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This paper presents two sequential friction-spring damper configurations and devel-

ops numerical and analytical models, which describe the systems’ behavior. The

dampers rely on the non-smooth characteristics of dry friction to quench unwanted

oscillations and only dissipate energy once a preset breakaway force of the friction

element is exceeded. Since no additional control is required and the dissipation is

only present within a given frequency range, this passive amplitude adaptive dissi-

pation contributes to a higher energy efficiency. The dampers’ equations of motion

are derived and implemented in a numerical model to gain the first insights into the

dampers’ behavior. These equations of motion are analyzed via averaging methods

in combination with a modal decoupling for nonlinear systems, which lead to the

dampers’ analytical models. The results from both models are compared and show

reasonable agreement within the validity range of asymptotic methods. This work

proposes two friction based amplitude adaptive dampers and offers a starting point

for future experimental validation.
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1 INTRODUCTION

If modern machines are to meet the standards set by political requirements and become environmentally friendly, efficient
mechanical dampers are required. Every percentage increasing the mechanical efficiency of a machine contributes to the fulfill-
ment of these goals. In general, dampers are introduced in machines in order to quench unwanted and also partly unavoidable
oscillations in mechanical systems. Although in many cases dampers are designed to maximize energy dissipation, the recent
importance of energetic efficiency requires that only as much energy should be dissipated as necessary.

To quench unwanted oscillations most applications rely on introducing damping in a viscous form, e.g hydraulic shock
absorbers in the automotive industry,[1] or by increasing the structures’ already present material damping, e.g constrained layer
damping.[2] This type of damping is always present and therefore constantly dissipating energy, even when this is not required,
thus reducing the energy efficiency of the system. However, these are not the only way to introduce dampers into machines.
Impact dampers for example rely on collision masses and have been studied in [3–7] mainly in three variations: with clearance,
with a singular impact mass, and with multiple impact masses. Impact dampers were also investigated for turbomaschinery in
[8]. Closely related to impact dampers are tuned liquid dampers,[9–11] which take advantage of a water tank and sloshing to
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F I G U R E 1 Dynamic vibration absorber

F I G U R E 2 Dynamic vibration isolator

reduce the main systems amplitudes. Magneto-electro-rheological dampers[12–15] constitute a damper with actively adjustable
parameters, e.g. stiffness and breakaway force. Dampers relying on nonlinear viscous relationships have been studied in [16–18].
Vibration absorbers for turbomachinery were studied in [19,20], whereas dampers based on a nonlinear generalization of Den
Hartog’s Equal-Peak Method are investigated in [21–24]. Friction dampers are often found in between turbine blades and disks
or between the blades themselves.[25–28] Works that model turbine blades as cantilever beams with friction dampers are seen in
[28–31]. Furthermore, friction dampers are also implemented in civil engineering structures, e.g beam-to-column joints and in
the damping of cable oscillations, as presented in [32–34].

In [35] a friction damper based on a sequential friction-spring element is proposed and studied. The proposed damper is able
to reduce the amplitudes of the main mass in two different scenarios: in the case of external force excitation and in the case of
self-excitation due to a negative friction gradient. Additionally, it was found that the amplitude reduction effect mainly comes
from the switching between the system’s two eigenfrequencies, one in the stick-phase and one in the slip-phase.

This work studies the effects of such an sequential friction-spring element in a two mass system in different arrangements.
The stick-slip behavior of dry friction is taken into account and used to generate a local energy dissipation in a given frequency
regime. The ideas proposed in the work are based on the sequential friction-spring element proposed in [35]. In Section 2 the
equations of motion describing both dampers are derived, and an estimate of the domain of the systems’ structural change
is presented. A numerical model and parameters studies of the system are shown in Section 3. In Section 4 the equations of
motion of the proposed dampers are analyzed based on averaging methods and a modal decoupling method presented in [36].
Additionally characteristic values of the system are derived and the analytical and numerical results are compared. Finally, the
conclusions of this work are summarized in Section 5.

2 CONSIDERED SYSTEMS: DAMPER DESCRIPTION AND EQUATIONS OF
MOTION

This work presents two friction based dampers: a dynamic vibration absorber (Figure 1) and a dynamic vibration isolator (Fig-
ure 2). These dampers differ in the placement of the sequential friction-spring element, which is composed by a sequential
arrangement of an second spring and a parallel arrangement of a dry friction and a third spring (𝑐3). The third spring is only
active while the dry friction slides. This sequential element contains the dry friction and thus determines the stick-slip behavior
of the dampers. Independent from the friction element the second spring (𝑐2) is always active. In contrast the third spring has
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an influence on the system dynamics only when the dry friction allows a relative movement. The friction force model used in
the present paper is described through the simple Coulomb friction. Therefore, the friction coefficient and normal load remain
constant in the friction element, and a difference between sticking and sliding friction coefficients is neglected. This result in a
non-smooth model of the Fillipov-type,[37,38] where different equations of motion are implemented for the sticking and sliding
motions. Once the friction element allows a relative movement the stiffness of the system changes from solely the second spring
stiffness to a lower stiffness, which is given by sequential arrangement of the second and third springs. This leads to a change in
the eigenfrequencies of the system. Both dampers have a linear and nonlinear ranges, which are respectively determined by the
sticking and sliding state of the friction element. The dampers aim to improve the dynamic behavior of a primary system (first
spring 𝑐1, first mass particle 𝑚1) combined with a tuned vibration absorber (second spring 𝑐2, second mass particle 𝑚2) attached
to it. The behavior improvement is achieved by replacing either the first or second spring with the sequential friction-spring
element, allowing the sequential element to react either to the absolute motion of the first mass or the relative motion between
the masses respectively. The following subsection presents the equations of motion of both absorbers and derives an estimate
for the structural change between the linear sticking system and the nonlinear stick-slip motion.

2.1 Dynamic vibration absorber
The dynamic vibrations absorber is composed of two masses 𝑚1 and 𝑚2. The first mass is connected to the environment via
the first spring 𝑐1, whereas the second mass is attached to the first one via the sequential friction-spring element. The friction-
spring element is composed of the second spring 𝑐2, the third spring 𝑐3, and the dry friction 𝑅. The position of the masses
𝑚1 and 𝑚2 are respectively described by the coordinates 𝑥1 and 𝑥2, and the coordinate 𝑢 describes the connecting point in the
friction-spring element.

The dynamics of this damper are characterized by two discrete states: a stick-phase and a slip-phase. The system finds itself
in the stick-phase, as long as the magnitude of the stiction force 𝐻 is smaller than the breakaway force 𝑅 (|𝐻| ≤ 𝑅) and the
kinematic condition �̇� = �̇�2 is fulfilled. Once the kinematic condition is broken, the dry friction element slides, allows a relative
motion, and dissipates energy. The equations of motion for both phases are given as follows

stick − phase ∶
⎧⎪⎨⎪⎩
𝑚1�̈�1 + 𝑐1𝑥1 + 𝑐2(𝑥1 − 𝑢) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑢 − 𝑥1) = 0
𝐻 = 𝑐2(𝑢 − 𝑥1) − 𝑐3(𝑥2 − 𝑢)

, (1)

slip − phase ∶
⎧⎪⎨⎪⎩
𝑚1�̈�1 + 𝑐1𝑥1 + 𝑐2(𝑥1 − 𝑢) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐3(𝑥2 − 𝑢) +𝑅sign(�̇�2 − �̇�) = 0
(𝑐2 + 𝑐3)𝑢 = 𝑐2𝑥1 + 𝑐3𝑥2 +𝑅sign(�̇�2 − �̇�)

. (2)

The sticking phase is described by two equations of motion and a constraint force equation, whereas the slip-phase is described
by two equations of motion and a third equation for 𝑢. The variable 𝑢 does not have its own dynamics and thus sgn(�̇�2 − �̇�) =
sgn(�̇�2 − �̇�1). Introducing this relation in the equation for 𝑢 yields an algebraic equation and therefore 𝑢 is considered a slave
variable.[39]

As shown in [36], it is intuitive, that the nonlinear frequency-response curve will remain on that of the sticking system until a
given breakaway amplitude, followed by a nonlinear range, and finalized again on the frequency-response curve of the sticking
system. Since the nonlinearities in this system are only present in the slip-phase, the solution of Equation (1) is obtained with
linear methods. Furthermore, an estimate of the breakaway amplitude is derived with the linear solution, for a detailed description
see Appendix A. Introducing the solution of the linear system into |𝐻| ≤ 𝑅 in combination with the triangle inequality yields
a frequency dependent limit amplitude 𝐴𝐿(Ω)

|𝐻| = |𝑐2(𝑢 − 𝑥1) − 𝑐3(𝑥2 − 𝑢)| ≤ 𝑅, (3)

with 𝑥1 = 𝐴1(Ω), 𝑥2 =
𝐴1(Ω)𝑐2

𝑐2 − 𝑚2Ω2 , 𝑢 = 𝑥2 −𝑤0 & 𝑤0 = const., (4)

𝐴1(Ω) ≤ 𝐴𝐿(Ω) =
|||||𝑚2Ω2 − 𝑐2

𝑚2Ω2𝑐2

|||||(𝑅 − (𝑐2 + 𝑐3)|𝑤0|). (5)

 15214001, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.201800293 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 21 ARAMENDIZ ET AL.

