1 := [A0]1r

Π← PPrv(crs, [t]1, r)

[u]1 := K>0 [t]1 + K>
[
m
1

]
1

+a⊥(k0 +F(ctr))>[t]1

return σ := ([t]1,Π, [u]1)

Over([m
?]1, σ

?):
parse σ =: ([t]1,Π, [u]1)
b← PVer(pk, [t]1,Π)

if b = 1 and ∃ctr′ ≤ ctr :

ctr′ = c̃tr and

[u]1 = K>0 [t]1 + K>
[
m
1

]
1

+a⊥(k0 +F(ctr′))>[t]1

return 1
else return 0

Figure 4.11: Games G1 to G5 for proving Theorem 46. Here, F : Zp → Z2k
p is a

random function. In each procedure, the components inside a solid (dotted, double,
gray) frame are only present in the games marked by a solid (dotted, double, gray)
frame.

counter ctr. Intuitively, this means that we use a freshly randomized signing key
for each signature query. After these changes, an adversary only has a statistically
small chance in producing a valid forgery.

Proof of Theorem 46. We proceed via a series of hybrid games G0 to G4, described
in Figure 4.11. By εi we denote the advantage of A to win Gi.

Game G0: We define game G0 to be the EUF-CMA experiment Expeuf-cma
SPS,A (λ).

Therefore, we have ε0 = Adveuf-cma
SPS,A (λ).

Transition G0 G0: In gameG1 we change the verification oracle to directly verify
[u]1 in the group, instead of using the pairing product equation (for more details
see Figure Fig. 4.11).

Note that a pair (µ?, σ?) that passes Over in G1 always passes the Over check
in G0. Thus, to bound |ε0 − ε1|, it suffices to bound the probability that
A produces a tuple (µ?, σ?) that passes Over in G0, but not in G1. For the

93

4 Structure-Preserving Signatures

signature σ? =: ([t]1,Π, [u]1) we can write the verification equation in G0 as

e([u]>1 , [A]2) = e([t]>1 , [K0A]2) + e(

[
m
1

]>
1

, [KA]2)

⇔ e([u]1 − [t]>1 K0 −
[
m
1

]>
1

K, [A]2) = 0

Observe that for any (µ?, ([t]1,Π, [u]1)) that passes the verification equation
in game G0, but not the one in G1, the value

[u]1 − [t]>1 K0 −
[
m
1

]>
1

K

is a non-zero vector in the kernel of A. Thus, from A we can construct an
adversary B against the Dk-KMDH assumption. Finally, Lemma 9 yields an
adversary B′ with T (B′) ≈ T (A) +Q · poly(λ) such that

|ε0 − ε1| ≤ Advmddh
PG,G2,Dk,B(λ).

Transition G1 G2: We can replace K0 by K0 + k0(a⊥)> for a⊥ ∈ orth(A) and
ki ←R Z2k

p , as both are distributed identically. Note that this change does not
show up in the public key pk. Looking ahead, this change will allow us to use
the computational core lemma (Theorem 42). This yields

ε1 = ε2.

Transition G2 G3: Let A be an adversary playing either G2 or G3. We build an
adversary B such that T (B) ≈ T (A) +Q · poly(λ) and

Pr[Expcore
0,B (1λ) = 1] = ε2 and Pr[Expcore

1,B (1λ) = 1] = ε3.

This implies, by the core lemma (Theorem 42), that

ε2 ≤ ε3 + ∆core
B (λ).

We now describe B against Expcore
β,B (1λ) for β equal to either 0 or 1. First, B

receives pp := (PG, [A0]1, crs) from Expcore
β,B (1λ), then, B samples A ←R Dk,

a⊥ ∈ orth(A), K0 ←R Z2k×(k+1)
p , K ←R Z(n+1)×(k+1)

p and forwards pk :=
(PG, [A0]1, crs, [A]2, [K0A]2, [KA]2) to A.
To simulate Osign([m]1), B uses its oracle Otag, which takes no input, and gives

back ([t]1,Π, [u]1). Then, B computes [u]1 := K>0 [t]1 +a⊥[u]1 +K>
[
m
1

]
1

, and

returns σ := ([t]1,Π, [u]1) to A.
Finally, given the forgery

(
[m?]1, σ

?) with signature σ? := ([t?]1,Π
?, [u?]1), B

first checks if [m?]1 /∈ Qsign and [u?]1 6= [0]1. If it is not the case, then B
returns 0 to A. If it is the case, with the knowledge of a⊥ ∈ Zp, B efficiently

checks whether there exists [u?]1 ∈ G1 such that [u?]1−K>0 [t?]1−K>
[
m?

1

]
1

=

[u?]1a
⊥. If it is not the case, B returns 0 to A. If it is the case, B computes

[u?]1 (it can do so efficiently given a⊥), sets tag := ([t?]1,Π
?, [u?]1), calls its

verification oracle Over(tag), and forwards the answer to A.

94

4.5 Our Tightly Secure Structure-Preserving Signature Scheme

Transition G3 G4: In game G3 the vectors r sampled by Osign are uniformly
random over Zkp, while they are uniformly random over (Zkp)∗ = Zkp\{0} in G4.
Since this is the only difference between the games, the difference of advantage
is bounded by the statistical distance between the two distributions of r. A
union bound over the number of queries yields

ε3 − ε4 ≤
Q

pk
.

Transition G4 G5: These games are the same except for the extra condition c̃tr =
ctr′ in G5, which happens with probability 1

Q over the choice of c̃tr ←R [Q].
Since the adversary view is independent of c̃tr, we have

ε5 =
ε4

Q
.

Game G5: We prove that ε5 ≤ 1
p .

First, we can replace K by K+v(a⊥)> for v←R Zn+1
p , and {F(i) : i ∈ [Q], i 6=

c̃tr} by {F(i) + wi : i ∈ [Q], i 6= c̃tr} for wi ←R Z2k
p . Note that this does not

change the distribution of the game.

Thus, for the i-th signing query with i 6= c̃tr the value u is computed by
Osign([mi]1) as

[u]1 = K>0 [t]1 + (K> +a⊥v>)

[
mi

1

]
1

+a⊥(k0+F(i) +wi)>[t]1,

with [t]1 := [A0]1r, r←R (Zkp)∗. This is identically distributed to

[u]1 = K>0 [t]1 + K>
[
mi

1

]
1

+ γi · [a⊥]1, with γi ←R Zp.

For the c̃tr’th signing query, we have

[u]1 = K>0 [t]1 + (K> +a⊥v>)

[
mc̃tr

1

]
1

+ a⊥(k0 + F(c̃tr))>[t]1.

Assuming A succeeds in producing a valid forgery, Over computes

[u?]1 = K>0 [t?]1 + (K> +a⊥v>)

[
m?

1

]
1

+a⊥(k0+F(c̃tr))>[t]1.

Since m? 6= mc̃tr by definition of the security game, we can use the pairwise

independence of m 7→ v>
[
m
1

]
1

to argue that v>
[
m?

1

]
1

and v>
[
mc̃tr

1

]
1

are

two independent values, uniformly random over G1. Thus, the verification
equation is satisfied with probability at most 1

p , that is

ε5 ≤
1

p
.

95

4 Structure-Preserving Signatures

Bilateral Structure-Preserving Signature Scheme. Our structure-preserving
signature scheme, SPS, defined in Figure 4.10 can sign only messages from Gn

1 . By
applying the generic transformation from [KPW15, Section 6], we can transform
our SPS to sign messages from Gn1

1 × Gn2
2 using their two-tier SPS, which is a

generalization of [ACD+12]. The transformation is tightness-preserving by Theorem
6 of [KPW15] and costs additional k elements from G1 and k+1 elements from G2 in
the signature. For the SXDH assumption (k = 1), our bilateral SPS scheme requires
additional 1 element from G1 and 2 elements from G2 in the signature.

96

Chapter 5
Homomorphic Secret Sharing

From this chapter we focus on succinct secure communication. One approach towards
secure communication with minimal communication complexity is via homomorphic
secret sharing. Based on our work [BKS19], we present the first homomorphic se-
cret sharing scheme from lattices that does not require expensive multiplications
on ciphertexts, and show that this can lead to improvements regarding both com-
munication complexity and computational efficiency in protocols for special-purpose
secure 2-party computation and 2-server private information retrieval. We start this
chapter by giving a technical overview of the techniques involved.
The central idea of our work is to leverage the special structure that most lattice-

based encryption schemes have in common. More precisely, we observe that decryp-
tion typically consists of two steps: First, a function linear in the secret key is applied
to the ciphertexts. Next, the result is recovered by rounding to the closest multiple of
q/r, where q corresponds to the ciphertext modulus and r to the plaintext modulus.
We refer to this property as nearly linear decryption.

Definition 47 (Informal -Nearly Linear Decryption [BKS19]). LetR = Z[X]/(XN+
1) forN a power of 2. Let r, q ∈ N be moduli with r|q and 1� r � q. We say that an
encryption scheme supports nearly linear decryption for messages m ∈ Rr := R/rR
if the secret key is s ∈ Rdq , and for any ciphertext c ∈ Rdq encrypting m,

〈s, c〉 = (q/r) ·m+ e mod q

for some “small” noise e ∈ R.

This captures various lattice-based encryption schemes [Reg05, ACPS09, LPR10,
BV11, BPR12, LS15]. For the most efficient instantiation, we build on the encryption
scheme by Lyubashevsky et al. [LPR10] based on learning with errors over rings.
Note that our construction also generalizes to encryption schemes where the message
is encrypted in “low-order symbols” (see Remark 56).
We show that every public-key encryption scheme with nearly linear decryption

satisfies two properties we refer to as “KDM oracle” and “distributed decryption”.
The first property builds on an observation of [BV11], who noted that nearly linear
decryption already implies key-dependent message (KDM) security. We leverage
their observation to implement a so-called KDM oracle, which allows parties to
secret-share their inputs without knowledge of the secret key itself.

KDM oracle. Everyone in knowledge of the public key can generate encryptions of
key-dependent messages (more precisely, multiples of the secret key) without
knowledge of the secret key itself.

For the second property, we build on two techniques we call rounding and lifting :

97

5 Homomorphic Secret Sharing

Rounding. If r << q, then local rounding1 on 2-party random additive secret shares
of ≈ (q/r) ·x mod q for some x ∈ Rr yields additive secret shares of x mod r
with overwhelming probability [DHRW16].

Lifting. If ‖z‖∞ << r, then 2-party random additive secret shares of z mod r are
random additive secret shares of z mod q (for arbitrary q) with overwhelming
probability.

Note that while both observations may look simple at first glance, they are highly
non-trivial: Both, rounding and lifting yield an error with constant probability in
general (and in particular in the case of 3 or more parties).
Rounding allows to perform one multiplication via distributed decryption, result-

ing in shares of x · y · sk mod r. Lifting allows to “lift” the resulting shares back to
shares mod q, which is necessary to perform another multiplication (as ciphertexts
“live” in Rq). Together, this yields the second property described in the following.

Multiplication via distributed decryption. There exists a procedure DDec, such that,
roughly,

DDecy·sk1(cx·sk) + DDecy·sk2(cx·sk) = x · y · sk mod q,

where cx·sk is an encryption of x · sk mod p and sk1 + sk2 = sk mod q is an
additive secret sharing of the secret key.

The KDM-oracle allows parties to share their inputs and distributed decryption
allows parties to locally perform multiplications on shared values. Note that our
techniques limit us to multiplications of an encryption (i.e. input value) with a
shared multiple of the secret key. The class of programs captured are so-called
restricted straight-line multiplication (RMS) programs, where memory values (in our
case represented by shared multiples of the secret key) can only be multiplied by
input values. Note that RMS programs can emulate branching programs and all
circuits in NC1. Our main result is summarized in the following theorem.

Theorem 48 (Informal - Main HSS Construction [BKS19]). Given any encryption
scheme with nearly linear decryption (as above) over ring R with parameters r, q, d ∈
N, as well as magnitude bound B ∈ N for which B � r � q/B, and output modulus
β ≤ B, there exists 2-party public-key HSS for inputs in Rβ with size:

• Public key pk = pk of the encryption scheme, Evaluation keys ekb ∈ Rd−1
q

• HSS shares of each input xi ∈ Rβ consist of d ciphertexts.

supporting any polynomial number of the following homomorphic operations over Rβ
(subject to the `∞ magnitude bound ‖y‖∞ ≤ B (in R) for all partial computation
values y), with negligible correctness error, and the specified complexities:

• Loading an input into memory (yi ← xi): d decryptions

• Addition of memory values (yk ← yi + yj): 1 addition over Rdq
1Here, by rounding we denote returning the closest multiple of (q/r).

98

5.1 Computational Models

• Multiplication of input with memory value (yk ← xi · yj): d decryptions

“Terminal” multiplication (s.t. yk appears in no future mult): 1 decryption

where “decryption” is essentially one inner product over Rdq .

Note that for instantiations from learning with errors over rings we have d = 2.
Roadmap. We begin this chapter by giving a formal definition of RMS programs in
Section 5.1. Next, we introduce decryption with nearly linear decryption and derive
the required properties in Sections 5.2 and 5.3. We present our homomorphic secret
sharing scheme in Section 5 and give a brief overview of extensions in Section 5.5.
In Section 5.6, we show how to instantiate our scheme and give efficiency estimates.
Finally, in Section 5.7 we show the practical applicability of our scheme within the
applications of secure 2-party computation of low-degree polynomials, and 2-server
generalized private information retrieval.
The following is taken in large parts verbatim from our work [BKS19].

5.1 Computational Models

Our main HSS scheme naturally applies to programs P in a computational model
known as Restricted Multiplication Straight-line (RMS) programs [Cle91, BGI16a].

Definition 49 (RMS programs). An RMS program consists of a magnitude bound
Bmax and an arbitrary sequence of the four following instructions, sorted according
to a unique identifier id ∈ Sid:

• Load an input into memory: (id, ŷj ← x̂i).

• Add values in memory: (id, ŷk ← ŷi + ŷj).

• Add input values: (id, x̂k ← x̂i + x̂j).

• Multiply memory value by input: (id, ŷk ← x̂i · ŷj).

• Output from memory, as R element: (id, β, Ôj ← ŷi).

If at any step of execution the size of a memory value exceeds the bound Bmax (i.e.
‖ŷj‖∞ > Bmax), the output of the program on the corresponding input is defined to
be ⊥. Otherwise the output is the sequence of Ôj values, sorted by id. We define the
size (resp., multiplicative size) of an RMS program P as the number of instructions
(resp., multiplication and load input instructions). Note that we consider addition of
input values merely for the purpose of efficiency. We denote the maximum number
of additions on input values by Pinp+.

5.2 Encryption with Nearly Linear Decryption

We now formally introduce encryption with nearly linear decryption. Basically,
we require the following properties: First, there is a way to encrypt certain key-
dependent messages without knowledge of the secret key. Second, it is possible to
“distributively decrypt” a ciphertext. More precisely, given an encryption of message
x and secret shares of some multiple y of the secret key sk = s, there is a way to

99

5 Homomorphic Secret Sharing

obtain secret shares of x ·y over the same modulus as the original secret shares. This
enables us to perform several stages of distributed decryption. That is, given an
encryption of x · s (for some value x) and a secret share of y · s modulo q, distributed
decryption results in a secret share of x · y · s modulo q, which can serve as input to
another distributed decryption.
In the following we show that all public-key encryption scheme that satisfy nearly

linear decryption, both support a KDM-oracle and homomorphic multiplication via
distributed decryption.

Definition 50 (Encryption scheme with nearly linear decryption). Let PKE :=
(PKE.Gen,PKE.Enc,PKE.Dec) be a public-key encryption scheme with pseudoran-
dom ciphertexts. We say that PKE is a public-key encryption scheme with nearly
linear decryption if it further satisfies the following properties:

• Parameters: The scheme is parametrized by modulus values r, q ∈ N, dimen-
sion d ∈ N, and bounds Bsk, Bct ∈ N, where r|q, r ≥ λω(1), q/r ≥ λω(1) and
d,Bsk, Bct ≤ poly(λ), as well as a ring R = Z[X]/(XN +1), where N ≤ poly(λ)
is a power of 2.2

• Message space and secret key: The scheme has message spaceM := Rr :=
R/pR and ciphertext space C := Rdq := (R/qR)d. The secret key s returned
by PKE.Gen on input 1λ is an element of Rd satisfying ‖s‖∞ ≤ Bsk. Further,
s is of the form (1, ŝ) for some ŝ ∈ Rd−1

r .

