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Oscillations in a system of two coupled self-regulating spool valves with
switching properties
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In hydraulic systems, valves can be considered as fundamental components. They serve as control elements to regulate hy-
draulic power transmission. In order to minimize control effort, self-regulating spool valves enjoy great popularity. However,
their disadvantage is a possible loss of stability, caused by the coupling between hydraulic and mechanical degrees of freedom
via pressure feedback areas. So far, the self-excited oscillations, evoked from the operating point’s loss of stability, have
mostly been investigated using minimal models of individual valves. In real world applications, for example in automotive
transmissions, typically several valves are employed which are coupled by hydraulic pipes. Here, it is expected, that dy-
namical phenomena occur, which cannot be portrayed by simple models of individual valves. Within this contribution, the
oscillatory behaviour of a system employing two coupled self-regulating valves is discussed. The resulting non-stationary
solutions are characterized by using Floquet theory and computing Lyapunov-Exponents.
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1 Introduction

Because of their self-regulating property, spool valves with pressure feedback areas enjoy great popularity for the task of
pressure and volume flow regulation in hydraulic circuits. Their working principle either allows for operation with volume
flow supply or with pressure supply, whereby in the first configuration the valve regulates or limits line pressure and in
the second configuration serves as an actuation or pressure reducing valve, see Fig. 1. The self-regulation relates to the
desired pressure level and is realized via the stationary equilibrium between pressure induced force on pressure feedback area
and control input, so that the spool automatically positions for the control edge flow across the valve into the reservoir to
compensate for excessive power supply. Herewith, the control input sets the desired pressure level, which is then independent
of the current power supply and load.

Turbulent orifice flows and non-smooth switching transitions are the dominant non-linearities in hydraulic systems in-
volving spool valves with pressure feedback areas. These promise interesting dynamic behaviour, as it is a well-known
phenomenon, that, even in simple systems involving one individual valve, self-excited oscillations arise at certain operating
points or in case of unfavourable parametrization, see e.g. [1,2].

2 Physical Model

In order to analyse the dynamical interaction between two coupled valves, the system under investigation employs two struc-
turally different and differently parametrized valves with ideal power supply (constant pump volume flow gp) and ideal
consumer (constant load pressure pc2), see Fig. 2. The first valve is supplied with volume flow gp and at the same time sets
— via control input f; — a desired line pressure level p;. This pressure can be considered as the power supply for the second
(actuation) valve, which, via control input f5, defines the pressure level po for the actuation of a consumer. The system thus
contains both valve configurations presented in Fig. 1. The governing system equations are derived from force balances on
valve spools and volume flow balances on capacitances. By neglecting hydraulic inductances, friction, laminar pipe resistance
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Fig. 1: Possible valve configurations. Fig. 2: System under investigation: Two coupled structurally different valves.
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20f2 Section 5: Nonlinear oscillations

and flow forces they read

myiiy + didy + eiwy = riTp — fi, Cripr = qp — Qvas — qQv1 — rimin, W

.. . 2 . 2 .
MaZa + doZa + coxo = T57P2 + fo, Chap2 = qvas — Qo2 — Qva, — T5TE2

with the turbulent orifice and non-smooth control edge volume flows

(r1 —u1)y/pr —po  ifzr >uy B (12 —us2)y/p1 —p2 ifxa > ugy
, qQv2g = 7\/27'27(_ . )
0 0 if xo < ugo

qvi = Yw2rnmw ;
7 if o1 < uy

0 if xo > ups
(ur2 — x2)\/P2 —po  ifza <urg
Parameter ~y represents the turbulent flow discharge coefficient, C,; and C}2 describe the hydraulic capacitances and w1,

ug2 and ura, uge > upe are the corresponding valve overlaps representing the three different switching borders of the system
(leading to six different switching modes), where the system equations (1) are continuous, but not continuously differentiable.

qo2 = WwAc2vDP2 — P2, qvap = Yv2rem

3 Investigation of non-stationary solutions

From Fig. 2 it follows intuitively, that the control edge flow gy o4 and therefore radius 7o determines the coupling strength
between the two valves. Thus, in order to analyse the dynamical interaction between the two valves, a parameter study is
performed by varying radius 7. The system equations (1) are numerically integrated by using event detection of the different
switching borders. The results in the upper part of Fig. 3 represent the crossings of the Poincaré section ¥ = {#; = 0, & < 0}
and shows the corresponding spool position z; of the pressure regulation valve. The lower part of Fig. 3 shows the associated
four largest Lyapunov-Exponents A.

As observable in the bifurcation diagram,
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reveals that the torus bifurcation point coin- M x10°
cides with the point on which the equilibrium Fig. 3: Bifurcation diagram and corresponding four largest Lyapunov-Exponents.
position of the actuation valve loses stability,

whereas the equilibrium position of the line pressure regulation valve is always unstable in the considered parameter range.

4 Conclusions

In order to investigate the dynamical interaction of self-excited oscillations between different valves in a hydraulic system,
a model employing two different valves has been presented. The non-stationary solutions evoked from the self-excitation
mechanism of the valves have been analysed by calculating Lyapunov-Exponents and by using Floquet theory. As anticipated,
if both valves are driven in an unstable operation mode, complex oscillatory behaviour is observed.
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