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Abstract 

This paper shows a fast online parameter identification method for permanent magnet synchronous 

machines (PSMs), which uses the PWM (pulse width modulation) excitations and no additional test 

signals. Based on the inverter induced current slopes, the corresponding applied voltages, the rotor angle 

and a precise machine model, the model’s parameters are calculated. Thereby the machine model 

consists of the dq-system equations, linearized within one PWM period. For stable and precise 

identification of the PSM machine parameters, the machine model has to be modified with a 

regularization approach. The identified parameters enable self-commissioning, tuning of the control 

parameters, condition monitoring or inner fault detection. In this paper the theoretical approach of the 

suggested method and simulation results of an equivalent test-bench system are presented. 

Introduction 

Electrical machines nowadays are designed with low weight, small size and high power. These machines 

are commonly permanent magnet synchronous machines (PSMs). The high utilization of these machines 

yields nonlinear magnetics due to saturation and cross-coupling effects. Stable, accurate and dynamic 

control of high performance drives is only possible, if these effects are considered in the control. 

Furthermore, condition monitoring, online tuning of the control parameters, self-commissioning and 

fault detection are topics of increasing importance. Evaluation of these topics also demands the 

knowledge of precise machine parameters, including saturation and cross coupling, during operation 

and startup. Therefore, the online parameter identification is under research. In [1] is shown that, even 

for linear PSMs, it is not possible to identify all parameters at steady state and dynamic operation online 

without previous knowledge of the machine, test signals and/or special, extended algorithms. As a result, 

various identification approaches, often with test signal use, based on control theory and system theory 

were investigated in the past.  

Pure observer based methods without test signals are e.g. Kalman Filters [1] or Model Reference 

Adaptive Systems (MRAS). More modern algorithms derived from computer science are also examined. 

Typical for these algorithms are Particle Swarm Algorithms or Genetic Algorithms [2]. These methods 

are often based on a linear set of parameters, computationally extensive and have inferior dynamics 

compared to other approaches. Results can be obtained faster with test signal use. Typical are low 

frequency voltage or current signal injection during operation or at startup. But these voltage or current 

signal injections lead to torque ripple, additional losses and noise at operation. Therefore, these methods 

are mostly used for self-commissioning systems or for short time adjusting of e.g. the control parameters.  
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An overview over different self-commissioning algorithms is given in [3]. Principles with less additional 

disturbance and a fast response are based on high frequency current or voltage signal injection. However, 

for these identification schemes, extensive signal processing systems with consideration of the high 

frequency effects of the electrical machine and the inverter are necessary. Special and complex filtering 

algorithms, etc. are required [4]. Even with these high frequency signal injection additional losses, 

disturbances, etc. are present.  

Methods without additional disturbances due to test signals, besides the pure observer based methods as 

described before, use the evaluation of the existing two level inverter induced current slopes. These 

always existing “test signals” are often named “pulse width modulation (PWM) excitation”. In encoder-

less control algorithms the evaluation of the PWM excitation is often used for calculation of the rotor 

angle. Both, the calculation of the rotor angle and the machine parameter identification have similar 

requirements. The challenging and extensive part of these methods is the fast and precise measurement 

of the currents, especially the current derivatives [5] for the fast and robust calculation without test 

signals. Different evaluation methods of the current derivatives are possible [6]. In [7], the PSM is field 

oriented controlled with continuous space vector modulation and the measured and highly oversampled 

absolute current values are fitted with a least-squares algorithm to get the current derivatives from the 

PWM excitation. Based on these fitted current derivatives the position estimation, parameter and control 

integration with a simplified three phase machine model without resistance is shown. Due to the 

minimum pulse width at high inverter switching frequency the dynamic of these introduced algorithm 

is limited due to the AD-converter dynamics, even with fast AD-converters. Another fast calculation 

approach, similar to the one presented in [7], is theoretically analyzed and discussed in [8]. Thereby the 

current derivatives, induced by the discontinuous Direct Torque Control scheme are directly evaluated 

to calculate the linear supposed dq-inductances.  