• Nearly linear decryption: For any λ ∈ N, for any (pk, s) in the image of
Gen(1λ), for any message x ∈ Rr and for any ciphertext c ∈ Rdq in the image
of PKE.Enc(pk, x), for some e ∈ R with ‖e‖∞ ≤ Bct it holds

〈s, c〉 = (q/r) · x+ e mod q.

Remark 51. Encryption with nearly linear decryption can be instantiated based on
LWE (e.g. with [Reg05, ACPS09], where d = λ) and based on RLWE (e.g. with
[LPR10, BV11], where d = 2). Further, it can be instantiated with schemes based
on assumptions like module-LWE [LS15] and LWR [BPR12]. For more details on
the instantiation from the RLWE-based encryption scheme of LPR [LPR10], we refer
to Section 5.6, and for the instantiation from the LWE-based encryption scheme of
Regev [Reg05] we refer to the full version of [BKS19].

5.3 Properties of Encryption Schemes with Nearly Linear
Decryption

We now prove that our two desired properties are satisfied by any encryption scheme
with nearly linear decryption.
KDM-oracle. Recall that the first property allows anyone to compute an encryp-
tion of any linear function of the secret key without having access to the secret key
itself, serving as a “KDM oracle.” A similar notion, but for secret-key encryption
schemes and with deterministic procedure, was introduced in [BDH14].

2To simplify the analysis, we restrict the definition to 2-power cyclotomic rings. However, our
construction can be generalized to arbitrary cyclotomics.

100

5.3 Properties of Encryption Schemes with Nearly Linear Decryption

Expkdm−ind
PKE.OKDM,A(λ) :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← AOkdm(·,·)(1λ, pk)
if β = β′ return 1
else return 0

Okdm(x, j) :
if β = 0
return PKE.OKDM(pk, x, j)

else
return PKE.Enc(pk, 0)

Figure 5.1: Security challenge experiment for the KDM oracle.

Lemma 52 (KDM oracle). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be a public-
key encryption scheme with nearly linear decryption and parameters (r, q, d, Bsk, Bct, R).
Then, for the PPT procedure PKE.OKDM that on input of a public key pk, a value

x ∈ R and an index j ∈ {1, . . . , d} computes an encryption c← PKE.Enc(pk, 0) and
outputs

cj := (q/r) · x · ej + c mod q,

where ej ∈ Rdq is the j-th unit vector, the following properties are satisfied.

• Nearly linear decryption to the message x · sj: For any λ ∈ N, for any
(pk, s) in the image of Gen(1λ), and for any ciphertext cj ∈ Rdq in the image
of PKE.OKDM(pk, x, j), it holds

〈s, cj〉 = (q/r) · (x · sj) + e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct.

• Security: For any λ ∈ N and any PPT adversary A we have that

Advkdm−ind
PKE.OKDM,A(λ) :=

∣∣∣Pr
[
Expkdm−ind

PKE.OKDM,A(λ) = 1
]
− 1/2

∣∣∣
is negligible in λ, where Expkdm−ind

PKE.OKDM,A(λ) is as defined in Figure 5.1

Proof. We have to prove that PKE.OKDM meets the required properties. As PKE is
a encryption scheme with nearly linear decryption, we have

c = (q/r) · 0 + e = e mod q

for some e ∈ R with ‖e‖∞ ≤ Bct. We thus have

〈s, cj〉 = (q/r) · x · 〈s, ej〉+ 〈s, c〉 = (q/r) · (x · sj) + e mod q,

as required for nearly linear decryption.
In order to prove security of PKE.OKDM, we proceed via a series of games depicted

in Figure 5.2. We have

Advkdm−ind
PKE.OKDM,A(λ) :=

∣∣∣∣Pr [G0 = 1]− 1

2

∣∣∣∣ .
From an adversary distinguishing betweenG0 andG1, we can construct an adversary
B on the pseudorandomness of ciphertexts with

|Pr [G0 = 1]− Pr [G1 = 1]| ≤ Advpr
PKE,B(λ).

101

5 Homomorphic Secret Sharing

G0, G1 :

(pk, sk)← PKE.Gen(1λ)
β ← {0, 1}
β′ ← APKE.OKDM(·,·)(1λ, pk)
if β = β′ return 1
else return 0

Okdm(x, j) :
if β = 0
//Encrypt 0 (in game G0).
c← PKE.Enc(pk, 0)
//Draw a ciphertext (in game G1).
c←R R

d
q

cj ← (q/r) · x · cj + c
return cj

else
c← PKE.Enc(pk, 0)

c←R R
d
q

return c

Figure 5.2: Games G0 and G1 in the proof of Lemma 52 (Security of OKDM).

In game G1 the view of A is independent of β, as the vectors cj and c are both
distributed uniformly at random over Rdr . We have thus

Pr [G1 = 1] =
1

2
.

As PKE satisfies indistinguishability of ciphertexts by prerequisites, we have thus
that

Advkdm−ind
PKE.OKDM,A(λ) ≤ Advpr

PKE,B(λ)

is negligible in λ as required.

Rounding and lifting. First, we present a local rounding trick as in [DHRW16]
which allows to recover the shares of x (modulo r). The idea is that if q/r is large,
the probability that the error term e leads to a rounding error is small. Note that it is
crucial here that we are in the 2-party setting, where the secret shares of (q/r) ·x+e
mod q have both approximately (that is, except for the error e) the same distance
from some multiple of q/r. In fact, even for arbitrarily large gap between r and q,
rounding for 3 or more parties fails with constant probability.

Lemma 53 (Rounding of noisy shares). Let r, q ∈ N be modulus values with q/r ≥
λω(1). Let R = Z[X]/(XN + 1) for N a power of 2 (i.e. N = 2n for n ∈ N0). Let
t0, t1 ∈ Rq random subject to

t0 + t1 = (q/r) · x+ e mod q

for some x ∈ Rr, e ∈ R with q/(r · ‖e‖∞) ≥ λω(1). Then, for the the deterministic
polynomial time procedure Round that on input tb ∈ Rq outputs

b(r/q) · tbe mod r ∈ Rr

it holds:
Round(t0) + Round(t1) = x mod r

with probability at least 1−N · (‖e‖∞ + 1) · r/q ≥ 1− λ−ω(1) over the choice of the
shares t0, t1.

102

5.3 Properties of Encryption Schemes with Nearly Linear Decryption

Proof. In order to prove correctness of Round we consider the values of t0 and t1 as
elements in R. We express t0 in the basis of (q/r), i.e. let I := [−q/(2p), q/(2p)),
let z0 ∈ Rr, r0 ∈ R|I such that t0 = (q/r) · z0 + r0. Let l ∈ R such that t1 =
(q/r) · (x− z0) + e− r0 + q · l in R. Then we have

Round(t0) = b(r/q) · ((q/r) · z0 + r0)e mod r

= bz0 + (r/q) · r0︸ ︷︷ ︸
∈R|[−1/2,1/2)

e mod r

= z0 mod r

and

Round(t1) = b(r/q) · ((q/r) · (x− z0) + e− r0 + q · l)e mod r

= bx− z0 + r · l + (r/q) · (e− r0)e mod r.

Now, assume e− r0 ∈ R|[−q/(2p),q/(2p)). In this case it holds

Round(t1) = bx− z0 + r · l + (r/q) · (e− r0)︸ ︷︷ ︸
∈R|[−1/2,1/2)

e mod r

= x− z0 mod r.

It is left to compute the probability of e − r0 ∈ R|I . This is the case, whenever all
coefficients of r0 are not “too close” to the boundaries of the interval I (constituting
the good area). As t0 is chosen uniformly at random, we have that the distribution
of z0 is the uniform distribution over Rr and the distribution of r0 is the uniform
distribution over R|I . For every j ∈ {1, . . . , N}, for the j-th component of r0 the
probability that it is outside the interval

Ij := (−q/(2p) + ej , q/(2p) + ej]

is at most
(‖e‖∞ + 1) · r/q.

A union bound over all components of r0 yields thus correct rounding with proba-
bility at least

1−N · (‖e‖∞ + 1) · r/q.

The following simple observation constitutes a crucial step of our HSS construc-
tion, as it will allow to have several levels of multiplication without requiring a
sequence of decreasing moduli. While in general the conversion of secret shares from
one modulus to another constitutes a problem, we observe that whenever the se-
cret shared value is small in comparison to the modulus, and we use the centered
representation of Rr with coefficients in (−br/2e , . . . , b(r − 1)/2e], then with high
probability the secret sharing actually constitutes a secret sharing over R, so switch-
ing to an arbitrary modulus is trivial. Note that (as for rounding) this only holds
true in the 2-party setting.

103

5 Homomorphic Secret Sharing

Lemma 54 (Lifting the modulus of shares). Let r ∈ N be a modulus with r ≥ λω(1).
Let R = Z[X]/(XN + 1) for N a power of 2. Let x ∈ R and z0, z1 ∈ Rr be random,
subject to

z0 + z1 = x mod r.

Then, we have
z0 + z1 = x over R

with probability at least 1 − (N · (‖x‖∞ + 1)/r) ≥ 1 − λ−ω(1) over the choice of the
shares z0, z1.

Proof. We have to show that for z0 ←R Rr random, with overwhelming probability
it holds x − z0 ∈ Rr (without computing modulo r). Recall that we consider Rr
as elements whose coefficients are all in I := (−br/2e , . . . , b(r − 1)/2e]. Thus, x −
z0 ∈ Rr, whenever for all j = {1, . . . , N}, the j-th coefficient of z0 is in Ij :=
[−b(r − 1)/2e+ xj , . . . , br/2e+ xj). For every j we have |I ∩ Ij | ≥ r − xj − 1. A
union bound over all coefficients yields that x− z0 ∈ Rr (and thus z0 + z1 = x over
R) except with probability at most

N · (‖x‖∞ + 1)/r.

Multiplication via distributed decryption. The following shows that any
encryption with nearly linear decryption allows two parties to perform decryption
distributively, employing their respective shares of the secret key to obtain a secret
share of the corresponding message modulo q. Further, the scheme inherently sup-
ports homomorphic addition of ciphertexts, and the distributed decryption property
holds accordingly for any sum of a bounded number of ciphertexts (generated from
Enc or OKDM).

Lemma 55 (Distributed decryption of sums of ciphertexts). Let PKE := (PKE.Gen,
PKE.Enc,PKE.Dec) be a public-key encryption scheme with nearly linear decryption
and parameters (r, q, d, Bsk, Bct, R), where R has dimension N . Let PKE.OKDM
be the KDM oracle from Lemma 52. Let Badd ∈ N with Badd ≤ poly(λ). Then
the deterministic polynomial time decryption procedure PKE.DDec that on input b ∈
{0, 1}, tb ∈ Rd, c ∈ Rdq outputs

Round(〈tb, c〉 mod q) ∈ Rq

(where Round is as in Lemma 53) satisfies the following:
For all y ∈ Rr with r/‖y‖∞ ≥ λω(1) and q/(r · ‖y‖∞) ≥ λω(1), for all (pk, s) ←

Gen(1λ), for all messages x1 . . . , xBadd
∈ Rr with r/‖xi‖∞ ≥ λω(1), for all encryp-

tions ci of xi that are either output of PKE.Enc or of PKE.OKDM and for shares
t0, t1 ∈ Rdq random subject to

t0 + t1 = y · s mod q

for c :=
∑Badd

i=1 ci and x :=
∑Badd

i=1 xi it holds

PKE.DDec(0, t0, c) + PKE.DDec(1, t1, c) = x · y mod q

with probability over the random choice of the shares t0, t1 of at least

1−N · (N ·Badd · ‖y‖∞ ·Bct · r/q + ‖x · y‖∞/r + r/q + 1/r) ≥ 1− λ−ω(1).

104

5.3 Properties of Encryption Schemes with Nearly Linear Decryption

Proof. The idea of the proof is that nearly linear decryption allows (almost) homo-
morphic addition of ciphertexts with linear growth in the error. As q/(r · ‖y‖∞) ≥
λω(1) and the vectors tb are individually random, by Lemma 53 we can recover x · y
mod r with overwhelming probability. Finally, as r ≥ λω(1), by Lemma 54 we can
lift the modulus q (as with overwhelming probability the shares constitute a correct
sharing of x · y over R and thus Rq).
We start by proving that nearly linear decryption holds true also for the sum of a

bounded number of ciphertexts, but with an increased error term. To that end, let
x :=

∑Badd
i=1 xi. Because PKE is an encryption scheme with nearly linear decryption

and by Lemma 52, for all i ∈ {1, . . . , Badd} we have

〈s, ci〉 = (q/r) · xi + ei mod q, (5.1)

where ‖ei‖∞ ≤ Bct. This yields

〈s,
Badd∑
i=1

ci〉 =

Badd∑
i=1

〈s, ci〉 =

Badd∑
i=1

((q/r) · xi + ei) = (q/r) · x+

Badd∑
i=1

ei mod q,

where ‖
∑Badd

i=1 ei‖∞ ≤
∑Badd

i=1 ‖ei‖∞ ≤ Badd ·Bct.
It thus holds

〈t0, c〉+ 〈t1, c〉 = y · 〈s, c〉 = (q/r) · (x · y) + (e · y) mod q

for some e ∈ R with ‖e‖∞ ≤ Badd ·Bct.
By Lemma 53 we have

Round(〈t0, c〉 mod q) + Round(〈t1, c〉 mod q) = y · x mod r

except with probability at most

N · (‖y · e‖∞ + 1) · r/q ≤ N · (N ·Badd · ‖y‖∞ ·Bct + 1) · r/q.

Whenever Round is successful, by Lemma 54 we have

(Round(〈t0, c〉 mod q)) + (Round(〈t1, c〉 mod q)) = x · y mod q

except with probability at most N · (‖x · y‖∞ + 1)/r.

Remark 56. Note that our techniques also extend to encryption schemes which en-
crypt messages in low-order symbols, e.g. where 〈s, c〉 = x + r · e mod q for r and
q coprime. As mentioned in the main part, our techniques carry over to encryption
schemes
For this class of encryption schemes, we define PKE.OKDM as the algorithm that

on input of a public key pk, a value y ∈ R with ‖y‖∞ ≤ Binp and an index j ∈
{1, . . . , d} computes an encryption c← PKE.Enc(pk, 0) and outputs cj := y · ej + c
mod q, where ej ∈ Rdq is the j-th unit vector.
Further, we define PKE.DDec to be the algorithm that on input b ∈ {0, 1}, tb ∈

Rd, c ∈ Rdq outputs
((〈tb, c〉 mod q) mod r) mod q.

105

5 Homomorphic Secret Sharing

5.4 Our HSS from Encryption with Nearly Linear
Decryption

We now present our construction of a public-key HSS from an encryption scheme
with nearly linear decryption. For various extensions that allow to improve the
efficiency in specific applications we refer to the full version of [BKS19].

Theorem 57 (HSS from encryption with nearly linear decryption). Let PKE :=
(PKE.Gen,PKE.Enc,PKE.Dec) be a secure public-key encryption scheme with nearly
linear decryption and parameters (r, q, d, Bsk, Bct, R).

• Let Binp ∈ N with r/Binp ≥ λω(1) and q/(Binp · r) ≥ λω(1).

• Let PKE.OKDM be the KDM oracle from Lemma 52.

• Let PKE.DDec be the distributed decryption from Lemma 55.

• Let PRF : K × Sid → Rdq be a pseudorandom function.

Then, the scheme HSS = (HSS.Gen,HSS.Enc,HSS.Eval) given in Figure 5.3 is a
2-party public-key homomorphic secret sharing scheme with input space [R]Binp for
the class of RMS programs with magnitude bound Bmax, where r/Bmax ≥ λω(1) and
q/(Bmax · r) ≥ λω(1). More precisely, HSS satisfies the following.

• Correctness: For any λ ∈ N, for any x(1), . . . , x(ρ) ∈ [R]Binp , for any polynomial-
sized RMS program P with P (x(1), . . . , x(ρ)) 6= ⊥ and magnitude bound Bmax

with r/Bmax ≥ λω(1) and q/(Bmax ·r) ≥ λω(1), and for any integer β ≥ 2, there
exist a PPT adversary B on the pseudorandomness of PRF such that

Prcor
HSS,(x(i))i,P,β

(λ) ≥ 1−
(

Advprf
PRF,B(λ) + λ−ω(1)

)
.

