
A Glimpse of the Matrix (Extended Version)
Scalability Issues of a New Message-Oriented Data Synchronization Middleware

Florian Jacob
Karlsruhe Institute of Technology

Institute of Telematics

florian.jacob@kit.edu

Jan Grashöfer
Karlsruhe Institute of Technology

Institute of Telematics

jan.grashoefer@kit.edu

Hannes Hartenstein
Karlsruhe Institute of Technology

Institute of Telematics

hannes.hartenstein@kit.edu

Abstract

Matrix is a new message-oriented data synchroniza-
tion middleware, used as a federated platform for near
real-time decentralized applications. It features a novel
approach for inter-server communication based on syn-
chronizing message history by using a replicated data
structure. We measured the structure of public parts in
the Matrix federation as a basis to analyze the middle-
ware’s scalability. We confirm that users are currently
cumulated on a single large server, but find more small
servers than expected. We then analyze network load
distribution in the measured structure and identify scala-
bility issues of Matrix’ group communication mechanism
in structurally diverse federations.

1 Introduction

Matrix1 is a federated middleware for decentralized
applications, e.g. federated instant messengers2. It is
based on a client-server architecture where independent
servers with limited mutual trust cooperate. It provides
topic-based publish-subscribe access on an eventually-
consistent database of messages and state changes. Top-
ics are called rooms in Matrix. A user’s devices only
connect to the user’s Matrix homeserver, which acts
as representative for the user in the Matrix federation.
For each room, the participating servers form a com-
munication group: They send messages to a room by
broadcasting, and receive messages and history from
the other servers. In contrast to other message-oriented
middlewares, Matrix does not provide message passing
but message history synchronization [16]. For appli-
cations, this has the advantage of not losing messages
in transit, and of a consistent history between all of a
user’s devices [16]. Messages and state changes form a

1https://matrix.org, https://matrix.org/docs/spec/
2The name “Matrix” originates from the aim to reunite users
on different communication channels by using Matrix as a
meta-network to interconnect, or “matrix together”, previously
segregated instant messaging platforms [17].

partial order in the replicated per-room data structure
from which the current state is derived.
At present, the public federation is centered around

one large server with about 50 000 daily active users as
of January 2019. However, Matrix is growing fast and
is intended to be more decentralized. Consequently, the
structure of the network might change drastically in
the future when more servers join the federation and
users are distributed more evenly across them. This
will challenge the Matrix protocol in terms of scalability.
In addition to the public federation, at least one large,
independent private federation exists: In April 2019,
the French government announced the beta release of
its own, self-sovereign communication system based
on Matrix for the six million employees in the French
public sector in the form of a private federation between
ministries [5, 20].
In light of the increasing adoption of Matrix, this

paper focuses on examining the public Matrix federa-
tion as well as the protocol’s scalability. We crawled
parts of the public federation and observed an imbal-
anced network. We confirm that, despite its goal of
decentralization, the public federation is mostly cen-
tralized in a single server, but also show that there
are more small servers than expected. Based on our
measurements, we show scalability issues of the current
message distribution algorithm. We present ideas for a
scalable replacement with the intention to allow lever-
aging Matrix’ combination of messaging and storage
in Internet-scale environments, e.g. in the Internet of
Things.

The remainder of this paper is structured as follows.
First, we outline the architecture of Matrix (section 2)
and describe its relation to other middlewares (sec-
tion 3). Then, we present our measurements of the
public Matrix federation and discuss our results (sec-
tion 4). Finally, we elaborate on the scalability of the
network (section 5), and conclude by pointing out di-
rections for future research (section 6).

A peer-reviewed short version of this work is available
at https://doi.org/10.1145/3366627.3368106.

1

ar
X

iv
:s

ub
m

it/
28

88
31

8
 [

cs
.N

I]
 2

9
N

ov
 2

01
9

https://matrix.org
https://matrix.org/docs/spec/
https://doi.org/10.1145/3366627.3368106

2 Architecture

In this section, we provide a brief overview of the Matrix
architecture based on the publicly available specifica-
tion [16]. To use Matrix, an account on a homeserver
is required. Homeservers act as a proxy for their users,
as they execute actions and listen for reactions on their
behalf. The public federation is open, i.e. a user can ei-
ther set up a personal homeserver or register an account
on a public homeserver.
In Matrix, all communication is organized in rooms.