Compared to the ideas before, this paper shows a method to calculate the nonlinear PSM model, as 

derived in [9] for offline measurements, direct and independently in each point of operation. In the 

following the theoretical method for calculating the nonlinear parameters including the stator resistance 

of the PSM from the currents, the current derivatives and the applied voltages without additional test-

signal, is shown. Therefore, the dq-system equations are linearized in a small-signal behavior within a 

fast control period 𝑇C. Considering the switching-states of the inverter, the actual point of operation and 

the measured values within a control period 𝑇C a system of linear equations is created. For robust 

parameter identification it is necessary that the inverse problem of these linear equations is a solvable 

system. Therefore, the solvability of the system equations is investigated based on a quality criterion, 

the condition number of the matrix. Badly conditioned problems during identification are enhanced with 

mathematical regularization of the parameter calculation problem in the simulation, also further methods 

to increase the solvability are discussed. 

At first, the rotor oriented nonlinear PSM model is derived. After that, the basic idea of the identification 

algorithm is motivated and the necessary formulas and boundary conditions are given. A possible target 

system for further test-bench implementations is afterwards defined and parametrized in an acausal 

Matlab/Simulink/Simscape simulation environment. Based on this simulation environment the 

simulations of the identification at a certain operating point are shown to validate the derived algorithm.  

PSM Model 

Time continuous model 

Permanent magnet synchronous machines, especially for control and simulation, are often described in 

the rotor oriented dq-frame. Thereby, three symmetric, star-connected stator windings are assumed. The 

neutral-point of the machine is not connected. As a result, current-, flux- and voltage-zero-components 

disappear. Friction losses, skin and proximity effects as well as iron losses are neglected because of the 

small impact on machine control. Furthermore, dielectric currents, thermal dependencies and ageing 

effects, are not considered in the model. Considering of e.g. ageing effects of the permanent magnets is 

possible by monitoring the long term behavior of the introduced system equations. The flux-linkages 

are averaged over the rotor angle; therefore, the spatial harmonics are not included. The stator voltage 

equations are derived from Ohm‘s law, Kirchhoff‘s law and the equations of Maxwell. The 
transformation from the stator-oriented three phase system to the rotor-oriented dq-reference frame 

yields the PSM system equations: 



𝑣d =  𝑅𝑖d + d𝜓d(𝑖d, 𝑖q)d𝑡 − 𝜔𝜓q(𝑖d, 𝑖q) (1) 𝑣q =  𝑅𝑖q + d𝜓q(𝑖d, 𝑖q)d𝑡 + 𝜔𝜓d(𝑖d, 𝑖q) (2) 

 

The ohmic resistance of the stator windings is 𝑅, the electric frequency is 𝜔. The voltage- and current-

components of the direct- and quadrature-axis are 𝑣𝑥 , 𝑖𝑥 with 𝑥 ∈ {d, q}. The current dependent stator 

flux-linkages 𝜓𝑥 contain the anisotropy of the rotor, the saturation of the iron as well as dynamic cross-

coupling effects between the direct- and quadrature-axis of the machine. 

The partial derivation of 𝜓𝑥 leads to the differential inductances 𝐿𝑥𝑥. The inductances 𝐿dd, 𝐿qq denote 

the self-inductances in direct- and quadrature-axis, 𝐿dq, 𝐿qd are the mutual inductances [9]. The 

reciprocity relations for the mutual inductances yields 𝐿dq = 𝐿qd [10]. In the following only 𝐿dq is 

considered. In (3) and (4) the dynamic component of the flux-linkages d𝜓d/d𝑡 and d𝜓q/d𝑡 are 

expressed with the derived current dependent inductances. 

 𝑣d =  𝑅𝑖d + 𝐿dd(𝑖d, 𝑖q) d𝑖dd𝑡 + 𝐿dq(𝑖d, 𝑖q) d𝑖qd𝑡 − 𝜔𝜓q(𝑖d, 𝑖q) (3) 𝑣q =  𝑅𝑖q + 𝐿qq(𝑖d, 𝑖q) d𝑖qd𝑡 + 𝐿qd(𝑖d, 𝑖q) d𝑖dd𝑡 + 𝜔𝜓d(𝑖d, 𝑖q) (4) 

Time discrete model 

The implementation of control algorithms on digital signal processing systems is time-discrete. When 

the inertia of the machine is sufficiently large and/or the control period 𝑇C is short compared to the 

machine’s time constants, the electric frequency ω can be assumed constant during one control period. 

