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ABSTRACT 

Human pluripotent stem cells (hPSC) self-renew and differentiate extensively, bringing 

unprecedented opportunities for research in the field of regenerative medicine. To tap into such 

potential, the development of biocompatible polymer brushes as human stem cell culture platforms 

that closely mimic the biological milieu is vital to grow these cells in vitro. This dissertation 

focuses on developing biomimetic zwitterionic sulfobetaine polymer brush systems with tunable 

material properties, in relation to hPSC adhesion and proliferation. For this purpose, chemical 

vapor deposition (CVD) polymerization was first used to obtain functionalized substrates, 

followed by “grafting-from” and “grafting-to” methods to graft polymer brushes on these 

substrates, encompassing controllable thickness, wettability, and surface roughness.  

Alkyne functionalized coatings prepared by CVD polymerization were generated to introduce 

reversible addition-fragmentation chain transfer (RAFT) agents with a clickable azide group via 

metal-free click reactions. Biomimetic polymer brushes, poly[2-(methacryloyloxy)ethyl dimethyl-

(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), were grown from these surfaces using a 

“grafting-from” approach to obtain polymer brushes up to 20 nm thick, and surface roughness of 

3.6 nm possessing high wettability were achieved. 

Further, for the first time, a modular molecular polymer brush system called interfacial Gemini 

transformers (IGT) containing a central benzaldehyde group flanked by zwitterionic sulfobetaine 

polymer segments on either side were designed and synthesized for the growth of human 

embryonic stem cells (hESC) in vitro. They were immobilized on functional coatings made via 

CVD polymerization using a “grafting-to” approach. IGTs with different molar masses exhibited 

tunable surface thickness and surface charge. These IGT-modified substrates were suitable for the 

adhesion and subsequent proliferation of hESC in an undifferentiated state. In addition, spatially 

controlled immobilization of IGT using microcontact printing on substrates coated with reactive 

functional coatings resulted in controlled protein deposition with spatiotemporal control. Thus, 

biomimetic zwitterionic polymer brush systems were developed to be used for biomedical 

applications and regenerative medicine due to their unique structure-property relationship and 

scalability potential. 
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KURZZUSAMMENFASSUNG 

Humane pluripotente Stammzellen (hPSC) besitzen die Fähigkeit zur Selbsterneuerung und 

können darüber hinaus in alle möglichen Zelltypen differenzieren. Aus diesen Gründen bieten 

hPSCs beispiellose Anwendungsmöglichkeiten auf dem Gebiet der regenerativen Medizin. Die 

vollständige Ausnutzung dieses Potenzials erfordert neue Techniken der in vitro Kultivierung um 

Kontrolle über Differenzierung und Proliferation der Zellen zu erhalten. Zu diesem Zweck 

kommen unter anderem biokompatible Polymerbeschichtungen als Kulturplattformen zum 

Einsatz, welche das native Milieu der Zellen so gut wie möglich nachahmen sollen. Diese 

Dissertation konzentriert sich auf die Entwicklung entsprechender biomimetischer 

Polymerbeschichtungen auf Basis von Sulfobetainen, welche abstimmbare Materialeigenschaften 

in Bezug auf hPSC-Adhäsion und Proliferation aufweisen sollen. Dazu wurde zunächst die CVD-

Polymerisation (Chemical Vapor Deposition) angewendet um funktionalisierte, reaktive Substrate 

zu erhalten. Diese wurden im Folgenden mittels "grafting-from" und "grafting-to" Methoden 

modifiziert, um Polysulfobetain-schichten auf diesen Substraten anzubringen, welche eine 

Kontrolle im Hinblick auf Schichtdicke, Benetzbarkeit und Oberflächenrauhigkeit erlauben.  

Mittels der CVD-Polymerisation wurden Alkin-funktionalisierte Beschichtungen hergestellt, 

um anschließend ein RAFT-Agenz (Reversible-Additions-Fragmentierungs-Kettenübertragung) 

mit einer klickbaren Azidgruppe über eine metallfreie Klickreaktionen anzubinden. Aus diesen 

Oberflächen wurden biomimetische Polymerbeschichtungen, bestehend aus Poly[2-

(Methacryloyl-oxy)ethyldimethyl-(3-sulfopropyl)ammoniumhydroxid] (PMEDSAH) mittels 

eines "grafting-from"-Ansatzes hergestellt. Dadurch konnten Polymerbesichtungen mit einer 

Schichtdicke von bis zu 20 nm und einer Oberflächenrauhigkeit von 3,6 nm mit hoher 

Benetzbarkeit in kontrollierter Art und Weise hergestellt werden. 

Darüber hinaus wurde erstmals ein modulares, molekulares System zur Polymerbeschichtung 

mit dem Namen Interfacial Gemini Transformers (IGT) entwickelt um das Wachstum humaner 

embryonaler Stammzellen (hESC) auf künstlichen Substraten zu ermöglichen. Dabei handelt es 

sich um Makromoleküle, bei denen eine zentrale Benzaldehydgruppe auf beiden Seiten von 

zwitterionischen Polysulfobetainsegmenten flankiert wird. Diese Segmente wurden nach ihrer 
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Synthese auf funktionellen CVD-Beschichtungen mittels einer "grafting-to"-Methode 

immobilisiert. Die resultierenden Schichtdicken und Oberflächenladungen konnten über die 

Molmassen der IGTs gesteuert werden. Diese IGT-modifizierten Substrate waren für die Adhäsion 

und anschließende Proliferation von hESC in einem undifferenzierten Zustand geeignet. Darüber 

hinaus führte die räumlich kontrollierte Immobilisierung der IGTs mittels Mikrokontaktdruck zu 

einer entsprechenden räumlich definierten Proteinabscheidung auf CVD-modifizierten Substraten. 

Somit wurden biomimetische, zwitterionische Polymerbürstensysteme entwickelt, welche 

aufgrund ihrer einzigartigen Beziehungen zwischen Struktur und Materialeigenschaften und ihres 

Skalierbarkeitspotenzials für die Bereiche Biomedizin und Regenerative Medizin ein hohes 

Anwendungspotential besitzen. 
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CHAPTER 1 INTRODUCTION 

Human pluripotent stem cells (hPSC) can be expanded indefinitely in culture while 

maintaining the ability to differentiate to all specialized cell types in a manner that parallels aspects 

of human development.1–3 Consequently, hPSC offer the opportunity for numerous biomedical 

applications and to advance the development of cell-based therapies.4,5 By 2025, the global stem 

cell market is estimated to reach $15.6 billion, up from $5.2 billion in 2016.6 However, these 

applications require large numbers of hPSC-derived cells of high quality.5 For example, in cell 

transplantation, ~109 cardiomyocytes are required for treating myocardial infarction, ~109 insulin-

producing β cells for type I diabetes mellitus, and ~1010 hepatocytes for hepatic failure.7 To obtain 

these large numbers of cells, there is a need to develop simple, efficient, defined, scalable, and 

good manufacturing practice-compatible culture systems for cell proliferation and harvesting in 

vitro.7 The systems must show ease of use and potential scalability, in order to make them suitable 

for numerous technological applications from the laboratory towards the clinic. 

However, to date, high-yield expansion of hPSC has not been possible. Currently, there is a 

lack of robust, scalable technologies for manufacturing the quantities of cells anticipated to be 

required for widespread patient access. While large-scale manufacturing of other mammalian cells 

in bioreactors using industrial processes have been widely demonstrated, high-yield-expansion of 

hPSC has not been reported. Our limited understanding of process related risks such as cell 

transformation, that influence hPSC production processes, restrict the strategies at our disposal for 

resolving these technology gaps.8 Clinical adoption of stem cells for therapeutic applications is 

hindered by the availability of culture systems that lack animal products, leading to a host of 

immunogenic concerns. Furthermore, ideal cell culture substrates would be generated from 

scalable processes, be compatible with sterilization techniques, display long-term stability, have 

compatibility with multiple stem cell lines, be relatively inexpensive, and maintain stem cell 

pluripotency during long-term expansion.9 
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Figure 1.1: Dissertation outline. Biomimetic polymer brushes are synthesized by free radical 

polymerization and reversible deactivation radical polymerization processes. The surfaces 

are characterized, and the structure and function of the polymer interfaces are probed. 

Tunable zwitterionic polymer brushes are then used as model systems to examine the roles 

of polymer brush architecture and interfacial properties on human pluripotent stem cell-

biomaterial interactions. 
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The aim of this dissertation was, therefore, to develop a chemically defined, scalable and good 

manufacturing practice-compatible two-dimensional (2D) culture platforms for hPSC expansion 

in vitro and to characterize the interfacial properties of these substrates as schematically 

represented in Figure 1.1. The engineered substrates had to meet the following requirements: 

1. The substrate material developed needs to be consistent, defined, biocompatible, free of 

xenogeneic components and mimic cell culture environments. 

2. The cell culture substrates should be easy to scale up, reproducible and safe. 

3. The cell-surface interactions should be understood in detail to optimize defined culture 

conditions to support hPSC self-renewal. To elucidate the role of the biomaterial on hPSC 

culture, the physicochemical properties like structure, topography, wettability and 

elasticity should be tailored. 

4. They should maintain and expand the cells in the pluripotent state, and should have the 

ability to direct cell differentiation into the right phenotypes on cue for potential use in 

regenerative medicine. Also, multiple hPSC cell types need to be cultured on the substrates. 

Firstly, the surfaces (silicon, gold, glass, tissue culture polystyrene (TCPS)) were coated with 

polymers containing suitable chemical functional anchors. In a subsequent step, biomimetic 

polymer brushes were either directly grown from these substrates (grafting-from) or were 

independently synthesized and immobilized on them (grafting-to). 

Specifically, polymer brushes were chosen as they provide an attractive functional interface, 

wherein composition, architecture and polymer functionality can be controlled precisely and 

independently. Such an optimal stem cell/material interface would allow a dynamic regulation of 

one another’s fate: the cell by remodeling its surroundings, and the material controlling the cell 

fate through its local physicochemical environment. 

Chemical vapor deposition (CVD) is a polymer chemical vapor deposition technique for 

preparing reactive coatings in substrate independent manner from functional paracyclophane 

precursors. CVD polymerization method was employed to prepare a polymer coating decorated 

with functional groups and subsequently modified for the introduction of polymer brushes on the 

surface. One common technique for effective introduction of such brushes for both grafting-from 
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and grafting-to approaches is reversible deactivation radical polymerization (RDRP) processes. 

RDRP is a technique used to synthesize a variety of precise polymers with good control over their 

molecular weights, dispersity, architecture, as well as their functionality.10 Subsequently, a 

strategy was envisioned to combine CVD and RDRP to obtain robust hPSC cell culture substrates. 

Strategy 1 (Grafting-from). A polymer coating containing 2-bromoisobutyryl functional groups 

providing atom transfer radical polymerization (ATRP) initiators was deposited by CVD 

polymerization. Polymer brushes were then grown from this surface by ATRP. 

Strategy 2 (Grafting-from). A polymer coating decorated with activated alkynyl groups11 was 

prepared by CVD polymerization and was utilized to immobilize reversible addition-

fragmentation chain transfer (RAFT) agents to surfaces in a copper-free click reaction.12 The 

controlled polymer brushes were grown from this surface by RAFT polymerization. 

Strategy 3 (Grafting-to). A polymer coating decorated with aldehyde groups was prepared by 

CVD polymerization on the surfaces, and further reacted with a dihydrazide linker. Interfacial 

Gemini transformer (IGT) was pre-synthesized containing a central reactive aldehyde group, and 

subsequently covalently attached to the hydrazide moiety exposed at the surface to obtain polymer 

brushes by the grafting-to approach. 

Villa-Diaz et al. developed a standardized and fully defined synthetic polymer coating, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH) by 

ultraviolet/ozone (UVO)-initiated free radical polymerization, which could sustain the 

undifferentiated growth of human embryonic stem cell (hESC) and induced pluripotent stem cell 

(hiPSC) growth in several different culture media, including commercially available defined media 

for 25 passages.13,14 However, the molecular mechanisms and the material properties responsible 

for this support is not evident, and need to be evaluated. Drawing inspiration from these findings 

and to engineer surfaces with tunable material properties that interact with different kinds of hPSC, 

the following investigations have been performed on appropriate substrates as described in 

Sections 4.1-4.5. 
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1. Multiplication of hematopoietic stem and progenitor cells (HSC), a type of hPSC, in vitro 

with current approaches suffer from limited scalability and are emerging as a bottleneck 

for clinical applications of these cells. They quickly lose their multipotency and self-

renewal capacities in culture because of their fast differentiation. UVO-grafted biomimetic 

PMEDSAH hydrogel coatings have been found to be effective in sustaining the long-term 

expansion of hESC and hiPSC. Therefore, Section 4.1 deals with the preparation of 

PMEDSAH substrates by UVO-initiated free radical polymerization, and Section 4.6.1 

deals with the investigation of their ability to adhere and proliferate HSC. 

2. UVO-grafting is a free radical polymerization process, which means, the process is not 

well-controlled, leading to polydisperse PMEDSAH polymer brushes. Widespread clinical 

applications of stem cells require substrate materials with tunable physical properties.15 

The second objective in this dissertation is to control the composition, architecture and 

biological functionality of the zwitterionic polymer brushes precisely. Controlling the 

physicochemical properties by fine-tuning the polymer brush thickness, and in turn, its 

molar mass, could identify reaction parameters that would yield the optimum cell growth. 

For that reason, PMEDSAH brushes were introduced on to the functional CVD-coated 

surfaces using a “grafting-from” approach using ATRP and RAFT polymerization. Then, 

the possible physicochemical properties were measured, like, thickness, wettability, 

surface roughness and zwitterionic charge distance, and the information was used to tailor 

the polymer brushes for biomedical applications. In particular, hPSC cell adhesion on the 

polymer brushes have been used to understand the structure-property relationships of the 

biomaterial and guide the tuning of interfacial properties. 

3. After growing biomimetic polymer chains from substrate-bound sites through RDRP, the 

next challenge was to develop engineered biointerfaces for a potentially scalable hPSC cell 

culture platform. For this, the “grafting-to” approach was used, as it enables the control of 

substrate physicochemical properties, is relatively inexpensive, and a scalable process. For 

this, a novel modular molecular system consisting of a small hydrophobic functional 

segment at the center (benzaldehyde initiator) flanked by zwitterionic polymer segments 

was synthesized. Such a system was coined interfacial gemini transformer (IGT). The IGT 
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brushes were covalently grafted onto the vapor-based reactive substrates decorated with 

surface reactive orthogonal groups by a “grafting-to” approach. 

4. The last section focuses on the use of the developed 2D hPSC cell culture platforms for the 

growth and expansion of hPSC in a defined media. Further, maintenance of pluripotency 

on the culture surface was investigated. The versatility of the substrates has also been 

investigated, exploring the advantages of using the developed hPSC cell culture platform 

over the existing ones. 

 



G. Venkidasubramonian 

  7 

 

CHAPTER 2 THEORETICAL BACKGROUND 

  Human Pluripotent Stem Cells 

Stem cells are defined by their ability to self-renew, which is termed pluripotency, and their 

potential differentiation into specific tissue types.16 The two major classes of stem cells are 

pluripotent stem cells that can become any cell type in the adult body, and adult stem cells that can 

differentiate to yield some of the population of cells of their tissue of origin. Pluripotent stem cells 

include embryonic stem cells and induced pluripotent stem cells. 

 

 

Figure 2.1: Schematic representation of the origin of stem cells. (a) Embryonic stem cells shown in green 

are derived from blastocysts. (b) Induced pluripotent stem cells shown in brown generated from skin 

fibroblasts which are somatic cells. (c) Tissue-specific adult stem cells (for example skeletal muscle stem 

cells) shown in purple are derived from muscle fibers. Adapted from Lutolf et al.17 

 



G. Venkidasubramonian 

  8 

Embryonic stem cells, induced pluripotent stem cells and adult stem cells are derived from 

three different sources, and each have advantages and disadvantages in regard to their potential 

use in regenerative therapies (Figure 2.1).17 The discovery of human embryonic stem cells (hESC) 

from blastocysts by Thomson et al. in 19981 provided the first human source of pluripotent stem 

cells. Though their clinical translation is impeded by the ethical concerns of using embryos. 

Human induced pluripotent stem cells (iPSC) were reprogrammed from somatic cells such as skin 

fibroblasts by Takahashi et al. in 2007.3 The reprogrammed cells have similar morphology as 

natural pluripotent stem cells; and are able to differentiate into a variety of cell types. Some ethical 

issues associated with hESC could be side stepped by using iPSC. 

Successful reprogramming of adult stem cells, also called somatic stem cells, into a pluripotent 

state would allow generation of stem cells that differentiate into specialized cell types.3 For 

example, the hematopoietic stem cells (HSC) are found in stem cell niches in the bone marrow. 

They maintain homeostasis by balancing the inactive and active cells in the blood.18 HSC can be 

generated from Umbilical cord blood (UCB),19 and could be used to differentiate to regenerate the 

tissue that has been damaged or worn out. Somatic stem cells are lucrative as they have lower 

rejection rates and there are no ethical concerns associated with their usage. They can be cultured 

on substrates derived from animal sources, conventional tissue culture polystyrene (TCPS) dishes, 

or microcarriers. 

However, major challenges are associated with culturing hPSC, firstly, controlled proliferation 

while the ability to maintain pluripotency in culture; and secondly, the capability to direct stem 

cell differentiation reliably.20 hPSC either do not attach or spontaneously differentiate in 

conventional substrates used for adult stem cells. Safety is yet another issue preventing hPSC from 

becoming a viable therapy in regenerative medicine. Traditionally, these cells are cultivated on 

mouse embryonic fibroblasts (MEF) feeder layers.1 MEF feeder layers secrete soluble factors and 

deposit ECM required for hPSC self-renewal.21 However, they induce xenogeneic contaminants 

or undefined factors into the culture systems.22 Matrigel™ (Corning, NY) is another widely used 

cell culture substrate consisting of extracellular components.23 It is a commercially available 

solubilized complex basement membrane matrix containing laminin, collagen IV, and heparan 

sulfate proteoglycan purified from Engelbreth-Holm-Swarm tumor. It also consists up to 1,800 

different proteins whose levels vary significantly from batch to batch. Accordingly, it is limited by 

being an undefined substrate and also contains unwanted xenogeneic materials.24 Now xeno-free 
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methods, including the use of human fibroblast feeders,25 amniotic mesenchymal cells,26 and 

adipose-derived mesenchymal stem cells27 have been developed. However, the batch-to-batch 

variation of feeder cells still pose a challenge for the large scale production of hPSC.28 Also, 

sterilization by irradiating feeder cells with gamma rays impede their proliferation and induce 

apoptosis.29 These shortcomings associated with culturing hPSC on feeder cells negatively affect 

their self-renewal and limit their use in therapeutic applications. 

One potential solution would be to develop a chemically defined, xeno- and feeder-free culture 

system. A synthetic surface could minimize the risk of xenogeneic contamination and yield more 

reproducible and homogenous stem cell cultures while lowering the cost of production. 

 

Figure 2.2: Environmental factors that regulate hPSC self-renewal, adapted from Azarin et al.30 and 

Vining et al.31 

 

These advances would help produce a near limitless source of hPSCs for deriving specific cell 

types required for regenerative medicine.32 The first step in developing substrates for the expansion 

of hPSC in vitro is to identify the environmental cues facilitating their undifferentiated 

expansion (Figure 2.2). 

The stem cell niche is a complex microenvironment comprising of an ensemble of soluble 

signals from cytokines and growth factors, direct interactions with other cells, and the extracellular 
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matrix (ECM).33 In combination with one another, these components act on stem cells to maintain 

their pluripotent state, physically tether them, and regulate self-renewal.34 The stem cell niche 

serves as a protective environment that provides supportive conditions to maintain the functional 

propertied of stem cells. The loss of contact with the niche can result in the loss of stem cell 

functions. In the next section, the factors that affect stem cell expansion in synthetic cultures are 

elucidated. 

2.1.1 Extracellular Matrix 

Different ECM molecules play vital roles in cell behavior such as cell anchorage, proliferation, 

mechanical buffering, survival, aiding intercellular communication and differentiation.35 Cells can 

also sense structural and mechanical stimuli of the ECM such as elasticity, surface topography, 

directional motility guided by gradients in adhesion, and rigidity.36–38 The cell adhesion and 

spreading are controlled by intra-cellular signaling pathways that are originally triggered by 

transmembrane proteins interacting with the engineered substrate39 (Figure 2.2). Understanding 

the effects of the physical aspects of the ECM in regulating hPSC behaviors is essential in 

improving their survival and self-renewal in synthetic cell culture platforms. Synthetic substrates 

need to have defined material properties that mimic the ECM physically and biochemically. 

Comprehensive reviews about the physical aspects of cell culture substrates have been detailed by 

Ross et al. and Vining et al.31,38 A few of the important aspects will be focused in the sections 

below. 

Material Stiffness 

Mechanical cues provided by material stiffness is an essential characteristic by which cells 

sense the external forces (Fe) and subsequently respond to the environment (Fi, response force) in 

an appropriate manner.31 There are various Fe and Fi that modulate cell adhesion. Mechanically 

gated ion channels sense the Fe caused by applying tension on cells. The ion channels rearrange 

the cytoskeleton in response to the shear.31 The cytoskeleton then transfers forces (Fi) to the 

intracellular structures, such as the nucleus. These mechanotransductions correlate with changes 

in gene expression and cell fate.40 Thus, optimal stiffness of the substrate correlates to optimal 

stem cell growth. 
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From literature, human embryo stiffness was found to range from 3-14.2 Pa by deducing 

stiffness values of African clawed frog embryo, which has a close evolutionary relationship with 

humans.41 Stiffness of traditional cell culture substrates (plastic and glass) are outside the range of 

many functional tissues.42 TCPS substrates have an elastic modulus of ~2 GPa, which is rigid and 

cause differentiation of hPSC. Rigid substrates cannot transfer the cellular traction forces (Fi) to 

nearby molecules. Consequently, cells are not able to remodel actin cytoskeleton to adhere to the 

substrates, which may suppress cell spreading and migration. 

Substrates with lower stiffness could have higher adhesion rates due to the ability of the cells 

to better reorganize the surrounding material. This is done by clustering the integrin receptors into 

aggregates at the membrane, that bind ECM proteins at the membrane into a complex termed the 

focal adhesion43 (Figure 2.2). These focal adhesion sites serve to signal bidirectionally to regulate 

cell adhesion and migration (Figure 2.2). Thus, the elasticity of the substrates directly influences 

the cellular responses. Modulation of the elastic modulus of biomaterials may also impact on the 

topography of the surface. For example, polydimethylsiloxane (PDMS) and polyacrylamide 

hydrogels have marked differences in porosity, spanning a range of micro- to nanometer pore sizes 

for different stiffness.44 The pore sizes influences hPSC spreading, by reorganization of the 

cytoskeletal components.45 In summary, modulating the stiffness of synthetic surfaces impact in 

vitro cellular signaling responses, which can be tapped for uses in biotechnology applications. 