A room is not “located” on any single homeserver, but
all homeservers that take part in a room are equal peers.
To become part of a room, a server contacts one of
the servers known to be part of the room in question,
allowing its users to join.
Messages sent to a room are expressed as events.

Events can be categorized as either message events, like
instant messages, or state events, which update persis-
tent information associated with a room, e.g. its name,
access control policies and permissions. The homeserver
inserts new events into its copy of the Matrix Event
Graph, the distributed data structure that constitutes
the core of Matrix, and sends the event including addi-
tional meta data to all servers that participate in the
corresponding room. Each room has its own replicated
Event Graph, independent of the graphs of other rooms.
Based on the exchanged information, the participating
homeservers are able to reach an eventually consistent
state. The process of homeservers exchanging events
for a room is called history synchronization. Eventual
consistency [19] represents a middle ground between
weak consistency and strong consistency: It guarantees
that the distributed system will converge to a consistent
state for a data object after a sufficiently long time with-
out write accesses, where the maximum time depends
on factors like the number of participating servers, their
load, and the latencies between them. In addition to
the Event Graph itself forming a partial ordering on
all events, state events form a key-value store for the
current persistent information associated with the room.
Participating servers independently execute a consensus
algorithm on the partially ordered state events called
the Matrix State Resolution Algorithm to consistently
agree on a room information state.

3 Related Work

Ermoshina et al. survey 30 instant messaging services
including one based on Matrix [4] that are either decen-
tralized, end-to-end encrypted, or both. Work on the
Matrix middleware itself mainly targets its end-to-end
cryptography [1, 9], while other aspects have yet to
be examined. The structure of other communication
networks like the Internet Relay Chat (IRC) has been
investigated before: Décary-Hétu et al. used an IRC
crawler bot [3] similar to our crawler bot, but for gain-

ing insights on the activities and the social graph of
cyber criminals using IRC to stay in contact with their
community.
Distributed variants of message-oriented middle-

wares [2] like RabbitMQ [15], and distributed storage
systems like Cassandra [11], are decentralized, i.e. every
node operates indepentently. Requests are equally dis-
tributed on all nodes, scaling linearly with the number
of nodes. This distribution requires that all nodes are
controlled by a single entity, i.e. it is not byzantine fault
tolerant and can not be operated in a federation with
limited trust. XMPP3 as message-oriented middleware
supports public federation, but its group communica-
tion mechanism relies on centralized, trusted parties.
Matrix, however, is a promising new type of middleware
for decentralized applications as it combines distributed
messaging and distributed storage, while supporting
federations of limited trust.

Furthermore, we will show that all group communica-
tion mechanisms qualify as related work, be it broadcast,
network-layer multicast, gossiping or other approaches.

4 Measuring the
Federation Structure

In this section, we describe our study on the structure
of the public Matrix federation. In order to model
the relevant entities and their relationships, we define
an abstract representation of the relationship between
users, rooms and servers in form of a tripartite graph we
call the network structure, as shown in Figure 1. Each
user node is connected to exactly one server node which
is the user’s homeserver (n:1), a user node is connected
to a room node if the user is a member of that room
(n:m), and lastly, a server node is connected to a room
node if at least one of its users is a member of that
room (n:m).

User Room

Servern 1

n m

n m

Figure 1: Relations in the network structure

In the following, we present our measuring method
based on a crawler bot called DSN Traveller (subsec-
tion 4.1), and provide details on our ethical considera-
tions (subsection 4.2). Finally, we present our findings
and discuss possible conclusions based on our measure-
ments (subsection 4.3). The raw, anonymized network
structure measurement is available for download [8].

3https://xmpp.org/,
https://xmpp.org/extensions/xep-0045.html

2

https://xmpp.org/
https://xmpp.org/extensions/xep-0045.html

4.1 DSN Traveller Crawler Bot

The aim pursued with the DSN Traveller crawler bot is
to gather a partial snapshot of the network structure of
the public Matrix federation by crawling public rooms.
To minimize interference with the network by the ob-
servation, a private Matrix homeserver was set up. It
was only used for hosting the bot and communications
related to it.