F I G U R E 3 Structural change estimation for 𝑤0 = 0. (a) Exemplary case with three linear ranges and two nonlinear ranges with standard

parameters and 𝑅 = 0.60 N and 𝐹 = 0.45 N. (b) Exemplary case with two linear ranges and one nonlinear range with standard parameters and

𝑅 = 0.45 N and 𝐹 = 0.60 N

Since the triangle inequality is applied, 𝐴𝐿(Ω) is a conservative estimate. Thus the Amplitudes below 𝐴𝐿(Ω) correspond to the
linear system; the ones above can correspond to the nonlinear system and are yet to be determined. Considering that the limit
amplitude is per definition positive, Equation (5) yields a maximum value for the relative displacement 𝑤0 in the sequential
friction-spring element. The limit curve for two exemplary cases are plotted in Figure 3. These cases are generated using the
numerical models and standard parameters listed in Section 3. Only the breakaway force 𝑅 and excitation amplitude 𝐹 were var-
ied. These cases represent two qualitatively different scenarios, which differ through the existence of an antiresonance frequency.
An antiresonance frequency is achieved, when the system is completely in the stick-phase at the frequency ΩAR =

√
𝑐2∕𝑚2.

Therefore, the frequency ΩAR should belong to the linear range. The linear and nonlinear ranges are determined by the inter-
sections of the limit curve and the frequency-response curve of the sticking system. The limit curve in Figure 3(a) intersects
the frequency-response curve of the sticking system 𝐴𝑥1,𝐻

four times leading to three linear ranges and two nonlinear ranges,
whereas the curve in Figure 3(b) only intersects the linear system at two frequencies. As mentioned above, the main qualitative
difference between these two systems lies in the antiresonance frequency in case (a), due to the linear range in the vicinity of
ΩAR. This linear range is achieved when four intersections of the limit curve and the frequency response are found. To this end
the slopes of the limit curve are chosen higher than that of the linear system at the antiresonant frequency. This is a helpful
characteristic, when designing such dampers. The existence condition for an antiresonance frequency yields

𝑅 ≥ 𝐹 . (6)

An last possible scenario includes a system with an antiresonance frequency and unbounded amplitudes, in contrast to Fig-
ure 3(a). This occurs a the nonlinear stick-slip motion occurs at an eigenfrequency of the slipping system. In order to avoid
unbounded amplitudes, the linear sticking range should include the eigenfrequencies of the slipping system.

2.2 Dynamic vibration isolator
Analogously to the dynamic vibration absorber in Section 2.1 the dynamic vibration isolator is also composed of two masses.
In this arrangement the first mass 𝑚1 is supported by the sequential friction-spring element (𝑐1, 𝑐3, and 𝑅). The second mass is
attached to the first via the second spring 𝑐2. As with the first damper, the motion of the dynamic vibration isolator is characterized
by the stick-phase and the slip-phase, which are described by

stick − phase ∶
⎧⎪⎨⎪⎩
𝑚1�̈�1 + 𝑐1(𝑥1 − 𝑢) + 𝑐2(𝑥1 − 𝑥2) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑥2 − 𝑥1) = 0
𝐻 = 𝑐1(𝑥1 − 𝑢) − 𝑐3𝑢

(7)

slip − phase ∶
⎧⎪⎨⎪⎩
𝑚1�̈�1 + 𝑐1(𝑥1 − 𝑢) + 𝑐2(𝑥1 − 𝑥2) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑥2 − 𝑥1) = 0
𝑅sgn(�̇�1) + 𝑐3𝑢 = 𝑐1(𝑥1 − 𝑢)

. (8)
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F I G U R E 4 Structural change estimation for 𝑢0 = 0. (a) Exemplary case with limited frequency-response function with standard parameters and

𝑐3 = 0.25 N/m, 𝑅 = 0.60 N and 𝐹 = 0.45 N. (b) Exemplary case without limited frequency-response function with standard parameters and

𝑐3 = 0.25 N/m, 𝑅 = 0.45 N and 𝐹 = 0.60 N

Although the equations of motion in Equations (7) and (8) are similar, they differ fundamentally because of the variable 𝑢. Since
the dry-friction element prevents relative movement in the stick-phase, 𝑢 is constant throughout this phase, whereas the variable
𝑢 in the slip-phase is determined by the algebraic equation in Equation (8). In this case the variable 𝑢 is also a slave variable.
Using the same method as in Subsection 2.1, see Appendix A the limit amplitude 𝐴𝐿 for this case is derived

𝐴1(Ω) ≤ 𝐴𝐿 =
𝑅 − (𝑐1 + 𝑐3)|𝑢0|

𝑐1
, with |𝑢0| ≤ 𝑅

𝑐1 + 𝑐3
. (9)

In this case the limit amplitude, which separates the linear and nonlinear systems, does not depend on the excitation frequency.
It is a constant value depending on the breakaway force 𝑅, the springs 𝑐1 and 𝑐3, and the prestress 𝑢0. It is observed that as long
as 𝐴𝐿 > 0 the frequency-response curve of the dynamic vibration isolator always has three linear ranges that are separated by
two nonlinear ranges. The two possible, qualitatively different scenarios are considered in Figure 4. These differ by the bounded
and unbounded vibration amplitudes. As in Section 2.1, the linear range of the dynamic vibration isolator should include the
eigenfrequencies of the slipping system, in order to avoid large amplitudes in the nonlinear range. Furthermore, for 𝐴𝐿 > 0 an
antiresonance frequency always exists.

3 NUMERICAL MODEL AND PARAMETER STUDIES

In order to obtain a first insight into the dynamics of the dampers a numerical model is developed. The numerical simulations
take into account the stick-slip phases with the help of a Karnopp-friction model.[40] The periodic solution of the dampers
is obtained with a shooting method.[41] Afterwards, parameter studies for the breakaway force 𝑅 and the third spring 𝑐3 are
made.

3.1 Implementation of the numerical model
The numerical model is derived in this subsection for the dynamic vibration absorber and can be analogously obtained for
the dynamic vibration isolator. Using the Karnopp-friction model a vicinity 2𝜈 of small relative velocities 𝑣rel = �̇�2 − �̇� of the
sequential spring element is defined. This simplifies the numerical handling of the relative velocity zero-crossing and yields for
the dynamic vibration absorber a friction force defined in a piecewise manner:

𝐹friction =

{
𝐻 = 𝑐2(𝑢 − 𝑥1) − 𝑐3(𝑥2 − 𝑢), |�̇�2 − �̇�| ≤ 𝜈 and |𝐻| ≤ 𝑅

𝑅sgn(�̇�2 − �̇�), else
. (10)
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F I G U R E 5 Friction Force vs. time (left) and

friction force vs. relative velocity 𝑣rel = �̇�2 − �̇� for the

dynamic vibration absorber. With 𝑚1 = 1kg, 𝑚2 =
0.1kg, 𝑐1 = 1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 10N/m, 𝑅 =
0.5 𝐹 = 0.01N, Ω = 0.854 rad/s, 𝜈 = 1e − 10

F I G U R E 6 Friction Force vs. time (left) and

friction force vs. relative velocity 𝑣rel = �̇�2 − �̇� for the

dynamic vibration isolator. With 𝑚1 = 1kg, 𝑚2 =
0.1kg, 𝑐1 = 1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 100N/m, 𝑅 =
1.5 𝐹 = 0.01N, Ω = 0.854 rad/s, 𝜈 = 1e − 10

Introducing this force in the system yields piecewise defined equations of motion

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑚1�̈�1 + 𝑐1𝑥1 + 𝑐2(𝑥1 − 𝑢) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑢 − 𝑥1) = 0
𝑢 = 𝑥2 −𝑤0, 𝑤0 = const.