Material composition 

The substrates need to display defined cell-binding groups. Substrate interface-mediated 

binding of ECM proteins (like laminin, proteoglycan, vitronectin, fibronectin, E-cadherin, etc.,) 

growth factors, and cell surface receptors (for example, integrins) create a microenvironment to 

support self-renewal of hPSCs.46 Surface wettability measured by water contact angle, WCA, has 

been used to predict cell adhesion.47 In vitro studies have helped to identify that the surface 

roughness of the substrate modulate cell adhesion, morphology, proliferation, as well as 

macrophage cytokine release, and protein expression of collagen and elastin (increases with 

increased surface roughness).38,48 Hence, surface micro-structuring, like acid etching have been 

commonly used for increasing surface roughness and oxygen content.49 
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2.1.2 Biochemical factors 

Soluble biochemical factors complement the ECM interactions in defining cellular fate.50 

Optimal culture conditions are required for the maintenance of hPSC in vitro. Multiple studies 

have shown that fibroblast growth factors (FGFs), Wnts, and transforming growth factor β (TGF β) 

are crucial in maintaining stem cell pluripotency and need to be present in the synthetic 

microenvironment.51–53 Hence, several feeder- and serum-free culture media formulations 

containing these factors have been employed to support the culture of hPSC.24,54,55 However, the 

cells still require Matrigel substrates, and therefore can be challenging to gain regulatory approval 

for manufacturing high numbers of cells. Hence, there is a need for biomaterial substrates, which 

might result in a more defined and xeno-free system that will allow optimal expansion of cells. 

Culture medium supplemented with fetal bovine serum (FBS), insulin, transferrin, albumin56 

are used for hPSC culture because they adsorb to biomaterials and regulate hPSC responses.15 In 

this dissertation, human cell conditioned medium (HCCM) is used for the growth of hESC. 

Adhesion and binding of plasma proteins on the biomimetic substrates depend on diverse 

biomaterial characteristics, such as surface roughness, charge and wettability, and is affected by 

the available protein repertoire in the culture medium.57 Therefore, the complex interplay of 

substrate’s inherent material properties and the resulting adsorption of molecules from the culture 

medium modulate cellular responses and it is not easy to separate the individual responses. This 

should be kept in mind while developing synthetic substrates. 

2.1.3 Inter-cellular interactions 

Mechanical and biochemical signals used for cell-cell adhesion interactions also govern hPSC 

self-renewal.58 Specialized cell junctions occur at points of cell-cell and cell-substrate contact in 

hPSC. They play a key part in transmitting tensile forces, from cell-cell or from cell-substrate that 

regulate intracellular signaling pathways. This is done by adhesive molecules like integrins.59 

Individual cells and small clumps on the substrate have poor viability while large colonies on the 

culture plate are spontaneously differentiated. Colonies require an appropriate size for self-

renewal. Hence, hESC are passaged regularly through mechanical or chemical means to regulate 

stem cell colony size and shape.30 
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Ultimately, the appropriate balance between cell-substrate interactions, soluble factors and 

cell-cell interactions controls the proliferation of hESC. Therefore, defined culture conditions that 

promote hPSC self-renewal need to be established. Identification of biomaterials that support long-

term expansion of undifferentiated stem cells, appropriate cellular attachment, proliferation and 

gene expression patterns is critical.9,60 The next section describes biomaterials, their properties and 

select examples. 

  Biomaterials 

Biomaterials were incorporated into modern medicine with the use of polyurethanes as 

artificial heart pumping bladders.61 From then on, there have been tremendous developments in 

materials that contribute to the medical field. Biomedical devices like coronary stents,62 guide 

wires,63 implants and biosensors have been surface coated with materials that are biocompatible 

and non-fouling.64 A major characteristic of these materials is the prevention of nonspecific 

biomolecular and microorganism attachment on surfaces. Biomaterials with tunable biochemical 

and mechanical properties may recapitulate the ECM, providing cells with information that is 

important for pluripotency and self-renewal.47,61,65,66 

Potential diverse biomaterials are reported in literature as promising materials for biomedical 

applications. As an example, poly(ethylene)glycol (PEG) is used extensively because they are 

hydrophilic, non-toxic, biocompatible and low fouling.67 PEG polymers resist non-specific protein 

adsorption due to steric repulsion effect.68 Adhesion peptides have been incorporated by PEG 

modification to create tunable tissue engineering substrates.69 However, PEG-based coatings have 

disadvantages. They are susceptible to oxidation damage when oxygen and transition metal ions 

(most biochemically relevant solutions contain transition metal ions) are present.70 Also, PEG 

dehydrates the cells in contact with it. 

Other low fouling polymer brushes based on 2-hydroxyethyl methacrylate (HEMA) and 

poly(ethylene glycol) methacrylate (PEGMA) have been generated and have shown resistance to 

proteins.71–73 PolyHEMA-based materials do not resist protein adsorption from undiluted human 

blood serum and plasma, making them unsuitable for biomedicine.74 In our lab, hESC adhesion 

and propagation on PEGMA surfaces were investigated, and it was observed that hESC initially 

adhered to these surfaces, but did not promote extended cell culture.13 The development of 
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materials that maintain their properties in tissue fluids is critically important in biomedical 

applications. Hence, scientists began to probe the role of zwitterionic polymer surfaces in protein 

resistance and stem cell self-renewal.75 

  Zwitterionic polymers 

Zwitterionic-based materials such as phosphobetaines, sulfobetaines and carboxybetaines are 

hydrophilic and known to be much more oxidatively stable than PEG. 

 

Figure 2.3: (a) Zwitterionic polyphosphobetaine, (b) zwitterionic polysulfobetaine and (c) zwitterionic 

poly(carboxybetaine) polymers. The polymer backbone shown in these examples is a polymethacrylate. 

 

Zwitterionic polymers show strong electrostatic intramolecular interactions between the 

cationic and anionic groups on the same monomer residue while maintaining overall charge 

neutrality (Figure 2.3).76 The water structure surrounding the zwitterionic brushes forms a physical 

and energetic barrier, thus preventing protein adsorption on the surface.77 The strong ionic 

interactions between the monomeric units is influenced by temperature and molecular weight of 

the polymer brushes.78–80  

Certain zwitterionic hydrogels are thermoresponsive and upper critical solution temperature 

(UCST) transitions could be observed.81 The inter- and intramolecular ion associations between 

the zwitterionic groups at low temperatures render them insoluble in water. The electrostatic 

attractions are broken at sufficiently high temperatures, resulting in isolated polymer chains that 

are completely soluble.82,83 UCST behavior can be understood via the Flory-Huggins mean-field 

theory.84 Upon increasing the temperature, the Flory-Huggins parameter χ reduces. Therefore, the 

entropic mixing contribution of the free energy will dominate over the enthalpy at high 
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temperatures and, consequently the components mix. For many applications, e.g. in drug 

delivery,85 bio-adhesion,86 etc., temperature is used as a stimulus inducing a response of the 

polymeric system. The development of antifouling, thermoresponsive zwitterionic coatings on 

interfaces to meet the challenges of biomedical devices development is therefore beneficial.87 

Phosphobetaine-based polymer surfaces such as poly(2-methacryloyloxyethyl 

phosphorylcholine) (polyMPC), have been studied because they mimic the lipid components that 

constitute the outside layer of cell membranes. PolyMPC coatings are protein-resistant.88. MPC-

based copolymers have been used commercially in contact lenses.67 MPC, however, is difficult to 

synthesize. The zwitterionic structure of poly(carboxybetaine methacrylate) (polyCBMA) has a 

comparable structure to glycine betaine, a molecule that is essential to the osmotic regulation of 

living organisms.89 PolyCBMA has cationic quaternary ammonium and anionic carboxylate 

functional group moieties. It has been demonstrated to prevent non-specific protein adsorption 

while permitting covalent decoration with bioactive proteins.90,91 

The structure of sulfobetaines is similar to that of 2-aminoethane sulfonic acid, which is present 

in high concentrations in nature.92 A 60 kg human contains up to 60 g of 2-aminoethane sulfonic 

acid. Due to its biomimetic nature, antifouling properties, simple synthesis, and commercial 

availability of the monomer [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium 

hydroxide (MEDSAH), our research focuses on the study of PMEDSAH polymers.93,94 

PMEDSAH was first synthesized by Liaw et al. in 1987.95 The chemical structure of PMEDSAH 

features a terminal sulfonate (SO3
-
) group and a cationic quaternary ammonium group on each 

monomer unit. It exhibits an “anti-polyelectrolyte effect” salt-responsive behavior. Zwitterionic 

PMEDSAH brushes exhibit a UCST behavior that is thickness- and grafting density-

dependent.80,96 A 28 kDa PMEDSAH has a cloud point temperature of 36 °C in water,97 a value 

close to the body temperature, thereby making it promising for biomedical applications. 

PMEDSAH brushes are also capable of modifying the surface wettability as a function of brush 

thickness.96 PMEDSAH is utilized in “smart” micelles,98 polymer nanoparticles,99 hydrogels100–102 

and polymer brushes.103 Owing to such attractive properties, this dissertation further deals with the 

development of substrates for hESC culture using PMEDSAH material. The engineering aspect of 

manufacturing such materials with respect to scaling up processes are discussed in the next section. 
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  Synthetic Engineered Environments 

Robust, scalable technologies are necessary for large-scale hPSC expansion for regenerative 

medicine purposes.104 There is an inescapable need to engineer synthetic microenvironments to 

have more reproducible culture conditions and lower the cost of production without introducing 

xenogeneic components. Maintenance of viability, pluripotency as well as homogeneity of cell 

populations are essential. Diffusion of oxygen, growth factors and nutrients to the cells are 

important.105 The cells need to be protected against mechanical stresses like the hydrodynamic 

shear forces that negatively affect cell viability and pluripotency.22 Then, these cells need to be 

conditioned efficiently so that they survive and integrate into the tissue in vivo. All these factors 

require microenvironments that emulate in vivo conditions and incorporate biomaterials 

specifically modified for the growth and proliferation of hPSC. This need for the synthetic hPSC 

cell culture systems design led to the development of two dimensional (2D)13,106,107 and 3D 

biomaterials, including hydrogels, microwells, microcarriers108,109 and scaffolds110,111. 2D 

biomaterials are the most commonly used for hPSC culture to date. Though it has proved to be a 

viable option, the limitation of 2D substrates is the lack of 3D environment that is native to cells. 

Progressing from 2D to 3D biomaterials could lead to faster clinical translation of hPSC cells 

grown in vitro. Scaffolds using decellularized tissues represent an attractive solution, but many 

engineering design constraints manifest.112 Some examples of hPSC cell culture platforms 

explored by researchers are elucidated below. 

2.4.1 Natural biomaterials 

Naturally derived biomaterials are like biological macromolecules that are recognized by and 

metabolized in the biological environment. But these biomaterials do not induce chronic 

inflammatory or immune response and toxicity like biological macromolecules do.113 The use of 

functional fragments of ECM proteins like the arginylglycylaspartic acid (RGD)-peptides to 

functionalize the substrates for culturing hPSC was desirable to reduce immunological 

reactions.106 Kiessling and coworkers prepared a range of thiolated peptides and spotted them onto 

gold-coated glass slides to prepare peptide-functionalized self-assembled monolayer (SAM) 

microarrays that support hESC growth and self-renewal.114 Decellularized ECM coated substrates 

derived from MEF allowed hESC adhesion and proliferation.115 Encapsulation of hESC in 3D 

hyaluronic acid (HA) hydrogels maintained their pluripotency, and could be differentiated into 
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embryoid bodies.116 HA hydrogels can be cross-linked to modulate material properties such as 

stiffness, to direct stem cell fate.117,118 

There are disadvantages in using naturally derived biomaterials as cell culture systems. First, 

they are exposed to the external environment during production, and, therefore, microbial and 

heavy metal contamination may occur. Second, batch-to-batch variation and slow processing 

hinder the mass production of natural biomaterials for hPSC culture use.119 To overcome these 

limitations, synthetic biomaterials incorporating biologically active components were explored. 

2.4.2 Synthetic biomaterials 

The use of synthetic biomaterials to maintain hPSC provide an ideal tool to elucidate the 

molecular mechanisms that control stem cell fate because material parameters can be tightly 

controlled. Synthetic peptides and polymers have been developed that support long term expansion 

of hPSC. 

ECM proteins 

An alternative to materials harvested from natural sources is the use of protein-engineered 

biomaterials. They are made entirely out of recombinant ECM proteins. As mentioned before, 

laminin, vitronectin, fibronectin, heparin and collagen are major ECM proteins. Culture on human 

recombinant laminin proteins has been demonstrated to be a robust substrate for hESC self-

renewal.107 However, mass production of full length recombinant laminins is very difficult as they 

are large structures.120 Therefore, Miyazaki et al. went on to show that recombinant laminin 

fragments, instead of the whole laminins, could support increased adhesion and undifferentiated 

proliferation of hESC for 10 passages,120 thereby reducing the size and complexity of laminin 

required. 

Substrates with recombinant vitronectin has been shown to sustain hESC pluripotency and 

survival.121 This is done by the binding of integrins to vitronectin. This discovery led Higuchi et al. 

to develop synthetic surfaces consisting of polyvinylalcohol-co-itaconic acid hydrogels with a 

stiffness of 25 kPa grafted with an oligopeptide derived from vitronectin.122 They showed that the 

cells maintained their pluripotency for 20 passages. This is also a good example of tuning physical 

cues and biological cues by the biomaterial to direct stem cell fate. Chang et al. developed heparin-
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based hydrogels as a matrix platform for hESC culture. They found that they exhibited good 

attachment of hESC via direct interaction with heparin moieties and supported long-term 

expansion maintaining their pluripotency for >20 passages.123 Fibronectin surfaces (Cellstart™, 

Thermo Fisher) supported hPSC cultures in chemically defined medium.124,125 

2D synthetic polymer substrates 

Biomaterials may be useful to mimic the ECM properties, in turn affecting stem cell function. 

To discover novel biomaterials satisfying such conditions, Anderson et al. used an unbiased high-

throughput approach using 576 different combinations of 25 acrylate-based polymers to find their 

effects on cell attachment, proliferation and lineage induction.47 The different polymers were 

synthesized through photopolymerization onto a poly(hydroxyethyl methacrylate) (pHEMA) 

coated glass slide. They found combinations of materials that influenced hESC attachment, 

proliferation and differentiation. This study confirmed the dependence of cell-material interaction 

on surface chemistry. Materials with resistance to cell attachment contained hydrophobic moieties 

such as aromatic and aliphatic carbon groups. The conclusion of this study was that weakly polar 

groups support cell attachment. The same group later studied material properties of all polymeric 

substrates such as surface topography, wettability, surface chemistry and indentation elastic 

modulus to develop structure-function relationships between material properties and hPSC 

culture.15 They demonstrated that hESC substrates having moderate wettability support 

pluripotency. 

Poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-alt-MA) synthesized by free radical 

polymerization supported attachment, proliferation and self-renewal of hESC for five passages.126 

Hydrogel interfaces of aminopropylmethacrylamide (APMAAm) were developed by free radical 

polymerization for hESC growth and self-renewal for 20 passages.127  

There are only four commercially available synthetic hPSC culture surfaces available in the 

market today, StemAdhere™, Synthemax™, Geltrex™ and Vitronectin XF™. StemAdhere 

surfaces™ is made up of a human protein. Vitronectin XF™ (Nucleus Biologics) is a defined, 

recombinant fusion protein containing the full length human vitronectin sequence. Synthemax™ 

(Corning) is a chemically defined, xeno-free synthetic peptide substrate consisting of the RGD 

motif. Geltrex™ consists of reduced growth factor basement membrane matrix. However, none of 
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them are commonly used. As seen in Figure 2.4, Matrigel is still the most widely used as a substrate 

for stem cell culture. In our group, a novel synthetic polymer coating made up of PMEDSAH13 

was shown to replace feeder cells and Matrigel in 2D hPSC culture systems. hPSC could be 

expanded for 25 passages in PMEDSAH synthetic polymer coatings.13 

 

Figure 2.4: Number of hits for the search term for each substrate. The search term “Matrigel” provided 

9,775 hits, with 304 hits alone in 2018. 

 

Three dimensional substrates 

hESC could be cultured on micron scale wells consisting of soft lithography formed PDMS 

stamps mold polymer substrates. Generally, their surfaces are functionalized with a material that 

adsorbs protein.128 Mohr et al. outlined a modification strategy for achieving selective adhesion of 

cells. Microwells with tri-ethylene glycol terminated SAMs were constructed, where cells adhered 

only on SAMs. This method yielded defined 3D geometries that permit undifferentiated hESC 

growth in monodisperse colonies for 3 passages and expressed pluripotency markers. A natural 

ECM analog was engineered de novo from in vitro cultured fibroblasts called decellularized 

fibroblast-derived matrices (FDM).112 Tuning the stiffness of the matrices with genipin modulated 

cell adhesion and pluripotency. Naturally derived 3D microenvironments could be developed in 

this way to grow hPSC with high efficiency. 
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  Surface Modification Techniques 

Biomaterial surfaces can be modified by controlling the physical and chemical characteristics 

of the surface. The surface properties can profoundly alter cell attachment and proliferation. 

General methods of surface modification using synthetic materials are detailed below. 

2.5.1 Self-assembled monolayers 

Alkanethiols are known to form reproducible and well-ordered surfaces on top of gold surfaces 

via chemisorption of the sulfur atom to gold, when gold is immersed in thiol solutions.129 They 

can be engineered for generating arrays with defined elements. 

 

Figure 2.5: Description of self-assembled monolayers. 

Alkanethiols used to construct SAMs typically contain an anchoring (head) group, a 11-18 

carbon chain (tail) and are capped with a functional group which gives rise to the SAM interfacial 

properties (Figure 2.5). The choice of head group will determine the affinity for the surface. The 

tail will determine, in part, the intermolecular interaction between the neighboring molecules on 

the surface. SAMs of alkanethiols have been studied as potential cell substrates for human 

umbilical vein endothelial cells.130 Nonetheless, the use of SAMs have been known to desorb from 

surfaces when exposed to biological serum during prolonged culture.131 

2.5.2 Langmuir-Blodgett films 

The Langmuir-Blodgett (LB) deposition, invented by Langmuir132 and Blodgett,133 organizes 

a single layer of molecules on a liquid surface, usually water, before transfer to a solid substrate 

by immersing the solid into the liquid.134 A thin organic film is formed with the thickness of just 

one molecule due to the distinct affinity of the monolayer for each of the phases involved.135,136 

LB films enable molecular-level control over the structure of films that are difficult to otherwise 

achieve. LB technique offers the possibility for the immobilization of proteins or enzymes and 
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subsequent application in bio-catalysis, drug delivery and tissue engineering.137,138 However, LB 

films require expensive instrumentation and may only be used for the encapsulation of amphiphilic 

components.139 An alternative to LB deposition is layer-by-layer (LbL) assembly. 

2.5.3 Layer-by-layer self-assembly 

Layer-by-layer (LbL) self-assembly of thin films, introduced in 1992, is a simple deposition 

process with broad applications in optics, biosensors, surface coatings, controlled drug-delivery 

devices and tissue engineering.139,140 LbL films are created through the sequential deposition of 

biomolecules in aqueous solution containing functional groups that drive self-assembly.141 The 

LbL technique is basically formed by alternate deposition of positively and negatively charged 

materials on a solid substrate with washing steps in between.140 Electrostatic interactions between 

oppositely charged polyelectrolytes are the dominant driving force to drive the LbL assembly 

during sequential deposition. It is a low-cost process with precise control of coating thickness 

under mild assembly conditions on versatile coating materials. 

2.5.4 Chemical Vapor Deposition polymerization 

Chemical vapor deposition (CVD) polymerization is a surface modification platform for the 

fabrication of thin films using a vacuum deposition method in which volatile precursors are 

deposited from the vapor phase by their decomposition on the substrate to form a coating.142 Most 

frequently the process is thermally driven but photo- and plasma-assisted methods are also used. 

The deposition of the film is controlled by a chemical reaction. Hence, this technique has 

successfully overcome some of the issues faced by wet fabrication methods such as LbL. CVD is 

employed in several thin film and coating applications, such as those used for dielectrics, 

semiconductors, passivation layers, oxidation barriers, and tribological coatings.143 

There are many CVD processes; for example, initiated CVD (iCVD),144 plasma-enhanced 

CVD (PECVD),145 oxidative CVD (oCVD),146 vapor deposition polymerization (VDP),147 and 

CVD of parylene and its derivatives.148 Amongst them, parylene CVD, originally pioneered by 

Gorham et al., employs heat to crack vapor phase reactants related to [2.2]paracyclophane while 

under vacuum (~0.3 mbar).149 Polymerization of the resulting radical species on cooled substrates 

proceeds via a chain growth mechanism. By varying the functional groups attached to the 
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[2.2]paracyclophane, polymer films with high retention of functionality can be produced via the 

this process. A depiction of the CVD set-up and process is provided in Figure 2.6. 

 

 

 

Figure 2.6: The schematic represents the three-source chemical vapor deposition (CVD) copolymerization 

system containing three inlet sources that each contain a sublimation zone and a pyrolysis zone, and the 

three sources are connected to a center deposition chamber. [2.2]paracyclophanes are sublimed at 

90-120 °C in the sublimation zone, transported to the pyrolysis zone and deposited in the deposition 

chamber. Adapted from Kratzer.157 
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CVD of poly(p-xylylenes) (trade name: parylene) possessing reactive functional groups 

including amino, hydroxyl, anhydride, triflate, trifluoroacetyl moieties, etc., have been used to 

prepare submicron coatings with distinct chemical and optical properties in our lab and other 

labs.150–156 Technically relevant substrates such as polystyrene, PDMS, polyvinyl chloride, steel, 

etc. can be functionalized with a library of chemical moieties, irrespective of substrate chemistries 

and properties.158 The CVD process yields conformal coatings with pinhole-free coverage for large 

areas and can also be applied to complex 3-dimensional geometries.153 The coatings are deposited 

in a solvent-free process, and also the by-products evaporate, giving the possibility of achieving, 

reproducibly, very high levels of purity in the films. The process also allows flexibility during 

deposition such as co-deposition of different materials. Some members of the poly-p-xylylene 

family have gained commercial acceptance due to their high solvent resistance, low dielectric 

constants, and excellent barrier properties.159,160 Parylene coatings are extensively used as a barrier 

medium for implantable chemical sensors,161 stainless steel implants,162 pacemakers,163 stents and 

catheters.164 

The CVD technique, LbL assembly, SAMs, LB films, etc. have been made by free radical 

polymerization. But it is useful to have defined responsive polymer brushes for regenerative 

medicine.165 They can be synthesized by reversible-deactivation radical polymerization (RDRP) 

techniques nowadays. In this dissertation, employing CVD polymerization, the initiator coatings 

(2-bromoisobutyryl groups for atom transfer radical polymerization (ATRP)),166 or alkyne groups 

that can anchor chain transfer agents (CTA) for reversible addition fragmentation chain transfer 

polymerization (RAFT),11,167 or amino or aldehyde groups to immobilize functional polymers by 

the grafting-to process, is prepared and subsequently used for further modification. The generation 

of polymer brushes with tailored physical and chemical properties of interfaces by RDRP 

techniques is discussed in the next section. 

