

Karlsruhe Institute of Technology

Institute for Automation and Applied Informatics Optimization and Control Group www.iai.kit.edu/control

PolyChaos.jl – An open source Julia package for polynomial chaos expansion

Tillmann Mühlpfordt

Polynomial chaos expansion (PCE) is a Hilbert space technique for random variables that alleviates uncertainty propagation. Random variables are expanded in terms of polynomials that are orthogonal relative to a given probability density function. The applicability of PCE hinges on software that allows, among others, to construct orthogonal polynomials. We offer a package for (intrusive) PCE written in the Julia programming language, a trending programming language dedicated to scientific computing.

1. Polynomial Chaos

Hilbert space method for random variables.

Orthogonal basis $\{\phi_k(\xi)\}_{k=0}^{\infty}$ with deg $\phi_k(\xi) = k$ Hilbert space $L^2(\mathbb{R}) \equiv L^2(\Omega, \mu; \mathbb{R})$ with $(\Omega, \mathcal{F}, \mu)$ Scalar product $\langle x, y \rangle_{L^2} = Cov[x, y]$

- Compute orthogonal polynomials for arbitrary densities
- Provide scalar products for intrusive PCE

 $\langle \phi_{i_1}, \phi_{i_2} \cdots \phi_{i_m} \rangle$

- Multivariate support
- Comprehensible documentation

3. Existing Software

- Name Features
 - Matlab
 - BSD 3-clause license
 - Classic and arbitrary distributions
- UQLab
 - Stieltjes procedure
 - Gauss and sparse quadrature
 - Basis-adaptive sparse PCE
 - Least-angle regression

Given an absolutely continuous nonnegative measure, PolyChaos.jl allows

- To compute the coefficients for the monic three-term recurrence relation
- To evaluate orthogonal polynomials at arbitrary points
- To compute the quadrature rule
- To compute tensors of scalar products
- To do all of the above in a multivariate setting

Methods

- Stieltjes procedure
- Lanczos procedure
- Gauss quadrature (+ Lobatto, Radau)
- Fejér's rules, Clenshaw-Curtis
- Sparse computation of scalar products

Type hierarchy

Norm	$\ \mathbf{x}\ _{L^2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle_{L^2}}$
Expansion	$X = X(\xi) = \sum_{l=0}^{\infty} x_l \phi_l(\xi)$
Truncation	$\tilde{\mathbf{x}} = \tilde{x}(\xi) = \sum_{l=0}^{L} x_l \phi_l(\xi)$
Coefficients	$x_{l} = \frac{\langle \mathbf{x}, \phi_{l}(\xi) \rangle_{L^{2}}}{\langle \phi_{l}(\xi), \phi_{l}(\xi) \rangle_{L^{2}}}$
Optimality	$\ \mathbf{x} - \tilde{\mathbf{x}}\ _{L^2} = \min_{\mathbf{y} \in \mathfrak{Y}} \ \mathbf{x} - \mathbf{y}\ _{L}$
	$\mathfrak{Y} = \operatorname{span}\{\phi_l(\xi)\}_{l=0}^L$

Several well-known analytic bases (Askey).

Distribution	Polynomial basis
Normal	Hermite
Uniform	Legendre
Beta	Jacobi
Gamma	Laguerre

Chaospy	 Python MIT license Classic and arbitrary distributions Gram-Schmidt Stieltjes procedure Gauss quadrature Clenshaw-Curtis
MUQ	 C++, Python Classic distributions Gauss quadrature
UQToolkit	 C++, Python GNU LGP license Classic distributions Gauss quadrature

4. Julia

- "Walks like Python, runs like C"
- Solves the two-language problem

Documentation & Examples

$\leftarrow \rightarrow$ C \triangle	🛈 🔒 https://timueh.github.io/PolyChaos.jl/dev/	
	» Overview Celit on GitHub	
PolyChaos.jl	Overview	
Search docs	PolyChaos is a collection of numerical routines for orthogonal polynomials written in the Julia programming language. Starting from some non-negative weight (aka an absolutely continuous nonnegative measure),	
Overview	PolyChaos allows	
Installation	 to compute the coefficients for the monic three-term recurrence relation, 	
References	 to evaluate the orthogonal polynomials at arbitrary points, 	
Contributing	to compute the quadrature rule,	
Citing	 to compute tensors of scalar products, to do all of the above in a multivariate setting (aka product measures). 	
Type Hierarchy		
туре піетаї спу	If the weight function is a probability density function, PolyChaos further provides routines to compute	
Usage	porynomial chaos expansions (PCLS) of random variables with this very density function. These routines allow	
Numerical Integration	 to compute affine PCE coefficients for arbitrary densities, 	
Ouadrature Rules	to compute moments,	
	 to compute the tensors of scalar products. 	

→ Arbitrary densities?

- Easy syntax
- Multiple dispatch
- Dynamically-typed
- Metaprogramming
- Package management
- Open source
- Unicode support

Contributors welcome

github.com/timueh/PolyChaos.jl

timueh.github.io/PolyChaos.jl/stable/

tillmann.muehlpfordt@kit.edu

KIT – The Research University in the Helmholtz Association