For the crawling process, the publicly-available data
from Matrix Voyager [14] was reduced to a room list and
provided to the crawler bot. After crawling, the graph
was filtered with respect to special cases, ignoring the
bot’s homeserver and a subset of bridged nodes, which
only act as stubs.

4.2 Ethics

While the data we base our study on could be seen as
publicly available and is accessible by everyone, no other
entity is currently known that collects it systematically.
To balance the interest of Matrix users not getting
tracked and the quantity of data that could be obtained,
users had the option to opt out on a per-room basis
by kicking or banning the bot’s user from the room
in question, which happened 12 times over the course
of the study. On top of that, server operators were
given the option of opting out with a whole server. Two
privacy-focused homeservers made use of this option.
The data gets pseudonymized directly after acquisi-

tion and filtering. Deriving a deterministic identifier for
each node is required during the crawling, as users and
servers that were already discovered in other rooms have
to be deduplicated. After collection, the pseudonyms
get anonymized before the graph is stored on disk.
Furthermore, a number of measures were taken to

inform the Matrix community about the crawler’s ac-
tivities and to ensure their benevolence and trust: The
bot had a website placed at the homeserver’s domain,
containing an explanation in layman’s terms on what
the bot was doing, why, and how one could interact
with the bot [7]. A Matrix chat room #dsn-traveller:
dsn-traveller.dsn.scc.kit.edu for questions or dis-
cussion about the bot’s activities was operated. The
bot’s appearance was also announced via This Week
in Matrix (#twim:matrix.org), the official room for
announcing and discussing news about Matrix-related
projects, which are aggregated into a weekly blog post
in the matrix.org blog [18]. The announcement was
done in This Week in Matrix 2018-05-25 and led to a
number of discussions and questions about the project,
but was perceived well in general [13]. Finally, the code
of the bot was published early on [6].

4.3 Measurement Results

We used the crawler bot to obtain a snapshot of the
public Matrix federation’s network structure in July

0 250 500 750 1000 1250 1500 1750 2000
server rank

100
101

102

103
104

105

co
un

t

200
largest
servers

Rooms
Users

linear

(a) User and room count per server. Each particular server
is assigned with a different, ascending rank based on its
number of users.

1800 1825 1850 1875 1900 1925 1950 1975 2000
server rank

100
101

102

103
104

105

co
un

t

Rooms
Users

linear

(b) User and room count of the largest 200 servers only

Figure 2: User & room count per server on 2018-07-25

2018. The bot observed a part of the public network: It
joined 798 rooms, seeing 131 463 users on 2003 different
servers. The bot though knows about each user and
homeserver that was present in at least one of the visited
room. Compared to Matrix Voyager’s view at that time,
the crawler bot saw about two thirds of the servers. As
analyzing large tripartite graphs is challenging due to
their inherent complexity, the following analysis of the
network structure focuses on each node group separately.
Server Group. Our measurements show that, from

the 2003 homeservers in total, by far the most servers
have three or fewer users. Only 15 servers were seen
having more than 100 users. The largest server had
76 271 users, the second had 37 751 users. Together,
this upper 1% of homeservers comprises 87% of the
131 463 total users found. This means that most of
the observed Matrix users are concentrated on very few
homeservers, which corresponds to the public perception
of the system. Figure 2a shows the user and room count
per individual server, while Figure 2b the largest 200
servers in more detail. On the x-axis, servers are ranked
by their number of users first and by their number of
rooms second. The y-axis depicts the number of users
and rooms per server in log scale. To remind the reader
of the log scale, there are insets with the same plot
in linear scale. The plot exhibits a repeating spike
pattern. While the spike pattern itself is an effect of
the second-order sorting, the similar shape of all spikes
is a noteworthy regularity: For any number of users per
server, there are servers with many and few rooms.
Room Group. Figure 3 focuses on rooms: The user

and server count per individual room in Figure 3a is
ordered by number of servers first, and by number
of users in second order. It exhibits a spike pattern
similar to the server-focused plots, showing that a room
with any number of servers can have only few or very
many users. As servers can only take part in rooms
via users, a room cannot have more servers than users,
and therefore there is a strong lower bound. The server-

3

#dsn-traveller:dsn-traveller.dsn.scc.kit.edu
#dsn-traveller:dsn-traveller.dsn.scc.kit.edu
#twim:matrix.org

0 100 200 300 400 500 600 700 800
room rank

100

101

102

103

104

co
un

t

Users
Servers

linear

(a) Server and user count per room. Each particular room
is assigned with a different, ascending rank based on its
number of servers.