 Reversible-deactivation radical polymerization 

RDRP is a form of polymerization propagated by chain radicals, the majority of which, are 

held in a state of dormancy through an equilibrium process involving a dormant species.168 The 

equilibrium ensures prolonging the lifetime of the growing polymer chains by keeping the 

concentration of the propagating radicals sufficiently low. Most of the radicals are in the dormant 

state at any second, however, they are not irreversibly terminated. Only a small fraction of them 
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are active, yet because of the activation-deactivation equilibrium process, simultaneous growth of 

all chains is ensured. Consequently, the molecular weights of the polymers generated have a 

narrow Poisson distribution, and in turn, a lower dispersity. RDRP methods have provided a robust 

synthetic approach to synthesize polymers with controlled composition, topology, functionalities 

and narrow molecular-weight distributions.169 RDRP consists of four reactions: initiation, 

propagation, transfer and termination. 

 

Scheme 2.1: Mechanisms for reversible-deactivation radical polymerization. They possess a dynamic 

equilibrium between a dormant and an active species which can be enabled by reversible 

activation/deactivation process or by degenerative chain transfer processes. 

 

There are two initiation steps; the first being the decomposition of the initiator to yield a pair 

of free radicals. In the second step, a monomer is added to the free radical resulting in a chain 

radical. A combination of a fast initiation step and slow propagation step is characteristic of RDRP. 

This is achieved by an intermittent formation of radicals with added monomer units. The 

propagation step involves a dynamic equilibrium between a large concentration of dormant species 

and a low concentration of active propagating chain radicals as shown in Scheme 2.1.170 The 

equilibrium can be achieved by one of two processes: (1) reversible deactivation (e.g. ATRP)171 

or (2) degenerative transfer (e.g. RAFT).172 The molecular weight distributions in free radical 

polymerizations are broad, and not optimum for controlling polymer brush properties.173 With 
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RDRP, the parameters could be varied in order to control polymer brush properties. The different 

RDRP methods include atom transfer radical polymerization (ATRP)174–176, reversible addition-

fragmentation chain transfer (RAFT) polymerization177–179 and nitroxide-mediated polymerization 

(NMP).180,181 

Using RDRP, polymer brushes can be obtained by three different methods: 

(1) “grafting-from”, (2) “grafting-to” and (3) “grafting-through” (Figure 2.7). Polymer grafting 

provides a powerful technique for modification and functionalization of various surfaces.  

 

Figure 2.7: Preparation of polymer brushes by “grafting-to”, “grafting-from” and “grafting-through” 

strategy. Cartoon adapted from Kratzer.157 

 

The process of growing chains from a surface is termed “grafting-from”, where the growth of 

polymer chains occurs from covalently bound small-molecule initiation sites on the surface.182 The 

“grafting-from” approaches are able to produce dense, tunable and multifunctional polymer 

brushes. The grafting of polymer after the synthesis of polymer in solution with a reactive group 

on a surface is termed “grafting-to”. The polymers have reactive functionalities that reacts with a 

complementary reactive group on the surface. This method offers the advantage of operational 

ease, controlled molecular weight distributions and improved polymer characterization before 

grafting. The “grafting-to” approach can be readily scaled, as pre-formed polymers with functional 

groups can be synthesized in large quantities. However, this approach usually yields low grafting 

density (number of chains per unit area of grafted surface) compared to the “grafting-from” process 
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due to steric hindrance of the chains at the surface of the polymer backbone.183 Furthermore, the 

polymer coil has to diffuse to an empty unfilled spot on the surface, which is a diffusion-controlled 

process leading to a lower grafting density depending on the reaction time. In addition, the 

probability that a polymer coil does not bind covalently but instead adsorb onto the substrate 

surface will lower the grafting density. The chains lie on the surface forming a pancake structure 

at low surface concentrations, where the layer thickness will only be a couple of nm.184 The 

“grafting-through” method consists of copolymerizing a macromonomer and low molecular 

weight monomer to synthesize polymers with defined side chains.185 

2.6.1 Atom Transfer Radical Polymerization (ATRP) 

Atom transfer radical polymerization (ATRP) is a versatile tool for the production of tailored 

polymer brushes with diverse architectures.186–188. Matyjaszewski et al.175 and Sawamoto et al.189 

reported ATRP in 1995. It operates via a reaction between an initiator (R-X), which is an alkyl 

halide and a transition metal complex ((Lig)Mtz) in its lower oxidation state, via a halogen (X) 

transfer. 

 

Scheme 2.2: Mechanism of Atom Transfer Radical Polymerization (adapted from 190). (a) Initiation. 

(b) Equilibrium with dormant species. C) Propagation. (Lig)Mtz = transition-metal complex; 

Pn-X = halogen-terminated dormant species; (Lig)Mtz+1-X = Oxidized transition metal complex-halogen 

atom; Pn
• = active radicals; M = monomer; R-X = initiator; kact = rate constant of activation; kdeact = rate 

constant of deactivation; kp = propagation rate constant; kt = termination rate constant. 

 

This results in the formation of propagating radicals (Pn
●) and the higher oxidation state transition 

metal complex ((Lig)Mtz+1-X) (Scheme 2.2).191 Once Pn
● are generated, they react immediately 

with (Lig)Mtz+1-X to form (Lig)Mtz and the dormant species Pn-X. The formation of the 



G. Venkidasubramonian 

  27 

(Lig)Mtz+1-X complex is characterized by the activation rate constant, kact, whereas the transfer of 

X to Pn
●, the ATRP deactivation rate coefficient of kdeact. Therefore, the activation-deactivation 

equilibrium constant (KATRP) is the ratio of the two rate constants kact/kdeact. The Pn
● propagate with 

a rate constant kp. and terminate with a rate constant kt. During termination reactions, radicals 

predominantly react with X to form dormant species Pn-X.192 Initiators and propagating chains are 

alkyl halides. The initiation and propagation steps of ATRP are shown in Scheme 2.2.193 

Monomer (M) disappears only due to propagation. 

 −
𝑑[𝑀]

𝑑𝑡
=  𝑘𝑝[𝑃𝑛

●][𝑀]  (1) 

If [Pn
●] is constant, the concentration of monomer is reduced in accordance with first-order 

kinetics. 

 
[𝑀]

[𝑀]0
=  exp (−𝑘𝑝[𝑃𝑛

●]𝑡) (2) 

 

However, [Pn
●] is not necessarily constant. Fischer derived a rate expression for the radical by 

considering the initiation and termination reactions.192 

 
𝑑[𝑃𝑛

●]

𝑑𝑡
=  𝑘𝑎𝑐𝑡[𝑃𝑛 − X]  −  𝑘𝑑𝑒𝑎𝑐𝑡[𝑃𝑛

●] −  𝑘𝑡[𝑃𝑛
●]2 (3) 

 

This expression for KATRP helps illustrate the conditions under which equilibrium can be achieved. 

 𝐾𝐴𝑇𝑅𝑃 =  
𝑘𝑎𝑐𝑡

𝑘𝑑𝑒𝑎𝑐𝑡
=  

[𝑃𝑛][(𝐿𝑖𝑔)𝑀𝑡𝑧+1𝑋]

[𝑃𝑛 − 𝑋][(𝐿𝑖𝑔)𝑀𝑡𝑧𝑋]
 (4) 

 

The polymerization rate (Rp) is governed by the ATRP equilibrium position which is defined by 

the structure of alkyl halide/monomer and catalyst. Assuming steady-state kinetics, Rp is given by: 

 Rp = kp[M]KATRP
[𝑃𝑛−𝑋][(𝐿𝑖𝑔)𝑀𝑡𝑧]

[(𝐿𝑖𝑔)𝑀𝑡𝑧+1𝑋]
 (5) 

   

Rp conforms to a first-order kinetic model with respect to [M] and Mtz concentrations.194 Rp is 

controlled by the ratio of CuI to CuII present in the reaction medium. 

The degree of polymerization (DP) is determined by the molar ratio of concentration of reacted 

monomer  to concentration of the initially introduced initiator [initiator]0.
195 
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 𝐷𝑃 =  
[𝑀]0

[𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟]0
× 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (6) 

 

ATRP has been employed to polymerize monomers, including acrylates, methacrylates, and 

acrylamides.175,196–199 N-based ligands coordinated to Cu are commonly used,200 but other metals 

including Ru, Fe, Mo, Os, etc could be used in ATRP.190 The equilibrium involving active and 

dormant macromolecules are maintained by ligands during the polymerization reaction.190 In 

addition, the ligand structure markedly affect activation.169 The fast redox between Cu(I) and 

Cu(II) is directly affected by the ligand, and they must also have a high complexation constant to 

compete with the polymer for copper. Ligands also adjust the redox activity of the metal for the 

repetitive halogen exchange reaction.201,202 Figure 2.8 depicts a series of ligands and initiators.  

 

Figure 2.8: Examples of commonly used initiators and ligands for ATRP: ethyl α-bromoisobutyrate 

(EBiB), ethyl α-bromophenylacetate (EBPA), 2,2’-bypyridine (bpy) and tris[2-

(dimethylamino)ethyl]amine (Me6TREN), N,N,N´,N´´,N´´-pentamethyldiethylenetriamine (PMDETA). 

 

The challenge of using ATRP techniques for cell culture applications is the presence of copper 

that end up in the material.169 Cells are sensitive even to incredibly low amounts of copper. This 

scenario is not ideal for the development of cell culture substrates. Surface-initiated ATRP 

techniques have enabled polymer brush synthesis from various solid surfaces,193,203 

nanoparticles,204 proteins205 and cellulose fibers.206 In this dissertation, ATRP is used to grow 

polymer brushes from polymer coatings polymerized employing CVD polymerization, decorated 

with 2-bromoisobutyryl group which act as ATRP initiators. The advent of oxygen-tolerant SI-

ATRP207 has eliminated the need for using glove boxes and Schlenk techniques, making polymer 

brushes easier to synthesize.208 
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In SI-ATRP, the amount of each deactivator is very small because of the small amount of 

immobilized initiator on the flat surface.203 Xiao and Wirth calculated that the growth rate of 

polymer thickness was proportional to the rate of monomer consumption in solution,193 

 [𝑀]0 − [𝑀] =  𝑘𝑝[𝑅●][𝑀]0 (7) 

 

where [R●] is the radical concentration, [M]0 is the initial monomer concentration, [M] is the 

monomer concentration, and kp. is the propagation rate coefficient. Kp values are available in the 

literature.209 The radicals undergo bimolecular termination reactions 

 
𝑑[𝑅●]

𝑑𝑡
= −𝑘𝑡[𝑅●]2 (8) 

 

with its initial concentration of [R0
●] at time, t = 0. Combining Equations 7 and 8, an analytic 

expression for the monomer consumption was derived as follows: 

 
[𝑀]0 − [𝑀] =  

[𝑀]0𝑘𝑝[𝑅●]0𝑡

1 + [𝑅●]0𝑘𝑡𝑡
 

(9) 

 

ATRP kinetic model analysis is significant in determining the optimum parameters required for 

controlling the material properties of the polymer brushes. 

2.6.2 Reversible addition-fragmentation chain transfer (RAFT) polymerization 

RAFT polymerization was discovered at the Commonwealth Scientific and Industrial Research 

Organization (CSIRO) of Australia in 1998.179 RAFT polymerization process enables the 

production of polymers with enhanced properties, as it can be adapted to the widest range of 

monomers.210 RAFT polymerization is also a very tolerant technique, and thus could be used to 

polymerize functional monomers directly in aqueous solution, providing good control over the 

polymerization.210 ATRP has a radical that is localized on a transition metal catalyst, and the 

monomers attach to them and polymerize. In contrast to ATRP, RAFT polymerization operates 

via a series of reversible addition-fragmentation steps based on the degenerate chain transfer 

mechanism. 
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Scheme 2.3: Generally accepted mechanism for RAFT polymerization. 
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They are called degenerate because they only involve an exchange of functionality between 

dormant chains and active propagating radical.211 The chain transfer events are mediated by a chain 

transfer agent (CTA), which is a dithioester compound S=C(-Z)-S-R, also called as a RAFT agent. 

CTA has an R-group and a Z-group, which help in controlling molecular weight and dispersity. 

The R-group is the homolytic leaving and re-initiating group, and Z-group is the stabilizing 

group212 (Scheme 2.3). The scheme for the mechanism of a RAFT process is shown in Scheme 2.3. 

A radical initiator is required for initiation in RAFT polymerization. The concentration of the 

radical initiator determines the polymerization rate and dispersity by an appropriate selection of 

polymerization conditions.172 The first reaction step is the initiator dissociation into radical 

fragments. These radicals subsequently initiate polymerization by reaction with a monomer 

molecule. In the pre-equilibrium reaction step, an equilibrium is maintained between the initial 

RAFT agent and the macroradical Pm
●. Pm

● (shown in step ii) can fragment back to the initial RAFT 

agent or fragment to yield a macroRAFT agent and a re-initiating R-radical R●.211 R● can also react 

with the initial RAFT agent and fragment back to the corresponding intermediate RAFT radicals. 

In the main equilibrium reaction, the polymer chains rapidly exchange between Pm
● and the species 

capped with the dithioester group. Reactions of these pre- and main equilibria are described by the 

kinetic parameters, the addition rate coefficient kad and the fragmentation rate coefficient kβ (as 

shown in Scheme 2.3). Finally, termination occurs by radical-radical reaction (step v). Due to the 

living character of the RAFT process, termination reactions play only a minor role. 

The equilibrium constant (Keq) is given by: 

 
𝐾𝑒𝑞 =

𝑘𝑎𝑑

𝑘𝛽
 

(10) 

 

The rate of polymerization (Rp) is equal to 

 𝑅𝑝 = 𝑘𝑝[𝑃●][𝑀] (11) 

 

where kp is the propagation rate coefficient, [P●] the concentration of propagating radicals and [M] 

the instantaneous monomer concentration.172 
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RAFT technique has also been used to produce controlled surface-grafted polymers.213 In 

Surface RAFT (S-RAFT) polymerization, either the initiator or the CTA can be anchored to the 

surface.214 When the initiator is immobilized on the surface, the resultant surface bound polymer 

layers have a lower polymer propagation rate compared to that of polymers formed in the 

solution.215 Surface bounding of CTA can be done through the R-side or the Z-side. Immobilizing 

the R-group of S=C(Z)S-R graft only about half of the chains to the surface.216 The Z-group 

approach, however, has shown to produce well-defined grafted polymers.217 

Several methods have been reported for the immobilization of CTA onto surfaces. For instance, 

covalently attaching RAFT-silane agents have been used because it is experimentally simple.218 

Zamfir et al.219 carried out RAFT polymerization of 2-hydroxyl methacrylate (HEMA) from 

surface-functionalized RAFT-silane agents. SAMs have also become a popular technique to 

introduce CTA on surfaces, but are limited to specialized substrates such as gold or silicon.220 The 

CTA can also be anchored by UV-triggered photoreaction221 and electrodeposition.222 In this 

dissertation, vapor-based polymer coatings are used to immobilize the CTA onto the surface. A 

functional polymer containing ester bromide group was prepared via CVD polymerization. An 

azide-functionalized CTA was used for conjugation with the ester-alkyne groups decorated on the 

surface. 
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CHAPTER 3 MATERIALS AND METHODS 

  Materials 

[2-(Methacryloyloxy)-ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSAH) was 

purchased from Monomer Polymer Dajac Labs, Trevose, PA. MEDSAH (used for UVO-initiated 

graft polymerization), CuBr2, 2,2’-bipyridine (bpy), ethyl 2-bromoisobutyrate (EBiB), 

triethylamine (TEA, 99%, stored over potassium hydroxide pellets), 4,4´-azobis(4-cyanopentanoic 

acid) (V501, >98%), phosphate-buffered saline (PBS, 10 mM), fluorescein labeled bovine serum 

albumin (FITC-BSA), albumin from bovine serum (BSA, molecular weight ~66 kDa, V fraction), 

lysozyme (molecular weight ~14.3 kDa) and ROCK inhibitor were purchased from Sigma Aldrich 

and used as received. Copper bromide (Cu(I)Br) was purified by stirring in glacial acetic acid and 

rinsing with ethanol and diethyl ether and then dried under vacuum. Deionized water was obtained 

using a Milli-Q plus system (Millipore, Schwalbach, Germany). [2.2]paracyclophane (PCP) was 

purchased from Curtiss Wright Surface Technologies, Galway, Ireland. Dichloromethane (DCM, 

>99%) was purchased from VWR International. Column chromatography was used to separate 

and purify products from mixtures. The stationary phase used was silica gel 60 (Merck KGaA, 

Darmstadt, Germany). Thin layer chromatography (TLC) using Silica gel coated aluminum plates 

(Merck KGaA, Darmstadt, Germany; silica gel 60, fluorescence indicator F254) was used for 

routine monitoring of reactions; analysis was done using ultraviolet lamp (Merck KGaA, 

Darmstadt, Germany; 254 nm) or potassium permanganate reagent (1 g KMnO4 and 5 g Na2CO3 

in 250 mL water). Oven-dried glassware and Schlenk techniques were used in order to carry out 

reactions in inert atmosphere. Dry ice/acetone cooling bath (-78 °C) and an ice/water bath (0 °C) 

were used to maintain low temperatures for reactions. Screened FBS (Lot: 791291), Pen/Strep 

(10K units), Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12), antibiotic-antimycotic, 

trypsin-EDTA, penicillin/streptomycin and L-glutamine were purchased from Gibco. Human 

embryonic stem cells (H9 and H1, NIH registration number#0062) were obtained from WiCell 

Research Institute, Madison, WI, http://www.wicell.org. Human-cell-conditioned media (HCCM) 

http://www.wicell.org/
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was purchased from MTI-Global Stem, Gaithersburg, MD, http://www.mti-globalstem.com. 

Human recombinant basic fibroblast growth factor (bFGF) and Trizol Reagent was purchased from 

Invitrogen™, Carlsbad, CA, http://www.invitrogen.com. Falcon Tubes, Matrigel™ (Corning® 

hESC-Qualified Matrix, *LDEV-free, cat#354277) and 40 mm nylon mesh cell strainer were 

purchased from BD BioSciences. Accutase™ Cell Detachment Solution (cat#07920) was 

purchased from Stemcell Technologies, Inc. Bio-Rad protein assay (cat#5000006), Precision Plus 

Protein™ Dual Color Standards (cat#1610374), Towbin buffer (cat#1610734) and blotting-grade 

blocker (cat#1706404) was purchased from Bio-Rad, Hercules, CA. Novex™ Tris-Glycine SDS 

Running Buffer (10X, cat#LC2675-4), Novex™ WedgeWell™ format 4-20% Tris-Glycine Mini 

Gels (cat#XP04205BOX), XCell SureLock® Mini-Cell Electrophoresis System (cat#EI0001), 

Novex™ Wedgewell™ 10% Tris-Glycine Gels, Tween™ 20 (cat#BP337-100), SuperSignal™ 

West Pico PLUS Chemiluminescent Substrate (cat#34078), donkey anti-mouse IgG secondary 

antibody, Alexa Flour® 488 (cat#R37114), donkey anti-rabbit IgG secondary antibody, Alexa 

Flour® 594 (cat#A-21207), SuperScript™ VILO™ Master Mix (cat#11755050) and the primers 

used for qPCR were purchased from ThermoFisher Scientific. HyBlot CL film (cat#e3018) was 

purchased from Denville Scientific. The primary antibodies used for Western blot analyses were 

purchased from Cell Signaling. The secondary antibodies used for Western blot analyses were 

purchased from Promega. Z-Fix solution (cat#170) was purchased from Analtech Ltd. The primary 

antibodies used for immunofluorescence analysis are Oct 4 (Santa Cruz Biotechnology, goat, 

cat#sc8629), Nanog (Abcam, mouse, cat#ab62734), Sox2 (Millipore, rabbit, cat#ab5603). 

TaqMan Universal PCR Master Mix was purchased from Applied Biosystems. SSEA-4 PE-

conjugated antibody and Mouse IgG1 phycoerythrin (PE) isotype Control was purchased from 

R&D systems. HematoStem SF Kit was purchased from PAA, Pasching, Austria. Anti CD34-PE-

Cy7 and the respective isotype control were purchased from eBioscience, Frankfurt, Germany. 

CellTrace™ Violet Cell Proliferation Kit (Life Technologies). The remaining chemicals used were 

purchased from Acros Organics, Sigma-Aldrich, Alfa Aesar or ABCR and used as received unless 

otherwise stated. 

 

http://www.mti-globalstem.com/
http://www.invitrogen.com/
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  Synthesis 

3.2.1 Reversible Addition Fragmentation Chain Transfer Polymerization in solution 

All polymerizations were performed in a Schlenk tube and V501 was employed as an initiator. 

Monomer, CTA, initiator (molar ratio of CTA/V501 = 5/1) in 0.5 M NaBr solution were placed in 

the sealed Schlenk tube and degassed by three freeze-pump-thaw cycles and refilled with argon. 

The reaction mixture is then heated in an oil bath at 70 °C. Applied reaction times ranged from 

1-8 h. Then, the polymerization was halted by exposing to air and being immediately cooled in 

ice. The resultant solution was dialyzed in water for 48 h with water changed every 2 h to remove 

salt and unreacted monomers. The final polymers were obtained as a light pink solid after 

lyophilization. 

3.2.2 Synthesis of azido-CTA 

Azido-CTA was prepared by modification of a method previously reported223. 

3-azidopropan-1-ol was synthesized prior to the synthesis of azido-CTA. 

Synthesis 3-azidopropan-1-ol: In a 250 mL flask equipped with a reflux condenser, sodium azide 

(9.37 g, 144 mmol, 2 eq.) and 3-bromopropan-1-ol were dissolved in water 

(100 mL). The mixture was heated to 60°C and stirred for 24 h. After 

cooling to room temperature, the mixture was extracted with DCM (3×100 mL). The combined 

organic phases were dried over magnesium sulfate (MgSO4). After removal of the solvent under 

reduced pressure, the crude product was purified by vacuum distillation (56°C, 5 mbar) to yield 

3-azidopropan-1-ol as a colorless liquid (6.19 g, 61.2 mmol, 86%). 1H-NMR (500 MHz, CDCl3): 

δ = 3.75 (t, J = 5.6 Hz, 2H, CH2OH), 3.45 (t, J = 6.6 Hz, 2H, CH2N3), 1.83 (quin, J = 6.3 Hz, 2H, 

CH2CH2CH2), 1.65 (s, 1H, OH). 13C-NMR (125 MHz, CDCl3): δ = 59.9 (–, CH2OH), 48.5 (–, 

CH2N3), 31.4 (–, CH2CH2CH2). 

