
Decomposition of Relations
for Multi-model Consistency Preservation

Master’s Thesis of

Aurélien Pepin

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf Reussner

Second reviewer: Prof. Dr.-Ing. Anne Koziolek

Advisor: M.Sc. Heiko Klare

Second advisor: Dr.-Ing. Erik Burger

External advisor: Nils Gesbert (Grenoble INP)

20. May 2019 – 19. November 2019

This document is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 19. November 2019

. .

(Aurélien Pepin)

Abstract

In the usual software development cycle, the phase of conception involves the creation of

models of the software system. These models are developed according to speci�cations

and serve as documentation for software developers. UML diagrams are an example of

frequently used models. Model-driven software development is an approach in which

models are at the heart of software development. They are an integral part of the software

system, each model representing a speci�c aspect of the system. Models are developed,

maintained and tested. Automated or semi-automated model transformations analyze

models and generate source code.

When two models represent the same software system, they can share information. In

this case, they are said to be interrelated. For example, the code and the UML class diagram

of an object-oriented software system have class names in common. As a result, modifying

a model results in inconsistencies. The automated or semi-automated management of incon-

sistencies is known as consistency preservation. Moreover, dependencies between models

are called consistency relations. These relations are associated with model transformations.

When a consistency relation is broken, the related transformation modi�es models to

repair it.

Multi-model consistency preservation is a recent area of research that focuses on con-

sistency relation networks, i.e. on what happens when several models and consistency

relations coexist. Consistency relation networks raise new issues, e.g. when two con-

sistency relations are incompatible. The purpose of this thesis is the design and the

implementation of the decomposition of relations, an optimization technique for consis-

tency relation networks. The aim of the decomposition procedure is to detect redundant

information within consistency relations.

The presented decomposition procedure does not alter consistency speci�cations. In-

stead, it returns a decomposition of the speci�cation, i.e. a set of independent and non-

redundant consistency relations. This decomposition facilitates the detection of possible

contradictory consistency relations. As a result, the decomposition procedure helps the

developer to �nd incompatibilities in consistency speci�cations.

We provide an evaluation of our approach by assessing the functional correctness of

the procedure and the applicability of its prototype. The evaluation shows that the use of

the procedure in a consistency preservation process is bene�cial.

Keywords: software engineering, model-driven software development, model transfor-

mations, decomposition of relations, multi-model consistency.

i

Zusammenfassung

Im üblichen Softwareentwicklungsprozess beinhaltet die Design-Phase die Erstellung von

Modellen des Softwaresystems. Diese Modelle werden nach bestimmten Anforderungen

entwickelt und dienen als Dokumentation für Softwareentwickler. UML-Diagramme sind

ein Beispiel für häu�g verwendete Modelle. Modellgetriebene Softwareentwicklung ist ein

Ansatz, bei dem Modelle im Mittelpunkt der Softwareentwicklung stehen. Sie werden ein

wichtiger Bestandteil des Softwaresystems, dadurch dass jedes Modell einen bestimmten

Aspekt des Systems darstellt. Modelle werden entwickelt, gewartet und getestet. Automa-

tisierte oder teilautomatisierte Modelltransformationen analysieren Modelle und erzeugen

Quellcode.

Wenn zwei Modelle das gleiche Softwaresystem abbilden, können sie Informationen

miteinander gemein haben. In diesem Fall werden sie als zusammenhängend bezeichnet.

Beispielsweise haben der Code und das UML-Klassendiagramm eines objektorientierten

Softwaresystems gemeinsame Klassennamen. Infolgedessen führt die Änderung eines

Modells zu Inkonsistenzen. Die automatisierte oder teilautomatisierte Au�ösung von Inkon-

sistenzen wird als Konsistenzhaltung bezeichnet. Darüber hinaus werden Abhängigkeiten

zwischen Modellen als Konsistenzrelationen bezeichnet. Diese Relationen sind mit Modell-

transformationen assoziiert. Falls eine Konsistenzrelation verletzt wird, modi�ziert die

assoziierte Transformation Modelle, um die Konsistenzrelation zu reparieren.

Multi-Modell-Konsistenzhaltung ist ein entstehendes Forschungsgebiet, das sich auf

Netzwerke von Konsistenzrelationen bezieht, also darauf, was passiert, wenn mehrere

Modelle und Konsistenzrelationen gleichzeitig funktionieren. Netzwerke von Konsistenz-

relationen werfen neue Problem auf, zum Beispiel wenn zwei Konsistenzrelationen nicht

kompatibel sind. Der Zweck dieser Masterarbeit ist das Design und die Implementierung

der Dekomposition von Relationen, einer Optimierungstechnik für Netzwerke von Kon-

sistenzrelationen. Ziel des Dekompositionsverfahrens ist die automatische Erkennung

redundanter Informationen innerhalb von Konsistenzrelationen.

Das vorgestellte Dekompositionsverfahren verändert Konsistenzspezi�kationen nicht.

Stattdessen gibt es eine Dekomposition der Spezi�kation aus. Eine Dekomposition ist eine

Menge von unabhängigen und nicht redundanten Konsistenzrelationen. Diese Dekom-

position erleichtert die Erkennung möglicher widersprüchlicher Konsistenzrelationen.

Dadurch hilft das Dekompositionsverfahren dem Entwickler, Inkompatibilitäten in Konsis-

tenzspezi�kationen zu �nden.

Der Ansatz dieser Arbeit wird durch die funktionale Korrektheit des Verfahrens und die

Anwendbarkeit des Prototyps evaluiert. Die Evaluation zeigt, dass die Verwendung des

Verfahrens in einem Konsistenzhaltungsprozess von Vorteil ist.

Stichwörter: Softwaretechnik, modellgetriebene Softwareentwicklung, Modelltrans-

formationen, Dekomposition von Relationen, Multi-Modell-Konsistenzhaltung.

iii

Résumé

Dans le cycle de développement habituel d’un logiciel, la phase de conception comprend la

création de modèles du système logiciel. Ces modèles sont mis au point selon un cahier des

charges et servent de documentation pour le développement du logiciel. Les diagrammes

UML sont un exemple de modèles fréquemment utilisés. L’ingénierie dirigée par les modèles

est une approche dans laquelle les modèles sont au cœur du développement. Ils font partie

intégrante du système logiciel : chaque modèle est une représentation d’un aspect du

système logiciel. Les modèles sont développés, fréquemment mis à jour et testés. Des

transformations de modèles (automatiques ou semi-automatiques) analysent les modèles

et génèrent du code, le code devenant alors aussi un modèle du logiciel.

Lorsque deux modèles représentent un même système logiciel, ils contiennent de l’in-

formation en commun. Ils sont dits interdépendants. Par exemple, le code et le diagramme

UML de conception d’un système orienté objet ont entre autres en commun les noms des

classes qu’ils contiennent. Dans ce cas, modi�er un modèle génère des incohérences. La

résolution automatique ou semi-automatique de ces incohérences est connue sous le nom

de préservation de la cohérence. De même, les dépendances entre les modèles sont appelées

relations de cohérence. Les relations de cohérence sont associées à des transformations de

modèles. Lorsqu’une relation de cohérence est rompue, la transformation liée modi�e les

modèles a�n de la restaurer.

La préservation de la cohérence multi-modèles est un domaine de recherche récent dans

lequel on s’intéresse aux réseaux de relations de cohérence, c’est-à-dire à ce qu’il se

passe lorsque plusieurs modèles et relations de cohérence coexistent. Les réseaux de

relations de cohérence soulèvent de nouveaux problèmes, par exemple lorsque deux

relations de cohérence sont incompatibles. L’objectif de ce mémoire est la conception et

l’implémentation de la décomposition de relations, une technique d’optimisation pour les

réseaux de relations de cohérence. Le but de la décomposition de relations est d’identi�er

automatiquement les informations redondantes au sein des relations de cohérence a�n

d’en accroître la compatibilité.

La procédure de décomposition présentée n’altère pas les spéci�cations de cohérence.

Elle renvoie plutôt une décomposition de la spéci�cation, c’est-à-dire un ensemble de

relations de cohérence indépendentes et non redondantes. Cette décomposition facilite

la détection de relations de cohérence possiblement contradictoires. Par conséquent, la

procédure aide le développeur à trouver des incompatibilités dans les spéci�cations de

cohérence. L’évaluation de cette approche est fondée sur la correction de la procédure et

sur l’applicabilité du prototype qui en résulte. Cette évaluation montre que l’intégration

de la procédure dans un processus de préservation de la cohérence est béné�que.

Mots-clés : génie logiciel, ingénierie dirigiée par les modèles, transformation de mo-

dèles, décomposition de relations, cohérence multi-modèles.

v

Contents

Abstract i

Zusammenfassung iii

Résumé v

1. Introduction 1
1.1. Motivation . 1

1.2. Goal of the thesis . 2

1.3. Structure of the thesis . 3

2. Foundations 5
2.1. Models, Metamodels, Model Transformations 5

2.1.1. Models . 5

2.1.2. Metamodels . 6

2.1.3. Model Transformations . 6

2.2. Model-Driven Software Development . 8

2.2.1. The Ecore Meta-metamodel . 8

2.2.2. The Object Constraint Language 9

2.2.3. Transformation Languages . 10

2.3. Formal Foundations of Models . 11

2.3.1. Formal Metamodels . 11

2.3.2. Formal Models and Instances . 12

2.4. Model Consistency Preservation . 13

2.4.1. Consistency Relations . 13

2.4.2. Model Transformations for Consistency Relations 13

2.4.3. Multi-Model Consistency Preservation 15

2.5. Constraint Satisfaction . 16

2.5.1. Constraint Networks . 17

2.5.2. Constraint Graphs and Hypergraphs 17

2.6. Automated Deduction . 18

2.6.1. First-Order Logic . 18

2.6.2. Satis�ability Modulo Theories . 20

3. Consistency Preservation 21
3.1. Description of Consistency Relations . 21

3.1.1. Consistency Relation Graph . 21

3.1.2. Consistency Rule . 22

vii

Contents

3.1.3. Consistency Speci�cation . 25

3.2. Consistency with QVT-R . 25

3.3. Structure of a QVT-R Speci�cation . 26

3.3.1. Imports . 27

3.3.2. Relational Transformations . 27

3.3.3. Relations . 27

3.3.4. Relation Domains . 28

3.3.5. Expressions and Conditions . 29

3.4. From QVT-R to Consistency Rules . 30

3.4.1. From Domain Pattern to Condition on a Metaclass 31

3.4.2. From Domain to Condition on a Metaclass Tuple 32

3.4.3. From Transformation to Consistency Rule 33

4. Principles of Decomposition 35
4.1. Introduction to the Decomposition Procedure 35

4.1.1. Equivalent Consistency Speci�cations 36

4.1.2. Complexity of Consistency Speci�cations 36

4.2. Means of Decomposition of Speci�cations 38

4.2.1. Independent Consistency Subgraphs 39

4.2.2. Totally Redundant Consistency Relations 39

4.2.3. Partially Redundant Consistency Relations 41

4.2.4. Towards a Decomposition Procedure 43

4.3. Formal Properties . 44

4.3.1. Conservativeness . 44

4.3.2. Usefulness . 45

5. Decomposition Procedure 49
5.1. Tractable Consistency Relations . 49

5.1.1. Two Aspects of Consistency Speci�cations 49

5.1.2. Metagraph . 51

5.1.3. Metagraphs and Constraint Networks 52

5.2. Outline of the Decomposition Procedure 53

5.3. From Consistency Speci�cation to Metagraph 53

5.3.1. Inputs of the Procedure . 56

5.3.2. Recursive Construction of QVT-R Concepts 58

5.3.3. Translation of Global Aspects of Speci�cations 60

5.3.4. Translation of Local Aspects of Speci�cations 64

5.4. From Metagraph To Decomposition . 69

5.4.1. Metagraph Dual . 69

5.4.2. Independent Subsets of Meta-Edges 71

5.4.3. Generation of Combinations of Meta-Edges 74

5.4.4. Detection of Redundant Rules . 77

viii

Contents

6. Constraint Translation 83
6.1. Symbolic Computation for OCL and QVT-R 83

6.1.1. Automation of the Decomposition Procedure 83

6.1.2. Choosing an Approach for Constraint Translation 84

6.1.3. Theorem Proving for Decomposition 86

6.2. Primitive Datatypes . 86

6.3. Data Structures . 87

6.3.1. Collection Literals . 87

6.3.2. Collections from Role Names . 88

6.4. Operations . 89

6.4.1. Arithmetic Operations . 89

6.4.2. Boolean Operations . 90

6.4.3. Conversion Operations . 90

6.4.4. Equality Operators . 90

6.4.5. Order Relations and Extrema . 90

6.4.6. Collections Operations . 90

6.4.7. String Operations . 91

6.4.8. Untranslatable Operations . 91

7. Evaluation 93
7.1. Methodology . 93

7.1.1. Addressing Research Questions 93

7.1.2. Evaluation Material . 94

7.2. Functional Correctness . 94

7.2.1. Finding Existing Tree-Like Speci�cations 95

7.2.2. Unaltered Consistency Speci�cations 97

7.3. Applicability . 99

7.3.1. Example Scenarios . 100

7.3.2. Execution Results . 100

7.3.3. Threats to Validity . 103

7.4. Discussion and Further Evaluation . 103

7.4.1. Bene�ts . 103

7.4.2. Limitations . 105

7.4.3. Further Evaluation . 106

8. RelatedWork 107
8.1. Model Consistency Preservation . 107

8.1.1. Approaches for Consistency . 107

8.1.2. Multi-Model Consistency Preservation 109

8.1.3. Model Transformation Decomposition and Composition 110

8.2. Formalization of QVT-R . 110

8.3. Formal Techniques for Transformation Languages 111

8.3.1. Automated Techniques . 111

8.3.2. Interactive Techniques . 112

8.3.3. Model Finding . 112

ix

Contents

9. Conclusion and Future Work 113
9.1. Conclusion . 113

9.2. Future Work . 114

9.2.1. Extension to Other Constructs . 114

9.2.2. Extension to Other Symbolic Computation Tools 114

9.2.3. Extension to Other Contexts . 114

Bibliography 117

A. Appendix: Translation of OCL Operations 131
A.1. Arithmetic Operations . 131

A.2. Boolean Operations . 132

A.3. Conversion Operations . 132

A.4. Equality Operators . 132

A.5. Order Relations and Extrema . 133

A.6. Collection Operations . 133

A.6.1. Operations For Collections . 133

A.6.2. Operations For Sequences . 134

A.6.3. Operations For Sets . 134

A.7. String Operations . 135

x

1. Introduction

1.1. Motivation

In engineering, modeling is a common approach to deal with complex systems. Modeling

is de�ned as the e�cient use of models, i.e. simpli�ed representations of an aspect of a

system, for a given objective [Sel03]. For example, meteorologists design mathematical

models of the weather for prediction purposes.

In software engineering, modeling focuses on software systems. It aims to represent

di�erent properties of the system using models of architecture, reliability, performance, se-

curity, etc. Model-driven software development suggests to use these models as parts of the

software to increase both speed and quality of software development [VS06].

As models of a system describe aspects of the same system, they contain overlapping

and dependent information. They are interrelated. For instance, the code and the design

model (e.g., a UML class diagram) of an object-oriented software system will probably have

class names in common. Because they are fundamental and primary artifacts in model-

driven software development, models are frequently modi�ed. Modifying a model leads to

inconsistencies. Solving these inconsistencies through automated mechanisms is known

as consistency preservation. We refer to dependencies between models as consistency re-
lations. The most common way to restore consistency relations is to use bidirectional
transformations (bx) [Ste08], a special case of model transformations. Model transforma-

tions correspond to automatic generations of target models from source models. When

consistency relations hold for pairs of models, such transformations are called binary

transformations. Moreover, transformations for consistency preservation are usually in-
cremental, so that speci�c parts of models are updated rather than recreating models each

time.

As stated in [Kla18], it is also possible to de�ne multi-model consistency relations, i.e.

consistency relations between more than two models. Related transformations are known

as multiary bx. Stevens proved in [Ste17a] that under some reasonable conditions, multiary

bx can be de�ned in terms of binary bx. That is, multi-model consistency preservation

could be achieved by combining transformations for binary consistency relations. A

speci�cation for multi-model consistency can be regarded as a network of metamodels

linked by consistency relations.

This approach has several advantages. One of these advantages is that it allows to

develop independent binary transformations rather than complex n-ary transformations.

In practice, this corresponds to the common case in which a developer does not master

all possible modeling languages. A consistency speci�cation developed according to this

approach is easier to maintain as transformations do not need to know each other to operate

1

1. Introduction

together. However, this approach introduces other problems such as interoperability issues

between transformations. Problems and proposed solutions are discussed in detail in

[Kla18]. One of these solutions is the decomposition of consistency relations.

1.2. Goal of the thesis

The goal of this thesis is to investigate the decomposition of consistency relations, an ap-

proach introduced in [Kla18] for optimizing the applicability of consistency speci�cations.

In this thesis, we aim to provide an implementation of this optimization technique called

the decomposition procedure.
The main motivation behind decomposition is that in a network of consistency relations,

combinations of various consistency relations may ultimately play the same role in consis-

tency preservation. In other words, what a consistency relation preserves between two

metamodels may be (at least partly) preserved by an alternative combination of relations

between the same metamodels. In such a case, the relation can be decomposed.

For example, let a, b and c be three attributes in three di�erent metamodels. Suppose

that consistency is preserved if all three attributes have the same value. This requirement

can be represented by three consistency relations: a = b, b = c and a = c . If the value of

an attribute is updated, the value of the other two must be updated accordingly. To this

purpose, two consistency relations are already su�cient. For example, the combination of

a = b and b = c ensures that a = c . Thus, one of the three relations can be replaced by the

combination of the other two. This is an example of decomposition.

An important requirement for consistency speci�cations to be applicable is that they

contain no contradictory consistency relations. Two relations are contradictory if no

model can ful�ll both relations at the same time. A bene�t of the decomposition procedure

is that it can be used to �nd possibly contradictory relations. The decomposition procedure

removes and separates as many relations as possible. If there are two distinct combina-

tions of relations between two metamodels after the decomposition, this means that no

combination can replace the other. In other words, there may be contradictory relations

in these combinations. The decomposition procedure makes it easier to detect possibly

contradictory relations, thus indirectly improving the applicability of speci�cations.

In this thesis, we �rst give a formal meaning to the concept of consistency speci�cation

and we provide a concrete way to write speci�cations. This is achieved by using QVT-R, a

language to write model transformations, for which we show that it can be used to write a

consistency speci�cation. We then describe the principles of decomposition of consistency

relations and we also discuss the bene�ts of decomposition.

With consistency speci�cations written in QVT-R, we present an implementation of the

decomposition procedure, i.e. a tool that takes a consistency speci�cation as an input and

returns another simpli�ed speci�cation that preserves consistency in the same way. In

summary, this thesis has the following research goal:

Given a consistency speci�cation, identify decomposable relations, i.e. relations

that can be replaced by an alternative combination of consistency relations without

altering the speci�cation. Provide a way to do it systematically by analyzing QVT-R

transformations that represent consistency speci�cations.

2

1.3. Structure of the thesis

To meet this goal, this thesis answers the following research questions:

Q1. What does it mean for a consistency relation to be decomposable?

Q2. How can QVT-R be used to specify consistency in a set of metamodels?

Q3. How to design a decomposition procedure that:

• decomposes consistency relations in an optimal way,

• and ensures that the consistency speci�cation is not altered?

1.3. Structure of the thesis

First, Chapter 2 presents some general concepts that lay the foundation of this thesis.

In particular, important concepts of model-driven software development and symbolic

computation are introduced.

Chapter 3 gives a formal meaning to the notion of consistency. It introduces QVT-R,

a transformation language, and shows how the main concepts of this language can be

compared with the theoretical framework for consistency.

Chapter 4 presents the characteristics of the decomposition procedure. This involves

a description of the input and the output of the algorithm, as well as the purpose of

decomposition. Some methods to achieve a decomposition of consistency relations are

also introduced. Finally, important properties that the decomposition procedure must

meet are discussed and formalized.

Chapter 5 is a detailed explanation of the implementation of the decomposition proce-

dure. It provides an algorithmic way to implement decomposition methods mentioned in

the previous chapter. The chapter is based on the structure of metagraph, a comprehensive

and usable representation of consistency speci�cations.

Chapter 6 describes the use of an automated theorem prover to achieve the decomposi-

tion of relations. In particular, it shows how parts of the QVT-R transformation language

can be translated into �rst-order formulae.

Chapter 7 focuses on the evaluation of the proposed decomposition procedure. We

mainly evaluate the functional correctness of the procedure and its applicability in the

context of multi-model consistency preservation. Then, we discuss the bene�ts and the

limitations of such an approach.

Finally, Chapter 8 gives an overview of the existing work in consistency preservation.

It also surveys the use of formal methods in the �eld of model transformations.

3

2. Foundations

This thesis is based on models and relations between them. Models are fundamental in

science in general. The design of models, namely scienti�c modeling, is a useful tool to

deal with complexity of systems. In general terms, models are simpli�ed representations

of a system or a process used to describe and predict phenomena from real life. We focus

on software modeling, a case of modeling where the system is a software. Moreover, this

thesis uses constraint satisfaction and automated deduction to reason about models.

This chapter presents all important concepts in software modeling and automated

deduction that serve as a basis for this thesis. In particular, the �rst section introduces

important notions of model theory: models, metamodels and model transformations. The

second section is an overview of technologies of model-driven software development, a

way to use software modeling results as parts of a software. The third section sets out

the foundations of consistency preservation, a challenge that arises when working with

multiple models. The fourth section is an introduction to important techniques in the �eld

of constraint satisfaction. Finally, the �fth part presents notions of automated deduction.

2.1. Models, Metamodels, Model Transformations

2.1.1. Models

2.1.1.1. Features of Models

Software modeling is usually achieved using modeling languages, i.e. languages to design

models. The Uni�ed Modeling Language (UML) is a well-known example of general-

purpose modeling language [RJB04].

An appropriate de�nition of models in software engineering was proposed by Sta-

chowiak in [Sta73]. Models can be identi�ed by their features. Stachowiak found three of

them that every model has.

• Representation feature. Each model is a model of something, i.e. a model is always

associated to an original.

• Reduction feature. A model never captures all aspects of an original, but only those

that are relevant in the context of the modeling.

• Pragmatic feature. A model is only valid in a given context, especially for particular

subjects and intervals of time.

For example, a UML class diagram is a graphical model of a software system, which

represents the object-oriented structure of the system. Among other uses, it is provided to

developers during the implementation phase of the software.

5

2. Foundations

2.1.1.2. Originals

The original is what the model represents. Generally, an original can be represented by

multiple models describing di�erent aspects of it. For example, a software system can

have architectural models, performance models, security models, etc. Conversely, a model

can also be used for several originals. The relation from an original to a model is called

abstraction, whereas the relation from a model to an original is called instanciation.

2.1.2. Metamodels

A metamodel is a model of a model, i.e. a model that describes the structure of mod-

els [VS06]. Following the de�nitions of originals, a metamodel represents a model whereas

a model instantiates a metamodel. In theory, it is possible to de�ne an in�nite sequence

of abstractions since every model can be itself modeled. In practice, the most abstract

metamodel is self-descriptive, i.e. it is able to describe itself.

Metamodels are fundamental in modeling languages. For example, valid models accord-

ing to the speci�cation of UML can be seen as valid instances of the UML metamodel. The

standard to which the metamodel that describes the UML language conforms is called the

Meta-Object Facility (MOF) [Obj16a]. The MOF standard can itself be regarded as a model

for metamodels, i.e. a meta-metamodel.

The Meta-Object Facility is designed as an architecture of four modeling layers. These

layers range from M0 to M3. More precisely, layers are de�ned as follows:

• M0 is the original, i.e. an object in the reality;

• M1 is the (user) model that represents M0;

• M2 is the metamodel, e.g. UML, whose instances are M1 models;

• M3 is the self-descriptive MOF meta-metamodel to which M2 conforms.

In practice, this number of layers is su�cient for a large number of applications. Most

of modeling languages are de�ned at the M2 layer, i.e. as instances of the meta-metamodel

provided by the MOF standard.

This is the case with the metamodel de�ned by the UML standard [Obj16d], but also with

speci�c metamodels such as the Palladio Component Model (PCM, for performance predic-

tion) [BKR09] or the AUTomotive Open System ARchitecture (AUTOSAR, for automotive

electronics) [Für+09].

2.1.3. Model Transformations

2.1.3.1. Principles of Transformations

The systematic and sometimes automated use of models in software engineering involves

the creation of tools to manipulate them and to make them work together. This is the

purpose of model transformations. As stated in [Kle+03], a model transformation is an auto-

matic generation of a target model from a source model, according to a set of transformation

6

2.1. Models, Metamodels, Model Transformations

Meta-metamodel

Metamodel M1

Modelm1

Transformation language

Transformation rules

Transformation engine

Metamodel M2

Modelm2

instantiates instantiates

instantiates instantiates

references references

input output

input

instantiates

Figure 2.1.: Principles of model transformations

rules. In particular, one purpose of model transformations is to generate platform-speci�c

models and code from high-level models [SK03].

Figure 2.1 depicts the use of model transformations. First, transformations rules are

speci�ed between two metamodels M1 and M2. To be processed automatically, these rules

obey to a certain syntax de�ned by a transformation language. Transformation languages

are programming languages in which it is easy to refer to metamodel elements. Second,

transformations are applied on models through a transformation engine that interprets the

transformation rules. Suppose thatm1 (resp. m2) is an instance of M1 (resp. M2) and that

there exist transformations rules referencing M1 and M2. The transformation engine takes

m1 and the set of rules as inputs in order to create (or update) the modelm2.

2.1.3.2. Classification of Model Transformations

Classi�cation of model transformations encompasses many criteria [Ste08]; [MV06]. For

example, model transformations may be either automated or interactive. If transformations

relate models of the same modeling layer, they are said to be horizontal; vertical otherwise.

If transmations relate instances of the same metamodel, they are called endogenous;

exogenous otherwise. For example, code refactoring is achieved through horizontal and

endogen model transformations.

Another criterion is the direction of transformations. If models related by a transforma-

tion are either sources or targets (but not both), the transformation is called unidirectional.

Otherwise, if models can be both sources and targets, the transformation is called bidi-

7

2. Foundations

rectional. Bidirectional model transformations form an important and well-researched

category of model transformations [Ste17a].

2.2. Model-Driven So�ware Development

The approach in which models and model transformations are at the heart of the construc-

tion of a software system is called model-driven software development (MDSD). Models are

said to be primary artefacts as they can’t be put aside during the development, unlike the

usual development approaches in which they are mainly used for documentation.

The promise of model-driven software development is to focus on domain-speci�c chal-

lenges using domain-speci�c languages (DSL). Platform-speci�c challenges (including code

generation) could then be performed by model transformations. The objective of this ap-

proach includes better interoperability, platform independence and better maintainability

(through reduced redondancy) [VS06].

2.2.1. The Ecore Meta-metamodel

Tools for model-driven software development are not fully mature yet [KMT12]. However,

there already exist multiple initiatives to foster the use of models and metamodels in

software engineering. One of the most advanced ecosystem to this end is Eclipse
1
. Mod-

eling tools provided by Eclipse are part of the Eclipse Modeling Framework2
(EMF). This

framework provides an implementation of model-driven engineering standards de�ned by

the Object Management Group3
(OMG).

The OMG is a consortium whose purpose is to promote object modeling. The model-

driven engineering standards it de�nes are integrated into an approach calledModel-Driven
Architecture (MDA) [Po01]. The MDA approach is entirely based on the Meta-Object

Facility. As a result, the Eclipse Modeling Framework provides a support for the MOF

framework and other technologies that refer to it.

The most important part of the MOF framework is its meta-metamodel. This is the

starting point for modeling metamodels such as that of UML and other modeling or

transformation languages. The MOF meta-metamodel comes with two compliance points
that describe depending on the level of detail required to use the meta-metamodel: EMOF

(Essential MOF, a subset of MOF for facilities of object-oriented programming and XML)

and CMOF (Complete MOF, built from EMOF and UML constructs).

Ecore is a meta-metamodel de�ned in EMF that can be regarded as an implementation

of EMOF. As a consequence, Ecore is compatible with standard derived from the MOF

meta-metamodel. Like the MOF meta-metamodel, Ecore is self-descriptive. The kernel

of Ecore is represented in Figure 2.2 [Ste+08]. It is actually close to the formalism of

UML: the most fundamental element is the class (EClass). Each class can have attributes

(EAttribute) and references (EReference). A hierarchy of classes, similar to generalization

in UML, is available through eSuperTypes references.

1https://www.eclipse.org
2https://wiki.eclipse.org/Eclipse_Modeling_Framework
3https://www.omg.org

8

2.2. Model-Driven Software Development

eAttributes
0..*

eReferences
0..*

eReferenceType
1

eAttributeType

1

EClass

- name : String

EAttribute

- name : String

EDataType

- name : String

EReference

- name : String
- containment : boolean
- lowerBound : int
- upperBound : int

eSuperTypes

0..*

eOpposite

0..1

Figure 2.2.: Kernel of the Ecore meta-metamodel

The metamodel is self-descriptive in that it is itself made up of classes with attributes

and references. Given that the metamodel of the UML standard can be regarded as an

instance of the Ecore meta-metamodel, a UML class with an attribute can be represented

as an instance of EClass that references an instance of EAttribute.

Ecore also de�nes primitive data types that corresponds to usual datatypes in program-

ming languages, e.g. EInt, EBool, EString, etc. These data types can easily be mapped to

primitive data types of programming languages such as Java. Altogether, metamodels of

any nature can be represented as instances of the Ecore meta-metamodel. They are usually

serialized in *.ecore �les using an extension of XML called XML Metadata Interchange
(XMI).

2.2.2. The Object Constraint Language

The representation of metamodels as instances of the Ecore meta-metamodel is purely

syntactic, in the sense that it is only a set of elements and relationships between them.

However, this representation is incomplete. For example, there is no way to indicate

syntactically that an instance of an EAttribute takes a restricted set of values.

To overcome this limitation, the MDA approach provides a standard to specify the

semantics of metamodels called the Object Constraint Language (OCL) [WK03]. It is a

declarative and strongly typed language that provides constraints and invariants for MOF

models (including UML models). This is a convenient way to express additional rules on

models such as semantic constraints.

Constraints in OCL usually consists of two parts. First, a context representing a class. It

indicates on which class the constraint should apply. Second, the content of the constraint

expressed with a boolean OCL expression. The expression must evaluate to true for an

object (i.e. a class instance) to ful�ll the constraint. OCL also includes primitive data types

that can be mapped to those of Ecore.

Due to its ability to relate metamodel elements and its high expressiveness, OCL is

embedded in many transformation languages. In particular, other languages often embed

9

2. Foundations

Essential OCL, the minimal subset of OCL required to work with EMOF, or Imperative
OCL, a Turing-complete extension of OCL with side e�ects [Obj16c].

2.2.3. Transformation Languages

As stated in Section 2.1.3.2, there are many criteria classify model transformations. Con-

sequently, there exist many transformation languages with di�erent features. The MDA

approach provides its own set of transformation languages called Query/View/Transfor-
mation (QVT) [Obj16b].

As with usual programming languages, transformation languages can be divided into two

main paradigmes: imperative languages and declarative languages. Imperative transforma-

tion languages describe how the transformation should be performed whereas declarative

languages focus on what transformations should perform. Consequently, QVT de�nes

two main languages:

• QVT Relations (QVT-R) is a declarative language. It allows the speci�cation of

unidirectional and bidirectional transformations. QVT-R transformations can be

regarded as sets of conditions on models. The execution of transformations can

impose the ful�lement of these conditions by updating models.

• QVT Operational (QVT-O) is an imperative language. It is useful when a speci�cation

of steps is required to derive the target model from the source model. It only allows

the speci�cation of unidirectional transformations.

In addition to these languages, QVT Core (QVT-C) is another minimal, declarative

language. However, it is rarely used by end-users because QVT-R is declarative too and

more expressive. The QVT standard de�nes a way to transform QVT-R transformations

into QVT-C transformations. Figure 2.3 depicts the dependencies resulting from the organi-

zation of QVT languages into packages. First, the three languages depend (directly or not)

on the EMOF package as they can be expressed as instances of the EMOF meta-metamodel.

Second, common concepts between languages have been into several intermediate pack-

ages. The �rst one, QVT Base, consists of constructs that appear both in QVT-C and QVT-R.

The second one, QVT Template, is only used by QVT-R. It is made up of all constructs that

allow QVT-R to express conditions on models as OCL expressions. Finally, it should be

noted that QVT-O uses its own representation of OCL since it is an imperative language

that needs side e�ects.

Semantics of languages of the QVT standard are hard to understand and incomplete

[Ste10]. For this reason, their implementation is still under development. While there

exists a stable engine for QVT-O, the support of QVT-R is partial at the time of writing of

this thesis. Other languages, partly based on QVT, provide a better support.

One of these languages is the ATLAS Transformation Language (ATL) [Jou+06]. ATL is

an hybrid transformation language: it contains both declarative and imperative features. It

has its own meta-metamodel called Kernel Meta-metamodel (KM3) but can be used within

EMF. Like QVT-R and QVT-O, it uses OCL to manipulate metamodel elements.

10

2.3. Formal Foundations of Models

EMOF Essential OCL

QVT Base QVT Template Imperative OCL

QVT Core QVT Relations QVT Operational

Figure 2.3.: Dependencies between QVT packages

2.3. Formal Foundations of Models

Although models and metamodels are intuitive and proven concepts in software engineer-

ing, we now aim to give a formal meaning to them. The point of formalizing concepts of

model-driven software development is to use them as objects that can be built, compared

and embedded into a theoretical framework to de�ne consistency.

Making model-driven engineering concepts and technologies formal is an e�cient

way to separate tools from their implementations and to point out more limitations and

semantics issues in standards. In particular, most of technologies presented in this thesis

are MOF-based, i.e. they have been formalized as instances of the MOF meta-metamodel.

See for example the standardisation of QVT [Obj16b], OCL [Obj16c] and UML [Obj16d].

De�nitions presented in this section are based on set theory and adapted from the

theoretical framework of Kramer [Kra17]. This framework is itself based on the MOF

representation of metamodels and models. As a result, the correspondence between these

de�nitions and the representation of models in the MOF standard is straightforward.

2.3.1. Formal Metamodels

We �rst give a formal meaning to the concept of metamodel.

De�nition 2.3.1 A metamodel M is a tuple (C, ≺,R,A,V) such that C is a set of meta-
classes, ≺ is a partial order on C (i.e. ≺ ⊂ C × C), R is a set of references of metaclasses, A is
a set of attributes of metaclasses and V is a (possibly in�nite) set of attribute values.