100 101 102 103

number of servers in a room

0

200

400

nu
m

be
r o

f r
oo

m
s 406

229

110
39 10 4

(b) Histogram of servers per room; each bin is half an order
of magnitude

100 101 102 103 104

number of users in a room

0

50

100

150

200

250

nu
m

be
r o

f r
oo

m
s

93 79

175
200

142

71
28

9 1

(c) Histogram of users per room; each bin is half an order
of magnitude

Figure 3: Observed room composition on 2018-07-25

wise largest room has 581 servers, which are 76% of
all known servers. Additionally, the number of servers
and users per room are plotted as histograms, using
a logarithmic bin width of half an order of magnitude
per bin. The server histogram in Figure 3b shows that
most rooms only have a few servers: 83% of all rooms
have fewer than 10. The user histogram in Figure 3c is
of particular interest, because its peak is in the range
between 10 and 100 users, containing 49% of all rooms.
While the other histogram has its peak in the range
between 1 and 10, only 22% of all rooms have fewer
than 10 users. Still, while 71% of all rooms have 100
users or fewer, there are rooms with many more users,
up to the largest room with 24 729 users. Rooms with
the most servers do not have the most users, though:
Those in the rightmost bin have a maximum of 7756
users and a median of 1542 users. This is caused by the
user spikes in Figure 3a near room 200 and room 300
peaking an order of magnitude above rooms with the
most servers. Due to our measurement methodology,
all private, invite-only rooms are missing in the data.
We conjecture that the peak between 10 and 100 in
Figure 3c is actually a result of this, as we expect private
rooms to be small (1 to 10 users) and to outnumber the
publicly visible rooms.
User Group. By far the most users were found in a

single room only, but a few users are in many rooms,

up to the range of 102. 94% of the discovered users
were only seen in three or fewer rooms. The user who
was seen in the most rooms was found in 207 rooms,
which corresponds to 27% of all rooms the crawler bot
visited. We did not observe any crawler bot unknown
to the Matrix community that would have manifested
as an omnipresent user.
All in all, our measurements confirm the assumed

user concentration, while we found more small servers
than expected. The regularities in Figure 2 and Figure 3
allow the algorithmic generation of larger networks with
similar characteristics to make predictions on Matrix’
scalability. The raw, anonymized measurement data is
provided to the community [8].

5 Scalability of the Network

Matrix’ group communication mechanism is inherently
asymmetric between transmissions and receptions: In a
room with n servers, the sending server does n− 1 indi-
vidual transmissions to each receiving server. We now
explore the behaviour of the current group communica-
tion mechanism with the measured network structure.
We base our assessment on the network load, quan-
tified by the number of incoming and outgoing event
transactions between servers.

5.1 A Model for Matrix

For analyzing the scalability of Matrix, we consider
a reduced version of Matrix to explain the system’s
behaviour. Our model operates on a frozen snapshot of
a Matrix federation where all participants are honest
and only send message events. Therefore, servers do
not need the State Resolution Algorithm. The basic
flow of events is modelled as a two-step process: Users
generate messages which target a specific room, and
send them to their homeserver. Servers are always
reachable and serve an infinite number of events in
parallel without processing delay. To forward the event,
the homeserver then sends a separate transaction to
all other homeservers which are part of the targeted
room. Transactions are put instantly on the wire, and
servers do not need to wait for acknowledgements. This
implies that there is no batching of events into single
transactions [12], the model will therefore overestimate
the number of transactions. Modelling event batching
requires timing information on transactions, which was
not recorded for privacy reasons.
Additional assumptions are as follows: The traffic

pattern is determined by the average message rate per
user λ, which we assume as fixed. The room selection
is modeled as uniform, which means that a user sends
messages to any room they are in with equal probability.