, |�̇�2 − �̇�| ≤ 𝜈 and |𝑐2(𝑢 − 𝑥1) − 𝑐3(𝑥2 − 𝑢)| ≤ 𝑅

𝑚1�̈�1 + 𝑐1𝑥1 + 𝑐2(𝑥1 − 𝑢) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐3(𝑥2 − 𝑢) +𝑅sgn(�̇�2 − �̇�) = 0
𝑢 = (𝑐2𝑥1 + 𝑐3𝑥2 +𝑅sign(�̇�2 − �̇�))∕(𝑐2 + 𝑐3)

, else

. (11)

Applying the identical procedure to the equations of motion of the dynamic vibration isolator yields

𝐹friction =

{
𝐻 = 𝑐1(𝑥1 − 𝑢) − 𝑐3𝑢, |�̇�| ≤ 𝜈 and |𝐻| ≤ 𝑅

𝑅sgn(�̇�), else
(12)

for the piecewise friction force and the piecewise equations of motion are given as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑚1�̈�1 + 𝑐1(𝑥1 − 𝑢) + 𝑐2(𝑥1 − 𝑥2) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑥2 − 𝑥1) = 0
𝑢 = const.

, |�̇�| ≤ 𝜈 and |𝐻| ≤ 𝑅

𝑚1�̈�1 + 𝑐1(𝑥1 − 𝑢) + 𝑐2(𝑥1 − 𝑥2) = 𝐹 sinΩ𝑡

𝑚2�̈�2 + 𝑐2(𝑥2 − 𝑥1) = 0
𝑢 = (𝑐1 − 𝑅sgn(�̇�1))∕(𝑐1 + 𝑐3)

, else

. (13)

Figures 5 and 6 show the friction force plotted against the time and the relative velocity of the friction element. The fric-
tion forces are calculated using Equations (10) and (12) for the dynamic vibration absorber and the dynamic vibration isolator
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F I G U R E 7 Parameter study: dynamic vibration

absorber - breakaway force 𝑅 ∈ [0.3N(blue), 0.8N(red)]
in steps of 0.02 N. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 10N/m, 𝐹 = 0.01N

F I G U R E 8 Parameter study: dynamic vibration

absorber - stiffness 𝑐3 ∈ [0.01N∕m(blue), 10N∕m(red)]
in steps of 0.01 N/m until 1 N/m afterwards in steps of

1N/m. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 = 1N/m, 𝑐2 =
0.1N/m, 𝑅 = 0.5N, 𝐹 = 0.01N

respectively. The excitation frequency of Ω = 0.854 rad/s was chosen with the nonlinear stick-slip range of the first eigenfre-
quency. Despite the high inertia forces present in the resonance regime, noticeable stick- and slip-phases are observed. Both
oscillations are characterized by two stick-phases and two slip phases, with continuous transitions, as is common for a Coulomb
friction model.

In order to obtain the frequency-response function of the system, the periodic solution for each excitation frequency is needed.
To this end a shooting method is implemented in which the necessary derivatives are calculated numerically.[41] Both dampers
introduce the third spring 𝑐3 and the breakaway force 𝑅 as additional parameters in the system. Since the second mass particle
𝑚2 and second spring 𝑐2 are tuned with respect to the main mass particle, only the newly introduced parameters can be freely
chosen. Thus, only the two above mentioned parameters are studied. Since the improvement of the main system’s dynamics has
a higher priority the parameter studies are focused mainly on the first coordinate 𝑥1. The results for the second coordinate 𝑥2
are presented in Appendix B.

3.2 Parameter study: Dynamic vibration absorber
The left plot in Figure 7 corresponds to the frequency-response function of the coordinate 𝑥1 in the vicinity of the first eigenfre-
quency, and accordingly the second eigenfrequency is observed in the right plot. For selected values of 𝑅 the damper is able to
limit the amplitudes in the frequency-response function, although the dissipated energy is only proportional to the amplitude of
the relative movement. The amplitudes for the second eigenfrequency are noticeably lower than that for the first eigenfrequency.
This is due to the corresponding eigenmode for each resonance regime. In the vicinity of the second eigenmode the variables
𝑥1 and 𝑥2 are out of phase leading to higher relative displacements between the two coordinates. With higher relative displace-
ments the sequential friction-spring element is able to dissipate more energy. An additional finding of this parameter study is
the existence of an optimal value for the breakaway force 𝑅. For the considered friction model this would result in finding the
optimal friction coefficient for a given normal load or vice versa, similar investigation are found in [42]. The parameter study
in Figure 8 shows the same behavior between the first and second frequencies, which is expected since the sequential friction-
spring element still reacts to the relative motion. In contrast to the first parameter study no optimal value for the stiffness 𝑐3 is
found. The study shows smaller amplitudes in the frequency-response curve with smaller stiffness values. Correspondingly, the
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8 of 21 ARAMENDIZ ET AL.

F I G U R E 9 Parameter study: dynamic vibration

isolator - breakaway force 𝑅 ∈ [0.9N(blue), 2.0N(red)]
in steps of 0.05 N. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 100N/m, 𝐹 = 0.01N

F I G U R E 10 Parameter study: dynamic vibration

isolator - stiffness 𝑐3 ∈ [0.1N∕m(blue), 100N∕m(red)]
in steps of 0.1 N/m until 1, afterwards steps of 1 N/m

until 10 N/m, and finally steps of 10 N/m until 100 N/m.

With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 = 1N/m, 𝑐2 =
0.1N/m, 𝑅 = 1.5N, 𝐹 = 0.01N

stiffness of the third spring should be chosen as small as possible. However 𝑐3 should not be equal to zero, since this leads to no
change in the eigenfrequency of the system between the sticking and sliding configurations.

3.3 Parameter study: Dynamic vibration isolator
Analogous to the dynamic vibration absorber both the breakaway force 𝑅 and the stiffness 𝑐3 are studied. In contrast to the
parameter study for the vibration absorber Figure 9 shows an equal damping of both eigenfrequencies. This is expected, since
the sequential friction-spring element in this case replaces the first spring and reacts to the absolute movement of the main
mass. Therefore it is automatically activate equally at both eigenfrequencies, once the constant limit amplitude is overcome.
This parameter study also reveals the existence of an optimal breakaway force. The study of the third spring 𝑐3 shows the same
behavior as with the dynamic vibration absorber. Thus, for both systems the highest amplitude reduction is obtained with the
highest change between the eigenfrequencies of the linear sticking system and the nonlinear stick-slip system. These dampers
just efficiently utilize the basic concept of any vibration absorber.[43]

4 ANALYTICAL MODEL: COMPLETE MODAL DECOUPLING AND FIRST
ORDER AVERAGING

The numerical simulations offer first insights into the influence of the additional parameters. However, they do not offer a
deeper insight and require new simulations for each parameter set. This work offers a deeper understanding of these dampers by
providing an analytical solution that shows the relationship between the system parameters and the frequency-response function.
To this end the systems’ equations of motion are transformed and a nonlinear modal decoupling is applied. Afterwards the
nonlinear frequency-response function is derived for both dampers via averaging methods.
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ARAMENDIZ ET AL. 9 of 21

4.1 Equations transformations and complete modal decoupling
For the sake of brevity the detailed transformations presented in this section are limited to the dynamic vibration absorber.
However, these can be analogously applied to the dynamic vibration isolator. First, a variable transformation is introduced in the
equations of motion of the sticking system. Additionally, the equations are nondimensionalized. The following transformations
and nondimensional parameters are introduced:

𝑧1 =
𝑚1𝑥1 + 𝑚2𝑥2

𝑚1 + 𝑚2
, 𝑧2 = 𝑥2 − 𝑥1, 𝑤 = 𝑥2 − 𝑢, 𝜇 =

𝑚2
𝑚1 + 𝑚2

, 𝑘 =
√

𝑐1
𝑚1

, 𝜆 =
√

𝑐2
𝑚2

, 𝑝 = 𝜆2

𝑘2
,

𝜏 = 𝑘𝑡, (⋅)′ = d
d𝜏

(⋅), 𝜂 = Ω
𝑘
, 𝜀𝜅 =

𝑐2
𝑐2 + 𝑐3

, 𝜀𝜌 = 𝑅

𝑐2 + 𝑐3
, 𝜀𝑓 = 𝐹

𝑚1𝑘
2 , 𝜀 ≪ 1.

