
 

 

 

 

 

 

 

 

 

 
KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association 

Elektrotechnisches Institut (ETI) 
Prof. Dr.-Ing. Michael Braun 

Prof. Dr.-Ing. Martin Doppelbauer 
Prof. Dr.-Ing. Marc Hiller 

 

Kaiserstr.12. 76131 Karlsruhe 
 

www.kit.edu 

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. 

 

Title: Measuring and Characterization of a Pedal Electric Cycle (Pedelec) on a Full System 

Test-Bench with Full Range Emulation of a Cyclist 

Authors: Michael Schmitt, Simon Decker, Martin Doppelbauer 

Institute: Karlsruhe Institute of Technology (KIT)  

Institute of Electrical Engineering (ETI) 

Type: Conference Proceedings 

Published at: Proceedings 2019 European Conference on Power Electronics and Applications 

(EPE'19 ECCE Europe), Genova, Italy, 2019 

Publisher: IEEE 

Year: 2019 

ISBN: 978-9-0758-1530-6 

Hyperlinks: DOI: 10.23919/EPE.2019.8915567 

 

https://doi.org/10.23919/EPE.2019.8915567


Measuring and Characterization of a Pedal Electric Cycle (Pedelec) on a 

Full System Test-Bench with Full Range Emulation of a Cyclist 

Michael Schmitt, Simon Decker, Martin Doppelbauer 

Karlsruhe Institute of Technology 

Institute of Electrical Engineering (ETI) 

Kaiserstr.12 

Karlsruhe, Germany 

Tel.: +49 721/608-41907 

E-Mail: M.Schmitt@kit.edu 

URL: http://www.eti.kit.edu 

Keyword 

<<Hybrid Electric Vehicle (HEV)>>, << Test bench>>, <<Measurement>> 

Abstract 

This paper describes the development of a pedelec test-bench and the measurement of a pedelec to 

characterize the propulsion system. The main idea of the test-bench is to emulate a real driver more 

precisely then other state of the art test-benches. This means precise, bilateral pedal torque inducement 

and direct emulation of the road by a roller. Precise measurement equipment and dynamic control 

enables versatile measurements with the proposed test-bench. Different measurements are introduced 

amongst others: assistance level, dynamic control behavior, distance and efficiency with full range 

emulation of a cyclist. 

Introduction 

Focused on new urban mobility concepts, comfortable and simple mobility, healthy and rehabilitation 

in sport or entering new dimensions in cycling, more and more different electric supported bikes (E-

bikes) exist. A subcategory of these are pedelecs (pedal electric cycles). These bikes offer electric 

supported cycling in a low power range, normally without additional license or registration. 

Measurement of the assistance level and the admissible maximum output power of pedelecs is therefore 

essential. Furthermore, characterizations like long-range testing, assistance level mode, efficiency, 

regeneration mode, cutoff-time and dynamic control behavior for natural feeling of the pedelec are of 

interest to consumers. Similar to hybrid electric vehicles, full system test-benches with full range 

emulation are necessary for independent and reproducible measurement results. Commercial test-

benches are designed for end of line tests or functional tests. Even special developed test-benches do 

not cover full range emulation of the cyclist. Often these systems are supplying only single side pedal 

torque inducement based on a constant torque, e.g. [1] and [2]. Further, they set a speed at the pedals 

and a torque at the roll. This leads to a constant and one-sided torque inducement at the pedals. For 

precise emulation the pedal torque of a cyclist, a sinusoidal torque, must be induced at both the pedals. 

Measurements with pulling and pushing pedal torque or even with faults like unsymmetrical torque 

inducement are interesting, too, but cannot be covered with state-of-the-art test-benches. In this paper, 

motivated by precision and full range emulation of a cyclist, a new test-bench is developed. In addition, 

test-bench measurements like the German ZIV R200 endurance/distance test [3], assistance level tests, 

etc. are applied. 

Therefore, a cyclist is analyzed at first. Based on that, the power flow of a cyclist, the pedelec and the 

terrain, similar to hybrid electric vehicles is derived. Further, the requirements for a full range emulation 

are defined. Afterwards, the mechanic, electric, signal processing as well as the used control scheme is 

explained. Following, the device under test and the measurements are described to characterize the 

propulsion system of the pedelec. The summery end up this paper. 



Modeling: Cyclist, Pedelec and Terrain 

Before the design of the test-bench started, a cyclist, the terrain and the pedelec are analyzed, and as 

well as the basic conditions defined. Based on the power flow diagram in Fig. 1, the requirements of 

maximum speed, maximum torque and the dynamics are deviated.  