4

5.2 Analytical Relations
Let txa→b be the number of transactions sent by a
to b and rxa←b vice versa for any two federating
servers a and b. With F being a set of federating
servers, we define txs =

∑
o∈F\{s} txs→o and and

rxs =
∑
o∈F\{s} rxs←o to be the sum of all incoming

and outgoing transaction for server s in the federation F .
As each receiving server requires a separate transaction,
we can state

∑
s∈F txs =

∑
s∈F rxs.

The number of transactions between servers depends
on the network structure. With Rx being the set of all
rooms that user or server x is participating in, Ux being
the set of all users that are part of server or room x, we
can express the average transactions rate of server a to
server b as a function of the average per-user message
rate λ and the network structure:

txa→b =
∑

r∈Ra∩Rb

∑
u∈Ur∩Ua

λ

|Ru|
(1)

In Equation 1, one sums over all rooms that are on
server a as well as on server b; all users in these rooms
who are also users of server a contribute with λ

|Ru|
events, representing the assumption from subsection 5.1
that every user sends messages with a rate of λ equally
distributed over all their rooms. It follows that rxa←b =
txb→a.

With Fr ⊆ F being the federation subset of all servers
participating in room r and Qs = {r ∈ Rs | |Fr| > 1}
being the set of all rooms of server s in which other
servers participate, we can utilize Equation 1 to derive
the network load of single servers with respect to their
federation F :

∀s ∈ F : txs =
∑
r∈Qs

∑
u∈Ur∩Us

λ

|Ru|
· |Fr \ {s}| (2)

∀s ∈ F : rxs =
∑
r∈Qs

∑
u∈Ur\Us

λ

|Ru|
(3)

The factor |Fr\{s}| in Equation 2 is the key difference
to Equation 3, which shows an asymmetry between
sending and receiving. This is caused by each server
having to send a separate transaction to each receiving
server, multiplying the number of outgoing transactions:
The more foreign servers are in a room, and the more
own users a server has in such a room, the more messages
the server has to send. But for the receiving side, the
more foreign users are in the receiving server’s rooms,
the more messages it receives, regardless of how that
users are distributed on foreign servers or how many
foreign servers there are. In the model, events are always
sent individually (c.f. subsection 5.1), and incoming
transactions are therefore independent of the number
of foreign servers. The number of transactions a server
receives is only indirectly correlated with its own number
of users, as with more users on a server, we can assume
a higher probability of it being in more rooms with

0 250 500 750 1000 1250 1500 1750 2000
server rank

0.00

0.25

0.50

0.75

1.00

cu
m

ul
at

iv
e

fra
ct

io
n tx

rx
sum
users

(a) Cumulative fraction of network load per server. Each
particular server is assigned with a different, ascending
rank, based on its number of users. Due to all values
being normed fractions, sum can be lower than rx.

2000 2001 2002 2003
server rank

0.00

0.25

0.50

0.75

1.00

fra
ct

io
n

0.3% 1.5% 0.8%

88.4%

0.7% 0.5% 0.2% 0.3%0.5% 1.0% 0.5%

44.4%

1.2%
6.6%

28.7%

58.0%

tx
rx
sum
users

(b) Network load of the largest four servers.

Figure 4: Cumulative fraction of network load per server

other servers. The formulas were cross-checked with a
Monte-Carlo simulation.

We can see that, due to the asymmetry, moving from
a centralized network to a more decentralized one will
not improve the load distribution, but can actually
make it worse: In the migration phase, if a user from
a large server sets up his or her own homeserver, the
large server will have to distribute the events of one
fewer user, but instead has to distribute all events from
its remaining users to the new homeserver, while that
server only has to receive the relevant events for its
user. While the network load distribution will equalize
when approaching a fully distributed state where every
user has its own homeserver, the network load for ev-
ery server would then grow linearly in the number of
users participating in a room, as the scalability effect of
reaching multiple users with single message to a server
vanishes.