With evaluation of the electrical parameters within a short control period a small signal model, e.g. 

derived in [11] or [12], can be assumed. The self- and mutual-coupling inductances and the ohmic stator 

resistance are presumed to be constant within this control period 𝑇C. The flux-linkages in (3) and (4) are 

considered piecewise linear: 

 𝜓𝑥 (𝑖d𝑡𝑛+1 , 𝑖q𝑡𝑛+1) = 𝜓𝑥 (𝑖d𝑡𝑛 , 𝑖q𝑡𝑛) + 𝐿𝑥𝑥 (𝑖d𝑡𝑛,…𝑛+3 , 𝑖q𝑡𝑛,…𝑛+3) ⋅ 𝑖𝑥𝑡𝑛+1 − 𝑖𝑥𝑡𝑛2  with 𝑥 ∈ {d, q} (5) 

 

The trapezoidal rule, shown in [13], describes the time-discrete voltage distribution. Together with (3) 

and (4) the piecewise linear stator voltages can be expressed with the equations (6) and (7). 

 𝑣d𝑡𝑛,𝑡𝑛+1 = 𝑅2 (𝑖d𝑡𝑛 + 𝑖d𝑡𝑛+1) + 𝐿dd (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖d𝑡𝑛+1 − 𝑖d𝑡𝑛𝑡𝑛+1 − 𝑡𝑛 + 𝐿dq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖q𝑡𝑛+1 − 𝑖q𝑡𝑛𝑡𝑛+1 − 𝑡𝑛− 𝜔𝑡𝑛,𝑡𝑛+1 (𝜓q (𝑖d𝑡𝑛 , 𝑖q𝑡𝑛) + 𝐿dq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖d𝑡𝑛+1 − 𝑖d𝑡𝑛2 + 𝐿qq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖q𝑡𝑛+1 − 𝑖q𝑡𝑛2 ) 

(6) 

𝑣q𝑡𝑛,𝑡𝑛+1 = 𝑅2 (𝑖q𝑡𝑛 + 𝑖q𝑡𝑛+1) + 𝐿qq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖q𝑡𝑛+1 − 𝑖q𝑡𝑛𝑡𝑛+1 − 𝑡𝑛 + 𝐿dq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖d𝑡𝑛+1 − 𝑖d𝑡𝑛𝑡𝑛+1 − 𝑡𝑛+ 𝜔𝑡𝑛,𝑡𝑛+1 (𝜓d (𝑖d𝑡𝑛 , 𝑖q𝑡𝑛) + 𝐿dq (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖q𝑡𝑛+1 − 𝑖q𝑡𝑛2 + 𝐿dd (𝑖d𝑡𝑛,𝑡𝑛+1 , 𝑖q𝑡𝑛,𝑡𝑛+1) ⋅ 𝑖d𝑡𝑛+1 − 𝑖d𝑡𝑛2 ) 

(7) 

 

Equation (6) and (7) describe now the precise discrete dq-model. The inputs are the currents 𝑖𝑥𝑡𝑛  and 

their derivatives 
𝑖𝑥𝑡𝑛+1−𝑖𝑥𝑡𝑛𝑡𝑛+1−𝑡𝑛 , the rotor angle 𝛾, the electric frequency 𝜔𝑡𝑛,𝑡𝑛+1 and the estimated voltage 

references 𝑣𝑥𝑡𝑛,𝑡𝑛+1  from a voltage source inverter. This representation of the dq-equations is often used 

in discrete control algorithms and simulations. 

(dq-) Model for the online parameter identification 

The calculation of the online parameters with equation (6) and (7) is feasible but for the online 

identification, especially with unknown variables like dead-time of the semiconductors and other effects, 

a more robust representation is necessary. Sampling the values in the middle of each switching-state 

allows the simplification of the time-discrete model. Due to the small signal linearization with constant 

inductances and linearized flux-linkages those “middle-sampled values” of the direct measured current 



slopes are always admissible. The voltages 𝑣𝑥,𝑡𝑛  with 𝑥 ∈ {d, q} are also middle-sampled values. Only 

the current absolute values are time-sensitive. Compared to the voltage-time failures in the discrete 

representation these effects are smaller. The equations for the first interval are 

