KIT | KIT-Bibliothek | Impressum | Datenschutz

3D‐Printed Phenacrylate Decarboxylase Flow Reactors for the Chemoenzymatic Synthesis of 4‐Hydroxystilbene

Peng, Martin ORCID iD icon 1; Mittmann, Esther ORCID iD icon 1; Wenger, Lukas ORCID iD icon 2,3; Hubbuch, Jürgen ORCID iD icon 2,3; Engqvist, Martin K. M.; Niemeyer, Christof M. ORCID iD icon 1; Rabe, Kersten S. ORCID iD icon 1
1 Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
3 Institut für Bio- und Lebensmitteltechnik (BLT), Karlsruher Institut für Technologie (KIT)

Abstract:

Continuous flow systems for chemical synthesis are becoming a major focus in organic chemistry and there is a growing interest in the integration of biocatalysts due to their high regio‐ and stereoselectivity. Methods established for 3D bioprinting enable the fast and simple production of agarose‐based modules for biocatalytic reactors if thermally stable enzymes are available. We report here on the characterization of four different cofactor‐free phenacrylate decarboxylase enzymes suitable for the production of 4‐vinylphenol and test their applicability for the encapsulation and direct 3D printing of disk‐shaped agarose‐based modules that can be used for compartmentalized flow microreactors. Using the most active and stable phenacrylate decarboxylase from Enterobacter spec. in a setup with four parallel reactors and a subsequent palladium(II) acetate‐catalysed Heck reaction, 4‐hydroxystilbene was synthesized from p‐coumaric acid with a total yield of 14.7 % on a milligram scale. We believe that, due to the convenient direct immobilization of any thermostable enzyme and straightforward tuning of the reaction sequence by stacking of modules with different catalytic activities, this simple process will facilitate the establishment and use of cascade reactions and will therefore be of great advantage for many research approaches.


Verlagsausgabe §
DOI: 10.5445/IR/1000100365
Veröffentlicht am 12.10.2020
Originalveröffentlichung
DOI: 10.1002/chem.201904206
Scopus
Zitationen: 37
Web of Science
Zitationen: 31
Dimensions
Zitationen: 37
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biologische Grenzflächen (IBG)
Institut für Bio- und Lebensmitteltechnik (BLT)
Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 0947-6539, 1521-3765
KITopen-ID: 1000100365
HGF-Programm 47.02.01 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IBG-1
Erschienen in Chemistry - a European journal
Verlag John Wiley and Sons
Band 25
Heft 70
Seiten 15998-16001
Vorab online veröffentlicht am 16.10.2019
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page