Basic components of a metamodel are metaclasses, i.e. classes at the metamodel layer,

attributes and references. This perspective can be compared to the Ecore meta-metamodel

11

2. Foundations

as it uses the same concepts. Note that the set of admissible values for attributes is �xed

in the metamodel. Then, attributes in models that instantiate metamodels take values

in this set of admissible values. Moreover, the ≺ order represents the generalization of

metaclasses, i.e. eSuperTypes in Ecore. For two metaclasses c1, c2 ∈ C, c1 ≺ c2 means

that c2 is a superclass of c1. Also, attributes and references can directly be accessed from

metamodels rather than being con�ned to metaclasses in the formalism of Kramer. The

reason for this is that it is then easier to access attributes or references of superclasses of a

given class. We also need to de�ne what a metaclass tuple is.

De�nition 2.3.2 Let M = (C, ≺,R,A,V) be a metamodel. A metaclass tuple of M is a
tuple (ci1, . . . , cin) such that ci1, . . . , cin ∈ C.

In other words, a metaclass tuple is a sequence of metaclasses that all belong to the

same metamodel. A metaclass can appear multiple times in the tuple and the order of the

metaclass tuple is arbitrary.

2.3.2. Formal Models and Instances

We then formalize what happens when a metamodel is instantiated. First, we give a

de�nition of objects, i.e. elements of models and instances of metaclasses.

De�nition 2.3.3 Let c be a metaclass of a metamodel M = (C, ≺,R,A,V). We say that an
object o instantiates c if it has links to other objects for references of c and for references
of direct or indirect superclasses of c and if it has label values for attributes of c and for
attributes of direct or indirect superclasses of c.

In other words, an object is de�ned as an abstract element that meets the constraints

(attributes, references, superclasses) of the metaclass it instantiates. The set of objects that

instantiate a metaclass c is denoted I(c).

De�nition 2.3.4 LetM = (C, ≺,R,A,V) be ametamodel whereC = {c1, . . . , cn}. Amodel
m that instantiates the metamodel M is a tuple m = (Oc1

, . . . ,Ocn , link, label) such that
Oci is a set of objects that instantiate the metaclass ci , link : O × R → P(O) is a function
that links objects through references and label : O × A → P(V) is a function that links an
attribute of an object to a value.

A model is de�ned as a container for objects with a description of references between

these objects (link) and a description of values of attributes (label). The model is made

up of sets of objects because a metaclass can be instantiated multiple times in a single

model, i.e. Oc ⊆ I(c). Objects by themselves are only of interest when they are combined

with other objects and de�ned in a model. For this reason, links and labels are de�ned as a

property of models, not as a property of objects.

Note that a model m of a metamodel M does not imply that m conforms to M . The

reason for this is that link and label are not restrictive enough. They can relate arbitrary

12

2.4. Model Consistency Preservation

objects, references and attributes. For example, label can relate an attribute with an

object that does not contain it. Kramer de�nes the conformance of a model by applying

restrictions on link and label [Kra17, p. 43]. From now on, we only consider models of a

metamodel that conform to it. These conforming models are simply referred to as models.

The set of models of a metamodel M (also called the universe of M) is denoted I(M).

2.4. Model Consistency Preservation

Keeping all models of a same software system consistent is a crucial requirement in model-

driven software development to avoid inconsistencies and unexpected behaviours. In this

section, we lay the foundations of consistency preservation and its variant when there are

more than two metamodels, multi-model consistency preservation.

2.4.1. Consistency Relations

Models of a same software system share overlapping information about it. Therefore, they

are said to be interrelated. For example, the object-oriented structure of a system can

be represented in many di�erent models such as its source code, UML class diagrams,

communication diagrams, etc. Models are primary artefacts in model-driven software

development. They are frequently and independently updated and their evolution de�nes

the software system.

Modifying a model leads to inconsistencies. If a class of an object-oriented architecture

is removed in the code, then it should also be removed in all other models where it appears.

Otherwise, models are no more consistent. To avoid inconsistencies, it is possible to

de�ne relations between metamodels. These relations are called consistency relations. For

example, a consistency relation can ensure that each class in the code of the software

corresponds to a class in its class diagram and vice versa. Consistency relations are de�ned

between metamodels and should hold between models that instantiate these metamodels.

Inconsistencies are most often a problem for developers, as they can lead to unexpected

behaviours in implementations. Solving inconsistencies by de�ning consistency relations

between metamodels is known as consistency preservation. One purpose of model-driven

engineering being automation [HID+13], research mainly focuses on consistency preser-

vation through automated or semi-automated mechanisms.

2.4.2. Model Transformations for Consistency Relations

2.4.2.1. Consistency Checking and Enforcement

There are multiple approaches for de�ning mechanisms to preserve consistency in a set

of models. A common denominator in most of these approaches is the use of model

transformations. Consistency preservation is a two-step process:

1. Consistency checking. Given a set of models, constraints in consistency relations are

checked to ensure that models are consistent with each other.

13

2. Foundations

2. Consistency enforcement. Given a set of models, if a constraint induced by a consis-

tency relation is not ful�lled, models related by the constraint are updated until they

are consistent again.

Enforcing consistency through the update of models can actually be performed by model

transformations. For example, the QVT-R transformation language uses two execution

modes: checkonly (consistency checking) and enforce (consistency enforcement). Trans-

formations are either state-based, i.e. they are executed by comparing model states, or

delta-based, i.e. they are represented as sequences of changes in models [Dis+11].

Consequently, a consistency relation can be associated with one or more model trans-

formations. The relation provides the information to check consistency, whereas the

transformation provides the information to restore it. Depending on the transformation

language, one aspect may be more or less induced by the other. For example, transfor-

mation rules required to restore consistency are sometimes inferred from consistency

relations.

2.4.2.2. Bidirectional and Incremental Transformations

As described in Section 2.1.3, there are several types of transformations. A useful cate-

gory of transformations for preserving consistency is bidirectional transformations (bx)

[Abo+18]; [Ste17a]. The purpose of bidirectionality in the context of consistency preser-

vation is to avoid the duplication of transformations. All models related by a bx can act

as source or targets models during the application of the bx. In other words, a single

speci�cation is enough to enforce consistency between multiple models in all directions.

Moreover, transformations considered for consistency preservation can be incremental
[HLR06]. Restoring consistency usually involves updating a small part of models rather

than generating them over again. Incrementality consists in propagating modi�cations

only, so that parts of target models that are not covered by the transformation remain

unaltered. Bidirectional and incremental transformations form an interesting category of

model transformations for enforcing consistency.

2.4.2.3. Consistency Preservation Processes

Transformations and consistency relations form building blocks of approaches for pre-

serving consistency. Then, it is possible to integrate them into general approaches for

model-driven software development. The Vitruvius framework
4

is an approach for view-
centric model-driven software development [KBL13]. It is built around the concepts of

architecture views and viewpoints [ISO11]. Views are speci�c models whose role is to

show particular elements of other models. Viewpoints are speci�cations of conventions

for the construction, interpretation and use of views. Intuitively, views are to viewpoints

as programs are to programming languages.

There is also a need for consistency preservation in Vitruvius. To this purpose, the

framework executes consistency preservation transformations de�ned by means of two

4http://vitruv.tools

14

2.4. Model Consistency Preservation

UML Model UML Metamodel

Code Tests

Safety Model

Database Tables Documentation

Trace Files

R1

R2

R3

R4

R5

Figure 2.4.: Example of a consistency network with multiary relations

languages [Kra17]: the Mappings language (bidirectional, declarative) and the Reactions

language (unidirectional, imperative). Consequently, Vitruvius embeds a consistency

preservation process based on consistency relations and model transformations.

2.4.3. Multi-Model Consistency Preservation

2.4.3.1. Networks of Consistency Relations

The study of bidirectional and incremental transformations is often restricted to binary
transformations, i.e. transformations for pairs of models. However, consistency relations

can hold for more than two metamodels. Consider Figure 2.4
5
, derived from [Ste17b].

Figure 2.4 is an example of network of consistency relations, i.e. a set of models with con-

sistency relations between them. The network is consistent if and only if each consistency

relation in it is ful�lled.

Consistency relations of the example can be (informally) de�ned as follows. R1 ensures

that the UML model conforms to the UML metamodel. R2 speci�es that code and database

tables should be consistent with UML models as they are described and explained in the

documentation. R3 speci�es that tests should re�ect the required level of testing in the

documentation. R4 ensures that code and tests should be synchronized and adapted to the

safety model. The safety model may assert its own conditions for test validation, e.g. a

higher code coverage. R5 speci�es that trace �les should contain information generated

by the execution of tests.

Consistency relations (and bidirectional transformations associated with them) are said

to be multiary when they relate more than two models. In Figure 2.4, relations R2 and R4
are multiary relations (respectively 4-ary and 3-ary relations).

An interesting result proved in [Ste17a], is that multiary bidirectional transformations

may be de�ned in terms of binary bidirectional transformations under reasonable assump-

5
This is a megamodel, i.e. a model of a system of models. [FN05]

15

2. Foundations

tions. More precisely, it is not always possible to express a multiary bx as a set of binary bx

(see WG1 in [Cle+19]). However, various approaches exist, e.g. by adding extra-models, so

that in practice, it is reasonable to focus on binary bidirectional transformations. A strong

bene�t of this result is that bidirectional transformations can be independently developed

for pairs of models and then combined. This approach is better suited to transformation

developers and domain experts who rarely master all dependencies between models of the

software system. Instead, they are specialized in the sense that they specify consistency

relations for a small set of metamodels.

2.4.3.2. Interoperability Issues

Nevertheless, replacing multiary bidirectional transformations with sets of binary bidirec-

tional transformations leads to problems. As stated in [Kla18], executing transformations

one after the other, i.e. transitively, can create unde�ned behaviours that would not

appear if each transformation was executed on its own. This problem is known as an

interoperability issue.
Consider the relation R2 of Figure 2.4. Suppose that this 4-ary bidirectional transforma-

tion is de�ned in terms of six binary bidirectional transformations. Say that the Database
Tables model is updated and that a table is deleted. In the case of a 4-ary transformation,

the Database Tables model becomes the source model during the execution of the trans-

formation. Related elements in other metamodels, e.g. a class in Code, a class in a diagram

of UML Model and a description of the class in the Documentation, are also deleted by

executing the transformation.

In the case of multiple binary transformations, the update is propagated through the

consistency network by applying transformations transitively. Therefore, by �rst applying

the transformation Database Tables ↔ UML Model, the class is deleted in UML Model.
Then, by applying UML Model↔ Code, the class is deleted in the code. Third, by applying

Database Tables ↔ Code, the transformation attempts to delete the class in the code.

However, the class was already deleted in the second transformation. This is an example

of interoperability issue resulting in an unexpected behaviour. It should be noted, though,

that none of the transformations introduced an unexpected behaviour on its own.

Several approaches are proposed in [Kla18] to solve interoperability issues in multi-

model consistency preservation. Such approaches aim to foster the independent develop-

ment of binary transformations for consistency preservation. This thesis focuses on one

of these approaches, the decomposition of consistency relations.

2.5. Constraint Satisfaction

Science and engineering branches often encounter problems characterized by a set of

arbitrary variables (or objects) and a set of constraints that limit the values that variables

can take. These problems are known as constraint satisfaction problems.
Computer science is no exception. For example, task scheduling is a problem in which a

set of tasks should be processed by a set of computing resources such as CPUs under some

goals such as minimizing response time [LL73]. Tasks and computing resources can be

16

2.5. Constraint Satisfaction

regarded as variables, whereas problem requirements can be encoded as constraints, e.g.

one task per resource at a time, all tasks should be processed once, etc.

2.5.1. Constraint Networks

The central concept of constraint satisfaction is the constraint network, a formalism encod-

ing all the information of a constraint satisfaction problem [DC+03].

De�nition 2.5.1 A constraint network R is a tuple (X ,D,C) such thatX = {x1, . . . , xn}
is a �nite set of variables, D = {D1, . . . ,Dn} is a �nite set of domains and C = {C1, . . . ,Ct }

is a set of constraints. A domain Di = {v1, . . . ,vk} lists the possible values of the variable
xi . A constraintCi is a relation Ri de�ned on a subset of variables Si , i.e. Si ⊆ X . As a result,
if Si = {xi1, . . . , xir }, then Ri ⊆ Di1 × · · · × Dir .

In other words, a constraint Ci is a couple (Si,Ri) with a subset of variables Si and a

relation Ri that is made up of all simultaneous value assignments that satisfy the constraint.

The arity of a constraintCi is equal to the cardinality of its set of variables Si . For example,

a binary constraint relates exactly two variables.

De�nition 2.5.2 An instantiation of a subset of variables S of a constraint network R =
(X ,D,C) is an assignment of variables in S . For S = {xi1, . . . , xik }, an instantiation of S
can be regarded as a tuple of ordered pairs {(xi1,ai1), . . . , (xik ,aik)} where ai j a value of the
domain Di j for the variable xi j .

De�nition 2.5.3 A solution of a constraint network R = (X ,D,C) is an instantatiation
ofX , i.e. of all variables of the network, such that each constraintCi is satis�ed. A constraint
Ci = (Si,Ri) is satis�ed if the tuple made up of the assignment of each variable in Si subset
of variables belongs to Ri .

In other words, an instantiation assigns to some variables a value of their respective

domains. A solution is an instantiation of all variables of the network such that values of

variables satisfy all constraints of the network.

2.5.2. Constraint Graphs and Hypergraphs

If all constraints are binary, it is possible to represent the network by a graph. An edge

between two variables indicate that there exists a constraint between them.

De�nition 2.5.4 A constraint network R = (X ,D,C) whose all constraints are binary can
be represented by a constraint graph GR = (VR, ER) where VR = X and ER is the set of
edges that link all vertices of a same constraint, i.e.ER = {{xi1, xi2} | ∀Ci = ({xi1, xi2},Ri) ∈ C}.

In practice, many constraint satisfaction problems can be modeled with binary con-

straints and represented by constraint graphs. However, it is sometimes useful to visualize

any type of constraint network with a more general formalism. For this reason, we de�ne

hypergraphs and constraint hypergraphs.

17

2. Foundations

De�nition 2.5.5 A hypergraph is a coupleH = (V , E) where V is a set of vertices and E
is a set of hyperedges, i.e. non-empty subsets of V . Thus, E ⊆ P(V) \ {�}.

De�nition 2.5.6 A constraint network R = (X ,D,C) can be represented by a constraint
hypergraphHR = (VR, ER) where VR = X and ER = {Si | ∀Ci = (Si,Ri) ∈ C}.

Constraints graphs and hypergraphs make it easier to �nd solutions of constraint

satisfaction problems (CSPs). Classic algorithms for �nding solutions to CSPs include

constraint propagation, backtracking, backjumping, etc [DF02]. In the context of this

thesis, we are mainly interested in the formalization of CSPs in order to adapt them to

the problem of multi-model consistency preservation. As a result, we will design our own

algorithm to perform a decomposition of consistency speci�cations.

2.6. Automated Deduction

This section presents automated deduction, a subset of automated reasoning that focuses

on the automated production of proofs. Automated deduction tools, also called automated

theorem provers, are widely used nowadays in software engineering. They are part of

formal methods, a set of techniques that aim to develop more reliable software.

Formal methods can, for example, be used in order to show the absence of bugs in a

program whereas testing can only show their presence. Accordingly, they participate in the

development of software that is veri�ed (i.e. that respects the speci�cations) and validated

(i.e. that meets user’s needs). In model-driven software development, formal methods can

be used to analyze and prove properties on models and model transformations.

First, we brie�y introduce �rst-order logic, a formal language for automated reasoning,

and its main properties regarding automated deduction. Second, we present the Satis�a-

bility Modulo Theories (SMT) problem, a decision problem using �rst-order logic and its

relationship with automated theorem proving.

2.6.1. First-Order Logic

Formal methods use formal languages to reason about programs. Logics are an appropriate

choice for this purpose: they have strong theoretical foundations and they are abstract

enough for modeling many problems and reasoning about them. There are many types of

logics representing various languages for various needs. For example, temporal logics are

well suited for model checking techniques [Alu+95], whereas fuzzy logics are applied to

problems without sharp boundaries [Sin+13].

2.6.1.1. Syntax of First-Order Logic

First-order logic is another language for formalizing of mathematics [Smu12]. It can be

regarded as an extension of propositional logic with quanti�ers and variables. The syntax

of propositional logic is made up of propositions that are either true or false and logical

connectives (∧, ∨, ¬, etc.). Propositional logic is generally too limited for formal methods.

18

2.6. Automated Deduction

For example, we need to be able to model the fact that a property must hold whatever the

value of a given variable in a program.

The solution is to extend propositional logic. First, we introduce terms, i.e. variables, e.g.

x , and functions of these variables, e.g. f (x,y) or f (f (x)). Second, we extend propositions,

e.g. p, with predicates, e.g. p(x). Predicates still evaluate either to true or false but they

can also include zero or more arguments. A predicate with zero argument is a proposition.

Therefore, �rst-order logic is much more expressive than propositional logic. For example,

a statement like “

√
x > 0” can be written with one variable (x), one function (

√
.) and

one predicate (isPositive). In addition to logical connectives of propositional logic, �rst-

order logic also comes with an existential quanti�er (∃) and an universal quanti�er (∀).

Quanti�ers are useful to reason about the quantity of variables satisfying a formula.

Functions and quanti�ers make �nite �rst-order formulae more expressive than �nite

propositional formulae. Regarding consistency speci�cations, it facilitates the modeling of

relations between metamodel elements that form consistency rules.

2.6.1.2. Semantics of First-Order Logic

The other important aspect of �rst-order logic after syntax is semantics. Once a spec-

i�cation has been modeled with �rst-order logic, i.e. the input language of automated

theorem provers, we aim to evaluate the resulting formula by assigning a meaning to

predicate symbols, constant symbols and function symbols. Such an assignment is called

an interpretation. Two important concepts follow the notion of interpretation:

• Satis�ability. A formula is satis�able if there exists an interpretation making it true;

• Validity. A formula is valid if it is true under every interpretation.

Theorem proving can be regarded as a validity problem. The theorem can be encoded

as a �rst-order formula. Then, it is proved if every interpretation makes the theorem

evaluate to true. In this thesis, we show how the removal of a consistency relation can

be encoded as a �rst-order formula and compared with theorem proving. Proving that a

formula is true under every interpretation is hard. Instead, a common approach is to check

the unsatis�ability of the negated formula.

A formula F and its negation ¬F are contradictory. If F evaluates to true under a given

interpretation, ¬F evaluates to false and vice versa. Consequently, F is valid if and only

if ¬F is unsatis�able. For this reason, automated theorem provers are mostly SAT solvers,

i.e. programs that take a formula as an input and answer whether it is satis�able.

Satis�ability in �rst-order logic is undecidable [Chu36]. That is, there is no algorithm

that takes a �rst-order formula as an input and always tell if it is satis�able. As a result,

automated theorem proving is not always possible. Even for propositional formulae, it

is believed that there are only exponential time algorithms, e.g. DPLL. However, current

SAT solvers are heavily optimized and remain e�ective for most practical cases.

19

2. Foundations

2.6.2. Satisfiability Modulo Theories

Modeling theorems, programs or consistency rules with �rst-order logic is hard. They

are composed of arithmetic operations, strings, arrays, bit vectors, etc. A variant of

satis�ability is satis�ability modulo theories (SMT). SMT instances are formulae based on

theories, i.e. logical axioms and consequences of these axioms. For example, the following

formula is a valid SMT instance based on a theory for arithmetic.

(a = b × 2) ∧ (b = c × 3) =⇒ (a = c × 6)

SMT instances have their own solvers (called SMT solvers, such as Z3 [DB08]) based on

algorithms such as DPLL(T), a variant of DPLL with theories.

20

3. Consistency Preservation

Consistency preservation in model-driven software development can be achieved through

the explicit de�nition of consistency rules [Kra17]. Rules are represented as relations

between metamodels. As a result, specifying consistency rules for a large number of meta-

models can involve a large number of consistency relations and a signi�cant computational

cost for consistency preservation algorithms.

Following the idea that problems are easier to solve when they are divided into multiple

subproblems, this problem can be partially solved by applying consistency preservation

on small subsets of metamodels, later combined to ensure a global consistency.

Given a set of metamodels, decomposition of consistency relations is a procedure to

transform a set of consistency rules into independent, smaller subsets of consistency rules

while ensuring that the consistency speci�cation remains unaltered.

In this context, this chapter formalizes the concept of consistency as used in the decom-

position procedure and shows how the QVT-R transformation language can be used to

achieve consistency in practice.

3.1. Description of Consistency Relations

3.1.1. Consistency Relation Graph

Consistency is general property of models whose speci�cation depends on a set of meta-

models. Not all metamodels are necessarily interrelated. Therefore, the �rst step of

specifying consistency is to describe which metamodels own redundant information.

Objects and relations between them can be modeled with graphs. In the context of

consistency preservation, such a graph is called a consistency relation graph.

De�nition 3.1.1 A consistency relation graph is a graph G = (M, C) whereM is a
set of metamodels and C is a set of consistency relations onM, i.e. C ⊆ M ×M.

This de�nition is restrictive: consistency relations are binary relations only. However,

it is possible for n metamodels to be all interrelated with each other. Such as case would

be preferably modeled with n-ary relations and hypergraphs.

In a hypergraph, the set of consistency relations C is a subset of the power set ofM, i.e.

C ⊆ P(M) \ ({�} ∪
⋃

M∈M{M}). This way, any subset of the set of metamodels of size

at least two can form a consistency relation. Choosing consistency relation graphs over

hypergraphs is motivated by the fact that consistency relation graphs only describe one

aspect of consistency. Other important aspects include consistency between metamodel

elements and consistency repair. The former aspect indicates which parts of metamodels

21

3. Consistency Preservation

M1

M2 M3

M4

M5

(a) Consistency relation graph

M1

M2 M3

M4

M5

(b) Consistency relation hypergraph

Figure 3.1.: Two possible representations of a consistency network

represent redundant information and are concerned for this reason by needs for consistency.

The latter aspect involves model transformations to enforce consistency if it was destroyed.

Some categories of model transformations are well suited to consistency repair, such as

bidirectional transformations. An important result about bidirectional transformations

(see Section 2.4.3) is that n-ary bidirectional transformations can be reasonably expressed

in practice as sets of binary bidirectional transformations.

By favouring the development of independent binary consistency relations, this ap-

proach also increases modularity in the speci�cation. Under this approach, the update of a

metamodel only requires the update of consistency relations in which the metamodel is

involved. This has no in�uence on other consistency relations and metamodels. On the

contrary, a consistency relation hypergraph may allow the de�nition of a single, global

consistency relation with all metamodels involved. In that case, it is impossible to check

that instances of a subset of metamodels are consistent with each other without checking

the consistency of instances of the whole set of metamodels.

3.1.2. Consistency Rule

An edge between two metamodels in the consistency relation graph (i.e. a consistency

relation) means that their instances must be consistent with each other. A consistency
rule de�nes the conditions under which they are. The following de�nitions are adapted

from the theoretical framework of [Kra17] to describe metamodeling and consistency

preservation. See Section 2.3 for a de�nition of metamodels and instances.

De�nition 3.1.2 Let M ∈ M be a metamodel and let c = 〈c1, . . . , cn〉 be a metaclass
tuple of M . A condition for c, denoted cond〈ci 〉 , is a subset of all instances of c, i.e.
cond〈ci 〉 ⊆ I(c1) × . . . × I(cn).

De�nition 3.1.3 Let Ml and Mr ∈ M be two metamodels and let cl = 〈cl1, . . . , cln 〉 and
cr = 〈cr1, . . . , crn 〉 be metaclass tuples of Ml and Mr respectively. A consistency rule is a
set Rcl ,cr ⊆ cond〈cl 〉×cond〈cr 〉 , i.e. a set of pairs of co-occurring instance tuples that satisfy
cond〈cl 〉 and cond〈cr 〉 respectively.

22

3.1. Description of Consistency Relations

Given two metamodels Ml and Mr , not all instances of Ml are consistent with instances

of Mr and vice versa. The main idea behind consistency rules is to build a set that contains

only consistent pairs of instances of metaclass tuples. Instances of metaclass tuples are

made of objects, i.e. model elements.

A consistency rule is built in two steps. First, conditions are de�ned: they act as �lters

for a given metamodel. Metaclasses are selected to form a metaclass tuple. Metaclass

tuples are chosen over the whole metamodel to identify elements of the metamodel that

contribute to consistency preservation. For example, if consistency depends only on the

value of an attribute of a metaclass, only this metaclass will be included in the metaclass

tuple as other metaclasses do not alter consistency. Among all instances of metaclass

tuples (i.e. tuples of objects), the cond set contains those who ful�ll the condition.

Secondly, the consistency rule binds its two conditions. In other words, the rule selects

pairs of tuples of objects according to the following principle: if one tuple of objects occurs

in a model, then the other tuple of objects must occur in the other model.

The de�nition of consistency rule full�lment formalizes this principle.

De�nition 3.1.4 Let IM1
∈ I(M1) and IM2

∈ I(M2) be two instances of two distinct meta-
modelsM1 andM2. The unordered pair I = {IM1

, IM2
} ful�lls a consistency rule R if:

∀ 〈crl , crr 〉 ∈ R, (∃ IMl ∈ I : crl ⊆ IMl ⇐⇒ ∃ IMr ∈ I : crr ⊆ IMr)

Note that a consistency rule is still ful�lled if no tuple of objects occurs in metamodel

instances. In other words, consistency is destroyed if and only if, for a given pair of tuples

of objects in a consistency rule, the left (resp. right) metamodel instance contains the left

(resp. right) tuple of object whereas the right (resp. left) metamodel instance does not

contain the right (resp. left) tuple of object.

Example 3.1.1 Let Person be a metaclass of a metamodel P and let Employee be a meta-
class of a metamodel E. Let R be a consistency rule that asserts that each name attribute of
Person objects must correspond to a name attribute in Employee objects and vice-versa.

Table 3.1 summarizes the cases in which instances of P and E are consistent.

Person

- name : String

Employee

- name : String

Figure 3.2.: Two metamodels, each with one metaclass

23

3. Consistency Preservation

Model 1 Model 2 Consistency

p1:Person

name = "Alice"

p2:Person

name = "Bob"

e1:Employee

name = "Alice"

e2:Employee

name = "Bob"

The metamodel instances are consistent. Each
Person object in the �rst model can be related
to an Employee object in the second model so
that their attributes have the same value, and
vice-versa.

p1:Person

name = "Alice"

p2:Person

name = "Bob"

e1:Employee

name = "Alice"

.

The metamodel instances are not consistent be-
cause there is no Employee object whose name

attribute has the value "Bob". As a result, the
consistency rule is not ful�lled by these in-
stances.

e1:Employee

name = "Alice"
.

e1:Employee

name = "Alice"
.

The metamodel instances are consistent. They
are empty. Therefore, there is no object that does
not match an object of the other model. The con-
sistency rule is ful�lled.

Table 3.1.: Consistency of a few instances of Figure 3.2

24

3.2. Consistency with QVT-R

3.1.3. Consistency Specification

Specifying consistency in a set of metamodels can be achieved by de�ning as many

consistency rules between pairs of metamodels as necessary.

De�nition 3.1.5 A consistency speci�cation for a setM of metamodels is a set R of
consistency rules for elements ofM.

Consequently, checking that all models in a set of models are consistent with each other

can be achieved by checking that there exists no pair of models (i.e. metamodel instances)

that do not ful�ll a consistency rule.

De�nition 3.1.6 Let I be a set of metamodel instances and let R be a consistency speci�-
cation onM. I is consistent if and only if:

∀ R ∈ R, ∀ (Il , Ir) ∈ I × I : {Il , Ir } ful�lls R

It is possible to de�ne a consistency speci�cation without consistency relation graph.

The reason for this is that the consistency relation graph can be built from consistency

rules. Given a setM of metamodels and a set R of consistency rules onM, a consistency

relation graph G = (VG, EG) can be de�ned as follows:

• VG =M

• EG = {{Ml ,Mr } | ∃ cl ∈ Ml , ∃ cr ∈ Mr : Rcl ,cr ∈ R}

The consistency relation graph remains an important structure for the decomposition

procedure. For example, it can be used to identify isolated metamodels or independent

subsets of metamodels without referring to conditions, metaclass tuples and instances.

For this reason, it may be convenient to consider the consistency relation graph as a

�edged object of the consistency speci�cation. In doing so, it is necessary to check that

one consistency relation is always associated with one or more consistency rules.

3.2. Consistency with QVT-R

The last important point to de�ne a complete, usable consistency speci�cation is to de�ne

how conditions are chosen and how consistency rules bind these conditions. Conditions

being possibly in�nite sets of objects, intensional de�nitions of conditions are the most

appropriate way to �lter instances in the construction of consistency rules. This section

shows the interest of QVT-R as a language to specify consistency.

The QVT Relations language (abbreviated as QVT-R) is a declarative transformation

language. It is part of QVT (Query/View/Transformation), a standard to specify model

transformations and consistency. See Section 2.2.3 for an introduction to QVT.

25

3. Consistency Preservation

A QVT-R speci�cation is made of relations which represent relationships between

metamodel elements. The declarative nature of QVT-R implies that it speci�es what
objects need to be consistent rather than how consistency should be ensured or restored.

This task is delegated to QVT Core (QVT-C), another subset of QVT, whose functioning

is imperative. The transition from QVT-R to QVT-C is achieved by a RelationsToCore
transformation. Since many concepts are common to QVT-R and QVT-C, the standard

provides a common structure called QVT Base.
When a set of models is provided, along with a metamodel, the QVT-R speci�cation can

be executed. More precisely, relations in QVT-R can be run in two modes: checkonly and

enforce. The former checks that models ful�ll the consistency speci�cation. The latter is

able to perform modi�cations on target models so that consistency is restored.

The aim of the decomposition procedure is to make changes to the consistency speci�-

cation itself in order to generate a new speci�cation. Such an operation requires a static

analysis of QVT-R �les and metamodels.

For this reason, QVT-R speci�cations do not need to be runned. Moreover, metamodel

instances are not involved in the decomposition procedure.

3.3. Structure of a QVT-R Specification

A consistency speci�cation using QVT-R consists of several QVT-R �les. De�ning one

binary consistency relation per �le is a good practice. It fosters separation of concerns

and relations can be developed independently. Each �le is composed of at least one

transformation, each transformation itself being composed of at least one relation.

Listing 3.1 illustrates the use of QVT-R to formalize consistency of Example 3.1.1.

1 import perspack : ’person.ecore’::Person;

2 import emppack : ’employee.ecore’::Employee;

3

4 transformation persEmp(pers:perspack, emp:emppack) {

5

6 top relation PersonEmployee {

7 n: String;

8

9 domain pers p:Person {name=n};

10 domain emp e:Employee {name=n};

11 }

12 }

Listing 3.1: Consistency speci�cation of Example 3.1.1 with QVT-R

The most important concepts of the QVT-R language are explained below. An extensive

speci�cation of the language has been drawn up by the Object Management Group (OMG)

as part of the Meta-Object Facility (MOF) standard [Obj16b].

26

3.3. Structure of a QVT-R Speci�cation

3.3.1. Imports

Imports are statements to make metamodels available for transformations. Metamodels

are referenced through URI (e.g. ’person.ecore’). In the context of this work, URI will

always refer to Ecore �les. An import means that the root element of the metamodel (most

often, a package) can be resolved in transformations.

It is also possible to use an alias, such as perspack in the example, to resolve the root

element. Given a URI, the :: syntax allows more speci�c imports by retrieving a direct child

of the source element (e.g. a subpackage). This is also optional. Imports are introduced

with the keyword import.

3.3.2. Relational Transformations

Transformations are the most general objects of QVT. There are several types of trans-

formations, including relational transformations for QVT-R. Their purpose is to group

relations in order to formalize consistency between metamodels. Relational transfor-

mations gain access to metamodels via model parameters (e.g. pers and emp in Cre-

�st:Overview:ConsistencyRelations:ExampleQVTR).

There is at least one model parameter per transformation. In this work, each transfor-

mation will have exactly two parameters in order to match the de�nition of a consistency

relation graph. Relational transformations can also include keys, i.e. sets of properties to

guide the creation or the update of objects in case of consistency enforcement.

Given that the decomposition procedure does not address metamodel instances, the

use of keys will be ignored. Relational transformations are introduced with the keyword

transformation.

3.3.3. Relations

Relations are part of relational transformations. They can be seen as sets of constraints

on metamodels. More precisely, they express constraints (on metamodel elements) that

metamodel instances must ful�ll in order to be consistent. A relation is able to use elements

of metamodels passed as parameters of the transformation to which it belongs.

Relations use pattern matching to bind elements from di�erent metamodels. To this

purpose, relations de�ne variables, such as n : String in the example. Instances must

conform to the pattern created by the variables. For example, the name attributes of both

metaclasses in Listing 3.1 are bound to the same variable n. Therefore, values of their

instances must be equal because they match the same pattern.

Relations o�er some additional features. First, there is a hierarchy of relations in a

transformation. Some relations are said to be top-level. In terms of QVT-R syntax, these

relations are pre�xed with the top keyword. When a transformation is executed, only

top-level relations will be invoked. Non-top-level relations can be invoked from other

relations thanks to the where keyword. Also, a relation can contain a where clause and a

when clause. These clauses act as additional constraints in the relation.

The where clause acts as an invariant for the relation. More precisely, the condition

expressed by the where clause must be ful�lled by all model elements of the relation and

27

3. Consistency Preservation

at any time during its processing. A condition can contain two types of expressions: usual

OCL expressions (with variables and metamodel elements) or invocations of non-top-level-

relations. An invocation consists of the name of the relation to invoke and variables of the

current relation that the invoked relation will be able to use.

The when clause acts as a precondition for the relation. Therefore, the condition expressed

by the when clause is the �rst thing evaluated during the execution of a relation. If the

condition is not ful�lled, then the relation is not executed. A condition can contain usual

OCL expressions. However, unlike where conditions, only top-level-relation invocations

are possible in when clauses.

1 transformation persEmp(pers:perspack, emp:emppack) {

2

3 top relation PersonEmployee {

4 n: String;

5

6 domain pers p:Person {name=n};

7 domain emp e:Employee {name=n};

8

9 where {PersonEmployeeAddress(p, e);}

10 }

11

12 relation PersonEmployeeAddress {

13 ...

14 }

15 }

Listing 3.2: Extension of Listing 3.1 with a where clause

Example 3.3.1 Suppose that the example of Example 3.1.1 is extended so that both meta-
models now contain an Address metaclass and that the Person and Employee contain a
reference to the Address metaclass. The new consistency speci�cation requires that a Person

and an Employee having the same name should have the same address.
As shown in Listing 3.2, this can be achieved by adding a new non-top-level relation in

the transformation, which is only invoked from the existing where clause. The new Person-

EmployeeAddress relation can use variables p and e with the guarantee that they represent
consistent objects according to the PersonEmployee relation.

Invariants and preconditions are a way of composing relations in QVT-R and thus

building complex relations from simple relations. Finally, relations include domains to

access metamodel elements. Relations are introduced with the keyword relation.

3.3.4. Relation Domains

Domains are a QVT concept to describe under which conditions a model is conform. There

are several types of domains, relation domains being those used in QVT-R. This description

of “conforming models” is achieved by the de�nition of domain patterns.