Synthesis of azido-CTA: In a 100 mL two-neck flask under an argon atmosphere, 

3-azidopropan-1-ol (0.50 g, 4.95 mmol, 1.0 eq.), CPA (1.52 

g, 5.44 mmol, 1.1 eq.) and 4-dimethylaminopyridine (70 

mg, 0.57 mmol, 0.12 eq.) were dissolved in dry DCM and 

cooled to 0 °C. Over a period of 15 min, a solution of DCC (1.02 g, 4.95 mmol, 1.0 eq.) in dry 
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DCM (20mL) was added dropwise. The mixture was stirred for an additional 4 h at room 

temperature. Next, the reaction mixture was filtered to remove the formed urea byproduct. The 

organic phase was then washed with a 10% aqueous sodium bicarbonate solution (50 mL), water 

(50 mL), saturated NaCl solution (2×50 mL) and dried over MgSO4. After removal of the solvent 

under reduced pressure, the crude product was purified by column chromatography (hexane/ethyl 

acetate 4:1, Rf = 0.41) to yield the target compound as a purple oil (987 mg, 2.72 mmol, 55%). 

1H-NMR (500 MHz, CDCl3): δ = 7.92–7.90 (m, 2H, HAr), 7.59–7.56 (m, 1H, HAr), 7.42–7.39 (m, 

2H, HAr), 4.21 (t, J= 6.2 Hz, 2H, COOCH2), 3.41 (t, J = 6.6 Hz, 2H, CH2N3), 2.72–2.59 (m, 3H, 

CH2CH2COO), 2.46–2.40 (m, 1H, CH2CH2COO), 1.94–1.90 (m, 5H, CH2CH2CH2, CCH3). IR 

(ATR): 𝜈 = 2931 (w), 2094 (m), 1732 (m), 1589 (w), 1444 (m), 1378(w), 1291 (m), 1231 (m), 

1178 (m), 1107 (w), 1080 (m), 1045 (m), 867 (m), 761(m), 686 (m), 650 (m), 616 (w), 

576 (w) cm-1. 

MS (70 eV, EI), m/z (%): 362 (100) [M+], 344 (20), 334 (51), 322 (29), 319 (20), 307 (11), 293 

(16), 281 (17), 269 (35), 262 (43), 259 (25), 247 (92), 239 (33). 

HRMS calculated for C16H18N4O2
32S2

 ([M+]):362.0866; found: 362.0864 [M+]. 

3.2.3 Benzaldehyde Initiator 

The benzaldehyde initiator was developed by Dr. Artak Shahnas. In a typical run, 1 g of 

3,5-hydroxybenzaldehyde (7.2 mmol, 1eq.) 3 g of trimethylamine 

(30 mmol) were dissolved in 20 mL of dichloromethane (DCM). The 

mixture was degassed by bubbling argon to the solution and cooled down 

in an ice bath. A solution of 3.4 g (14.6 mmol, 2 eq.) of 2-bromoisobutyryl bromide in 5 mL DCM 

was slowly added under argon flow using a dropping funnel. The reaction was then stirred for 4 h. 

The precipitated product was filtered and purified by column chromatography with mixtures of 

n-hexane/ethyl acetate (EtOAc) with a ratio of 6:1 yielding 2-bromo-2-methylpropionic acid 

3-(2-bromo-2-methylpropionyloxy)-5-formyl-phenyl ester as a pale-yellow powder in 75 % yield 

(2.35 g, 5.4 mmol, 1 eq.). The successful synthesis of the initiator was proven by 1H NMR in 

CDCl3: δ = 10.0 (s, 1H, CHO), 7.61 (d, J = 2.4 Hz, 2H, ArH), 7.29 (t, 1H, J = 2.4 Hz, ArH), 2.08 

(s, 12H, CH3), ppm. - 13C-NMR (125 MHz, CDCl3): δ = 189.9 (CHO), 169.8 (C=O), 151.9 (CArO), 
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138.4 (CCHO); 120.7 (CAr); 120.0 (CAr), 54.8 (CBr), 30.6 (CH3) ppm. HRMS (EI) m/z 

C15H17O5Br2, calculated: 436.0960, found: 276.0686. 

3.2.4 Procedure for ATRP of IGT 

Poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH) 

was polymerized using an ATRP procedure. MEDSAH (2.8 g, 10 mmol) and the benzaldehyde 

initiator (43.6 mg, 0.1 mmol) were dissolved in a methanol/water (4/1 v/v) solvent mixture 

(previously degassed by four freeze-vacuum-thaw cycles) and placed in a Schlenk tube reactor. 

Subsequently, CuBr (14.3 mg, 0.1 mmol), CuBr2 (2.2 mg, 0.01 mmol) and ligand 2,2’-bipyridyl 

(bpy, 46.9 mg, 0.3 mmol) were added to the solvent in another Schlenk tube reactor. Both tubes 

were placed under argon atmosphere and stirred. After the catalyst and the ligand were fully 

dissolved, the catalyst solution was added to the monomer reaction mixture and the reaction 

proceeded at room temperature with stirring. 0.1 mL aliquot samples were taken during the 

polymerization using an airtight syringe and purging the side arm of the Schlenk tube reactor with 

argon. 

The samples were analyzed by 1H NMR spectrometry to determine the monomer conversion 

and SEC to determine the molecular weight and molecular weight distribution of the polymer 

samples. The solvent was removed and PMEDSAH was re-dissolved in TFE and passed through 

a neutral alumina column to remove the metal catalysts. The sample was concentrated under 

reduced pressure in a rotary evaporator and dialyzed against water. The final product was obtained 

by freeze drying. δ 1H NMR (500 MHz, D2O): 10.01 (s, CHO, 1H), 7.72 (s, aromatic, 2H), 7.35-

7.29 (d, aromatic, 2H), 4.54 (s, CH2CH2N), 3.85 (s, J = 107.5 Hz, CH2CH2N), 3.63 (s, NCH2CH2), 

3.27 (s, N+(CH3)2), 3.01 (s, NCH2CH2), 2.3 (s, CH2CH2S), 2.1-1.73 (m, CH3CBr), 1.43-1.31 (d, 

CH3, 12H), 1.25-1 (m). 

3.2.5 Sample preparation for Structural Characterizations 

Polymer solutions were prepared in D2O. The polymer concentration was 3 g L-1 for 

turbidimetric measurements. All solutions were equilibrated for about 12 h at the starting 

temperature of measurement. Cloud points were determined using a Cary 300 Bio UV-vis 

photospectrometer (Varian) equipped with a temperature-controlled sample cell. Absorption was 
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measured at a wavelength of 522 nm at temperatures ranging from 5 to 40 °C (using a 0.5 °C min-1 

heating rate). 

  Instrumentation 

3.3.1 Nuclear Magnetic Resonance spectroscopy (NMR) 

1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were collected on a Bruker Avance III 

spectrometer using CDCl3 or D2O as solvent. Chemical shifts are reported in parts per million 

(ppm, δ) downfield from tetramethylsilane (TMS) using the residual solvent as internal standard 

(CDCl3, 7.26 ppm; D2O, 4.8 ppm). All coupling constants are absolute values, and J values are 

expressed in Hertz (Hz). The description of the signals includes s = singlet, d = doublet, 

dd = doublet of a doublet, ddd = doublet of a doublet of a doublet, m = multiplet. The spectra were 

analyzed according to first order. Theoretically expected number-average molecular weight, Mn,theo 

for RAFT polymerizations are calculated according to 

 𝑀𝑛,𝑡ℎ𝑒𝑜 =
𝑐𝑀

𝑐𝐶𝑇𝐴
𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 × 𝑀𝑀 + 𝑀𝐶𝑇𝐴 (12) 

where MM is the molar mass of the monomer, MCTA = RAFT agent molar mass, cM = molar 

concentration of the monomer, and cCTA = molar concentration of the RAFT agent.224 Theoretically 

expected number-average molar molecular weight, Mn,theo for ATRP are calculated according to 

 𝑀𝑛,𝑡ℎ𝑒𝑜 =
𝑐𝑀

𝑐𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟
𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 × 𝑀𝑀 + 𝑀𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟 (13) 

where cinitiator is the molar concentration of the ATRP initiator and Minitiator is the molecular weight 

of the ATRP initiator. 

3.3.2 Size exclusion chromatography (SEC) 

Size exclusion chromatography (SEC) analysis was performed using water SECcurity2 GPC 

system (PSS) with a UV-Vis and refractive index (RI) detectors consisting of a NOVEMA Max 

10 µm guard column. Flow rate was set at 1 mL min-1. The eluent used was 80% 0.5 M aqueous 

NaBr / 20% acetonitrile. The tests were conducted at 30 °C. Before injection (50 µL), the samples 

were filtered through a poly(tetrafluoroethylene) (PTFE) membrane with 0.2 µm pore. The Mn and 
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Đ of the polymer were determined by calibration with linear polyethylene glycol (PEG) standards 

between 600 and 970000 g mol-1. 

3.3.3 Differential scanning calorimetry (DSC) 

DSC was performed using differential scanning calorimeter Netzsch STA 449 C. The samples 

with a weight of about 12 mg were put into an aluminum pan and hermetically sealed. The scans 

were carried out under nitrogen atmosphere. The samples were preliminarily heated from 35 to 

450 °C, at a heating rate of 10 K min-1. Thermograms were recorded and, among others, glass 

transition temperatures, crystallization temperatures and melting temperatures were evaluated. 

3.3.4 Dynamic Light Scattering (DLS) 

The size of the polymers dissolved in water at a concentration of 10 mg ml-1 were determined 

by DLS using Malvern Zetasizer Nano ZS (Malvern, Germany) equipped with a He-Ne laser 

(λ = 633 nm, max 4 mW) and operated at a scattering angle of 173°. In all measurements, 1 ml of 

polymer solution was employed in a 3 ml disposable polystyrene cuvette. The polymer solutions 

were filtered through 0.22 µm syringe filters (Millipore corporation) prior to measurements. 

Sample temperature was maintained at 25 °C. 

  Surface Preparation and Characterization 

3.4.1 Surface Preparation 

Silicon wafers with a native oxide layer (Siegert Wafer GmbH, Aachen, Germany) were cut 

into 10 × 10 mm2 pieces using a diamond-tipped cutter. Silicon wafers were first silanized with 3-

(trimethoxysilyl)-propyl methacrylate. Gold wafers were prepared on silicon wafers by physical 

vapor deposition, with 5 nm titanium followed by 100 nm of gold. Gold wafers were first cleaned 

with acetone, ethanol and deionized water, and air dried. 35 mm Tissue culture polystyrene (TCPS) 

petri dishes (Thermo Scientific) were used as received. Cover glasses (25 mm × 25 mm, VWR) 

were first cleaned with 100% ethanol (VWR), rinsed with deionized water, and air dried. PDMS 

samples were prepared by uniformly mixed PDMS prepolymer and curing agent (Sylgard 184, 

Dow Corning) at a ratio of 10:1 and were cured at 70°C for 1 h.225 



G. Venkidasubramonian 

  40 

3.4.2 Chemical vapor deposition polymerization of reactive coatings 

A custom chemical vapor deposition (CVD) system composed of a sublimation zone, pyrolysis 

zone, and deposition zone was used to generate polymer coatings.226 For UVO-initiated free radical 

polymerization application, reactive CVD coatings of parylene N (PPX-N) were developed as 

platforms for human stem cell growth. In this instance, gold and silicon substrates were used as 

surrogates for the cell culture substrates in subsequent materials characterization. 

For RAFT polymerization application, around 80 mg of the precursor, PCP-alkyne11 was 

sublimed at 100-120 °C under reduced pressure (0.1 mbar) and then pyrolyzed at 510 °C. 

Substrates were placed on a cooled stage (15 °C) to promote the physical adsorption of radical 

species on its surface. Subsequently, the radical species underwent polymerization to form 

coatings composed of poly[(p-xylylene-4-methyl propiolate)-co-(p-xylylene)] (PPX-alkyne). 

The ATRP initiator coatings were deposited onto the substrates via spontaneous 

polymerization in the form of a thin film bearing bromoisobutyryl ester groups for subsequent 

ATRP initiation.166 The starting material was [2.2]paracyclophane-4-methyl-2-bromoisobutyrate. 

The starting material was sublimed at 120 °C, followed by pyrolysis at 540-550 °C, and the 

materials were deposited in converted form as poly[(p-xylylene-4-methyl-2-bromoisobutyrate)-

co-xylylene] (ATRP initiator coating). Deposition occurred on gold, silicon, and TCPS plates via 

spontaneous polymerization. The working pressure during the polymerization was 0.3 mbar and 

the deposition occurred on a rotating sample holder that was maintained at 15 °C. 

Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] (PPX-aldehyde) was first deposited onto the 

substrates (silicon, gold wafers, glass, polystyrene slides or TCPS) via spontaneous polymerization 

in the form of a thin film bearing reactive aldehyde groups on the surface.227 14 mg of 

4-formyl[2.2]paracyclophane precursor was sublimed at 100-120 °C, underwent pyrolysis at 

660 °C, after which a thin film of poly[(4-formyl p-xylxlene)-co-(p-xylylene)] was coated on 

target substrates. The TCPS, silicon, gold or glass substrates were placed on a cooled sample holder 

at 14 °C for polymer deposition. Sample holder was rotated to ensure uniform polymer deposition. 

3.4.3 Ultraviolet/Ozone-Initiated Free Radical Polymerization 

A 10 L reaction vessel was degassed via vacuum/argon purge. The cycle was repeated three 

times. While the reaction vessel was being evacuated, the solvent system consisting of a deionized 
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water/ethanol mixture (4:1 v/v) was purged with argon for 40 min. The solvent and the monomer 

MEDSAH at 0.06 g/ml were added to the reaction vessel after degassing, and heated to 68 °C. 

Free radicals were generated on the surface of TCPS plates to create initiation sites by exposing 

them to a 25 min UV/ozone treatment (Jetlight Inc.) prior to polymerization. Silicon and gold 

substrates with poly(p-xylylene) coatings were also treated with UV/ozone. These substrates were 

used to measure thickness and contact angle. After free radicals have been generated, TCPS and 

poly-p-xylylene substrates were placed in the reaction vessel and heated such that the temperature 

was raised to 77 °C. The polymerization occurred on the substrates over a 2.5 h time period under 

argon atmosphere. Once the process was complete, the substrates were removed rinsed overnight 

with a 1% saline (w/v) solution that was maintained at 50 °C to remove any excess monomer. 

Subsequent rinsing with 1% saline and deionized water ensured the removal of unreacted 

monomer.228 

3.4.4 Immobilization of RAFT agent 

10 mM azide-functionalized RAFT agent (azido-CTA) dissolved in ethanol was introduced 

onto PPX-alkyne surface. The substrate was placed under argon at 50 °C for 48 h. After the 

reaction, the surface-modified reactive polymer coating was thoroughly washed with copious 

amounts of EtOAc followed by ethanol to remove the residual azido-CTA. Finally, the CTA-

modified reactive polymer coating (S-CTA) was dried and stored under argon. 

3.4.5 Surface-Initiated RAFT Polymerization 

After azido-CTA immobilization, the S-CTA substrates were subjected to SI-RAFT 

polymerization using typical Schlenk techniques. For the SI-RAFT polymerization of MEDSAH, 

the following procedure was employed. A solution of MEDSAH (0.1 g L-1), free RAFT agent 4-

Cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPA) (0.5 mmol L-1), initiator 4,4’-azobis(4-

cyanovaleric acid) (V-501) (0.05 mmol L-1) and a 1:1 2,2,2-trifluoroethanol (TFE)/water (v/v) 

mixture was prepared in a two-neck round bottom flask. V-501 was recrystallized from methanol 

before use. The mixture was degassed by three consecutive freeze-pump-thaw cycles, backfilled 

with argon and then transferred into each of 4 degassed Schlenk tubes containing the S-CTA 

substrates (3 mL/substrate). The reactions were carried out in a preheated oil bath at 80 °C. At 

designated time intervals, one vial was removed to determine percent monomer conversion and 
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molecular weight of the polymer in solution. Following polymerization, the modified substrates 

were washed with TFE, water and dried in a stream of argon. The polymer in solution was dialyzed 

against water and freeze dried for purification. Typical polymerization times for PMEDSAH 

brushes were 2-8 h. 

3.4.6 Procedure for SI-ATRP of zwitterionic monomers 

In a typical SI-ATRP run, a 25 mL Schlenk tube was charged with 60 mg (418 µmol) of CuBr, 

10 mg (45 µmol) of CuBr2 and 168 mg (1 mmol) of bpy. Another Schlenk flask was charged with 

1 M monomer. Both the flasks were sealed with a rubber stopper and cycled between vacuum and 

argon three times to remove oxygen. The substrates were placed in individual degassed vials. A 

20 mL solution of methanol/deionized water (4/1 v/v) in a Schlenk flask was degassed via three 

freeze-pump-thaw cycles. The degassed solution was then transferred to both the flasks via a 

syringe to prevent atmospheric contamination. After the catalyst was fully dissolved, the reaction 

solution from both the flasks were transferred to the vials containing the ATRP initiator-coated 

substrates. 

3.4.7 Linker Immobilization 

The substrate was incubated in acetate buffer containing adipic acid dihydrazide (500 mM, 

pH 4) overnight. Then, the substrates were washed repeatedly with deionized water. 

3.4.8 Patterning of interfacial Gemini transporter 

A solution containing PMEDSAH (20 µg/mL) in acetate buffer (pH 4) was prepared. This 

polymer solution was spread on PPX-aldehyde coatings and the substrates were dried using argon. 

Patterned PDMS stamps (square islands of 250 µm × 250 µm) were created as previously 

described. 

3.4.9 Protein Adsorption & fluorescence microscopy 

Fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) were dissolved in 

10 mM phosphate buffer saline (PBS) solution (pH=7.4) at concentrations of 250 µg/ml. Glass 

cover slips patterned with interfacial Gemini transformer were incubated in the solution and was 

shaken at room temperature in the dark for 30 min. The patterned substrates were rinsed copiously 
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with PBS solution and water and blown dry in a stream of argon and then directly analyzed under 

a fluorescent microscope (Axiovert 200M, Carl Zeiss, Jena, Germany). The images were analyzed 

with the help of the AxioVision 4.8.2. software. Exposure time of 500 ms was used. 

3.4.10 Surface Characterization Methods: Ellipsometry, Infrared Reflection Adsorption 

Spectroscopy, Water Contact Angle Goniometry and Atomic Force Microscopy 

Thickness measurements using ellipsometry 

Film thickness of the different coatings was measured by ellipsometry using a multi-

wavelength rotating analyzer ellipsometer (J. A. Woollam M2000, wavelength range 400-800 nm, 

Woollam Co., Inc., Lincoln NE, USA) at an incident angle of 65°. It was operated at a wavelength 

of λ = 532 nm. The experimental data was evaluated using the CompleteEASE software program. 

Film thickness measurements were collected by fitting for the ellipsometric delta and psi values 

using a Cauchy dispersion multilayer model (Air, polymer brush, initiator, SiO2, Si) with fixed 

values of the real and imaginary refractive index of the PMEDSAH coatings (n = 1.58 and k = 0). 

Infrared Reflection Adsorption Spectroscopy 

To verify whether the desired materials were present on surfaces, infrared reflection adsorption 

spectroscopy (IRRAS) was performed. We used a Bruker Vertex 80 spectrometer (Bruker Optics, 

Ettlingen, Germany) in the grazing angle configuration equipped with a liquid nitrogen cooled mid 

band MCT detector. SAMs of perdeuterated 1-hexadecanethiol on gold were used as a background. 

Gold wafers were coated with the desired material and scans were collected from 600 to 4000 cm-1 

with a resolution of 4 cm-1 at an incidence angle of 80°. A baseline, smoothing, and carbon dioxide 

peak correction were applied to the spectra. 

Atomic force microscopy 

Roughness of the surfaces was measured at room temperature with the MFD-3D-BIO (Asylum 

Research, USA). Measurements were taken in tapping mode at room temperature in air. A 

Multi75Al-G (BudgetSensors, Bulgaria) probe tips with resonant frequency of 75 kHz and spring 

constants of 3 N m-1 were used for the analysis. Surface roughness measurements were taken at 

0.1 Hz scan rate over a 20 × 20 μm2 and 1 Hz scan rate over a 2 × 2 μm2 area. AFM software 



G. Venkidasubramonian 

  44 

(Asylum Research) was utilized to calculate root mean square roughness (Rq). Three values were 

taken for each sample and averaged. 

Contact angle measurements 

Contact angle of a liquid drop is determined by the outermost atomic layers of a surface 

(0.1-1 nm). When a drop of liquid is placed on a solid substrate, the drop shape will change under 

the pressure of the different surface tensions around the perimeter of the drop, until equilibrium is 

reached. 

 

Figure 3.1: Components of interfacial tension used to derive Young’s equation 

In 1805, Thomas Young expressed the three-phase equilibrium in terms of the vector sum 

shown in Figure 3.1, resulting in the following equation of the interfacial equilibrium.229 

 𝛾𝑆𝑉 − 𝛾𝑆𝐿 = 𝛾𝐿𝑉𝑐𝑜𝑠𝜃𝑌 (14) 

 

The Young contact angle θY is defined as the angle (measured in the liquid) that is formed at the 

junction of three phases, typically the solid-liquid-gas junction. In this dissertation, static contact 

angles were taken using a contact angle goniometer (Krüss DSA 100, Germany). Measurements 

were taken at three different locations on the same sample and averaged. 

3.4.11 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a highly sensitive surface analytical technique. A 

surface is irradiated with photons from a soft X-ray source, exciting the electrons in the surface 

region. The excited electrons, called the photoelectrons are ejected from the atom. They escape the 
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surface with a kinetic energy (Ek) proportional to the difference between the incident photon 

energy (Ehv) and the binding energy of the electron to the nucleus (Eb) which can be described 

using Equation 14.230 

 𝐸𝑘 = 𝐸ℎ𝑣 − 𝐸𝑏 − 𝐸𝛹 (15) 

 

where EΨ is the work function of the analyzer. Ek can be measured by an energy analyzer and EΨ 

is a constant and is known for a certain system. 

Although X-rays can penetrate micrometers below the surface, only photoelectrons produced 

at the surface contribute to the XPS signals. The sampling depth of the XPS measurement varies 

with the Ek of the electrons being used. The average distance that electrons travel in the solid 

surface without undergoing an inelastic collision is the inelastic mean free path (λ) (Figure 3.2). 

 

Figure 3.2: Electron attenuation depth d, inelastic mean free path λ and emission angle θ. 

The sampling depth is determined by electron attenuation length, d: 

 𝑑 = 𝜆𝑐𝑜𝑠𝜃 (16) 

 

where θ is the angle at which particles leave a specimen with respect to the normal to the specimen 

surface (z). Typical sampling depth is approximately 3d. The energy range of interest in XPS is 

200-2000 eV. In that range, d is < 10 nm. That is the reason why XPS is highly surface specific. 