• Security: For every PPT adversary A on the security of HSS, there exists an
PPT adversary B on the security of PKE.OKDM such that

Advsec
HSS,A(λ) ≤ Advkdm−ind

PKE.OKDM,B(λ).

Proof. For the proof of correctness we refer to Lemma 58.
For the proof of security we employ a hybrid argument. We define the correspond-

ing games in Figure 5.4. Game G0 corresponds to the HSS security game, therefore
we have

Advsec
A,HSS(λ) = |Pr [G0 = 1]− 1/2| .

From a PPT adversary A distinguishing betweenG0 andG1 we can construct a PPT
adversary B on the security of PKE.OKDM as follows. On input (b, x0, x1, state) by
A and input of the public key pk by the security challenge experiment of the KDM
oracle, B chooses β ∈ {0, 1}, s0 ←R Rdq , sets s1 := s − s0 mod q and queries
cj ← Okdm(xβ, j) for all j ∈ {1, . . . , d}. Finally, B sends pk, ekb := (K, sb) and
E to A, where E := (c1| . . . |cd) ∈ Rd×dq . If the security challenge experiment of
the KDM oracle returns real encryptions of x · sj , the distribution of ekb equals the

106

5.4 Our HSS from Encryption with Nearly Linear Decryption

HSS.Gen(1λ) :

• Generate a key pair (pk, s) ← PKE.Gen(1λ) for encryption and draw
a PRF key K ←R K. //Recall s = (1, ŝ) ∈ Rq ×Rd−1

q .

• Secret share the secret key. Choose s0 ←R R
d
q at random. Define

s1 := s− s0 mod q.

• Output pk and ekb ← (K, sb).

HSS.Enc(1λ, pk, x) :

• Encrypt the input. Compute and output Ex ← PKE.OKDM(pk, x).
//This corresponds to Ex = PKE.Enc(pk, x · s) ∈ Rd×dq .

HSS.Eval(b, ekb, (E
x(1) , . . . ,Ex

(ρ)
), P, β) :

Parse (K, sb) =: ekb, parse P as a sequence of RMS operations and
proceed as follows.

• Load an input into memory: On instruction (id,Ex) compute

txb := PKE.DDec(b, sb,E
x) + (1− 2b) · PRF(K, id) mod q.

• Add values in memory: On instruction (id, txb , t
x′
b) compute

tx+x′

b ← txb + tx
′
b + (1− 2b) · PRF(K, id) mod q.

• Add input values: On instruction (id,Ex,Ex
′
) compute

Ex+x′ ← Ex + Ex
′

mod q.

• Multiply memory value by input: On instruction (id, txb ,E
x′)

compute

tx·x
′

b := PKE.DDec(b, txb ,E
x′) + (1− 2b) · PRF(K, id) mod q.

• Output from memory, as element in Rβ: On instruction (id, txb)
parse txb =: (xb, t̂

x
b) for some xb ∈ Rq, t̂xb ∈ Rd−1

q and output

xb mod β.

Figure 5.3: 2-party public-key homomorphic secret sharing scheme HSS for the class
of RMS programs from encryption with nearly linear decryption. Here, x ∈ R with
‖x‖∞ ≤ Binp is an input value. Throughout, input values x ∈ R are represented by
encryptions Ex of x · s and memory values x ∈ R are represented by shares (tx0 , t

x
1) ∈

Rdq ×Rdq with tx0 + tx1 = x · s mod q.

107

5 Homomorphic Secret Sharing

G0 :
(b, x0, x1, state)← A(1λ)
β ← {0, 1}
(pk, (ek0, ek1))← HSS.Gen(1λ)
//Encrypt xβ · s.
E← PKE.OKDM(pk, xβ)
β′ ← A(state, pk, ekb,E)
if β′ = β return 1
else return 0

G1 :

(b, x0, x1, state)← A(1λ)
β ← {0, 1}
(pk, (ek0, ek1))← HSS.Gen(1λ)
//Encrypt 0 ∈ Rd.
E← PKE.Enc(pk,0)

β′ ← A(state, pk, ekb,E)
if β′ = β return 1
else return 0

Figure 5.4: Games G0 and G1 in the proof of Theorem 57 (Sec. of HSS).

distribution of game G0. On the other hand, if the experiment returns encryptions
of 0, the distribution of ekb equals the distribution of game G1. We have thus

|Pr [G0 = 1]− Pr [G1 = 1]| ≤ Advkdm−ind
PKE.OKDM,B(λ).

As in game G1 the view of A is independent of β, it holds

Pr [G1 = 1] = 1/2.

Lemma 58 (Correctness of the HSS). Let HSS be the HSS from Figure 5.3 with un-
derlying ring R = Z[X]/(XN +1). Then, for all λ ∈ N, for all inputs x(1), . . . , x(ρ) ∈
[R]Binp , for all RMS programs P , s.t.

• P is of size |P | ≤ poly(λ)

• P has magnitude bound Bmax with r/Bmax ≥ λω(1) and q/(Bmax · r) ≥ λω(1),

• P has maximum number of input addition instructions Pinp+

for (pk, ek0, ek1) ← HSS.Gen(1λ), for Ex
(i) ← HSS.Enc(1λ, pk, x(i)), there exists an

PPT adversary B on the pseudorandom function PRF with such that correctness
holds with probability at least

Prcor
HSS,(x(i))i,P

(λ) ≥ 1−Advprf
PRF,B(λ)−N · (Bmax + 1)/q

− |P | · d ·N2 · Pinp+ ·Bmax · (Bct · r/q +Bsk/r) .

− |P | · d ·N · (r/q + 1/r).

Proof. We prove correctness via a hybrid argument. Let ε0 := Prcor
HSS,(x(i))i,P,β

(λ).
Recall that by ε0 we denote the probability that homomorphic evaluation of a pro-
gram P on input (x(1), . . . , x(ρ)) ∈ [R]ρBinp

employing our HSS presented in Figure
5.3 is successful (over the random choices of HSS.Gen,HSS.Enc). Our goal is to
prove that for all x(1), . . . , x(ρ) ∈ [R]Binp and for all bounded RMS programs P the
probability ε0 is negligible in λ.
To this end, let ε1 := Pr1

HSS,(x(i))i,P,β
(λ) denote the probability that evaluation

yields the correct output, where we replace every evaluation of the PRF by inserting

108

5.4 Our HSS from Encryption with Nearly Linear Decryption

a value r←R R
d
q chosen at random. We show that if the probabilities ε0 and ε1 differ

significantly, then there exists an adversary B attacking the underlying PRF PRF.
Namely, B homomorphically evaluates the program P on input (x(1), . . . , x(ρ)), but
instead of evaluating PRF(K, id) the adversary B queries its PRF oracle. Finally, B
returns real if homomorphic evaluation does not yield the correct result, and random
otherwise. This yields

|ε0 − ε1| ≤ Advprf
PRF,B(λ).

It is left to give a lower bound for the probability ε1. To that end, we prove
that with overwhelming probability over the choice of r← Rdq (in place of the PRF
evaluation) all shares (tx0 , t

x
1) computed during homomorphic evaluation of P satisfy

tx0 + tx1 = x · s = (x, x · ŝ) mod q (5.2)

if the function evaluation of P at point (tx0 , t
x
1) corresponds to x ∈ R, where s =

(1, ŝ) ∈ R × Rd−1 is the secret key returned by PKE.Gen on input 1λ. Further, we
have that (tx0 , t

x
1) are distributed uniformly at random conditioned on Equation 5.2.

Assuming Equation 5.2 is true, by Lemma 54 we have x0 + x1 = x over R (and
thus over Rβ) with probability at least 1−N · (Bmax + 1)/q.
It is left to prove that indeed Equation 5.2 holds true during homomorphic evalua-

tion of P except with negligible probability. Recall that PKE.DDec is the procedure
for distributed decryption from Lemma 55. First, assume that distributed decryption
is always successful. In this case we prove that any instruction preserves correctness.
Note that we do not need to consider the addition of input values and the output of
a memory value, as those do not affect the shares.

• Load an input into memory: Consider intruction (id,Ex) for b ∈ {0, 1}.

Assuming correctness of distributed decryption it holds

tx0 + tx1 =PKE.DDec(0, s0,E
x) + r + PKE.DDec(1, s1,E

x)− r mod q

=1 · (x · s) mod q = x · s mod q.

• Add values in memory: Assuming correctness holds for shares (tx0 , t
x
1) and

(tx
′

0 , t
x′
1) we have, as required,

tx+x′

0 + tx+x′

1 = tx0 + tx
′

0 + r + tx1 + tx
′

1 − r mod q

= x · s + x′ · s mod q = (x+ x′) · s mod q.

• Multiply memory value by input: Assuming correctness holds for the
share (tx0 , t

x
1) and assuming correctness of distributed decryption it holds

tx·x
′

0 + tx·x
′

1 =PKE.DDec(0, tx0 ,E
x′) + PKE.DDec(1, tx1 ,E

x′) mod q

=x · (x′ · s) mod q = (x · x′) · s mod q.

As r is chosen at random, the distribution of (ty0, t
y
1) ∈ Rdq for y ∈ {x, x+x′, x ·

x′} is random conditioned on Equation 5.2.

109

5 Homomorphic Secret Sharing

It is left to bound the probability that distributed decryption fails. As for all x
computed throughout the evaluation of program P the distribution of (tx0 , t

x
1) ∈ Rdq is

random conditioned on Equation 5.2, by Lemma 55 for all messagesm1 . . . ,mPinp+ ∈
Rr and for all encryptions ci of mi that are output of PKE.OKDM distributed de-
cryption of

∑Pinp+

i=1 ci fails with probability at most

N2 · Pinp+ · ‖x‖∞ ·Bct · r/q +N · ‖x ·m‖∞/r +N · (r/q + 1/r),

where m :=
∑Pinp+

i=1 mi. Throughout the evaluation of P we are guaranteed ‖x‖∞ ≤
Bmax for all intermediary values x ∈ R. Further, for the messages mi = xi · sji
corresponding to outputs of PKE.OKDM we have

‖x ·
Pinp+∑
i=1

xi · sji‖∞ ≤
Pinp+∑
i=1

‖x · xi · sji‖∞ ≤ Pinp+ ·N ·Bmax ·Bsk.

Finally, applying a union bound over all |P | · d decryptions yields

ε1 ≥ 1−N · (Bmax + 1)/q − |P | · d ·N2 · Pinp+ ·Bmax · (Bct · r/q +Bsk/r)

− |P | · d ·N · (r/q + 1/r).

5.5 Extensions

In the following we briefly describe some extensions which are tailored to special
applications and improve the HSS construction introduced in the previous section in
terms of efficiency. For a complete treatment, we refer the reader to the full version of
[BKS19]. For an overview of key sizes and sizes of ciphertext/shares of our schemes,
we refer to Table 5.1. For an overview of the evaluation costs, we refer to Table 5.2.
Secret-Key HSS. For certain applications, where all secret inputs originate from a
single party, it is sufficient to consider a secret-key HSS. This allows a more efficient
instantiation for two reasons. First, the underlying encryption scheme is not required
to support ciphertexts from a KDM oracle (but has to be KDM secure), which slightly
saves in noise parameters. Further, we can save in terms of computations (at the
cost of a larger share size), by replacing the DDec steps for loading an input x into
memory, by instead sending the secret shares of x · s as an additional part of the
HSS share.

HSS for Degree-2 Polynomials. For the restricted class of degree-2 polynomials,
we can achieve improved efficiency in both the secret-key and public-key setting, by
leveraging the fact that our HSS need only support terminal multiplications.
For the secret-key case, as we do not need to load inputs, we actually only need

one level of distributed decryption. This has two advantages: First, it suffices to
encrypt x ∈ Rr instead of x · s ∈ Rdr , as the output is not required to allow another
distributed encryption. Second, for the same reason, we do not need to lift the
modulus of the output of the distributed decryption back to q. Thus, we can choose
r ≤ poly(λ) and q ≥ λω(1) (as we no longer must apply Lemma 54).

The idea of our public-key HSS is to change the way inputs are loaded into mem-
ory. The idea is to obtain the shares of x ·s = (x, x ·s2, . . . , x ·sd) ∈ Rd by decrypting

110

5.5 Extensions

HSS (Fig. 5.3) skHSS HSS′ skHSS′

pk/sk: |pk| d |pk| d
ekb: d+ |K| d+ |K| d2 + |K| d+ |K|
ct/shb: d2 d2 + d d 2d

Table 5.1: Overview of sizes of keys and of ciphertexts/shares. By HSS and
skHSS we denote our constructions of public-key and secret-key HSS for the
class of all RMS programs, respectively. By HSS′ and skHSS′ we denote
our constructions of public-key and secret-key HSS for the class of degree-2
polynomials . Further, |pk| denotes public key size of the underlying encryp-
tion scheme, |K| denotes PRF key size. Values are expressed in units of
Rq elements. Recall that d denotes the ciphertext dimension (i.e. d = 2 for
RLWE).

HSS (Fig. 5.3) skHSS HSS′ skHSS′

Load d2 ·multq 0 d2 ·multq 0
Add (mem,nt) d · addq d · addq d · addq d · addq
Add (mem,t) 1 · addβ 1 · addβ 1 · addβ 1 · addβ
Add (input) d2 · addq d2 · addq d · addq d · addq
Multiply (nt) d2 ·multq d2 ·multq − −
Multiply (t) d ·multq d ·multq d ·multq d ·multq

Table 5.2: Overview of evaluation costs, where we restrict to the dominant
cost and omit the cost for evaluating the PRF. For mod ∈ {β, q} by addmod

and multmod we denote the number of additions and multiplications over Rmod

required, respectively. By “nt” and “t” we denote non-terminal and terminal
operations (i.e. not followed by another multiplication). Recall that d is the
size of a ciphertext of PKE/SKE. Further, recall that for skHSS′ we can allow
r ≤ poly(λ) and therefore also smaller (but still super-polynomial) modulus
q.

PKE.Enc(pk, x) with s and with s2 · s, . . . , sd · s. This strategy requires a quadratic
number of secret shares (namely shares of s ·s>), but reduces the number of required
encryption from d to 1 (as only encryptions of x are required). An additional ad-
vantage of this approach is that we only have to require the underlying encryption
scheme to be IND-CPA secure (instead of satisfying pseudorandomness of cipher-
texts).

HSS Supporting SIMD Operations. As first observed by [SV14], if the under-
lying ring R is of the right form, one can “pack” multiple plaintexts in one ciphertext.
We show that our basic HSS supports “single instruction, multiple input” (SIMD)
in this case. More precisely, we show that if R = Z[X]/(XN + 1) for N ∈ N,
N ≤ poly(λ) a power of 2, such that XN + 1 splits over Rp (for some prime p ≥ 2)
into pairwise different irreducible polynomials of degree k ∈ N (i.e. Rp ∼=

(
Fpk
)N/k),

one can evaluate a program P simultaneously on N/k inputs in Fpk . However, there
are some caveats regarding magnitude growth with respect to the SIMD versus co-
efficient representation.

111

5 Homomorphic Secret Sharing

LPR.Gen(1λ) :

1. Sample a ← Rq, ŝ ← Dsk, e ← Derr and compute b = a · ŝ + e in
Rq.

2. Let s = (1, ŝ) and output pk = (a, b), sk = s.

LPR.Enc(pk,m) :

1. To encrypt m ∈ Rr, first sample v ← Dsk, e0, e1 ← Derr.

2. Output the ciphertext (c0, c1) ∈ R2
q , where c1 = −av + e0 and

c0 = bv + e1 + (q/r) ·m.