 𝑣d,𝑡𝑛 =  𝑅𝑖̇d,𝑡𝑛̅̅ ̅̅ ̅ + 𝐿dd d𝑖̇d,𝑡𝑛d𝑡̅̅ ̅̅ ̅̅ ̅ + 𝐿dq d𝑖q̇,𝑡𝑛d𝑡̅̅ ̅̅ ̅̅ ̅ − 𝜔𝜓q,𝑡𝑛̅̅ ̅̅ ̅̅ ̅ (8) 𝑣q,𝑡𝑛 =  𝑅𝑖q̇,𝑡𝑛̅̅ ̅̅ ̅ + 𝐿qq d𝑖q̇,𝑡𝑛d𝑡̅̅ ̅̅ ̅̅ ̅ + 𝐿qd d𝑖ḋ,𝑡𝑛d𝑡̅̅ ̅̅ ̅̅ ̅ + 𝜔𝜓d,𝑡𝑛̅̅ ̅̅ ̅̅ ̅ (9) 

 

The following equations of each switching state 𝑡[𝑛,…,𝑛+𝑘] for a following matrix representation can be 

established similarly. Thereby the flux linkages have to be considered piecewise linear as described 

before. Equation (10) shows this exemplarily for the d-axis flux-linkages for the time 𝑡𝑛+1. 
 𝜓d,𝑡𝑛+1 ≈ 𝜓d,𝑡𝑛 + 𝐿dd d𝑖d,𝑡[𝑛,𝑛+1]d𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅+ 𝐿dq d𝑖q,𝑡[𝑛,𝑛+1]d𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 (10) 

Online Parameter Identification 

The voltage equations (8) and (9) are an under-determined system of equations with two equations and 

six unknowns: 𝑅, 𝐿dd, 𝐿dq, 𝐿qq, 𝜓d, 𝜓q. These equations are not directly solvable. As a solution, in [14] 

the equations are simplified and linearized within two control periods. The parameters are calculated 

with consideration of the different operation points and an additive test-signal.  

Another possibility is the direct use of the inverter induced current slopes from pulse width modulation 

instead of a test-signal. In case of space vector modulation this yields to up to seven evaluable current 

slopes within a control period. Thereby, six different “active switching states” and two different 

“freewheeling switching states” are possible. The switching states are depending on the different 

operation points and control strategy of the inverter. The dq-system equations of these switching states 

give fourteen equations within one control period. Fig. 1 shows one of these control periods. The 

complementary switching states, the linearized direct-axis currents and the applied voltages of the direct-

axis are displayed. At first the PWM excitation of this control period is considered. The current slopes 

show a symmetry to the center of one control period. Evaluation of all sequences or switching states 

yield to linear depending equations and lack of solution. Therefore, each switching state symmetric in 

the two dq-system equations is only used once. In space vector modulation, there are two different 

“active states” and one “freewheeling state” during each control period. By evaluation of two following 

“active states” and one “freewheeling state” the start or end of the calculation has to be a freewheeling 
state. If an applied voltage vector covers one of the six space vectors of space vector modulation, 

normally only one active state is applied. Similar behavior depending on the actual rotor position, 

appears if the dq-frame covers directly one of the six vectors. For control algorithms the parameters 

have to be identified reliable. To ensure identification also during these cases, other space vectors for 

the modulation or modulation schemes have to be chosen. At small duty cycles or missing evaluable 

switching states, the pulse pattern of the space vector modulation can be shifted to have longer evaluable 

“active states” and “freewheeling states” [15]. Other possibilities are the extrapolation of the small duty-

cycle values. This paper focuses on the main principle for the identification, in the evaluation these cases 

are not evaluated, which is sufficient for e.g. condition monitoring of PSMs. Assuming three 

consecutive, valid time steps 𝑡𝑛…𝑡(𝑛+3) with two active and one freewheeling switching state yields to 

the six linear independent equations. With equations (8) and (9) at these defined switching states the 

square matrix in (11) is defined. 

 𝐴𝑥 = 𝑏 with 𝐴 ∈ ℝ𝑚,𝑚, 𝑥 ∈ ℝ𝑚, 𝑏 ∈ ℝ𝑚 (11) 

 

The matrix 𝐴 ∈ ℝ𝑚,𝑚 at each time 𝑡𝑛 consists of measured direct and quadrature axis currents, their 

derivatives and the electric frequency. The vector 𝑏 ∈ ℝ𝑚 consists of the applied direct and quadrature 

voltages.  