Pedelec – Power flow 

The power flow of a cyclist on a pedelec is shown in Fig. 1. Thereby, three fundamental power parts 

must be considered: The power induced at the pedals of the cyclist in green, the power from the pedelec 

drivetrain in dark blue and the pedelec output power in light blue. The input power of the cyclist itself 

consists of two parts again, the input power of the left and the right leg. Together these builds the induced 

power. The power of the pedelec drivetrain depends on the cyclist´s torque and cadence with pedelec-

motor control algorithms considering e.g. the assistance level mode. These are characteristics of the 

different pedelec manufacturers. The output power is defined by the effective speed and torque at the 

rear wheel and is the power from the cyclist and the pedelec drivetrain on the road. Precise emulation 

of the cyclist and the terrain is thereby required for the ETI-Pedelec test-bench and analyzed in detail in 

the following. 
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Fig. 1: Pedelec power flow diagram 

 

Cyclist 

Analysis of a typical cyclist shows, that the power at the pedals consists of two parts, one from the left 

and one from the right leg, Fig. 1. A cyclist induces a position-dependent torque to the pedal. The 

rotational speed of the crank results from the desired velocity and the selected gear of the cycle. For the 

test-bench, this implies that the cyclist should be emulated by two PSM´s (permanent magnet 

synchronous machine) and these should be torque controlled. 

The pedal torque of a cyclist is determined in detail in [4] and [5]. The torque can be simplified to the 

norm of a sinusoidal curve, as shown in Fig. 2. The sinusoidal shape is due to the mass of the cyclist, 

gravity, pedal rotation, pedal axis itself and the length of the crank. The crank behaves like a lever arm 

and is about	175	mm long. The maximum and minimum torque depends on the angel of the crank. The 

average torque of semi-trained cyclist is assumed to	40	Nm. The maximum torque ୫ܶୟ୶ of a cyclist is 

up to 170 Nm as shown in equation (1).  

 ୫ܶୟ୶ = ୫ୟ୶ܨ ⋅ ݈ = 171	Nm (1)݈ = 0.175	m (2)ܨ୫ୟ୶ = ݉ ⋅ ܽ = 100	kg ⋅ 9.81	 msଶ = 981 N (3)
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Fig. 2: Approximated input torque 

Terrain 

For terrain emulation, a straight road with different slopes is assumed. Therefore, a roll in combination 

with a motor under load is applied. In the further course of this paper, this motor is called “load PSM”. 

Controlling the rotational speed of the roll with the load PSM in balance with the induced pedal torque 

determines the explicit operation points. By adjusting the wheel vertical force, equal test-conditions are 

possible. 

Test-bench 

The developed ETI-Pedelec test-bench should emulate a real driver and the road precisely This means 

a sinusoidal torque on both pedals, as described in [4] and [5], have to be induced. Further, the roll has 

to be speed controlled precisely. The control, the evaluation of the measurements results, the 

construction, the topology are challenging. Therefore, a more detailed view is shown in the following 

Topology 

In Fig. 3, the full electrical topology of the ETI-pedelec test-bench is shown. Two PSM´s emulate the 

cyclist and the terrain is emulated by one PSM. All PSM machines are from SEW type CMP71S with 

additional gears. Thereby, each PSM is applied by his own power converter. In a normal driving cycle, 

the roll operates in brake mode respectively the load PSM operates as a generator. The PSMs at the 

pedals operate in motor mode. With a shared DC link of all converters, the grid connected active front-

end (AFE) only covers the losses.  

Hardware / Software 

The modular power electronic converters are based on the IGBT modules from Infineon type EconoPack 

FS75R12KT4. The switching frequency of the converters are	8	kHz. Each of these converters is 

equipped with voltage, current and thermal sensors. The motors are equipped with resolvers for precise 

measurement of the angle and rotational speed. Two precise torque sensors are used to measure the 

torque at one pedal PSM (PSM at the pedal) and one at the load PSM. An external measurement board 

is used to measure battery voltage and current. To quantify the rear wheels vertical force, a force sensor 

is applied. Each power electronic converter is equipped with voltage, current and thermal sensors to 

supervise and control the PSM. 

The control and monitoring of the ETI-Pedelec test-bench is realized by means of two self-developed 

signal processing systems with digital signal processors (DSPs), Analog-Digital (A/D) conversion cards, 

angular evaluation cards. These DSP systems thereby monitor and control the test-bench and operates 

with 8	kHz. The system is presented in detail in [6].  