(14)

The coordinate 𝑧1 describes the position of the center of mass of the dual mass system, whereas the second coordinate 𝑧2
describes the relative motion between the masses. The coordinate 𝑤 describes the relative motion between the ends of the dry
friction element. Furthermore it includes the stick-slip behavior in the equations of motion of the system, and is defined in
Section 4.2. Additionally, the small parameter 𝜀 is introduced. Making use of the parameters in Equation (14), Equation (2) is
rewritten in the following form:

𝑧′′1 + (1 − 𝜇)𝑧1 − 𝜇(1 − 𝜇)𝑧2 = 𝜀𝑓 (1 − 𝜇) sin 𝜂𝜏 = 𝜀𝑓𝑁𝐿,1(𝑧1, 𝑧2)

𝑧′′2 − 𝑧1 +
(
𝜇 + 𝑝

1 − 𝜇

)
𝑧2 =

𝑝

1 − 𝜇
𝑤(𝑧2) − 𝜀𝑓 sin 𝜂𝜏 = 𝜀𝑓𝑁𝐿,2(𝑧1, 𝑧2)

𝑤(𝑧2) = 𝜀(𝜅𝑧2 − 𝜌sgn(𝑧′2))

. (15)

Rewriting this last equation in a compact form with the mass matrix 𝑴 , the stiffness matrix 𝑪 , and the nonlinear vector 𝒇𝑁𝐿(𝒛)
results in

𝑴�̈� + 𝑪𝒛 = 𝜀𝒇𝑁𝐿(𝒛)

𝑤(𝑧2) = 𝜀(𝜅𝑧2 − 𝜌sgn(𝑧′2))
. (16)

For the sake of generality the nonlinear right hand sides of Equation (15) and (16) are assumed to be functions of system’s
degrees of freedom. Although the right hand side of Equation (15) is small, the equations cannot be averaged because of the
coupling on the left hand side. In order to decouple the system’s equations a nonlinear modal decoupling[36,44] is applied. The
modal matrix 𝑹 is calculated based on the linear unperturbed system (𝜀 = 0) and yields the following equations in the modal
coordinates 𝑞1 and 𝑞2

𝑹𝑇𝑴𝑹�̈� +𝑹𝑇𝑪𝑹𝒒 = 𝑹𝑇𝒇 (𝒒), 𝑹 =

(
𝑟11 𝑟12

𝑟21 𝑟22

)
𝑞′′1 + 𝜂21𝑞1 = 𝜀(𝑟11𝑓𝑁𝐿,1(𝑞1, 𝑞2)) + 𝑟21𝑓𝑁𝐿,2(𝑞1, 𝑞2))

𝑞′′2 + 𝜂22𝑞2 = 𝜀(𝑟12𝑓𝑁𝐿,1(𝑞1, 𝑞2)) + 𝑟22𝑓𝑁𝐿,2(𝑞1, 𝑞2))

(17)

Equation (17) has a decoupled left hand side, however the right hand side is still coupled due to the nonlinear terms. Each
modal coordinate has to be investigated in the vicinity of its corresponding eigenfrequency. Considering the vicinity of the
first eigenfrequency, it is clear, at least in linear systems, that the first modal coordinate has much higher amplitudes in the
frequency-response curve as the second modal coordinate. The larger the distance is between the eigenfrequencies, the smaller
the second modal coordinate is in the resonance regime of the first modal coordinate and vice versa. Since the system is weakly
nonlinear, it can be assumed, that it will behave in a similar way. Thus, in the vicinity of the first eigenfrequency the second
modal coordinate is neglected for the first order averaging method, since it will have small values ((𝜀)), provided the difference
between the eigenfrequencies is sufficiently large. Based on the linear system the procedure is valid as long as 𝜂2 − 𝜂1 = (1),
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10 of 21 ARAMENDIZ ET AL.

see Appendix C. This method can be expanded to 𝑛-degrees of freedom. Analogously in the vicinity of a certain eigenfrequency
only the corresponding modal coordinate is considered and all others are neglected. For Equation (17) this results in

𝑞′′1 + 𝜂21𝑞1 = 𝜀(𝑟11𝑓𝑁𝐿,1(𝑞1, 0)) + 𝑟21𝑓𝑁𝐿,2(𝑞1, 0))

𝑞′′2 + 𝜂22𝑞2 = 𝜀(𝑟12𝑓𝑁𝐿,1(0, 𝑞2)) + 𝑟22𝑓𝑁𝐿,2(0, 𝑞2))
(18)

Applying this procedure to the equations of motion of the dynamic vibration absorber leads to

𝑞′′1 + 𝜂21𝑞1 = 𝜀𝑓 (𝜇 − 1)(𝜇𝑟21 − 𝑟11) sin 𝜂𝜏 + 𝜇𝑝𝑟21𝑤(𝑞1)

𝑞′′2 + 𝜂22𝑞2 = 𝜀𝑓 (𝜇 − 1)(𝜇𝑟22 − 𝑟12) sin 𝜂𝜏 + 𝜇𝑝𝑟22𝑤(𝑞2)
. (19)

Analogously this modal decoupling is used for the equations of the dynamic vibration isolator. The essential equations are
summarized below:

𝜇 =
𝑚2

𝑚1 + 𝑚2
, 𝑘 =

√
𝑐1
𝑚1

, 𝜆 =
√

𝑐2
𝑚2

, 𝑝 = 𝜆2

𝑘2
, 𝜏 = 𝑘𝑡, (⋅)′ = d

d𝜏
(⋅),

𝜂 = Ω
𝑘
, 𝜀𝜅 =

𝑐1
𝑐1 + 𝑐3

, 𝜀𝜌 = 𝑅

𝑐1 + 𝑐3
, 𝜀𝑓 = 𝐹

𝑚1𝑘
2 , 𝜀 ≪ 1. (20)

𝑢 = 𝜀(𝜅𝑥1 − 𝜌sgn(�̇�1)) = 𝑤 (21)

𝑥′′1 +
(
1 + 𝑝𝜇

1 − 𝜇

)
𝑥1 −

𝑝𝜇

1 − 𝜇
𝑥2 = 𝜀𝑓 sin 𝜂𝜏 +𝑤(𝑥1)

𝑥′′2 − 𝑝𝑥1 + 𝑝𝑥2 = 0 (22)

Decoupling the equations yields

𝑞′′1 + 𝜂21𝑞1 = 𝜀𝑟11𝑓 sin 𝜂𝜏 + 𝑟11𝑤(𝑞1)

𝑞′′2 + 𝜂22𝑞2 = 𝜀𝑟21𝑓 sin 𝜂𝜏 + 𝑟21𝑤(𝑞2)
(23)

4.2 First order averaging: Dynamic vibration absorber
The first order averaging method leads to the analytic expressions that describe the frequency-response function. To this end, the
equations are first brought in standard form with the help of a Van-der-Pol-transformation. Second, an expression for the variable
𝑤 is obtained depending on the corresponding phase angle. Third, the motion of the system is separated into the slow changing
dynamics of the system and the fast pace oscillations. Subsequently the equations are averaged and the resulting expressions for
the frequency-response curve are analyzed. The Van-der-Pol transformation is introduced for each modal coordinate for both
systems in the form

𝑞1 = 𝐴1 sin𝜑1, �̇�1 = 𝐴1𝜂1 cos𝜑1

𝑞2 = 𝐴2 sin𝜑2, �̇�2 = 𝐴2𝜂2 cos𝜑2

. (24)

Additionally, each line of Equation (19) is investigated in the vicinity of the corresponding eigenfrequency, which implies that
the difference between the considered eigenfrequency and the excitation frequency is small, i.e. 𝜂1 − 𝜂 = 𝜀𝛿1 and 𝜂2 − 𝜂 = 𝜀𝛿2.
Furthermore, the slowly changing phase differences 𝜓1 = 𝜑1 − 𝜂𝜏 and 𝜓2 = 𝜑2 − 𝜂𝜏 are introduced. This yields the system in
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ARAMENDIZ ET AL. 11 of 21

the standard form for averaging

𝐴′
1 =

𝜇𝑝𝑟21
𝜂1

𝑤(𝑞1) cos𝜑1 − 𝜀
(1 − 𝜇)(𝑟21𝜇 − 𝑟11) sin(𝜓1 − 𝜑1)