5.3 Scalability Results

In light of the possible network load distribution issues
brought up using the formulas in subsection 5.2, we
now combine the formulas with the measurements of
the network structure from subsection 4.3 to show that
the routing algorithm is already problematic for the
measured network structure.
While it is evident from Equation 2 and 3 derived

in subsection 5.2 that the number of users a server has
correlates with the overall network transactions, the
actual relations are more complex and depend on the
exact structure of the given network structure. Equa-
tion 2 and 3 allow us to calculate the transmitted (tx)
and received (rx) as well as the total number of trans-
actions (sum) for any server, as displayed in Figure 4a.
To evaluate the results in a meaningful way, the form of
cumulative fractions was used: All measurement values

5

are normalized to the population size, and each value
is added onto the sum of the previous measurements.
This is similar to an empirical distribution function. As
the number of received transactions equals the number
of sent transactions (see 5.2), the relation between rx
and tx also translates to their absolute values. To put
the numbers into perspective, the cumulative fraction
of users is plotted as well, and the individual servers
are ordered by their number of users first, and by tx
in second order. In the center of the plot, from 750 to
1500, the tx, rx and sum curves rise with a roughly
constant incline. This shows that those servers send
and receive a similar amount of messages to and from
the federation, and are involved in a similar number
of the total transactions. The very steep rise near the
2000th server shows that, while the servers left of it
almost receive 100% of all received messages, they only
send about 10% of all sent messages. In sum, those
servers are part of just above 50% of all traffic. The few
remaining servers therefore make up what is missing to
100%: They almost receive no transactions, but send
about 90%. In total, they are part of just below 50%
of all traffic.

As the constituents of the steep rise at the servers with
the highest rank cannot be differentiated in Figure 4a,
Figure 4b only shows the numbers for the largest four
servers in the form of a non-cumulative bar diagram.
This shows that the single, largest server is involved in
44.5% of all messages, sends 88.4%, but receives only
0.6% of all messages. The other three servers are only
part of a much smaller fraction of the overall traffic.
Therefore, the steep rise is actually caused by a single
server. Whereas receiving transactions is distributed
across all servers, sending transactions as well as the
accumulated load of sending and receiving is centralized
to a single server, which is involved in 44.5% of all
messages.
The reason for the observed load centralization lies

in unequally distributed users: Most events are gener-
ated on large servers, which then have to be distributed
to many small servers, while small servers can reach
many users with a single transmission to a large server.
Decreasing the degree of centralization will worsen the
load distribution during the transition phase when more
users set up small servers but while the majority is still
cumulated. When reaching full decentralization (i.e.
each user is represented by a separate homeserver), the
efficiency benefit of reaching multiple users with a single
transmission vanishes. These aspects affect the scalabil-
ity of Matrix and hinder the future growth of the public
federation. At present, Matrix is mainly used for com-
munication between humans, but the middleware explic-
itly targets Internet of Things communication [17]. Such
a machine-to-machine use case potentially increases the
number of involved parties and message frequencies by
several orders of magnitude, and aggravates the problem
of limited scalability in the group communication mech-
anism. Due to the limited trust between servers, load

balancing can not be achieved by moving users away
from busy servers as with non-federated middlewares.
For a decentralized Matrix network, a scalable group
communication mechanism has to evenly distribute the
Price of Anarchy, i.e. the loss of system efficiency com-
pared to a central authority making all decisions [10].
This poses a combined optimization problem of com-
munication topology and routing mechanism. As each
Matrix room is an independent federation which can
differ vastly in structure even if the same servers take
part, we envision to use a room structure adaptive mech-
anism: For a given room, participating servers know
which other servers participate and with how many
users they take part. Given this information, servers
can agree on a suitable per-room group communication
mechanism, to deliver Matrix’ promising combination of
federation, messaging and storage to decentralized appli-
cations at any scale. This means that the same servers
might use traditional broadcasting in a room with a
few servers only, achieving optimal end-to-end latency,
but use gossipping in another room where many servers
with few users take part, or even IPv6 multicast if all
participating servers have a suitable interconnect. This
is why all forms of group communication are considered
related work.