28

3.3. Structure of a QVT-R Speci�cation

First, a domain assigns metamodel elements to variables. These variables are called the

root variables of the domain. Elements should all be part of the same metamodel passed

as a parameter to the parent transformation.

Then, the set of admissible instances for a given element is restricted by de�ning a

pattern. This restriction is achieved by limiting the values that properties of the element

instances can take. For example, properties of a metaclass are its attributes and everything

resolvable by its references. A pattern, such as p:Person {name=n}, is made up of a

variable (p) that refers to a metaclass (Person), and a template expression ({name = n}), i.e.

a template that objects must match to be considered valid.

There are two types of template expressions: object template expressions in which the

root variable is assigned to a single element and collection template expressions which

match collections of model elements. An object template expression includes a (possibly

empty) list of property template items (PTIs), i.e. assignments of properties to values.

In Example 3.3.1, there are two domains, both with one pattern (that is, one template

expression). The domain pattern of pers (the Person metamodel) is composed of one

property template item, name = n.

Morever, a template expression can include its own invariant (written between braces

after the set of PTIs). This invariant can be seen as a local where clause for the pattern.

Regarding the execution of QVT-R, domains are where running modes are chosen. If a

domain is not pre�xed or pre�xed with checkonly, instances of its metamodel element will

not be updated. If a domain is pre�xed with enforce, instances (called “target models”)

will be updated to enforce consistency.

There is another use of domains in QVT-R: primitive domains. The primitive keyword

indicates that the domain has no pattern. It consists only of a variable declaration, whose

type is a primitive type (Integer, String, . . .). This structure is useful to pass information

such as constants between relations. The value of the constant, passed as a parameter of a

relation invokation, will be captured by the primitive domain and can therefore be used in

other (relation) domains.

A relation includes at least two domains. In the context of binary consistency relations,

relations supported by the decomposition procedure will include exactly two domains.

Relation domains are introduced with they keyword domain.

3.3.5. Expressions and Conditions

Property template items, invariants (where) and preconditions (when) are the QVT-R struc-

tures in which conditions on metamodel elements occur. These conditions are also called

expressions. For example, in Listing 3.2, there are three OCL expressions: “name = n” twice

and one relation call expression, “PersonEmployeeAddress(p, e);”.

The language used in QVT-R to express conditions is EssentialOCL, an adapted version

of OCL for declarative, relational transformation languages.

Although most often used to specify static semantics of metamodels, OCL allows the

speci�cation of complex constraints between QVT-R variables and metamodel elements

(e.g. arithmetic operations, string manipulation, operations on sets of elements, etc.). This

use imposes some restrictions on OCL, hence the creation of EssentialOCL.

29

3. Consistency Preservation

QVT-R concept Consistency concept
Set of transformations Consistency speci�cation

Transformation Consistency rule

Relation Part of a consistency rule

Domain Condition on a metaclass tuple

Domain pattern (template expression) Condition on a metaclass

Property template item Part of a condition on a metaclass

Table 3.2.: Comparable concepts in QVT-R and consistency de�nitions

For example, OCL allows the validation of pre- and postconditions of operations using

special keywords inside expressions. In these conditions, it is especially possible to

compare the value of an object’s property with the value it had before. This feature implies

the existence of an internal state machine to handle object mutation. Moreover, objects

undergoing the validation of OCL constraints may be in an unstable state.

This is however incompatible with the declarative nature of QVT-R in which objects

are stable, whether local or passed as parameters of other QVT-R relations. That is why

this OCL feature does not exist in EssentialOCL. Consequently, it is side-e�ect free.

Nevertheless, preconditions and invariants can still be expressed in QVT-R. They are

represented at the relation level and validated according to QVT-R semantics rather than

OCL semantics. The bene�t of this approach is that if a constraint is not validated, then

the whole relation does not hold and there can be no unstable object in this relation.

The decomposition procedure requires the static analysis of OCL expressions to compare

consistency speci�cations. For a comprehensive explanation on the use of OCL in the

decomposition procedure, refer to Chapter 6.

All the concepts mentioned above are summarized in Figure 3.3, which is a lightened

view of concepts participating in QVT-R model transformations and occuring in di�erent

subsets of QVT (Relations, Template, Core, Base).

3.4. FromQVT-R to Consistency Rules

The way to specify consistency using QVT-R is similar to the theoretical framework

presented in Section 3.1. It is possible to establish a correspondence between these two

approaches, so that QVT-R becomes a well-suited language for the problem of multi-model

consistency preservation.

The main di�erence between the two approaches is that the de�nitions of the consistency

framework only focus on which instances are valid, whereas the QVT-R language allows to

explain how to choose them. Thus, a simple concept of the consistency framework is often

split into several constructs in QVT-R. Specifying consistency for a set of metamodels

is best achieved through a bottom-up approach. The �rst step is to identify, for each

metamodel, which elements play a role in the de�nition of consistency in order to build

conditions. The second step is to bind metamodels by selecting instances from the �rst

30

3.4. From QVT-R to Consistency Rules

modelParameters
*

relations1..*

domains
2..*

when0..1
where0..1

variables0..*

patterns1..*

templateExpression0..1predicates*

value
1

parts

0..*

where0..1

conditionExpression1

relationCall *

referredRelation
1

rootVariables
1..*

RelationalTransformation TypedModel

Relation

- isTopLevel : boolean

RelationDomain

- isCheckable : boolean
- isEnforceable : boolean

Pattern

Variable

DomainPattern

RelationCallExp

Predicate TemplateExp

OCLExpression PropertyTemplateItem ObjectTemplateExp
arguments

2..*

typedModel
0..1

Figure 3.3.: Simpli�ed class diagram of QVT-R concepts

condition that match instances from the second condition in order to build consistency
rules. Repeating this for each pair of metamodels leads to a global consistency speci�cation.

This approach is adopted in this section to explain how QVT-R can be used as a means of

multi-model consistency speci�cation.

3.4.1. From Domain Pattern to Condition on a Metaclass

In QVT-R, a domain pattern can be regarded as a template for objects. More precisely, the

domain pattern �rst declares a metaclass and then a template expression, made up of

property template items. The latter act as criteria for instances. If a given instance of the

metaclass matches these criteria, it is considered valid.

Listing 3.3 demonstrates three domain patterns based on Figure 3.2. The �rst pattern p1

will �lter every Person object whose name attribute has value ’Alice’. The second pattern

p2 will �lter every Person object. Since the variable n1 is not bound, it can take any value

(either undefined, empty or non-empty strings). Finally, the third pattern p3 will �lter

every Person object whose name has the su�x ’ Jr.’ because n2 is not bound.

31

3. Consistency Preservation

1 domain pers p1:Person {name = ’Alice’},

2 p2:Person {name = n1},

3 p3:Person {name = n2 + ’ Jr.’};

Listing 3.3: Three domain patterns

When an object template expression is made up of several property template items, all

have to be ful�lled for the instance to be valid. Given that an object in the consistency

framework is fully determined by its properties (attributes and references), QVT-R patterns

provide a su�ciently powerful means of �ltering objects for consistency preservation

purposes. Consequently, a domain pattern is able to �lter objects (i.e. metaclass instances)

based on their properties. This matches the behavior of conditions. For a single metaclass

c1, an object belongs to the condition cond〈c1〉 if and only if it is a valid instance according

to the domain pattern.

3.4.2. From Domain to Condition on a Metaclass Tuple

Since consistency speci�cations often involve more than one metaclass per metamodel,

conditions are de�ned on metaclass tuples. The order of metaclasses in the tuple is

arbitrary: it is a convenient way to select subsets of instances of metaclasses that are not

necessarily distinct.

QVT-R o�ers a similar way of expressing conditions on metaclass tuples by allowing

domains to have multiple domain patterns. For example, the three domain patterns

of Listing 3.3 can be seen as a metaclass tuple (Person, Person, Person). According to the

QVT standard, nothing prevents two domains from the same relation to refer to the same

metamodel. Therefore, the construction of a unique metaclass tuple for a given metamodel

can be achieved by concatenating the tuples of all domains that refer to this metamodel.

Regarding semantics of consistency checking in QVT-R, relations are always checked

in a particular direction. That is, a typed model is chosen among all those in the domains

of the relation. The veri�cation then consists in ensuring that the instances of the chosen

model ful�ll the domain patterns, given instances of other models. Bidirectionality can be

achieved by checking consistency for every typed model of the relation.

An important point is that domain patterns are checked separately. This results in the

fact that a single object can ful�ll multiple domain patterns. For example, let o1 be an

object Person whose name attribute is ’Alice’ and let o2 be an object Person whose name
attribute is ’Bob Jr.’. This instance with two objects satis�es the three domain patterns

of Listing 3.3. More precisely, o1 ful�lls p1 and o2 ful�lls both p2 and p3.

Another consequence of checking semantics in QVT-R is that empty instances do not

destroy consistency. This is consistent with the de�nition of consistency rule full�l-

ment (De�nition 3.1.4).

32

3.4. From QVT-R to Consistency Rules

3.4.3. From Transformation to Consistency Rule

Given conditions on metaclass tuples 〈cl〉 and 〈cr 〉, the last step to specify consistency

between two metamodels is to select a subset of cond〈cl 〉 × cond〈cr 〉 . This subset, called

consistency rule, represents the set of consistent pairs of instances.

Relations in QVT-R promote modularity. A common design pattern for model transfor-

mations (known as phased construction [LK14]) consists in the creation of so-called phases
that reproduce the hierarchical structure of metamodels. Insofar as possible, each relation

binds one metaclass of the �rst metamodel with one metaclass of the second metamodel.

Relating phases can be achieved with relation invokations (where and when clauses).

Consequently, metaclass tuples can be distributed over multiple relations. There again,

metaclass tuples can be concatenated by retrieving domains that refer to the same meta-

model in di�erent relations. A simple way to do this is to consider a transformation as a

tree where relations are nodes and relation invokations are directed edges. A breadth-�rst

search starting from top-level relations on this graph allows to visit all relations in the

right order and to gradually concatenate metaclass tuples for a given metamodel.

The interest of QVT-R relations lies in variables. When they are bound, variables restrict

values that can be taken by objects of a metamodel depending on values of objects of the

other metamodel. This is how variables bind elements from di�erent metamodels.

Two domains are introduced in Listing 3.4. Taken separately, each domain de�nes

(through the domain patterns) valid instances of the metamodel it refers to. The domain

emp accepts all instances in which there is at least one Employee object. The domain

pers accepts all instances in which there is at least two Person objects with the following

additional constraint: not all Person objects must have the same name value. This constraint

is a consequence of the local where clause of the template expression of p2:Person.

1 relation PersonEmployee {

2 n1: String;

3 n2: String;

4

5 domain emp e:Employee {name = n1};

6 domain pers p1:Person {name = n1},

7 p2:Person {name = n2} {n1 <> n2};

8 }

Listing 3.4: Using QVT-R variables to model consistency rules

However, when these domains are combined, not all pairs of instances of emp and pers

are valid. The relation requires that e.name and p1.name have the same value. In other

words, the relation makes a selection among all pairs of instances of metaclass tuples

so that variables have valid assignments. This mechanism is similar to the creation of a

consistency rule in which pairs of instances are also �ltered.

Variables in QVT-R can be used outside domain patterns: preconditions (when) and

invariants (where) also include template expressions. Moreover, variables are not always

local to a relation. In the case of a relation invokation, it is possible to export bound

33

3. Consistency Preservation

variables via relation invokations. This is frequent in a phased construction of consistency

speci�cations.

According to checking semantics, preconditions are only checked once before the

execution of the relation, whereas invariants are checked each time there is an access to a

variable. As a result, the subset of valid pairs of instances for a given transformation is

built gradually. Valid pairs of instances of metaclasses are those for which consistency

checking evaluates to true for all relations. Relations are invoked recursively, starting

from top-level relations. Therefore, modeling a consistency rule by means of a QVT-R

transformation can be achieved as follows.

Starting from 1, assign a number to each relation invokation. The result is a recursive

call tree whose numbering follows the order of a depth-�rst traversal. Let n be the total

number of relation invokations. Let Vi be the set of valid pairs of instances of metaclass

tuples after the execution of the ith invoked relation, for i ∈ {1, . . . ,n}. In addition, V0
is the set of valid pairs of instances before the execution of the transformation, that is

V0 = cond〈cl 〉 × cond〈cr 〉 .

Given that each relation �lters the space of valid pairs, we have V0 ⊇ V1 ⊇ · · · ⊇ Vn.

At the end of the execution, Vn represents the set of consistent pairs of instances, i.e. a

consistency rule. If there exists i ∈ {1, . . . ,n} such that Vi = �, then it is impossible to

ful�ll the consistency speci�cation. Such a transformation is useless in practice.

AsVi sets are possibly in�nite, computing all consistent pairs of instances is never done

in practice. The point of this approach is to show that objects similar to consistency rules

can be obtained with QVT-R. The normal use of the language is to check one pair of

instances at a time, in a particular direction (i.e. with a source model and a target model).

Finally, a consistency speci�cation can be de�ned as a set of QVT-R transformations.

A set of models is consistent if the execution of all transformations associated with

them (in checkonly mode) return true in all directions of consistency checking. Starting

from domain patterns and conditions, this section demonstrated how objects from the

consistency framework can be generated using the QVT-R transformation language.

This makes QVT-R a suitable language for writing declarative consistency speci�cations.

This also concludes the mapping between QVT-R concepts and the consistency framework

of Section 3.1.

34

4. Principles of Decomposition

The previous chapter provided a frame of reference to deal with consistency in a set of

metamodels, both theoretically and programmatically. It is within this context that the

purpose of this thesis, the decomposition procedure, is introduced.

This section focuses on the characteristics of the decomposition procedure. The detailed

operation of the procedure is explained in Chapter 5.

First, the principle of decomposition of relations is introduced. Its relevance to multi-

model consistency preservation is also justi�ed. Second, three methods to achieve decom-

position are presented. Finally, important properties of the decomposition procedure such

as conservativeness are discussed, in particular through the de�nition of invariants about

inputs and outputs of the procedure.

4.1. Introduction to the Decomposition Procedure

From now on, a consistency speci�cation refers to a set of consistency rules or a set of

QVT-R transformations depending on the desired perspective on consistency. A �rst

(informal) de�nition of the decomposition of relationships is as follows:

De�nition 4.1.1 In consistency management, the decomposition of consistency rela-
tions is an optimisation technique that transforms a consistency speci�cation into a sim-
pler but equivalent consistency speci�cation. The algorithm resulting from this optimization
technique is called the decomposition procedure.

Decomposition procedure

SetM of
metamodels

Consistency
specificationR

Consistency
specificationR′

(equivalent toR and
decomposed asDR′)

Figure 4.1.: Schematic view of the decomposition procedure

In other words, the decomposition procedure takes a set of metamodels and a consis-

tency speci�cation as input and decomposes consistency relations to detect independent,

redundant or unnecessary consistency requirements.

The fact that the procedure is an optimisation technique means that it acts on consistency

speci�cations but it does not achieve consistency preservation itself. More precisely, the

35

4. Principles of Decomposition

decomposition procedure does not perform consistency checking and, consequently, does

not execute QVT-R transformations. Consistency speci�cation analysis only requires

read-only access to metamodels. For this reason, metamodel instances are also ignored by

the decomposition procedure.

It is now necessary to de�ne what “equivalent” consistency speci�cations are, as well

as what a “simpler” consistency speci�cation is.

4.1.1. Equivalent Consistency Specifications

The decomposition procedure must ful�ll some important conditions in order to ensure

that it does not alter consistency preservation when updating consistency speci�cations.

The �rst condition is that consistency speci�cations at the beginning and at the end of the

algorithm must be equivalent.

De�nition 4.1.2 Let R
1
and R

2
be two consistency speci�cations on a set of metamodels

M. Let IM be the set of all possible instances of metamodels ofM.
R

1
and R

2
are said to be equivalent, denoted by R

1
≡ R

2
, if:

∀I ∈ IM : I is R
1
-consistent ⇐⇒ I is R

2
-consistent

Equivalence is simply ensured by the set of valid pairs of metamodel instances. There

must be no pair of instances that was not consistent at �rst but becomes consistent after

the execution of the procedure. Conversely, all consistent pairs of instances must stay

consistent according to the resulting consistency speci�cation.

4.1.2. Complexity of Consistency Specifications

To assess the e�ciency of the decomposition procedure, it is necessary to ensure that

the resulting consistency speci�cation is in some ways simpler or easier to apply than

the initial one. This subsection explains on which criteria it is possible to distinguish

two speci�cations operating on the same set of metamodels, which of these criteria are

important in the context of the decomposition procedure and how to use them to gauge

the results of the procedure.

In an introduction to multi-model consistency preservation [Kla18], Klare identi�ed

four major challenges regarding the development of binary transformations in a set of

metamodels. These challenges are:

• Compatibility, i.e. there are no contradictory consistency relations to check or

enforce consistency between two metamodels;

• Modularity, i.e. omitting some metamodels does not prevent to check or enforce

consistency for those remaining;

• Comprehensibility, i.e. there is no need to combine many consistency relations to

check consistency between two metamodels;

36

4.1. Introduction to the Decomposition Procedure

• Evolvability, i.e. the de�nition of new consistency relations requires little e�ort.

An important point is that it is impossible to fully meet all four challenges with one

consistency speci�cation. This is a consequence of the use of combinations of binary

relations rather than n-ary relations, as explained in Section 3.1.1. Some implementation

choices must be made during the development of consistency relations. These choices are

known as speci�cation trade-o�s.
The most appropriate way to visualize these necessary trade-o�s is to observe the

structure of various consistency speci�cations, that is, the topology of their consistency

relation graphs. The ful�llment of these challenges strongly depends on the density of the

consistency relation graph.

M1

M2

M3

M4

M5

(a) Tree topology (sparse)

M1

M2

M3

M4

M5

(b) Complete graph topology (dense)

Figure 4.2.: Two topologies with an extremal density, adapted from [Kla18]

Let {M1, . . . ,M5} be the set of metamodels depicted in Figure 4.2. Following the example

of [Kla18], it is possible to choose two consistency speci�cations such that their density is

extremal. These speci�cations address di�erent challenges.

In Figure 4.2a, the consistency relation graph is a tree. Therefore, the density of the graph

is minimal. It inherently provides compatibility. As there is only one path between any

two metamodels of the graph, there is only one way to preserve consistency and thus, no

contradiction. However, such speci�cations do not evolve easily. In the worst case, adding

a metamodel to the tree requires to update all existing relations. Moreover, a tree topology

is hardly modular. Removing a metamodel that is not a leaf of the tree breaks consistency

for some other metamodels. Nor does the speci�cation foster comprehensibility, especially

if one metamodel is the root of the tree whereas the other is a leaf.

In Figure 4.2b, the consistency relation graph is a complete graph. Therefore, the density

of the graph is maximal. Because of the number of paths between any two metamodels, it

is hard to ensure compatibility. Also, adding a new metamodel to the speci�cation may

require the development of consistency relations with all existing metamodels, making

it di�cult to evolve speci�cations. On the contrary, modularity is optimal: any induced

subgraph of a complete graph is still a complete graph. Finally, comprehensibility is high

37

4. Principles of Decomposition

Challenge In�uence of the decomposition procedure
Compatibility Detection of possible incompatibilities

Modularity No change

Comprehensibility Minor decrease

Evolvability Minor improvement

Table 4.1.: Summary of the in�uence of the decomposition procedure

because all the information sought for consistency between two metamodels belongs to

only one consistency relation.

Of all these challenges, compatibility is probably the most important one. A reason for

this is that compatibility is a functional property, i.e. the applicability of the speci�cation

directly depends on whether relations are compatible or not, whereas other properties are

non-functional. Incompatible consistency relations prevent consistency preservation. If

two consistency relations di�er on the state in which a consistent model should be, they

can be executed in turn without ever reaching a �nal consistent state.

As a result, sparse (also called tree-like) consistency relation graphs are preferred. Note

that extreme topologies presented in Figure 4.2 are rarely encountered in practice. In most

cases, consistency speci�cations are in-betweens that tries to maximize both compatibility

and modularity. De�ning tree-like topologies of consistency relation graphs is complicated.

This requires �nding a small number of metamodels that contain enough information to

de�ne consistency relations whose combination can express consistency between any two

metamodels.

More reasonably, another approach for consistency speci�cation is as follows. First,

developers can de�ne consistency relations without addressing redundancy issues. Conse-

quently, the resulting consistency relation graph tends to be dense. Then, the speci�cation

can be optimized in such a way that redundancies are removed (which may lead to the

removal of some consistency relations) and independent subsets of consistency relations

are detected. This optimization transforms the topology of the initial speci�cation into a

set of tree-like topologies.

The decomposition of consistency relations is a procedure whose purpose is to achieve

this optimization. Regarding challenges identi�ed above, decomposition fosters compati-
bility (inherent in the resulting tree-like structures) as well as evolvability. The reason for

this is that it detects insofar as possible redundancy and therefore possible incompatibili-

ties. The fewer incompatibilities, the more compatibility is achieved. Moreover, it has little

impact on modularity: removed relations (due to redundancy) can always be recreated

and subsets of independent relations indicate on which other metamodels the consistency

of a given metamodel depends.

4.2. Means of Decomposition of Specifications

This section investigates changes that can be made to consistency speci�cations to meet

the purpose of the decomposition procedure. In concrete terms, the goal is to �nd a way

38

4.2. Means of Decomposition of Speci�cations

to transform a speci�cation into another speci�cation whose consistency relation graph is

made up of subgraphs of independent consistency relations.

First, three avenues for decomposition are presented. The �rst and most obvious consists

in isolating connected components of the consistency relation graph. The second consists

in removing (redundant) consistency relations that can be replaced by combinations of

other relations. The third idea generalizes the second. Assuming that consistency relations

can be associated with consistency rules that generate them (see Section 3.1.3), it consists

in removing parts of consistency relations, i.e. consistency rules, that can be replaced by

combinations of other relations to make remaining rules independent of others.

Then, the last subsection explains how these three ideas can be combined to produce a

new consistency speci�cation.

4.2.1. Independent Consistency Subgraphs

The �rst way to �nd subsets of independent consistency relations in a consistency relation

graph is to look at connected components of the graph. The reason for this is that two

subsets that do not share a consistency relation cannot be interrelated.

M1

M2

M3

M4

M5
≡

M1

M2

⊕ M3

M4

M5

Figure 4.3.: Independent consistency subgraphs

In Figure 4.3, the ⊕ symbol denotes the disjoint union of two graphs. More generally,

any graph can be reconstructed from the disjoint union of its connected components.

This optimization is the easiest and the �rst that should be performed on a consistency

relation graph. The following two methods can then be performed in each connected

component of the initial graph. Then, the goal is that each connected component tends to

become a tree-like structure.

4.2.2. Totally Redundant Consistency Relations

This subsection focuses on redundant consistency relations; that is, rules whose existence

in the speci�cation does not change the set of consistent instances.

This may occur when the application of rules of the redundant relation and the appli-

cation of rules of a combination of other consistency relations result in the same set of

consistent instances. In this case, the redundant relation can be removed from the graph,

thus proving that the relation was compatible with others.

39

4. Principles of Decomposition

The following de�nitions formalize this principle. As an exhaustive description of

consistency is now required, de�nitions use consistency rules. We denote RC the set of

consistency rules that generate the consistency relation C . Moreover, a pair of models

ful�lls a consistency relation C if it ful�lls all consistency rules in RC .

De�nition 4.2.1 Let R be a consistency speci�cation. A combination of consistency
relations is a path in the consistency relation graph of R.

In other words, a combination of consistency relations is a sequence of distinct meta-

models that are all joined by a consistency relation. It is now possible to extend the notion

of consistency rule ful�llment to combinations.

De�nition 4.2.2 LetM be a set of metamodels and let R be a consistency speci�cation on
M whose consistency relation graph is connected. Let C = (M1, . . . ,Mi,Mi+1, . . . ,Mn) with
1 < i < n be a combination of relations between two metamodelsM1 andMn.

The tuple of instances (IM1
, . . . , IMn) ∈ IM1

× · · · × IMn ful�lls the combination C of
consistency relations if and only if:

n−1∧
i=1

(
{IMi , IMi+1} ful�lls RCi ,i+1

)
The set of consistent instances according to a consistency relation can now be compared

with combinations of consistency relations to �nd out if it is redundant.

De�nition 4.2.3 LetM be a set of metamodels. Let R be a consistency speci�cation onM
whose consistency relation graph is connected.

A consistency relation Cl,r between two metamodels Ml and Mr is totally redundant if
there exists a set C of combinations fromMl toMr such that:

{{IM1
, IMn } | ∀ I = (IM1

, . . . , IMn) ∈ IM1
× · · · × IMn , ∃ C ∈ C :

(
I ful�lls C

)
} (4.1)

= {{IMl , IMr } | ∀IMl ∈ IMl ,∀IMr ∈ IMr : {IMl , IMr } ful�lls RCl ,r
} (4.2)

The equality above holds if both sets contain the same consistent pairs of instances.

In Term (4.1), the set contains all consistent pairs of models of Ml and Mr if these models

were part of an instance that ful�lls at least one combination of relations. That is, these are

the consistent models at the endpoints of at least one combination once the consistency

was preserved for all metamodels of all combinations.

In Term (4.2), the set contains all pairs of instances that ful�ll the possibly redundant

consistency relationCl,r . If both equations return the same set,Cl,r performs the same task

as the set C of combinations of consistency relations and can therefore be removed.

In Figure 4.4, the relation C1,4 can be removed if it can be replaced by the combina-

tion (M1,M2,M3,M4). In this case, C1,4 is said to be totally redundant. This means that

40

4.2. Means of Decomposition of Speci�cations

M1

M2 M3

M4

(holds if C1,4 is

totally redundant)

≡
M1

M2 M3

M4

Figure 4.4.: Removal of a totally redundant consistency relation

all consistent pairs of instances of M1 and M4 according to C1,4 are the same as those

obtained by applying relations C1,2, C2,3 and C3,4 and only retaining tuples of models of

(M1,M2,M3,M4) for which these relations are ful�lled.

Ultimately, totally redundant consistency relations are relations in which all consistency

rules can be replaced by alternative combinations of consistency relations. In that case,

these rules are unnecessary and ce be removed from the speci�cation. Their removal also

leads to the removal of the consistency relation they generated.

4.2.3. Partially Redundant Consistency Relations

Removing totally redundant consistency relations is a signi�cant optimisation. However,

this rarely happens in practice. The third avenue for decomposition presents a generalized

case for the detection of independent consistency relations.

The basic idea is that compatibility can still be improved if combinations of consistency

relations can replace some rules of a consistency relation with the same endpoints, not

necessarily all of them. In this case, the consistency relation is decomposed. To check

consistency rules of a relation separately, we de�ne what a combination of consistency

rules is.

De�nition 4.2.4 Let R be a consistency speci�cation. A combination of consistency
rules is a sequence CR of consistency rules (Rc1,c2, . . . ,Rci−1,ci ,Rci ,ci+1, . . . ,Rcn−1,cn) such
that two incident rules have a common metaclass tuple in their de�nition.

In other words, a combination of rules represents the selection of one consistency rule

in each relation of a combination of consistency relations, under the condition that two

rules relating the same metamodel are de�ned with the same metaclass tuple.

De�nition 4.2.5 Let CR = (Rc1,c2, . . . ,Rci−1,ci ,Rci ,ci+1, . . . ,Rcn−1,cn) be a combination of
relations between two metamodels Ml and Mr . The combination CR replaces consistency
rule Rcl ,cr if and only if c1 = cl and cn = cr and:

{{IM1
, IMn } | ∀ I = (IM1

, . . . , IMn) ∈ IM1
× · · · × IMn :

(
I ful�lls CR

)
} (4.3)

= {{IMl , IMr } | ∀IMl ∈ IMl ,∀IMr ∈ IMr : {IMl , IMr } ful�lls Rcl ,cr } (4.4)

Let R be a rule of this consistency relation. There are three possible scenarios:

41

4. Principles of Decomposition

1. R can be replaced by an alternative combination of rules. Therefore, R can be

removed from the consistency speci�cation.

2. R cannot be replaced because there exist alternative combinations of rules but

none of them has the same set of consistent instances as R. Therefore, R may be

contradictory to other rules.

3. R cannot be replaced because there does not exist an alternative combination of

rules. As a result, R is independent of other rules.

Consequently, reasoning about consistency rules rather than consistency relations o�ers

more possibilities to detect possible incompatibilities in a consistency speci�cation. Inside

a single relation, rules may be either redundant, independent or in con�ict with other

combinations of rules. The decomposition of the relation consists in identifying the nature

of each rule in the relation. A partially redundant consistency relation is a relation in

which at least one rule can be replaced.

De�nition 4.2.6 Let M be a set of metamodels. Let R be a consistency speci�cation on
M whose consistency relation graph is connected. Let CR be a set of combinations of rules
between two metamodelsMl andMr .

A consistency relationC betweenMl andMr generated by a set of consistency rules RC is
partially redundant if and only if:

∃ R ∈ RC, ∃ CR ∈ CR : CR replaces R

De�nition 4.2.3 can be recreated by replacing the �rst existential quanti�er in De�ni-

tion 4.2.6 by a universal quanti�er, i.e. ∀ R ∈ RC . As a result, De�nition 4.2.6 is a relaxed

version of De�nition 4.2.3. Independent consistency rules also foster compatibility in a

speci�cation since they generate separate consistency relations which represent trivial

tree graphs, i.e. only one edge.

In Figure 4.5, suppose that the relationC2,3 is partially redundant. Such a decomposition

can be obtained ifC2,3 was generated by at least one redundant consistency rule and exactly

one independent consistency rule. If a consistency rule is redundant, i.e. it can be replaced

M1

M2

M3

≡ M′
1

M′
2

M′
3

⋃
M′

1

M′
2

M′
3

Figure 4.5.: Decomposition of a partially redundant consistency relation

42

4.2. Means of Decomposition of Speci�cations

Decomposition method Description
(I) Independent subgraphs Computation of connected components

(II) Totally redundant relations Removal of consistency relations

(III) Partially redundant relations Decomposition of consistency relations

Table 4.2.: Summary of decomposition methods

by a combination of rules derived from (C2,1,C1,3). If a consistency rule is independent, it

can be separated from others and form a new independent subgraph. Consequently, the

�rst resulting subgraph On the contrary, the second consistency rule is independent, i.e.

there is no

Contrary to the result of the method of independent consistency subgraphs (Section 4.2.1)

that forms a partition (⊕) of the initial graph, the decomposition of partially redundant

relations results in a non-disjoint union (∪) of subgraphs. The reason is that the (newly

independent) decomposed relation and the combination share the same endpoints.

4.2.4. Towards a Decomposition Procedure

Previous subsections introduced methods to show that there exist several means to detect

redundancy and incompatibilities in a consistency speci�cation. These methods can be

combined to lay the foundations for a decomposition procedure.

4.2.4.1. Combining Decomposition Methods

The �rst method applies on the consistency relation graph and does not require knowing

consistency rules. The last two methods apply on connected consistency relation graphs

and require knowing consistency rules.

Moreover, the application of the last two methods cannot produce disconnected graphs.

This is because if a relation is redundant, there must exist a combination of other con-

sistency relations with the same endpoints. If the relation is totally redundant, then it

is removed and the graph is not disconnected because the combination still exists. If

the relation is partially redundant, then the relation is not removed and the graph is not

disconnected either. Consequently, the methods can be chained as follows.

1. Apply the �rst method to transform the consistency relation graph into a set of

connected components;

2. For each connected component, apply the second and the third methods (both work

the same way) on edges to detect if they are redundant.

The resulting consistency speci�cation is a set of independent connected components,

which are themselves decomposed as sets of independent consistency relations. Connected

components take the form of tree-like structures. Figure 4.4 and Figure 4.5 give an overview

of what a tree-like structure is. When a relation is removed from a component, the

43

4. Principles of Decomposition

component remains connected but tends towards a tree. In the case of partial redundancy,

the newly independent relation also forms a tree with two vertices.

4.2.4.2. Algorithms for Decomposition Methods

In view of the decomposition methods, the decomposition procedure can be considered as

an implementation of these methods on QVT-R speci�cations.

The �rst method can be implemented by means of a computation of connected compo-

nents in the consistency relation graph. The two other methods are based on a unique

algorithm. Whether the redundancy is then total (second method) or partial (third method)

depends on the result of the algorithm.

The second and the third methods operate by comparing two sets containing consistent

instances. However, these sets are possibly in�nite, meaning that an exhaustive comparison

is impossible in general. Moreover, the decomposition procedure works with metamodels

and QVT-R speci�cations only. Consequently and as stated in Section 3.2, consistency

rules use intensional de�nitions, i.e. de�nitions based on elements of metamodels rather

than explicit instances.

The consequence for the decomposition procedure is that reasoning on sets of instances

must be achieved by reasoning on domain patterns and OCL expressions. In other words,

an algorithm for the second and the third methods must statically analyze QVT-R relations

and therefore use formal methods.

4.3. Formal Properties

Requirements expressed in previous sections can be translated into properties of the decom-

position procedure. Therefore, it is possible to give a formal meaning to the decomposition

procedure and to impose conditions on results of the procedure.

There are two important properties. First, conservativeness to ensure that the result-

ing speci�cation preserves consistency in the same way as the original speci�cation.

Second, usefulness to ensure that the procedure �nds the decomposition of the original

speci�cation if it exists. In the following subsections, let decomp denote the decomposition

procedure, i.e. a function that takes a set of metamodels and a consistency speci�cation

on this set, and returns another consistency speci�cation.

4.3.1. Conservativeness

Given that the decomposition procedure is an optimization technique for consistency

speci�cations, it is important to check that optimizations do not alter the speci�cation.

Therefore, the set of consistent models must not be altered by the decomposition procedure.

This property is called conservativeness.

Property 4.3.1 (Conservativeness) LetM be a set of metamodels, let R be a consistency
speci�cation onM. The decomposition procedure is conservative if and only if:

R′ = decomp(R,M) =⇒ R ≡ R′

44

4.3. Formal Properties

The consequence of conservativeness is that optimizations should only be performed

with the guarantee that the speci�cation will not be altered. A proof of conservativeness

of the decomposition procedure will be detailed in Chapter 6 and discussed in Chapter 7.

4.3.2. Usefulness

The resulting speci�cation being equivalent to the initial one is not enough to ensure that

the procedure improved the applicability of the consistency speci�cation. To this purpose,

we need to introduce another property, called usefulness.
The improvement made by the decomposition procedure on a consistency speci�cation

depends on the structure of the resulting consistency relation graph. In the best case, the

consistency relation graph is a disjoint union of trees.

In the following de�nitions, VG (resp. EG) denotes the set of vertices (resp. edges) of a

graph G. First, the notion of decomposition is formalized. Then, a value is associated with

each decomposition to allow comparisons. Finally, usefulness is de�ned in order to assert

that the decomposition procedure improves consistency speci�cations.