𝜂1
𝑓 cos𝜑1

𝜓 ′
1 = 𝜀𝛿1 −

𝜇𝑝𝑟21
𝐴1𝜂1

𝑤(𝑞1) sin𝜑1 + 𝜀
(1 − 𝜇)(𝑟21𝜇 − 𝑟11) sin(𝜓1 − 𝜑1)

𝐴1𝜂1
𝑓 sin𝜑1

𝜑′
1 = 𝜂1 −

𝜇𝑝𝑟21
𝐴1𝜂1

𝑤(𝑞1) sin𝜑1 + 𝜀
(1 − 𝜇)(𝑟21𝜇 − 𝑟11) sin(𝜓1 − 𝜑1)

𝐴1𝜂1
𝑓 sin𝜑1

, (25)

𝐴′
2 =

𝜇𝑝𝑟22
𝜂2

𝑤(𝑞2) cos𝜑2 − 𝜀
(1 − 𝜇)(𝑟22𝜇 − 𝑟12) sin(𝜓2 − 𝜑2)

𝜂2
𝑓 cos𝜑2

𝜓 ′
2 = 𝜀𝛿2 −

𝜇𝑝𝑟22
𝐴2𝜂2

𝑤(𝑞2) sin𝜑2 + 𝜀
(1 − 𝜇)(𝑟22𝜇 − 𝑟12) sin(𝜓2 − 𝜑2)

𝐴2𝜂2
𝑓 sin𝜑2

𝜑′
2 = 𝜂2 − 𝜀

𝜇𝑝𝑟22
𝐴2𝜂2

𝑤(𝑞2) sin𝜑2 + 𝜀
(1 − 𝜇)(𝑟22𝜇 − 𝑟12) sin(𝜓2 − 𝜑2)

𝐴2𝜂2
𝑓 sin𝜑2

. (26)

In order to evaluate Equation (25) and (26), an explicit form for 𝑤(𝑞𝑖) is required. Using Equation (15) a piecewise function is
defined for 𝑤(𝑞𝑖). This function contains two constant sections that describe the stick phases and two 𝑞𝑖 (i.e 𝐴𝑖, 𝜑𝑖) dependent
sections that describe the slip-phases. Based on [35] and depending on the modal coordinate the nondimensionalized relative
motion of the dry friction is defined as

𝑤(𝑞𝑖) = 𝜀

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝜅𝑟2𝑖𝐴𝑖 + 𝜌, −𝜋∕2 ≤ 𝜑 < 𝜑𝑟,𝑖

𝜅𝑟2𝑖𝐴𝑖 sin𝜑𝑖 − 𝜌, 𝜑𝑟,𝑖 ≤ 𝜑 < 𝜋∕2

𝜅𝑟2𝑖𝐴𝑖 − 𝜌, 𝜋∕2 ≤ 𝜑 < 𝜋 + 𝜑𝑟,𝑖

𝜅𝑟2𝑖𝐴𝑖 sin𝜑𝑖 + 𝜌, 𝜋 + 𝜑𝑟,𝑖 ≤ 𝜑 < 3∕2𝜋

with 𝜑𝑟,𝑖 =

⎧⎪⎪⎨⎪⎪⎩
𝜑𝑟,1 = arcsin

(
1 − 2𝜌

𝜅𝑟21𝐴1

)
𝜑𝑟,2 = arcsin

(
1 − 2𝜌

𝜅𝑟22𝐴2

) (27)

The angles 𝜑𝑟,𝑖 determine the transitions between the sticking and sliding system and are calculated with the continuity condition
for the function 𝑤(𝑞𝑖). Having determined an expression for the function 𝑤(𝑞𝑖), Equation (25) and (26) are averaged over the
corresponding phase angle 𝜑𝑖. In order to distinguish between the general motion and the slowly changing motion, the slow
changing variables are denoted with a bar e.g �̄�𝑖. Averaging these equations yields

�̄�′
1 =

⟨
𝐴′
1
⟩
𝜑1

= 𝜀

𝜂1

(
𝜁𝑤1,cos −

(𝜇 − 1)(𝜇𝑟21 − 𝑟11) sin𝜓1
2𝜂1

𝑓

)
�̄� ′
1 =

⟨
𝜓 ′
1
⟩
𝜑1

= 𝜀

𝜂1

(
𝛿1 + 𝜁𝑤1,sin −

(𝜇 − 1)(𝑟21𝜇 − 𝑟11) cos𝜓1

2�̄�1𝜂1
𝑓

)
(28)

�̄�′
2 =

⟨
𝐴′
2
⟩
𝜑2

= 𝜀

𝜂2

(
𝜁𝑤2,cos −

(𝜇 − 1)(𝜇𝑟22 − 𝑟12) sin𝜓2
2𝜂2

𝑓

)
�̄� ′
2 =

⟨
𝜓 ′
2
⟩
𝜑2

= 𝜀

𝜂2

(
𝛿2 + 𝜁𝑤2,sin −

(𝜇 − 1)(𝑟22𝜇 − 𝑟12) cos𝜓2

2�̄�2𝜂2
𝑓

)
(29)

with

𝜁𝑤1,cos = −2
𝜇 𝑝𝜌

(
𝜅𝑟21 �̄�1 − 𝜌

)
𝜅�̄�1𝜂1 𝜋

𝜁𝑤1,sin = − 𝜇 𝑝

4𝜅�̄�2
1𝜋𝜂1

(
𝜅2𝑟221�̄�

2
1

(
𝜋 + 2 arcsin

(
𝜅𝑟21�̄�1 − 2𝜌

𝜅𝑟21�̄�1

))
+
(
4𝜅𝑟21�̄�1 − 8𝜌

)√
𝜌(𝜅𝑟21 �̄�1 − 𝜌)

)
(30)
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12 of 21 ARAMENDIZ ET AL.

𝜁𝑤2,cos = −2
𝜇 𝑝𝜌

(
𝜅𝑟22 �̄�2 − 𝜌

)
𝜅�̄�2𝜂2 𝜋

𝜁𝑤2,sin = − 𝜇 𝑝

4𝜅�̄�2
2𝜋𝜂2

(
𝜅2𝑟222�̄�

2
2

(
𝜋 + 2 arcsin

(
𝜅𝑟22�̄�2 − 2𝜌

𝜅𝑟22�̄�2

))
+
(
4𝜅𝑟22�̄�2 − 8𝜌

)√
𝜌(𝜅𝑟22 �̄�2 − 𝜌)

)
. (31)

Calculating the stationary solution (�̄�′
1 = 0, �̄� ′

1 = 0) yields an implicit function for the frequency-response curve in the vicinity
of the first eigenfrequency

𝜂 = 𝜂1 + 𝜀𝜁𝑤1,sin ±
𝜀

2�̄�1𝜂1

√
𝑓 2(𝜇 − 1)2(𝜇𝑟21 − 𝑟11)2 − 4𝜁2

𝑤1,cos
𝜂21 . (32)

Analyzing the existence conditions of Equation (32) yields characteristic values of the system’s nonlinear dynamics

ℑ
{√

𝜌(𝜅𝑟21�̄�1 − 𝜌)
}

= 0 ⇒ �̄�1,min1 =
𝜌

𝜅𝑟21
, (33)

ℑ
{√

𝑓 2(𝜇 − 1)2(𝜇𝑟21 − 𝑟11)2 − 4𝜁2
𝑤1,cos

𝜂21

}
= 0 ⇒

�̄�1,min2 = 4𝜇𝑝𝜌2

𝜅
(
4𝜇𝑝𝑟21𝜌 + 𝑓 (𝜇 − 1)(𝜇𝑟21 − 𝑟11)𝜋

)
�̄�1,max = 4𝜇𝑝𝜌2

𝜅
(
4𝜇𝑝𝑟21𝜌 − 𝑓 (𝜇 − 1)(𝜇𝑟21 − 𝑟11)𝜋

) , (34)