Every mechanism is optimized for different topologies,
and via the unifying Event Graph concept, Matrix has
the capability of acting as an integration platform for
any form and number of routing mechanisms run in
parallel to each other, without any changes to the layers
on top of Matrix.

6 Conclusion & Future Work
We presented a measurement of the network structure of
the public Matrix federation. The crawler bot and the
raw, anonymized data is provided to the community. We
identified scalability issues in the group communication
mechanism of the Matrix middleware in form of load
centralization in structurally diverse federations, which
cannot be mitigated by rebalancing users due to the lim-
ited trust between Matrix servers. For future research,
we aim at investigating different group communication
mechanisms in the context of Matrix, pursuing the goal
of a room-structure-adaptive algorithm. Such an algo-
rithm would choose a suitable group communication
mechanism for a given room structure to address the
scalability issues on the horizon. To test the algorithms’
scalability, we will model and simulate larger federations
with similar characteristics using the regularities in the
presented measurements. We will continue to observe
the evolution of the public Matrix federation towards
more decentralization.

6

References

References
[1] Alex Balducci and Jake Meredith. Olm cryptogr-

pahic review. Tech. rep. Tech. rep. NCC Group
PLC, 2016. url: https : / / www . nccgroup .
trust / us / our - research / matrix - olm -
cryptographic-review/.

[2] Guruduth Banavar et al. “A Case for Message
Oriented Middleware”. In: Distributed Comput-
ing. Ed. by Prasad Jayanti. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 1–17. isbn:
978-3-540-48169-0.

[3] David Décary-Hétu, Benoit Dupont, and Francis
Fortin. “Policing the Hackers by Hacking Them:
Studying Online Deviants in IRC Chat Rooms”.
In: Networks and Network Analysis for Defence
and Security. Ed. by Anthony J. Masys. Cham:
Springer International Publishing, 2014, pp. 63–
82. isbn: 978-3-319-04147-6. doi: 10.1007/978-
3-319-04147-6_4.

[4] Ksenia Ermoshina, Francesca Musiani, and Harry
Halpin. “End-to-end encrypted messaging proto-
cols: An overview”. In: International Conference
on Internet Science. Springer. 2016, pp. 244–254.

[5] Mathew Hodgson. Matrix in the French State:
What happens when a government adopts open
source & open standards for all its internal com-
munication? 2019-02-02. url: https://fosdem.
org/2019/schedule/event/matrix_french_
state/ (visited on 2019-05-10).

[6] Florian Jacob. DSN Traveller Source Code. 2018.
url: https : / / github . com / kit - dsn / dsn -
traveller.

[7] Florian Jacob. DSN Traveller – Travelling the
Matrix network, for Science! (Website Archive).
2018. url: https://github.com/kit-dsn/dsn-
traveller/tree/master/website.

[8] Florian Jacob. Matrix Network Structure Snap-
shot. 2018. url: https://dsn.tm.kit.edu/
matrix/traveller/data.html.

[9] Christian Johansen et al. Comparing Implementa-
tions of Secure Messaging Protocols (long version).
Tech. rep. 2017.

[10] Elias Koutsoupias and Christos Papadimitriou.
“Worst-case equilibria”. In: Annual Symposium on
Theoretical Aspects of Computer Science. Springer.
1999, pp. 404–413.

[11] Avinash Lakshman and Prashant Malik. “Cassan-
dra: a decentralized structured storage system”.
In: ACM SIGOPS Operating Systems Review 44.2
(2010), pp. 35–40.

[12] OpenMarket Ltd. Synapse’s TransactionQueue.
2016. url: https://github.com/matrix-org/
synapse/blob/v0.33.2/synapse/federation/
transaction_queue.py#L52 (visited on 2018-08-
17).

[13] Ben Parson. This Week in Matrix 2018-05-25.
2018-05-25. url: https://matrix.org/blog/
2018/05/25/this-week-in-matrix-2018-05-
25/.

[14] Travis Ralston and Contributors. matrix-voyager-
bot: A Matrix bot that attempts to travel the whole
network, finding rooms along the way. url: https:
//github.com/turt2live/matrix- voyager-
bot.