LPR.OKDM(pk,m) :

1. Compute c0 = LPR.Enc(0) and cm = LPR.Enc(m).

2. Output the tuple (cm, c0 + (0, (q/r) ·m)) as encryptions of m · s.

LPR.DDec(b, tb, c
x) :

1. Given b ∈ {0, 1}, a ciphertext cx and a share tb of m ·s, first parse
cx = (c0, c1) and tb = (tb,0, tb,1).

2. Output (d0, d1) := (b(r/q) · (c0 · tb,0 + c1 · tb,1)e mod r) mod q

Figure 5.5: Ring-LWE based instantiation of PKE with nearly linear decryption, with
procedures for HSS from Section 5

5.6 Instantiations and Efficiency Analysis

Our HSS schemes can be instantiated in a number of ways, using LWE or RLWE-
based encryption schemes satisfying the nearly-linear decryption property from Def-
inition 50. In this section we focus on a particularly efficient RLWE-based instantia-
tion using a variant of the “LPR” encryption scheme [LPR13] over 2-power cyclotomic
rings.
In Figure 5.5 we present the core algorithms for our RLWE-based instantation

using the LPR [LPR13] public-key encryption scheme LPR = (LPR.Gen, LPR.Enc),
as well as the auxiliary algorithms LPR.OKDM and LPR.DDec used by our HSS
constructions. We use an error distribution Derr where each coefficient is a rounded
Gaussian with parameter σ, which gives Berr = 8σ as a high-probability bound on
the `∞ norm of samples from Dsk, with failure probability erf(8/

√
2) ≈ 2−49. We

choose the secret-key distribution such that each coefficient of s is uniform in {0,±1},
subject to the constraint that only hsk coefficients are non-zero.3

The following lemma shows that LPR satisfies the nearly-linear decryption prop-

3Choosing a sparse secret like this does incur a small loss in security, and only gives us a small gain
in parameters for the HSS. The main reason we choose s like this is to allow a fair comparison
with SHE schemes, which typically have to use sparse secrets to obtain reasonable parameters.

112

5.6 Instantiations and Efficiency Analysis

erty for our HSS scheme. Furthermore, notice that ciphertexts output by LPR.Enc
are pseudorandom under the decisional ring-LWE assumption, by a standard hy-
brid argument [LPR10]. Therefore, the correctness and security properties of the
LPR.OKDM and LPR.DDec procedures follow from Lemmas 52 and 55.

Lemma 59. Assuming hardness of RLWEN,q,Derr,Dsk
, the scheme LPR (Figure 5.5) is

a public-key encryption scheme with nearly-linear decryption over R = Z[X]/(XN +
1), with ciphertext dimension d = 2 and bounds Bsk and Bct = Berr · (2hsk + 1).

Proof. Notice that for a ciphertext c = (c0, c1) = LPR.Enc(m), we have

〈c, s〉 = c0 + c1 · ŝ = bv + e1 + (q/p) ·m− avs+ e0ŝ = ev + e1 + e0s+ (q/p) ·m

This means that LPR satisfies property 3 of Definition 50, with noise bound Bct

given by the maximum of ‖ev + e1 + e0s‖∞. Since ‖e‖∞ ≤ Berr and v has only hsk

non-zero coefficients of ±1, it follows that the product ev has coefficients bounded
by Berr · hsk. Summing up, the total noise bound in a fresh ciphertext is therefore
Bct = Berr · (2hsk + 1).
We conclude that LPR is a PKE with approximately linear decryption (Defini-

tion 50) and parameters (p, q, d = 2, Bsk = 1, Bct, R).

Parameters and Efficiency Analysis. We now analyse the efficiency of our
RLWE-based instantiation and compare it with using HSS constructed from some-
what homomorphic encryption, for various different settings of parameters.
For comparison with HSS based on DDH [BGI16a], we remark that for non-SIMD

computations, DDH-based HSS shares can be smaller than both our approach and
SHE. However, we estimate that homomorphic evaluation is around an order or
magnitude faster than the times reported in [BCG+17] due to the expensive share
conversion procedure, and when using SIMD both this and the share size can be
dramatically improved.
Parameter Estimation. We derived parameters for our HSS based on LPR using
the bounds for correctness from Lemma 58, chosen to ensure that each RMS mul-
tiplication of a ring-element during evaluation is correct with probability 1 − 2−κ,
where we chose κ = 40. To compare with constructing HSS from SHE, we estimated
parameters for the “BFV” scheme based on RLWE [Bra12, FV12], currently one of
the leading candidate SHE schemes. To modify this to achieve HSS with additive
output sharing, we need to increase the size of q by around 2κ bits. With both
schemes we chose parameters estimated to have at least 80 bits of computational
security, see the full version of [BKS19] for more details.
Share Size. Tables 5.3–5.4 show BFV ciphertext parameters for different mul-
tiplicative depths of circuit, and plaintext modulus 2 or ≈ 2128, respectively, to
illustrate different kinds of Boolean and arithmetic computations. Table 5.5 gives
our HSS parameters for various choices of Bmax, the maximum value any plaintext
coefficient can hold during the computation. Note that in contrast to SHE, our pa-
rameters depend only on this bound and not the multiplicative depth, although we
are more restricted in that we can only perform homomorphic multiplications where
one value is an input.

113

5 Homomorphic Secret Sharing

Depth N log q Security
1 4096 102 145.1
2 4096 118 122.6
3 4096 134 106.2
4 4096 150 93.73
5 4096 164 85.53
6 8192 186 157.5
7 8192 202 142.9
8 8192 220 129.8
9 8192 236 120.1
10 8192 252 111.9

Table 5.3: BFV with
r = 2

Depth N log q Security
1 16384 456 124.3
2 16384 602 92.44
3 32768 750 154.2

Table 5.4: BFV with
r ≈ 2128

Bmax N log q Security
2 4096 137 103.3

216 4096 167 83.74
232 8192 203 142.0
264 8192 267 104.9
2128 16384 399 143.9
2256 16384 655 84.60

Table 5.5: RLWE
based HSS for RMS
programs w/ max
plaintext size Bmax

This means that comparing parameters of the two schemes is very application-
dependent. For instance, for Boolean computations where we can have Bmax = 2,
our scheme has smaller parameters than SHE for all computations of depth > 3,
so this can give a significant advantage for very high degree functions that can be
expressed as an RMS program. However, if SIMD computations are required then
Bmax must be chosen to account for the worst-case coefficient growth, which is not
directly related to the plaintexts, so our scheme would likely have larger ciphertexts
than SHE in most cases. For operations on large integers, the parameters in both
schemes quickly get very large, though our parameters grow slightly quicker due to
the increase in Bmax.
Computational efficiency. The relative computational efficiency of the schemes
is much clearer, and is the main advantage of our scheme over SHE. The cost of
a homomorphic RMS multiplication with RLWE is roughly twice the cost of a de-
cryption in any RLWE-based scheme (including BFV) with the same parameters.
Recently, Halevi et al. [HPS18] described an optimized implementation of BFV using
CRT arithmetic, where according to their single-threaded runtimes, decryption costs
between 20–30x less than multiplication (including key-switching) for the ranges of
parameters we consider (cf. [HPS18, Table 3]). This indicates a 10–15x improvement
in performance for homomorphic evaluation with our scheme compared with SHE,
assuming similar parameters and numbers of multiplications. We remark that this
comparison deserves some caution, since other SHE schemes such as BGV [BGV12]
may have different characteristics; we have not run experiments with BGV, but due
to the complications in key-switching and modulus-switching we expect the improve-
ment to still be around an order of magnitude.

5.7 Applications

In this section we highlight some applications of HSS for which our scheme seems
well-suited. There are four primary approaches to compare: approaches not relying
on HSS, using DDH-based or one-way function-based HSS, using HSS based on SHE,
or using our new HSS. We remark that the concrete practicality of SHE-based HSS
approaches has also not been considered before this work.
Secure 2-PC for Low-Degree Polynomials. Perhaps the most natural appli-

114

5.7 Applications

cation of HSS is to achieve a very succinct form of multi-party computation. After
a setup phase to create the key material pk, (ek0, ek1), each party publishes HSS-
shares of its input, which can then be directly used to compute additive shares of
the output. Even the simplest case of evaluating degree-2 polynomials has many
interesting applications, and also allows us to use our optimized HSS scheme from
Section 5.5, where shares consist of a single RLWE ciphertext, instead of two. The
main motivating example we look at is to MPC protocols in the preprocessing model,
where correlated randomness is pre-generated ahead of time to help increase effi-
ciency when the actual computation takes place. This correlated randomness can
take many forms, but the most common are Beaver triples, namely additive shares
of (a, b, c) where c = a · b and a, b are random elements of a (typically) large prime
field. These can easily be generated using degree-2 HSS, where each party inputs
two field elements, and are also highly amenable to SIMD processing.

Looking at Tables 5.4–5.5, for an example of degree 2 functions over a 128-bit
message space, BFV with depth 1 requires a dimension N = 16384 and modulus
log q = 456, whereas our scheme would need to use Bmax ≈ 2256, giving the same
dimension and a slightly larger modulus of around 655 bits. Therefore, our com-
munication cost will be slightly larger than using SHE-based HSS, but we expect to
gain from the lower computational costs that come with our multiplication.

Using DDH-type HSS [BCG+17], anm-bit triple can be created with 3712(5m/4+
160) bits of communication, giving 148kB for m = 128, meaning our communica-
tion is 20x higher for producing a single triple (at 2682kB), but orders of magnitude
smaller (∼900x) when amortized using SIMD (over N = 16834 triples). Computa-
tion requirements will greatly favor our approach.

We can also compare this with other approaches to Beaver triple generation. The
SPDZ protocol [DPSZ12] uses SHE (without HSS) to create triples; as well as the
more complex homomorphic multiplication, this incurs extra costs in an interactive
distributed decryption protocol, which adds a round of interaction that we can avoid
using HSS with local rounding. The latest version of SPDZ [KPR18] uses linearly-
homomorphic encryption instead of SHE, and reports ciphertexts with log q as small
as 327 bits, around half the size of ours. This would likely beat HSS in terms of
communication and computation, but still has the undesirable feature of 2 rounds of
interaction, whereas with HSS (and a small one-time setup), the triples are obtained
after just one message from each party.

For an approach with communication sublinear in the number of triples, we refer
Chapter 6 in this thesis. Building on our HSS presented in this chapter (instantiated
with the BGV encryption scheme [BGV12]), this allows to generate 17 GB of Beaver
triples over Fp for p ≈ 2128 at a rate of 0.16 ms per triple with communication
complexity of approximately 0.18 bit per triple-bit generated. Note that here the
more general case of authenticated Beaver triples is considered. This results into
(amortized) about 138 bit of communication per 128-bit triple (where each triple
consist of 6 values in Fp). For more details we refer to Section 6.5.

2-Server (Generalized) Private Information Retrieval. An attractive ap-
plication of HSS is to obtain highly succinct Private Information Retrieval (PIR)
protocols for m ≥ 2 servers. Here, m servers hold a public database DB and allow
clients to submit private queries to DB, such that both the query and response re-

115

5 Homomorphic Secret Sharing

main hidden to up to m − 1 colluding servers.4 When using HSS, we can obtain a
very simple, 1-round protocol where the client first sends an encryption of its query
to both servers, who respond with an additive share of the result. Note that we
only need the more efficient, secret-key version of HSS, such as our scheme from
Section 5.5 with m = 2 servers.
Recent works on 2-server PIR have used HSS for point functions5 to support basic

queries including equality conditions, range queries and disjoint OR clauses, based
on simple schemes using only one-way functions [BGI16b, WYG+17]. However these
techniques degrade dramatically for more complex queries, due to the relatively weak
homomorphic ability of the underlying HSS. With HSS for branching programs we
can significantly increase the expressiveness of queries, at the cost of some overhead
in ciphertext size and running time.
In a bit more detail, suppose that a client issues a simple COUNT query,6 which

applies some predicate Q to each row xi ∈ DB, and returns
∑

iQ(xi), that is, the
number of rows in DB that match Q. The general idea is that the client splits Q
into HSS shares s1, s2, and sends sj to server j. For each row xi ∈ DB, the servers
then use homomorphic evaluation with the function fxi(Q) := Q(xi) on the shares,
to obtain a shared 0/1 value indicating whether a match occurred. Given additive
shares modulo β of the results q1, . . . , qD (where D = |DB|), the servers can sum up
the shares and send the result to the client, who reconstructs the result q =

∑
qi

(this assumes that β < N , so wraparound does not occur).
Below we analyse some useful classes of predicates that are much more expressive

than function classes that can be handled using one-way function based approaches,
and seem well-suited for our scheme supporting RMS programs.
Conjunctive Keyword Search. Suppose that each entry in DB is a document
x with a list of keywords Wx = {wx1 , . . . , wxm}, and the query is a COUNT query
consisting of an arbitrary conjunction of keywords, each in {0, 1}`. That is, for a
query W = {w1, . . . , wk} containing keywords shared bit-by-bit using the HSS, the
servers will compute a sharing of

#{(x,Wx) ∈ DB : W ⊆Wx}

To evaluate the query on a single entry of DB as an RMS program, we maintain
the result f as a secret-shared memory value, which is initially set to 1. We then
iterate over each query keyword wi ∈ W , letting wij denote the j-th bit of wi, and
update f as

f :=
∑

wx∈Wx

f ·
m∏
j=1

(1⊕ wxj ⊕ wij)

Note that the i-th product evaluates to 1 iff xx = wi, and since all wx are distinct,
at most one of these will be 1. Multiplication by f applies a conjunction with the

4Using S/FHE alone instead of HSS allows for the stronger setting of single-server PIR. However,
a major advantage of HSS with additive reconstruction is that shares across many rows can
easily be combined, allowing more expressive queries with simpler computation.

5Actually, these works use function secret-sharing [BGI15] for point functions, which in this case
is equivalent to HSS for the same class of functions.

6Other queries such as returning the record identifier, or min/max and range queries can easily
be supported with similar techniques, as previously shown in [WYG+17, BCG+17].

116

5.7 Applications

previous keyword, and must be performed inside the summation as f is a memory
value. All other product terms are linear functions (over Z) in the inputs wi (via
a ⊕ b = a + b − 2ab), so each product can be evaluated left-to-right as an RMS
program, for a total of m · ` · k RMS multiplications after iterating over all k query
keywords.

Comparison to SHE-based HSS. When using SHE, the number of homomorphic
multiplications is roughly the same as our case, and the multiplicative depth is
log(m`k). For a concrete example, suppose that each document hasm = 10 keywords
of length ` = 128 bits, and a client’s query has k = 4 keywords. Using either our HSS
scheme or HSS from SHE would need around 5120 multiplications per document,
with a multiplicative depth of 13. This needs SHE parameters of log q ≈ 300 and
dimension N = 8192 for the BFV scheme as above, whereas with our scheme we can
use the best case of Bmax = 2, giving log q ≈ 137 and N = 4096. Using our secret-
key HSS and LPR instantiation, the share size is 3N log q bits ≈ 210kB, around
1/3 of the SHE ciphertext size using BFV. The communication cost for the whole
query would be 107MB for our HSS, and 314MB with BFV, whilst we estimate the
computational costs of homomorphic evaluation per document are around 2.5s and
300s, respectively, so even with the relatively high communication cost, for matching
several documents using our HSS would certainly give a significant performance
improvement.
However, one drawback of our approach is that handling SIMD computations is

more challenging, since the Bmax bound must be chosen much larger to account
for the coefficient growth of the plaintext polynomials, which may continue to grow
even when the packed plaintext messsages themselves are only bits. If the number of
documents in the database is large enough to warrant SIMD processing then it seems
likely that SHE will be preferable, since N = 8192 documents could be searched at
once without increasing the parameters.
Pattern-Matching Queries. Suppose here that the client wants to search for the
occurrence of a pattern p = (p1, . . . , pm) ∈ {0, 1}m in each row x = (x1, . . . , xN) ∈
{0, 1}N . An RMS program for computing the pattern-matching predicate, with
public input x and private input p, can be done with m · N multiplications using
a similar method to the previous example, modified slightly to compute the OR of
matching p with every position in x.

Comparison to SHE-based HSS. When using SHE, this computation has depth
log(nm), also requiring around N ·m homomorphic multiplications. The comparison
with our scheme is then similar to the keyword search example, depending on the
parameters chosen. For another example, if we have a fairly large string of length
N = 10000, and a pattern of size m = 100, then the SHE-based HSS must support
depth 20, giving parameters (N, log q) = (16384, 434). Again, we can use our HSS
with parameters for Bmax = 2, which lead to ciphertexts around 8.5x smaller than
with SHE.

117

Chapter 6
Pseudorandom Correlation Generators

In the last chapter of this thesis we take a closer look at protocols for secure com-
putation in the preprocessing model. Here, the expensive part of the computation is
sourced out into an input-independent preprocessing phase, where the parties set up
long correlated random strings. The actual computation on the inputs then takes
place in a much more efficient online phase.
For an example consider the correlation of Beaver triples. Given additive shares

of a tuple (a, b, ab), two parties can compute an online multiplications of additively
shared values x and y as follows:

• The parties jointly open x+ a and y + b.