 



𝑥 = (𝑅 (𝑖d𝑡𝑛…𝑛+3 , 𝑖q𝑡𝑛…𝑛+3) , 𝐿dd (𝑖d𝑡𝑛…𝑛+3 , 𝑖q𝑡𝑛…𝑛+3) , 𝐿dq (𝑖d𝑡𝑛…𝑛+3 , 𝑖q𝑡𝑛…𝑛+3) , 𝐿qq (𝑖d𝑡𝑛…𝑛+3 , 𝑖q𝑡𝑛…𝑛+3) ,𝜓d (𝑖d𝑡𝑛 , 𝑖q𝑡𝑛) , 𝜓q (𝑖d𝑡𝑛 , 𝑖q𝑡𝑛)) (12) 

 

The vector 𝑥 ∈ ℝ𝑚 contains the searched parameters, shown in vector (12). The inductances and the 

ohmic stator resistance is supposed to be constant within the considered time steps. The flux linkages 

are linearized within these time steps and are extrapolated to a certain current value within an evaluated 

control period. 

 
Fig. 1: One control period of the voltage stage inverter, the idealized pulses and the direct-axis currents 

with the PWM excitation as well as the effective direct-axis voltage. The sampling times of the currents, 

the current slopes and the voltages are in the middle between each pulse (𝑡𝑛). Thereby switching-states 

7 and 0 indicate a “freewheeling state”, 3 and 4 indicates an “active state”. 
 

The matrix of the dq-system equation is displayed in (13), it contains the dq-system equations during 

one control period. 

 

[ ⋯⋮ ⋱ ⋮⋯ ]⏟        𝐴
∙
[  
   
 𝑅𝐿dd𝐿dq𝐿qq𝜓d𝜓q ]  

   
 

⏟  𝑥
=
[  
   
 𝑢d𝑡𝑛⋮𝑢d𝑡[𝑛,𝑛+⋯ ]𝑢q𝑡𝑛⋮𝑢q𝑡[𝑛,𝑛+⋯ ]]  

   
 

⏟      𝑏
 

(13) 

 

A trivial solution of the problem 𝐴𝑥 =  𝑏 is available, if the kernel (ker) of the matrix contains only the 

null vector as an element, i.e. ker(𝐴) = {0}. This means that the number zero is not an admissible 

eigenvalue of 𝐴. Solving 𝐴𝑥 =  𝑏 for the vector 𝑥 gives an inverse problem 𝐴−1𝐴𝑥 =  𝐴−1𝑏. The 

inverse 𝐴−1 can be calculated with several algorithms like the LU-, QR-, Cholesky-, or the singular 

value decomposition.  

Instabilities in numerical algorithms (e.g. the LU-decomposition) are caused by small or colliding 

eigenvalues and should be avoided. The result of the matrix decomposition yields to wrong solutions, if 

these instabilities are not considered. Therefore, the solvability, respectively the invertibility of these 

problems have to be verified. In [14] the solvability of 𝐴 is checked by the determinant of the matrix. 



Another criterion of small or colliding eigenvalues is the condition number which measures how 

sensitive a function/matrix is against their inputs or input errors. Low condition numbers 𝜅(𝐴) indicate 

well-conditioned problems, high condition numbers 𝜅(𝐴) ≫ 1 indicate ill-conditioned problems [16]. 

As a rule of thumb, if the number 𝜅(𝐴) = 10𝑘, then you may lose roughly 𝑘 digits of accuracy, 

additional to the numerical decomposition method. With the maximal and minimal eigenvalues, 𝜆max(𝐴) and 𝜆min(𝐴) of a square matrix the condition number (14) can be calculated. 

 𝜅(𝐴) = |𝜆max(𝐴)||𝜆min(𝐴)| (14) 

 
In a simulation the PSM machine is PI controlled with space vector modulation and evaluated at quasi-

stationary operation. Reviewing the defined valid PWM switching states with enough dq-equations and 

without the prohibited voltage vectors at certain points of operation the matrix 𝐴 shows various and high 

condition numbers 𝜅(𝐴) ≫ 1. This indicates still ill conditioned inverse problems. As a result, the 

parameters cannot be calculated reliably in the whole range due to numerical inaccuracies, even with 

different algorithms for solving the system of linear equations. The inverse problem itself has to be 

changed to obtain a more reliable solution. Therefore, a closer look onto the condition numbers is 

necessary. Based on the simulation results the inverse problem can be categorized as follows.  