The sensitivity of the XPS measurement is dependent on the spectra background level and the 

photoelectron cross section.231 Almost all elements in the periodic table after helium onwards can 

be measured.232 XPS can be applied to all vacuum compatible materials. 

d = λcosθ
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In this dissertation, XPS was performed on a K-Alpha XPS spectrometer (Thermo Fisher 

Scientific, UK) equipped with a monochromated Al Kα X-ray source. The analysis region was a 

400 μm spot size. A180° hemispherical energy analyzer operated in the constant analyzer energy 

mode (CAE) at 50 eV pass energy was used to measure the kinetic energy of the electrons for the 

survey elemental spectra. Thereafter elemental composition was determined by performing high 

resolution scans using the K-Alpha charge compensation with a pass energy of 8 eV, and low-

energy argon ion beam was employed to prevent any localized build-up. The spectra were fitted 

with Voigt profiles (BE uncertainty ± 0.2 eV) and Scofield sensitivity factors were employed for 

quantification.233 All spectra were referenced to the C1s peak (C–C, C–H) at 285.0 eV binding 

energy controlled by the photoelectron peaks of Ag, Cu and Au. Data collection and analysis were 

performed using the Thermo Avantage software.234 

The potential for the use of XPS in mapping is to identify regions of differing chemical 

structure in a sample surface, with a spatial resolution of the order of 15 µm.235 XPS mapping is 

done by collecting images across a two-dimensional field-of-view, rectangular array of small-area 

XPS spectroscopy. At each pixel, a spectrum can be extracted and distribution of elements or 

chemical states at that pixel can be measured.235 In this dissertation, The K-Alpha+ snap map 

option was used to image the different structures with a spot of 100 μm. (5 iterations were run to 

reach a better statistic). The obtained spectra were collapsed over the iterations and fitted with help 

of a principal component analysis routine to increase the quality of the images. 

3.4.12 Tof-SIMS 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) provides detailed molecular 

and chemical information from the analyzed surface with an information depth of about 1-2 nm.236 

That makes it a powerful technique to study organic fragments with high mass and spatial 

resolution.237 A focused, pulsed ion beam from a primary ion source (Bi cluster liquid metal or 

microfocused Ga) under ultrahigh vacuum conditions is used to bombard the surface of a material 

and dislodge molecules from the top 1-2 nm of the surface.238 The resultant particles produced are 

then accelerated into a time of flight analyzer and their masses are determined by measuring the 

exact time at which they reach a detector.238 The exact time can be detected on a scale of nano-

seconds, producing high mass resolution, with a lateral resolution down to 100 nm.239 Single ions 

(positive or negative) are generated from the closest impact site. Secondary ion mass spectra are 
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obtained by analyzing the mass to charge (m/z) ratio of the molecular fragments. The ToF-SIMS 

analysis collects both a positive and negative spectrum to give the complete picture over 1000 m/z. 

Figure 3.3 schematically shows how primary ion beams interact with a sample to remove material 

from the surface. 

 

 

Figure 3.3: In Tof-SIMS, high energy focused beam is used to bombard the surface liberating single ions 

(positive and negative) and molecular fragments. Reproduced with permission from Hofmann et al.240. 

 

In this dissertation, ToF-SIMS experiments were performed using a TOF.SIMS5 instrument 

(ION-TOF GmbH, Munster, Germany). This spectrometer is equipped with a Bi cluster primary 

ion source and a reflectron type time-of-flight analyzer. The analysis beam used for this study was 

a Bi source providing short, pulsed 25 keV energy Bi3
+. A high lateral resolution of approximately 

4 μm, and a target current of 0.1 pA at a repetition rate of 5 kHz was maintained. Bi was set in the 

“bunched high current” mode for depth profiling (short pulses, high mass resolution). Samples 

were pumped down till the pressure in the analysis chamber was less than 5 × 10-8 mbar. The short 

pulse length of 0.8 ns allowed for high mass resolution. Primary ion doses were kept below 

1011 ions cm-2 (static SIMS limit) for all measurements. Bi3
+ was typically rastered over a 300 × 

300 µm2 area on the sample. 128 × 128 data points were recorded. Spectra were calibrated on the 

omnipresent C
-
, CH

-
, CH2

-
, OH

-
, or on the C

+
, CH

+
 and CH3

+
 peaks. Based on these datasets the 

chemical assignments for characteristic fragments were determined. Bi was set in the “burst 
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alignment” mode for high lateral resolution imaging, providing long pulses and nominal mass 

resolution. Here, 100 × 100 µm2 fields of view on the sample were analyzed, and 128 × 128 data 

points were recorded. 

3.4.13 Streaming potential measurement 

Most materials have charge-bearing surfaces that are sensitive to electrostatic effects.241 When 

a charged surface is introduced into an ionic solution, the balancing counter charges from the 

solution concentrate near the charged surface. An electrical double layer model is used to describe 

the ionic environment near the charged surface. The charges will not be uniformly distributed 

throughout the liquid phase. The concentration of ions will be higher near the surface, and the 

concentration will decrease as the distance away from the charged surface is increased. This forms 

the diffuse layer. Some of the ions are specifically adsorbed by the surface. The layer between the 

charged surface and the diffuse layer where the adsorbed ions are present is called the Stern layer. 

The potential at the Stern layer is known as the zeta (ζ)-potential.242,243 ζ-potential indicates the 

electric surface properties of a material. Typically, streaming potential measurements are used for 

the determination of ζ-potential of surfaces.244 

 

Figure 3.4: Schematic diagram of electrical double layer model at the surface. Bright grey (positive) and 

yellow (negative) ions from the ionic solution concentrate near the charged surface introduced 

in the ionic solution. This layer is called the Stern layer. The concentration of ions decreases 

further from the surface towards the extended liquid phase. The liquid phase between the 

surface and the extended liquid is called the diffuse layer. The potential between the Stern layer 

and the diffuse layer is known as the ζ-potential. Reproduced with permission from Cai et al.245 

 



G. Venkidasubramonian 

  49 

In this work, streaming current measurements for multiple pH values were collected by Dr. 

Ramya Kumar. Polymer coatings were prepared as described previously. Measurements were 

performed with a SurPASS (Anton Paar GmbH) electrokinetic analyzer. A clamping cell was used 

in asymmetric mode246 to acquire all measurements from the sample across a pH range of 3 to 6. 

Polypropylene foil was used as reference. A gap of 100-120 µm was maintained between the 

sample and the polypropylene reference standard. For each sample, titration was performed from 

the neutral to the acidic range using 0.1 M hydrochloric acid as the titrant and 0.001 M potassium 

chloride solution as the electrolyte. The pH value was controlled using an automated titration unit, 

which effected pH ranges in increments of 0.3, while the electrolyte solution was stirred 

continuously. Streaming current was measured with a pair of reversible Ag/AgCl electrodes. The 

Helmholtz-Smoluchowski equation247 was applied to compute the ζ-potentials. The streaming 

current was measured and recorded at a pressure of 400 mbar, with flow rates of 50-70 ml min-1. 

The electrolyte solution was purged continuously by bubbling nitrogen gas to prevent carbon 

dioxide dissolution and unintended changes in the pH value. Samples were rinsed 3 min before 

each measurement to equilibrate the surface against the electrolyte solution. 

  Cell Culture 

hMSC (a kind gift from Dr. Paul Krebsbach, University of Michigan) are cultured for 7 days 

on the various ATRP surfaces and the cell culture work for hMSC was completed together with 

Dr. Thomas Eyster. The media utilized was comprised of the following: alpha-MEM + 10% 

Screened FBS + 1% Pen/Strep. In this instance, UVO-grafted PMEDSAH is utilized as control. 

hMSC were seeded at a density of 6000 cells/cm2 and were initially fed after 24 h and subsequently 

fed every 48 h thereafter. 

hESC culture work was done by Dr. Xu Qian and Dr. Tugba Topal. Undifferentiated human 

embryonic stem cell (H9) colonies were washed with D-PBS and incubated with accutase non-

enzymatic cell attachment passaging solution for 5-10 min at 37 °C for gentle dissociation of 

colonies. Lifted cells were collected with Accutase™ solution and HCCM was added. The solution 

was briefly centrifuged. The cell pellet was then dispersed in HCCM supplemented with 5 ng/mL 

of human recombinant bFGF and 10 mM ROCK inhibitor.248 The cell aggregates were removed 

by passing the solution through a 40 mm nylon mesh cell strainer. 20,000 cells/mL were then 

plated on various ATRP surfaces, IGT-modified substrates and Matrigel-coated substrates and the 
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cells were cultured for 7 days. Culture medium was changed every second day. Differentiated cells 

were mechanically removed using a sterile pulled-glass pipet under a stereomicroscope 

(LeicaMZ9.5, Leica Microsystems Inc., Buffalo Grove, IL). 

HSC culture and analyses were performed by Dr. Lisa Rödling. Umbilical cord blood (UCB) 

was obtained from the Cord Blood Bank of the German Red Cross (Mannheim, Germany) with 

ethics approval obtained from the local ethics committee (Ethik-Kommission bei der 

Landesärztekammer Baden-Württemberg, B-F-2013-111) and written informed consent of 

parents. After isolation, CD34+ HSCs was determined by flow cytometry; cells were subjected to 

experiments if a minimum of 95% of the cells were CD34+. The freshly isolated CD34+ HSCs 

were cultivated in HematoStem SF Kit with 1% (v/v) penicillin/streptomycin, 2 mм L-glutamine. 

“Interfacial Gemini Transformer” surface preparation 

IGT-modified substrates were sterilized with UV-light overnight and washed with sterilized 

Dulbecco’s phosphate buffer saline (D-PBS). Then the substrates were equilibrated with human 

cell-conditioned medium (HCCM) overnight before cell seeding at 37 °C in 5% CO2 atmosphere. 

Preparation of Matrigel-coated substrates 

Matrigel preparation was done by Dr. Tugba Topal. Matrigel™, the gold standard in hESC 

culture is used as control. Matrigel™ was diluted to a concentration of 0.1 mg/mL in cold 

Dulbecco’s modified Eagle’s medium/F12 (DMEM/F12) and then applied to glass bottom TCPS 

dishes (35 mm, 10 mm glass diameter).248 The coating polymerized during 2 h incubation at room 

temperature or 1 h at 7 °C. Excess Matrigel-DMEM/F12 solution was aspirated before plating 

cells, and the dishes were then washed with sterilized D-PBS. 

3.5.1 Analysis of human pluripotent stem cell culture 

The morphology, attachment, and differentiation of hMSC and hESC were evaluated. hMSC 

analysis was done along with Dr. Thomas Eyster. hESC analysis was done by Dr. Xu Qian and 

Dr. Tugba Topal. Morphology was assessed by determining the average cell area. For phalloidin 

staining, cells on UVO-grafted and ATRP PMEDSAH coatings were fixed in 4% 

paraformaldehyde at room temperature for 30 min and washed twice in PBS (5 min each) followed 
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by blocking in 1.5% BSA for 30 min. The resulting cells were stained with phalloidin (1:500 

dilution from 1000× stock) and Hoechst 33342 (1 µm) in PBS for 1 h at room temperature followed 

by three additional washes in PBS (5 min each). Images of the cells were taken after 7 days of 

culture with the Nikon TE2000-S inverted microscope with a Nikon DS-Ri1 camera, and then 

Image J software (v1.48, NIH) was used to analyze the images. The area of hMSC was found by 

counting the total number of cells (as indicated by the number of DAPI stains) and dividing this 

number by the total cell area which is measured using the software. For hESC colonies, Image J 

software was used to quantify fluorescent intensity.249,250 An outline was drawn around each cell, 

and area, integrated density and mean gray value was analyzed. Then several adjacent background 

readings were selected. The corrected total cell fluorescence (CTCF) was calculated. 

CTCF = integrated density – (area of selected cell × mean fluorescence of background readings) 

Cell attachment for hMSC was found by counting the number of cells/colonies present on the 

surface after 7 days culture. 

3.5.2 Flow cytometry analysis 

Flow cytometry was used to assess cell-surface expression of pluripotent markers. hMSC flow 

cytometry was done along with Dr. Thomas Eyster. After 7 days of proliferation in complete media 

(α-MEM + 10% FBS + 1% penicillin/streptomycin), the hMSC cells were trypsonized and labeled 

with 1 µg/ml of antibody conjugated with a fluorescent marker. Specifically, CD73 (PE), CD166, 

and CD105 (PE) are used as positive pluripotent markers for hMSCs. Hematopoietic stem cell 

markers CD34 (FITC) and CD45 (FITC) are also utilized as negative controls. Prior to flow 

analysis on the stained cells, cells that have not been stained are assessed in order to calibrate the 

baseline for subsequent measurements. 

hESC flow cytometry was done by Dr. Xu Qian. After week 5, hESC cultured on different 

substrates were washed with PBS and harvested by incubation in 0.25% trypsin-EDTA. The 

trypsinization reaction was stopped by adding 1 ml HCCM. The cells were then incubated first 

with human IgG to block non-specific binding, washed and then incubated with human/mouse 

SSEA-4 PE-conjugated antibody, washing was repeated and then analyzed by flow cytometry. 

MoFloR® Astrios™ (Beckman Coulter) was used for analysis using standard procedures. 
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Background fluorescence and autofluorescence were recorded using cells incubated with Mouse 

IgG1 PE isotype control. 

HSC flow cytometry was done by Dr. Lisa Rodling. For HSC, flow cytometry was applied to 

analyze CD34 expression and proliferation. To label CD34, 2 × 104 cells were stained with anti 

CD34-PE-Cy7 and the respective isotype control for 30 min on ice. After washing the cells were 

analyzed on a Cytomics FC 500 flow cytometer (Beckman Coulter, Krefeld, Germany). 

3.5.3 Cell Trace Violet-Proliferation Assay 

For analysis of cell divisions undergone during culture, the cells were stained with the 

CellTrace Violet Cell Proliferation Kit. In brief, freshly isolated HSCs were stained with 5 × 10-6 м 

CelTrace Violet in 1000 µL 0.1% (v/v) FBS in PBS and incubated for 20 min at 37 °C and 5%CO2. 

5 mL cold 10% (v/v) FBS in PBS was added to stop the reaction. After 5 min of incubation on ice 

the cells were resuspended in the appropriate medium and used for further experiments, following 

which the CellTrace Violet staining of the cells was analyzed by flow cytometry. 

3.5.4 Western blot analysis 

Western blot analysis was performed by Dr. Tugba Topal according to a procedure previously 

reported.248 Cells were collected, washed once with PBS and lysed with NP-40 lysis buffer (150 

mM NaCl, 1% NP-40 (w/v) and 50 mM Tris-HCL, pH 8), passed through a 30-gauge syringe 10 

times and incubated in ice for 10 minutes to generate a whole cell lysate. Lysates were then 

centrifuged at 10,000 × g for 30 minutes. The supernatant was quantified for protein concentrations 

using the Bio-Rad protein assay with the Biotek Nova Spectrophotometer at 595 nm wavelength. 

10 µg of protein lysate was mixed with 3X Laemmli loading buffer (0.125 M Tris-HCl; pH 6.8, 

4% SDS, 20% glycerol, 0.004% bromophenol blue, 10% 2-mercaptoethanol) for using in 

SDS-PAGE. 10 µL of Precision Plus Protein Dual Color Standards were loaded in one lane for 

molecular weight estimation from 10-250 kDa. Novex™ Tris-Glycine SDS Running Buffer (10X) 

was diluted to 1X with milliQ filtered deionized water. The protein lysates were separated by 

electrophoresis on Novex™ Wedgewell™ 4-20% Tris-Glycine Gels and XCell SureLock® Mini-

Cell Electrophoresis System. at 150 V for 85 min. 
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For optimal separation of proteins ranging from 50-75 kDa for S6 kinase 2 (S6K2) 

phosphorylation immunoprecipitation analysis, the Novex™ Wedgewell™ 10% Tris-Glycine 

Gels were used. Resolved proteins were transferred onto hydrophobic polyvinylidene difluoride 

(PVDF) membranes wetted with 100% methanol in Trans-Blot® SD semi-dry transfer cell (Bio-

Rad, cat#170-3940) for 60 min at 24 V constant using 1X transfer buffer (25 mM Tris, 192 mM 

glycine, 20% methanol (v/v), 0.5% SDS at pH 8.3). After the transfer, the membranes were 

blocked with 2.5% blocking solution in 50 mL 1X Tris-buffered saline, 0.1% Tween20 (TBST, 

50 mM Tris-HCl (pH 7.5), 150 mM NaCl, Tween 20) for 30 min at room temperature, followed by 

extensive washing with 1X TBST for 30 min. 

Before incubating the antibodies, the membranes between the 75 kDa and 100 kDa bands were 

cut to optimize for proteins above 100 kDa in size, above 75 kDa and above the 37 kDa membrane 

for proteins within those ranges, and between 20-25 kDa for proteins above and below those 

ranges.248 This allows for optimal antibody incubation with the appropriate membranes. The 

membranes are then incubated with primary antibodies overnight at 4 °C on a shaker. Then the 

membranes were washed with 1X TBST for 30 min (3 times). All washing, and antibody 

incubation steps were done on a shaker at room temperature to ensure even agitation. Next, the 

appropriate secondary antibody was added and incubated for 1 h. The membranes were washed 

with 1X TBST for 30 min. For visualization, membranes were incubated with ECL plus substrate 

for 3 min at room temperature and exposed to HyBlot CL autoradiography film. The primary 

antibodies used for Western blot analyses are: Oct4, Sox2, KLF4 and PRDM14. 1:1000 dilution 

of primary antibodies in 5% BSA in 1X TBST buffer with 0.04% sodium azide were used. Rabbit 

antibodies were used. Secondary antibodies for Western blot analyses: α-mouse IgG (H+L) HRP 

conjugate (1:4000 dilution), α-rabbit IgG (H+L) HRP conjugate (1:7500 dilution). 

3.5.5 Cell immunofluorescence analysis 

hESC on Matrigel coated substrates and IGT modified substrates were washed once with PBS 

for 5 minutes and the supernatant was aspirated out of each plate. Cells were fixed in 1 mL Z-Fix 

solution for 10 minutes, washed three times with 1 mL PBS for 10 min, added the unmasking 

solution (PBS, 2 N HCl, 0.5% Triton X) for 10 minutes and removed it, all at RT. Then, the cells 

were incubated in the quenching solution (TBS, 0.1% sodium borohydride) for 10 min, removed 

it, permeabilized with 0.2% Triton X-100 in PBS for 10 min and incubated in blocking solution 
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(1 mL 5% BSA/1X PBS) for 30 minutes. The samples were then incubated overnight at 4 °C with 

1 mL primary antibodies diluted in 5% BSA/PBS. Next day samples were washed three times with 

1X PBS for 10 min, followed by 1 h exposure to secondary antibodies. Samples were then washed 

twice in PBS for 10 min, incubated for 10 min with DAPI, followed by a wash step with 1X PBS 

for 10 minutes. These steps were at RT and in dark conditions. 

Nikon Ti Eclipse Confocal Microscope with a water dipping lens (10X) was used to capture 

images. The images were recorded with or without 3X digital zoom, in about 1/8 frames per 

second, 512×512 pixels image capture, 1.0 Airy Units, two times line averaging, appropriate 

voltage and power settings optimized per antibody. Figures were prepared by rotation, image 

sizing or gray scale changes. No other modification was done. The following antibodies were used 

at the following dilution: Oct4 (1:500 dilution), Nanog (1:100 dilution) and Sox2 (1:500 dilution). 

Secondary antibodies used: donkey anti-mouse IgG, Alexa Flour® 488, donkey anti-rabbit IgG, 

Alexa Flour® 594. All secondary antibodies were used at a concentration of (1:1500) with a 

working volume of 1.5 mL in 5% BSA/PBS. DAPI stain was used for DNA. 

3.5.6 Extraction and purification of total RNA 

After washing the plates with PBS, cells were lysed directly on the plated by adding 1 mL of 

Trizol Reagent. RNA was extracted after vigorous pipetting.248 200 µL chloroform was added to 

this solution followed by centrifugation (13,000 g) for 15 minutes. Aqueous phase containing RNA 

was separated and mixed with 500 µL isopropanol, followed by overnight storage at 20 °C. Then, 

the manufacturer’s RNA clean-up protocol, RNeasy® Mini-Kit (Qiagen, Valencia, CA), with the 

optional On-column DNAse treatment was followed. RNA quality and concentration were 

checked using a Synergy™ NEO HTS Multi-Mode Microplate Reader (BioTek Instruments, 

Winooski, VT). 

3.5.7 Quantitative Real-time PCR (qPCR) analysis 

Total RNA was isolated from H9 hESC as described in the previous section. Purified RNA 

(2.5 µg in 20 µL reaction) was reverse transcribed using a SuperScript™ VILO™ Master Mix Kit. 

The synthesis of first-stranded cDNA was performed in the PCR tube after combining SuperScript 

VILO, RNA, and DEPC-treated water. The following conditions were used for qPCR experiments: 

10 min at 25 °C in the first cycle, followed by incubating for 60 min at 42 °C, and terminating the 
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reaction at 85 °C for 5 min. The 7900HT Fast Real-Time PCR System (Applied Biosystems) with 

TaqMan Universal PCR Master Mix were used to conduct real-time PCR in triplicate for each 

sample using TaqMan probes (Applied Biosystems). Primer sequences used for qPCR are listed 

in Table 3.1. 

 

Table 3.1: List of primers used in qPCR 

Gene Symbol Assay ID UniGene ID 

NANOG Hs02387400_g1 Hs.635882 

POU5F1 (OCT3/4) Hs03005111_g1 (FAM-MGB) Hs.249184 

SOX2 Hs01053049 (FAM-MGB) Hs.518438 

GAPDH Hs02786624_g1 Hs.544577 

 

The comparative CT method was used to calculate the relative quantity of NANOG, OCT4, 

KLF4 and SOX2 gene expression, normalized to Glyceraldehyde 3-phosphate (GAPDH), and was 

expressed as the fold change = 2- ΔΔCT.248,251 

3.5.8 Alkaline Phosphatase Assay (ALP) 

ALP assay was done by Dr. Xu Qian. An ALP detection kit from Millipore (#SCR004) was 

used for the phenotypic assessment of undifferentiated hESC colonies at day 7.103 The 

recommended protocol was followed. Cells were fixed and rinsed with PBS, incubated in staining 

solution in the dark at room temperature for 15 min and prepared for imaging. 

3.5.9 Statistical Analysis 

Results are the mean values ± standard error of the mean (SEM) or mean values ± standard 

deviation (SD) and are adjusted for outliers. Microsoft Office Excel (Microsoft, USA) was used 

for processing the data. 
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CHAPTER 4 RESULTS AND DISCUSSION 

Long term propagation of human pluripotent stem cells (hPSC) is important as they can serve 

as a virtually unlimited supply of cells for applications ranging from drug screening to cell 

therapies to understanding human developmental processes.252 Several studies have shown that the 

complex microenvironment of the stem cell niche plays a major role in regulating cellular 

properties.253 From a biomaterials’ standpoint, it would be highly desirable to engineer alternatives 

that would mimic such a complex microenvironment. Interactions between biomaterial surfaces 

and cells alter cell behavior, resulting in beneficial or detrimental effects on their performance.9,254 

In reality, traditionally used feeder layer culture and Matrigel™ substrates have xenogeneic 

components, batch-to-batch variation, and processes that do not readily lend themselves to scale-

up from an industrial research standpoint.9,255 

The use of hydrogel materials would be beneficial in designing potential stem cell substrates 

because their properties can be tuned and altered systematically.9,256 With burgeoning interest in 

translational research and regenerative medicine, synthetic cell culture systems are the hour of 

need. They are attractive due to their low costs, ease of use and bottom-up or top-down design.30 

Additionally, a defined biomaterial is needed to comply with good manufacturing practice (GMP) 

standards and eliminate the presence of animal-derived products.257 Although several systems have 

been investigated, very few synthetic coatings have been commercially manufactured and sold. 

