

Cigré TAG 4, Working Group B2.59

Ampacity forecasting using machine learning: an approach based on distributed weather measurements

PhD cand. Gabriela Molinar

Institute for Information Processing Technologies (ITIV), Prof. Dr. rer. nat. Wilhelm Stork

Some background: PhD cand. Gabriela Molinar

- Electronics Engineer from the Simon Bolivar University, Caracas – Venezuela
- Exchange year at the KIT in Karlsruhe Germany
- Thesis written under the supervision of Prof.
 Wilhelm Stork
 - → PhD position from April 2016

Key competences: Systems Engineering (Prof. Sax)

- Embedded Systems (Prof. Becker)
- Intelligent sensor networks, microsystems and Optics (Prof. Stork)

Research areas Prof. Stork:

- Optical sensors and wearables for medical systems
- Virtual and Augmented Reality
- Sensor networks for indoor navigation
- Artificial Intelligence for automotive, medical systems, smart home and smart grid applications

Institute for Information Processing Technologies at KIT

Electrical Network Optimization, before Reinforcement, before Expansion

NOVA Prinzip, German Federal Network Agency

Dynamic Line Rating helps TSOs to optimize the use of the electrical network

A DLR forecast is necessary!

TransnetBW, https://www.transnetbw.de/de/welt-der-energie/nova-prinzip

State-of-the-art: Numerical weather prediction

Deutscher Wetterdienst (DWD), "Wettermodelle," 2017.

G. Müller-Westermeier, "Verfügbarkeit und Qualität flächenbezogener Klimadaten," Deutscher Wetterdienst, Abteilung Klimaüberwachung. [Online]. Available: https://www.dwd.de/DE/leistungen/klimakartendeutschland/detailbeschreibung.html. [Accessed: 10-Feb-2019].

Spatial resolution up to 2.5 km \rightarrow Not enough for DLR forecasting!

Solution: Distributed weather sensor network

03.09.2019 Gabriela Molinar – PrognoNetz

6

Solution: PrognoNetz

PrognoNetz Project

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

January 2019 – December 2021

Understanding the data

Criteria for database selection:

- Measured weather parameters:
 - For DLR calculation: Temperature, wind, solar radiation
 - Additional information for a better forecast: Pressure, relative humidity
- Geographical distribution:
 - Measurement at line level: at least 15 m
 - High spatial density sensor network
- Temporal coverage and resolution:
 - ✓ At least 3 years historical data
 (1 year for each: training, validation and test)
 - ✓ One hour resolution or better

Simulated overhead line, going along weather stations from the meteorological monitoring network from the Idaho National Laboratory (USA)

Understanding the data

Criteria for database selection:

- Measured weather parameters:
 - For DLR calculation: Temperature, wind, solar radiation
 - Additional information for a better forecast: Pressure, relative humidity
- Geographical distribution:
 - Measurement at line level: at least 15 m
 - High spatial density sensor network
- Temporal coverage and resolution:
 - ✓ At least 3 years historical data
 (1 year for each: training, validation and test)
 - ✓ One hour resolution or better

Simulated overhead line, going along weather stations from the meteorological monitoring network from the Idaho National Laboratory (USA)

Algorithm selection

Evaluation of meteorological scales

System design and benchmark

	Model	MAPE			MAE(t-19)	STD(t-48)
		t=1	t=24	<i>t=48</i>	<i>MAL</i> (<i>l</i> -40)	51D (l-40)
Exploitation	Persistence	21,75%	21,82%	23,68%	419,57 A	535,44 A
	LSTM- SISO	18,66%	18,36%	18,49%	326,22 A	408,14 A
	LSTM- Concat	13,40%	16,50%	17,67%	307,87 A	388,48 A
	QRF	11,37%	16,52%	17,08%	284,11 A	352,81 A

Icons: www.flaticon.com

Benchmark: graphical representation

Summary and outlook

- Ampacity forecasting generated by historical and distributed weather data is possible
 - The accuracy can be smaller than 20% as expected
 - The standard deviation is in the order of 300 to 500 A
- As next steps:
 - Comparison with NWP-based ampacity forecasting
 - Combination of historical models with NWP models

Thank you for your attention

Questions?

Cigré TAG 4, Working Group B2.59

Ampacity forecasting using machine learning: an approach based on distributed weather measurements

PhD cand. Gabriela Molinar