• Note that the parties have additive shares of a, b and ab and know x+ a and
y + b in the clear. This allows to (locally) compute an additive share of x · y
via the following equation:

x · y = (x+ a− a) · (y+ b− b) = (x+ a) · (y+ b)− (x+ a) · b− a · (y+ b) + ab.

As this strategy requires one Beaver triple per multiplication, typically during pre-
processing many Beaver triples have to computed. With traditional approaches (e.g.
[DPSZ12]) this requires communication complexity (and memory) of size at least
linear in the number of Beaver triples to be produced.
To produce real random triples this amount of communication is inherent by an

information theoretic argument. But—as for the generation of Beaver triples one
have to rely on computational assumptions anyway [Bea96]—one can ask whether
this is inherent. More precisely: Can one generate a large amount of Beaver triples
with communication complexity sublinear in the number of triples?
In our work [BCG+19b], we answer this question affirmatively. Moreover, we are

the first to achieve this at a reasonable computational efficiency.
Towards this goal, we put forward the notion of pseudorandom correlation gen-

erator (PCG). A pseudorandom correlation generator allows to expand short corre-
lated seeds to long correlated pseudorandom strings (e.g. many Beaver triples). As
explained in the introduction, finding the right definition for pseudorandom corre-
lation generators on its own is non-trivial. We justify our definition, by both ruling
out a more natural notion, and showing that our definition suffices to replace the
preprocessing phase by a PCG in many interesting contexts.
On the practical side, we give generic construction based on homomorphic secret

sharing for additive correlations. The idea is to use the homomorphic property of the
HSS as follows: Giving shares of some seed, the parties first locally expand this seed
by homomorphically applying a pseudorandom generator. Subsequently, the parties

119

6 Pseudorandom Correlation Generators

Underlying HSS |key| |triples| setup expansion exp./triple
[BGV12] 3GB 17GB ≈ 20 s 8.0 h 0.16ms
[BGV12] (iterative) 3GB 1.6MB/it. ≈ 20 s 10 s/it. 0.57ms
[BGV12] (w/ packing) 6MB 1.1GB < 0.1 s 900 h 280ms
[BGV12, BKS19] 3GB 17GB ≈ 20 s 7.6 h 0.15ms

Figure 6.1: Overview of estimated efficiency of lattice-based approach to generate au-
thenticated Beaver triples over Fr. The numbers provided are time estimates for joint
seed generation (with security against semi-honest adversaries) and expansion. The
numbers are based on [CS16], for [BGV12] supporting depth-4 homomorphic opera-
tions (note that depth-3 would suffice to compute a degree-5 polynomial as required)
and plaintext space modulus r ≈ 2128. The runtime estimates are based on NFLLib
[ABG+16] with ciphertext modulus log q ≈ 744 and ring dimension N = 214. We
instantiate the MQ assumption with n = 29 and m = 218/24, and choose sparsity
ρ = 100 (that is, the number of non-zero coefficients per polynomial). The number
of (maximal) obtained triples is 232/24 for the rows with naive packing (including the
iterative approach) and 228/24 for the row w/ (smart) packing. Setup requires com-
munication of roughly size |key| per party. We ignore small contributions like setting
up the public key and generating suitable shares of the MAC key α, as computation
and communication are dominated by generation and distribution of encryptions of
the PRG seed.

evaluate the correlation itself on the long pseudorandom string, to each obtain an
additive share of the long correlated string.

PCG for Authenticated Beaver Triples. In the following we give a brief
overview on how to instantiate the described generic approach for the correlation of
authenticated Beaver triples, that is additive shares of

(a, b, ab), (aα, bα, abα)

for some fixed MAC key α ∈ Zr and values a, b ∈ Zr. The message authentication
code allows to detect parties that deviate the protocol in the online phase. One
example, where authenticated Beaver triples find application is the so-called SPDZ-
protocol [DPSZ12].
As pseudorandom generator we use a degree-2 PRG from themultivariate quadratic

(MQ) assumption. The MQ assumption states that it is difficult to invert a system
of m > n quadratic equations in n variables. In [BGP06] it is shown that for random
equations that assuming the system is hard to invert implies pseudorandomness of
the output. For efficiency we make use of the fact that known attacks do not sig-
nificantly improve, when the MQ assumption is instantiated with a sparse matrix.
(Note though that our specific choice of sparseness is somewhat arbitrary.)
The function we have to homomorphically evaluate is of degree 5 as a = PRG(ra)

(and similar for b), where PRG is the MQ-based PRG. For all our instantiations we
build on the encryption scheme of Brakerski et al. [BGV12]: Either using their ho-
momorphic encryption scheme directly as HSS, or using a hybrid between somewhat
homomorphic encryption and our HSS from Chapter 5. Our HSS does not seem
competitive on its own in this particular setting, because we have to account for the
plaintext magnitude, which would lead to significantly larger parameters.

120

6.1 Defining Pseudorandom Correlation Generators

For better stretch we build on naive ciphertext packing [SV11]: Instead of en-
crypting a single Zr-element we ‘pack’ N Zr-elements into each ciphertext (here, N
corresponds to the dimension of the plaintext space over Zr). This allows to expand
2n ciphertexts (each containing N plaintexts) to N ·m shared authenticated Beaver
triples. Note that an encryption of α (in each slot) is reused across all instances.
Using the sparseness of the matrix, we observe that - at slightly larger compu-

tational costs - not all triples have to be computed at once, but only N at a time,
corresponding to the number of plaintexts packed in one ciphertext. This is very
desirable for settings, where not all Beaver triples are needed at once.
In order to achieve (almost) true quadratic stretch, one would need to use the

packing more smartly, by letting the ciphertext slots interact with each other. This
indeed yields a stretch from a few megabytes to more than a gigabyte, but unfortu-
nately is not practical, as it requires expensive key switching operations.
We provide efficiency estimates of the different approaches for joint seed generation

(with security against semi-honest adversaries) and silent expansion in Figure 6.1
(Figure is taken with modifications from [BCG+19b]).

Roadmap. We start the chapter by defining pseudorandom correlation generators
for general correlations in Section 6.1. In Section 6.2 we rule out a simpler and
more natural simulation-based definition of PCG. In Section 6.3 we show that our
definition of PCG can serve as a black-box replacement of long correlated strings in
a wide range of natural and practical secure protocols. In Section 6.4 we give a high-
level construction of PCGs from a homomorphic secret sharing scheme together with
a suitable pseudorandom generator. Finally, in Section 6.5, we give an instantiation
based on lattices for the correlation of authenticated Beaver triples.
The following is taken in large parts verbatim from our work [BCG+19b].

6.1 Defining Pseudorandom Correlation Generators

At a high level, a pseudorandom correlation generator (PCG) for some relation takes
as input a pair of short, correlated seeds and outputs long correlated pseudorandom
strings, where the expansion procedure is deterministic and can be applied locally.
For correctness we require that the expanded output of a PCG is indistinguishable

from truly random correlated strings.
For security it would be natural and straightforward to require that we can se-

curely replace long correlated strings by short correlated seeds in any secure protocol
execution. Unfortunately, as shown in the following section, this security require-
ment would be impossible to meet. Therefore, we will introduce (and subsequently
prove useful) an indistinguishability based security notion. Namely, we require that
an adversary given access to one of the short seeds kσ, cannot distinguish the pseu-
dorandom string R1−σ from a pseudorandom string that is chosen at random con-
ditioned on (R0,R1) being correlated (where Rσ = PCG(kσ)). In other words, an
adversary given access to a short seed cannot learn more about the other party’s
pseudorandom string than what is obvious given access to its own pseudorandom
string.
In order to formally define pseudorandom correlations, we first introduce the con-

cept of a correlation generator as a PPT algorithm outputting correlated elements.

121

6 Pseudorandom Correlation Generators

Definition 60 (Correlation Generator). A PPT algorithm C is called a correlation
generator, if C on input 1λ outputs a pair of elements in {0, 1}n × {0, 1}n for n ∈
poly(λ).

In order to define security, we require the notion of a reverse-sampleable correlation
generator introduced in the following.

Definition 61 (Reverse-sampleable Correlation Generator). Let C be a correlation
generator. We say C is reverse sampleable if there exists a PPT algorithm RSample
such that for σ ∈ {0, 1} the correlation obtained via:

{(R′0,R′1) |(R0,R1)←R C(1λ),R′σ := Rσ,R
′
1−σ ←R RSample(σ,Rσ)}

is computationally indistinguishable from C(1λ).

The following definition of pseudorandom correlation generators can be viewed as
a generalization of the definition of the pseudorandom VOLE generator in [BCGI18].
Note though that we do not enforce perfect correctness.

Definition 62 (Pseudorandom Correlation Generator (PCG)). Let C be a reverse-
sampleable correlation generator. A pseudorandom correlation generator (PCG) for
C is a pair of PPT algorithms (PCG.Gen,PCG.Expand) with the following syntax:

• PCG.Gen(1λ): On input of the security parameter λ, outputs a pair of seeds
(k0, k1);

• PCG.Expand(σ, kσ): On input of a party index σ ∈ {0, 1} and a seed kσ, outputs
a bit string Rσ ∈ {0, 1}n.

Further, the algorithms (PCG.Gen,PCG.Expand) should satisfy the following:

Correctness The correlation obtained via

{(R0,R1) |(k0, k1)←R PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ) for σ ∈ {0, 1}}

is computationally indistinguishable from C(1λ).

Security For any σ ∈ {0, 1}, the following two distributions are computationally
indistinguishable:

{(k1−σ,Rσ) | (k0, k1)←R PCG.Gen(1λ),Rσ ← PCG.Expand(σ, kσ)} and
{(k1−σ,Rσ) | (k0, k1)←R PCG.Gen(1λ),R1−σ ← PCG.Expand(σ, k1−σ),

Rσ ←R RSample(σ,R1−σ)}

where RSample is the reverse sampling algorithm for correlation C.

Note that the above definition is trivial to achieve in general: We can let PCG.Gen
on input 1λ return (R0,R1) ← C(1λ), and simply define Expand to be the identity.
Typically, we will be interested in non-trivial constructions of PCGs, in which the
seed size is significantly shorter than the output size. A pseudorandom generator
with image in {0, 1}n is a simple example for an expanding PCG for the equality
correlation {(R,R) | R ∈ {0, 1}n}. In the following we will be interested in con-
structing PCGs for a much broader class of correlations, like OT correlations, OLE
correlations and (authenticated) Beaver triples.

122

6.2 Impossibility of a Simulation-Based Definition

6.2 Impossibility of a Simulation-Based Definition

A natural and useful alternative to the security definition in the previous definition
is the following: In any secure protocol (say against semi-honest adversaries), one
can replace sampling a pair of strings from the correlation C by generating a pair of
seeds (which are later expanded) using a PCG for C without compromising security.
Unfortunately, as sketched in [GI99], a non-trivial PCG construction cannot satisfy
such a simulation-based definition. Consider the simple protocol, where P0 samples
a pair (R0,R1) ← C(1λ) and sends R1 to P1, who simply outputs R1. This protocol
obviously realizes the protocol dictated by C, with one-sided security against P1.
But, if P0 instead generates (k0, k1) according to the seed generation algorithm of
the PCG and sends k1 to P1, a possible simulator runs into the following problem.
Simulating the above protocol given only the output R1 corresponds to finding a short
seed k1 that can be (deterministically) expanded to R1. If the entropy in the second
output of C exceeds the seed-length |k1|, such a compression violates correctness, as
it could be used to distinguish R1 from a string that is indeed chosen via C.
In the following, we present a formal and more general version of the above ar-

gument for ruling out a simulation-based definition for non-trivial correlations. Our
negative result is based on a lower bound given by Hubáček and Wichs [HW15].
There, the notion of Yao incompressibility entropy, the computational equivalent to
Shannon entropy, is employed to establish a lower bound on the required communi-
cation in a secure protocol with long outputs. More precisely, Yao incompressibility
entropy [HLR07, Yao82b] is a measure on how well outputs of a distribution can
be compressed on average, when the compressing and decompressing algorithms are
required to be efficient. For example, a pseudorandom bit string of length ` has Yao
incompressibility entropy `.

Definition 63 (Yao Incompressiblity Entropy [HLR07] (simplified)). Let ` = `(λ) ∈
N. A probability ensemble X = {Xλ} has Yao incompressibility entropy at least `, if
for every pair of polynomial sized circuit-ensembles C = {Cλ}, D = {Dλ} where C
has output bit-length at most `− 1, there exists a negligible function negl : N→ R+

such that for every sufficiently large positive integer λ we have

Pr [x← X : D(C(x)) = x] ≤ 1

2
+ negl(λ).

One of the main results of [HW15] is that the communication in a secure protocol
has to at least meet the Yao incompressibility entropy of the output, when the adver-
sary is allowed to fix the random coins of the corrupted party. Applying this result
rules out meaningful PCG instantiations of a simulation-based security definition.

Theorem 64 (Impossiblity of Simulation-Based Definition for Non-Trivial PCGs).
Let C be a reverse-sampleable correlation generator, where the Yao incompressibility
entropy of the output is `. Then, for every pseudorandom correlation generator
PCG = (PCG.Gen,PCG.Expand) satisfying simulation-based security, the output of
the seed generation PCG.Gen algorithm must at least have bit-length `.

Proof. Let PCG = (PCG.Gen,PCG.Expand) be a pseudorandom correlation generator
for C that satisfies simulation-based security. Then, in particular, the following
protocol ΠPCG has to satisfy one-sided security against P1: Party P0 runs (k0, k1)←R

PCG.Gen(1λ) and sends k1 to P1. Finally, P1 outputs R1 ← PCG.Expand(1, k1).

123

6 Pseudorandom Correlation Generators

Let `1 be the Yao incompressibility entropy of the output of C1(1λ) := {R1 |
(R0,R1)← C(1λ)}. Further, let

C1
PCG(1λ) := {R1 | (k0, k1)←R PCG.Gen(1λ),R1 ← PCG.Expand(1, k1)}.

By correctness of the PCG, the output of C1
PCG (and therefore the output of the

protocol ΠPCG) must meet the Yao incompressibility entropy `1, as an efficient pair
of compressor and decompressor could be used as a distinguisher between C1 and
C1
PCG.
By [HW15, Theorem 5], for any protocol between two parties P0 and P1 with

one-sided security against “honest-but-deterministic”1 P1, where P1 has no input,
it holds: If the Yao incompressibility entropy of the output of P1 is `1, then the
communication complexity from P0 to P1 must be at least `1 bits.
Therefore, as seed expansion is deterministic, the bit-length |k1| of the seed of the

second party must be at least `1. Reversing the roles of P0 and P1 together with
additivity of Yao incompressibility entropy yields the required.

For the special case, where C outputs pairs of identical random strings (R,R),
Gilboa and Ishai [GI99] sketched why pseudorandom pads cannot securely substitute
perfectly-random pads returned by C in every secure protocol. We obtain this result
as a straightforward corollary of Theorem 64.

Corollary 65. Let C be the correlation generator that on input 1λ draws a string
R ←R {0, 1}` uniformly at random and returns (R,R). Then, there exists no pseu-
dorandom generator with seed length strictly less than `, such that sampling a seed
(and later expanding via the pseudorandom generator) can securely replace sampling
uniformly at random from {0, 1}` in every protocol.

The above negative result gives a general counterexample for randomized func-
tionalities. In the full version of [BCG+19b] we show that PCGs cannot replace
correlated randomness in general, even in protocols that only realize deterministic
functionalities.

6.3 Applying PCGs in Protocols with Correlated
Randomness

In this section we show that one can use PCGs in a “plug-and-play” fashion in
protocols consuming correlated randomness sampled by a given functionality. More
precisely, we show that PCGs can be directly applied to any protocol using a weaker
form of correlated randomness, where corrupted parties can influence their outputs.
A simple example are random Beaver triples, where the weaker functionality we

can realize allows a corrupt sender/receiver to choose its outputs, then the other
party’s outputs are sampled at random correspondingly. When using Beaver triples
in an MPC protocol, the Beaver triples are typically used to mask the actual inputs
to a multiplication. Allowing a corrupt party to choose its own share of the Beaver
triple does not affect the security of these protocols, since (intuitively) this can only

1A “honest-but-deterministic” adversary has to behave according to the protocol, but is allowed
to fix its random coins.