At high speed operation the eigenvalues of the flux-linkages and the inductances are close together, the 

eigenvalue of the resistance is responsible for the inclination of the eigenvalues and yields a bad 

condition number. In lower speed region, the eigenvalues are located closer together, but this inverse 

problem is still an ill-conditioned problem. Higher currents improve the condition number and especially 

the identification of the resistance. The voltage-drop over the resistance is only current depending, 

according to the dq-system equations (8) and (9). 

Methods to improve ill conditioned problems include preconditioning, scaling or regularization. Most 

commonly, regularization methods are used, which are also considered in this paper. Regularization 

methods introduce additional information into the problem to improve the trade-off between the size of 

the regularized solution and the quality of the fit to the original problem.  

Depending on the original problem, a regularization not always yields a better solution [17]. Neglecting 

the resistance identification at high speed operation yields a better condition problem. This is feasible 

because the contribution of the voltage of the resistance within the matrix is small. Similar behavior is 

appearing at low speed and low currents, the flux-linkages directly depend on the electric frequency, 

small values are quite sensitive for numerical issues or noise. Therefore the problem 𝐴𝑥 =  𝑏 can be 

reduced, with less equations, or the additional equations used for better solution with QR or singular 

value decomposition. In the other cases, a regularization approach yields reliable results. The Tikhonov 

regularization, e.g. with the graphical indication, the L-curve by P.C. Hansen [18], is one of them. 

Approximating the original problem with the minimization problem of equation (15) the solution yields 

a solvable, approximated original problem. Thereby 𝐼 indicates the identity matrix, 𝛼 the regularization 

parameter and 𝑥0 dedicates an a priori estimation of 𝑥. 

 min(∥ 𝐴𝑥 − 𝑏 ∥22 + ∥ 𝐼𝛼(𝑥 − 𝑥0) ∥22) (15) 

 

With the L-curve the trade-off between the logarithm of the norm of the regularized solution and the 

corresponding residual norm is rated. In Fig. 2 a typical L-curve is shown. The curve has an L-shape 

with the optimal 𝛼 parameter at the bend. 

The y-axis shows the variation of the regularized solution. The x-axis, with 𝑥𝛼 as the approx. solution 

of the regularization, displays the deviation of 𝐴𝑥𝛼 to the vector 𝑏 due to the regularization parameter 𝛼. The regularization parameter 𝛼 changes thereby the solution of the original problem. With a high 

value of 𝛼, the solution converges to 𝑥0 and will not fit to the given data. Without a priori knowledge, 𝑥0 is set to zero. With a small or zero parameter 𝛼, the fit is close to the original problem, but the 

contributions from the data errors dominate the solution. 

 



Considering the different valid switching states of 

the inverter, the different operations and the 

regularization the calculation yields reliable 

parameter results. Not enough valid “active 
states” and “freewheeling state” makes a 

manipulation of the pulse pattern as described 

before necessary, resulting in enough dq-

equations. Evaluation of these then delivers 

reliable parameters for each control period. But 

inducing these PWM excitations causes 

unsymmetrical switching and probably 

harmonics. But compared to signal injection 

within a control period as described in e.g. [4] 

these harmonics are smaller.  

In simulation the parameters are evaluated in each 

control period 𝑇C with the described algorithm, the simulation results are displayed in the corresponding 

section. 

 

  
Fig. 3: Direct and quadrature flux linkages of the PSM, calculated by FEA simulation. 

 

Simulation Environment 

In Fig. 4 a typical application or test-bench setup of a 

PSM machine is shown. The electrical machine is 

thereby directly connected to a mechanical load. The 

DC link supplies the two level voltage source 

inverter. The three phase currents, the DC link 

voltage and the rotor angle are assumed as directly 

measured. Due to the challenging measurement of the 

inverter voltages within a PWM period the inverter 

voltages are estimated. For the introduced algorithm 

average voltages within a PWM period are sufficient. 

These voltages can be determined in e.g. a double 

pulse measurement [19]. The characteristics for the inverter MOSFET and diode voltage drop at 

operational conditions, depending on the switching state are stored in lookup tables. All measured and 

estimated three phase quantities are transformed together with the rotor angle to the rotor-oriented dq-

frame values. In the simulation environment, the PSM machine is implemented as an acausal 

Matlab/Simulink-Matlab/Simscape model based on the equations (1) and (2). The model is parametrized 

with the in Fig. 3 shown finite element analysis (FEA) flux linkages, the stator resistance and the pole 

pairs. The mechanical load in the simulation is modelled as an ideal speed source. The inverter and 

signal processing hardware is assumed to be ideal to focus on the identification algorithm. The 
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Fig. 2: The L-curve: A logarithmic plot of the 

norm of a regularized solution vs. the norm of the 

corresponding residual norm.  