De�nition 4.3.1 Let R be a consistency speci�cation and G its graph. A decomposition
of R, denoted DR , is a �nite set {Gi}1≤i≤n of subgraphs of G such that:

(1) ∀i , j : EGi ∩ EGj = �

(2)
∑n

i=1 |EGi | ≤ |EG |

(3) VG =
⋃n

i=1VGi

In other words, a decomposition provides information on the output of the decom-

position procedure. It is a set of independent subgraphs. To this end, three conditions

must be ful�lled. First, an edge cannot appear in several graphs. The reason is that two

relations of distinct subgraphs are independent. Then, there cannot be more edges in the

decomposition than in the original graph because the procedure does not create edges.

Finally, all metamodels of the original consistency relation graph must appear in the

decomposition given that the decomposition procedure does not a�ect metamodels.

Note that a consistency speci�cation may correspond to several decompositions. The

expected decomposition is the one returned by the procedure, as shown on Figure 4.1

(p. 35). It is built during the execution of the procedure by isolating connected components

and independent consistency relations as new subgraphs (Gi).

To provide a point of comparison with non-decomposed speci�cations (e.g. speci�cations

that serve as inputs of the procedure), we can also de�ne a trivial decomposition. The

trivial decomposition for a speci�cation R is a singleton {G} where G is the consistency

relation graph of R. By convention, the decomposition of a speci�cation that is not the

result of the decomposition procedure is the trivial decomposition.

45

4. Principles of Decomposition

De�nition 4.3.2 Let DR = {Gi}1≤i≤n be a decomposition of R. The decomposition size
of DR , denoted DR , is de�ned as the mean of the number of edges in all subgraphs, i.e.

DR = {Gi}1≤i≤n =
1

n

n∑
i=1

|EGi |

Intuitively, the more a speci�cation is scattered in small subsets of independent con-

sistency relations, the smaller its decomposition size is. The decomposition size of a

consistency speci�cation that is not the result of the decomposition procedure is equal to

the number of edges of its consistency relation graph.

Property 4.3.2 (Usefulness) LetM be a set of metamodels, let R be a consistency speci�-
cation onM. The decomposition procedure is useful if and only if:

R′ = decomp(R,M) =⇒ DR ′ ≤ DR

This property implies that whatever the input speci�cation, the output speci�cation

of the decomposition procedure will be either identical (DR ′ = DR) or more applicable

(DR ′ < DR). In the latter case, the result of the decomposition is called positive.
The conjunction of conservativeness and usefulness leads to an equivalent, yet more

applicable consistency speci�cation. It ensures at once that the resulting speci�cation is

equivalent to the initial one and that there exists a decomposition which make independent

consistency relations explicit.

M1

M2

M3 M4

M5

M6

M7

Figure 4.6.: Consistency speci�cation for Example 4.3.1

Example 4.3.1 Let M = {M1, . . . ,M7} be a set of metamodels. Let R be a consistency
speci�cation onM whose consistency relation graph is depicted in Figure 4.6.
Figure 4.7 represents three possible decompositions ofR with their respective decomposition

sizes. Decomposition D1 is optimal because every subgraph is a forest (i.e. a disjoint set of
trees). Its size is slightly less than the size of D2 in which the consistency relation between
M6 andM7 was not removed. Even if it is not optimal, D2 remains a valid decomposition.

46

4.3. Formal Properties

DecompositionD3 consists of one subgraphwhich is the consistency relation graph ofR. In
other words,D3 is the trivial decomposition of R, i.e. the one that applies if the speci�cation
is not a result of the decomposition procedure. If the procedure returns D1 or D2, the result
is positive because 2 < 7 and 2/3 < 7.

47

4. Principles of Decomposition

Decomposition D1
— D1 is the optimal decomposition of R

— Decomposition size: 2

M1

M2

M3 ⋃ M4

M5

M6

M7

⋃ M4

M5

M6

M7

Decomposition D2
— Decomposition size: 7/3

M1

M2

M3 ⋃ M4

M5

M6

M7

⋃ M4

M5

M6

M7

Decomposition D3
— D3 is the trivial decomposition of R

— Decomposition size: 7

M1

M2

M3 M4

M5

M6

M7

Figure 4.7.: Some possible decompositions of Example 4.3.1 with their sizes

48

5. Decomposition Procedure

The decomposition procedure o�ers an implementation of decomposition methods dis-

cussed in Section 4.2. The implementation takes a consistency speci�cation (represented

as a set of QVT-R transformations) and a set of metamodels as inputs and returns a valid

decomposition of the speci�cation.

First, this chapter presents some important considerations for a function implementation.

In particular, it introduces an intermediate and appropriate representation of consistency

speci�cations, the metagraph. This leads to an outline of the decomposition procedure,

then divided into two parts. The �rst part explains how a consistency speci�cation can be

encoded in a metagraph. The second part describes the use of metagraphs to generate a

decomposition of consistency relations. Finally, the last section discusses the validation of

formal properties identi�ed in Section 4.3 by the implementation.

5.1. Tractable Consistency Relations

Decomposition methods provide a means to decide if consistency relations are redundant

or independent. As mentioned in Section 4.2.4, these methods have both advantages and

shortcomings. On one hand, composition of decomposition methods leads to a generic

decomposition procedure for consistency speci�cations. On the other hand, the complexity

of these methods lies in the algorithms required to implement them.

This section presents a representation of tractable consistency relations, i.e. a way

to combine the bene�ts of consistency relations and consistency rules in a unique data

structure for an e�cient representation of consistency speci�cations. The aim is to generate

consistency relations and combinations of relations from QVT-R transformations.

5.1.1. Two Aspects of Consistency Specifications

As of now, consistency speci�cations have been presented in two di�erent ways. First, by

way of consistency relations, i.e. edges of consistency relation graphs. This aspect of

consistency can be described as global. Consistency relations are especially useful in the

context of multi-model consistency preservation because they emphasize interrelated

metamodels. Additionally, the �rst decomposition method – the retrieval of independent

connected subgraphs – relies on the topology of the consistency speci�cation.

However, having a set of metamodels bound by consistency relations is not enough to

ensure consistency. In that case, another aspect of consistency is essential: a local aspect

described by consistency rules. Given that consistency is a property of models, consistency

rules de�ne which pairs of models are consistent, whereas consistency relations only

indicate that metamodels contain redundant information.

49

5. Decomposition Procedure

These two approaches complement one another. As stated in Section 3.1.3, a consistency

relation is associated with one or more consistency rules.

This is illustrated in Figure 5.1. The upper part of the �gure represents a relation

between two metamodels P and E in a consistency relation graph. Another viewpoint,

de�ned by a consistency rule, shows that this relation consists of two metaclasses with a

constraint on their name attributes.

P E

Person

- name : String

Metamodel P

Employee

- name : String

Metamodel E

Person::name = Employee::name

Figure 5.1.: From consistency relation graph to consistency rule

An important consideration for an implementation of the decomposition procedure is

to �nd an appropriate representation for consistency speci�cations. This representation

must be able to express both aspects of speci�cations at once. In Section 3.4, we showed

how the formalism of consistency rules can be reproduced using QVT-R transformations.

Therefore, QVT-R covers at least the local aspect of consistency speci�cations.

To cover the global aspect of speci�cations with an appropriate data structure, we need a

way to relate QVT-R transformations with combinations of consistency relations and graph

topologies. A �rst approach is to de�ne a new kind of graph using metamodel elements as

vertices and consistency rules as edges. In doing so, consistency is now entirely de�ned at

the metamodel element level rather than being split between metamodels and metamodel

elements. Therefore, speci�cations for the decomposition procedure are represented with

a �ner granularity.

This paradigm change requires a rede�nition of concepts introduced in previous chapters

and related to consistency relation graphs such as combinations of relations or tree-like

structures. Regarding graphs at the metamodel level, Section 3.1.1 highlighted the fact

that graphs (i.e. binary relations) were a su�ciently expressive formalism compared with

hypergraphs (i.e. n-ary relations). This is no longer the case when consistency is expressed

at the metamodel element level. Example 5.1.1 is an example of a consistency rule that

cannot be expressed with binary relations. This motivates the need for hypergraphs in the

decomposition procedure.

50

5.1. Tractable Consistency Relations

1 top relation ResidentEmployee {

2 fstn: String;

3 lstn: String;

4

5 domain pers r:Resident {firstname=fstn, lastname=lstn};

6 domain emp e:Employee {name=fstn + ’ ’ + lstn};

7 }

Listing 5.1: A ternary consistency rule with QVT-R

Example 5.1.1 Consider the QVT-R relation ResidentEmployee in Listing 5.1 which binds
two metaclasses, Resident and Employee. The Resident metaclass has two attributes: �rst-

name and lastname. The Employee metaclass has one attribute: name.
The consistency rule indicates that for each Resident instance, there should exist an Em-

ployee instance whose name is the concatenation of the �rstname and the lastname of the
Resident and vice versa. The consistency rule necessarily involves three attributes.

It can be written as a ternary relation ResidentEmployee(�rstname, lastname, name)

such that ResidentEmployee ⊆ String × String × String. Modeled as an edge, this rela-
tion is actually a ternary edge, i.e. an hyperedge, whose endpoints are attributes of the two
metaclasses.

De�nitions of conditions and consistency rules do not impose any restrictions regarding

properties of metaclasses. Consistent pairs of objects can therefore be chosen arbitrarily. In

the case of QVT-R relations, they are chosen by de�ning as many property template items

as necessary. Consequently, edges can link an arbitrary number of metamodel elements,

hence the need for hypergraphs.

Following this approach, vertices of hypergraphs are metamodel elements. As a result,

an hyperedge linking several elements only indicates that these elements participate in a

consistency rule – just as a consistency relation only indicates that two metamodels are

interrelated. For this reason, the consistency rule (or, comparably in an implementation,

the QVT-R constraint) is associated with its hyperedge.

5.1.2. Metagraph

The data structure that meets previous requirements for an implementation of the decom-

position procedure is called a metagraph. It is made up of a hypergraph and a labeling, each

hyperedge being labeled with the consistency rules that it must ful�ll.

De�nition 5.1.1 LetM be a set of metamodels and let R be a consistency speci�cation on
M. A metagraph for R is a couple (H , c) such that H = (VH , EH) is a hypergraph and
c : EH → P(R) \ {�} is a hyperedge labeling under the following conditions:

• VH is a set of elements of metamodels ofM called meta-vertices and
EH ⊆ P(VH) \ {�} is a set of hyperedges called meta-edges, i.e. subsets of VH .

51

5. Decomposition Procedure

• c is a function that labels each hyperedge with a nonempty set of consistency rules.
When consistency rules are expressed as QVT-R relations, all metamodel elements par-
ticipating in the de�nition of the rule must be part of the hyperedge.

A meta-edge can be labeled by more than one consistency rule. For example, a QVT-R

transformation can include two relations whose domain patterns bind the same metamodel

elements. In that case, consistency of the meta-edge is decided by the conjunction of all

consistency rules.

In the context of QVT-R transformations, the nature of metamodel elements is in fact

limited. More precisely, template expressions of domain patterns match either objects (re-

garding object template expressions) or collections of objects (regarding collection template
expressions). The type of an object is always a metaclass, i.e. an EClass in Ecore.

As explained in Section 3.4.2, the selection of consistent objects in QVT-R is achieved by

�ltering the values that properties of these objects can take. In other words, consistency is

the result of conditions applied on object properties. Consequently, metamodel elements

are primarily object properties. These properties refer to both attributes (EAttribute) and

references (EReference) of metaclasses (cf. Section 2.2.1 for Ecore).

When a metamodel is instantiated, there are two ways to retrieve the properties of an

object: either through its attributes or through role names of its references. Role names are

also known as association end names. These two concepts are standard in OCL. Moreover,

they appear in the left-hand side of QVT-R property template items, in template expressions.

Therefore, vertices of metagraphs are either attributes or role names.

An in-depth example of a metagraph and its construction is presented in Section 5.3.

5.1.3. Metagraphs and Constraint Networks

The formalism of metagraphs is actually closely related to constraint networks, a major

concept in the �eld of constraint satisfaction (see Section 2.5.1). Although constraint

networks are usually applied on well-de�ned algorithmic problems (such as scheduling

problems), they o�er a point of comparison with metagraphs.

Accordingly, interesting notions used in the study of constraint networks such as

constraint languages and hypertrees will also occur in the study of metagraphs. Table 5.1

provides a comparison between concepts of constraint networks and concepts of multi-

model consistency preservation.

Constraint satisfaction Consistency speci�cation
Constraint network Metagraph

Variable Metamodel element

Domain Metamodel element type

Constraint Meta-edge

Table 5.1.: Similar concepts in constraint satisfaction and consistency preservation

52

5.2. Outline of the Decomposition Procedure

The main di�erence between constraint satisfaction and consistency preservation lies in

the use of structures. Being de�ned for speci�c problems, constraint networks rarely need

to be updated, unlike consistency speci�cations. Common methods to solve constraint

satisfaction problems such as constraint propagation are not considered here.

In the end, the metagraph provides a convenient way to represent consistency topologies

using consistency rules. This representation serves as an input for the implementations

of decomposition methods. Moreover, its structure can be related to that of a constraint

network. This makes it possible to apply several optimization techniques of constraint

satisfaction to facilitate the use of metagraphs.

5.2. Outline of the Decomposition Procedure

In accordance with Section 5.1, the implementation of the decomposition procedure

involves the de�nition and the use of a metagraph, i.e. a single data structure to combine

consistency relations and consistency rules. Based on this concept, an outline for the

decomposition procedure can be de�ned as follows.

The procedure is divided into two parts. In the �rst part, metamodels and QVT-R trans-

formations using these metamodels are parsed from the input. Potential inconsistencies

in the input (syntax errors, missing metamodel elements, etc.) are reported to the user.

A metagraph is then built by recursively analyzing transformations. The analysis being

static, all the information is retrieved from the abstract syntax trees of QVT-R �les. The

conversion is dynamic, i.e. only metamodel elements that are relevant to consistency are

considered, and simultaneous, i.e. global and local aspects of consistency speci�cations

are addressed at the same time.

The construction of the metagraph is depicted in Figure 5.2.

The second part begins when the construction of the metagraph is completed. The

aim is then to �nd independent subsets of consistency relations using the metagraph.

To that end, algorithms that implement decomposition methods insofar as possible are

introduced. First, the dual of the metagraph is introduced. It is a useful concept to use

graph-theoretic algorithms on hypergraphs. Then, an approach to check redundancy by

comparing consistency relations and combinations of relations is presented. In particular,

the core of the approach is an algorithm that uses a theorem prover to indicate whether a

consistency relation can be replaced by a combination of other relations.

The use of the metagraph is depicted in Figure 5.3.

5.3. From Consistency Specification to Metagraph

This section describes the �rst part of two parts of the decomposition procedure, i.e. an

algorithmic construction of a metagraph from a set of QVT-R �les.

53

5. Decomposition Procedure

QVT-R

transformations

Parse and
validate input

Input validated?
Input

well-formed?

[no]

[no]

Notify user

[yes]

Read
transformations

[yes]

Collect QVT-R
variables in PTIs

Merge
QVT-R variables

Process all
domain patterns

Process all
conditions

Metagraph

Figure 5.3

Figure 5.2.: Construction of the metagraph in the decomposition procedure

54

5.3. From Consistency Speci�cation to Metagraph

Figure 5.2

Metagraph

Build the dual
of the metagraph Dual

Compute
connected components

Connected

components left?

Display
removed
meta-edges

[no]

Test combinations
of meta-edges

[yes]

Combinations left?

Generate and check
the Horn clause

of the combination

[yes]

[no]

UNSAT?

Remove the
meta-edge

[yes]

[no]

Figure 5.3.: Use of the metagraph in the decomposition procedure

55

5. Decomposition Procedure

5.3.1. Inputs of the Procedure

5.3.1.1. Read-Only Consistency Specifications

As stated in Section 4.1, the input of the decomposition procedure consists of two elements:

a set of metamodels and a consistency speci�cation on this set of metamodels. In this

implementation, both elements are part a set of QVT-R �les that serves as an input. An

important point is that every access to either metamodels or transformations is read-

only. This is consistent with the fact that the decomposition procedure does not update

consistency speci�cations and that it does not perform consistency enforcement.

import respack : ’resident.ecore’::Resident;

import emppack : ’employee.ecore’::Employee;

transformation empRes(emp:emppack, res:respack) {

top relation EmployeeResident {

n: String;

domain pers e:Employee {name=n};

domain emp r:Resident {name=n};

}

}

import respack : ’resident.ecore’::Resident;

import perspack : ’person.ecore’::Person;

transformation persRes(pers:perspack, res:respack) {

top relation PersonResident {

n: String;

domain pers p:Person {name=n};

domain emp r:Resident {name=n};

}

}

import perspack : ’person.ecore’::Person;

import emppack : ’employee.ecore’::Employee;

transformation persEmp(pers:perspack, emp:emppack) {

top relation PersonEmployee {

n: String;

domain pers p:Person {name=n};

domain emp e:Employee {name=n};

}

}

Set of QVT-R files Inputs

METAMODELS

Resident

Person

Employee

TRANSFORMATIONS

� use�

empRes

persRes

persEmp

Figure 5.4.: From QVT-R �les to metamodels and transformations

A QVT-R �le is programmatically represented as a Resource object, which is the standard

EMF mechanism for persistent documents. With an appropriate con�guration based on

dependency injection, resources are able to model contents of many languages and �le

formats, including OCL, QVT-R and Ecore.

Metamodels and transformations can then be retrieved directly from QVT-R �les. If

there are several �les, they are processed fully and sequentially. First, metamodels of a �le

are retrieved thanks to import statements. Metamodels cannot be referenced without being

imported. They are parsed at the same time as transformations. That is, the Resource gives

access to import statements, which in turn give access to the roots of imported metamodels.

In the context of QVT-R, roots of Ecore metamodels are packages (i.e. EPackage in Ecore).

Once the root of the package is accessible, so is all its content.

Then, transformations are retrieved in the same way. Note that the Resource object �rst

gives access to the concrete syntax tree (CST) of the QVT-R �le, i.e. the syntactic structure

56

5.3. From Consistency Speci�cation to Metagraph

of the �le according to the QVT-R grammar. While CSTs accurately re�ect �le contents,

they do not o�er a logical view of transformations. To meet this need, EMF provides

an ad hoc binding called Pivot. The purpose of Pivot is to create a uni�ed binding for

representation of model-driven engineering languages in Java. Pivot o�ers good support

of QVT-R, thus allowing to use QVT-R concepts in a natural way with Java classes.

The correspondence established by Pivot o�ers a set of classes similar to those of the

metamodel represented in Figure 3.3.

If transformations are distributed over several QVT-R �les, some metamodels may be

used in multiple �les, leading to a repetition of import statements. However, the input set

of metamodels cannot include duplicates. For this reason, QVT-R �les read with the same

ResourceSet reference should import the same metamodel instances. This is consistent

with the fact that metamodel elements appear at most once in the metagraph.

Figure 5.4 depicts the extraction of metamodels and transformations from QVT-R �les.

Emphasis is placed on the fact that each QVT-R transformation corresponds to a Java

object, whereas metamodels that are imported many times result in a single object.

5.3.1.2. Validation of Input Specifications

There is no guarantee that input �les – both QVT-R �les and Ecore metamodels that these

�les reference – are valid. More precisely, three scenarios may arise:

1. Input �les are valid. This is the correct and expected case. No error handling is

required here. The consistency speci�cation can be used to build the metagraph.

2. Input �les are well-formed but not valid. This means that �les are syntactically

correct, i.e. they respect QVT-R and Ecore grammars, but there are semantic errors,

e.g. two transformations with the same name or a domain pattern using a metaclass

that does not exist.

3. Input �les are not well-formed. This means that �les are syntactically incorrect, i.e.

they do not result in a consistency speci�cation.

In terms of processing, there is a di�erence between the second and the third scenarios.

In the second scenario, there exists a consistency speci�cation although it may be incorrect.

Given that the decomposition procedure manages consistency in metamodel instances

expressed by consistency rules but not in consistency rules themselves, this is a non-

blocking error. The causes of this error are displayed to the user but the procedure

continues to run. In this case, the results of the procedure must be interpreted with caution.

If there are semantic errors in the input speci�cation, it is likely that there are also some

in the output speci�cation.

In the third scenario, however, the consequence of syntactic errors is that there is no

usable speci�cation. QVT-R �les or metamodels with syntactic errors are useless, as

transformations cannot be executed. For this reason, the decomposition procedure exits.

Another scenario, slightly di�erent from those in the above list, relates to input �les that

are valid but useless for consistency preservation. For example, this scenario occurs with

57

5. Decomposition Procedure

a QVT-R relation whose precondition (where clause) always evaluates to false. Regarding

consistency, this means that the associated consistency rule is empty. As a result, all pairs

of instances ful�ll the consistency rule, i.e. all pairs of instances are consistent. Such a

relation can be removed from a speci�cation without altering consistency.

Error management is already part of the implementation of the QVT-R language. More

precisely, errors can be accessed from the Resource object and they are represented as a

list of Resource.Diagnostic objects, which is the standard way in EMF to report errors in

persistent documents. This list can then be displayed in a user-friendly way.

5.3.2. Recursive Construction of QVT-R Concepts

At this stage, the decomposition procedure has well-formed input �les forming a set of

metamodels and a set of QVT-R transformations. The content of these transformations

needs to be analyzed by the procedure in order to �nd metamodel elements and constraints

that result in a metagraph. This subsection explains how to de�ne a traversal order among

and inside transformations.

5.3.2.1. Traversal Order Among Transformations

Transformations are the most outer objects of QVT-R �les, in that there is no other

object in the language that contain transformations. In other words, transformations are

not subordinated to any other element and at the root of a QVT-R �le, there are only

transformations and imports required by these transformations. For these reasons, the

transformations can be considered as independent of each other.

This property allow them to be grouped or distributed over multiple �les. In the context

of multi-model consistency preservation, this makes the development of independent

consistency rules easier because the speci�cation can be divided into as many �les as

necessary. It turns out that this is also of interest to the decomposition procedure.

Independence assures that the set of QVT-R transformations can be analyzed sequen-

tially and in any order by the decomposition procedure. More precisely, a Metagraph

object is instantiated and �lled with the contents of transformations in turn so that all

transformations are part of the same metagraph.

5.3.2.2. Traversal Order Inside Transformations

A QVT-R relational transformation consists in a set of relations and a set of keys. Inside

a given transformation, there can be several relations participating in the de�nition of a

consistency rule. Unlike transformations, relations cannot be processed in any order.

First, not all relations are top-level, i.e. not all relations are automatically invoked if

their parent transformation is executed. To be executed, non-top-level relations must be

explicitely called by other relations using when and where clauses. The process of relation

invocation is explained in detail in Section 3.3.3.

The objective is to process relations in the order in which they would be invoked if the

transformation was executed. There are two advantages to this. First, this ensures that

dependencies resulting from parameters of relation invocations are respected. This way,

58

5.3. From Consistency Speci�cation to Metagraph

template expressions refer to variables which represent an already existing element in

the metagraph. Then, relations that are both non-top-level and not invoked by any other

relation are not processed by the decomposition procedure. By never being invoked, these

relations are useless in the consistency speci�cation.

To that purpose, we represent the set of relation invokations as a call graph. In general,

a call graph models function calls in the control �ow of a programm. A restriction is

imposed on QVT-R speci�cations to make this representation easier to process for the

procedure. From now on, we only allow invocations to appear in where clauses. Calling a

relation A from the when clause of relation B is similar to calling B from the where clause

of A. In the context of QVT-R, a call graph is a graph whose vertices are relations (of the

same transformation) and edges are relation invocations.

The call graph is always a directed graph. Figure 5.5 gives an example of such a call

graph for a transformation with six relations including two top-level relations. Numbers

next to vertices indicate in which position the vertex was �rst visited. Note that the call

graph may contain cycles, as nothing prevents circular references in QVT-R relations.

Starting from top-level relations results, relations can be processed using a depth-�rst

traversal. This reproduces the order of invocation of relations if the parent transformations

is executed. As a result, a relation is only visited if it is top-level or if a relation invoking it

was itself visited before. This ensures that metamodel elements passed as parameters of

the relation were already processed in another relation.

In addition to relations, transformations may contain keys. Keys in QVT-R are similar

to keys in relational databases. They serve as unique identi�ers for objects only used at

top relation A {

where {B;}

}

relation B {

where {C; D;}

}

relation C {}

relation D {

where {A;}

}

top relation E {

where {F;}

}

relation F {}

A

B

C D

E

F

1

2

3 4

5

6

Figure 5.5.: Order of processing of QVT-R relations with invariants

59

5. Decomposition Procedure

1 domain emp e:Employee {name=fstn + ’ ’ + lstn};

String.+(String) : String︷ ︸︸ ︷
String.+(String) : String︷ ︸︸ ︷

Variable︷︸︸︷String︷︸︸︷Variable︷︸︸︷
︸ ︷︷ ︸

Value

︸︷︷︸
Property︸ ︷︷ ︸

PropertyTemplateItem
+︸ ︷︷ ︸

TemplateExpression︸ ︷︷ ︸
DomainPattern

+︸ ︷︷ ︸
RelationDomain

+

Figure 5.6.: Hierarchical structure of a QVT-R domain

the time of object creation. In case of consistency enforcement, i.e. when transformations

are executed, they prevent the creation of duplicate objects. As they do not in�uence the

declaration of consistency rules, they are ignored by the decomposition procedure.

By going through transformations and their relations according to the rules set out in

the previous subsections, it is possible to process all relations while avoiding dependency

problems. The next step is to �ll the metagraph with the content of the relations.

5.3.3. Translation of Global Aspects of Specifications

At this stage, the traversal order of QVT-R relations is fully de�ned. This section shows

how each relation can be processed in order to de�ne new meta-vertices and meta-edges.

This process is called translation.

The main idea behind the translation of relations is that metamodel elements are

interrelated if they are bound to the same QVT-R variables. In QVT-R, regardless of

the template expression, pattern matching exclusively relies on variables. Consequently,

grouping metamodel elements according to the variables to which they are bound results

in small sets of elements that de�ne consistency rules. Such sets then form meta-edges.

Apart from this idea, some elements of relations remain to be translated. In particular,

preconditions and invariants in�uence the application of relations and need to be integrated

in the metagraph as well.

5.3.3.1. Finding Common Variables in Template Expressions

To group interrelated metamodel elements depending on variables they are bound to,

it is necessary to traverse the syntax tree of template expressions, i.e. to explore OCL

expressions in order to list these variables.

60

5.3. From Consistency Speci�cation to Metagraph

Figure 5.6 gives an overview of what a domain is made up of. This line of code is based

on Example 5.1.1. The upper part of the �gure depicts the subexpressions of the template

expression in OCL. The lower part depicts the structure of the domain in QVT-R. The plus

sign indicates that it is possible to concatenate several elements of the same type.

As shown on the �gure, all QVT-R variables are located in the value of the property

template item. We say that name is bound to the set of variables {fstn, lstn}. The best way

to automatically retrieve variables from property template items is to use a visitor pattern.

A visitor is a class that o�ers the possibility to de�ne new operations on existing data

structures without modifying them. As they belong to the visitor class, these operations

are external to the data structures. More exactly, they are part of visit methods inside

the visitor. The visitor pattern is a suitable solution when it comes to perform an analysis

of abstract syntax tree.

The reason is that it allows the development of many di�erent behaviours according to

the type of the visited class. These behaviours take the form of methods in the body of the

visitor class. First, the base class is designated as visitable — we say that it accepts a visitor,

which is represented by a method accept with one argument, the visitor class. Then, each

subclass overrides the accept method and calls one method of the visitor, sending itself

(this) as an argument of the method so that the visitor can perform operations on the

visited subclass.

In an abstract syntax tree, the base class is often an abstract Expression class. In OCL,

this class is called OCLExpression. Then, variables, literals, operations, etc. of OCL are

represented as subclasses of OCLExpression. Each subclass calls its own visitor method,

e.g. VariableExp calls visitVariableExp(this) from the visitor class. By deriving the

visitor class, a developer can write the logic of visitor methods and implement its own

operations on visited objects without modifying these objects.

The extraction of QVT-R variables from OCL expressions can be achieved by using a

visitor. The use of this pattern is bene�cial here for two reasons. First, the OCL meta-

metamodel is made accessible to the implementation of the decomposition procedure by

the Pivot binding of OCL, a Java library. This binding already provides a visitor class to

inherit for custom processing of expressions. Note that this visitor is itself included in a

larger one that can also process elements of QVT-R, an AbstractQVTrelationVisitor.

Second and more importantly, the logic behind the extraction of these variables depends

on the nature of the expression in the property template item. This need for special

processing depending on OCL expressions motivates the use of a visitor.

Given the abstract syntax tree (AST) of an OCL expression, a node is called terminal
if it is a leaf of the tree, i.e. if it contains no subexpression. Conversely, a node is called

non-terminal if it is the root node or a branch node of the AST, i.e. if it is not a terminal

node. Child nodes of non-terminal nodes are called components. In Figure 5.6, “lstn” is

terminal whereas “’ ’ + lstn” is non-terminal because it has two components.

A terminal node contains a variable if and only if it is a variable expression (VariableExp).

A non-terminal node contains all the variables of its components. Therefore, extracting

components can be achieved with a visitor as follows.

Each subclass C of OCLExpression corresponds to a visitC method in the visitor class.

Each method of the visitor returns a set of variables. Let vars be the function that takes

61

5. Decomposition Procedure

an OCL expression as an input and returns the set of variables in it. The function can be

constructed inductively depending on the following cases.

• (Base case) For a terminal node that represents a variable expression, the visitor

returns a unit set containing the variable in the expression.

For example, vars(fstn) = {fstn}.

• (Base case) For a terminal node that does not represent a variable expression, the

method returns an empty set. For example, vars(1.5) = {}.

• (Inductive step) For a non-terminal node, the method returns the union of sets of

its components. The number and position of components depends on the node.

For example, given three OCL expressions e1, e2 and e3, vars(e1 and (e2 or e3)) =
vars(e1) ∪ vars(e2 or e3)) = vars(e1) ∪ vars(e2) ∪ vars(e3).

Using the visitor on the value of the property template item returns the set of variables to

which the property is bound. After processing all property template items, each property

that participates in the de�nition of a domain pattern is mapped to a (possibly empty) set

of QVT-R variables.

5.3.3.2. Merge of Consistency Variables

Associating sets of variables with metamodel elements is useful to infer the structure of

the consistency speci�cation. If two metamodel elements share one or more variables

(in the sense that the intersection of sets of QVT-R variables to which they are bound is

non-empty), then the set of values that their instances can take is restricted. Instances

must be consistent. Similarly, it is then possible to build sets of metamodel element, such

that for every element in the set, there is another element which shares at least one QVT-R

variable with it. Such a set is called form a meta-edge.

The operation described above is called the merge of consistency variables and imple-

mented in Algorithm 5.1.

First, let {e1, . . . , en} be a set of properties (metamodel elements) and let {v1, . . . ,vm} be

a set of QVT-R variables. In accordance with Section 5.3.3.1, each element ei was mapped

to a set Vei ⊆ P({v1, . . . ,vm}). As a result, the input of the algorithm is a set of pairs

{({ei},Vei)}. The �rst element of the pair is a unit set containing the property ei while the

second element is the set Vei of QVT-R variables to which ei is bound.

Similarly, the output of the algorithm is a set of pairs {(Ei,VEi)}whereEi ⊆ P({e1, . . . , en}
and VEi ⊆ P({e1, . . . , en} such that the VEi sets are pairwise disjoint.

Each pair ({ei},Vei) is called an entry. The idea of the algorithm is to choose a reference

entry for each loop in which other entries will be merged if they have at least one common

variable with the reference. Merging two entries is achieved by merging their properties

on one side and their variables on the other. If there was a merge at any point, this means

that not all entries are pairwise disjoint and that the algorithm has to continue, hence

the line 18 of the algorithm. Once that all entries have been compared with the reference

62

5.3. From Consistency Speci�cation to Metagraph

Algorithm 5.1 Merge of consistency variables

1 procedure Merge-Consistency-Variables({(ei,Vei)})
2 stopMerge ← True

3 entries ← [({ei},Vei)]
4

5 do

6 stopMerge ← True

7 results ← {}

8

9 while not entries.isEmpty() do

10 ref = ({eref},Veref) ← entries[0]

11 others ← entries[1:]

12 entries ← []

13

14 for ({e},Ve) : others do

15 if Ve ∩Veref = � then

16 entries.add(({e},Ve))
17 else

18 stopMerge ← False

19 ref ← ({e} ∪ {eref},Ve ∪Veref)
20 end if

21 end for

22 results.add(ref)

23 end while

24 entries = results

25 while not stopMerge

26

27 return set(entries)

28 end procedure

entry, another entry is chosen as a reference among those that could not be merged with

the previous reference. This is repeated until there are no more entries to process. As a

result, all entries have been either chosen as reference entries or merged with other entries

when the algorithm terminates.

Example 5.3.1 Let {e1, . . . , e4} be a set of metamodel elements and let {a,b, c,d, e} be a set
of QVT-R variables to bind these elements. Figure 5.7 shows the execution of Algorithm 5.1
on the following input: ({e1}, {a,b}), ({e2}, {c,d}), ({e3}, {e}), ({e4}, {b,d}).

In Figure 5.7, entries depicted in green are part of the results set. in Each pass corresponds
to a whole execution of the while loop in the algorithm, i.e. until entries is empty. At the
end of the pass, there is two possibilities, depending on whether stopMerge was assigned to
False during the while. If so, there was a merge in the previous pass so there may still be
others. In the example, it is the case for the �rst and the second passes. In this case, the

63

5. Decomposition Procedure

temporary results become entries again and a new pass is initiated. In the third and last
pass, there is no merge so stopMerge remains True. Results are now �nal.

After the merge of consistency variables, metamodel elements that occur as properties

in a QVT-R relation are grouped according to variables they share. If metamodel elements

form vertices of an hypergraph, these sets of metamodel elements can be considered as

hyperedges. Thus, the global aspect of consistency speci�cations (i.e. consistency relations)

can be reproduced at the metamodel element level.

5.3.4. Translation of Local Aspects of Specifications

To ful�ll the de�nition of a metagraph, it is still necessary to associate with each hyperedge

a set of consistency rules. The reason for this is that the existence of a group of metamodel

elements only indicate that instances of these elements must be consistent but it does not

specify under which rules they should be.

e1 e2 e3 e4
INPUT

stopMerge← True

{a,b} {c,d} {e} {b,d}

e1 e2 e3e4
FIRST PASS

stopMerge← False

{a,b,d} {c,d} {e}

e1 e2 e3e4

{a,b,d} {c,d} {e}

not stopMerge =⇒
entries = results

stopMerge← True

e1 e2 e3e4
SECOND PASS

stopMerge← False

{a,b,d} {e}

e1 e2 e3e4

not stopMerge =⇒
entries = results

stopMerge← True

{a,b,d} {e}

e1 e2 e3e4
THIRD PASS

stopMerge← True

{a,b,d} {e}

Figure 5.7.: Example of a merge of consistency variables

64

5.3. From Consistency Speci�cation to Metagraph

Figure 5.8 shows an example in which two relations using the same metaclasses and

the same properties result in the same hyperedges after the execution of Algorithm 5.1,

although they express di�erent consistency speci�cations.

top relation ResidentEmployee {

fstn: String;

lstn: String;

domain pers r:Resident {firstname=fstn, lastname=lstn};

domain emp e:Employee {name=fstn + ’ ’ + lstn};

}

top relation ResidentEmployee {

fstn: String;

lstn: String;

domain pers r:Resident {firstname=fstn, lastname=lstn};

domain emp e:Employee {name=lstn.toUpper() + ’, ’ + fstn};

}

firstname

lastname

name

{ fstn, lstn }

Figure 5.8.: Two consistency speci�cations resulting in the same hyperedge

In order to model the consistency speci�cation in its entirety at the metamodel element

level, this subsection details the implementation choices of the procedure and the reasons

for these choices. First, we explain the chosen formalism to embed consistency rules into

hyperedges. Then, we look at how to translate contents of domain patterns. Finally, we

consider other elements from QVT-R relations, e.g. preconditions and invariants, that

must be translated as well.