[15] Maciej Rostanski, Krzysztof Grochla, and Alek-
sander Seman. “Evaluation of highly available and
fault-tolerant middleware clustered architectures
using RabbitMQ”. In: 2014 Federated Conference
on Computer Science and Information Systems.
IEEE. 2014, pp. 879–884.

[16] Matrix.org Team. Matrix Specification. Tech. rep.
2018. url: https://matrix.org/docs/spec/
(visited on 2018-08-24).

[17] Matrix.org Team. Matrix.org: Frequently Asked
Questions. 2018. url: https://matrix.org/
docs/guides/faq.html (visited on 2018-08-23).

[18] Matrix.org Team. This Week in Matrix. url:
https : / / matrix . org / blog / category /
general/this-week-in-matrix/.

[19] Werner Vogels. “Eventually consistent”. In: Com-
munications of the ACM 52.1 (2009), pp. 40–44.
doi: 10.1145/1435417.1435432.

[20] Rachel Wadoux. “Lancement de Tchap : la mes-
sagerie instantanée des agents de l’État”. In: nu-
merique.gouv.fr press release (2019-04-19). url:
https : / / numerique . gouv . fr / espace -
presse/lancement-de-tchap-la-messagerie-
instantanee-des-agents-de-letat/ (visited
on 2019-05-13).

7

https://www.nccgroup.trust/us/our-research/matrix-olm-cryptographic-review/
https://www.nccgroup.trust/us/our-research/matrix-olm-cryptographic-review/
https://www.nccgroup.trust/us/our-research/matrix-olm-cryptographic-review/
http://dx.doi.org/10.1007/978-3-319-04147-6_4
http://dx.doi.org/10.1007/978-3-319-04147-6_4
https://fosdem.org/2019/schedule/event/matrix_french_state/
https://fosdem.org/2019/schedule/event/matrix_french_state/
https://fosdem.org/2019/schedule/event/matrix_french_state/
https://github.com/kit-dsn/dsn-traveller
https://github.com/kit-dsn/dsn-traveller
https://github.com/kit-dsn/dsn-traveller/tree/master/website
https://github.com/kit-dsn/dsn-traveller/tree/master/website
https://dsn.tm.kit.edu/matrix/traveller/data.html
https://dsn.tm.kit.edu/matrix/traveller/data.html
https://github.com/matrix-org/synapse/blob/v0.33.2/synapse/federation/transaction_queue.py#L52
https://github.com/matrix-org/synapse/blob/v0.33.2/synapse/federation/transaction_queue.py#L52
https://github.com/matrix-org/synapse/blob/v0.33.2/synapse/federation/transaction_queue.py#L52
https://matrix.org/blog/2018/05/25/this-week-in-matrix-2018-05-25/
https://matrix.org/blog/2018/05/25/this-week-in-matrix-2018-05-25/
https://matrix.org/blog/2018/05/25/this-week-in-matrix-2018-05-25/
https://github.com/turt2live/matrix-voyager-bot
https://github.com/turt2live/matrix-voyager-bot
https://github.com/turt2live/matrix-voyager-bot
https://matrix.org/docs/spec/
https://matrix.org/docs/guides/faq.html
https://matrix.org/docs/guides/faq.html
https://matrix.org/blog/category/general/this-week-in-matrix/
https://matrix.org/blog/category/general/this-week-in-matrix/
http://dx.doi.org/10.1145/1435417.1435432
https://numerique.gouv.fr/espace-presse/lancement-de-tchap-la-messagerie-instantanee-des-agents-de-letat/
https://numerique.gouv.fr/espace-presse/lancement-de-tchap-la-messagerie-instantanee-des-agents-de-letat/
https://numerique.gouv.fr/espace-presse/lancement-de-tchap-la-messagerie-instantanee-des-agents-de-letat/

	1 Introduction
	2 Architecture
	3 Related Work
	4 Measuring the Federation Structure
	4.1 DSN Traveller Crawler Bot
	4.2 Ethics
	4.3 Measurement Results

	5 Scalability of the Network
	5.1 A Model for Matrix
	5.2 Analytical Relations
	5.3 Scalability Results

	6 Conclusion & Future Work