�̄�1,max > 0 ⇒ 𝜌1,min =
𝑓 (𝜇 − 1)(𝜇𝑟21 − 𝑟11)𝜋

4𝜇𝑝𝑟21
, (35)

�̄�1,min = max(�̄�1,min1, �̄�1,min2). (36)

Additionally, by deriving the maximum amplitude with respect to the nondimensional friction leads to an expression for the
optimal friction value

𝜌1,opt =
𝑓 (𝜇 − 1)(𝜇𝑟21 − 𝑟11)𝜋

2𝑝𝜇𝑟21
. (37)

Calculating the stationary solution (�̄�′
2 = 0, �̄� ′

2 = 0) yields

𝜂 = 𝜂2 + 𝜀𝜁𝑤2,sin ±
𝜀

2�̄�2𝜂2

√
𝑓 2(𝜇 − 1)2(𝜇𝑟22 − 𝑟12)2 − 4𝜁2

𝑤2,cos
𝜂22 . (38)

Analogously an analysis of Equation (38) results in

�̄�2,min1 =
𝜌

𝜅𝑟22
, (39)

�̄�2,min2 =
4𝜇𝑝𝜌2

𝜅
(
4𝜇𝑝𝑟22𝜌 + 𝑓 (𝜇 − 1)(𝜇𝑟22 − 𝑟12)𝜋

) , (40)

�̄�2,max =
4𝜇𝑝𝜌2

𝜅
(
4𝜇𝑝𝑟22𝜌 − 𝑓 (𝜇 − 1)(𝜇𝑟22 − 𝑟12)𝜋

) , (41)

�̄�2,min = max(�̄�2,min1, �̄�2,min2), (42)

𝜌2,min =
𝑓 (𝜇 − 1)(𝜇𝑟22 − 𝑟12)𝜋

4𝜇𝑝𝑟22
, (43)

𝜌2,opt =
𝑓 (𝜇 − 1)(𝜇𝑟22 − 𝑟12)𝜋

2𝑝𝜇𝑟22
. (44)
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ARAMENDIZ ET AL. 13 of 21

F I G U R E 11 Dynamic vibration absorber

comparison. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 10N/m, 𝑅 = 0.5N, 𝐹 =
0.01N → 𝜇 = 0.1, 𝜀 = 0.01, 𝜅 = 0.99, 𝜌 = 4.95, 𝑓 = 1

F I G U R E 12 Maximum amplitude comparison: Dynamic vibration absorber. With

𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 = 1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 10N/m, 𝐹 = 0.01N → 𝜇 = 0.1, 𝜀 =
0.01, 𝜅 = 0.99, 𝑓 = 1

Two optimal nondimensional friction that each minimize the corresponding resonance peak are obtained. However, since as
seen in Section 3.2 the first peak of the dynamic vibration absorber is much higher than the second one, the first nondimensional
friction value is the decisive optimal value.

Having derived the nonlinear solution for the modal coordinates, all that is left is the reconstruction of the solution in the
original coordinates 𝑥1 and 𝑥2. To this end the following transformations are applied

𝜂 ≈ 𝜂1 ⇒

⎧⎪⎨⎪⎩
𝐴𝑥1

≈
√

�̄�2
1(𝜇𝑟21 − 𝑟11)2

𝐴𝑥2
≈
√

�̄�2
1(𝜇𝑟21 − 𝑟11 − 𝑟21)2

, (45)

𝜂 ≈ 𝜂2 ⇒

⎧⎪⎨⎪⎩
𝐴𝑥1

≈
√

�̄�2
2(𝜇𝑟22 − 𝑟12)2

𝐴𝑥2
≈
√

�̄�2
2(𝜇𝑟22 − 𝑟12 − 𝑟22)2

. (46)

The analytical model is validated by a comparison between its results and the results of the numerical model. This examina-
tion is limited to the vicinities of the eigenfrequencies, since otherwise the nondimensional frequency difference 𝛿𝑖 lies out of
the valid range for the averaging method. The comparison results are presented in Figure 11. The friction force and excitation
force ratio in these investigations were chosen in order to efficiently reduce vibration amplitudes at the resonance, cf. Figure 12.
An acceptable difference within the range of validity for asymptotic methods is noticed between numerical and analytical solu-
tions. Furthermore, a comparison of the maximal amplitude values between the numerical and analytical results is presented in
Figure 12.
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14 of 21 ARAMENDIZ ET AL.

F I G U R E 13 Dynamic vibration isolator

comparison. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 100N/m, 𝑅 = 1.5N, 𝐹 =
0.01N → 𝜇 = 0.1, 𝜀 = 0.01, 𝜅 = 0.99, 𝜌 = 1.49, 𝑓 = 1

4.3 First order averaging: Dynamic vibration isolator
The method applied to the equations of motion of the dynamic vibration absorber is similarly applied to the equations of motion
of the dynamic vibration isolator. A detailed summary of the equations of this damper is presented in Appendix D. In this
section the authors limit themselves to the presentation of both implicit frequency-response curves for each eigenfrequency,
the reconstruction functions, and the optimal non dimensional friction value. The implicit frequency-response curve and the
amplitudes of the original coordinates are described by

𝜂 = 𝜂1 + 𝜀𝜁𝑤1,sin ±
𝜀

2�̄�1𝜂1

√
𝑟211𝑓

2 − 4𝜁2
𝑤1,cos

𝜂21 , (47)

𝜂 = 𝜂2 + 𝜀𝜁𝑤2,sin ±
𝜀

2�̄�2𝜂2

√
𝑟212𝑓

2 − 4𝜁2
𝑤2,cos

𝜂22 , (48)

𝜂 ≈ 𝜂1 ⇒

{
𝐴𝑥1

≈ �̄�1|𝑟11|
𝐴𝑥2

≈ �̄�1|𝑟21| , (49)

𝜂 ≈ 𝜂2 ⇒

{
𝐴𝑥1

≈ �̄�2|𝑟12|
𝐴𝑥2

≈ �̄�2|𝑟22| . (50)

Deriving and optimal friction value for both modal coordinates results in

𝜌1,opt = 𝜌2,opt =
𝜋𝑓

2
. (51)

Independent analysis of both modal coordinates arrive at the same optimal friction value and is identical to the value found
in [35]. This has to be expected, since the sequential friction-spring element reacts, in this case, to the displacement of the
absolute coordinate 𝑥1. As well as with the first damper, the analytical solution for the dynamic vibration absorber shows
acceptable discrepancy compared to the numerical results, see Figure 13. As with the investigations into the dynamic vibration
absorber the magnitudes of the breakaway force and the excitation forces where chosen in order to effectively reduce vibration
amplitudes.

5 CONCLUSIONS

This work proposed two novel implementations of the amplitude-adaptive sequential friction-spring dampers and described
their behavior with numerical and analytical models. The working principle of these dampers relies on alternating frequencies
between the sticking and slipping systems, whereas conventional systems rely mainly on the dissipation achieved by the friction
contact. Springs in series with friction elements can also lead the activation and deactivation of a third spring. However, these
arrangements have a practical disadvantage in the case of an asymmetrical excitation, e.g. 𝐹 (𝑡) = 𝐹0 + 𝐹 sin(Ω𝑡). In such cases
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ARAMENDIZ ET AL. 15 of 21

the relative displacement of the friction contact would steadily increase or decrease depending on the sign of the excitation
offset 𝐹0. In practical situations the relative displacement is bounded, which ultimately results in a restricted damper efficiency.
Additionally, the serial arrangement of a spring and friction element is represented for case where the third spring tends to
zero (𝑐3 → 0). With an adequate choice of the breakaway friction force the proposed dampers are able to limit amplitudes,
despite the dissipation being only proportional to the displacement amplitude. These dampers are able to limit the amplitudes of
the main mass, while maintaining the advantage of an antiresonant frequency. Additionally, depending on the main objective,
either the dynamic vibration absorber or the dynamic vibration isolator can be chosen to reduce the amplitudes in the second
eigenfrequency or in both eigenfrequencies respectively. However, the dynamic vibration absorber has the additional advantage
that it is an add-on solution and can thus be added to existing systems. Apart from the practical advantages, the dynamics of both
system are investigated. Using the linear system an estimation for the breakaway amplitude is obtained. This estimate allows
a description of the systems dynamics outside the resonance regimes. For the dynamic vibration absorber a condition for the
existence of an antiresonant frequency is derived, whereas for the dynamic vibration isolator this frequency is always present.
A numerical model based on a Karnopp-friction contact is presented and used to study the influence of the newly introduced
system parameters. Examining the equations of motion of the system with the nonlinear modal decoupling and averaging methods
leads to implicit functions for the frequency-response curves. The analysis of these functions results in characteristic values of
the damper’s dynamics e.g. maximal amplitude and optimal friction values. Lastly, the analytical results are validated by the
comparison with the numerical model.