5.3.4.1. Symbolic Representation of Consistency Rules

The integration of consistency rules into the metagraph has one major purpose, the

detection of redundancy in the speci�cation. In particular, we aim to �nd an algorithmic

approach to implement decomposition methods described in Section 4.2. The point of

consistency rules in these methods is that they give conditions for instances of a set of

metamodel elements to be consistent with each other.

Sets of instances de�ned by consistency rules and used in De�nitions 4.2.3 and 4.2.6 may

be possibly in�nite. This case occurs very often in practice. For example, a consistency

rule that ensures that two String attributes have the same value generates an in�nite

set of consistent instances, given that there are in�nitely many strings. This makes it

impossible to compare element by element, i.e. extensionally, the set of instances that

ful�ll a consistency relation with the set of instances that ful�ll an alternative combination

of consistency relations.

Consequently, an implementation of decomposition methods must compare sets inten-

sionally, i.e. by comparing their internal de�nitions. This is actually consistent with the

fact that consistent instances of a metamodel are never de�ned extensionally. When using

65

5. Decomposition Procedure

QVT-R to specify consistency, de�nitions of sets of consistent instances are ultimately

written as OCL expressions in domain patterns, preconditions and invariants.

Example 5.3.2 In order to show how redundancy can be identi�ed from de�nitions of con-
sistency rules, let MeterValue, InchValue and FootValue be three metaclasses of three meta-
models representing units of length. Each metaclass has an attribute value of type Real.
A consistency speci�cation is associated with these metamodels. Here, consistency ensures

that if there exists an instance of one of these metaclasses, then there exist instances of other
metaclasses such that conversions between length units are correct. For example, if there is
an instance of FootValue with value 1, there must be an instance of InchValue with value

12 and an instance of MeterValue with value 0.3048.
This consistency speci�cation can also be written with OCL expressions as follows:

(1) InchValue.value = 12 * FootValue.value

(2) MeterValue.value = 0.0254 * InchValue.value

(3) MeterValue.value = 0.3048 * FootValue.value

In terms of consistency relations, this speci�cation with three metamodels and three con-
sistency rules form a triangle graph. Using a decomposition method, we want to check if one
of these relations is redundant, e.g. rule (3). Therefore, we �nd a combination of consistency
relations with the same endpoints, here (1)-(2).

According to De�nition 4.2.3, (3) is totally redundant if it has the same set of consistent
instances as the combination (1)-(2). In this example, such a set is in�nite and cannot be fully
generated: each value attribute can represent in�nitely many lengths. An exhaustive com-
parison of sets is then impossible. A proof of redundancy cannot be obtained extensionally.

It is however clear that two rules are su�cient to deduce a third one. If models ful�ll rules
(1) and (2), then they ful�ll the following rule deduced from (1) and (2):

MeterValue.value = 0.0254 * (12 * FootValue.value)

⇐⇒ MeterValue.value = 0.3048 * FootValue.value ⇐⇒ (3)

Regarding sets of consistent instances, an instance that is consistent according to the com-
bination (1)-(2) is also consistent according to (3) given the result above. As a result, (3)
represents a redundant consistency relation. This proof of redundancy was obtained inten-
sionally, i.e. only by using de�nitions of consistency rules.

As shown in Example 5.3.2, the solution for an implementation of decomposition

methods lies in the intensional comparison of sets of instances, i.e. in the manipulation

of the de�nitions of these sets. In other words, OCL expressions (and more generally

consistency rules in QVT-R) that de�ne consistency rules are regarded as sets of symbols

that can be manipulated to infer certain results. This is a case of symbolic computation.

Thanks to the static analysis of consistency speci�cations, symbols in OCL and QVT-R

expressions are already de�ned. They correspond to subexpressions or language constructs,

66

5.3. From Consistency Speci�cation to Metagraph

i.e. nodes of the abstract syntax tree of the speci�cation. For example, Figure 5.6 depicts

the structure of a domain pattern in QVT-R. All elements highlighted in this structure can

be used to identify sources of redundancy, as in the previous example.

Therefore, an emerging approach for an implementation of decomposition methods in

this work involves the use of tools for symbolic computation during the static analysis of

QVT-R �les. Reasoning about OCL expressions is not trivial, as it is an expressive language

with a quite large syntax. For example, a tool for symbolic computation that works for

OCL should be able to deduce that the expressions “firstname + ’ ’+ lastname” and

“firstname + ’ ’+ ’’+ lastname” are equivalent without assigning values to firstname

and lastname because everything in these expressions is a symbol, not a variable.

In practice, it is unusual to write a tool for symbolic computation that only works for one

language due to the complexity of the task if the language is not trivial. Most often, these

tools have their own formalism. They provide description of expressions and elements on

which they are able to reason and give results. Chapter 6 provides an explanation as for

the choice of an appropriate tool for the decomposition procedure. It also describes how

and to what extent OCL expressions and QVT-R constructs can be translated as formulae

interpretable by this tool.

At this stage, the approach is as follows. First, de�nitions of consistency rules within

QVT-R relations are translated into expressions of a symbolic and formal language, so

that there exist algorithms to deduce redundancy results from these de�nitions. Then,

these expressions are embedded in the hypergraph of Section 5.3.3. This completes the

construction of the metagraph. It therefore remains to be determined which parts of

QVT-R relations have to be embedded and how.

5.3.4.2. Processing of Domain Patterns

De�nitions of consistency rules mainly depend on domain patterns, i.e. on contents of

template expressions. In particular, metamodel elements are primarily bound to QVT-R

variables in template expressions. In accordance with the de�nition of the metagraph,

the idea is to associate this de�nition with a set of metamodel elements, i.e. a hyperedge,

so that all the information necessary to express consistency for this hyperedge can be

accessed from the hyperedge.

For a set of instances – whose consistency is determined by a set of property template

items – to be consistent, there must exist an assignment to QVT-R variables so that all

property template items evaluate to true. Property template items bind a metamodel

element (property) with an OCL expression (value). When they are combined, they can

also be regarded as systems of equations. If so, metamodel elements are replaced with the

values of their instances. Instances are then consistent if the system has a solution.

Example 5.3.3 The QVT-R relation in Listing 5.2 involves three property template items
(PTIs). The = sign in PTIs is an assignment operator. Variables fstn and lstn take some
arbitrary values and are then assigned to attributes of metaclasses through PTIs. Resulting
instances are consistent because they were built to ful�ll domain patterns.

67

5. Decomposition Procedure

We now represent an instance as a tuple (firstname, lastname, name) that is as an element
of String × String × String. Consistency of a given set of instances can be determined by
modeling PTIs as a system of equations. For (’Alice’ ,’Smith’ ,’Alice Smith’):

firstname=fstn

lastname=lstn

name=fstn + ’ ’+ lstn

⇐⇒


’Alice’=fstn

’Smith’=lstn

’Alice Smith’=fstn + ’ ’+ lstn

Given that the system has a solution, these models are consistent. The point of this rep-
resentation is that consistency ful�llment can be interpreted as the solving of a system of
equations. The manipulation of equations is an important feature of tools for symbolic com-
putation.

For this reason, the consistency rule associated with a hyperedge is the conjunction of

all property template items whose property is in the hyperedge. These property template

items are interpreted as equations, meaning that the consistency rule is interpreted as a

system of equations. Accordingly, consistency ful�llment in a set of hyperedges can be

interpreted as a system made up of equations of all hyperedges.

The approach presented in Example 5.3.3, i.e. replacing metamodel elements with values

of their instances and checking if the system of equations has a solution, can then be

adapted to the decomposition procedure. As for the combinations of consistency relations,

let E be a meta-edge and E a combination of meta-edges such that all meta-vertices in E
are in the �rst or in the last meta-edges of E. If when the system of equations induced by

E is solvable, so is the system induced by E, then all instances consistent according to E
are also consistent according to E. This means that E is totally redundant.

In other words, reasoning about domain patterns in terms of systems of equations is a

way to implement the detection of redundancy as exposed in the decomposition methods.

As a result, property template items are not embedded in metagraphs as OCL expressions.

They are �rst translated as equations in an appropriate language that tools for symbolic

computation are able to use.

In the decomposition procedure, the translation is based on a visitor again, i.e. the same

mechanism as the search for common variables in domain patterns. The abstract syntax

tree is explored thanks to a visitor class, each node being translated in a speci�c way. The

translation is described in a dedicated chapter on constraint translation, Chapter 6.

1 top relation ResidentEmployee {

2 fstn: String;

3 lstn: String;

4

5 domain pers r:Resident {firstname=fstn, lastname=lstn};

6 domain emp e:Employee {name=fstn + ’ ’ + lstn};

7 }

Listing 5.2: Processing of domain patterns for Example 5.3.3

68

5.4. From Metagraph To Decomposition

5.3.4.3. Processing of Preconditions and Invariants

In addition to property template items, there are three QVT-R constructs in which OCL

expressions can occur. These are preconditions (in when clauses), invariants (in where

clauses) and local invariants (after the template expression of a domain pattern).

These constructs also contribute to consistency speci�cation. As a result, the translation

of template expressions in invariants and preconditions is achieved using the same visitor

as the translation of property template items.

In the context of this thesis, OCL expressions apart from template expressions in domain

patterns are restricted to the manipulation of QVT-R variables. Using root variables, it

is possible to reference metamodel elements directly in local invariants, when and where

clauses. Since this makes the generation of the metagraph harder for a low gain in

expressiveness – domain patterns already allow to do this in an organized way, this is not

supported in the decomposition procedure.

Their integration into decomposition methods is presented in Section 5.4.4.

5.4. FromMetagraph To Decomposition

The second part of the decomposition procedure relates to the use of the metagraph in order

to �nd independent subsets of consistency relations. In this section, an implementation of

decomposition methods discussed in Section 4.2 is presented.

5.4.1. Metagraph Dual

5.4.1.1. Construction of the Dual

Being based on hypergraphs, metagraphs have the advantage of being very expressive

when it comes to model relations with variable arities. The downside is that common

graph algorithms (graph traversal, connected components, etc.) become harder to de�ne,

to analyze and to apply. The choice between graphs and hypergraphs is then a balance

between abstraction and usability.

This problem also occurs in the �eld of constraint satisfaction when problems are

modeled with constraint hypergraphs. A common approach is to transform the hypergraph

into an isomorphic graph that allows to compute the same solutions, the dual of the
constraint hypergraph [DC+03]. De�nition 5.4.1 adapts the concept of dual to metagraphs.

De�nition 5.4.1 LetM = (H , c) be a metagraph de�ned for a consistency speci�cation R.
The dual of the metagraphM, denotedM∗, is a tuple (G,v, c) with a simple graph G and
two functions, v and c such that:

• VG = EH

• EG = {{E1, E2} | ∀ (E1, E2) ∈ E
2

H
: E1 ∩ E2 , �}

• ∀ {E1, E2} ∈ EG : v({E1, E2}) = E1 ∩ E2

69

5. Decomposition Procedure

Meta-edges of the metagraph become vertices of the dual. If meta-edges share at least

one metamodel element, their corresponding vertices in the dual are linked. The function

v is an edge labeling that indicates which metamodel elements two vertices of G, i.e. two

hyperedges of EH have in common. In order to keep a representation that can be translated

in both directions, the function c′ is the same as the function c and associates a set of

consistency rules with a set of metamodel elements.

For example, Figure 5.9 shows a metagraph for a consistency speci�cation with three

metamodels and its dual.

The dual of the metagraph is a simple graph, meaning that algorithms such as the

computation of connected components or the search of paths become applicable. Building

the metagraph can be considered as a pre-processing for the decision part of the decompo-

sition procedure. Moreover, the dual contains all the information necessary to build the

metagraph again. Given a dualM∗ = (G,v, c′), the metagraphM = (H , c) can be built by

considering VH =
⋃

V ∈VG V , EH = VG and c = c′.

5.4.1.2. Characterization of Combinations in the Dual

In a consistency relation graph, a combination of consistency relations has been de�ned

as a path in the graph. At the metamodel element level, a combination in a metagraph has

been de�ned as a sequence of meta-edges in which two consecutive terms share at least

one meta-vertex, i.e. they have at least one metamodel element in common. Whatever the

formalism, the aim of combinations is to represent an alternative sequence of consistency

rules to detect if a consistency rule carries redundant information.

An equivalent characterization of combinations can be de�ned in duals of metagraphs.

To check if the meta-edge 3 of the metagraph in Figure 5.9 is redundant, a combination to

try could be 1–2. Valid combinations are those whose endpoints share at least one vertex

(or meta-vertex) with the edge (or meta-edge) analyzed. Detecting candidate endpoints is

trivial in the dual of the metagraph: it is the set of neighbours of the vertex representing

the meta-edge. If two meta-edges share a meta-vertex in the metagraph, their vertex

representations are linked by an edge in the dual.

As a result, valid combinations in the dual graph are paths that start with the rule to

analyze and end with the rule to analyze. In other words, valid combinations are cycles

in the dual graph. For a given cycle, consistency rules that participate in the redundancy

checking are those associated with vertices in the cycle (except the one to be anayzed).

The cycle must be simple, i.e. it does not go through the same vertex twice (except for the

vertex to be analyzed which is both the �rst and the last vertices of the cycle).

In the context of the decomposition procedure, some cycles are more interesting than

others. The di�erence between two cycles stems from metamodel elements shared between

their vertices – this is provided by the functionv of the dual. The set of metamodel elements

of a cycle is the union of sets of metamodel elements on edges of the cycle, i.e.

⋃
E∈C v(E)

for a cycleC . The more metamodel elements a cycle contain, the more information it has to

detect redundancy. More importantly, it is most of the time necessary that all metamodel

elements of the meta-edge to analyze are also part of the metamodel elements of the cycle.

70

5.4. From Metagraph To Decomposition

On that basis, a �rst heuristic to �nd good candidate combinations (i.e. cycles in duals)

is to favour those that contain all elements of the consistency rule to analyze. Another

idea is to favour shorter cycles. Shorter cycles contain less consistency rules, meaning

that veri�cations are easier to perform for the symbolic computation tool. Morever,

two metamodels are more likely to be interrelated if they share many consistency rules.

Following that logic, it is more appropriate to test shorter cycles, i.e. cycles made up of

metamodels closely related to each other, before long cycles.

5.4.2. Independent Subsets of Meta-Edges

The �rst decomposition method presented in Section 4.2 uses the absence of consistency

relations between sets of metamodels as an argument of independency between these sets.

This section describes a similar result at the metamodel element level and a way to make

use of this result in the decomposition procedure.

5.4.2.1. Connected Components in Metagraphs

The de�nition of connected components can be extended to hypergraphs and therefore

to metagraphs. The aim is to describe independent sets of meta-edges. As a reminder,

meta-edges are based on hyperedges, which are sets of vertices of the hypergraph.

De�nition 5.4.2 LetM = (H , c) be a metagraph. A subhypergraph ofM induced by a
set of hyperedges A is a couple SA = (V ,A) such that A ⊆ EH and V =

⋃
A∈A A.

Subhypergraphs are a generalization of subgraphs for hypergraphs. Given that the

cardinality of hyperedges is not �xed, there are several ways to de�ne this concept. The one

de�ned above is the most straightforward. It consists in selecting a subset of hyperedges

and all vertices in these hyperedges. The fact that it is de�ned from hyperedges stems

from the idea that meta-edges are the main elements of the decomposition procedure (e.g.

to �nd combinations and to keep track of consistency rules).

De�nition 5.4.3 LetM = (H , c) be a metagraph de�ned for a consistency speci�cation R.
A subhypergraph SA ofM induced by a set of hyperedges A is a connected component
ofM under the following conditions:

(1) ∀ v ∈ VSA ,∀ E ∈ (EH \ A) : v < E

(2) ∀ u,v ∈ V 2

SA
: u is reachable from v

In other words, a subhypergraph is a connected component if each of its vertices has

the same degree in the hypergraphH and in the subhypergraph SA and if there exists a

path between any two of its vertices.

In terms of consistency, two meta-edges have to be in the same connected component

for one to be part of a combination to replace the other. Therefore, connected components

are independent subsets of meta-edges. As for duals, a metagraph and its dual lead to same

connected components. Two meta-edges are in the same connected component in the

metagraph if and only if there is a path between the vertices they represent in the dual.

71

5. Decomposition Procedure

Resident::name

Employee::name

Person::firstname

Person::lastname


Person::firstname=fstn

Person::lastname=lstn

Resident::name=fstn + ’ ’+ lstn


Person::firstname=fstn

Person::lastname=lstn

Employee::name=fstn + ’ ’+ lstn

{
Resident::name=n

Employee::name=n

1

2

3

(a) Metagraph

Person::fi
rstname, Person::la

stname

Re
si
de
nt
::
na
me

Employee::name


Person::firstname=fstn

Person::lastname=lstn

Resident::name=fstn + ’ ’+ lstn


Person::firstname=fstn

Person::lastname=lstn

Employee::name=fstn + ’ ’+ lstn

{
Resident::name=n

Employee::name=n

1

2

3

(b) Dual of the metagraph

Figure 5.9.: A metagraph of a consistency speci�cation and its dual

72

5.4. From Metagraph To Decomposition

5.4.2.2. Computation of Connected Components

Given that duals are simple graphs, there are fast and e�cient algorithms for the computa-

tion of connected components. The one used in the implementation of the decomposition

procedure was �rst described by Hopcroft and Tarjan [HT73]. It runs in linear time using

a recursive depth-�rst search.

5.4.2.3. Consequences of Independent Subsets in Metagraphs

At this stage, connected components denote two di�erent properties of consistency preser-

vation depending on the structure in which they are used. At the metamodel level, i.e.

in consistency relation graphs, two consistency relations in separate connected compo-

nents are independent in the sense that metamodels at their respective endpoints are

not interrelated. At the metamodel element level, i.e. in metagraphs, two meta-edges in

separate connected components are independent in the sense that one cannot be used in a

combination to test if the other is redundant.

The existence of connected components in metagraphs is a stronger result than the

existence of connected components in consistency relation graphs. The reason for this

is that if two consistency relations are in separate connected components, then their

respective meta-edges are separate too and cannot lie in the same connected component.

However, the converse does not hold. That is, two meta-edges in di�erent connected

components can be part of the same consistency relation. For example, let A and B be

two metamodels with two metaclasses each, (A1, A2 and B1, B2). Let the consistency

speci�cation on {A, B} ensure that A1 models are consistent with B1 models and that A2

models are consistent with B2 models. In the resulting metagraph, there will be two

connected components: one with the properties of A1 and B1, another with the properties

of A2 and B2. In other words, although A1 and A2 are part of the same metamodel, they

appear in separate connected components.

This is of interest for the implementation of the decomposition procedure. This means

that consistency of {A1, B1} and of {A2, B2} can be veri�ed separately. If we now assume

that we can replace the meta-edge made up of elements of A1 and B1 with a combination

of meta-edges from other metamodels, then {A1, B1} is redundant whereas {A2, B2} is not.

Thus, the consistency speci�cation between A and B is partially redundant.

5.4.2.4. Use of Connected Components in Metagraphs

The implementation of decomposition methods using the metagraph can �nally be de-

scribed as follows. First, connected components of the metagraph are computed. Then,

for each connected component, as much meta-edges as possible are removed by verifying

if they can be replaced by a combination of meta-edges. Candidate combinations must

ful�ll conditions explained in Section 5.4.1.2. Two cases are then possible. If all meta-edges

associated with a consistency relation are ultimately removed, the relation is said to be

totally redundant. Otherwise, the relation is said to be partially redundant.
It remains to be seen how alternative combinations of meta-edges can be generated in

an independent subhypergraph and how they can be compared to meta-edges to analyze

in order to detect redundancy. This is the purpose of the following sections.

73

5. Decomposition Procedure

me1 me2

me3

me4

me5 me6

(a) Dual of the metagraph

me1 me2

me3

me4

me5 me6

(b) Combination me2–me3

me1 me2

me3

me4

me5 me6

(c) Combination me2–me6–me5–me3

me1 me2

me3

me4

me5 me6

(d) Combination me2–me4–me6–me5–me3

Figure 5.10.: Three valid combinations to replace a meta-edge

5.4.3. Generation of Combinations of Meta-Edges

In the dual of a metagraph, an alternative combination of meta-edges is represented as a

simple cycle with the additional condition that the meta-edge to analyze must be part of

the cycle. In Figure 5.10, the dual of a metagraph with six meta-edges is depicted. If the

aim is to remove me1, there are three valid cycles, i.e. three valid combinations to test.

Cycles sought in the context of the decomposition procedure must be simple. The

reason for this is that cycles of meta-edges (i.e. vertices in the metagraph dual) with

repeated vertices are super�uous in terms of consistency. The role of a meta-edge is to

select consistent instances among all possible instances. When repeated, a meta-edge does

not select more consistent instances than before.

Also, if a graph has at least one cycle, then it has in�nitely many of them. Following the

requirements of Section 5.4.1.2, this section describes an algorithm to �nd simple cycles in

the dual of the metagraph, leading to the generation of a set of alternative combinations

of meta-edges.

5.4.3.1. Cycle Enumeration

The problem of �nding all simple cycles in an undirected graph is called cycle enumeration.

Before presenting an appropriate algorithm to solve this problem in the context of the

decomposition procedure, there are important details to mention. First, the number of

cycles can be exponential in the number of vertices of the graph. This is especially the

74

5.4. From Metagraph To Decomposition

case of the complete graph (since there are already n! permutations of a set of n vertices).

As a result, there is no polynomial algorithm to enumerate cycles in an undirected graph.

In the same way, this result is also valid for the enumeration of combinations in the

metagraph. There can be exponentially many paths between two meta-edges in the

metagraph. Of the two representations, duals are preferred to �nd combinations. That is,

combinations are generated from cycles in the dual rather than from paths in the metagraph.

This avoids the need to manage �ne details of hypergraphs in the implementation.

The previous result can be relativized. Once a suitable combination (i.e. a combination

that proves redundancy) is found, there is no need to enumerate other combinations. For

example in Figure 5.10, if me1 and the combination me2–me3 are redundant, there is no

need to �nd and to test other combinations. Also, as explained in Section 5.4.1.2, it is more

likely to �nd redundancy in short cycles, i.e. with close meta-edges.

There are generally two families of algorithms to enumerate simple cycles in undirected

graphs: those using cycle bases and those using search algorithms [MD76]. In this imple-

mentation, the former is preferred. Search algorithms being based on directed graphs, their

use on undirected graphs requires to transform them into directed graphs by doubling

every edge. Regarding the decomposition procedure, this would introduce an additional

graph formalism, i.e. an additional layer of complexity.

5.4.3.2. Cycle Bases For Cycle Enumeration

A cycle basis in an undirected graph is a set of simple cycles which can be combined to

generate all other simple cycles of the graph. For example, Figure 5.11 depicts a cycle basis

for the dual of Figure 5.10. The basis is made up of three cycles.

The generic way to compute a cycle basis is to compute the spanning tree of the graph.

Then, edges that are not part of the spanning tree are visited one by one and combined

with some edges of the tree to form a simple cycle. The e�ciency of the algorithm then

depends on the choice of these edges. A well-known algorithm to �nd a cycle basis in an

undirected graph is Paton’s algorithm [Pat69]. This is the one used in the implementation

of the decomposition procedure.

me1 me2

me3

me4

me5 me6

Figure 5.11.: Cycle basis for the dual of Figure 5.10

75

5. Decomposition Procedure

The next step is to use the cycle basis to enumerate all simple cycles. In order to do this,

two or more cycles are merged at each enumeration. Not all merges produce cycles. In

particular, cycles must share some edges. In the context of the decomposition procedure,

there is an additional requirement: a cycle must go through the meta-edge to analyze in

order to produce a valid combination.

Algorithm 5.2 is a slightly modi�ed version of Gibb’s algorithm to enumerate simple

cycles in an undirected graph using a cycle basis [Gib69]. In this algorithm, every cycle is

represented as a set of edges. The ⊕ sign denotes the symmetric di�erence, i.e. A⊕ B is the

set of edges that are in A or in B but not in both. The setQ contains all linear combinations

of cycles. Merged with cycles of the basis, these linear combinations represent a way to

merge more than two cycles of the basis.

At each iteration of Algorithm 5.2, new simple cycles are in the set R ∪ {B}. To avoid

waiting for the enumeration of all cycles, an operation performing redundancy check is

added on line 18. For each new cycle, if the cycle contains the meta-edge to analyze, the

Algorithm 5.2 Enumeration of combinations of meta-edges

1 procedure Enumerate-Combinations(Dual M∗, v ∈ VM∗)
2 {B1, . . . ,Bn} ← Paton-Algorithm(M∗)

3 Q ← {B1}, R ← �, R∗ ← �
4

5 for B ∈ {B2, . . . ,Bn} do

6 for T ∈ Q do

7 if T ∩ B , � then

8 R ← R ∪ {T ⊕ B}
9 else

10 R∗ ← R∗ ∪ {T ⊕ B}
11 end if

12 end for

13 for U ,V ∈ R do // Remove non-simple cycles from R
14 if U ⊂ V then

15 R ← R \ {V }, R∗ ← R∗ ∪ {V }
16 end if

17 end for

18 for C ∈ R ∪ {B} do // New valid cycles are in R ∪ {B}
19 if v ∈ C and Replace-MetaEdge(v,C) then
20 remove v and its incident edges from M∗

21 break

22 end if

23 end for

24 Q ← Q ∪ R ∪ R∗ ∪ {B}
25 R ← �, R∗ ← �
26 end for

27 return S
28 end procedure

76

5.4. From Metagraph To Decomposition

check can be performed. If a cycle makes the meta-edge redundant, the algorithm can be

exited earlier and the meta-edge is removed.

5.4.3.3. Use of Cycle Enumeration in the Procedure

Each cycle can be written as a �nite sequence (m1, . . . ,mn) of meta-edges such that

m1 =mn is the meta-edge to be analyzed. This cycle contains a candidate combination to

check ifm1 is redundant. In other words, it is now possible to test whether the combination

of meta-edges (m2, . . . ,mn−1) can replacem1 in terms of consistency preservation.

5.4.4. Detection of Redundant Rules

Given a meta-edge to analyze and an alternative combination of meta-edges, the last step

of the decomposition procedure is to determine if the meta-edge can be replaced by the

combination without altering consistency. This is the core of the decomposition procedure,

i.e. the algorithm by which decomposition is performed or not.

As stated during the construction of the metagraph in Section 5.3.4.1, this decision can

be made by processing QVT-R domain patterns as equations represented by formulae of

�rst-order logic. Programmatically, this requires the use of an automated theorem prover.
The fact that a meta-edge is redundant, i.e. that it can be removed from the metagraph,

depends on the output of the prover embedded in the decomposition procedure.

5.4.4.1. Combinations as Horn Clauses

Let (m1, . . . ,mn) be a candidate combination of meta-edges to replace a meta-edge m.

The set of consistency rules associated with a meta-edgem is denoted c(m). Form to be

redundant, instances of metamodel elements ful�lling the combination (c(m1), . . . , c(mn))

must also ful�ll the set c(m) of consistency rules. In other words, if an instance ful�lls the

combination, it necessarily ful�lls the meta-edgem. Hence,m is redundant.

This implication can be written as a �rst-order formula, or more precisely as a Horn

clause. In terms of logic, the implication must be valid in order to remove m without

altering the consistency speci�cation.

(c(m1) ∧ c(m2) ∧ · · · ∧ c(mn)) =⇒ c(m)

In the Horn clause above, consistency rules on the left-hand side, i.e. those of the

combination, are called facts. Consistency rules on the right-hand side, i.e. those of the

meta-edge to analyze, form the goal. Intuitively, this implication represents the deduction

of c(m) from c(m1), . . . , c(mn). Proving that such a formula is valid is however di�cult.

This means that the formula has to evaluate to true, whatever the values of metamodel

elements and QVT-R variables in consistency rules.

A common workaround uses the following property: proving that a Horn clause H is

valid is actually equivalent to proving that its negation ¬H is unsatis�able. Conversely,

¬H being satis�able means that H is not valid. That is, the goal cannot always be deduced

from the facts. Regarding consistency preservation, this means that there are instances

77

5. Decomposition Procedure

ful�lling the combination (c(m1), . . . , c(mn)) that do not ful�ll c(m). Consequently, the

combination is not su�cient to replace m, which cannot be removed from the metagraph.

Using the negation of the Horn clause for the resolution is called refutation. It amounts

to a proof by contradiction. This is common technique in theorem provers, thus referred

to as refutational. The contradiction comes from the structure of the resulting formula.

¬H ≡ ¬ [(c(m1) ∧ c(m2) ∧ · · · ∧ c(mn)) =⇒ c(m)]

≡ ¬ [¬ (c(m1) ∧ c(m2) ∧ · · · ∧ c(mn)) ∨ c(m)]

≡ c(m1) ∧ c(m2) ∧ · · · ∧ c(mn) ∧ ¬c(m) (5.1)

The formula above is satis�able if both facts and the negation of the goal are satis�able,

hence the proof by contradiction. In terms of automated theorem proving, each operand

in the logical conjunction is called an assertion.

In the decomposition procedure, each set of consistency rules from the meta-edge to

analyze and meta-edges in the combination is translated into a conjunction of �rst-order

formulae (see Chapter 6 for details on translation). This conjunction models a system of

equations, as depicted in Section 5.3.4.2. Then, according to Formula 5.1, each formula

representing a set of rules is added to the stack of assertions of the prover, except the one

of the meta-edge to analyze which is �rst negated and then added to the stack.

There is an important point in the implementation of Horn clauses for the decom-

position procedure. Horn clauses are generally described without quanti�ers. That is,

translated formulae in consistency rules can be �rst-order formulae but there is no explicit

quanti�cation of all metamodel elements and QVT-R variables in the clause.

In fact, the quanti�cation is implicit and can be de�ned as follows. Unless explicitely

quanti�ed, all variables are universally quanti�ed (∀). Translation of consistency rules

generate two types from (�rst-order) variables: metamodel elements and QVT-R variables.

Metamodel elements being shared among meta-edges, they appear both in facts and the

goal. However, QVT-R variables local to the analyzed meta-edge �rst (and only) appear in

the goal.

Universally quanti�ed QVT-R variables in the goal have the following meaning. For

the whole Horn clause to be valid, all QVT-R values must match the values of metamodel

elements. Clearly, this is not the way pattern matching operates in QVT-R. As stated

in Section 5.3.4.2, consistency of the rule depends upon the existence of a solution, i.e.

an assignment of QVT-R variables so that all patterns are ful�lled. Consequently, it is

necessary to add an explicit existential quanti�er (∃) for QVT-R variables in the goal.

Example 5.4.1 Let e1, e2 and e3 be attributes of metaclasses from three metamodels. We
assume that consistency is preserved if the three attributes have the same value in an instance.
Consequently, there are three consistency rules: e1 = e2, e2 = e3 and e1 = e3.

Suppose that we want to show that e1 = e3 is redundant through the combination of e2 = e3
and e1 = e3. Here are three proposals for Horn clauses:

(1) Without QVT-R variable: (e1 = e2) ∧ (e2 = e3) =⇒ (e1 = e3)

78

5.4. From Metagraph To Decomposition

(2) With a QVT-R variable v : (e1 = e2) ∧ (e2 = e3) =⇒ ((e1 = v) ∧ (e3 = v))

(3) With v quanti�ed: (e1 = e2) ∧ (e2 = e3) =⇒ (∃ v : (e1 = v) ∧ (e3 = v))

Clause (1) is valid because equality is a transitive relation. Using QVT-R, metamodel
elements are bound to QVT-R variables so e1 = e3 is expressed (and translated) as (e1 =
v) ∧ (e3 = v). This leads to Clause (2) which is no more valid. For example, the clause
evaluates to false with the interpretation {e1 = e2 = e3 = 0,v = −1}. As a solution,
Clause (3) encodes the fact that one assignment of QVT-R variables is enough. Therefore,
free variables in the goal are existentially quanti�ed and Clause (3) is valid.

In conjunction with the use of quanti�ers, another solution to the problem of free QVT-R

variables consists in exploiting the transitivity of relations to remove QVT-R variables.

For example, computing the transitive closure in the Clause (2) of Example 5.4.1 can lead

to Clause (1). The major drawback is that not all OCL operations are transitive. Therefore,

not all QVT-R variables can be processed this way, unlike the use of a quanti�er.

5.4.4.2. Additional Conditions

In addition to property template items, consistency can be speci�ed with QVT-R using

conditions, i.e. preconditions (where clauses), invariants (when clauses) and local invariants

(clauses in domain patterns). These constructs can be translated as well. Given the

restriction of Section 5.3.4.3, we assume that conditions are only made up of variables.

First, invariants and local invariants are conditions that must be ful�lled by metamodel

elements at any time, just as property template items. Therefore, they can be embedded

in Horn clauses along with consistency rules. The approach to support invariants is as

follows. If a consistency rule uses a QVT-R variable that is also part of an invariant, then

the invariant must be added as a conjunction next to the rule. If the rule is a fact (resp. a

goal) of the Horn clause, the invariant is added as a fact (resp. a goal) of the clause.

Intuitively, invariants model additional constraints on QVT-R variables. If a QVT-R

variable appears in the Horn clause, all related constraints must also appear in the clause.

Then, preconditions must be processed di�erently. During the execution of a QVT-R

transformation, a precondition that is not fu�lled prevents the associated QVT-R relation

from being executed. In this work, preconditions are restricted and only consist of QVT-R

variables. Consequently, either preconditions are satis�able, in which case rules and

invariants of the same QVT-R relation can be processed or they are unsatis�able. If they

are unsatis�able, the QVT-R relation must not be processed, i.e. associated rules and

invariants must not appear in the metagraph.

Therefore, for each QVT-R relation with a when clause, its precondition can be translated

during the construction of the metagraph and veri�ed with the automated theorem prover.

If the precondition is satis�able, the relation is processed. Otherwise, the relation is

ignored.

Regarding the existential quanti�cation of QVT-R variables, additional conditions behave

in the same way as the usual property template items. All QVT-R variables that �rst appear

in the right-hand side of the Horn clause must be existentially quanti�ed.