Villa-Diaz et al. developed a fully defined synthetic zwitterionic polymer system, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), by 

ultraviolet/ozone (UVO)-initiated free radical polymerization, which sustained the 

undifferentiated growth of human embryonic stem cell (hESC) and induced pluripotent stem cell 

(hiPSC) in several different culture media, including commercially available defined media for 

more than 25 passages.13,14 PMEDSAH is a biomimetic polymeric hydrogel and it is hypothesized 

that a layer of proteins/lipids/growth factors is adsorbed on the polymeric material to facilitate 

hESC and iPSC proliferation. Section 4.1 describes the efficient functionalization of surfaces via 
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UVO-initiated free radical polymerization of MEDSAH onto vapor-deposited polymer coatings 

and tissue culture polystyrene dishes. 

  Ultraviolet/Ozone-Initiated Free Radical Polymerization 

PMEDSAH polymer coatings were prepared using UVO-initiated free radical polymerization 

(UVO-grafting).13 It was used as a control to compare the reversible deactivation radical 

polymerization (RDRP) techniques in the subsequent sections. Silicon and gold substrates were 

coated with poly-p-xylylene (PPX-N) via chemical vapor deposition polymerization. PMEDSAH 

polymer coatings were then grown from these substrates using UVO-initiated free radical 

polymerization. Physico-chemical characterization of these coatings was accomplished by 

measuring film thickness. The thickness of the films generated through UVO-grafting was 

22 ± 11.1 nm, analyzed from 500 samples. The film thickness which correlates to molecular 

weight and grafting density of the UVO-grafted polymer could not be controlled, resulting in the 

large variance in the thickness.173 This result showed that the film thickness varied with fixed 

monomer concentration and reaction time and supported the conclusion that UVO-grafting does 

not have the ability to control film thickness. 

 

Figure 4.1: Fourier transform infrared (FTIR) spectrum of PMEDSAH coating showing distinct bands at 

1732 cm-1 and 1215 cm-1, which indicate the presence of carbonyl and sulfonate groups, 

respectively. 
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The contact angle of UVO-grafted PMEDSAH was found to be 20° ± 3° and was consistent 

with the findings in our lab.103 The Fourier transform infrared (FTIR) spectrum of PMEDSAH 

coated substrates, stored under ambient conditions, showed characteristic bands at 1732 cm-1 and 

1215 cm-1 that correspond to the carbonyl and sulfonate groups respectively (Figure 4.1). This was 

consistent with previously reported FTIR spectra of grafted PMEDSAH brushes.13 The result 

verified the grafting of PMEDSAH brushes on the surface. hMSC, hESC and HSC were cultured 

from UVO-grafted PMEDSAH coatings. The results of this study will be presented in Section 4.6. 

  SI-ATRP of Polymer Brushes on Chemical Vapor Deposition-based 

Initiator Films 

Though UVO-grafted PMEDSAH coatings could maintain long-term self-renewal of hESC 

and hiPSC, and the prospect of commercially using these substrates were promising, the cells 

cultured on these substrates cannot be clinically translated without clearly understanding the 

underlying mechanism that support hESC self-renewal. Therefore, it was important to understand 

the key structural features and functions of the coatings that control pluripotency. The physico-

chemical properties, such as hydrophilicity15, surface topography, surface charge, surface 

roughness258 and stiffness259, of the biomaterials has been known to influence hESC expansion.29 

Therefore, the testing of the material properties of PMEDSAH coatings, like thickness, wettability 

and surface roughness was undertaken. RDRP techniques, such as surface-initiated atom transfer 

radical polymerization (SI-ATRP)260 has enabled to synthesize well defined, tunable polymer 

brushes with controlled grafting densities and molecular weight distributions.261 SI-ATRP 

provides exquisite control of polymer brush growth kinetics, which could be used to modify the 

interfacial properties of the polymer substrates. 

With the goal of identifying the causes and mechanism behind the hESC propagation rates on 

PMEDSAH brushes, and to provide a framework for the desired biomaterial design criteria for 

hPSC culture systems, PMEDSAH brushes were generated by SI-ATRP using CVD based initiator 

coatings. The effect of the variations in the zwitterionic charge distance between the quaternary 

ammonium cation and the negatively charged sulfonate ion on the polymerization kinetics, was 

also examined. For this, poly[{2-(methacryloyloxy)ethyl}dimethyl-(3-sulfobutyl) ammonium 

hydroxide] P(M-2.4-S), a polymer with 4 methylene groups between the positive and the negative 
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ions; and poly[{2-(methacryloyloxy)ethyl}dimethyl-(3-sulfohexyl) ammonium hydroxide] 

P(M-2.6-S), a polymer with 6 methylene groups between the positive and the negative ions; were 

also grown from ATRP initiator coatings and the properties of these brushes as a function of 

thickness and wettability were measured. SI-ATRP of zwitterionic monomers is achieved on 

vapor-based polymer coatings at room temperature by using a catalytic system of CuBr/CuBr2/bpy 

(Scheme 4.1). 

 

Scheme 4.1: Schematic of ATRP coatings on CVD initiator coatings. N = 3 for PMEDSAH, n = 4 for 

P(M-2.4-S) and n = 6 for P(M-2.6-S)). 

 

First, the ATRP initiator coating was synthesized through the chemical vapor deposition 

(CVD) polymerization of [2.2]paracyclophane-4-methyl-2-bromoisobutyrate precursor, to form 

poly(p-xylylene-4-methyl-2-bromoisobutyrate)-co-(p-xylylene) (PPX-EB).166 The thickness of 

the synthesized PPX-EB coatings were determined using ellipsometry and confirmed the 

formation of the coating. Additionally, the presence of ATRP-initiating ester bromide functional 

groups was confirmed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform 

infrared (FTIR) spectroscopy. Next, PPX-EB coated substrates were used to grow PMEDSAH 

polymer brushes. Kinetic studies were conducted to better understand the polymerization process. 

The kinetic plot in Figure 4.2 showed that the propagation rate of the reaction is linear and provides 

good control over polymerization. By increasing the ATRP reaction time, the PMEDSAH 

thickness increased. Xiao et al. have successfully employed a kinetic model to predict polymer 

film thickness as a function of time.193 

 
𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =  

[𝑀]0𝑘𝑝[𝑃𝑛
•]0𝑡

1 + [𝑃𝑛
•]0𝑘𝑡𝑡

 
(17) 
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where [M]0 is the initial monomer concentration, kp is the rate constant of propagation, [𝑃𝑛
•]0 is the 

concentration of propagation radical, and kt is the rate constant of termination. Figure 4.2 indicates 

that this model describes the data well. The thickness of polymer film increases with reaction time 

almost linearly, which is typical of an RDRP process. The nonlinearity in the time dependence 

indicates termination. 

 

Figure 4.2: ATRP PMEDSAH film thickness vs time on vapor-based coatings at room temperature 

measured by ellipsometry. The data are indicated by the points and the curve shows the best fit 

to eq 17. 

 

Furthermore, the wettability of the hydrogels was increased as a result of reaction time, leading 

to more hydrophobic brushes (Figure 4.3). 
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Figure 4.3: Hydrogel wettability as a function of reaction time for PMEDSAH ATRP modified surfaces. 

The schematic represents the architecture of a PMEDSAH brush and its interaction with water. 

It is unassociated in the hydrophilic regime. The PMEDSAH brushes switched from 

hydrophilic to hydrophobic due to zwitterionic self-association following a transition thickness 

regime. Images of representative water droplets illustrate the wettability differences. Schematic 

adapted from Qian et al.103 

 

In particular, the static water contact angle ranged from 18° for ~20 nm brushes to 75° for 

~175 nm brushes. Between these thicknesses, a broad transition regime was observed. The 

polymer conformation changes with increasing thickness and ATRP propagation rate.80 Hence the 

polymer brush regime changes from hydrophilic when the brushes are unassociated to hydrophobic 

due to zwitterionic self-association.80,96 Water is excluded from the brush due to the formation of 

inter-chain and intra-chain associations between quaternary ammonium cation and sulfonate anion 

of adjacent side chains80 (Figure 4.3). The result strongly indicated that the length of the polymer 

brushes is a determining factor for the hydrophobic transition. Longer polymer brushes are likely 

to have increased chain association and thus exclude more water from the brush, explaining the 

increase of contact angle with reaction time. Thus, the interfacial properties of the polymer brush 

can be tuned through grafting thickness. Then, the zwitterionic charge distance between the 

quaternary ammonium cation and the sulfonate anion in the monomer subunit should influence the 

chain associations. 

To investigate this hypothesis, Kratzer et al.262 have developed a library of zwitterionic 

sulfobetaine methacrylates varying the number of methylene groups between quaternary 

ammonium and sulfonate charge centers. Two monomers from the library, M-2.4.S (4 methylene 
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groups between the charges) and M-2.6-S (6 methylene groups between the charges), were 

polymerized by SI-ATRP using the same conditions used for the polymerization of PMEDSAH 

brushes. 

 

Figure 4.4: Kinetics of PMEDSAH, (P(M-2.4-S)) and P(M-2.6-S) brush growth from vapor based coatings. 

Kinetic study with ellipsometry showed that P(M-2.6-S) followed similar reaction kinetics as 

PMEDSAH brushes (Figure 4.4). But thickness was considerably lower compared to the 

PMEDSAH brushes for similar reaction time. Contact angle measurements of P(M-2.6-S) after 

24 h reaction time was 31±5°, which falls in the hydrophilic regime. Hence, it can be concluded 

that the P(M-2.6-S) polymer brushes are unassociated and in the dilute region, which is comparable 

to the PMEDSAH brushes of similar thickness. 

P(M-2.4-S) did not show ATRP growth kinetics. However, the thickness of P(M-2.4-S) at 24 h 

was like the P(M-2.6-S) thickness at 24 h. Contact angle measurements of P(M-2.4-S) after 24 h 

reaction time was 67±2° which falls in the hydrophobic regime. Hence, it can be concluded that 

the polymer brushes undergo zwitterionic self-association at 65 nm brush thickness. Despite 

having similar thicknesses, the gel architecture of P(M-2.4-S) and P(M-2.6-S) were different. One 

reason could be because the brush growth of P(M-2.4-S) was less controlled. Another reason could 

be that the molecular weight determines the gel architecture. If the length of the polymer chains 

would be the only deciding factor, then 65 nm P(M-2.4-S) brushes should be hydrophilic, as 

observed with the other two polymeric materials. Therefore, the gel architecture must also be 

associated with the zwitterionic charge distance, that would alter the specific intrachain and 
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interchain interactions between neighboring chains. However, further studies need to be performed 

to optimize the propagation kinetics of P(M-2.4-S) by changing the monomer concentration, 

catalyst ratio and reaction time so that the polymerization is better controlled. Until then, we cannot 

establish with conviction, the correlation between zwitterionic charge distance and the gel 

architecture. 

 

  PMEDSAH Polymer Brushes based on Reversible Addition-

Fragmentation Chain Transfer Polymerization from Chemical Vapor 

Deposition Films 

The material in this section has been adapted with minor modifications from the following 

manuscript. 

Gowthamy Venkidasubramonian, Domenic Kratzer, Vanessa Trouillet, Nicolas Zydziak, Matthias 

Franzreb, Leonie Barner, Joerg Lahann, “Surface-initiated RAFT polymerization from vapor-

based polymer coatings” 

 

In this section, interfaces were designed using S-RAFT polymerization. RAFT polymerization 

is advantageous for the preparation of water-soluble polymer brushes unlike ATRP, which requires 

an organic solvent to reduce the rate of propagation for better control of the polymer brushes. The 

direct polymerization of MEDSAH on surfaces using RAFT polymerization had previously proven 

problematic, even though several research groups have detailed the successful SI-ATRP of 

zwitterionic polymer brushes.80,263,264 Here, polymer brushes were engineered on vapor-based 

coatings presenting reactive alkyne groups (PPX-alkyne) that can be further functionalized with 

RAFT agents via “click reactions”. To this end, polymer brushes composed of zwitterionic 

monomer MEDSAH from RAFT agent decorated surfaces were prepared in a controlled manner 

by S-RAFT polymerization (Scheme 4.2). 
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Scheme 4.2: Schematic illustration of the processes of CVD polymerization and the immobilization of the 

azide- functionalized CTA (azido-CTA) by copper-free click reaction on the alkyne-

functionalized reactive polymer coatings (PPX-alkyne surface). During the CVD 

polymerization process, sublimation occurred for PCP-alkyne at approximately 100–120 °C. 

The sublimed paracyclophane was transferred from the source to the pyrolysis zone and 

exposed to elevated temperatures of 510 °C to thermally convert them into quinodimethanes. 

Finally, the quinodimethanes spontaneously polymerized upon condensation on a cooled 

(approximately 15 °C) substrate to generate PPX-alkyne surfaces. The surface-initiated RAFT 

polymerization of the MEDSAH monomer from the RAFT agent-decorated surface (S-CTA) 

followed. 
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4.3.1 Characterization of Vapor-Deposited Substrates 

First, the PPX-alkyne was prepared by vaporization and pyrolysis of PCP-alkyne at 510° in 

the CVD apparatus. The 1,4-quinodimethanes that were obtained from the pyrolysis of PCP-alkyne 

were vapor deposited on substrates at 15 °C forming PPX-alkyne. Approximately 25-30 nm 

polymeric coatings of PPX-alkyne were generated and served as the base for subsequent surface 

modifications. 

 

Figure 4.5: IRRAS confirms the presence of (a) PPX-alkyne, (b) PMEDSAH brushes. 

 

Figure 4.6: XPS measurements of carbon and oxygen content indicate the presence of PPX-alkyne coating. 
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This thickness was chosen to ensure relatively good pinhole-free surface coverage and 

compatible with XPS analysis (information depth 10-20 nm).265 Using IRRAS spectroscopy 

(Figure 4.5(a)), the alkyne groups (at 3284 and 2118 cm-1) as well as the carbonyl group (at 

1719 cm-1) were verified to be present on the substrate. Next, XPS was used to quantitatively 

analyze the carbon and oxygen content of the coatings (Figure 4.6). The C1s spectrum confirmed 

the presence of aliphatic and aromatic carbons around 285.0 eV (a weak π-π* transition at ~291 eV) 

and C–O and O–C=O components at 286.7 eV and 289.2 eV, respectively. The analysis indicated 

a composition of 88 ± 5 atomic percent (at%) carbon and 12 ± 2 at% oxygen which were in close 

agreement with theoretical values. 

4.3.2 Surface modification: RAFT agent immobilization and Reversible Addition-

Fragmentation Chain Transfer Polymerization 

We hypothesized that the surface modification of PPX-alkyne coated substrates with azido-

CTA will create active sites at the interface that promote S-RAFT polymerization and ultimately 

the coating of biomimetic zwitterionic polymer brushes on the surface. To this end, we prepared 

surfaces functionalized with PPX-alkyne coatings, then azido-CTA was formed as monolayers on 

the surface through a copper-free click reaction (Scheme 4.2). 

In order to prepare monolayers of the azido-CTA, we employed the Cu-free 1,3-dipolar 

cycloaddition (Scheme 4.2)) to conjugate the azido-CTA to PPX-alkyne, which displays highly 

reactive alkyne functional groups.11 XPS was used to confirm the RAFT agent immobilization. 

High-resolution N1s and S2p XPS spectra of PPX-alkyne coating before and after the reaction of 

the alkyne groups with azido-CTA confirm the successful click chemistry. From the XPS N1s 

spectra in Figure 4.7, it is evident that after the reaction with azido-CTA, the N1s peak can be fitted 

with two components attributed to the triazole species. The signal at 401.8 and 400.2 eV 

correspond to the single bond and double bond nitrogen of the N=N–N respectively. Elemental 

ratios for the three nitrogen atoms are 1.3:2, compared to calculated value of 1:2. Furthermore, the 

absence of an azide signal at ~405 eV indicates the absence of nonspecific adsorption of azides 

during the reaction. Additionally, no S2p signal was detected on the PPX-alkyne surface before the 

reaction in the high-resolution S2p spectrum. 
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Figure 4.7: (a) N1s and (b) S2p high-resolution X-ray photoelectron spectroscopy of the PPX-alkyne 

coating and the S-CTA. 

 

After the click reaction, the spectra can be deconvoluted into two main signals. The S2p core-

level spectrum consists of a spin-orbit doublet with S2p3/2 and S2p1/2. The S2p3/2 at 162.8 eV 

corresponds to covalently bonded C=S sulfur group, and the peak at 164.2 eV which corresponds 

to the covalently bonded C–S sulfur group. These findings confirmed that CVD coatings can be a 

platform for “click chemistries” that are not copper-catalyzed. 

Next, RAFT polymerization was performed on these CVD coatings. A design of experiment 

was applied to tune the parameters such as the solvent and [CTA]0/[Initiator]0 to establish the 

optimum polymerization conditions on surfaces. 16 experiments were included out of the total 

3 × 4 × 4 = 48 possible experiments of a full factorial design (Table 4.1). The parameters, RAFT 

agent/initiator ratio, solvent and salt concentration are known to have a significant influence on 

RAFT polymerization and were chosen as experimental factors. The highlighted experiments were 
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performed. The RAFT agent decorated substrates were immersed in the monomer solution, which 

contains not only the initiator, but also a free RAFT agent. The added RAFT agent was essential 

to suppress termination reactions in solution, hence stabilizing the controlled nature of the 

system.266 Each experiment was started after the complete dissolution of the RAFT agent. All 

experiments were carried out at 70 °C. During polymerization the radicals are generated in the 

solution. The growing macroradical either diffuse to the RAFT agent immobilized on the surface 

or it undergoes chain transfer with free RAFT agent in solution. 

 

Table 4.1: Design matrix for the variation of reaction conditions (TFE/H2O solvent ratio; NaBr 

concentration; [Monomer]0/[CTA]0/[I]0). 

Run 
TFE 

(v/v) 

H2O 

(v/v) 

NaBr 

(M) 
[CTA]0 [I]0 [Monomer]0 

1 1 99 0 0.8 1 1200 

2 1 99 0.01 0.8 1 1200 

3 1 99 0.5 0.8 1 1200 

4 1 99 2 0.8 1 1200 

5 10 90 0 0.8 1 1200 

6 10 90 0.01 0.8 1 1200 

7 10 90 0.5 0.8 1 1200 

8 10 90 2 0.8 1 1200 

9 50 50 0 0.8 1 1200 

10 50 50 0.01 0.8 1 1200 

11 50 50 0.5 0.8 1 1200 

12 50 50 2 0.8 1 1200 

13 100 0 0 0.8 1 1200 

14 100 0 0.01 0.8 1 1200 

15 100 0 0.5 0.8 1 1200 

16 100 0 2 0.8 1 1200 

17 1 99 0 2 1 3000 

18 1 99 0.01 2 1 3000 

19 1 99 0.5 2 1 3000 

20 1 99 2 2 1 3000 

21 10 90 0 2 1 3000 

22 10 90 0.01 2 1 3000 

23 10 90 0.5 2 1 3000 

24 10 90 2 2 1 3000 

25 50 50 0 2 1 3000 
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Run 
TFE 

(v/v) 

H2O 

(v/v) 

NaBr 

(M) 
[CTA]0 [I]0 [Monomer]0 

26 50 50 0.01 2 1 3000 

27 50 50 0.5 2 1 3000 

28 50 50 2 2 1 3000 

29 100 0 0 2 1 3000 

30 100 0 0.01 2 1 3000 

31 100 0 0.5 2 1 3000 

32 100 0 2 2 1 3000 

33 1 99 0 0.4 1 600 

34 1 99 0.01 0.4 1 600 

35 1 99 0.5 0.4 1 600 

36 1 99 2 0.4 1 600 

37 10 90 0 0.4 1 600 

38 10 90 0.01 0.4 1 600 

39 10 90 0.5 0.4 1 600 

40 10 90 2 0.4 1 600 

41 50 50 0 0.4 1 600 

42 50 50 0.01 0.4 1 600 

43 50 50 0.5 0.4 1 600 

44 50 50 2 0.4 1 600 

45 100 0 0 0.4 1 600 

46 100 0 0.01 0.4 1 600 

47 100 0 0.5 0.4 1 600 

48 100 0 2 0.4 1 600 

 

Table 4.2: Study of the impact of design variables on contact angle and thickness 

Run Thickness (nm) Static contact angle (°) 

1 21 ± 0.16 21 ± 1.6 

2 22 ± 0.12 16.6 ± 2 

3 20 ± 5.13 17 ± 2 

4 15 ± 2.46 44 ± 11 

5 13 ± 0.56 43 ± 10.8 

6 19 ± 0.11 21.8 ± 5 

7 13 ± 5.11 42 ± 2 

8 12 ± 2.86 45 ± 2 
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Run Thickness (nm) Static contact angle (°) 

25 18 ± 0.26 22 ± 1 

26 19 ± 0.5 22 ± 9.4 

27 13 ± 5.5 40 ± 2 

28 24 ± 2.3 21.9 ± 10 

45 2 ± 0.5 62 ± 3 

46 2 ± 0.1 62 ± 3 

47 4 ± 5.1 53 ± 2 

48 6 ± 2.5 53 ± 2 

 

Figure 4.8: Brush thickness of runs 1, 2, 3 and 28 with time. Run 1: [Monomer]0/[CTA]0/[Initiator]0 = 

1200/0.8/1 in water/TFE (99:1 v/v); Run 2: [Monomer]0/[CTA]0/[Initiator]0 = 1200/0.8/1 in water/TFE 

(99:1 v/v) and 0.01 M NaBr; Run 3: [Monomer]0/[CTA]0/[Initiator]0 = 1200/0.8/1 in water/TFE (99:1 v/v) 

and 0.5 M NaBr; Run 28: [Monomer]0/[CTA]0/[Initiator]0 = 3000/2/1 in water/TFE (1:1 v/v) and 2 M NaBr. 
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Ellipsometry was used to demonstrate the RAFT polymerization of PMEDSAH on the S-CTA 

surfaces. PMEDSAH layer was fitted with an n_k fix model assuming an n of 1.58. The thickness 

and contact angle of the resulting polymer brush surfaces are listed in table 4.2. Runs 1, 2, 3 and 

28 were chosen to further investigate the kinetics of RAFT polymerization on surfaces. Run 1 

proceeded with a pseudo-first order kinetic plot indicating a constant radical concentration while 

the others did not as can be seen from Figure 4.8. 

 

 

Figure 4.9: Atomic Force Microscopy (AFM) was used to visualize the topography of PMEDSAH brushes. 