The parameter studies in Sections 3.2 and 3.3 show a greater amplitude reduction with lower stiffness values of the partly
operational spring 𝑐3. This case is not analytically investigated in this work, since these values of 𝑐3 lie outside the valid param-
eter range for the chosen method. For the same reason high values of 𝑅 are not investigated. However, this is not critical,
since the optimal friction value lies within the method’s valid parameter range. In order to fully describe amplitude reduction
potential of both dampers, an analytical solution for low stiffness values is required. The numerical and analytical models in
this work use a simple friction model with identical values for the sticking and slipping friction forces, which can be further
improved.

The damper limitations are apparent, when the excitation force on the dampers varies. As seen in the parameter studies in
Section 3, when the friction force is not properly tuned to the excitation force large vibration amplitudes are observed for both
dampers. As such if the magnitude of the excitation force changes the previous optimal force becomes inadequate and unable to
quench unwanted oscillations. For this cases a semi-active or active control should prove advantageous.

Regarding the practical implementation of such dampers the design of springs parallel to friction elements is common in
automotive clutches. A practical implementation is possible both dampers in order to reduce torsional vibrations in drive trains
or translational vibrations in general. The implementation against torsional vibrations can be implemented using existing tech-
nology of clutches and clutch actuators, whereas for the translational motions special design is required. A demonstrator of the
designed principle is under development.
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APPENDIX A: NONLINEAR RANGE ESTIMATION FOR THE VIBRATION ABSORBER AND
VIBRATION ISOLATOR
This appendix addresses the estimation of the linear ranges of both dampers. Since the dampers are linear while in the stick-
phase, their solution is easily obtained. At the limit amplitude 𝐴𝐿(Ω) the stiction condition is broken, and the system transitions
into the nonlinear stick-slip range. The limit amplitude is estimated by introducing the linear solution into the stiction condition
inequalities. The procedure is explained for the dynamic vibration absorber and afterwards summarized by for the dynamic
vibration isolator.

The solution of the dynamic vibration absorber is obtained for the stick-phase via linear methods. Therefore the motion of
the coordinates as well as the stiction force is known. Since in practical applications the homogeneous solution steadily decays
only the forced response of the system is considered. The coordinates 𝑥1, 𝑥2, and 𝑢 are given as

𝑥1(𝑡) =
(𝑐2 − 𝑚2Ω2)𝐹 sinΩ𝑡

𝑚1𝑚2Ω4 − (𝑐1𝑚2 + (𝑚1 + 𝑚2)𝑐2)Ω2 + 𝑐1𝑐2
= 𝐴1(Ω) sinΩ𝑡, (A.1)

𝑥2(𝑡) =
𝑐2𝐹 sinΩ𝑡

𝑚1𝑚2Ω4 − (𝑐1𝑚2 + (𝑚1 + 𝑚2)𝑐2)Ω2 + 𝑐1𝑐2
=

𝐴1(Ω)𝑐2
𝑐2 − 𝑚2Ω2 sinΩ𝑡, (A.2)

𝑢(𝑡) = 𝑥2(𝑡) −𝑤0 & 𝑤0 = 𝑐𝑜𝑛𝑠𝑡. (A.3)

Introducing Equations (A.1)–(A.3) in the stiction force and the stiction condition yields

|𝐻(𝑡)| = |𝑐2(𝑢(𝑡) − 𝑥1(𝑡)) − 𝑐3(𝑥2(𝑡) − 𝑢(𝑡))| = |𝑐2(𝑥2(𝑡) −𝑤0 − 𝑥1(𝑡)) − 𝑐3𝑤0| ≤ 𝑅, (A.4)

=
||||||
(

𝑐22
𝑐2 − 𝑚2Ω2 − 𝑐2

)
𝐴1(Ω) sinΩ𝑡 − (𝑐2 + 𝑐3)𝑤0

|||||| =
||||| 𝑚2Ω2𝑐2
𝑐2 − 𝑚2Ω2𝐴1(Ω) sinΩ𝑡 − (𝑐2 + 𝑐3)𝑤0

||||| ≤ 𝑅. (A.5)

Applying the triangle inequality on Equation (A.5) an estimate for the maximum value of the stiction for is obtained as

|𝐻(𝑡)| = ||||| 𝑚2Ω2𝑐2
𝑐2 − 𝑚2Ω2𝐴1(Ω) sinΩ𝑡 − (𝑐2 + 𝑐3)𝑤0

||||| (A.6)

|𝐻(𝑡)| ≤ ||||| 𝑚2Ω2𝑐2
𝑐2 − 𝑚2Ω2𝐴1(Ω) sinΩ𝑡

||||| + ||−(𝑐2 + 𝑐3)𝑤0|| ≤ ||||| 𝑚2Ω2𝑐2
𝑐2 − 𝑚2Ω2

|||||𝐴1(Ω) + (𝑐2 + 𝑐3)|𝑤0| ≤ 𝑅 (A.7)

Since the triangle inequality was applied Equation (A.7) represents a conservative estimate for the stiction force. Thus the
motion fulling Equation (A.7) will surely be linear. An estimation of the frequency dependent limit amplitude of the linear
system 𝐴𝐿(Ω) is obtained by considering the limit case of Equation (A.7). Oscillation amplitudes below 𝐴𝐿(Ω) lead to a system
which is exclusively in the stick-phase, whereas amplitudes above 𝐴𝐿(Ω) lead to a system in the nonlinear range with alternating
stick- and slip-phases. The limit amplitude is given as

𝐴1(Ω) ≤ 𝐴𝐿(Ω) =
|||||𝑚2Ω2 − 𝑐2

𝑚2Ω2𝑐2

|||||(𝑅 − (𝑐2 + 𝑐3)|𝑤0|), with |𝑤0| ≤ 𝑅

𝑐2 + 𝑐3
. (A.8)

For the dynamic vibration isolator the solution of the stick-phase is identical to Equations (A.1)–(A.3) and is introduced into the
stiction condition

|𝐻| = |𝑐1𝑥1 − (𝑐1 + 𝑐2)𝑢0| ≤ 𝑅. (A.9)
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An analogous procedure is used to determine the limit amplitude of the dynamic vibration isolator. The equations are summarized
as follows

|𝐻| = |𝑐1𝐴1(Ω) sinΩ𝑡 − (𝑐1 + 𝑐3)𝑢0| ≤ |𝑐1𝐴1(Ω) sinΩ𝑡| + | − (𝑐1 + 𝑐3)𝑢0||𝐻| ≤ |𝑐1𝐴1(Ω)| + |(𝑐1 + 𝑐3)𝑢0| ≤ 𝑅

𝐴1(Ω) ≤ 𝐴𝐿 =
𝑅 − (𝑐1 + 𝑐3)|𝑢0|

𝑐1
, with |𝑢0| ≤ 𝑅

𝑐1 + 𝑐3
.

APPENDIX B: PARAMETER STUDY RESULTS FOR THE COORDINATE 𝒙𝟐

F I G U R E B1 Parameter study: dynamic vibration

absorber - breakaway force 𝑅 ∈ [0.3N(blue), 0.8N(red)] in

steps of 0.02 N. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 10N/m, 𝐹 = 0.01N

F I G U R E B2 Parameter study: dynamic vibration

absorber - stiffness 𝑐3 ∈ [0.01N∕m(blue), 10N∕m(red)]
in steps of 0.01 N/m until 1 N/m afterwards in steps of

1N/m. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 = 1N/m, 𝑐2 =
0.1N/m, 𝑅 = 0.5N, 𝐹 = 0.01N

F I G U R E B3 Parameter study: dynamic vibration

isolator - breakaway force 𝑅 ∈ [0.9N(blue), 2.0N(red)]
in steps of 0.05 N. With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 =
1N/m, 𝑐2 = 0.1N/m, 𝑐3 = 100N/m, 𝐹 = 0.01N
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F I G U R E B4 Parameter study: dynamic vibration

isolator - stiffness 𝑐3 ∈ [0.1N∕m(blue), 100N∕m(red)]
in steps of 0.1 N/m until 1, afterwards steps of 1 N/m

until 10 N/m, and finally steps of 10 N/m until 100 N/m.