79

5. Decomposition Procedure

5.4.4.3. Interaction with the Automated Theorem Prover

Given a set of assertions representing consistency rules, the automated theorem prover

can provide three answers: SAT, UNSAT or UNKNOWN.

• SAT means that the prover found an assignment in Formula 5.1 such that the formula

is satis�able. This indicates that the meta-edgem cannot be entirely deduced from

the alternative combination of meta-edges. As a result, m is not redundant and

cannot be removed from the graph.

• UNSAT means that Formula 5.1 is unsatis�able, i.e. there is a proof by contradiction

that the meta-edgem can be deduced from the combination. This makesm redundant.

The meta-edge and can be removed from the metagraph.

• UNKNOWN means that the prover was unable to �nd an assignment to Formula 5.1 as

well as to prove that it is unsatis�able. There are two main reasons for this: either

the formula lies in a non-decidable fragment of �rst-order logic or the prover had

not enough time to perform the veri�cation. In both cases, conservativeness requires

not to remove the meta-edge m from the metagraph because it is not absolutely

certain that it could have been redundant.

If the automated theorem prover answers SAT, the analyzed meta-edge is removed

from the metagraph. The decomposition procedure stops when each meta-edge has been

tested once. Note that if the connected component becomes a tree after a few removals of

meta-edges, then the last tests of remaining meta-edges are trivial. As there are no more

cycles in the dual of the connected component, the automated theorem prover is not used.

The result of the decomposition procedure is a set of connected components of the

metagraph, each connected component being also associated with a set of removed meta-

edges. This structure (made of remaining edges on one hand and of removed edges on the

other hand) corresponds to a decomposition. The use of the metagraph as described in

previous subsections is �nally illustrated by means of an example.

Example 5.4.2 Using the dual of the metagraph of Figure 5.9, this example shows the trans-
lation of meta-edges to generate a Horn clause. Figure 5.12 shows a cycle where the meta-edge
to analyze is the meta-edge 3. The candidate combination to replace it is (1, 2).

In the resulting Horn clause, meta-edges 1 and 2 are the facts whereas meta-edge 3 is the
goal. Property template items associated with meta-edges lead to the following formula:

[(Person::firstname = f1) ∧ (Person::lastname = l1) ∧ (Resident::name = f1+’ ’+l1)]

∧ [(Person::firstname = f2) ∧ (Person::lastname = l2) ∧ (Employee::name = f2+’ ’+l2)]

=⇒ (∃ n : (Resident::name = n) ∧ (Employee::name = n))

QVT-R variables (fstn, lstn) have been renamed to avoid con�icts. This is necessary
because they are no longer isolated as they were before in two distinct QVT-R relations.

The formula above is valid. Therefore, the meta-edge 3 is redundant and can be removed
from the dual. The resulting graph is made up of two vertices and one edge. As a result, it is
a tree so the decomposition for this connected component is optimal.

80

5.4. From Metagraph To Decomposition

Person::fi
rstname, Person::la

stname

Re
si
de
nt
::
na
me

Employee::name


Person::firstname=fstn

Person::lastname=lstn

Resident::name=fstn + ’ ’+ lstn


Person::firstname=fstn

Person::lastname=lstn

Employee::name=fstn + ’ ’+ lstn

{
Resident::name=n

Employee::name=n

1

2

3

GOAL

FACT

FACT

Figure 5.12.: Candidate combination (1, 2) in a dual

81

6. Constraint Translation

An important part of this thesis lies in the use of an automated theorem prover to identify

sources of redundancy in consistency speci�cations. The transition from consistency

rules to logic formulae, called constraint translation, represents a paradigm change whose

implementation is presented here.

The �rst section explains the reasons for the choice of automated theorem proving over

other methods of symbolic computation to reason about OCL expressions and QVT-R

constructs in the context of the decomposition procedure. It also mentions the limitations

of such a choice. The second section describes the basic correspondence between types in

OCL and types in Z3, the chosen automated theorem prover. The third section presents

a way to implement some OCL collections, i.e. data structures, in Z3. Finally, the fourth

section focuses on the translation of OCL operations.

6.1. Symbolic Computation for OCL and QVT-R

6.1.1. Automation of the Decomposition Procedure

The need for a tool for symbolic computation to implement decomposition methods has

been described in Section 5.3.4.1. There exist many approaches to perform symbolic

computation with the aim of analyzing programs, e.g. in the context of formal methods
for the speci�cation and the veri�cation of software systems.

An important factor for the classi�cation of tools for symbolic computation is automation.

Depending on the desired level of automation of the decomposition procedure, some tools

are more suitable than others.

• Automated decomposition procedure. The procedure is called automated if the opti-

mization of consistency speci�cations can be performed without the intervention of

humans. That is, users do not make any decision on how to perform the decomposi-

tion. In this case, tools for symbolic computation are automated too.

• Semi-automated decomposition procedure. The procedure is called semi-automated
if it interacts with the user during the decomposition. Most often, the user makes

decisions that the procedure cannot make alone, e.g. checks for which there is no

algorithm. Interactive is sometimes used as a synonym for semi-automated.

These approaches have both advantages and drawbacks. This is often a compromise

between automation and capability. The less automated a procedure is, the more likely it

is to involve a user and thus solve di�cult cases. The approach adopted in this thesis is to

83

6. Constraint Translation

use an automated tool, so that the decomposition procedure is also automated. The main

developments and consequences of a semi-automated decomposition procedure compared

to the one of this thesis are discussed in Section 9.2.

6.1.2. Choosing an Approach for Constraint Translation

The selection of a tool for symbolic computation now has to be made among automated

tools. Approaches taken into account were automated theorem proving [Lov16], model
�nding [TJ07], answer set programming [Lif08] and constraint logic programming [JL87].

Due to the nature of OCL expressions, there are some requirements that the chosen tool

should meet. In particular, deciding factors for the decomposition procedure are:

• The support of primitive datatypes, operations and data structures of OCL. For

example, some tools in formal methods are said to be high-level, meaning that they

have an high level of abstraction and that their manipulation by end-users is easier;

• The complexity of the translation. This can be characterized by the e�ort required

to map OCL and QVT-R to the tool and to give an interpretation to its results.

• The ability to check the validity of formulae, i.e. not only the production of refuta-

tions. This is required to show that a consistency relation is redundant. In such a

case, the property must hold for all instances of the consistency relation, hence the

need of a prover.

The following subsections provide an overview of the position of the above-mentioned

approaches with respect to these factors.

6.1.2.1. OCL and Automated Theorem Proving

Theorem provers are tools that take well-formed (logical) formulae as inputs and try to

determine if formulae are satis�able. There are two categories of automated theorem

provers. First, general-purpose theorem provers (GPTP) take �rst-order formulae (usually, a

set of axioms and a conjecture) and search for a proof. They are low-level tools regarding

the needs of the decomposition procedure as they do not provide a native support for

arithmetic, data structures, etc.

Second, theory-speci�c theorem provers (TSTP) take �rst-order formulae with respect to

some theory. For this reason, they are also known as satis�ability modulo theories (SMT)

solvers. The fact that binary variables can be replaced with predicates of the theory makes

this approach interesting for the decomposition procedure. For example, some theories are

able to give results on string manipulation or arithmetic. This provides an easier mapping

to OCL. A drawback of SMT provers is that it is hard to de�ne extra theories. This means

that the scope of the decomposition procedure would then be greatly limited to what the

SMT natively supports.

84

6.1. Symbolic Computation for OCL and QVT-R

6.1.2.2. OCL and Model Finding

Model �nding is a frequent approach in software engineering. For example, model �nders

are used in model repair and model transformation. They are able to interpret Ecore and

UML metamodels as well as transformation languages such as QVT-R or ATL. They behave

more like “refuters” than “provers”, in the sense that they search for counterexamples

rather than searching for proofs of validity. This makes model �nders incompatible with

the decomposition procedure.

6.1.2.3. OCL and Answer Set Programming

Being a subset of logic programming, answer set programming (ASP) works with facts

and deductions. The user declares facts and waits for answer sets, i.e. model solutions.

In the context of the decomposition procedure, the consistency rules of an alternative

combination of consistency relations are facts and the examined consistency rule can be

regarded as redundant if it can be deduced from facts. Just like GPTP and model �nders,

ASP does not provide a built-in support for primitive data types of OCL. This implies that

all axioms of arithmetic, string manipulation, operations, etc. should be declared as facts,

which is limiting for the decomposition procedure.

6.1.2.4. OCL and Constraint Logic Programming

Finally, constraint logic programming (CLP) is another subset of logic programming. It can

be regarded as a merge of constraint satisfaction – the �eld of application of constraint

networks – and logic programming. Since facts in CLP can be organized as constraints,

this represents an interesting gain in expressiveness for the decomposition procedure.

Moreover, it is possible to extend the set of supported constraints. However, some aspects

of constraint solvers are disadvantages for the procedure. All checks are made on a �nite

set of value and solvers strongly recommend to de�ne an initial domain in which the

expected values lie. Such a domain cannot be easily inferred from OCL constraints.

In the light of the above commments and the important deciding factors, an approach

using SMT solvers for the decomposition procedure was chosen. It provides a rather

natural correspondence with primitive datatypes in OCL, a high-level formalism to encode

rules and it is able to prove the unsatis�ability of certain formulae.

Note that there is no perfect solution. For example, CLP solvers would be better suited

for consistency speci�cations representing discrete optimization problems (which should

rarely happen in practice). As a result, an ideal choice would combine several approaches,

including interactive approaches.

The SMT solver used in the implementation of the decomposition procedure is Z3
1
, a

theorem prover whose input format is de�ned by the SMT-LIB standard
2
.

1https://z3prover.github.io
2http://smtlib.cs.uiowa.edu/

85

6. Constraint Translation

6.1.3. Theorem Proving for Decomposition

Regardless of the tool chosen, there are theoretical and practical limitations to OCL such

that not all OCL expressions can be used to decide whether a consistency relation is

redundant. Theoretically �rst, it was shown by Beckert et al. that OCL can be translated

into �rst-order predicate logic [BKS02]. First-order logic is undecidable, i.e. there is no

procedure that veri�es if a �rst-order formula is valid. Moreover, OCL formulae being

essentially full �rst-order formulae [BCD05], they do not form a decidable fragment of the

logic. As a result, OCL is undecidable in general.

Practically then, it is easy to �nd an OCL constraint whose translation into a �rst-order

formula cannot be proved valid using Z3. For example, constraints making use of data

structures are often translated into formulae with quanti�ers. In current SMT solvers, the

support of formulae with quanti�ers is limited. Section 6.4.8 gives some examples of OCL

operations that cannot be easily implemented or decided by Z3.

On the plus side, however, theories in Z3 often ensure that some subsets of �rst-order

logic are decidable. After the translation, many OCL constraints result in formulae that

are part of these subsets. For example, reasoning about strings in Z3 leads to good results

in practice. Consequently, reasoning on QVT-R transformations through SMT solvers is a

case-by-case matter. Theoretical limitations are not a de�nitive obstacle to their use.

6.2. Primitive Datatypes

Table 6.1 shows how primitive datatypes can be translated from OCL to Z3. It also shows

how datatypes in Ecore metamodels are mapped to datatypes in OCL constraints. In Z3,

types are called sorts. Every expression in Z3 has a sort. Moreover, the sort of an operation

can be determined by the sort of its operands.

OCL has an UnlimitedNatural datatype to represent multiplicities. The di�erence be-

tween UnlimitedNatural and Integer is that the former can have an in�nite value whereas

the latter cannot. This subtelty was not translated in the context of the decomposition

procedure. This could be done with a composite sort, e.g. a couple (IntSort, BoolSort)

where the value is∞ if the boolean is true, or equal to the integer otherwise. Introducing

such a sort can however have consequences for the decidability of formulae in Z3.

OCL datatype Ecore datatype Z3 datatype
Integer EInt IntSort

Real EDouble RealSort

Boolean EBoolean BoolSort

String Estring StringSort

UnlimitedNatural EInt IntSort (without in�nity)

Table 6.1.: Correspondence between primitive datatypes in OCL, Ecore and Z3

86

6.3. Data Structures

6.3. Data Structures

6.3.1. Collection Literals

Primitive data structures in OCL are called collections. The term collection literals refers to

OCL expressions that represent data structures with constant and pre-de�ned values, e.g.

Sequence{1, 4, 9} or Set{2, 5}. There are four types of collections depending on two

features. First, whether elements are ordered in the collection (Ordered). Second, whether

duplicate elements are allowed in the collection (Unique).
As a result, OCL provides Sequence(T) (Ordered, not Unique), Set(T) (not Ordered,

Unique), Bag(T) (not Ordered, not Unique) and OrderedSet(T) (Ordered, Unique). Among

those four collections, a support for collection literals of Sequence(T) and Set(T) was

provided in the implementation of the decomposition procedure.

It is noteworthy that collection literals rarely occur in consistency speci�cations. In

general, collections are groups of objects represented by role names (as a consequence of

the existence of references in metaclasses).

6.3.1.1. Sequence Literals in Z3

In SMT solving, the fundamental theory to represent several values at the same time is

the theory of arrays. The idea is to represent an array as a map whose domain is a set of

indexes and whose codomain is a set of values. For example, the sort (Array Int Real)

represents an array whose indexes are integers and values are real numbers. Everything is

function in Z3. As a consequence, arrays are purely functional data structures that are

immutable.

The theory of arrays also de�ne two functions called select (to read the value stored at

a given index) and store (to write a given value at a given index). The strategy to build a

sequence literal (e.g. Sequence{1, 4, 9}) is to recursively call store operations for each

element of the literal. For example, the literal Sequence{1, 4, 9} can be translated into

the Z3 expression of Listing 6.1 where (store arr i v) writes the value v at index i in

the array arr.

1 (declare-const arr (Array Int Int))

2 (store (store (store arr 0 1) 1 4) 2 9)

Listing 6.1: Recursive construction of an OCL sequence using a Z3 array

The problem of the array of line 2 of Listing 6.1 is that there is no indication of the

sequence length. Such a value is not available natively with Z3 because arrays are rep-

resented as maps. For each element of the domain of the array, there is a corresponding

value in the codomain. As a result, the naive length of the array is the cardinality of the

domain.

This information must be encoded during the translation. The most convenient way

to represent data structures in Z3 is to use algebraic datatypes. An algebraic datatype is a

composite type, i.e. a type built by combining Z3 primitive datatypes. To represent an OCL

87

6. Constraint Translation

sequence, we combine an Integer to store the length of the sequence and an Array Int T

to store values of the sequence, where T is the type of objects in the sequence.

The datatype sort is composed of a unique name and a constructor. The fact that

collections in OCL are parametric, i.e. that a Collection(T) can only contain elements of

type T, is simulated by adding the parameter in the name of the datatype sort. For example,

a sequence of integers in OCL is translated as a Sequence<Integer> sort.

Then, the constructor consists of two things. First, a constructor name, i.e. the name

of the function invoked to use the new datatype sort. This name is mkSequence for all

datatype sorts representing OCL sequences. Then, �eld names, i.e. names of functions to

get the content of �elds. For a sequence, these �elds are length and array.

1 (declare-const arr (Array Int Int))

2 (declare-datatypes () ((Sequence<Integer> (mkSequence

3 (length Int)

4 (array (Array Int Int))))))

5

6 (mkSequence

7 3 ; length (computed during the translation)

8 (store (store (store arr 0 1) 1 4) 2 9) ; array

9)

Listing 6.2: Recursive construction of an OCL sequence using a Z3 algebraic datatype

6.3.1.2. Set Literals in Z3

The support of sets in Z3 is also based on arrays. An OCL set that contains objects of type

T is represented as a Z3 array that maps values of type T to booleans. If an element e is in

the set, then the boolean at the index e is true.

As a result, the representation of set literals is very similar to that of sequence literals.

The unique name for the datatype sort is now Set<T> and the constructor name is mkSet.

Fields stay the same: length contains the size of the set and array the values in the set.

The Z3 reference also explains how main set operations (intersection, union, di�erence,

etc.) can be implemented when sets are represented as arrays [MB11].

6.3.2. Collections from Role Names

As stated in Section 6.3.1, collection literals are, however, rarely used in consistency

speci�cations. The reason for this is that the role of consistency speci�cations is to

relate metamodel elements. Literals, either primitive literals or collection literals, are not

necessary to bind elements from di�erent metamodels.

Another use of collections is implicit. In domain patterns, the left part of a property

template item can represent an attribute or a role name, i.e. an alias for objects at the

end of the reference owned by the metaclass of the pattern. If the upper bound of the

multiplicity of the reference is bigger than one, e.g. 1..5 or 0..*, then the role name may

88

6.4. Operations

represent a collection of objects. The returned collection type depends on whether the

end is ordered and/or unique (see Section 6.3.1).

When a static analysis is performed on property template items, the left part is �rst

analyzed. If it is a role name, it is also embedded as a EReference in the Ecore metamodel.

As a result, the following information is associated with the role name: the type (eType)

of objects behind the role name, the lower and upper bounds of the multiplicity and

boolean properties indicating whether the reference is ordered and unique. As long as the

QVT-R relation is not executed, there is no way to list objects of the role name. Thus, the

translation of collection literals presented in Section 6.3.1 is useless.

Nevertheless, it is still possible to reason about role names by means of uninterpreted
functions (UF) in Z3. Role name r of an metaclass c can be represented as a function of c , e.g.

r (c). This function is uninterpreted in the sense that r is only a symbol and has no meaning.

However, it is sometimes su�cient. For example, let c1 and c2 be two QVT-R variables of the

same metaclass. This metaclass has a reference r , represented in Z3 as an uninterpreted

function. If a consistency rule ensures that c1 = c2, then it follows that r (c1) = r (c2).
There are e�cient decision procedures for UF in current SMT solvers. Complex formulae

are often simpli�ed in the �rst place with UF instead of symbols. For example, string

concatenation in OCL can be replaced with an UF concat. The manipulation of strings

is therefore replaced by that of symbols. The reason for this is that if the approximated

formula is unsatis�able, the original formula is unsatis�able too [KS].

6.4. Operations

EssentialOCL – the subset of OCL that QVT-R embeds – provides many primitive opera-

tions, either for primitives datatypes such as Integer, String, etc. or for collections such

as Set(T), Sequence(T), etc.

This section presents the translation from OCL to Z3 of operations on primitive datatypes

or data structures. Not all OCL operations have been implemented in this thesis. There

are two reasons for this. First, some operations are secondary to the implementation of a

prototype of the decomposition procedure. Second, not all operation can be translated by

means of Z3. In the latter case, the last section explains the main reasons for this.

In OCL, an operation has a source and zero or more arguments. Even among primitive

operations, the source is important to distinguish operations that have the same name.

For example, the + operation denotes an addition when the source is an Integer but

concatenation when the source is a String.

6.4.1. Arithmetic Operations

See Appendix A.1 for the translation of arithmetic operations.

Translated arithmetic operations are the addition (+), the subtraction (-), the multiplica-

tion (*), the euclidean division (div), the division (/), the modulo (mod) and the absolute

value (abs). The support of arithmetic in Z3 is based on integers (IntSort) and reals (Real-

Sort). Contrary to OCL, reals are not automatically converted into integers, there is a Z3

function for this.

89

6. Constraint Translation

6.4.2. Boolean Operations

See Appendix A.2 for the translation of boolean operations.

Translated boolean operations are the negation (not), the conjunction (and), the disjunc-

tion (or), the exclusive disjunction (xor) and the implication (implies). The support of

boolean operations in Z3 is based on BoolSort, the boolean type of Z3. Contrary to OCL,

the invalid value does not exist in Z3. Therefore, invalid values are not translated in the

truth tables of Z3 boolean functions.

6.4.3. Conversion Operations

See Appendix A.3 for the translation of conversion operations.

Translated conversion operations are the �oor function (floor) and the round function

(round). The conversion of real to integers in Z3 is not automatic. Z3 provides a function

to_int, de�ned by the SMT-LIB as a function that maps a real number to its integer part.

This function is used in the de�nition of floor and round.

6.4.4. Equality Operators

See Appendix A.4 for the translation of equality operators.

Translated equality operators are the equal-to operator (=) and the not-equal-to operator

(<>). In Z3, the equality operator (=) also replaces the double implication operator. It is

part of the core theory of Z3 but its exact behaviour is theory-speci�c and depends on the

argument types. For example, equality between two arrays in Z3 is encoded as an axiom

called extensionality.

6.4.5. Order Relations and Extrema

See Appendix A.5 for the translation of order relations and extremum functions.

Translated order relations and extremum functions are <, <=, >, >=, the minimum function

(min) and the maximum function (max). The lack of built-in functions for min and max is

solved by the Z3 if-then-else function.

6.4.6. Collections Operations

See Appendix A.6 for the translation of operations related to collections.

Translated operations related to collections are the is-empty function (isEmpty), the

is-not-empty function (notEmpty), the object inclusion (includes) and the object exclusion

(excludes). Speci�c to sequences are there the get-�rst function (first), the get-last

function (last) and the get-nth function (at). Speci�c to sets are there the union, the

intersection, the di�erence (excludesAll) and the symmetric di�erence.

No veri�cation is performed on the length of sequences to retrieve elements.

90

6.4. Operations

6.4.7. String Operations

See Appendix A.7 for the translation of operations related to strings.

Translated operations related to strings are the concatenation (concat or +), the substring

extraction (substring), the length (size) and the conversion to integer (toInteger).

6.4.8. Untranslatable Operations

Operations of the OCL reference are said to be untranslatable if state-of-the-art SMT

solvers (such as Z3) do not provide a way to reason about them. There are multiple reasons

behind the existence of untranslatable operations. We survey an example of such an

operation and provide ideas to overcome this limitation.

The OCL reference includes two primitive operations for the String data type that

convert characters of a string to upper case (toUpper) or to lower case (toLower). Although

simple, these operations cannot be easily translated with Z3.

The reason for this is that strings are represented as sequences in Z3. In automata

theory, an automaton that takes a sequence of symbols and returns another sequence

of symbols is called a �nite-state transducer. It can be regarded as an extension of usual

automata that only returns whether a word is accepted or not. There already exist decision

procedures for �nite-state transducers [Vea+12]. They are however not integrated in Z3

yet, one reason being that Z3 reasons about sequence constraints in a di�erent way.

The best solution so far would be to use an alternative tool, built for reasoning about

string encoding and decoding. We discuss in Section 9.2.2 the integration of multiple

symbolic computation tools into the decomposition procedure.

This example illustrates that even simple operations in high-level languages may require

important changes in SMT solvers.

91

7. Evaluation

The decomposition procedure presented in this thesis resulted in a prototype. This proto-

type makes it possible to test the practical aspects of the decomposition of consistency

relations. In this chapter, we aim to evaluate the decomposition procedure as a whole.

Two aspects of this approach will be evaluated: the functional correctness of the pro-

cedure and its applicability. First, we describe the methodology of our evaluation. This

includes a strategy to address the research questions stated in Section 1.2, as well as a

description of the evaluation material, i.e. the data used to conduct the evaluation.

Then, each aspect of evaluation is covered in a section. The functional correctness is

evaluated through the analysis of the decomposition procedure. Here, we assess whether

the procedure meets some functional requirements, i.e. the generation of a tree-based

consistency speci�cation when such a speci�cation exists. The applicability is evaluated

through the use of the prototype. The aim is to �nd out if the procedure can be used

outside of this thesis and applied to consistency speci�cations in other contexts.

The last section discusses the results obtained. From the evaluation, the bene�ts and

limitations of the decomposition procedure with respect to the initial research question

are summarized. Finally, ideas for further evaluation are proposed.

7.1. Methodology

In this section, we present the methodological approach to this evaluation. We �rst recall

the research questions of this thesis and introduce a way to answer them. Then, we detail

elements that can be used in order to perform the evaluation.

7.1.1. Addressing Research Questions

Research questions raised in Section 1.2 focus on three perspectives: the de�nition of

decomposition for multi-model consistency preservation (Q1), the suitability of QVT-R

to express and decompose consistency relations (Q2) and the design of a decomposition

procedure (Q3). Addressing these three questions should make it possible to meet the

research goal of this thesis; that is, the identi�cation of decomposable relations by means of

abstract decomposition methods and their implementation using the QVT-R transformation

language (G1).

An evaluation to determine whether the goal was reached can be conducted according

to two approaches that complement one another.

• Theoretical evaluation. The evaluation uses mostly qualitative arguments. It is

performed by analyzing concepts and de�nitions used throughout this thesis;

93

7. Evaluation

• Empirical evaluation. The evaluation uses mostly quantitative arguments. It is

performed by collecting test results, interpreting them and de�ning a metric to

measure the results achieved against the expected results.

Both approaches are combined in this evaluation. First, we assess the functional cor-
rectness of our approach using tools for a theoretical evaluation. Therefore, evaluation is

performed by construction, i.e. by reasoning about the design of decomposition methods

and the decomposition procedure.

Then, we assess the applicability of our approach using tools and collected data for

an empirical evaluation. Evaluation is performed by running the implementation of the

decomposition procedure with various example scenarios. These scenarios must generally

re�ect what the procedure should be able to deal with.

7.1.2. Evaluation Material

According to the previous approaches, we gather the evaluation material from two sources.

• Description of the decomposition procedure. This includes the functioning the pro-

cedure, the algorithms used by the procedure (along with their time complexity),

formal properties required for the implementation of the procedure, the code of the

prototype and standards of languages (such as QVT-R and EssentialOCL);

• Execution of the decomposition procedure. This includes example scenarios (i.e. ex-

ample speci�cations written with QVT-R), execution results and error handling.

The description of the decomposition procedure is mainly used to gauge the functional

correctness of the procedure, whereas example scenarios and their execution are mainly

used to survey the applicability of the decomposition procedure.

7.2. Functional Correctness

The functional correctness of an algorithm is a property asserting that the input-output

behaviour of the algorithm corresponds to the speci�cation. In the context of the decom-

position procedure, the functional correctness refers to the fact that output speci�cations

represent valid decompositions of input speci�cations.

To this end, we de�ned two formal properties that the decomposition procedure must

ful�ll in Section 4.3. First, conservativeness requires for a given set of metamodels that

the set of consistent instances be the same for the input and the output speci�cations.

In other words, the decomposition procedure does not alter the speci�cation. Second,

usefulness requires the existence of a decomposition in the output algorithm, i.e. the output

speci�cation is in a way more applicable than the input speci�cation.

Satisfying both formal properties is a minimal requirement. However, the decomposition

procedure should ideally be able to return the tree (i.e. the optimal) decomposition if such

94

7.2. Functional Correctness

a decomposition exists. To evaluate the functional correctness of the decomposition

procedure, we proceed as follows. First, the ability of the procedure to return the optimal

decomposition when such a decomposition exists is evaluated. Then, we check that in all

cases, the result provided by the decomposition procedure satis�es both formal properties.

In this way, it can be checked that the procedure cannot degrade the speci�cation.

7.2.1. Finding Existing Tree-Like Specifications

A tree speci�cation is a speci�cation whose consistency relation graph is made up of

independent trees. More generally, a tree-like speci�cation is a speci�cation whose con-

sistency relation graph is made up of independent subgraphs that resemble trees. Here,

“resemble” means that the subgraph is sparse. For the reasons stated in Section 4.1.2,

tree-like speci�cations are preferred in the context of consistency preservation. Further-

more, a tree speci�cation is always regarded as optimal following the same reasons. As a

consequence, concepts related to decomposition in this thesis were de�ned in order to

foster the appearance of independent trees.

7.2.1.1. Trees and Decomposition Methods

We �rst introduced three decomposition methods in Section 4.2. Given the consistency

relation graph of a speci�cation, these methods modify the graph in two ways. Either they

remove edges from the graph or they separate a graph into independent subgraphs. We

now evaluate whether these methods produce optimal decompositions.

The �rst method separates independent subgraphs. It does not make resulting subgraphs

more sparse than the initial graph, i.e. subgraphs cannot be transformed into trees using

this method. However, it ensures that each subgraph is connected, which is a prerequisite

to obtain trees. We asserted that this method was applied once, by computing connected

components of the consistency relation graph. After the application of the method, there

cannot exist a disconnected subgraph. There are therefore no osbtacles to �nd an optimal

decomposition in the application of the �rst decomposition method.

The second method removes consistency relations that are said to be totally redundant.

For a relation to be removed, there must exist an alternative path between the two endpoints

of the relation. As a result, the subgraph in which the relation is removed always remains

connected. The gradual removal of edges in a graph under the condition that it remains

connected is a known algorithm for �nding the spanning tree of a graph [Kru56]. It is

known as the reverse-delete algorithm.

The third method is used at the same time as the second. It splits a subgraph into two

independent subgraphs according to consistency relations that are said to be partially

redundant. In this case, the consistency relation is divided into two parts. The �rst part of

the consistency relation is the one that is contained in at least one alternative combination

of relations. The second part of the consistency relation is the independent part, i.e. the

part that is not contained in any alternative combination. In terms of graphs, the two

parts lead to two independent subgraphs. The �rst independent subgraph is equal to the

original subgraph from which the �rst part of the consistency relation was removed as it

can be replaced with alternative combinations of relations. As a result, this subgraph is

95

7. Evaluation

more sparse than the original subgraph. The second independent subgraph is by de�nition

a tree since it only composed of one independent consistency relation, the second part of

the initial consistency relation.

Given a connected subgraph of consistency relations, the simultaneous application of

the second and the third methods ensures that the optimal decomposition is returned. The

reason for this is that each consistency relation of each subgraph is tested. If a relation is

redundant (either partially or totally), the removal of other relations does not a�ect its

removal because there always exists an alternative combination of relations to enforce

consistency in the same way.

7.2.1.2. Trees and the Decomposition Procedure

The previous section showed that applying decomposition methods on a consistency

speci�cation results in �nding the optimal tree decomposition. However, these methods

are only de�ned in accordance with the theoretical framework for consistency de�ned in

Section 3.1. Providing an implementation of these decomposition methods, i.e. a decom-

position procedure, introduces fundamental limitations in the generation of an optimal

decomposition. We now aim to evaluate changes that occur in the �nding of optimal

decompositions when considering the implementation of decomposition methods.

On the plus side, the implementation of the decomposition procedure resembles for the

most part the algorithm described with decomposition methods. Therefore, it is possible

to �nd invariants and common features between the (functionally optimal) theoretical

approach and its implementation. First, graph theory is used in both approaches. The

consistency relation graph of decomposition methods is transformed into a metagraph,

i.e. a hypergraph that embeds both consistency relations and consistency rules. As a

result, algorithms pointed out in Section 4.2.4.2 are still used in the implementation of

the decomposition procedure. For example, the computation of connected components

is a prerequisite for both approaches. Similarly, the search for alternative combinations

of consistency relations in the consistency relation graph is also interpreted as a search

for alternative combinations of consistency rules in the metagraph. Both are regarded

as �nding paths in graphs. For the sake of convenience and ease of implementation, the

problem of �nding a path in the metagraph is reduced to the problem of �nding a cycle in

its dual. These common features imply that the metagraph is structurally as powerful as

the consistency relation graph, in the sense that the logic behind redundancy detection

uses similar data structures and similar algorithms.

However, some properties of decomposition methods are di�cult (or even impossible

in the general case) to implement in the decomposition procedure. For the most part, this

relates to the comparison between consistent instances according to consistency relations

and alternative combinations of consistency relations. As explained in Section 5.3.4.1, the

de�nition of partially and totally redundant consistency relations involves the comparison

of (possibly in�nite) sets of instances. Because such a comparison is programmatically

impossible, we rather compare intensional de�nitions of sets of instances. These de�nitions

are written as OCL expressions, so the decomposition procedure has to perform a static

analysis of OCL expressions. We showed in Section 6.1.3 that it is impossible in general to

ensure that an OCL expression matches a certain speci�cation.

96

7.2. Functional Correctness

This represents a serious limitation to the detection of redundancy, as there exist

comparisons between consistency rules and alternative combinations of consistency rules

that cannot be performed. We also showed in Section 6.4.8 that such comparisons involve

OCL constructs that frequently occur in practice. As a result, a consistency speci�cation

can include consistency rules that the decomposition procedure is unable to remove

because of the undecidability of OCL. This also means that the decomposition procedure

does not always �nd the optimal decomposition. It is impossible to draw up an accurate

and exhaustive list of OCL constructs that prevent the decomposition procedure to perform

optimally. The reason for this is that current state-of-the-art SMT solvers (such as the one

embedded in the procedure) use many heuristics. Consequently, the line between what is

decidable and what is not is not always clear. However, some OCL constructs signi�cantly

reduce the chances of detecting redundancy in a rule. For example, OCL operations on

collections are often translated using quanti�ers (such as the includes operation that uses

an existential quanti�er to check the existence of an element). Quanti�ers in �rst-order

formulae make decisions harder, so it is usually better to stick to quanti�er-free fragments
(QFF) of �rst-order logic when possible. Also, if the consistency rule to analyze includes

many QVT-R variables, these variables become existentially quanti�ed as explained in

Section 5.4.4.1. The number of quanti�ed variables is also a criterion of complexity to �nd

out if the translated Horn clause is valid.

The other limitation in �nding optimal decompositions is of a di�erent nature. Not

all constructs of QVT-R and OCL are currently supported in the decomposition proce-

dure. Limitations make it easier to analyze and to translate consistency speci�cations. In

Chapter 6, we gave an overview of features of OCL that are supported or not in the decom-

position procedure. These limitations are an obstacle to the optimality of the procedure

in the sense that valid QVT-R consistency speci�cations with a tree decomposition may

result in errors because of unsupported constructs instead of the expected decomposition.

Altogether, decomposition methods that operate on consistency relation graphs are able

to �nd the optimal decomposition of a consistency speci�cation by construction. Moreover,

the merge of consistency relations and consistency rules leads to a data structure called the

metagraph that is structurally as powerful as consistency relation graphs. However, the

use of the metagraph in the context of an implementation of the decomposition procedure

brings two limitations. The �rst limitation is that it is impossible to detect redundancy

in general due to the undecidability of OCL and QVT-R. The second limitation is that

we introduced intentional limitations in consistency speci�cations to analyze. These

limitations make it impossible for the decomposition procedure to return the optimal

decomposition in general. The evaluation of the applicability of the procedure provides

further insights into the consequences of these limitations.

7.2.2. Unaltered Consistency Specifications

Whether a tree-like speci�cation can be returned or not, the decomposition procedure

must meet some important criteria in order to be integrated into a consistency preservation

process. These criteria were described as formal properties of the decomposition procedure.

There are two of them: conservativeness, ensuring that the decomposition procedure does

97

7. Evaluation

Equivalent

speci�cations

(conservativeness)

More applicable

speci�cations

(usefulness)

Unaltered speci�cations

Optimal speci�cations

Figure 7.1.: Classi�cation of resulting speci�cations

not alter the consistency speci�cation (i.e. consistent models are the same before and after

decomposition) and usefulness, ensuring that the resulting speci�cation is in some way

easier to apply that the input speci�cation.

The decomposition procedure being an optimization technique, these properties ensure

that even if the result is not an optimal solution (i.e. a tree of consistency relations), it is at

least a feasible solution. Figure 7.1 depicts the di�erent categories to which a speci�cation

resulting from the decomposition procedure can belong. In the context of this thesis, we

aim to provide unaltered speci�cations, i.e. consistency speci�cations that may not be

optimal but that meet at least the two formal properties identi�ed above.