The first of the two DSP-systems is responsible for the AFE and output motor. The second is used for 

the two pedal PSMs. Both signal-processing systems are linked together. The control software for the 



ETI-Pedelec test-bench is implemented in Matlab/Simulink and adopted to the DSP via Simulink’s 

automatic code generation. The signal processing systems are connected via USB interface to a 

computer. The computer with the LabVIEW monitoring tool is the human-machine interface (HMI). It 

is used to serve the test-bench, to monitor the measured and internal values as well as for automatic 

measurement routines.  
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Fig. 3: Topology of the ETI-pedelec test-bench 

Control 

As already described, the pedal PSMs, which emulates the cyclist, must induce a position-dependent 

torque. Thus, the load PSM must be speed controlled.  

At first, the control scheme for the two pedal PSMs is described. A control period is thereby	125	μs. 
The pedal PSM are inducing the torque according to Fig. 2. Because of drag in the PSMs, a constant 

offset ܶ୬,ୡ୭୬ୱ୲ is necessary, to avoid a dead center point. The overall torque consists of the sinusoidal 

part and this constant part. Thereby one pedal PSM has to induce one sinusoidal half wave and a constant 

part. The blue curve must be induced at one pedal PSM as seen in Fig. 2. The sinusoidal half waves of 

the two pedal PSM are	180	° phase shifted. The control consists of an overlaying torque controller and 

an underlying current controller. The overlaying torque control is implemented in an open control loop; 

the required dynamics cannot be achieved with a closed feedback system. The cut-off frequency of the 

torque measurement is within the operation area. The control structure of one pedal PSM is shown in 

Fig. 4. 

The desired constant torque and driver torque are set via the HMI. The maximum torque is thereby 

limited to protect the device under test (DUT). In look up table 1 (LUTଵ) the form of the torque is stored 

depending on the angle of the crank. Therefore, the torque has its sinusoidal shape after the limitation, 

as described above. Additionally, any other shape of the torque is possible, like push and pull or constant 

torque. After LUTଵ, the constant part of the torque is added to obtain the total torque. Furthermore, LUTଶ 

is required due to the open loop control. It determines the necessary currents for the desired torque from 

the actual speed. In order to obtain	LUTଶ, both pedal PSM are characterized in steady-state measurement 

to ensure the correct current for the desired torque in test-bench operation.  

The following current controller is designed with the optimum amount. The maximum current is limited 

to avoid damage to the PSMs or the test-bench. 
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Fig. 4: Open loop circuit torque control of one pedal 

 

The load PSM for terrain emulation by the roll is controlled in a cascaded control structure. The speed 

control is configured with the symmetrical optimum [7] and has an underlying current controller. Fig. 5 

shows the scheme of the controller. The input of the controller is the desired speed	݊. A ramp 

generator prevents the speed from overshooting. A maximum speed limitation is implemented to avoid 

damage of the PSM or the test-bench. The first PI controller controls the speed and is configured with 

the symmetrical optimum. The underlying PI current controller is configured with the optimum amount 

similar to the pedal PSMs. 
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Fig. 5: Speed control of the load PSM 

Mechanic 

The mechanic is deviated from the power flow diagram and the resulting topology, shown in Fig. 3. In 

Fig. 6 the CAD-model of the mechanic of the ETI-Pedelec test-bench is shown. The test-bench can be 

separated in three parts. The first part is the rear wheel part with the load PSM. In the second part is the 

cyclist emulated and the third and last part is for the front wheel. The pedelec is thereby fixed with cargo 

straps into the test-bench. Additional weights and cargo straps are used to adjust the pressure from the 

rear wheel to the roll. The rear wheel stands on the roll and is fixed with another pair of brackets (part 

one). Thereby, the whole roll is mounted on a joint, with the additional force sensor, the wheel vertical 

force can be controlled. In the second part are the PSMs for the pedal torque mounted. The attachment 

of the PSMs by a tripod can be adjusted into three directions (up/down, left/right, and back/forth). 

Because of this, a wide range of pedelecs, with wheel sizes from	24" to	29", can be mounted and 

measured. The PSMs are connected to the crank and pedals are replaced with a universal bolt. The front 

wheel is fixed with a bracket on a platform. 
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Fig. 6: Mechanic test-bench 

Device under test 

The device under test for the shown measurements is, a Ghost Kato 3 Hybrid pedelec. This pedelec is 

an up to date hardtail mountain bike with a middle motor. The pedelec is equipped with a Shimano 

E8000 motor, a 504	Wh battery with 36	V and	14	Ah. The nominal power of the motor is	250	W	and 

the maximum torque approx.	70	Nm. The mounted rear tire is a Tacx roller tire, which is used for 

constant long-term performance. Furthermore, slight test bench influences during operation on the roll 

can be neglected and comparable results can be guaranteed. 