124

6.3 Applying PCGs in Protocols with Correlated Randomness

Functionality FCcorr∗

On input 1λ, the functionality does as follows:

• If no parties are corrupt, sample (R0,R1)←R C(1λ).

• Otherwise, if Pσ is corrupt, wait to receive Rσ ∈ {0, 1}nσ from Adv,
then sample R1−σ ←R RSample(σ,Rσ).

The functionality outputs R0 to P0 and R1 to P1, and then halts.

Figure 6.2: Corruptible correlated randomness functionality for a reverse-sampleable
correlation generator, C

weaken security for the corrupt party and not for honest parties. More generally,
it turns out that many practical MPC protocols, including those based on prepro-
cessed multiplication triples for arithmetic circuits [BDOZ11, DPSZ12] and binary
circuits [NNOB12, WRK17a, WRK17b], use this kind of corruptible, correlated ran-
domness, since it is often easier to design a protocol that realizes this.

More formally, the randomness is modelled by the functionality FCcorr∗ (Figure 6.2),
where a corrupted party may first choose its own output, and then the honest party’s
output is computed with the reverse sampling algorithm for C. As we show in the
following, PCGs can be used to securely realize FCcorr∗, opening up many important
applications at no extra cost.

To realize FCcorr∗, we use a simple protocol, ΠCcorr∗, that calls FPCG.Gen
corr so that each

party obtains a seed kσ, which is then expanded to get the output PCG.Expand(σ, kσ).

Theorem 66. Let PCG = (PCG.Gen,PCG.Expand) be a secure PCG for a reverse-
sampleable correlation generator, C. Then the protocol Πcorr∗ securely realizes the
FCcorr∗ functionality against a static, malicious adversary.

Proof. Let Adv be a static adversary against the protocol π. We construct a simula-
tor Sim, which interacts with Adv and FCcorr∗ to produce a view for Adv that is indis-
tinguishable from a real execution of the protocol. When both parties are corrupted,
the simulator just runs Adv internally and security is straightforward. Similarly,
when both parties are honest, simulation is trivial and indistinguishability follows
from the correctness of PCG. Now suppose that only Pσ is corrupted, for σ ∈ {0, 1}.
On receiving the input 1λ, Sim samples a pair of seeds (k0, k1)←R PCG.Gen(1λ), then
sends kσ to Adv as its output of FPCG.Gen

corr , computes Rσ ← PCG.Expand(σ, kσ) and
sends this to FCcorr∗. Notice that in the ideal execution, the view of the distinguisher
consists of the seed kσ and the honest party’s output R1−σ, which is computed by
FCcorr∗ as R1−σ ←R RSample(σ,Rσ). The only difference in the real execution, is
that there the honest party’s output is computed with PCG.Expand(1 − σ, k1−σ).
These two views are computationally indistinguishable, due to the security property
of PCG.

125

6 Pseudorandom Correlation Generators

6.4 Our Generic Construction of a PCG

In this section we provide a high-level template for building a PCG. This can be
viewed as a step forward towards towards the PCG construction given in Section
6.5.
On a high level, our strategy is as follows: We combine a pseudorandom generator

for expanding a short seed into a long pseudorandom string with a homomorphic
secret sharing scheme which allows to locally compute a correlation on given input
shares.

More precisely, in this section we consider the special case, where R0, R1 are
correlated if R0 + R1 = f(X) for some input X and fixed function f . Now, consider
a homomorphic secret sharing (HSS) scheme with additive reconstruction for f .
Recall that given shares of the input X an HSS allows to locally evaluate f on the
shares, s.t. the respective outputs add up to f(X).
The idea for our generic PCG construction is as follows: During key generation a

short seed k is shared between the players (as HSS shares). For expansion, the players
can then locally evaluate f(PRG(k)) via the HSS operations. By the correctness of
the HSS that indeed gives outputs R0,R1 with R0 +R1 = f(X), where X = PRG(k).
In this section we formally prove that the described construction meets the PCG
requirements.
Note that the challenge lies in actually instantiating the described approach effi-

ciently. This is due to the fact that known efficient HSS constructions only apply to
limited classes of functions, for instance Branching Programs. It is therefore crucial
to carefully select the underlying PRG and HSS.
In the following we formally define additive correlations corresponding to a func-

tion, and give a generic construction of PCGs based on a pseudorandom generator
and a suitable homomorphic secret scheme.
We will consider additive correlations corresponding to a family of functions F .

Such a correlation is generated by outputting an additive secret-sharing of a function
from f ∈ F applied to a source of randomness.

Definition 67 (Correlation Generators for Additive Correlations). Let R be a ring.
Let n,m ∈ N and F ⊆ {f : Rn → Rm} be a family of functions. Then we define a
correlation generator CF for F as follows: On input 1λ and f ∈ F the correlation
generator CF samples X ←R Rn, and returns a pair (R0,R1) ∈ Rm × Rm, which is
distributed uniformly at random conditioned on R0 + R1 = f(X).

Note that CF is reverse-sampleable for any family of functions F , as given a func-
tion f ∈ F and a share Rσ, one can draw an input X ←R Rn and set R1−σ :=
Rσ − f(X). Further, note that it is straightforward to includes shares of the in-
puts in the correlation by considering the family F ′ := {f ′ : Rn → Rn+m, X 7→
(X, f(X)) | f ∈ F}.

Definition 68 (HSS satisfying Pseudorandomness of Outputs). We say an HSS
HSS = (HSS.Gen,HSS.Share,HSS.Eval) for a function family F := {f : Rn → Rm}
satisfies pseudorandomness of outputs, if for all f : Rn → Rm ∈ F , (sk, {ekσ}σ∈{0,1})
← HSS.Gen(1λ), X ←R Rn, (k0, k1) ←R Share(sk, X), and σ ∈ {0, 1} the output
Rσ ←R HSS.Eval(σ, ekσ, kσ, f) is distributed computationally close to uniformly at
random over the output space.

126

6.4 Our Generic Construction of a PCG

• PCG.Setup(1λ): Sample and output (sk, {ekσ}σ∈{0,1})← HSS.Gen(1λ).

• PCG.Gen(sk): Sample r ← R` and output (k0, k1)← HSS.Share(sk, r).

• PCG.Expand(σ, ekσ, kσ, f): Output Rσ ← HSS.Eval(σ, ekσ, kσ, f◦PRG).

Figure 6.3: PCG for correlation CF . Here, PRG is a PRG and HSS = (HSS.Gen,
HSS.Share,HSS.Eval) an HSS for the family of functions FHSS := {f ◦ PRG : r 7→
f(PRG(r)) | f ∈ F}.

G0, G1, G2, G3 (correctness):

(sk, {ekσ}σ∈{0,1})← HSS.Gen(1λ)

r ←R R
`

X ←R R
n

(k0, k1)← HSS.Share(sk, r)
R0 ← HSS.Eval(0, ek0, k0, f ◦ PRG)

R0 ← Rm

R1 ← HSS.Eval(1, ek1, k1, f ◦ PRG)

R1 := f(PRG(r))− R0

R1 := f(X)− R0

b← A(1λ,R0,R1)
return b

G0, G1, G2, G3 (security, σ ∈ {0, 1}):

(sk, {ekσ}σ∈{0,1})← HSS.Gen(1λ)

r ←R R
`

r′ ←R R
`

X ←R R
n

(k0, k1)← HSS.Share(sk, r)

(k0, k1)← HSS.Share(sk, r′)

R1−σ ← HSS.Eval(1− σ, ek1−σ, k1−σ, f ◦
PRG)
Rσ ← HSS.Eval(σ, ekσ, kσ, f ◦ PRG)

Rσ := f(PRG(r))− R1−σ

Rσ := f(X)− R1−σ

b← A(1λ, ek1−σ, k1−σ,Rσ)
return b

Figure 6.4: Games G0 and G1 in the proof of Theorem 69.

Note that if f(U(Rn)) (where by U we denote the uniform distribution) is close
to being uniformly random on Rm, this property follows from the security of HSS.

Theorem 69. (PCG for Additive Correlations from HSS). Let R be a ring and
n,m, ` ∈ N. Let F ⊆ {f : Rn → Rm} be a family of functions. Let PRG be a PRG
and HSS = (HSS.Gen,HSS.Share,HSS.Eval) a (secret-key) homomorphic secret shar-
ing scheme with overhead OHSS

2 for the family of functions FHSS := {f ◦PRG : Rn →
Rm, r 7→ f(PRG(r)) | f ∈ F} that further satisfies pseudorandomness of outputs.
Then, PCG = (PCG.Setup,PCG.Gen,PCG.Expand) as defined in Figure 6.3 is a PCG
for the correlation generator CF with key-length upper bounded by ` ·OHSS.

Proof. Correctness. Let f ∈ F . We show correctnes via a series of games: The goal is
to show computational indistinguishability between the output of the pseudorandom
correlation generator (game G0) and the output of the correlation generator CF
(game G3). By εi we denote the probablity that a PPT adversary A outputs 1 in
game Gi. For an overview of the games we refer to Figure 6.4.

2We say a HSS has overhead OHSS, if for every input the share size does not exceed OHSS times
the input size.

127

6 Pseudorandom Correlation Generators

Transition G0 G1: By correctness of the HSS, we have

|ε0 − ε1| ≤ 1− Prcor
HSS,r,PRG◦f (λ) ≤ negl(λ)

for some negligible function negl : N→
String+.

Transition G1 G2: An adversary distinguishing between game G1 and G2 can
be transformed into an adversary distinguishing the output R0 from uniformly
at random.

By pseudorandomness of the outputs of the HSS HSS, we thus have that

|ε1 − ε2|

is negligible in λ.

Transition G2 G3: A distinguisher A between game G2 and game G3 can be
transformed into an adversary B on the pseudorandomness of PRG as follows.
The adversary B sets up everything according to G3, but sets R1 := f(U) −
R0, where U is the output of B’s pseudorandomness experiment. If U was
pseudorandom, then B simulates G2, otherwise, B simulates G3. We thus
have

|ε2 − ε3| ≤ Advprg
PRG,B(λ).

Security. Let σ ∈ {0, 1}. We show security via a sequence of hybrid games, where
in game G0 the adversary A obtains the output Rσ of the pseudorandom correlation
generator, and in game G3 the adversary obtains a pseudorandom Rσ (conditioned
on being related to R1−σ ← PCG.Expand(1 − σ, k1−σ)). Again, by εi we denote the
probablity that a PPT adversary A outputs 1 in game Gi. For an overview of the
games we refer to Figure 6.4. Transitions G0 G1 and G2 G3 are the same as
in the proof of correctness. It is left to show transition G1 G2:

Transition G1 G2: We can transform an adversary A distinguishing between
games G1 and G2 into an adversary B attacking the security of the homomor-
phic secret sharing scheme HSS as follows. The adversary B samples r, r′ ← R`.
Next, B gives b = 1− σ, r and r′ to the HSS security experiment and receives
an evaluation key ekb and a share kb. Now, B can compute R1−σ by evaluating
the HSS on ekb and kb and forward ekb, kb and Rσ = f(PRG(r))− R1−σ to the
adversary A. If ekb and kb corresponds to an encryption of r, then B simulates
G1, otherwise B simulates game G2. We thus have

|ε1 − ε2| ≤ Advsec
HSS,B(λ).

Altogether, we conclude that our generic PCG construction satisfies correctness
and security.

128

6.5 Our PCG for Authenticated Beaver Triples

6.5 Our PCG for Authenticated Beaver Triples

In this section we give a lattice-based PCG construction for any family of polynomials
of bounded degree over large finite fields. As a use case we consider the generation
of authenticated Beaver triples, that is, the correlation

{(a, b, ab, aα, bα, abα) | a, b ∈ Zr}

for some fixed MAC key α ∈ Zr.
A Pseudorandom Generator from MQ. Let R be a ring, and `, n ∈ N. Let
M(`2, n,R) be a distribution over R`2×n and M ←RM(`2, n,R). We assume that
for an appropriate choice of parameters

PRGMQ : R` → Rn, σ 7→M> · (σ ⊗ σ)

is a PRG. We sayM(`2, n,R) has sparsity ρ, if for every matrix M in the image of
M(`2, n,R), the number of non-zero entries in any column of M is at most ρ.
Note that if we chooseM(`2, n,R) to be the uniform distribution over R`2×n the

above assumption equals the MQ assumption of [MI88, Wol05, AHI+17]. While
multivariate public-key cryptography has a long history of schemes being built then
broken, we stress that the MQ assumption itself (which states that it is infeasible
to solve a random system of quadratic equations) is believed to be a conservative
assumption (in particular, the pseudorandomness of the MQ-based PRG reduces
to the conjectured one-wayness of solving a random system of quadratic assump-
tions [BGP06]), and underlies the security of plausible and well-studied primitives in
minicrypt (such as signatures scheme, or the stream cipher QUAD [BGP06]). Exist-
ing attacks on multivariate public-key cryptosystems all exploited the fact that the
security of these systems did not in fact reduce to the MQ assumption. Furthermore,
variants of MQ with a sparse matrix were considered several time as a natural op-
timization of MQ-based schemes [BCJ07, LLY08], and the resistance of the variant
with sparse matrix against classical attacks was analyzed in [BCJ07, DyY07].
In the following we instantiate the generic construction with variants of RLWE-

based homomorphic secret sharing schemes.

PCG from Somewhat Homomorphic Encryption. As observed in [DHRW16,
BKS19], from a somewhat homomorphic encryption scheme which supports dis-
tributed decryption one can construct a homomorphic secret sharing scheme. In the
following we give a semi-generic definition of properties the underlying encryption
scheme has to satisfy. Note that the definition can be instantiated with a variety of
lattice-based encryption schemes.

Definition 70 (Depth-d somewhat homomorphic encryption w/ distributed decryp-
tion). Let PKE := (PKE.Gen,PKE.Enc,PKE.Dec) be an IND-CPA secure public-
key encryption scheme. We say that PKE is a secure depth-d public-key encryption
scheme with distributed decryption if it further satisfies the following properties:

• Distributed decryption: Let R := Z[X]/(XN + 1), for N a power of two,
κ ∈ N and the secret key space of PKE contained in Rκq . We say PKE sup-
ports distributed decryption, if there exists an algorithm DDec such that

129

6 Pseudorandom Correlation Generators

for (pk, sk) ← PKE.Gen(1λ), sk0 ←R Rκq , sk1 := sk − sk0, m ∈ Rr, and
c←R Enc(pk,m) it holds

DDec(sk0, c) + DDec(sk1, c) = m

with overwhelming probability.

• Depth-d somewhat homomorphic encryption: There exists a procedure PKE.Eval
such that for any function f : Rn → Rm that can be evaluated by a circuit of
depth at most d, for any λ ∈ N, for any (pk, sk) in the image of Gen(1λ),
for all messages m1, . . . ,mn ∈ Rr, for all ciphertexts c1, . . . cn in the im-
age of PKE.Enc(pk,m1), . . . ,PKE.Enc(pk,mn) and for any c in the image of
PKE.Eval(f, (c1, . . . , cn)) it holds

PKE.Dec(sk, c) = f(m1, . . . ,mn).

Instantiating the generic construction with an HSS based on somewhat homomor-
phic encryption yields a PCG for any degree-d correlation (see Figure 6.5). As the
following Theorem is a straightforward consequence of Theorem 69, we omit the
proof.

Theorem 71. Let R be a ring, `, n, r, q,m ∈ N, PRG be a degree-c PRG PRG : R`r →
Rnr and PKE = (PKE.Gen,PKE.Enc,PKE.Dec) be a depth-dlog cde somewhat ho-
momorphic encryption scheme with message space Rr and secret key space con-
tained in Rκq . If PKE additionally support distributed decryption, then the PCG
PCG = (PCG.Setup,PCG.Gen,PCG.Expand) from Figure 6.5 is a PCG for the family
of functions F := {f : Rnr → Rmr | f is of degree at most d}.

Remark 72. Note that the key generation of the PCG given in Figure 6.5 can be
sourced out to the setup phase and the same secret key shares used across many
instances.