With 𝑚1 = 1kg, 𝑚2 = 0.1kg, 𝑐1 = 1N/m, 𝑐2 =
0.1N/m, 𝑅 = 1.5N, 𝐹 = 0.01N

APPENDIX C: LINEAR ESTIMATE OF THE MODAL DECOUPLING VALIDITY
First, it is assumed that the frequency response curves of the modal coordinates have the form

𝑞𝑖 ∼
𝜀𝑓|𝜂2 − 𝜂2

𝑖
| . (C.1)

Without loss of generality the first coordinate is considered; it applies that 𝑞1 = (1) when the |𝜂 − 𝜂1| = (𝜀) or in other
words when 𝜂 = 𝜂1 + (𝜀). That said, the magnitude of the second modal coordinate is investigated in the vicinity of the first
eigenfrequency. It follows that

𝜂 = 𝜂1 + (𝜀) → 𝑞2 =
𝜀𝑓|𝜂21 − 𝜂22| + (𝜀). (C.2)

In order for 𝑞2 = (𝜀) the following relation must apply

𝜂1 − 𝜂2 = (1). (C.3)

APPENDIX D: FIRST ORDER AVERAGING EQUATIONS FOR THE DYNAMIC VIBRATION
ISOLATOR
The Van-der-Pol transformations are the same as for the dynamic vibration absorber:

𝑞1 = 𝐴1 sin𝜑1, �̇�1 = 𝐴1𝜂1 cos𝜑1

𝑞2 = 𝐴2 sin𝜑2, �̇�2 = 𝐴2𝜂2 cos𝜑2. (D.1)

The transformation above leads to the system in standard for for both modal coordinates

𝐴′
1 =

𝑟11
𝜂1

𝑤(𝑞1) cos𝜑1 − 𝜀
𝑟11
𝜂1

𝑓 sin(𝜓1 − 𝜑1) cos𝜑1

𝜓 ′
1 = 𝜀𝛿1 −

𝑟11
𝐴1𝜂1

𝑤(𝑞1) cos𝜑1 + 𝜀
𝑟11

𝐴1𝜂1
𝑓 sin(𝜓1 − 𝜑1) cos𝜑1

𝜑′
1 = 𝜂1 −

𝑟11
𝐴1𝜂1

𝑤(𝑞1) cos𝜑1 + 𝜀
𝑟11

𝐴1𝜂1
𝑓 sin(𝜓1 − 𝜑1) cos𝜑1 (D.2)

𝐴′
2 =

𝑟12
𝜂2

𝑤(𝑞2) cos𝜑2 − 𝜀
𝑟12
𝜂2

𝑓 sin(𝜓2 − 𝜑2) cos𝜑2

𝜓 ′
2 = 𝜀𝛿2 −

𝑟12
𝐴2𝜂2

𝑤(𝑞2) cos𝜑2 + 𝜀
𝑟12

𝐴2𝜂2
𝑓 sin(𝜓2 − 𝜑2) cos𝜑2

𝜑′
2 = 𝜂2 −

𝑟12
𝐴2𝜂2

𝑤(𝑞2) cos𝜑2 + 𝜀
𝑟12

𝐴2𝜂2
𝑓 sin(𝜓2 − 𝜑2) cos𝜑2. (D.3)
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The averaging of Equations (D.2) and (D.3) yields

�̄�′
1 =

⟨
𝐴′
1
⟩
𝜑1

= 𝜀

𝜂1

(
𝜁𝑤1,cos −

𝑟11
2𝜂1

𝑓 sin𝜓1

)
�̄� ′
1 =

⟨
𝜓 ′
1
⟩
𝜑1

= 𝜀

𝜂1

(
𝛿1 + 𝜁𝑤1,sin −

𝑟11
2𝜂1𝐴1

𝑓 cos𝜓1

)
(D.4)

�̄�′
2 =

⟨
𝐴′
2
⟩
𝜑2

= 𝜀

𝜂2

(
𝜁𝑤2,cos −

𝑟12
2𝜂2

𝑓 sin𝜓2

)
�̄� ′
2 =

⟨
𝜓 ′
2
⟩
𝜑2

= 𝜀

𝜂2

(
𝛿2 + 𝜁𝑤2,sin −

𝑟12
2𝜂2𝐴2

𝑓 cos𝜓2

)
(D.5)

with

𝜁𝑤1,cos = −
2𝜌

(
𝜅𝑟11�̄�1 − 𝜌

)
𝜅�̄�1𝜂1𝜋

𝜁𝑤1,sin = − 1
4𝜅�̄�2

1𝜋𝜂1

(
𝜅2𝑟211�̄�

2
1

(
𝜋 + 2 arcsin

(
𝜅𝑟11�̄�1 − 2𝜌

𝜅𝑟11�̄�1

))
+ (4𝜅𝑟11 �̄�1 − 8𝜌)

√
𝜌(𝜅𝑟11 �̄�1 − 𝜌)

)
, (D.6)

𝜁𝑤2,cos = −
2𝜌

(
𝜅𝑟12�̄�2 − 𝜌

)
𝜅�̄�2𝜂2𝜋

𝜁𝑤2,sin = − 2
4𝜅�̄�2

2𝜋𝜂2

(
𝜅2𝑟212�̄�

2
2

(
𝜋 + 2 arcsin

(
𝜅𝑟12�̄�2 − 2𝜌

𝜅𝑟12�̄�2

))
+ (4𝜅𝑟12 �̄�2 − 8𝜌)

√
𝜌(𝜅𝑟12 �̄�2 − 𝜌)

)
. (D.7)

Calculating the stationary solution (�̄�′
1 = �̄� ′

1 = �̄�′
2 = �̄� ′

2 = 0) for Equation (D.6) and (D.7) results in the implicit frequency-
response functions

𝜂 = 𝜂1 + 𝜀𝜁𝑤1,sin ±
𝜀

2�̄�1𝜂1

√
𝑟211𝑓

2 − 4𝜁2
𝑤1,cos

𝜂21 , (D.8)

𝜂 = 𝜂2 + 𝜀𝜁𝑤2,sin ±
𝜀

2�̄�2𝜂2

√
𝑟212𝑓

2 − 4𝜁2
𝑤2,cos

𝜂22 . (D.9)

By analyzing Equation (D.8) and (D.9) characteristic values of the damper are derived

�̄�1,min1 =
𝜌

𝜅𝑟11
, (D.10)

�̄�1,min2 =
4𝜌2

𝜅𝑟11
(
4𝑟11𝜌 − 𝜋𝑓

) , (D.11)

�̄�1,max =
4𝜌2

𝜅𝑟11
(
4𝑟11𝜌 + 𝜋𝑓

) , (D.12)

�̄�1,min = max(�̄�2,min1, �̄�2,min2), (D.13)

𝜌1,min =
𝜋𝑓

4
, (D.14)

𝜌1,opt =
𝜋𝑓

2
, (D.15)

�̄�2,min1 =
𝜌

𝜅𝑟12
, (D.16)

�̄�2,min2 =
4𝜌2

𝜅𝑟12
(
4𝑟12𝜌 − 𝜋𝑓

) , (D.17)

 15214001, 2021, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.201800293 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [18/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ARAMENDIZ ET AL. 21 of 21

�̄�2,max =
4𝜌2

𝜅𝑟12
(
4𝑟12𝜌 + 𝜋𝑓

) , (D.18)

�̄�2,min = max(�̄�2,min1, �̄�2,min2), (D.19)

𝜌2,min =
𝜋𝑓

4
, (D.20)

𝜌2,opt =
𝜋𝑓

2
. (D.21)

In order to describe the original variables 𝑥1 and 𝑥2 the following transformations are applied

𝜂 ≈ 𝜂1 ⇒

{
𝐴𝑥1

≈ �̄�1|𝑟11|
𝐴𝑥2

≈ �̄�1|𝑟21| , (D.22)

𝜂 ≈ 𝜂2 ⇒

{
𝐴𝑥1

≈ �̄�2|𝑟12|
𝐴𝑥2

≈ �̄�2|𝑟22| . (D.23)
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