Measurements 

The measurements in this paper focus on the overall system of a pedelec and should identify the 

characteristics of these and the associated motor with its controller under realistic conditions. For that, 

the test-bench emulates the real cyclist in special and typical cycling situations. To identify the drivetrain 

and the motor characteristics, several of these measurements are needed. The assistance level 

measurement identifies the reaction of the pedelec-motor in different cycling situations. On one side by 

increasing input torque at constant velocity and on the other side by increasing velocity at constant mean 

torque. The distance measurements characterize the maximum reachable range with one full loaded 

battery and the dynamics the start/stop and acceleration behavior of the device under test. Furthermore, 

the efficiency of the pedelec-motor, is calculated for each measurement using the measured values. 

These typical measurements including their necessary start-up procedures are shown in the following.  

Initialization 

It is important to choose the right gear for the measurements. For the assistance level measurement, the 

gear must be selected so that typical speeds of a cyclist are covered. This means the speed of the cyclist 

should be between 15 and 90	rpm while the velocity of the pedelec is between 3 and 27	km/h.  

For the distance measurement, the gear is selected as described in [3], so that the cyclist has a speed of 

about 60	rpm at about 20	km/h. 

Further, for comparable results a warm-up phase is required before starting the measurements. This is 

necessary because the warm-up of tires, bearings and PSMs, etc. lead to transient changes in the first 

minutes of the measurement. To minimize these effects, a warm-up phase of 30 minutes must be 

performed, after which it is assumed, that transient changes have no effect on the results. Almost 

constant losses of the loss detection routine of the test-bench before and after a distance measurement 

confirm this result.  

Distance 

The distance measurement quantifies the maximum reachable range when the battery is fully loaded. A 

new method to calculate this value is presented by the German ZIV (German bicycle industry 

association) and is defined in [3]. The aim of this method is to determine the maximum range under 



defined conditions and to normalize the assistance level to a uniform 200	%. Thus, the distance of 

different pedelecs from different manufacturers and types with different motors can be compared. For 

this measurement, the torque at the rear wheel and ultimately the distance achieved must be measured 

on the test-bench. In addition to these values required for measurement, the battery voltage and current 

of the pedelec-motor are measured over time to determine the efficiency. 

The distance measurement is done with the Ghost Kato 3 hybrid, introduced before. According, to the 

test procedure, the tested pedelec reaches a range of about	17.3	km with a break force 	ܨ of 

about	73.3	N on the test-bench. Using the formulas given in [3] results in a maximum range of about 53.9	km normalized to 200	% assistance level. The energy efficiency is thereby about	9.4	Wh/km. 

During the test, the pedelec consumes 	376	Wh or 	75	% of the nominal battery capacity. The remaining 	25	%	are needed to prevent deep discharge of the battery. Fig. 7 shows the power curve of the cyclist, 

the battery and the output during the measurement. The power of the cyclist is about	71.3	W. The 

measurement itself can be divided into three parts. During the first part, the first 8 minutes, the motor is 

able to operate at full power of about	565	W. During the second part, the next 4 minutes, the motor 

reduces the power gradually due to possible derating of the motor. In the third part, the rest of the 

measurement, the motor power is constant at about 380 W and operates in the thermal equilibrium. 

 

 ܴଶ = 53.9km ܴଶ = 40.8	km ܴ = 17.3	km ܴ = 1.3 ܰ = ܭ 2.4 = 3.1 ܲୟ୲,ୣୟ୬ = 417	W ߟ = 68	% 

Fig. 7: Course of power during distance measurement 

 

Assistance level 

Further measurements applied on this test-bench are the characterization of the assistance level which 

describes the support for the cyclist from the pedelec-motor. The assistance level (AL) is measured in 

different situations. The AL is calculated as described in equation (4). These situations are simulated, 

on the one hand, by varying the input torque at constant speed and on the other hand by varying the 

speed at constant torque. The measured variables are always the speed, torque at the rear wheel, cadence 

and torque at the crank. Thereby different assistance level modes are characterized by increasing input 

torque from10	Nm up to	40	Nm at constant speed of about	20	km/h. The result is plotted in Fig. 8 and 

shows the AL of the “Boost” mode in blue, AL of the “Trail” mode in green and in red AL of the “Eco” 

mode. As a result, it can be seen that in “Boost” mode with increasing input torque, the assistance level 

is decreasing, due to the restricted power of the pedelec-motor. The assistance level of the “Trail” and 

“Eco” mode are quite similar. ܶ ୗ୲ is the stimulation torque of the cyclist. In Fig. 9, the same measurement 

is evaluated. In this figure, not the assistance level is shown, but the torque of the pedelec-motor at the 

rear wheel at increasing input torque. The figure shows, that the torque in the “Boost” mode is nearly 

constant at increasing input torque. In comparison, in “Trail” mode an increasing input torque yield to 

linearly increasing torque of the pedelec-motor. The “Eco” mode is restricted at about 28	Nm, for 

maximal battery endurance. 