Corollary 73. Instantiating the PRG in the construction of Figure 6.5 with the
degree-2 ρ-sparse PRG PRGMQ : Z`r → Znr and the somewhat homomorphic encryp-
tion scheme with the BGV encryption scheme of Brakerski et al. [BGV12] (chosing
parameters R = Z[X]/(XN + 1), r, q and error distribution χ s.t. evaluation of at
least degree-5 functions/ depth-3 circuits is supported), we obtain a PCG for the
generation of authenticated Beaver triples, assuming ρ-sparseM(`2, n,Rr)-MQ and
RLWEN,q,χ.

Efficiency Estimates. Authenticated Beaver triples are used in multi-party pro-
tocols like [DPSZ12] to achieve fast online computation. Our PCG construction can
be used as a plug-in to replace the preprocessing in such protocols by a short joint
seed generation phase (with little communication) followed by a completely silent
expansion phase. As in the described setting a large amount of Beaver triples has
to be generated at once, lattice-based PCG constructions are of practical interest,
despite the overhead introduced by encryption.
Generating many Beaver triples at once we can use ciphertext packing, as first

observed by [SV14].

130

6.5 Our PCG for Authenticated Beaver Triples

PCG.Gen(1λ) :

• Generate the encryption keys. Generate keys (pk, sk) ←
PKE.Gen(1λ). Choose sk0 ←R R

κ
q and set sk1 := sk− sk0.

• Choose and encrypt a PRG-seed. Choose r ← D`(Rr). Compute

cr = PKE.Enc(pk, r) ∈ (Rκq)`.

• Output k0 := (sk0, c
r), k1 := (sk1, c

r).

PCG.Expand(σ, kσ, f) :

• Parse kσ =: (skσ, c
r).

• Evaluate f ◦ PRG on the encrypted seed. Compute

cY ← PKE.Eval(f ◦ PRG, cr) ∈ (Rκq)m.

• Decrypt the result. Decrypt and output

RYσ ← PKE.DDec(skσ, c
Y) ∈ Rmr .

Figure 6.5: PCG for the family of degree-d functions from degree-c D`-PRG PRG and
depth-dlog cde somewhat homomorphic encryption scheme PKE.

Remark 74 (Ciphertext packing, [SV14]). Let r be a prime and N ∈ N a power of
2, such that the polynomial XN + 1 splits over Zr into pairwise different degree-1
polynomials. If R := Z[X]/(XN + 1) (similar for general cyclotomic polynomials),
this implies Rr ∼= (Zr)N and enables “packing” N plaintexts into one ciphertext (by
encrypting ψ(z) for some z ∈ ZNr , where ψ : (Zr)N → Rr). In the following we will
refer to Rr as coefficient representation, and to (Zr)N as CRT representation.

Thus, each ciphertext has room to hold N encryptions. We first consider “naive”
ciphertext packing: We start with ` encryptions of each N seeds r ∈ Z`r, perform
the expansion homomorphically on the ciphertexts (which corresponds to expanding
feach of the N seeds in parallel). This gives an output of nN correlated tuples in
total.
In the following we estimate efficiency of the PCG construction given in Corollary

73 with the above described ciphertext packing. We use the parameters given in
[CS16] to support depth-4 homomorphic operations (as an upper bound) and plain-
text space modulus ≈ 2128 listed in the following. Here, by TM we denote the time
required for multiplication over Rq and by TC the time for multiplication of a Zq
element with an element in Rq.

• Dimension of R (over Z): N ≈ 13688 (we use N = 214)

• Ciphertext modulus: log q ≈ 750 (we use log q = 744)

• Parameter for key switching: log T ≈ 140

131

6 Pseudorandom Correlation Generators

• Cost of key switching: TKS ≈ 2(log q/ log T)TC

• Cost of multiplication on ciphertexts: TEval ≈ 4TM + TKS

• Cost of multiplication of constant with ciphertext: ≈ 2TC

• Cost of encryption: TEnc ≈ 2(TM + TC)

• Cost of decryption: TDec ≈ 2TM

For MQ we use parameters n = `2/24 and ρ = 100. Further, we set ` = c · 29 for
c ≥ 1. Later we will see that chosing c = 1 we surpass the breakeven point. In
other words, ` = 29 is the smallest choice where the total output size of the correla-
tion generator exceeds the seed-length. Our runtime estimates are based on NFLLib
[ABG+16]: A multiplication over Rq requires time ≈ 9.54 ms and a multiplication
over Rq × Zq requires time ≈ 0.55 ms. For an overview of estimated setup com-
putation and communication complexity (i.e. time and communication required for
jointly generating the seed) and estimated expansion times for the described PCG
construction and variants we refer to Table 6.1 in the introduction.

Distributed Seed Generation. We first describe the setup of the keys and MAC
α ∈ Zr, which can be reused across many instances. First, the parties jointly generate
secret key shares (sk0, sk1) and the corresponding public key pk, e.g. by generating
secret keys according to a suitable distribution and exchanging shares as well as the
corresponding public keys. Next, both parties choose a MAC share ασ ←R Zr and
define ασ ∈ ZNr to be the vector of all ασ entries. Next, the parties each compute
and exchange cψ(ασ) := Enc(pk, ψ(ασ)), and set cψ(α) := cψ(α0) + cψ(α1).
To generate encryptions of N seeds a and b in Z`r, both parties repeat 2` times:

Sample an element Rr at random (corresponding to N random Zr elements), and as
for generating an encryption of the MAC key, exchange and add up the corresponding
encryption.
As computation and communication is dominated by the last step, a rough es-

timate in the semi-honest setting are as follows: Generating 2` encryptions takes
about c · 20 seconds of computation and exchanging 2` ciphertexts (each of size
2N log q bits) requires c · 3 GB of communication (per party). We estimate that in
the dishonest setting communication complexity would roughly double.

Expansion Rate. We expand 2`N elements in Zq to nN shared authenticated
Beaver triples in Zr (each consisting of 6 Zr elements), which corresponds to ex-
panding roughly c · 3 GB of seed material to authenticated Beaver triples of total
size c2 · 17 GB.

Computational Efficiency of Expansion. The computational costs add up as
follows.

• Expanding the seed: The complexity to evaluate the PRG homomorphically on
2` ciphertexts sums up to 2`2 ciphertext multiplications and 4nρ multiplica-
tions of a constant with a ciphertext.

• Computing the triples: Evaluation of fα requires 4n ciphertexted multiplica-
tions.

132

6.5 Our PCG for Authenticated Beaver Triples

• Obtaining the output shares: To obtain the output we have to decrypt n6
ciphertexts.

Altogether, the costs sum up to

≈ 4nρTC + 4(2`2 + 7n)TM + 2(`2 + 2n)TKS.

This gives a total computation time of around c2 · 8.0 hours, which corresponds to
an amortized computations time of roughly 0.16 ms per authenticated Beaver triple.
PCG from SHE with Nearly Linear Decryption In this section we consider
a hybrid of the HSS based on somewhat homomorphic encryption and the HSS
presented on the previous chapter based on encryption schemes which satisfy nearly
linear decryption. Recall that the idea of our HSS is to replace multiplications of
ciphertexts cx and cy, by a distributed decryption of the ciphertext cx with shares
of y · sk.
Our strategy is to replace the last multiplication with an encryption of ψ(α) by a

distributed decryption of ψ(α) times the secret key. This leads to an improvement
in terms of computation, as in practise distributed decryption can be an order of
magnitude faster than homomorphic multiplication.
In Figure 6.6 we present the construction for the generation of authenticated

Beaver triples for a fixed MAC α ∈ Zr employing naive ciphertext packing.
When choosing the parameters of the underlying encryption scheme, one needs

to take into account the noise growth introduced by homomorphic multiplication,
as the distributed decryption technique of [BKS19] requires r/‖e‖∞ � q, where e
is the noise term in the ciphertext. We estimate that taking the parameters for
depth-4 BGV scheme is sufficient in practice. With the scheme of Figure 6.6 we can
save 3n evaluation operations compared to the scheme solely based on somewhat
homomorphic encryption, which results in a saving of about c2 · 0.4 hours. We
conjecture that an additional efficiency improvement over the previous scheme can
be achieved by choosing the parameters more carefully.
We do not switch to the construction of Boyle et al. [BKS19] completely for the

evaluation of fα, even though this would save another n evaluation operations, as to
evaluate polynomials of degree-3 or higher their construction relies on the so-called
modulus-lifting technique, which necessitates the choice of larger parameters for the
underlying ring to ensure correctness.
PCG with Iterative Expansion. As we choose a sparse matrix distribution
(namely only ρ = 100 non-zero entries per row) to instantiate MQ, we can locally
evaluate the PRG and therefore obtain a way to iteratively generate N Beaver triples
at a time. This requires slightly more computational costs (assuming one wants
to discard intermediary products), but allows to generate Beaver triples whenever
needed instead of having to generate all at once. This can be achieved as follows: To
generate shares of N Beaver triples, one needs to compute the scalar product of some
i-th column of theM(l2, n,Rr)-MQ matrix M with the vector of encryptions of r⊗r,
where r is some seed. As M is sparse by assumption, this requires only to compute
a linear combination of ρ products ri · rj on encryptions. With the numbers from
above to generate N triples this approach inherits computational costs for expansion
of

(4 + 2ρ)TEval + 4ρTC + 12TM = 4ρTC + (28 + 8ρ)TM + (4 + 2ρ)TKS.

133

6 Pseudorandom Correlation Generators

PCG.Gen(1λ) :

• Generate the encryption keys. Generate keys (pk, sk) ←
PKE.Gen(1λ). Choose sk0 ←R R

κ
q and set sk1 := sk− sk0.

• Generate a share of the MAC key. Choose α ←R Zr, define
α ∈ ZNr to be the vector of all α entries. Choose s0 ←R Rκq and
compute

s1 := ψ(α) · sk− s0.

• Choose and encrypt a PRG-seeds. Choose ra, rb ← R`r. Compute
and output

cra = PKE.Enc(pk, ra), c
rb = PKE.Enc(pk, rb) ∈ (Rκq)`.

• Output k0 := (sk0, s0, c
ra , crb), k1 := (sk1, s1, c

ra , crb).

PCG.Expand(σ, kσ, f) :

• Parse kσ =: (skσ, sσ, c
ra , crb).

• Evaluate PRG homomorphically on the encrypted seed. Com-
pute

ca ← PKE.Eval(PRG, cra), cb ← PKE.Eval(PRG, crb) ∈ (Rκq)n.

• Evaluate Fα homomorphically on the encrypted input. Com-
pute

cY ← PKE.Eval(Fα, c
a, cb) ∈ (Rκq)6n.

• Obtain shares of Y via distributed decryption with skσ . Com-
pute

RYσ ← PKE.DDec(sσ, c
Y) ∈ R6n

r .

• Obtain the output shares over Zr. Output

Ψ−1(RY) ∈ Z6nN
r .

Figure 6.6: PCG for authenticated Beaver triples with MAC α from degree-2 PRG
PRG : Z`r → Znr and depth-2 somewhat homomorphic encryption scheme PKE with
nearly linear decryption. Here, Fα : Znr ×Znr → (Znr)6, (a, b) 7→ (a, b, a◦b, a◦α, b◦α, a◦
b ◦ α) corresponds to evaluating fα componentwise on each of the n input tuples (◦
denotes the entrywise product). By Ψ−1 we denote the map evaluating ψ−1 : Rr → ZNr
componentwise.

This corresponds to a computation time of about 10 seconds per iteration (i.e. per
N triples of total size 1.6 MB generated), which is amortized 0.57 seconds per triple.
Note that this approach is still limited to a total expansion of nN triples.

PCG with Full Ciphertext Packing. Note that the above approach limits

134

6.5 Our PCG for Authenticated Beaver Triples

us to go from ≈ `N elements to ≈ `2N elements (where N is the degree of the
plaintext space over Zr). As N is generally quite large that leads to a somewhat
limited expansion. To overcome this we investigated into packing more smartly,
which allows going from ≈ N elements to ≈ N2 elements. To do so we build on the
techniques of [HS18]. Even though the approach does not look promising in terms
of computation due to expensive key switching operations, we believe that it is an
interesting direction for future research.
For simplicity assume that R := Z[X]/(XN+1) such thatXN+1 splits completely

over Zr and further, that the Galois group G := Gal(Q(w)/Q) = {X 7→ Xj : j ∈ Z?m}
is cyclic, where w is a primitive N -th root of unity. In this case the automorphisms
α ∈ G act on ZNr by rotating the slots. Let r = ψ(r) ∈ Rr be some packed
plain text in coefficient representation corresponding to a vector of N plain texts
r ∈ ZNr . As shown in [LPR10, HS18], applying an automorphism τ to a ciphertext
c ←R Enc(pk, ψ(r)) leads to an encryption of ψ(τ(r)) which can be decrypted with
τ(sk) (roughly, the reason is that applying an automorphism does not change the
norm of the noise much and therefore one can decrypt with the shifted key to the
shifted plaintext). Thus, by applying an automorphism and introducing a key-
switching step, we can let plaintexts in different slots interact with each other and
thereby achieve truly quadratic expansion.
Again, consider the BGV scheme with depth-4 homomorphic operations and plain-

text space modulus ≈ 2128. (Note that in order to get exact numbers one would have
to make a careful analysis on the the noise growth introduced by applying the auto-
morphisms. As the numbers we use support up to depth-4 homomorphic operations,
whereas we only need to compute a circuit of depth-3, we assume that the parameters
also apply to the described setting for the following analysis.)
We apply the matrix multiplication technique of [HS14] and assume to be given

M ←R M(N2, N2/24, Rq) accordingly in CRT-packed form. We can now start
with a single ciphertext, i.e. 2N elements in Zq. In the following we provide the
numbers for obtaining ≈ N2 authenticated Beaver triples. Additional costs are
N key switching operations during seed generation, and N2 key switching steps
during matrix multiplication (because the matrix multiplication technique requires
to permute each part of the vector). Note that one can alternatively only partly
expand the ciphertext to generate less triples at a time and thereby saving in terms
of computations (at a time). We obtain the following estimated costs:

2NTKS + 2NTEval + 2N2TKS + 2(N2/24)ρ+ 4TEval + 6TDec

= (8N + 28)TM + 2(N2 + 2N + 2)TKS + 2(N2/24)ρ.

This adds up to a total expansion time in the order of c2·900 hours and is therefore far
from practical. We leave it as an open question to achieve truly quadratic extension
at a reasonable efficiency.

135

Bibliography

References

[ABG+16] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast
lattice library. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of
LNCS, pages 341–356. Springer, Heidelberg, February / March 2016.

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. In Xiaoyun
Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 4–24. Springer, Heidelberg, December 2012.

[ACD+16] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. Journal of
Cryptology, 29(4):833–878, October 2016.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677
of LNCS, pages 595–618. Springer, Heidelberg, August 2009.

[ADK+13] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki,
and Miyako Ohkubo. Tagged one-time signatures: Tight security and
optimal tag size. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 312–331. Springer, Heidelberg,
February / March 2013.

[AHI+17] Benny Applebaum, Naama Haramaty, Yuval Ishai, Eyal Kushilevitz,
and Vinod Vaikuntanathan. Low-complexity cryptographic hash func-
tions. In Christos H. Papadimitriou, editor, ITCS 2017, volume 4266,
pages 7:1–7:31, 67, January 2017. LIPIcs.

[AHN+17] Masayuki Abe, Dennis Hofheinz, Ryo Nishimaki, Miyako Ohkubo,
and Jiaxin Pan. Compact structure-preserving signatures with al-
most tight security. In Jonathan Katz and Hovav Shacham, edi-
tors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 548–580.
Springer, Heidelberg, August 2017.

137

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. A
framework for identity-based encryption with almost tight security. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I,
volume 9452 of LNCS, pages 521–549. Springer, Heidelberg, Novem-
ber / December 2015.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer,
Vinod Vaikuntanathan, and Daniel Wichs. Multiparty computation
with low communication, computation and interaction via threshold
FHE. In David Pointcheval and Thomas Johansson, editors, EURO-
CRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer, Heidel-
berg, April 2012.

[AJO+19] Masayuki Abe, Charanjit Jutla, Miyako Ohkubo, Jiaxin Pan, Arnab
Roy, and Yuyu Wang. Shorter QA-NIZK and SPS with tighter security.
In ASIACRYPT 2019. Springer, 2019.