7.2.2.1. Equivalence of Input and Output Specifications

We now evaluate the ful�llment of conservativeness by the implementation of the decom-

position procedure. Intuitively, the procedure is conservative if and only if each QVT-R

construct that participate in the de�nition of the consistency speci�cation is somehow

integrated into the decomposition procedure and used to detect redundancy. In our im-

plementation, this is achieved in two ways. First, according to Section 5.3.2, all input

transformations and relations are processed, so that each relation that may have been

visited during the execution of QVT-R transformations is integrated into the metagraph.

Thus, no important relation is left out.

Second, consistency rules are de�ned inside a QVT-R relation by using variables. In our

implementation, we provide a support of all QVT-R constructs in which there are variables

or metamodel elements: domain patterns, preconditions and invariants. This means that

each template expression is integrated into the metagraph. In particular, property template

items become labels of meta-edges, preconditions are checked during the construction

of the metagraph and invariants become additional conditions for QVT-R variables. We

described the exact processing of these constructs in Section 5.4.4.

The structure of the metagraph ensures that all metamodel elements bound by the same

QVT-R variable are grouped into the same meta-edge, so that the potential consistency rule

between them must be ful�lled. In this way, the computation of connected components

cannot separate them and maybe break a consistency rule. After the construction of the

98

7.3. Applicability

metagraph, all interrelated metamodel elements belong to the same meta-edge and each

OCL expression appears (translated) in the metagraph.

Afterwards, the decomposition procedure tries to delete as many consistency rules as

possible by removing their associated meta-edges. For the procedure to be conservative,

we ensured that the removal of a meta-edge is only performed if there exists an alternative

combination of meta-edges to replace it. This is the whole purpose of the translation

of expressions into �rst-order logic: validity proofs are required for the detection of

redundancy. Therefore, conservativeness relies on the correctness of the SMT solver and

the correctness of the translation. The former can be reasonably assumed, whereas the

latter was backed with tests during the development of prototype. Note that the translation

from OCL to Z3 is not exhaustive. As a result, a choice of implemented operations and

data structures was made to provide a correct and complete enough support of OCL to

develop a proof of concept of the decomposition procedure. Moreover, we deliberately left

out the unde�nedness of OCL, i.e. the fact that OCL expressions may evaluate to unde�ned,

so that OCL can be mapped to a two-valued logic. This choice will be discussed in the

applicability of our approach.

7.2.2.2. Usefulness of the Output Specification

We now evaluate the ful�llment of usefulness by the implementation of the decomposition

procedure. Intuitively, an output speci�cation is said to be useful if all its consistency

relations are derived from input consistency relations. That is, the procedure used the

input speci�cation to perform the decomposition and did not add “arti�cial” relations.

This property shows up quite easily in the implementation of the decomposition proce-

dure. First, no meta-edge is added to the metagraph after the initial phase of construction.

Consequently, there are only two actions performed on the metagraph after its construc-

tion: the computation of connected components (which leaves the number of meta-edges

unchanged) and the removal of meta-edges. At the end of the procedure, the output

speci�cation is made up of the same consistency rules as the input speci�cation (minus

those removed because of redundancy). The worst case happens where the procedure did

not �nd any meta-edge to remove. In such a case, the input and the output speci�cations

are equal. We formalized this as the trivial decomposition in Section 4.3.2, which also

meets the property of usefulness.

7.3. Applicability

The applicability of the decomposition procedure assesses whether the decomposition

procedure proposed in this thesis is likely to be applied in practice, i.e. to be used as is to

optimize networks of consistency relations.

To the best of our knowledge, there exists no similar algorithm that optimizes consistency

speci�cations represented as QVT-R transformations and could serve as a reference to

evaluate the applicability of our approach. As a result, the decomposition procedure is

executed on scenarios verifying speci�c aspects of OCL and QVT-R for which the existence

a tree decomposition has been determined in advance.

99

7. Evaluation

As a preamble, it should be noted that the applicability of the decomposition procedure

is constrained by the choice of technologies for its implementation. Results presented

in this section were obtained by running an implementation built as follows. First, the

support of the QVT-R standard is provided by QVTd
1
, an Eclipse project providing a partial

implementation of QVT-C and QVT-R that is still under development at the time of writing

of this thesis. Second, the support of Essential OCL is provided by Eclipse OCL
2
. Third,

the support of Ecore is also part of the core EMF framework
3
. Regarding tools external

to model-driven engineering, we use Z3
4

to check the satis�ability of translated Horn

clauses. Finally, we use some graph algorithms of the JGraphT library
5
.

Application is evaluated as follows. First, we describe our example scenarios, i.e. consis-

tency speci�cations that serve as inputs for the prototype of the decomposition procedure.

In particular, we describe the way these scenarios were built. Then, these consistency

speci�cations are used as inputs for the decomposition procedure. We set up a metric to

explain what example scenarios evaluate and we discuss execution results.

7.3.1. Example Scenarios

Example scenarios were developed according to QVT-R and OCL constructs, i.e. to evaluate

the encoding and the translation of speci�c aspects of consistency speci�cations. Not all

consistency speci�cations have an optimal decomposition, so that scenarios also evaluate

the detection of incompatibilities. Table 7.1 shows all 19 scenarios developed to assess the

applicability of the decomposition procedure. They are primarily composed of three or

four metamodels, primitive datatypes and operations presented in Chapter 6.

Examples that should result in a tree, i.e. optimal, decomposition after the execution of

the procedure are said to be tree-based. Some other examples were developed with explicit

contradictory relations to check the conservativeness of the procedure. Scenarios are only

made up of supported QVT-R and OCL constructs. For scenarios including unsupported

constructs, the prototype would raise an exception to avoid the construction of incorrect

metagraphs. The distinction between unsupported and non-decomposable consistency

speci�cations is further explained in Section 7.4.2.1.

7.3.2. Execution Results

7.3.2.1. Expected Decompositions

The execution of a consistency speci�cation by the prototype of the decomposition proce-

dure provides a list of independent consistency subgraphs that correspond to connected

components in the metagraph as well as a list of removed consistency rules for each

connected component. Expected results are as follows.

1https://wiki.eclipse.org/QVTd
2https://wiki.eclipse.org/OCL
3https://wiki.eclipse.org/Ecore
4https://z3prover.github.io
5https://jgrapht.org

100

7.3. Applicability

Description of the scenario Tree-based
1 Three equal String attributes of three metamodels. 3

2 Six equal String attributes of three metamodels. 3

3 Concatenation of two String attributes. 3

4 Double concatenation of four String attributes. 3

5 Substring in a String attribute. 3

6 Substring in a String attribute with precondition. 3

7 Precondition with all primitive datatypes. 3

8 Absolute value of an Integer attribute with precondition. 3

9 Transitive equality for three Integer attributes. 3

10 Inequalities for three Integer attributes. 3

11 Contradictory equalities for three Integer attributes. 7

12 Contradictory inequalities for three Integer attributes. 7

13 Constant property template items. 3

14 Linear equations with three Integer attributes. 3

15 Contradictory linear equations for three Integer attributes. 7

16 Emptiness of various OCL sequence and set literals. 7

17 Equal String attributes for four metamodels. 3

18 Transitive inclusions in sequences. 3

19 Comparison of role names in three metamodels. 3

Table 7.1.: Example scenarios considered in the evaluation of applicability

101

7. Evaluation

• For tree-based speci�cations. The expected result is the optimal decomposition, i.e. the

procedure must remove as many meta-edges as possible and return a decomposition

only composed of trees.

• For non-tree-based speci�cations. These speci�cations include contradictory relations.

The expected result is a decomposition in which contradictory consistency relations

have not been removed.

The interpretation of execution results depends on the number of scenarios leading to

the expecting result. For scenarios that do not lead to the expected result, we also check if

the decomposition size (see Section 4.3.2) was improved and the reasons of failure.

7.3.2.2. Results Obtained

On 19 example scenarios of Table 7.1, there are 16 scenarios providing the expected result

and 3 inaccurate scenarios results. In detail, problematic scenarios are:

• Scenario 8. This scenario should have removed one meta-edge because of a transitive

relation involving absolute values. The problem is the precondition of one of the

relation. To test the implementation of operations related to set literals, the precon-

dition checks the inclusion of an element in the intersection of two set literals. The

SMT solver returned UNKNOWN so the relation was not considered.

• Scenario 18. This scenario checks that for three sets A, B and C , A ⊂ B and B ⊂ C
imply A ⊂ C . The SMT solver returned UNKNOWN instead of UNSAT so one meta-edge

was not removed. The translation of inclusion involves quanti�ers.

• Scenario 19. This scenario checks the same principle as scenario 18 with local

invariants. Role names are used to compare sets of metaclasses with equivalent

identi�ers. The translated Horn clause includes many quanti�ers and uninterpreted

functions. The SMT solver returned UNKNOWN instead of UNSAT.

As a result, basic operations on primitive datatypes are easily processed with the de-

composition procedure. This includes non-trivial constraints that involve several integer

equations or string operations. However, more complex operations and structures in-

volving many quanti�ers often prevent the SMT solver to prove the unsatis�ability of

translated Horn clauses. In the context of consistency speci�cations, this mainly relates

to role names and collections. This is not a surprising result in the sense that quanti�ers

severely restrict the decidability of formulae. Moreover, no strategies or tactics were

used to �nd adapted heuristics for quanti�ers [DP13]. At this point, the decomposition

procedure is therefore better able to manage speci�cations whose consistency rules are

made up of attributes and primitive datatypes.

102

7.4. Discussion and Further Evaluation

7.3.3. Threats to Validity

The validity of results presented in the evaluation of the applicability of the decomposition

procedure may be subject to changes. Four threats to validity are presented below.

• Representative sample of speci�cations. Example scenarios presented in this section

are rather arti�cial in the sense that they were developed to evaluate speci�c aspects

of the procedure. Consistency speci�cations developed here may not be representa-

tive of speci�cations written by transformation developers.

• Size of speci�cations. Example scenarios presented in this section were all made up

of a small number of metamodels and consistency relations. The response time

of the decomposition procedure depending on the size of the consistency relation

graph was not tested. Paton’s algorithm has a time complexity O(V 3) where V is

the number of vertices in the dual graph. In practice, there should be no di�erence

for speci�cations with a few hundred consistency rules.

• Evolution of standards. The prototype of the procedure relies on languages such

as QVT-R whose implementation is still under development. The clari�cation of

the QVT standard as well as the evolution of QVTd may a�ect the results of the

decomposition procedure in the future.

• Evolution of solvers. Similarly, the procedure relies on the Z3 SMT solver. Satis�ability

modulo theories is an active �eld of research. Future updates of the solver and of

SMT-LIB may change the input format and a�ect the translation of OCL expressions.

7.4. Discussion and Further Evaluation

In the two previous sections, we discussed the functional correctness and the applicability

of the decomposition procedure. These approaches allow for a more general discussion of

bene�ts and limitations of using the decomposition procedure.

7.4.1. Benefits

In light of the evaluation conducted in the two previous sections, there are several factors

according to which the decomposition procedure is of bene�t. First, we discuss the role of

the procedure in the detection of incompatibilities. Then, the ease of integration of the

decomposition procedure is highlighted.

7.4.1.1. Detection of Incompatibilities

The purpose of the decomposition procedure is to help to improve the applicability of

consistency speci�cations. Applicability is de�ned as the usability of consistency speci�-

cations to preserve multi-model consistency. In practice, the applicability in networks of

consistency relations is threatened by interoperability issues. In Section 4.1.2, we presented

four challenges related to interoperability issues. The result showed that compatibility

103

7. Evaluation

was the most important challenge to solve. In other words, applicability of consistency

speci�cations is mostly driven by the compatibility of their consistency relations.

The decomposition procedure is an optimization technique that aims to produce a tree-

based speci�cation by removing as many consistency relations as possible without altering

the speci�cation. Ideally, all consistency relation graphs are trees or sets of trees, because

it inherently ensures compatibility. Ensuring that all consistency relations are compatible

with each other amounts to showing the following property. There should exists at least

one consistent model after the execution of all consistency relations. Suppose that there

exist two combinations of relations C1 and C2 between two metamodels. If there is no

model that is consistent according to both C1 and C2, then there is an incompatibility and

there are contradictory consistency relations among C1 and C2. Since there are never two

di�erent paths between two vertices of a tree, tree-based speci�cations cannot include

contradictory consistency relations.

Because of conservativeness, the procedure does not alter its input speci�cation. This

means that the procedure does not directly improve compatibility among relations of

the speci�cation. However, the resulting decomposition can indirectly reduce the risk of

incompatibilities. For example, take decompositions D1 and D2 of Figure 4.7.

• Optimal case. Decomposition D1 is optimal because it is a disjoint union of trees.

What could have been contradictory relations in the initial speci�cation were only

redundant or independent consistency relations. There cannot exist contradictory

consistency relations in the speci�cation. As a result, the procedure has reduced the

risk of incompatibilities to zero, thus indirectly ensuring compatibility.

• Non-optimal case. DecompositionD2 is not optimal because there still exists several

combinations of consistency relations between M4 and M5. This means that the

decomposition procedure was unable to �nd redundancy and to reduce the subgraph

to a tree.

There may be two reasons why the resulting decomposition is not only made up of

trees. First, the speci�cation can include contradictory consistency relations. In this

case, it is impossible to prove that one consistency relation can be replaced by the others.

Second, a consistency relation is indeed redundant but the decomposition could not prove

it due to practical limitations of SMT solving on certain Horn clauses. As a result, the

transformation developer must analyze remaining cycles in consistency subgraphs to

modify the speci�cation if necessary. Put another way, the decomposition procedure does

not repair contradictory relations. It optimizes speci�cations so that possibly contradictory

relations become easier to �nd.

7.4.1.2. Ease of Integration

The other bene�t of the decomposition procedure is the ease of integrating the procedure in

a consistency preservation process. There are mainly two reasons for this: automation and

conservativeness. First, the procedure is fully automated, especially thanks to the use of an

automated theorem prover. The bene�t of automation is that the decomposition procedure

104

7.4. Discussion and Further Evaluation

could be used as a watchdog before executing consistency preservation mechanisms. Each

update of a consistency speci�cation may introduce new incompatibilities. Therefore,

using the decomposition procedure as soon as the speci�cation is updated can allow

potential incompatibilities to be reported to the transformation developer.

Second, the decomposition procedure is conservative. This means that the resulting

consistency speci�cation is equivalent to the input consistency speci�cation. In other

words, the input speci�cation can be replaced by the output speci�cation in the consistency

preservation process. Regarding the usefulness property, we de�ned in Section 4.3.2 the

decomposition size, a measure of the optimality of a decomposition. This metric can be

used by the transformation developer to check whether the risk of incompatibilities has

grown after an update of the speci�cation.

7.4.2. Limitations

The decomposition procedure is an optimization technique that cannot alter consistency

speci�cations. In the worst case, the procedure is unable to perform a decomposition. The

resulting speci�cation is then identical to the input speci�cation. This is an important

requirement indicating that the procedure cannot harm the consistency preservation

process. However, there are limitations to the use of the decomposition procedure.

7.4.2.1. Partial Support of Specifications

Not all consistency speci�cations are supported by the procedure. More precisely, the

partial support of consistency speci�cations creates two types of restrictions:

• Unsupported speci�cations. There are speci�cations which cannot be interpreted by

the decomposition procedure. The reason for this is that not all QVT-R and OCL

constructs have been encoded in the metagraph or translated into Z3. Regarding

QVT-R, these constructs are collection template expressions, metamodel elements

in conditions, opposite roles and variable declarations in property template items.

Regarding OCL, unimplemented constructs are those that are not provided in Chap-

ter 6. Such speci�cations raise exceptions in the prototype. Otherwise, consistency

could be altered. This type of restriction is speci�c to the procedure, i.e. further

research on decomposition can help to overcome these restrictions.

• Non-decomposable speci�cations. Even if all constructs of a consistency speci�cation

can be encoded into a metagraph and translated into Z3, the decomposition is not

always optimal. The reason for this is that SMT solvers have theoretical and practical

limitations too. This type of restriction is external to the procedure.

7.4.2.2. Time Complexity of the Procedure

The time complexity of the decomposition procedure has not been formally established.

Using only a consistency speci�cation, it is hard to infer the size of the resulting metagraph,

which is itself used for the time complexity of graph algorithms. Moreover, the procedure

embeds a SMT solver as a black box. The running time of Z3 depends on many heuristics

105

7. Evaluation

and is very unpredictable. As a result, it is di�cult to know how long it will take to

decompose a given speci�cation.

No example scenarios de�ned in Section 7.3.1 resulted in a time-consuming decomposi-

tion. It is noteworthy, however, that the decomposition procedure may require a lot of

time in some very large consistency speci�cations encoded as very large metagraphs with

speci�c topologies (e.g. graphs that contain exponentially many simple cycles).

7.4.3. Further Evaluation

7.4.3.1. Simulated Redundancy

A more advanced strategy to perform an empirical evaluation of the prototype of the

decomposition procedure is to introduce redundancy in consistency speci�cations and to

assess whether the procedure is able to detect it. More precisely, the procedure is applied

on input speci�cations with rather sparse topologies.

Automatic redundancy can be introduced by composing transformations and consistency

relations. For example, the composition of two transformations A↔ B and B ↔ C leads

to the creation of another transformation A ↔ C . As a result, the consistency relation

graph is more dense. The evaluation then consists in verifying that the procedure is able

to decompose composed consistency relations. An appropriate metric in this context is

the number of arti�cial composed relations that were replaced by the procedure. Related

work on the composition of transformations was presented in Section 8.1.3.

7.4.3.2. Real Case Scenarios

Another strategy to provide a more realistic assessment of the applicability of the decom-

position procedure is to use consistency speci�cations that represent real case scenarios

as inputs of the procedure. The current evaluation scenarios are mainly based on OCL

and QVT-R constructs to measure the scope of speci�cations that can be processed.

As there currently exists no implementation that fully supports the QVT-R language,

consistency checking and consistency enforcement by means of QVT-R transformations

are still scarce. Imperative and hybrid model transformation languages tend to provide a

better support than declarative languages. As a result, there are very few usable QVT-R

speci�cations. To illustrate the concepts of the language, the QVT standard includes

UML2RDBMS, a nontrivial example of QVT-R relations that establishes a correspondence

between UML and a relational database management system [Obj16b].

106

8. RelatedWork

In this thesis, we introduced an optimization technique for consistency speci�cations in

the context of multi-model consistency preservation. This technique relies on the static

analysis of a transformation language, QVT-R, and a declarative speci�cation language,

OCL. It is also based on the use of an automated theorem prover (or more precisely here

a satis�ability modulo theories (SMT) solver) to perform the detection of independent

subsets of consistency relations.

Consequently, this thesis is at the intersection of consistency preservation and formal

veri�cation in model-driven software development. This chapter is an overview of the

research work carried out on these topics.

The �rst section reviews the main approaches that address the problem of model

consistency. The second section provides an overall picture of the use of formal methods

to reason about properties of transformation languages, including QVT-R.

8.1. Model Consistency Preservation

8.1.1. Approaches for Consistency

The concept of consistency is widely used in computer science. Being rather vague, the

term “consistency” has been researched from many perspectives and in many areas. Oldest

occurrences mainly relate consistency in database systems to discuss concepts such as

transactions and locks [Esw+76].

In software engineering, consistency preservation is an inherent theme in model-driven

engineering. Since the beginning of domain-speci�c languages, needs for consistency

were identi�ed [Fin00]. Similarly, consistency among UML models was discussed early

[MVS][DMW05]. More generally, lacks of consistency, namely inconsistencies, were evalu-

ated by Nuseibeh et al. [NER00] and by Spanoudakis et al. [SZ01].

Aside from the graph formalism used in this thesis, there are many formalisms to model

consistency. Macedo et al. proposed a review of these formalisms arranged by features

[MJC17]. The most frequent are introduced here.

8.1.1.1. Triple Graph Grammars

Triple Graph Grammars (TGGs) is a concept of graph transformation introduced by Schürr

[Sch94]. TGGs serve as a formal way to describe model transformations. The main idea

behind TGGs is to represent models as graphs and model transformation as graph rewriting.

In each graph rewrite rule, there are three graphs. The �rst one is the pattern graph, i.e.

the one to be replaced. The second one is the replacement graph. It provides patterns to

107

8. Related Work

perform the update. The third one, called the gluing graph, is an interface to describe the

common elements in the �rst two graphs.

There exist several tools using TGGs to perform model synchronisation, i.e. to update

models so that consistency is restored [Leb+14]. Note that the speci�cation of the QVT-R

language was strongly in�uenced by triple graph grammars [GK07]. This can be observed

in the graphical representation of QVT-R relations.

8.1.1.2. Bidirectional Transformations

Bidirectional transformations (bx) are another formalism for consistency preservation.

They are usually de�ned as a mechanism for maintaining consistency between two (or

more) related sources of information [Che+14]. Bx are very generic, in that they have

already been applied in many research areas [Cza+09]. In model-driven engineering, bx

can be used to codify the process of restoring consistency if a model is updated [Ste08].

Bidirectionality means that during the execution of the transformation, all models can

be source models, target models or both. They lay the foundations for this thesis, as

transformations de�ned to restore consistency in the consistency relation graph are bx.

The study of bx gave rise to many theoretical frameworks and variants [DM14]. For

example in a state-based approach of bx, states of models are compared and transformations

are performed according this comparison. In a delta-based approach of bx, only changes

between models are monitored and transformations are regarded as sequences of changes.

Another classi�cation of bx uses symmetry: a bx is symmetric if each model contains

information that is not present in other models[Dis+11].

As stated by Stevens [Ste10], QVT-R can be considered as a language to write bidirec-

tional model transformations, making QVT-R a language that can be both formalized by

bx and TGGs. The connections between bidirectional transformations and TGGs have

been researched by Königs [Kön05].

8.1.1.3. Various Approaches

While previous approaches are rather theoretical, several languages and tools have been

implemented to allow consistency preservation in practice.

One of the transformation languages with the best support is the ATLAS Transformation
Language (ATL) [Jou+08]. ATL is unidirectional. Xiong et al. described a model synchro-

nisation system using ATL [Xio+07]. JTL is another transformation language that aims to

support consistency preservation [Cic+10]. JTL is bidirectional and delta-based.

Viatra (currently Viatra3) is a model transformation platform providing a transformation-

based veri�cation and validation of models [Ber+15]. Among other features, Viatra can

automatically check consistency for a set of models. It is event-driven, i.e. actions on

models are triggered when models are changed, and reactive, i.e. it relies on concepts of

reactive programming.

Finally, Vitruvius is an approach for view-centric model-driven software development

[KBL13]. It consists of �exible views that are created dynamically to share speci�c aspects

of models with developers. Vitruvius o�ers the possibility of maintaining consistency

between models through incremental transformations. There are two languages for

108

8.1. Model Consistency Preservation

consistency speci�cations: the Mappings (declarative, bidirectional) and the Reactions

(imperative, unidirectional) languages de�ned by Kramer [Kra17].

The Mappings language being declarative and bidirectional, it is the most suitable for

comparison with QVT-R. As stated by Kramer, the main di�erence between Mappings and

QVT-R is the way consistency is enforced during execution. In QVT-R, a transformation

invoked for enforcement is executed in a particular direction. Therefore, the semantics of

the speci�cation depends on the direction of execution. Thanks to special constructs (e.g.

single-sided conditions), this is not the case in the Mappings language.

8.1.2. Multi-Model Consistency Preservation

Consistency preservation is often researched for pairs of models. Multi-model consistency
preservation focuses on scenarios where the consistency of multiple models must be

preserved. In their classi�cation of model repair approaches, Macedo et al. also survey the

multi-model case [MJC17].

There are two general trends in multi-model consistency preservation. The general-

ization of concepts of consistency preservation is achieved in two ways. Either concepts

(such as bx or TGGs) are left unchanged but combined (sometimes also composed) or they

are extended to operate on many models at the same time. The former is referred to as

pairwise multi-model consistency, the latter as generic multi-model consistency

8.1.2.1. Pairwise Multi-Model Consistency

The �rst idea to achieve multi-model consistency preservation is to use well-researched

concepts of consistency preservation such as bidirectional transformations or triple graph

grammars and to use them to de�ne consistency for a set of metamodels. Concerning bx,

Stevens proved that under some reasonable conditions, multiary bx, i.e. bx maintaining

consistency between an arbitrary number of metamodels, can be replaced by a set of

binary bx [Ste17a]. This result is the reason why consistency relation graphs in this thesis

are networks of metamodels with binary consistency relations.

Repercussions of this approach on consistency restoration in megamodels have been

researched by Stevens [Ste18]. Klare also identi�ed challenges of networks of consistency

relations based on binary bx [Kla18]. The particular case of interoperability issues was

surveyed more in detail by Klare et al. [Kla+19].

A similar approach called multi-model consistency management and based on sets of

binary bx was presented by Stünkel and al. [Stü+18]. This approach uses concepts from

the Diagram Predicate Framework (DPF), a formalisation of model-driven engineering

using diagrams of category theory [Rut10].

8.1.2.2. Generic Multi-Model Consistency

Regarding bidirectional transformations �rst, theoretical aspects of a delta-based approach

of multiary bx were researched by Disking et al. [DKL18]. By accepting an arbitrary number

of domains inside relations, QVT-R can represent multiary bidirectional transformations.

109

8. Related Work

However, Macedo et al. have shown that ambiguities and omissions of the QVT standard

make this use di�cult [MCP14].

Regarding Triple Graph Grammars then, Königs and Schurr introduced an extension to

TGGs called Multi-Graph Grammars (MGGs) [KS06]. In MGGs, the gluing graph can relate

an arbitrary number of metamodel graphs. Another extension to TGGs was proposed by

Trollmann and Albayrak [TA16].

Whether it is for multiary bx or generalizations of TGGs, these new approaches are

most often theoretical and do not discuss interoperability issues. The lack of research on

applicability makes these formalisms less suitable to explore the optimization of consistency

speci�cations (as investigated in this thesis).

8.1.3. Model Transformation Decomposition and Composition

Although there is little research on the decomposition of consistency relations or model

transformations, there are results on the composition of model transformations. For

example, Wagelaar et al. discussed the semantics of composed model transformations

with ATL examples [Wag+11]. Composition aims to foster the development of smaller and

reusable transformations. As explained by Belaunde, this type of composition is called

external because transformations are reused as a whole and regarded as black-boxes.

Conversely, internal composition allows the modi�cation of model transformations so

that they can be composed more easily. For example, Etien and al. discuss the combination

of independent model transformations using an Extend operator that modi�es inputs and

outputs of transformations to make them compatible [Eti+10].

Two existing approaches share similarities with the concept of decomposition de�ned

in this thesis. First, factorization �nds common functionality shared between multiple

transformations and extracts it in a new base transformation [CM08]. Non-common

functionality is implemented by other transformations deriving the base transformation.

Second, modularization is de�ned by Kurtev et al. as a way to foster extensibility and

reusability in model transformations by considering transformation language constructs

as modules [KBJ07]. For example, in a transformation rule, the left-hand side and the

right-hand side of the rule can be separated to form two modules that can be reused as

modular units and combined.

8.2. Formalization of QVT-R

Standardized for the �rst time in 2008 by the Object Management Group, QVT-R is one of

the main fully declarative transformation languages in model-driven engineering [Obj16b].

The declarative nature of a programming language often implies an absence of side e�ects.

Consequently, these languages are well suited to a mathematical formalization and QVT-R

is no exception. In this thesis, main QVT-R constructs have been encoded in a hypergraph.

Many other formalisms have been researched.

A reason behind the multiple attempts to formalize QVT-R is the existence of inconsis-

tencies in the standard, especially regarding consistency enforcement. An overview of

these inconsistencies was reported by Stevens [Ste10].

110

8.3. Formal Techniques for Transformation Languages

First, QVT-R transformations have been mapped to modal µ-calculus, an extension

of propositional modal logic, and game theory concepts to formalize semantics of the

language regarding the checkonly and enforce execution modes [BS13]. This aims to

clarify the QVT-R standard. In the same vein, a system called Maude using rewriting logic,

another kind of logic, was used as a transformation engine to execute QVT-R [BCR06].

Another attempt to formalize QVT-R uses coloured Petri nets (CPN) [GL14]. A Petri net

is a modeling language to describe distributed systems with formal execution semantics.

Applied to QVT-R, CPN can help to debug transformations. There are also approaches

using algebraic formalisms. First, a formalization approach to resolve ambiguities of the

checkonly execution mode of QVT-R has been researched using category theory [GL12].

Second, semantics of both QVT-O and QVT-R have been described in the formalization of

an “hybrid” QVT transformation by Giandini et al. [GPP09].

8.3. Formal Techniques for Transformation Languages

This thesis involves the use of formal techniques to reason about consistency speci�ca-

tions. More precisely, an automated theorem prover is used as a black box inside the

decomposition procedure to determine if a consistency rule can be removed from the

speci�cation. The use of formal techniques with model transformations is frequent.

In fact, formal techniques are often used when there is a need of automation. As stated

by Hidaka, a purpose of model-driven engineering is to achieve “some automated goals in
the production, maintenance or operation of software intensive systems” [HID+13]. When

challenges posed by automation depend on content analysis of models, speci�cations, etc.,

formal techniques o�er a good support.

This section surveys the use of formal methods (close to the one used in this thesis) in

the context of model-driven software development. Three types of formal methods are

discussed: automated techniques, interactive techniques and model �nding.

8.3.1. Automated Techniques

Automated formal techniques are techniques that do not require a human intervention

during the execution. The SMT solver used in the decomposition procedure to reason

about QVT-R transformations belongs to this category.

The need for formal techniques often comes with the analysis of transformations.

Cuadrado et al. implemented a method to perform a static analysis of model transforma-

tions [CGL16]. The method is illustrated with ATL and uses the USE Validator, a constraint

solver for models. In the same vein, Büttner et al. proposed the use of a SMT solver to

verify ATL transformations [BEC12].

Regarding OCL, Kuhlmann et al. discussed the validation of OCL models using a SAT

solver [KHG11]. EMF models enhanced with OCL were also subject to veri�cation using

constraint logic programming [Gon+12]. Finally, Cabot et al. also proposed to translate the

veri�cation of OCL invariants and QVT-R constructs as a constraint satisfaction problem

[Cab+10].

111

8. Related Work

8.3.2. Interactive Techniques

Interactive formal techniques, also called semi-automated formal techniques, are techniques

that act as assistants. For example, proof assistants help to produce proofs in collaboration

with humans.

An encoding of QVT-R transformations using the Coq proof assistant was implemented

by Rentschler et al. [Ren15]. Another proof assistant, HOL, was used to implement HOL-

OCL, a formal proof environment for UML and OCL [BW08]. The integration of a proof

assistant in model-driven engineering tools can be further extended. For example, Cheng

et al. designed CoqTL, a transformation language using the syntax of the speci�cation

language of Coq to avoid the usual phase of translation between the speci�cation language

and the interactive theorem prover [CTD19].

8.3.3. Model Finding

A less formal but widely used technique in model-driven engineering is model �nding.

Rather than proving properties on models, the role of model �nding is to �nd models

that are counterexamples to assertions made. Model �nding is sometimes regarded as a

lightweight formal method.

The aim of model �nding is to provide a high-level and automated analysis of models

in opposition to interactive techniques that are only semi-automated and to automated

techniques that are di�cult to embed. The compromise of model �nding is that the tool

can �nd models but if it does not �nd them, it cannot prove that they do not exist.

Both ATL and QVT-R were implemented using the model �nding tool Alloy to repair

inconsistencies [MC13]; [MC16]. The resulting transformation-based tool for QVT-R is

called Echo [MGC13].

112

9. Conclusion and Future Work

9.1. Conclusion

Consistency is a fundamental requirement in model-driven engineering. Whether it is for

distributed systems, databases or model-based software systems among others, consistency

problems arise when data is replicated, updated and shared. In model-driven engineer-

ing, consistency ensures that models can operate together without risking unde�ned

behaviours. In this thesis, we investigated the decomposition of consistency relations, an

optimization technique for networks of consistency relations in the context of multi-model

consistency preservation. More precisely, we formalized the idea of decomposition follow-

ing the observation that some consistency relations could be replaced by combinations of

other relations without altering a speci�cation. We also explored the bene�ts of such an

approach and provided various methods to perform a decomposition.

Consistency speci�cations are useful when they are applicable, i.e. when there are no

contradictory consistency relations in the speci�cation. The decomposition procedure is a

relevant approach to make consistency speci�cations more applicable. More precisely, the

procedure does not repair contradictory relations; this is a consequence of conservativeness.

However, it optimizes speci�cations so that possiby contradictory relations become easier

to �nd.

To turn decomposition into an applicable and concrete technique, we �rst showed

how the QVT-R transformation language could be used to write consistency speci�ca-

tions. Consecutively, we designed a decomposition procedure, i.e. an implementation of

decomposition methods. We also developed a proof of concept for the procedure. The

development of the decomposition procedure required the use of an automated theorem

prover. Therefore, we made a link between these two paradigms: we provided a translation

of consistency relations into �rst-order formulae. We also developed an appropriate data

structure (called a metagraph) to detect redundant relations. The use of the decomposition

procedure results in the detection of independent consistency rules and in the removal of

redundant consistency rules.

The evaluation of our approach demonstrated that the decomposition procedure is

generally bene�cial. The reason for this is that it never alters the consistency speci�cation

and, in the worst case, only returns a trivial decomposition. Each consistency rule that

turns out to be independent or redundant is a useful information for the transformation

developer. We also surveyed the applicability of the approach to assess whether the

implementation of the procedure was bringing the expected bene�ts. The result is that

the implementation provides good results regarding consistency rules between metaclass

attributes but still needs improvements regarding collections of objects. Some ideas to

overcome current limitations were also investigated. The decomposition procedure is

113

9. Conclusion and Future Work

ultimately a solution with strong potential to participate in the achievement of multi-model

consistency.

9.2. Future Work

9.2.1. Extension to Other Constructs

The scope of the decomposition procedure presented in this thesis is limited, in that

not all constructs of languages used are supported. This applies to QVT-R constructs

(e.g. collection template expressions, keys or conditions with metamodel elements), OCL

expressions (e.g. operations and collections) and Ecore metamodel elements.

Extending the set of constructs and expressions supported by the decomposition proce-

dure is one way to enhance its applicability to various consistency speci�cations. However,

overcoming some limitations require signi�cant changes in the architecture of the proce-

dure. For example, untranslatable operations highlighted in Section 6.4.8 require the use

of decision procedures of a di�erent nature than those used in this work.

9.2.2. Extension to Other Symbolic Computation Tools

In this thesis, we chose to use an automated theorem prover to decide whether a combina-

tion of consistency rules could replace a single consistency rule. This has many advantages,

the biggest one being the automatisation of the decomosition procedure. However, auto-

mated theorem provers like SMT solvers are rather low-level and unpredictable to reason

about consistency relations and model transformations. This is mainly due to the di�culty

of �nding proofs in �rst-order formulae with quanti�ers.