 

 



 

Fig. 8: Assistance level at increasing torque at 

about 20	km/h 

 Fig. 9: Torque of the pedelec-motor at the roll 

at increasing input torque and constant speed 

 

A second measurement is done at increasing speed and constant input torque. During the measurement, 

the input torque is set to	23	Nm. The speed is gradually increased from about	3 km h⁄  to	27 km h⁄ . The 

result is shown in Fig. 10. The blue curve is the AL of the “Boost” mode, the green curve is the AL of 

the “Trail” mode and in red the AL of the “Eco” mode is shown. During speed increase, the AL is 

increasing slightly. After about	20 km h⁄  the AL starts to decrease, at about	25 km h⁄  the AL is close 

to	0	%. The AL of the “Boost” mode is very high with about	300	%. This means the power of the 

pedelec-motor is three times the power of the cyclist. The “Trail” mode is similar to the “Eco” mode at 

this little torque. The AL is about	100	% to	120	%. 

 

Fig. 10: Assistance level by increasing velocity at about 23 Nm 

 

The definition of the assistance level described is given in equation (4). ܨ is the total brake force at the 

rear wheel. ܨୈ is the brake force at the rear wheel, caused by the cyclist. S = ൬ܨܨୈ − 1൰ ⋅ 100% 

 

(4)

Dynamics 

Another interesting aspect is the feeling of riding a pedelec. This should be similar to a conventional 

bike and is very important to a cyclist. During a cycle ride, the conditions are changing permanently, for 

example the surface and the grip, or the slope of the road. A cyclist adopts to this intuitively and a 

pedelec must react similarly. This means, the cut-off time and the rise-time should be small and the 

torque changes should be smooth. The proposed ETI-Pedelec test-bench with its precise sensors is able 

to measure these dynamics. Emulation of acceleration of speed, increase or decrease of torque 

imposition enables the characterization of the dynamics. Fig. 11 shows exemplarily the acceleration of 

the pedelec from	5 km h	⁄ to	10 km h⁄ . In this measurement, the accelerations are performed at a 

constant torque so that only the speed changes. Since the gears are not changed, the cyclist has to cycle 

faster. This means that the cyclist's power is increasing and yields to increasing power of the pedelec-

motor, for constant AL. This test-bench situation is used to simulate the rise-time of the pedelec-motor 

control during cycling. The easiest way to quantify this behavior is monitoring the battery current during 

the situation, because of almost constant battery voltage, the current increases as the power increases. 



This implies for the measurement, if the current of the battery increases by more than 10	% during the 

measurement, the pedelec reacts to the acceleration of the test-bench. In the “Boost” mode, the pedelec-

motor needs about 	0.15	s to react to the acceleration from the test-bench.  

Fig. 11: Acceleration of the DUT from 5 to 10 km h⁄  

 

Further measurements 

As demonstrated before, it is possible to execute different measurements with this ETI-Pedelec test-

bench. The test-bench delivers precise results for standard as well as novel measurements. First of all, 

the topology can be altered by applying one only or two pedal PSM to the crank. Hence, the efficiency 

of the pedelec-motor can be calculated with these measurements by considering the different measured 

powers according the power flow diagram explained above.  

In addition, the torque can be modified, e.g. push and pull or different amount of torque left and right. 

This means asymmetrical torque inducement, like it may happen in failure mode or when the cyclist is 

hurt can be emulated as well. 

Summary  

This paper presents a test bench for full range and real emulation of a cyclist. As it is state of the art in 

the development process of hybrid electric vehicles, independent and reproducible measurements can 

be performed. For this purpose, the presented ETI-Pedelec test-bench emulates a real driver more 

precisely than other state-of-the-art test benches. Several measurements can be performed to 

characterize the pedelec's propulsion system. Both the assistance level and the range of the pedelec can 

be measured. Furthermore, the dynamics, i.e. the reaction to a change in speed or torque, can be 

measured. Several failure modes such as asymmetrical or one-sided torque inducement can be simulated 

with the presented test bench. In addition, the curve of the torque can be changed, thus push and pull is 

possible as well. To archive this, a lot of sensors and a powerful signal processing hardware, modern 

control and measurement routines are used.  
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