[AJOR18] Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, and Arnab Roy.
Improved (almost) tightly-secure simulation-sound QA-NIZK with ap-
plications. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part I, LNCS, pages 627–656. Springer, Heidelberg,
December 2018.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

[ASM07] Man Ho Au, Willy Susilo, and Yi Mu. Practical compact e-cash. In
Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors, ACISP 07,
volume 4586 of LNCS, pages 431–445. Springer, Heidelberg, July 2007.

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key en-
cryption in a multi-user setting: Security proofs and improvements. In
Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
259–274. Springer, Heidelberg, May 2000.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele
Orrù. Homomorphic secret sharing: Optimizations and applications. In
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 2105–2122. ACM Press, October / Novem-
ber 2017.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
Peter Rindal, and Peter Scholl. Efficient two-round OT extension and
silent non-interactive secure computation. In ACM CCS 19. ACM Press,
2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient pseudorandom correlation generators: Silent
OT extension and more. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2019, Part III, LNCS, pages 489–518. Springer, Hei-
delberg, August 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Com-
pressing vector OLE. In ACM CCS 18, pages 896–912. ACM Press,
2018.

[BCJ07] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient
methods for conversion and solution of sparse systems of low-degree mul-
tivariate polynomials over GF(2) via SAT-Solvers. Cryptology ePrint
Archive, Report 2007/024, 2007. http://eprint.iacr.org/2007/024.

[BCKL08] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyan-
skaya. P-signatures and noninteractive anonymous credentials. In
Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages 356–374.
Springer, Heidelberg, March 2008.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyan-
skaya. Compact e-cash and simulatable VRFs revisited. In Hovav
Shacham and Brent Waters, editors, PAIRING 2009, volume 5671 of
LNCS, pages 114–131. Springer, Heidelberg, August 2009.

[BDH14] Florian Böhl, Gareth T. Davies, and Dennis Hofheinz. Encryption
schemes secure under related-key and key-dependent message attacks.
In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
483–500. Springer, Heidelberg, March 2014.

[BDIR18] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin.
On the local leakage resilience of linear secret sharing schemes. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 531–561. Springer, Heidelberg, August
2018.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In Ken-
neth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 169–188. Springer, Heidelberg, May 2011.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 420–432. Springer, Heidelberg, August 1992.

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of
private computations. In 28th ACM STOC, pages 479–488. ACM Press,
May 1996.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM
STOC, pages 103–112. ACM Press, May 1988.

[BG90] Mihir Bellare and Shafi Goldwasser. New paradigms for digital signa-
tures and message authentication based on non-interative zero knowl-
edge proofs. In Gilles Brassard, editor, CRYPTO’89, volume 435 of
LNCS, pages 194–211. Springer, Heidelberg, August 1990.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 337–367. Springer, Heidelberg,
April 2015.

[BGI16a] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size
barrier for secure computation under DDH. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Heidelberg, August 2016.

[BGI16b] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Im-
provements and extensions. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 16, pages 1292–1303. ACM Press, October 2016.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro.
Foundations of homomorphic secret sharing. In Anna R. Karlin, editor,
ITCS 2018, volume 94, pages 21:1–21:21. LIPIcs, January 2018.

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A prac-
tical stream cipher with provable security. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 109–128. Springer,
Heidelberg, May / June 2006.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled)
fully homomorphic encryption without bootstrapping. In Shafi Gold-
wasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

[BHHO08] Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky.
Circular-secure encryption from decision Diffie-Hellman. In David Wag-
ner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 108–125.
Springer, Heidelberg, August 2008.

[BJLS16] Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the im-
possibility of tight cryptographic reductions. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 273–304. Springer, Heidelberg, May 2016.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based
encryption from affine message authentication. In Juan A. Garay and
Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 408–425. Springer, Heidelberg, August 2014.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing
from lattices without FHE. In Vincent Rijmen and Yuval Ishai, editors,
EUROCRYPT 2019, Part II, LNCS, pages 3–33. Springer, Heidelberg,
May 2019.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé. Classical hardness of learning with errors. In Dan
Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM
STOC, pages 575–584. ACM Press, June 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer,
Heidelberg, April 2012.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus
switching from classical GapSVP. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 868–886.
Springer, Heidelberg, August 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-LWE and security for key dependent messages. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
505–524. Springer, Heidelberg, August 2011.

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and
Yann Rotella. On the concrete security of Goldreich’s pseudorandom
generator. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, LNCS, pages 96–124. Springer, Heidelberg,
December 2018.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-
vate information retrieval. In 36th FOCS, pages 41–50. IEEE Computer
Society Press, October 1995.

[Cle91] Richard Cleve. Towards optimal simulations of formulas by bounded-
width programs. Computational Complexity, 1:91–105, 1991.

[Cor02] Jean-Sébastien Coron. Optimal security proofs for PSS and other signa-
ture schemes. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume
2332 of LNCS, pages 272–287. Springer, Heidelberg, April / May 2002.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In Hugo
Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 13–25.
Springer, Heidelberg, August 1998.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical
public-key encryption schemes secure against adaptive chosen ciphertext
attack. SIAM Journal on Computing, 33(1):167–226, 2003.

[CS16] Ana Costache and Nigel P. Smart. Which ring based somewhat ho-
momorphic encryption scheme is best? In Kazue Sako, editor, CT-
RSA 2016, volume 9610 of LNCS, pages 325–340. Springer, Heidelberg,
February / March 2016.

[CW13] Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and
dual system groups. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435–460. Springer,
Heidelberg, August 2013.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs.
Spooky encryption and its applications. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 93–122. Springer, Heidelberg, August 2016.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Mes-
sage authentication, revisited. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
355–374. Springer, Heidelberg, April 2012.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, vol-
ume 7417 of LNCS, pages 643–662. Springer, Heidelberg, August 2012.

[DyY07] Jintai Ding and Bo yin Yang. Multivariates polynomials for hashing.
Cryptology ePrint Archive, Report 2007/137, 2007. http://eprint.
iacr.org/2007/137.

[DZ13] Ivan Damgård and Sarah Zakarias. Constant-overhead secure compu-
tation of Boolean circuits using preprocessing. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 621–641. Springer, Heidelberg,
March 2013.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. How to exchange
secrets with oblivious transfer. In Communications of the ACM, 28(6),
pages 637–647. Aiken Computation Lab, Harvard University, 1985.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-
lar. An algebraic framework for Diffie-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. Cryptology ePrint Archive, Report 2012/144,
2012. http://eprint.iacr.org/2012/144.

[GCD+16] Junqing Gong, Jie Chen, Xiaolei Dong, Zhenfu Cao, and Shaohua
Tang. Extended nested dual system groups, revisited. In Chen-Mou
Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 133–163. Springer, Hei-
delberg, March 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

[GHK17] Romain Gay, Dennis Hofheinz, and Lisa Kohl. Kurosawa-desmedt
meets tight security. In Jonathan Katz and Hovav Shacham, edi-
tors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 133–160.
Springer, Heidelberg, August 2017.

[GHKP18] Romain Gay, Dennis Hofheinz, Lisa Kohl, and Jiaxin Pan. More efficient
(almost) tightly secure structure-preserving signatures. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 230–258. Springer, Heidelberg, April / May
2018.

[GHKW16] Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly
CCA-secure encryption without pairings. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 1–27. Springer, Heidelberg, May 2016.

[GI99] Niv Gilboa and Yuval Ishai. Compressing cryptographic resources. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
591–608. Springer, Heidelberg, August 1999.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their ap-
plications. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 640–658. Springer, Heidel-
berg, May 2014.

[GL07] Jens Groth and Steve Lu. A non-interactive shuffle with pairing based
verifiability. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume
4833 of LNCS, pages 51–67. Springer, Heidelberg, December 2007.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest ma-
jority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM
Press, May 1987.

[Gol00] Oded Goldreich. Candidate one-way functions based on expander
graphs. Cryptology ePrint Archive, Report 2000/063, 2000. http:
//eprint.iacr.org/2000/063.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for
noninteractive zero-knowledge. J. ACM, 59(3):11:1–11:35, June 2012.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008.

[HHK18] Julia Hesse, Dennis Hofheinz, and Lisa Kohl. On tightly secure non-
interactive key exchange. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 65–94.
Springer, Heidelberg, August 2018.

[HIJ+16] Shai Halevi, Yuval Ishai, Abhishek Jain, Eyal Kushilevitz, and Tal Ra-
bin. Secure multiparty computation with general interaction patterns.

In Madhu Sudan, editor, ITCS 2016, pages 157–168. ACM, January
2016.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-
key encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 590–607. Springer, Hei-
delberg, August 2012.

[HJ16] Dennis Hofheinz and Tibor Jager. Verifiable random functions from
standard assumptions. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 336–362. Springer,
Heidelberg, January 2016.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weak-
ened key encapsulation. In Alfred Menezes, editor, CRYPTO 2007,
volume 4622 of LNCS, pages 553–571. Springer, Heidelberg, August
2007.

[HKS15] Dennis Hofheinz, Jessica Koch, and Christoph Striecks. Identity-based
encryption with (almost) tight security in the multi-instance, multi-
ciphertext setting. In Jonathan Katz, editor, PKC 2015, volume 9020
of LNCS, pages 799–822. Springer, Heidelberg, March / April 2015.

[HLLG19] Shuai Han, Shengli Liu, Lin Lyu, and Dawu Gu. Tight leakage-
resilient CCA-security from quasi-adaptive hash proof system. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2019, Part II,
LNCS, pages 417–447. Springer, Heidelberg, August 2019.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional compu-
tational entropy, or toward separating pseudoentropy from compressibil-
ity. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 169–186. Springer, Heidelberg, May 2007.

[Hof12] Dennis Hofheinz. All-but-many lossy trapdoor functions. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, vol-
ume 7237 of LNCS, pages 209–227. Springer, Heidelberg, April 2012.

[Hof16] Dennis Hofheinz. Algebraic partitioning: Fully compact and (almost)
tightly secure cryptography. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part I, volume 9562 of LNCS, pages 251–281. Springer,
Heidelberg, January 2016.

[Hof17] Dennis Hofheinz. Adaptive partitioning. In Jean-Sébastien Coron and
Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part III, volume
10212 of LNCS, pages 489–518. Springer, Heidelberg, April / May 2017.

[HPS18] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An improved RNS vari-
ant of the BFV homomorphic encryption scheme. Cryptology ePrint
Archive, Report 2018/117, 2018. https://eprint.iacr.org/2018/
117.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HElib. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 554–571. Springer, Heidelberg, August 2014.

[HS18] Shai Halevi and Victor Shoup. Faster homomorphic linear transforma-
tions in HElib. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 93–120. Springer,
Heidelberg, August 2018.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity
of secure function evaluation with long output. In Tim Roughgarden,
editor, ITCS 2015, pages 163–172. ACM, January 2015.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 145–161. Springer, Heidelberg, August
2003.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-
random generation from one-way functions (extended abstracts). In
21st ACM STOC, pages 12–24. ACM Press, May 1989.

[JOR18] Charanjit S. Jutla, Miyako Ohkubo, and Arnab Roy. Improved (almost)
tightly-secure structure-preserving signatures. In Michel Abdalla and
Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS,
pages 123–152. Springer, Heidelberg, March 2018.

[JR14] Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests
and constant-size NIZK proofs for linear subspaces. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of
LNCS, pages 295–312. Springer, Heidelberg, August 2014.

[JR17] Charanjit S. Jutla and Arnab Roy. Improved structure preserving sig-
natures under standard bilinear assumptions. In Serge Fehr, editor,
PKC 2017, Part II, volume 10175 of LNCS, pages 183–209. Springer,
Heidelberg, March 2017.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryp-
tion scheme. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 426–442. Springer, Heidelberg, August 2004.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20–31. ACM Press, May 1988.

[Koh19] Lisa Kohl. Hunting and gathering - verifiable random functions from
standard assumptions with short proofs. In PKC 2019, Part II, LNCS,
pages 408–437. Springer, Heidelberg, 2019.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In Jacques Stern, editor, EUROCRYPT’99,
volume 1592 of LNCS, pages 206–222. Springer, Heidelberg, May 1999.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making
SPDZ great again. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 158–189.
Springer, Heidelberg, April / May 2018.

[KPW15] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. Structure-preserving signa-
tures from standard assumptions, revisited. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216
of LNCS, pages 275–295. Springer, Heidelberg, August 2015.

[KW15] Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces
revisited. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015.

[LJYP14] Benoît Libert, Marc Joye, Moti Yung, and Thomas Peters. Concise
multi-challenge CCA-secure encryption and signatures with almost tight
security. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 1–21. Springer, Heidelberg, De-
cember 2014.

[LLHG18] Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly SIM-SO-CCA
secure public key encryption from standard assumptions. In Michel
Abdalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769
of LNCS, pages 62–92. Springer, Heidelberg, March 2018.

[LLY08] Feng-Hao Liu, Chi-Jen Lu, and Bo-Yin Yang. Secure PRNGs from spe-
cialized polynomial maps over any. In Johannes Buchmann and Jintai
Ding, editors, Post-quantum cryptography, second international work-
shop, PQCRYPTO 2008, pages 181–202. Springer, Heidelberg, October
2008.

[LPJY15] Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Compactly
hiding linear spans - tightly secure constant-size simulation-sound QA-
NIZK proofs and applications. In Tetsu Iwata and Jung Hee Cheon,
editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 681–
707. Springer, Heidelberg, November / December 2015.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer,
Heidelberg, May 2013.

[LPY15] Benoît Libert, Thomas Peters, and Moti Yung. Short group signatures
via structure-preserving signatures: Standard model security from sim-
ple assumptions. In Rosario Gennaro and Matthew J. B. Robshaw,

editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 296–316.
Springer, Heidelberg, August 2015.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case re-
ductions for module lattices. Des. Codes Cryptography, 75(3):565–599,
2015.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-
tuples for efficient signature-verification and message-encryption. In
C. G. Günther, editor, EUROCRYPT’88, volume 330 of LNCS, pages
419–453. Springer, Heidelberg, May 1988.

[MR02] Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart
Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 149–163.
Springer, Heidelberg, February 2002.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random
functions. In 40th FOCS, pages 120–130. IEEE Computer Society Press,
October 1999.

[MRV16] Paz Morillo, Carla Ràfols, and Jorge Luis Villar. The kernel matrix
Diffie-Hellman assumption. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 729–
758. Springer, Heidelberg, December 2016.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased gener-
ators in NC0. In 44th FOCS, pages 136–145. IEEE Computer Society
Press, October 2003.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Hei-
delberg, August 2012.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC, pages 427–437.
ACM Press, May 1990.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest
vector problem: extended abstract. In Michael Mitzenmacher, editor,
41st ACM STOC, pages 333–342. ACM Press, May / June 2009.

[Rab81] Michael O. Rabin. How to exchange secrets with oblivious transfer. In
TR-81 edition. Aiken Computation Lab, Harvard University, 1981.

[Ràf15] Carla Ràfols. Stretching groth-sahai: NIZK proofs of partial satisfia-
bility. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 247–276. Springer, Heidelberg,
March 2015.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th
ACM STOC, pages 84–93. ACM Press, May 2005.

[Sch18] Peter Scholl. Extending oblivious transfer with low communication via
key-homomorphic PRFs. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part I, volume 10769 of LNCS, pages 554–583. Springer,
Heidelberg, March 2018.

[SV11] N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations.
Cryptology ePrint Archive, Report 2011/133, 2011. http://eprint.
iacr.org/2011/133.

[SV14] N. P. Smart and F. Vercauteren. Fully homomorphic simd operations.
Des. Codes Cryptography, 71(1):57–81, April 2014.

[Wol05] Christopher Wolf. Multivariate quadratic polynomials in public key
cryptography. Cryptology ePrint Archive, Report 2005/393, 2005.
http://eprint.iacr.org/2005/393.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 17, pages 21–37. ACM Press, October / November
2017.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 17, pages 39–56. ACM
Press, October / November 2017.

[WYG+17] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikuntanathan,
and Matei Zaharia. Splinter: Practical private queries on public data.
In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, pages 299–313, 2017.

[Yao82a] Andrew Chi-Chih Yao. Protocols for secure computations (extended
abstract). In 23rd FOCS, pages 160–164. IEEE Computer Society Press,
November 1982.

[Yao82b] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions
(extended abstract). In 23rd FOCS, pages 80–91. IEEE Computer So-
ciety Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