A possible extension to the current decomposition procedure is the use of another tool

for symbolic computation. For example, interactive tools (like Coq
1

or Isabelle/HOL
2
)

can provide more results by dropping the full automation feature and relying on humans

for complex decision steps. The integration of such a tool in the process of consistency

preservation could be investigated.

Ultimately, it is also possible to consider the use of several tools at a time. The decom-

position procedure is built in such a way that the whole translation from OCL to Z3 is

performed by a visitor class. By de�ning additional visitors using APIs from other tools, it

is quite easy to extend the set of tools supported by the procedure. Then, redundancy is

detected by verifying that tools do not return contradictory results and that at least one of

them proves that the combination can replace the consistency rule to analyze.

9.2.3. Extension to Other Contexts

The choice of standards for the development of a prototype of the decomposition procedure

is a limitation to its application in other contexts. Multi-model consistency preservation

being a language-agnostic paradigm, imposing the use of a standard such as QVT-R

1https://coq.inria.fr
2https://isabelle.in.tum.de

114

9.2. Future Work

to write consistency speci�cations prevents the use of the prototype in other contexts.

However, we gave in Chapter 4 a general characterization of decomposition that only uses

the consistency framework de�ned in Section 3.1.

It is noteworthy that the idea of a decomposition of consistency relations was �rst men-

tioned in Klare’s introduction to multi-model consistency preservation [Kla18]. Following

this research plan, we present two approaches to extend the decomposition procedure to

other contexts. A �rst approach is the integration of the decomposition procedure into the

Vitruvius framework [KBL13]. The framework provides the Mappings language, a bidi-

rectional speci�cation language for preserving consistency. Consequently, the principles

of the decomposition procedure illustrated with QVT-R could be adapted to the Mappings

language. This is facilitated by the fact that this language was de�ned according to the

theoretical framework for consistency that we also used in this thesis.

The second approach mentioned by Klare is another way to achieve a tree structure of

transformations using concept metamodels, a way to encode common concepts between

di�erent metamodels. This approach requires the construction of a tree of concept meta-

models, which is a consequence of the use of the decomposition procedure. As a result,

an extension of this work consists in considering its integration with other consistency

preservation techniques. In the end, the decomposition procedure could be integrated as

an optimization technique for consistency speci�cations in the consistency preservation

process of Vitruvius.

115

Bibliography

[Abo+18] Faris Abou-Saleh et al. “Introduction to bidirectional transformations”. In:

Bidirectional Transformations. Springer, 2018, pp. 1–28.

[Alu+95] Rajeev Alur et al. “The algorithmic analysis of hybrid systems”. In: Theoretical
computer science 138.1 (1995), pp. 3–34.

[BKR09] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component

model for model-driven performance prediction”. In: Journal of Systems and
Software 82.1 (2009), pp. 3–22.

[BKS02] Bernhard Beckert, Uwe Keller, and Peter H Schmitt. “Translating the Object

Constraint Language into �rst-order predicate logic”. In: 2002.

[BCD05] Daniela Berardi, Diego Calvanese, and Giuseppe De Giacomo. “Reasoning on

UML class diagrams”. In: Arti�cial intelligence 168.1-2 (2005), pp. 70–118.

[Ber+15] Gábor Bergmann et al. “Viatra 3: A reactive model transformation platform”.

In: International Conference on Theory and Practice of Model Transformations.
Springer. 2015, pp. 101–110.

[BCR06] Artur Boronat, José Á Carsí, and Isidro Ramos. “Algebraic speci�cation of a

model transformation engine”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer. 2006, pp. 262–277.

[BS13] Julian Brad�eld and Perdita Stevens. “Enforcing QVT-R with mu-calculus and

games”. In: International Conference on Fundamental Approaches to Software
Engineering. Springer. 2013, pp. 282–296.

[BW08] Achim D Brucker and Burkhart Wol�. “HOL-OCL: a formal proof environment

for UML/OCL”. In: International Conference on Fundamental Approaches to
Software Engineering. Springer. 2008, pp. 97–100.

[BEC12] Fabian Büttner, Marina Egea, and Jordi Cabot. “On verifying ATL transforma-

tions using ‘o�-the-shelf’SMT solvers”. In: International Conference on Model
Driven Engineering Languages and Systems. Springer. 2012, pp. 432–448.

[Cab+10] Jordi Cabot et al. “Veri�cation and validation of declarative model-to-model

transformations through invariants”. In: Journal of Systems and Software 83.2

(2010), pp. 283–302.

[Che+14] James Cheney et al. “Towards a Repository of Bx Examples”. In: Proceedings
of the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT 2014),
Athens, Greece, March 28, 2014. 2014, pp. 87–91. url: http://ceur-ws.org/

Vol-1133/paper-14.pdf.

117

http://ceur-ws.org/Vol-1133/paper-14.pdf
http://ceur-ws.org/Vol-1133/paper-14.pdf

Bibliography

[CTD19] ZHENG CHENG, Massimo Tisi, and Rémi Douence. “CoqTL: A Coq DSL for

Rule-Based Model Transformation”. In: Software and Systems Modeling (2019).

url: https://hal.archives-ouvertes.fr/hal-02333564.

[Chu36] Alonzo Church. “A note on the Entscheidungsproblem”. In: The journal of
symbolic logic 1.1 (1936), pp. 40–41.

[Cic+10] Antonio Cicchetti et al. “JTL: a bidirectional and change propagating trans-

formation language”. In: International Conference on Software Language En-
gineering. Springer. 2010, pp. 183–202.

[Cle+19] Anthony Cleve et al. “Multidirectional Transformations and Synchronisations

(Dagstuhl Seminar 18491)”. In: Dagstuhl Reports 8.12 (2019). Ed. by Anthony

Cleve et al., pp. 1–48. issn: 2192-5283. doi: 10.4230/DagRep.8.12.1. url:

http://drops.dagstuhl.de/opus/volltexte/2019/10360.

[CGL16] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. “Static analysis of

model transformations”. In: IEEE Transactions on Software Engineering 43.9

(2016), pp. 868–897.

[CM08] Jesús Sánchez Cuadrado and Jesús García Molina. “Approaches for model trans-

formation reuse: Factorization and composition”. In: International Conference
on Theory and Practice of Model Transformations. Springer. 2008, pp. 168–182.

[Cza+09] Krzysztof Czarnecki et al. “Bidirectional transformations: A cross-discipline

perspective”. In: International Conference on Theory and Practice of Model
Transformations. Springer. 2009, pp. 260–283.

[DMW05] Cristine R Dantas, Leonardo Gresta Paulino Murta, and Cláudia Maria Lima

Werner. “Consistent evolution of UML models by automatic detection of

change traces”. In: Eighth International Workshop on Principles of Software
Evolution (IWPSE’05). IEEE. 2005, pp. 144–147.

[DB08] Leonardo De Moura and Nikolaj Bjørner. “Z3: An e�cient SMT solver”. In: In-
ternational conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems. Springer. 2008, pp. 337–340.

[DP13] Leonardo De Moura and Grant Olney Passmore. “The strategy challenge

in SMT solving”. In: Automated Reasoning and Mathematics. Springer, 2013,

pp. 15–44.

[DC+03] Rina Dechter, David Cohen, et al. Constraint processing. Morgan Kaufmann,

2003.

[DF02] Rina Dechter and Daniel Frost. “Backjump-based backtracking for constraint

satisfaction problems”. In: Arti�cial Intelligence 136.2 (2002), pp. 147–188.

[DKL18] Zinovy Diskin, Harald König, and Mark Lawford. “Multiple Model Synchro-

nization with Multiary Delta Lenses”. In: Fundamental Approaches to Software
Engineering. Ed. by Alessandra Russo and Andy Schürr. Cham: Springer In-

ternational Publishing, 2018, pp. 21–37. isbn: 978-3-319-89363-1.

118

https://hal.archives-ouvertes.fr/hal-02333564
https://doi.org/10.4230/DagRep.8.12.1
http://drops.dagstuhl.de/opus/volltexte/2019/10360

[DM14] Zinovy Diskin and Tom Maibaum. “Category theory and model-driven engi-

neering: From formal semantics to design patterns and beyond”. In: Model-
Driven Engineering of Information Systems: Principles, Techniques, and Practice
(2014), p. 173.

[Dis+11] Zinovy Diskin et al. “From state-to delta-based bidirectional model transfor-

mations: the symmetric case”. In: International Conference on Model Driven
Engineering Languages and Systems. Springer. 2011, pp. 304–318.

[Esw+76] Kapali P. Eswaran et al. “The notions of consistency and predicate locks in a

database system”. In: Communications of the ACM 19.11 (1976), pp. 624–633.

[Eti+10] Anne Etien et al. “Combining independent model transformations”. In: 2010.

[FN05] Jean-Marie Favre and Tam NGuyen. “Towards a megamodel to model soft-

ware evolution through transformations”. In: Electronic Notes in Theoretical
Computer Science 127.3 (2005), pp. 59–74.

[Fin00] Anthony Finkelstein. “A foolish consistency: Technical challenges in con-

sistency management”. In: International Conference on Database and Expert
Systems Applications. Springer. 2000, pp. 1–5.

[Für+09] Simon Fürst et al. “AUTOSAR–A Worldwide Standard is on the Road”. In:

14th International VDI Congress Electronic Systems for Vehicles, Baden-Baden.

Vol. 62. 2009, p. 5.

[GPP09] Roxana S Giandini, Claudia Pons, and Gabriela Pérez. “A two-level formal

semantics for the QVT language.” In: CIbSE 9 (2009), pp. 73–86.

[Gib69] Norman E Gibbs. “A cycle generation algorithm for �nite undirected linear

graphs”. In: Journal of the ACM (JACM) 16.4 (1969), pp. 564–568.

[Gon+12] Carlos A González et al. “EMFtoCSP: A tool for the lightweight veri�cation

of EMF models”. In: 2012 First International Workshop on Formal Methods in
Software Engineering: Rigorous and Agile Approaches (FormSERA). IEEE. 2012,

pp. 44–50.

[GK07] Joel Greenyer and Ekkart Kindler. “Reconciling tggs with qvt”. In: International
Conference on Model Driven Engineering Languages and Systems. Springer.

2007, pp. 16–30.

[GL12] Esther Guerra and Juan de Lara. “An algebraic semantics for QVT-relations

check-only transformations”. In: Fundamenta Informaticae 114.1 (2012), pp. 73–

101.

[GL14] Esther Guerra and Juan de Lara. “Colouring: execution, debug and analysis of

QVT-relations transformations through coloured Petri nets”. In: Software &
Systems Modeling 13.4 (2014), pp. 1447–1472.

[HLR06] David Hearnden, Michael Lawley, and Kerry Raymond. “Incremental model

transformation for the evolution of model-driven systems”. In: International
Conference on Model Driven Engineering Languages and Systems. Springer.

2006, pp. 321–335.

119

Bibliography

[HID+13] Soichiro HIDAKA et al. “Principles and Applications of Model Driven Engi-

neering (1) History and Context of Model Driven Engineering”. In: Computer
Software 30 (Jan. 2013). doi: 10.11309/jssst.30.3_25.

[HT73] John Hopcroft and Robert Tarjan. “Algorithm 447: E�cient Algorithms for

Graph Manipulation”. In: Commun. ACM 16.6 (June 1973), pp. 372–378. issn:

0001-0782. doi: 10.1145/362248.362272. url: http://doi.acm.org/10.

1145/362248.362272.

[ISO11] ISO/IEC/IEEE. “Systems and software engineering – Architecture description”.

In: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std
1471-2000) (Jan. 2011), pp. 1–46. doi: 10.1109/IEEESTD.2011.6129467.

[JL87] Joxan Ja�ar and J-L Lassez. “Constraint logic programming”. In: Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages. ACM. 1987, pp. 111–119.

[Jou+06] Frédéric Jouault et al. “ATL: a QVT-like transformation language”. In: Com-
panion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications. ACM. 2006, pp. 719–720.

[Jou+08] Frédéric Jouault et al. “ATL: A model transformation tool”. In: Science of
computer programming 72.1-2 (2008), pp. 31–39.

[Kla18] Heiko Klare. “Multi-model Consistency Preservation”. In: Proceedings of the
21st ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings. MODELS ’18. Copenhagen, Den-

mark: ACM, 2018, pp. 156–161. isbn: 978-1-4503-5965-8. doi: 10 . 1145 /

3270112.3275335.

[Kla+19] Heiko Klare et al. “A Categorization of Interoperability Issues in Networks

of Transformations.” In: The Journal of Object Technology 18 (Jan. 2019), 4:1.

doi: 10.5381/jot.2019.18.3.a4.

[Kle+03] Anneke G Kleppe et al. MDA explained: the model driven architecture: practice
and promise. Addison-Wesley Professional, 2003.

[Kön05] Alexander Königs. “Model transformation with triple graph grammars”. In:

2005.

[KS06] Alexander Königs and Andy Schürr. “MDI: a rule-based multi-document

and tool integration approach”. In: Software & Systems Modeling 5.4 (2006),

pp. 349–368.

[KBL13] Max E. Kramer, Erik Burger, and Michael Langhammer. “View-centric En-

gineering with Synchronized Heterogeneous Models”. In: Proceedings of the
1stWorkshop on View-Based, Aspect-Oriented and Orthographic SoftwareMod-
elling. VAO ’13. Montpellier, France: ACM, 2013, 5:1–5:6. isbn: 978-1-4503-

2070-2. doi: 10.1145/2489861.2489864. url: http://doi.acm.org/10.1145/

2489861.2489864.

120

https://doi.org/10.11309/jssst.30.3_25
https://doi.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1145/3270112.3275335
https://doi.org/10.1145/3270112.3275335
https://doi.org/10.5381/jot.2019.18.3.a4
https://doi.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864
http://doi.acm.org/10.1145/2489861.2489864

[Kra17] Max Emanuel Kramer. “Speci�cation Languages for Preserving Consistency

between Models of Di�erent Languages”. PhD thesis. Karlsruher Institut für

Technologie (KIT), 2017. 278 pp. doi: 10.5445/IR/1000069284.

[KS] Daniel Kroening and Ofer Strichman. Decision procedures. Springer.

[Kru56] Joseph B Kruskal. “On the shortest spanning subtree of a graph and the

traveling salesman problem”. In: Proceedings of the American Mathematical
society 7.1 (1956), pp. 48–50.

[KHG11] Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. “Extensive validation of

OCL models by integrating SAT solving into USE”. In: International Confer-
ence on Modelling Techniques and Tools for Computer Performance Evaluation.

Springer. 2011, pp. 290–306.

[KMT12] Adrian Kuhn, Gail C Murphy, and C Albert Thompson. “An exploratory study

of forces and frictions a�ecting large-scale model-driven development”. In:

International Conference on Model Driven Engineering Languages and Systems.
Springer. 2012, pp. 352–367.

[KBJ07] Ivan Kurtev, Klaas van den Berg, and Frédéric Jouault. “Rule-based modular-

ization in model transformation languages illustrated with ATL”. In: Science
of computer programming 68.3 (2007), pp. 138–154.

[LK14] Kevin Lano and Shekoufeh Kolahdouz-Rahimi. “Model-transformation design

patterns”. In: IEEE Transactions on Software Engineering 40.12 (2014), pp. 1224–

1259.

[Leb+14] Erhan Leblebici et al. “A comparison of incremental triple graph grammar

tools”. In: Electronic Communications of the EASST 67 (2014).

[Lif08] Vladimir Lifschitz. “What Is Answer Set Programming?.” In: AAAI. Vol. 8.

2008. 2008, pp. 1594–1597.

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment”. In: J. ACM 20.1 (Jan. 1973), pp. 46–

61. issn: 0004-5411. doi: 10.1145/321738.321743. url: http://doi.acm.org/

10.1145/321738.321743.

[Lov16] Donald W Loveland. Automated Theorem Proving: a logical basis. Elsevier,

2016.

[MJC17] N. Macedo, T. Jorge, and A. Cunha. “A Feature-Based Classi�cation of Model

Repair Approaches”. In: IEEE Transactions on Software Engineering 43.7 (July

2017), pp. 615–640. doi: 10.1109/TSE.2016.2620145.

[MCP14] Nuno Moreira Macedo, Alcino Cunha, and Hugo Pereira Pacheco. “Towards a

framework for multidirectional model transformations”. In: (2014).

[MC13] Nuno Macedo and Alcino Cunha. “Implementing QVT-R bidirectional model

transformations using Alloy”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer. 2013, pp. 297–311.

121

https://doi.org/10.5445/IR/1000069284
https://doi.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
http://doi.acm.org/10.1145/321738.321743
https://doi.org/10.1109/TSE.2016.2620145

Bibliography

[MC16] Nuno Macedo and Alcino Cunha. “Least-change bidirectional model trans-

formation with QVT-R and ATL”. In: Software & Systems Modeling 15.3 (July

2016), pp. 783–810. issn: 1619-1374. doi: 10.1007/s10270-014-0437-x. url:

https://doi.org/10.1007/s10270-014-0437-x.

[MGC13] Nuno Macedo, Tiago Guimaraes, and Alcino Cunha. “Model repair and trans-

formation with Echo”. In: 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2013, pp. 694–697.

[MD76] Prabhaker Mateti and Narsingh Deo. “On algorithms for enumerating all

circuits of a graph”. In: SIAM Journal on Computing 5.1 (1976), pp. 90–99.

[MVS] Tom Mens, Ragnhild Van Der Straeten, and Jocelyn Simmonds. “Maintaining

consistency between UML models with description logic tools”. In:

[MV06] Tom Mens and Pieter Van Gorp. “A taxonomy of model transformation”. In:

Electronic Notes in Theoretical Computer Science 152 (2006), pp. 125–142.

[MB11] Leonardo de Moura and Nikolaj Bjørner. Z3 - a Tutorial. 2011. url: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.8231&rep=

rep1&type=pdf.

[NER00] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. “Leveraging in-

consistency in software development”. In: Computer 33.4 (2000), pp. 24–29.

[Obj16a] Object Management Group (OMG). Meta-Object Facility (MOF) Speci�cation,
Version 2.5.1. OMG Document Number formal/2016-11-01 (https://www.omg.

org/spec/MOF/2.5.1). 2016.

[Obj16b] Object Management Group (OMG). MOF Query/View/Transformation (QVT)
Speci�cation, Version 1.3. OMG Document Number formal/2016-06-03 (https:

//www.omg.org/spec/QVT/1.3). 2016.

[Obj16c] Object Management Group (OMG).Object Constraint Language (OCL), Version
2.4. OMG Document Number formal/2014-02-03 (https://www.omg.org/

spec/OCL/2.4). 2016.

[Obj16d] Object Management Group (OMG).Uni�edModeling Language (UML), Version
2.5.1. OMG Document Number formal/2017-12-05 (https://www.omg.org/

spec/UML/2.5.1). 2016.

[Pat69] Keith Paton. “An algorithm for �nding a fundamental set of cycles of a graph”.

In: Communications of the ACM 12.9 (1969), pp. 514–518.

[Po01] John D Poole. “Model-driven architecture: Vision, standards and emerging

technologies”. In: Workshop on Metamodeling and Adaptive Object Models,
ECOOP. Vol. 50. Citeseer. 2001.

[Ren15] Andreas Rentschler. “Model Transformation Languages with Modular In-

formation Hiding”. PhD thesis. 2015. 360 pp. isbn: 978-3-7315-0346-0. doi:

10.5445/KSP/1000045910.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Uni�ed modeling language
reference manual, the. Pearson Higher Education, 2004.

122

https://doi.org/10.1007/s10270-014-0437-x
https://doi.org/10.1007/s10270-014-0437-x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.8231&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.8231&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.225.8231&rep=rep1&type=pdf
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/QVT/1.3
https://www.omg.org/spec/QVT/1.3
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://doi.org/10.5445/KSP/1000045910

[Rut10] Adrian Rutle. “Diagram predicate framework: A formal approach to MDE”.

In: 2010.

[Sch94] Andy Schürr. “Speci�cation of graph translators with triple graph grammars”.

In: International Workshop on Graph-Theoretic Concepts in Computer Science.
Springer. 1994, pp. 151–163.

[Sel03] Bran Selic. “The pragmatics of model-driven development”. In: IEEE software
20.5 (2003), pp. 19–25.

[SK03] Shane Sendall and Wojtek Kozaczynski. “Model transformation: The heart

and soul of model-driven software development”. In: IEEE software 20.5 (2003),

pp. 42–45.

[Sin+13] Harpreet Singh et al. “Real-life applications of fuzzy logic”. In: Advances in
Fuzzy Systems 2013 (2013).

[Smu12] Raymond R Smullyan. First-order logic. Vol. 43. Springer Science & Business

Media, 2012.

[SZ01] George Spanoudakis and Andrea Zisman. “Inconsistency management in

software engineering: Survey and open research issues”. In: Handbook of Soft-
ware Engineering and Knowledge Engineering: Volume I: Fundamentals. World

Scienti�c, 2001, pp. 329–380.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973.

[Ste+08] Dave Steinberg et al. EMF: eclipse modeling framework. Pearson Education,

2008.

[Ste08] Perdita Stevens. “A Landscape of Bidirectional Model Transformations”. In:

Generative and Transformational Techniques in Software Engineering II: Inter-
national Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised
Papers. Ed. by Ralf Lämmel, Joost Visser, and João Saraiva. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 408–424. isbn: 978-3-540-88643-3. doi:

10.1007/978-3-540-88643-3_10.

[Ste10] Perdita Stevens. “Bidirectional model transformations in QVT: semantic issues

and open questions”. In: Software & Systems Modeling 9.1 (2010), p. 7.

[Ste17a] Perdita Stevens. “Bidirectional transformations in the large”. In: 2017 ACM/IEEE
20th International Conference onModel Driven Engineering Languages and Sys-
tems (MODELS). IEEE. 2017, pp. 1–11.

[Ste17b] Perdita Stevens. Megamodel v0.1 in Bx Examples Repository. http : / / bx -

community.wikidot.com/examples:megamodel. Date retrieved: 27 Apr 2019.

2017.

[Ste18] Perdita Stevens. “Towards sound, optimal, and �exible building from meg-

amodels”. In: Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. ACM. 2018, pp. 301–311.

[Stü+18] Patrick Stünkel et al. “Multimodel correspondence through inter-model con-

straints”. In: Conference Companion of the 2nd International Conference on Art,
Science, and Engineering of Programming. ACM. 2018, pp. 9–17.

123

https://doi.org/10.1007/978-3-540-88643-3_10
http://bx-community.wikidot.com/examples:megamodel
http://bx-community.wikidot.com/examples:megamodel

Bibliography

[TJ07] Emina Torlak and Daniel Jackson. “Kodkod: A relational model �nder”. In: In-
ternational Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems. Springer. 2007, pp. 632–647.

[TA16] Frank Trollmann and Sahin Albayrak. “Extending model synchronization

results from triple graph grammars to multiple models”. In: International
Conference on Theory and Practice of Model Transformations. Springer. 2016,

pp. 91–106.

[Vea+12] Margus Veanes et al. “Symbolic �nite state transducers: Algorithms and ap-

plications”. In: ACM SIGPLAN Notices. Vol. 47. 1. ACM. 2012, pp. 137–150.

[VS06] Markus Völter and Thomas Stahl. Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons, 2006. url: http://www.

voelter.de/data/books/mdsd-en.pdf.

[Wag+11] Dennis Wagelaar et al. “Towards a general composition semantics for rule-

based model transformation”. In: International Conference on Model Driven
Engineering Languages and Systems. Springer. 2011, pp. 623–637.

[WK03] Jos B Warmer and Anneke G Kleppe. The object constraint language: getting
your models ready for MDA. Addison-Wesley Professional, 2003.

[Xio+07] Yingfei Xiong et al. “Towards automatic model synchronization from model

transformations”. In: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering. ACM. 2007, pp. 164–173.

124

http://www.voelter.de/data/books/mdsd-en.pdf
http://www.voelter.de/data/books/mdsd-en.pdf

List of Figures

2.1. Principles of model transformations . 7

2.2. Kernel of the Ecore meta-metamodel . 9

2.3. Dependencies between QVT packages . 11

2.4. Example of a consistency network with multiary relations 15

3.1. Two possible representations of a consistency network 22

3.2. Two metamodels, each with one metaclass 23

3.3. Simpli�ed class diagram of QVT-R concepts 31

4.1. Schematic view of the decomposition procedure 35

4.2. Two topologies with an extremal density, adapted from [Kla18] 37

4.3. Independent consistency subgraphs . 39

4.4. Removal of a totally redundant consistency relation 41

4.5. Decomposition of a partially redundant consistency relation 42

4.6. Consistency speci�cation for Example 4.3.1 46

4.7. Some possible decompositions of Example 4.3.1 with their sizes 48

5.1. From consistency relation graph to consistency rule 50

5.2. Construction of the metagraph in the decomposition procedure 54

5.3. Use of the metagraph in the decomposition procedure 55

5.4. From QVT-R �les to metamodels and transformations 56

5.5. Order of processing of QVT-R relations with invariants 59

5.6. Hierarchical structure of a QVT-R domain 60

5.7. Example of a merge of consistency variables 64

5.8. Two consistency speci�cations resulting in the same hyperedge 65

5.9. A metagraph of a consistency speci�cation and its dual 72

5.10. Three valid combinations to replace a meta-edge 74

5.11. Cycle basis for the dual of Figure 5.10 . 75

5.12. Candidate combination (1, 2) in a dual . 81

7.1. Classi�cation of resulting speci�cations 98

125

List of Tables

3.1. Consistency of a few instances of Figure 3.2 24

3.2. Comparable concepts in QVT-R and consistency de�nitions 30

4.1. Summary of the in�uence of the decomposition procedure 38

4.2. Summary of decomposition methods . 43

5.1. Similar concepts in constraint satisfaction and consistency preservation . 52

6.1. Correspondence between primitive datatypes in OCL, Ecore and Z3 . . . 86

7.1. Example scenarios considered in the evaluation of applicability 101

127

Listings

3.1. Consistency speci�cation of Example 3.1.1 with QVT-R 26

3.2. Extension of Listing 3.1 with a where clause 28

3.3. Three domain patterns . 32

3.4. Using QVT-R variables to model consistency rules 33

5.1. A ternary consistency rule with QVT-R 51

5.2. Processing of domain patterns for Example 5.3.3 68

6.1. Recursive construction of an OCL sequence using a Z3 array 87

6.2. Recursive construction of an OCL sequence using a Z3 algebraic datatype 88

List of Algorithms

5.1. Merge of consistency variables . 63

5.2. Enumeration of combinations of meta-edges 76

129

A. Appendix: Translation of OCL
Operations

A.1. Arithmetic Operations

Addition (for two number expressions e1 and e2)

OCL e1 + e2

Z3 (+ e1 e2)

Substraction (for two number expressions e1 and e2)

OCL e1 - e2

Z3 (- e1 e2)

Multiplication (for two number expressions e1 and e2)

OCL e1 * e2

Z3 (* e1 e2)

Euclidean division (for two integer expressions e1 and e2)

OCL e1.div(e2)

Z3 (/ e1 e2)

Division (for two number expressions e1 and e2)

OCL e1 / e2

Z3 (/ e1 e2)

Modulo (for two integer expressions e1 and e2)

OCL e1.mod(e2)

Z3 (mod e1 e2)

Absolute value (for a number expression e1)

OCL e1.abs()

Z3 (ite (< e1 0) (- e1) e1)

131

A. Appendix: Translation of OCL Operations

A.2. Boolean Operations

Logical negation (for a boolean expression e1)

OCL not e1

Z3 (not e1)

Logical conjunction (for two boolean expressions e1 and e2)

OCL e1 and e2

Z3 (and e1 e2)

Logical disjunction (for two boolean expressions e1 and e2)

OCL e1 or e2

Z3 (or e1 e2)

Logical exclusive disjunction (for two boolean expressions e1 and e2)

OCL e1 xor e2

Z3 (xor e1 e2)

Logical implication (for two boolean expressions e1 and e2)

OCL e1 implies e2

Z3 (=> e1 e2)

A.3. Conversion Operations

Floor function (for a real expression e1)

OCL e1.floor()

Z3 (to_int e1)

Round function (for a real expression e1)

OCL e1.round()

Z3 (to_int (+ 0.5 e1))

A.4. Equality Operators

Equal-to operator (for any two expressions e1 and e2)

OCL e1 = e2

Z3 (= e1 e2)

132

A.5. Order Relations and Extrema

Not-equal-to operator (for any two expressions e1 and e2)

OCL e1 <> e2

Z3 (not (= e1 e2))

A.5. Order Relations and Extrema

Less than operator (for two number expressions e1 and e2)

OCL e1 < e2

Z3 (< e1 e2)

Less than or equal to operator (for two number expressions e1 and e2)

OCL e1 <= e2

Z3 (<= e1 e2)

Greater than operator (for two number expressions e1 and e2)

OCL e1 > e2

Z3 (> e1 e2)

Greater than or equal to operator (for two number expressions e1 and e2)

OCL e1 >= e2

Z3 (>= e1 e2)

Minimum function (for two number expressions e1 and e2)

OCL e1.min(e2)

Z3 (ite (< e1 e2) e1 e2)

Maximum function (for two number expressions e1 and e2)

OCL e1.max(e2)

Z3 (ite (> e1 e2) e1 e2)

A.6. Collection Operations

A.6.1. Operations For Collections

Is-empty function (for a set or a sequence s)

OCL s->isEmpty()

Z3 (= 0 (length s))

133

A. Appendix: Translation of OCL Operations

Is-not-empty function (for a set or a sequence s)

OCL s->notEmpty()

Z3 (not (= 0 (length s)))

A.6.2. Operations For Sequences

Retrieve the �rst element (for a sequence s)

OCL s->first()

Z3 (select (array s) 0)

Retrieve the last element (for a sequence s)

OCL s->last()

Z3 (select (array s) (- (length s) 1))

Retrieve the nth element (for a sequence s and an integer expression n)

OCL s->at(n)

Z3 (select (array s) n)

A.6.3. Operations For Sets

Union (for two sets s1 and s2)

OCL s1->union(s2)

Z3 (mkSet (+ (length s1) (length s2)) (union (array s1) (array s2)))

Intersection (for two sets s1 and s2)

OCL s1->intersection(s2)

Z3 (mkSet (ite (> (length s1) (length s2)) (length s1) (length s2))

(intersect (array s1) (array s2)))

Di�erence (for two sets s1 and s2)

OCL s1->excludesAll(s2)

Z3 (mkSet (length s1) (difference (array s1) (array s2)))

134

A.7. String Operations

Symmetric di�erence (for two sets s1 and s2)

OCL s1->symmetricDifference(s2)

Z3 (mkSet (+ (length s1) (length s2)) (difference

(union (array s1) (array s2))

(intersect (array s1) (array s2))))

A.7. String Operations

Concatenation (for two strings s1 and s2)

OCL s1 + s2, s1.concat(s2)

Z3 (str.++ s1 s2)

Substring (for a string s1 and two indexes, l (lower) and u (upper, included))

OCL s1.substring(l, u)

Z3 (str.substr s1 l (+ (- u l) 1))

Length (for a string s1)

OCL s1.size()

Z3 (str.len s1)

Conversion to integer (for a string s1)

OCL s1.toInteger()

Z3 (str.to.int s1)

135

	Abstract
	Zusammenfassung
	Résumé
	Introduction
	Motivation
	Goal of the thesis
	Structure of the thesis

	Foundations
	Models, Metamodels, Model Transformations
	Models
	Metamodels
	Model Transformations

	Model-Driven Software Development
	The Ecore Meta-metamodel
	The Object Constraint Language
	Transformation Languages

	Formal Foundations of Models
	Formal Metamodels
	Formal Models and Instances

	Model Consistency Preservation
	Consistency Relations
	Model Transformations for Consistency Relations
	Multi-Model Consistency Preservation

	Constraint Satisfaction
	Constraint Networks
	Constraint Graphs and Hypergraphs

	Automated Deduction
	First-Order Logic
	Satisfiability Modulo Theories

	Consistency Preservation
	Description of Consistency Relations
	Consistency Relation Graph
	Consistency Rule
	Consistency Specification

	Consistency with QVT-R
	Structure of a QVT-R Specification
	Imports
	Relational Transformations
	Relations
	Relation Domains
	Expressions and Conditions

	From QVT-R to Consistency Rules
	From Domain Pattern to Condition on a Metaclass
	From Domain to Condition on a Metaclass Tuple
	From Transformation to Consistency Rule

	Principles of Decomposition
	Introduction to the Decomposition Procedure
	Equivalent Consistency Specifications
	Complexity of Consistency Specifications

	Means of Decomposition of Specifications
	Independent Consistency Subgraphs
	Totally Redundant Consistency Relations
	Partially Redundant Consistency Relations
	Towards a Decomposition Procedure

	Formal Properties
	Conservativeness
	Usefulness

	Decomposition Procedure
	Tractable Consistency Relations
	Two Aspects of Consistency Specifications
	Metagraph
	Metagraphs and Constraint Networks

	Outline of the Decomposition Procedure
	From Consistency Specification to Metagraph
	Inputs of the Procedure
	Recursive Construction of QVT-R Concepts
	Translation of Global Aspects of Specifications
	Translation of Local Aspects of Specifications

	From Metagraph To Decomposition
	Metagraph Dual
	Independent Subsets of Meta-Edges
	Generation of Combinations of Meta-Edges
	Detection of Redundant Rules

	Constraint Translation
	Symbolic Computation for OCL and QVT-R
	Automation of the Decomposition Procedure
	Choosing an Approach for Constraint Translation
	Theorem Proving for Decomposition

	Primitive Datatypes
	Data Structures
	Collection Literals
	Collections from Role Names

	Operations
	Arithmetic Operations
	Boolean Operations
	Conversion Operations
	Equality Operators
	Order Relations and Extrema
	Collections Operations
	String Operations
	Untranslatable Operations

	Evaluation
	Methodology
	Addressing Research Questions
	Evaluation Material

	Functional Correctness
	Finding Existing Tree-Like Specifications
	Unaltered Consistency Specifications

	Applicability
	Example Scenarios
	Execution Results
	Threats to Validity

	Discussion and Further Evaluation
	Benefits
	Limitations
	Further Evaluation

	Related Work
	Model Consistency Preservation
	Approaches for Consistency
	Multi-Model Consistency Preservation
	Model Transformation Decomposition and Composition

	Formalization of QVT-R
	Formal Techniques for Transformation Languages
	Automated Techniques
	Interactive Techniques
	Model Finding

	Conclusion and Future Work
	Conclusion
	Future Work
	Extension to Other Constructs
	Extension to Other Symbolic Computation Tools
	Extension to Other Contexts

	Bibliography
	Appendix: Translation of OCL Operations
	Arithmetic Operations
	Boolean Operations
	Conversion Operations
	Equality Operators
	Order Relations and Extrema
	Collection Operations
	Operations For Collections
	Operations For Sequences
	Operations For Sets

	String Operations

	CC-BY_Vermerk_A4_2017_4.0_EN.pdf