(a) 2 h; thickness = 2 nm, Rq = 0.2 nm; (b) 4 h, thickness = 9 nm, Rq = 1.6 nm; (c) 6 h, 

thickness = 14 nm, Rq=3.1 nm; (d) 8 h, thickness = 20 nm, Rq = 0.6 nm. 
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AFM was used to visualize the topography of grafted PMEDSAH brushes from run 1 

(Figure 4.9). Structural features were seen on the substrate with thickness of around 9 nm at 6 h 

reaction time with a root mean square (Rq) of the surface roughness of the PMEDSAH brushes of 

3.1 nm. This indicated a mushroom regime of the polymer brushes. At 8h, Rq decreases to 0.6 nm 

indicating a brush-like regime. Reaction conditions were further tuned to increase the thickness of 

the polymer brushes. We chose the reactions of run 41 and investigated whether the polymerization 

follows a first order process. However, no polymerization occurred on surfaces. So, another set of 

parameters were taken: -the [CTA]0/[I]0 ratio was increased to 10/1, and the polymerization data 

was collected. However, the brush thickness increased to merely 2 nm after 8 h. Very high 

concentration of radicals were generated in solution. 

 

Figure 4.10: Dry brush thickness grown from RAFT agent modified reactive polymer coatings by RAFT 

polymerization. [Monomer]0/[CTA]0/[Initiator]0 = 7500/10/1, temperature = 70 °C. 
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Figure 4.11: Change in brush thicknesses with time, measured by ellipsometry, for the polymerization of 

MEDSAH from silicon and gold surfaces at 80°C. Reaction conditions = 

MEDSAH/CTA/V501 = 7500/10/1.0. 

 

The simultaneous solution polymerization yielded high molecular weight polymers, so it was 

not unexpected that the surface had a thin film. To get thicker polymer brushes, the 

[Monomer]0/[CTA]0 ratio was increased from 600 to 750. Increasing the temperature by 10 °C 

increased the rate of the reaction enabling control over polymerization kinetics and giving a film 

thickness of about 20 nm after an 8 h reaction (Figure 4.11). We concluded that the conditions 

described in Figure 4.11 were the most optimum reaction conditions for the polymerization. 

IRRAS measurement showed PMEDSAH brushes on the surface (Figure 4.5) as the C≡C stretch 

around 2118 cm-1 disappear, and there was a shift in the C=O stretch around 1719 cm-1 and the 

S=O stretch around 1208 cm-1 which also aligned well with previously reported data.9 
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Figure 4.12: X-ray photoelectron spectroscopy of C1s (a) N1s (b) and S2p (c) for PMEDSAH film with a 

thickness of 20 nm grafted onto the RAFT agent-decorated surface via SI-RAFT 

polymerization. 

 

The XPS high-resolution C1s scan (Figure 4.12) showed an increase in the signal intensity at 

289.2 eV corresponding to the O–C=O group of PMEDSAH. In addition, the signal at 286.7 eV is 

indicative of the C–O signal of the carboxyl group of PMEDSAH. From the N1s spectrum, it is 

apparent that there is a quaternary ammonium –N(CH3)2
+ signal (402.8 eV) on the S-CTA surface 

after grafting of the PMEDSAH.267 Further, doublets are discernible in the spectrum of the 

PMEDSAH surface. The most intensive S2p doublet with S2p3/2 at 168.0 eV corresponds to 

sulfonate C–SO3
- group in the side chains of PMEDSAH. The other two weaker S2p doublets with 

S2p3/2 at 164.2 eV and 163.0 eV are associated with the C–S and the C=S bonds of the dithioester 

end-group.268 The N+/SO3
-/O–C=O ratio was ~ 1:1:1. 

Roughness is a potent physical signal in the cellular microenvironment to regulate a diverse 

array of hESC behaviors, including their morphology, cell adhesion, self-renewal and 

pluripotency.269 The surface roughness of PPX-alkyne coatings characterized by AFM. Roughness 

Rq was 1.1 nm (Figure 4.13). The PMEDSAH brushes grown on the PPX-alkyne coatings had an 

Rq of 3.6 nm. The change in surface roughness was not statistically significant. Hence, PMEDSAH 

coatings synthesized by S-RAFT polymerization can be categorized as smooth. Smooth surfaces 

has been shown to support hESC growth better than nano-rough surfaces with an Rq of 75-150 

nm.258 
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Figure 4.13: AFM was used to measure the surface roughness of (a) PPX-alkyne coating and 

(b) PMEDSAH brushes. Three-dimensional projections of the surfaces obtained from AFM 

imaging of dry substrates. PPX-alkyne thickness = 20 nm. PMEDSAH brush 

thickness = 20 nm. 

 

Figure 4.14: Water contact angle. Vertical error bars represent standard deviation of experimental 

measurement. 
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Contact angle was measured as a function of brush thickness to determine the wettability 

of the PMEDSAH substrates (Figure 4.14). The PPX-alkyne surface and the S-CTA surface 

exhibited average contact angles of 103° and 82°, respectively. The PMEDSAH layer had an 

average contact angle of 21°, which were comparable to the thin, unassociated PMEDSAH brushes 

synthesized by SI-ATRP. In the unassociated state, the sulfonate and ammonium groups in the 

side chains interact with water molecules, and not with each other, allowing the polymer to be 

fully hydrated, resulting in surfaces with low water contact angle.96 No significant differences in 

the contact angle was observed upon increasing the brush thickness to 20 nm. 

In conclusion, SI-RAFT polymerization protocol for the synthesis of PMEDSAH brushes were 

successfully established. PMEDSAH was in the thin, unassociated state at the highest well-

controlled brush thickness we could obtain by this method. The film thickness was comparable to 

the UVO-grafted PMEDSAH films and 1 h ATRP PMEDSAH films. It has already been 

established that hESC adhesion is favored on the latter two substrates. Hence, SI-RAFT method 

could offset the copper catalyst requiring SI-ATRP and allow us to tune the material properties on 

brush surfaces.  

However, the grafting-from process is still quite cumbersome, expensive and time consuming. 

It requires air-sensitive techniques and instruments like glove box which require specialized skill 

to operate. Our goal is to identify design parameters of PMEDSAH coatings that would eventually 

lead to a streamlined, established and facile scale-up process that is commercially viable. To this 

end, we attempted to develop a “grafting-to” approach to synthesize polymer brushes on substrates. 

Interfacial Gemini transporter (IGT) is a novel system with a small hydrophobic functional 

segment at the center and two flanking zwitterionic polymer segments. Such a system can be 

universally adapted for surface modification, not only on flat substrates, but also on particles, and 

complex 3D geometries. In this method, the small hydrophobic segment in the center drives the 

immobilization of the polymer in a thermodynamically good solvent, here, aqueous solutions. 

The chemical composition of the surfaces and thus the molecular weight of the IGT was 

tailored to investigate and optimize the influence of the length of the polymer chains on stem cell 

behavior. In section 4.4, IGT with varying molecular weights are utilized for their immobilization 

on reactive polymer coatings containing aldehyde groups. Cell adhesion to the IGT-modified 

biomaterial surfaces is demonstrated in section 4.6. 
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  Preparation of Brushes by Grafting-to Approach 

The “grafting-from” approach discussed in Section 4.2 could produce dense, tunable and 

functional polymer brushes. However, the “grafting-to” approach is more advantageous for 

biomaterials design for hPSC culture platforms because it can be scaled up easily.270 Thin polymer 

films can be produced by the grafting-to approach using a variety of solution-phase processes such 

as spin coating, spray coating, and dip coating from a polymer solution. The self-assembly of block 

copolymers with various charged blocks relying on hydrophobic or electrostatic interactions to 

physically adsorb to the interface is also a very useful method.271 But these coatings are unlikely 

to be mechanically and chemically robust in the absence of covalent bonds between the substrate 

and the polymer film.272 It was found that these coatings do not possess long-term stability in 

physiological buffers, or conditions where high shear forces are involved. Further chemical 

modification of the polymer films on the surface might be hampered by the requirements for the 

physisorption to the surface.272 Covalent anchoring strategies of polymers to surfaces are a 

powerful alternative to control the ordering, orientation and functionality of the coated polymer 

with molecular precision. In this section, a top-down surface engineering approach toward 

developing biointerfaces using a grafting-to approach is discussed. The development of a 

standardized, controllable and sustainable hPSC culture platforms is an essential first step for 

large-scale cell culture in the future. 

Scheme 4.3 outlines the steps of the research strategy involving the top-down surface 

engineering approach. The substrates were first coated with poly[(4-formyl-p-xylylene)-co-(p-

xylylene)] (PPX-aldehyde) through CVD polymerization of the precursor 4-

formyl[2.2]paracyclophane (PCP-aldehyde). The thickness of these PPX-aldehyde coatings was 

determined using ellipsometry and confirmed the formation of the coating. Additionally, XPS and 

IRRAS were performed in order to ascertain that the reactive formyl functional groups were 

present. 

Next, a zwitterionic sulfobetaine block copolymer consisting of PMEDSAH called “interfacial 

Gemini transformer” (IGT) was synthesized. ATRP has enabled the synthesis of polymer brushes 

with diverse architectures and functionalities.175,195 IGT was synthesized using ATRP of 

MEDSAH using a novel difunctional benzaldehyde ATRP initiator in a mixture of methanol and 

deionized water (4/1 v/v) at room temperature for different reaction times. 
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Scheme 4.3: Research strategy for coating substrates with the interfacial Gemini transformer (IGT). 

(a) CVD polymerization of 4-formyl[2.2]paracyclophane (PCP-aldehyde) to yield 

poly[(4-formyl-p-xylylene)-co-(p-xylylene)]. In Step 1, PCP-aldehyde is pyrolyzed (660°C, 

0.16 mbar). In step 2, PCP-aldehyde is polymerized to 

[(4-formyl-p-xylylene)-co-(p-xylylene)] (PPX-aldehyde) (14°C, 0.16 mbar). 

(c) Immobilization of PMEDSAH IGT using a PPX-aldehyde coating. 

 

Then using a bivalent spacer, chemically coupled the IGT onto the CVD coated surfaces using 

hydrazide chemistry.227 The marriage of the hydrophilic sulfobetaine and hydrophobic 

benzaldehyde moieties produced a surfactant, which, when in aqueous environments, drove the 

interaction of the benzaldehyde to the surfaces of the hydrophobic CVD films. To confirm the 

successful coating of IGT on the substrates, we employed XPS and Tof-SIMS. As a proof-of-

principle, microcontact printing (μCP) was used to show the straightforward linkage of IGT to the 

CVD surface. This evaluation was done by XPS mapping, ToF-SIMS and fluorescein-conjugated 

bovine serum albumin. 
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4.4.1 Design of the interfacial Gemini transformer with tailored chain lengths 

The aldehyde-functionalized benzaldehyde initiator 2-bromo-2-methylpropionic acid 

3-(2-bromo-2-methylpropionyloxy)-5-formyl-phenyl ester was prepared according to a procedure 

outlined in scheme 4.3(b). While free radical polymerization of PMEDSAH is generally effective, 

the length of the polymer chains could not have been controlled. Subsequently, the aldehyde 

functional group in the initiator would not have been available for further functionalization, as it 

would have been buried under the polymer chains. Thus, ATRP was used. Here, IGT was 

synthesized by ATRP of the MEDSAH monomer with 2,2´-bipyridyl (bpy) ligands and 

benzaldehyde initiator in methanol/water (4/1 v/v) solution. (Scheme 4.4b). The concentration of 

the MEDSAH was 1 M and the target DP was 100. These conditions gave nearly quantitative 

monomer conversion in 2 h. The polymer product was purified by elution through a short plug of 

neutral alumina to remove the copper impurities. Then, the polymer product was dialyzed against 

water and subsequently freeze-dried to obtain a white solid. 

Monomer conversion was analyzed using 1H NMR spectroscopy to confirm the formation of 

the polymer. The monomer alkene signal at 5.67 and 6.12 ppm disappeared, and the broad signals 

centered around 1 ppm for the methylene groups of the polymer backbone appeared. The signal at 

10 ppm, arising from the aldehyde group, was used for the number-average molecular weight 

estimation by NMR (Figure 4.15). 

The semi-logarithmic plot of monomer concentration vs. time for the polymerization of 

MEDSAH is shown in Figure 4.16. A linear plot of Ln([M]0/[M]t) vs time was obtained, indicating 

that the number of propagating species remained constant. The rate of polymerization is fast, a 

monomer conversion of 75% was reached after 3 h at room temperature. The conversion leveled 

off after that timepoint. Proper control of the polymerization reaction is important for controlling 

the properties of the product. Therefore, different reaction conditions of the polymerization were 

investigated to optimize IGT polymerization to be able to prepare desired sizes of IGT molecules 

based on the biomaterials design. 
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Figure 4.15: 1H NMR spectrum of interfacial Gemini transformer in D2O. 

 

Figure 4.16: ATRP polymerization kinetics of IGT synthesized using benzaldehyde initiator. (a) Monomer 

conversion (▲) vs time and (b) ln([M]0/[M]) (▲) vs time. Reaction conditions: 

[M]0:[benzaldehyde initiator]:[bpy]0:[Cu(I)]0 = 100:1:3:1 in methanol/water (4/1 v/v) at room 

temperature. 
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Table 4.3 lists IGT prepared using different reaction conditions, with molecular weights 

estimated by aqueous size exclusion chromatography (SEC) and 1H NMR analysis (integrating the 

signals of 10 and 3.84 ppm). 

 

Table 4.3: MEDSAH polymerization using benzaldehyde initiator 

Sample [M]0/[I]0/ 

[CuBr]0/[bpy]0 

Time 

(min) 

Conv (%) Mn,th 

(gmol-1) 

Mn (1H NMR) 

(gmol-1) 

Mn (SEC) 

(gmol-1) 

Ð 

(Mw/Mn) 

1 25:1:2:3 300 80 5600 5500 2300 1.2 

2 100:1:2:5 300 63 17900 17800 9500 1.4 

3 100:1:1:2 60 64 17900 20600 6700 1.2 

4 100:1:1:2 25 21 5900 4600 5600 1.2 

 

Differential scanning calorimetry (DSC) was used to determine the glass transition temperature 

of the IGT. IGT exhibited a melting point close to 250 °C. DLS measurements showed an average 

hydrodynamic diameter of 44 nm with PDI 0.326 (Figure 4.17). The electrical double layer 

surrounding the polymer in DI water will have long-distance interactions. Hence, the size obtained 

is always 2-10 nm larger than the actual size.273 
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Figure 4.17: Representative hydrodynamic diameter measurement by DLS of interfacial Gemini 

transformer in water. 

 

Figure 4.18: Light absorbance of a 1 gL-1, 3 gL-1 and 10 gL-1 solution of IGT3.57kgmol
-1

 in H2O. The lines 

show CPUCST and CPLCST; (green ··) for 1 gL-1, (black --) for 3 gL-1 and (purple- - - ). The lines 

are guides to the eye. Cooling runs not shown. 
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We investigated the temperature-dependent phase behavior of IGT in water by turbidimetry 

(Figure 4.18). Two heating/cooling scans were used in every measurement to offset the effects of 

sample preparation. 

CPUCST(3.57 kgmol-1, 1 gL-1) = 23.5 ± 0.5 °C and CPLCST(3.57 kgmol-1, 1 gL-1) = 6.7 ± 0.5 °C. 

CPUCST(3.57 kgmol-1, 3 gL-1) = 33.5 ± 0.5 °C and CPLCST(3.57 kgmol-1, 3 gL-1) = 12.4 ± 0.5 °C. 

CPUCST(3.57 kgmol-1, 10 gL-1) = 74.2 ± 0.5 °C. 

The measured UCST cloud point for 3 gL-1 IGT was similar with the ones around 30 °C reported 

in the literature for PMEDSAH with molar masses 4.35 × 105 gmol-1.274 Three regimes were 

distinguished in the absorbance curve (Figure 4.19). In the middle regime, the solution was turbid 

indicating the formation of aggregates. The phase transition of 1 g L-1 IGT was broad. For 10 g L-1 

IGT, the absorbance was 100% at the start of the measurement and the phase transition was broad. 

In leftmost and the rightmost regime, only a maximum of 45% of the light was absorbed, i.e., they 

were translucent. The absorbance changed sharply between the regimes. Increasing the polymer 

concentration 3 times increased both the CPLCST by 5 °C and CPUCST by 10 °C which is a significant 

difference. Polymer solution at 10 g L-1 did not exhibit a CPLCST at the investigated temperature 

range. Thus, CPLCST and CPUCST of IGT were sensitive to the polymer concentration. Zwitterionic 

PMEDSAH brushes have not exhibited an LCST temperature before. The reasons for the findings 

seem complex, suggesting a certain extent of hydrophobic interactions between zwitterionic 

chains. The precise molecular structure of IGT combines the LCST and UCST behaviors between 

0 and 100 °C in aqueous solutions which is interesting for applications in biomedical applications. 

In future, small-angle neutron scattering (SANS) could be used to determine the structure of IGT. 

Different structure formations at UCST and LCST transition would further elucidate the behavior 

of IGT. These findings would be important to generate well defined, tunable biomaterials for hPSC 

culture platforms. 

4.4.2 Synthesis and characterization of reactive coatings and IGT-modified substrates 

From Scheme 4.4(c) shown above, IGT was assumed to be immobilized on vapor-based 

polymer coatings. To verify this hypothesis, the “grafting-to” process was done in three steps: 

• Reactive coatings consisting of aldehyde groups were synthesized by CVD polymerization. 
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• Immobilization of the dihydrazide linker adipic acid dihydrazide (ADH) 

• IGT was “grafted to” ADH decorated substrate by an aldehyde-hydrazide reaction 

4-Formyl[2.2]paracyclophane (PCP-aldehyde) functional precursor was synthesized via 

“Rieche” formylation of [2.2]paracyclophane.227 CVD polymerization of the resulting dimer 

yielded PPX-aldehyde polymer (Scheme 4.4(a)). XPS analysis of the PPX-aldehyde reactive 

coating revealed that the elemental composition was in close agreement with the theoretical values 

derived from the molecular structure. Table 4.4 summarizes the elemental composition of the PPX-

aldehyde reactive coating. 

 

Table 4.4: XPS analysis of PPX-aldehyde coated on silicon substrates. Silicon contamination probably 

from the vacuum grease constituted 1.4 at% , which accounts for the discrepancy in the 

theoretical and experimental values. The theoretical values agree well with literature227. 

Elements C (1s) O (1s) 

(Chemical states) C–C/C–H C–C=O C=O π → π*  

BE [eV] 285 286.7 287.8 291.3 532.4 

Calculated [at%] 83.2 5.6 5.6 - 5.6 

Experimental [at%] 79.9 1.9 3.1 3.2 10.5 

 

High resolution scans of the C1s region were performed in order to quantify signals from the 

aliphatic C–C bonds, C–C=O bonds and the C=O from the aldehyde as shown in Figure 4.20(c). 

The distribution of areas under each of the fitted peaks matches the theoretical contribution from 

each component, which provides additional validation that the PPX-aldehyde reactive coating was 

synthesized successfully. 

Figure 4.19 displays IRRAS spectrum of PPX-aldehyde coatings. 
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Figure 4.19: IRRAS confirms the chemical structures of PPX-aldehyde reactive coating and IGT-modified 

substrates. 

 

PPX-aldehyde and “reactive coating” is mentioned interchangeably as it provides an aldehyde 

reactive group on the substrate. PPX-aldehyde coatings require an additional activation step for 

linkage of polymers. 

Typically, bivalent spacers containing hydrazide groups are used for aldehyde-functionalized 

polymers.227,275 Specificity of hydrazides towards aldehydes makes them superb binding agents 

for immobilization of IGT.276 Modification of carbonyl-containing surfaces by dihydrazide 

homodifunctionalized linkers form hydrazine bonds on one side while yielding alkyl hydrazide 

spacers on the other side, making it suitable for subsequent reaction with formyl-containing groups 

available in IGT.276 Adipic acid dihydrazide linker was first immobilized on PPX-aldehyde by 

reacting it to the aldehyde groups on the coating via aldehyde-hydrazide coupling. Adipic acid 

dihydrazide was chosen as the linker due to its intermediate-length spacer arm, which leads to 

accessible reactive sites for further reaction to IGT.275 Hydrazide-modified surface was further 

reacted with IGT. 

IGT (1% w/v) with different molecular weights (5-10 kg mol-1, 24 kg mol-1) were immobilized 

on the substrates. Brushes were generated with a thickness of 2.1 ± 1.3 nm, for molecular weights 

from 5 kg mol-1–10 kg mol-1. The thickness of the IGT film of molecular weight 24 kg mol-1 was 
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8 ± 2.8 nm. The surface coverage, Г (mgm-2), was calculated from the ellipsometry thickness of 

the layer, h (nm), by 

 Г = ℎ𝜌 (18) 

 

where ρ is the bulk polymer density (1.34 g cm-3)277.Therefore, Г of IGT (5 kgmol-1-10 kg mol-1) 

was 2.81 mg m-2. Г of IGT (24 kg mol-1) was 10.72 mg m-2. The chain density, Σ (chains nm-2), 

i.e., the inverse of the average area of the attached chain, was determined by 

 
Σ =

Г𝑁A(10−21)

𝑀n
= (6.023Г × 100)/𝑀n 

(19) 

 

where NA is the Avogadro’s number and Mn (g mol-1) is the number average molar mass of the 

grafted polymer. Chain density values are shown in Table 4.5. The value represents the upper 

bound value for the grafting density of the IGT layer. 

 

Table 4.5: Chain Density 

Mn (gmol-1) Thickness (nm) Г (24 kgmol-1) Σ (chains/nm-2) 

5000 2.1 ± 1.3 2.81 0.34 

6453 2.1 ± 1.3 2.81 0.26 

7000 2.1 ± 1.3 2.81 0.24 

8089 2.1 ± 1.3 2.81 0.21 

9000 2.1 ± 1.3 2.81 0.19 

10810 2.1 ± 1.3 2.81 0.16 

24180 8 ± 2.8 10.72 0.27 

 

The IRRAS spectra (Figure 4.19) of IGT surfaces showed the presence of bands at 1492 cm-1 

for CH2 bending and 1723 cm-1 for C=O stretching. The C–N+ stretching band (1652 cm-1) is 

characteristic of quaternary ammonium group.278 The band at 1169 cm-1 is characteristic of 
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sulfonate asymmetric stretching.279 Again, this confirmed that the IGT polymer was successfully 

grafted to the surface. 

 

Figure 4.20: XPS characterization of IGT. (a) S2p, (b) N1s and (c) C1s XPS spectra. 

 

XPS data showed peaks at 167.8 ± 0.1 eV for S2p3/2, and 402.9 ± 0.2 eV for N1s quaternized 

amine of PMEDSAH and were consistent with the structure of the resulting brushes. The ratio of 

N/S measured by XPS was found to be 1.1 instead of 1.0, an observation consistent with other 

reports93,280 (Figure 4.20). 

The surface charge of PMEDSAH brushes was investigated via ζ-potential (Figure 4.21). The 

ζ-potential of IGT-4 kgmol-1 was less negative than surface-initiated ATRP 93 nm thick coating. 