Quantity Value Unit 

control period 25 μs 
switching frequency 40 kHz 

DC link voltage 500 V 
PSM pole pairs 3  

Stator resistance 45 mΩ 
PSM current max. 140 A 
PSM voltage nom.  212  V 
PSM power max. 30 kW 

Table. I: – Simulation parameters 



parameters like switching frequency, etc. are thereby derived from the target system. A possible high 

frequency switching Silicon Carbide inverter with fast current sensors as well as a powerful real-time 

signal processing hardware are introduced in [20]. This system enables high dynamics and permit the 

assumption of constant inductances and piecewise linear flux linkages within small control and 

switching periods. For the current-derivative signal a planar Rogowski coil sensor as shown in [6] is 

assumed. The different current-derivative sensors are evaluated in [6], the planar Rogowski coil thereby 

shows high bandwidth and good signal quality for the intended use.  In Tab. I the simulation parameters 

are listed.  
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Fig. 4: Typical PSM application with necessary peripheral units and the load. 

 

Simulation Results 

The simulation results in Fig. 5 show the nonlinear parameter calculation during a speed change of 5000 

rpm within 0.01 s, thereby the torque is controlled to 20 Nm (approx. -10 A d-axis and 20 A q-axis 

current). At 0.13 s the torque is changed to - 20 Nm, at 0.02 s back to 20 Nm. The parameters shown in 

Fig. 5 show the identified parameters of each control period 𝑇C. The difference between the blue 

calculated parameters and the green dashed model parameters are small at even full dynamic 

identification. The necessary values of the current derivative, the voltages, the electric angular and the 

currents are directly evaluated from the simulation. Control periods with prohibited voltage vectors are 

ignored due to the high dynamics of the algorithm. The parameters show quasi-constant values over the 

whole operation area. Due to mostly dynamic operation and evaluable dq-equations in this simulation 

setup, a shift of the pulse pattern is not necessary. The inverse problem is solved at high speed within a 

simplified matrix as seen at the identification of the resistance at about 0.012s. The same is done with 

the flux-linkage identification at times smaller than 0.003s with a simplified matrix. In the other cases 

the inverse problem is solved with the singular value decomposition and an optional regularization for 

these ill conditioned problems. The results shown in Fig. 5 are without any additional filtering. The 

parameter peaks in the identification are due to the commutation of the different parts of the 

identification algorithm depending on the point of operation. For final implementations additional 

filtering is necessary. Further simulations with equivalent setup have similar results and not displayed 

to enhance readability. At operation points without enough dq-equations, the evaluation of the 

parameters is not direct possible. In this case the pulse pattern of the space vector modulation has to be 

modified as described before, the precise effects of this for the identification approach, will be on further 

research. The results presented in this paper are sufficient for e.g. adaptive controller lookup tables or 

condition monitoring without the real-time requirement as a high performance control. 

Summary 

This paper shows the derivation of an extended and fast online identification method for the flux-

linkages, the inductances and the stator resistance. The algorithm evaluates the inverter induced current 

slopes, the currents, the electrical frequency and the applied voltages only with use of the existing PWM 

excitation. In this paper the different operation points, the unidentifiable voltage vectors and points of 

operation are described and motivated with the condition number as an indicator for the identifiability. 

The possible unidentifiable periods are discussed and a solution is presented. The simulation of the 

𝑣DC 
gate S1…6 

d𝑖1..3/d𝑡 𝑖1..3 𝑣1..3 𝛾, 𝜔 



implemented algorithm, at valid periods, is shown at a certain point of operation. Thereby the simulation 

environment is parametrized with the test-setup data for future measurements. The simulation results 

show fast convergence and reliable identification of the parameters at standstill, transient and steady-

state operation. 

 

Fig. 5: Stable parameter identification with the explained algorithm for a defined simulation setup. The 

blue lines are the parameters calculated by the identification algorithm, the green dashed lines are the 

reference values from a previous FEA simulation (Fig. 3) and mostly covered by the blue identified 

parameters. 
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