In addition, IGT-8 kgmol-1 and IGT-14 kgmol-1 coatings exhibited more negative charge than the 

105 nm thick coating in the neutral range of pH values. Lower isoelectric pH is the consequence 

of higher density of exposed sulfonate groups on dilutely grafted polymer chains. IGT-6 kgmol-1 

coatings are the closest to the surface-initiated ATRP 93 nm thick brushes. The water contact angle 

of IGT-6 kgmol-1 was 52 ± 12.8°, like the moderately associated SI-ATRP PMEDSAH brush that 

had a contact angle of 45°. The negative surface charge may be related to the slight N/S imbalance 

of 1.1 measured in these brushes via XPS. The unreacted MEDSAH monomer has also known to 

show an N/S imbalance when measured by XPS.280 The IGT coating was chemically stable in a 

dry-air environment. 
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Figure 4.21: (a) Zeta potential values of IGT-modified coatings and PMEDSAH coatings polymerized 

through surface-initiated ATRP. (b) Evolution of isoelectric pH of different substrates. 

 

Samples could be stored for several weeks under dry air without losing its functionality, as proved 

by using stored samples for cell culture experiments. The cells adhered equally well to freshly 

prepared samples and stored samples. 

Control on localization of biomaterials in specific zones can assist in precise engineering of 

the cellular microenvironment. To demonstrate the controlled deposition of IGT molecules on 

surfaces, IGT was patterned on reactive coatings using microcontact printing (µCP) with lines and 

square island patterns µCP is a widely used soft lithographic technique that has been used to 

modify CVD coatings.150,281,282 For example, Nandivada et al., used µCP to pattern hydrazide 

linkers to PPX-aldehyde films.227 The patterned hydrazide moieties served as binding partners for 

the subsequent immobilization of a polysaccharide, 2-α-mannobiose, via an alkyl-hydrazide 

linkage which further reacted with formyl groups on the disaccharide.. For patterning IGT, 

elastomeric stamps comprised of PDMS were inked with the IGT polymer following a protocol 

established by Schmid et al..283 The hydrazide moieties on the substrate reacted to the aldehyde 

functional group in the IGT. 
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Figure 4.22: (a) Controlled deposition of fluorescent-labeled bovine serum albumin (BSA) occurs in areas 

where zwitterionic interfacial Gemini transformer (IGT) are absent. No protein adsorption 

occurs in domains where the IGT are grafted. (b) Fluorescence-labeled bovine serum albumin 

only adheres to regions where IGT is absent. Scale bar is 200 µm. (b), (c), (d) ToF-SIMS 

snapshot of SO2
-
 and SO3H

- 
fragments reveal high sulfonate intensity where IGT is present 

but very weak signals where IGT is absent. Scale bar = 500 µm. 

 

The patterned IGT was characterized using time of flight-secondary ion mass spectroscopy 

(ToF-SIMS) as shown in Figure 4.22, where SO2
-
 and SO3H

- 
fragments were focused on. A strong 

contrast in these signals was observed owing to the high thickness and density of the IGT in the 

patterned areas compared to the linker present in the untreated regions. High molecular weight 

fragments, m/z 150, C4H8NSO3
-
; m/z 166, C5H12NSO3

-
, were also observed that were characteristic 

to the PMEDSAH fragments in the patterned areas, confirming that patterned IGT is controlled to 
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the regions where IGT was grafted. Zwitterionic sulfobetaine brushes have exceptional resistance 

to non-specific adsorption.284–286 It was hypothesized that IGT should lead to the selective 

deposition of proteins such as bovine serum albumin (BSA) on domains where the IGT was not 

grafted. BSA was chosen since serum albumins are the most abundant proteins in blood and they 

are known to show non-specific adsorption on surfaces. Figure 4.22(b) shows a fluorescence image 

of this substrate after incubation. IGT prevents adsorption of BSA in regions where it is present 

(lines). BSA was spatially restricted to the square islands of the substrate surface where IGT was 

not coated. 

 

Figure 4.23: Negative ToF-SIMS spectrum of IGT bound to reactive polymer via adipic acid dihydrazide 

spacer: (a) reactive polymer coating, (b) adipic acid dihydrazide spacer, (c) IGT. 

Characteristic peaks are mentioned here. (d) Negative ToF-SIMS spectra of the 

PPX-aldehyde, adipic acid dihydrazide surface and immobilized IGT. SO3H
- 

ion peak is 

found only in IGT. 

 

Characteristic peaks of functionalization of PPX-aldehyde with adipic acid dihydrazide spacer 

in the negative ion ToF-SIMS mode are observed at m/z 26 (CN
-
) and 42 (CNO

-
) (Figure 4.23(b)). 

The positive ion spectrum also has peaks characteristic to the spacer at m/z 18 (NH4
+

) and 

32 (N2H4
+
).287 In comparison, the negative spectrum of IGT bound to PPX-aldehyde showed 
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characteristic PMEDSAH fragments, at m/z 32 (S
-
), 64 (SO2

-
), 80 (SO3

-
), 79 (Br

-
), and higher 

fragments at m/z 166 (C5H12NSO3
-
) and 150 (C4H8NSO3

-
). These fragments clearly confirmed that 

IGT was immobilized on the substrate. 

 

Figure 4.24: (a) XPS mapping of lines and square island pattern of IGT. (b), (c) Principal component 

analysis of all S2p and N1s spectra from the 1.5 × 1.5 mm2 area. 

 

Finally, XPS measurements of the patterned substrates were conducted to understand its 

elemental composition. As seen in Figure 4.24(a), the intensity map of the S2p signals recorded in 

the snap-shot mode shows the spatial location of SO3
- 

content. The intensity variations of the SO3
-
 

signal between the lines where IGT was present and the square islands where IGT was absent 

demonstrate the successful patterning of the substrate. The measured binding energies of N1s and 

b

c

174 172 170 168 166 164

lines

square islands

In
te

n
s

it
y

 (
a

.u
.)

Binding energy (eV)

SO3
-

0.7 at%

S 2p

406 404 402 400 398 396

lines

1.0 at%

square islands

N+

N
o

rm
a
li
z
e
d

 i
n

te
n

s
it

y

Binding energy (eV)

N-C=O

N 1s

Intensity

a



G. Venkidasubramonian 

  93 

S2p signals on the lines consistently indicate the characteristic signals of PMEDSAH (N
+ and SO3

-
) 

and the square islands exhibit different binding energy shifts. The XPS mapping agreed well with 

the conclusions from the chemical maps generated by ToF-SIMS, where there were strong 

contrasts in sulfonate content between patterned and non-patterned areas. The XPS mapping, 

fluorescent protein patterns and ToF-SIMS together suggest that the patterning strategy was 

successful and the micro-structured polymer brushes could be prepared with the “grafting-to” 

approach using IGT. Patterned polymer brushes could be used to prepare biosensors and surfaces 

to control specific deposition of proteins. 

Next, to verify that the IGT-modified substrates could be used as cell culture substrates, human 

embryonic stem cells were cultured on them. The results of these experiments are described in 

Section 4.6.4. In summary, a modular molecular system was developed with zwitterionic polymer 

brushes that could modify any substrate containing a complimentary reactive group to that present 

on the IGT. By allowing the zwitterionic bushes to attain a brush thickness of 2-8 nm on surfaces, 

these IGT-modified substrates could be used to adhere and expand human embryonic stem cells, 

even when the grafting density was low. 

The disadvantage of synthesizing IGT by ATRP is the additional step required to remove the 

copper catalyst residues from IGT molecules before use. Metal catalyst residues make ATRP 

ineffective for biomedical applications.288 RAFT polymerization represents a powerful toolbox to 

synthesize a wide variety of polymers with controlled architectures, defined end group 

functionalities, controlled molecular weights, and narrow dispersity using mild conditions (such 

as aqueous solutions and room temperatures). RAFT is one of the most useful and amenable 

fabrication strategies for generating polymer brushes for potential biotechnology and biomedical 

applications. RAFT polymerization achieves good control over hydrophilic polymer synthesis 

with polar functional groups.289 Given the prominent utility of RAFT polymerization, it was 

hypothesized that this process would provide an easier way to synthesize zwitterionic polymers in 

solution, by avoiding the use of copper during the reaction. 
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  RAFT Polymerization in Solution 

Though RAFT polymerization holds the promise of facile synthesis of zwitterionic polymers 

in solution, the reaction parameters need to be optimized to develop biomaterials that ensure 

successful cell culture. In this section, the synthesis and characterization of zwitterionic 

sulfobetaine methacrylate polymers with varying charge distance were investigated. These 

polymer brushes can be easily grafted to the surface for the development of cell culture substrates. 

Donovan et al. had synthesized PMEDSAH by RAFT-mediated polymerization in solution290 

using 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPA) in 0.5 M NaBr aqueous solution 

at 70 °C, which gave successfully controlled molecular weight and narrow Ð (<1.1). 

 

Scheme 4.4 RAFT-mediated polymerization of [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) 

ammonium hydroxide (MEDSAH), [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfobutyl) ammonium 

hydroxide (M-2.4-S), and [2-(methacryloyloxy) propyl] dimethyl-(3-sulfopropyl) ammonium hydroxide 

(M-2.6-S) in 0.5 M NaBr solution at 70°C, using 4,4´-azobis(4-cyanopentanoic acid) (V501) as the 

thermally degradable initiator and 4-cyano-4-(phenylcarbonothioylthio) pentanoic acid (CPA) as the chain 

transfer agent. 

 

Using the same reaction conditions as starting point, three zwitterionic monomers were chosen 

from the existing library in our lab to investigate and optimize the RAFT polymerization reaction 

conditions (Scheme 4.4). Specifically, three process parameters were considered: a) an optimal 
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RAFT agent, b) RAFT agent/initiator ratio, c) solvent. The first important process parameter was 

the chemical structure of the RAFT agent. Dithiobenzoates are typically selected to control 

methacrylate polymerization because they have a Z-group that will help stabilize the intermediate 

radical.172 4-Cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPA) provides a good control of 

zwitterionic polymers.291 Hence, it was chosen as the RAFT agent. 4,4´-azobis(4-cyanopentanoic 

acid) (V501) was used as the initiator. All polymerizations proceeded with a monomer 

concentration of 1 mol L-1. The second important process parameter was the ratio of CTA to 

initiator. The rate of the polymerization is usually controlled by maintaining the CTA:initiator ratio 

in the range of 5-10.172 The initiator concentration is key to process control since the number of 

radicals generated by the initiator is directly related to the polymerization rate of the system. The 

third important process parameter is the solvent. An optimal solvent would dissolve all the 

components in the reaction system giving a homogenous mixture. It would not react and deactivate 

the components in the system. It would give a higher polymerization rate. A higher polymerization 

rate would shorten the polymerization time to reach full conversion. Polar solvents are known to 

stabilize the transition state of propagating radicals, thus achieving kinetic control of the 

polymerization.292 Hence, aqueous solvent and trifluoroethanol (TFE) were investigated. 

The applicability of the same conditions for all three monomers were tested. Here, we aimed 

to evaluate the relationship between molecular weight of the polymers and reaction time. The 

molar ratio of the parameters is monomer/CTA/initiator ([M]0/[CTA]0/[I]0) = 1500/5/1. As they 

have not been extensively studied, the aim was to investigate whether the three monomers form 

polymers that increase in molecular weight with reaction time and have narrow molecular weight 

distributions, which is typical of RDRP techniques. 

Figure 4.25 illustrates the kinetics of MEDSAH polymerization at the conditions described 

above. In the SEC trace (Figure 4.25(b)), the shifts in peaks towards a higher retention volume 

with reaction time indicated a gradual increase in the molar mass of the polymer with reaction 

time. Figure 4.25(a),(c) showed the increase in conversion with time and linear increase in 

molecular weight with conversion, respectively. 
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Figure 4.25: (a) Semi-logarithmic and conversion vs. time plots demonstrating MEDSAH polymerization, 

(b) Shifts in SEC peaks with the MEDSAH RAFT polymerization, (c) evolution of 

PMEDSAH molecular weight and dispersity (Đ) with conversion, in 0.5 M NaBr solution 

using V501 as initiator and CPA as the chain transfer agent at 70°C and 

[M]0/[CTA]0/[I]0 = 1500:5:1 

 

Ln ([M]0/[M]) vs. reaction time was linear indicating a pseudo-first order reaction with respect 

to the monomer concentration with an apparent propagation rate constant (kapp) of 0.306 min-1. 

This indicated a well-controlled PMEDSAH polymerization under the given conditions. Low 

dispersity (Đ) were also observed even for higher molecular weight polymers. A summary of the 

polymerization kinetics is shown in Table 4.6. 
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Table 4.6: Evolution of molecular weight and Đ for MEDSAH polymerization using 

[M]0/[CTA]0/[I]0 = 1500:5:1 

Reaction 

time/h 

Conv./% 

(NMR) 

Mn (theory) (x 

104)/g mol-1 

Mn (SEC) (x 

104)/g mol-1 

Mw (SEC) x 

(104)/g mol-1 

Đ 

1 11 0.94 0.68 0.87 1.27 

2 27 2.26 1.2 1.48 1.24 

3 44 3.67 1.86 2.16 1.21 

4 59 4.91 2.44 2.94 1.21 

5 70 5.82 2.86 3.55 1.18 

6 78 6.48 3.16 3.78 1.19 

7 85 7.06 3.3 4 1.21 

8 89 7.39 3.52 4.08 1.19 

 

Next, the solution properties of PMEDSAH were investigated. Temperature-dependent 

measurements by DLS showed that PMEDSAH of Mn = 60,700 gmol-1 with a Đ of 1.22 decreased 

from 44.14 ± 5.3 nm at 10 °C to 5.2 ± 1.94 nm at 60 °C, indicating that the UCST value was within 

the temperature range 10-100 °C, and hence is desirable for therapeutics and biosensors. 
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Figure 4.26: (a) Semi-logarithmic and conversion plot vs. reaction time; (b) shifts in SEC peaks; 

(c) evolution of PMEDSAH molecular weight and dispersity (Đ) with conversion, with MEDSAH RAFT 

polymerization in 0.5 M NaBr, using the initiator V501 and chain transfer agent CPA at 70°C with a target 

DP of 600 and [CTA]0/[I]0 = 2.5. 

 

Kinetic studies under the condition of [M]0/[CTA]0/[I]0 = 1500:2.5:1, and the results showed 

a conversion of around 53% in the first hour (Figure 4.26(a)). Higher amount of initiator with 

respect to CTA generated more radicals and hence termination reactions set in at around 5 h. It 

turns out, using more initiator increased the polymerization reaction rate. A linear plot of 

ln([M]0/[M]) vs time appeared up to monomer conversion of 96%, indicating the first order 

kinetics with respect to monomer concentration. The linear relationship between Mn and 

conversion as well as the relatively low Đ (≤ 1.23) further demonstrated the good polymerization 

control (Figure 4.26(c)). SEC curves (Figure 4.26(b)) showed unimodal and narrow distribution. 

The MEDSAH polymerization in water was found to be very fast. Another factor is that the 
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dissolution of solid phase V501 and CPA in pure water was difficult. Addition of 50 mM NaOH 

improved the dissolution. However, at least 3 h stirring was still required. Considering the above 

reasons, MEDSAH RAFT polymerization was carried out in TFE. TFE was shown to be a 

thermodynamically better solvent than aqueous salt solution for PMEDSAH.293 TFE readily 

dissolved V501, CPA and MEDSAH and a homogenous mixture was obtained. MEDSAH RAFT 

polymerization in TFE proceeded quickly but in a poorly controlled manner, leading to a high 

molecular weight distribution higher than Đ = 1.4 (Figure 4.27). 

 

 

Figure 4.27: (a) Semi-logarithmic and conversion plot vs. reaction time; (b) shifts in SEC peaks; 

(c) evolution of PMEDSAH molecular weight and dispersity (Đ) with conversion, with 

MEDSAH RAFT polymerization in TFE, using the initiator V501 and chain transfer agent 

CPA at 70°C with a target DP of 300 and [CTA]0/[I]0  = 5. 
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Figure 4.28: Polymerization of M-2.4-S in water: (a) plot of conversion and ln([M]0/[M]) as a function of 

polymerization time; (b) SEC trace; (c) evolution of molecular weight and Đ with monomer 

conversion in 0.5 M NaBr solution at 70°C using [M]0/[CTA]0/[I]0 = 1500:5:1. 
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Table 4.7: Data for M-2.4-S polymerization in water using [M]0/[CTA]0/[I]0 = 1500:5:1. 

Reaction 

time/h 

Conv./% 

(NMR) 

Mn (theory) (x 

104)/g mol-1 

Mn (SEC) (x 

104)/g mol-1 

Mw (SEC) (x 

104)/g mol-1 

Đ 

1 21 1.88 1.21 1.56 1.28 

2 35 3.11 1.8 2.27 1.26 

3 46 4.09 2.17 2.82 1.24 

4 60 5.32 2.63 3.34 1.24 

5 69 6.11 2.93 3.69 1.2 

6 77 6.82 3.15 3.76 1.23 

7 83 7.35 3.34 4.35 1.25 

8 87 7.7 3.47 4.34 1.3 

 

 

Figure 4.29: M-2.4-S polymerization in TFE using initiator V501 and RAFT agent CPA at 70 °C 

[CTA]0/[I]0 = 5. Conversion determined by NMR vs time. 
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Figure 4.30: Polymerization of M-3.3-S: (a) plot of conversion and ln([M]0/[M]) as a function of 

polymerization time; (b) SEC trace; (c) evolution of molecular weight and Đ of M-3.3-S with monomer 

conversion in 0.5 M NaBr solution at 70°C using [M]0/[CTA]0/[I]0 = 1500:5:1, confirming controlled 

polymerization. 

 

Polymerizations with M-2.4-S and M-3.3-S were conducted, and the corresponding results are 

summarized in Figure 4.28-4.30. P(M-2.4-S) was soluble in water and possessed low Đ 

characteristic of optimal RAFT polymerizations (Figure 4.28). M-2.4-S was polymerized in TFE. 

Figure 4.29 shows that the M-2.4-S polymerization at 70 °C only achieved 4% conversion until 

8 h. The polymerization of M-2.4-S in TFE was not carried out in a controlled manner. Hence, 

TFE was not an appropriate solvent for M-2.4-S RAFT-mediated polymerization. Results for the 

polymerization of M-3.3-S showed that the polymerization rate was fast. A high monomer 

conversion of 75% was achieved after 10 h of reaction (Figure 4.30). The molecular weight 

distribution was narrow. 

20 21 22 23 24 25 26 270 1 2 3 4 5 6 7 8
0

20

40

60

80

100

 Conversion

 ln([M]o/[M])

Time /h

C
o
n
v
e
rs

io
n
 /
%

0

1

2

3

4

5

ln
([

M
] 0

/[
M

])

kapp = 0.4026 min-1

(a)

Retention Volume /mL

 2 h

 3 h

 4 h

 5 h

 6 h

 7 h

 8 h

(b)

0 5 70 75 80 85 90 95 100

22000

23000

24000

25000

26000

27000

28000

29000
 Mn

 Đ

Conversion /%

M
n

 /g
m

o
l-1

0

1

2

3

4

5

 Đ

(c)



G. Venkidasubramonian 

  103 

To conclude, we examined the differences in the polymerization kinetics of three zwitterionic 

monomers with varying charge distance. The objective was to find the optimum RAFT conditions 

for MEDSAH polymerization in solution and whether the effects of varying the zwitterionic charge 

distance on the polymerization kinetics. The controlled nature of MEDSAH polymerization was 

demonstrated by the kinetic study with the following conditions: [M]0/[CTA]0/[I]0 = 1500:5:1 at 

70 °C in an aqueous 0.5 M NaBr solvent. PMEDSAH showed low dispersities (Đ<1.3). Using 

MEDSAH polymerization as a model, we examined the polymerization kinetics of M-2.4-S and 

M-3.3-S under similar reaction conditions. In M-2.4-S polymerization, the propagation rate or kapp 

is around 0.26 h-1, which indicated a comparable propagation rate to PMEDSAH (kapp = 0.3 h-1). 

In M-3.3-S polymerization, the propagation rate constant was around 0.4 h-1, indicating a faster 

polymerization rate than PMEDSAH and P(M-2.4-S). Additionally, Đ the of the resulting 

polymers were narrow. Thus, the optimum process parameters for the RAFT polymerization of 

zwitterionic monomers in solution are a) using a dithiobenzoate RAFT agent, b) a CTA/initiator 

ratio of 5/1, and c) an aqueous 0.5 M NaBr solvent. In addition, the zwitterionic charge distance 

varied the propagation rate of the polymerization, reiterating the role of zwitterionic charge 

distance in the material properties of PMEDSAH. A recommendation to future investigators is to 

modify the polymers by post-translational modification to introduce clickable azide groups that 

can then be clicked to the alkyne group presenting CVD coatings, in a “grafting-to” approach. 

 

  Investigation of Human Stem Cell Growth on Various Substrates 

After the surfaces were generated and fully characterized, cellular response could be assessed. 

Since it would be beneficial for a synthetic culture substrate to be compatible with multiple stem 

cell lines/types, the behavior of hMSC, hESC and HSC on the synthetic surfaces was evaluated. 

hMSC were evaluated in terms of cell attachment and morphology after 7 days of culture. hESC 

were evaluated based on cell attachment, morphology and differentiation after 5 weeks of passage. 

HSC were evaluated at the end of a 7-day culture. 
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4.6.1 Propagation of hematopoietic stem cells on UVO-grafted PMEDSAH coatings 

In Villa-Diaz et al.13, UVO-grafted PMEDSAH polymer coatings were used for long-term 

maintenance of hESC in an undifferentiated state. UVO-grafted PMEDSAH coatings have also 

been used for long-term culture of iPSC.294 However, this platform had not been explored for the 

culture of HSC. HSC play a crucial role in the generation of blood and immune cells. The ability 

to expand clinically relevant HSC populations in vitro is still lacking. 

 

Figure 4.31: HSC proliferation assays were performed by Dr. Lisa Rodling at Karlsruhe Institute of 

Technology. (a) The percentage of CD34 positive cells was determined after HSC culture for 

7 days on tissue culture polystyrene and UVO-grafted PMEDSAH surfaces. The CD34 

isotype control is shown in red. (b) The proliferation of the cells is visualized by plotting the 

number of events against the CellTrace Violet fluorescence intensity. Each peak indicates a 

subpopulation of cells that has undergone a certain number of cell divisions. The lower the 

fluorescence intensity the more the dye was diluted in cell division events and thus more cell 

divisions have taken place. 

 

The aim was to investigate the influence of UVO-grafted PMEDSAH coatings on HSC 

adhesion and proliferation. Umbilical cord blood cell cultures were cultured on UVO-grafted 

PMEDSAH coatings and compared to tissue culture polystyrene surfaces. Flow cytometry was 

used after 7 days of culture on the two different surfaces to determine the expression amount of 

retained CD34. Similar results were obtained from both surfaces regarding CD34 expression 

(Figure 4.31). Cell proliferation assay was performed after 7 days of culture on the two surfaces 

to test the influence of PMEDSAH on HSC differentiation. No significant differences in the 
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number or type of colonies were found (Figure 4.31(b)), indicating that the UVO-grafted 

PMEDSAH coatings had no impact on HSC differentiation. 

The total number of cells in culture at the end of 7 days on UVO-grafted plates was found to 

be like the number of cells cultured on the control TCPS plates. In summary, these findings showed 

that UVO-grafted PMEDSAH coatings does not affect cell viability, proliferation and 

differentiation. These results were also a propelling factor to control the material properties of the 

PMEDSAH coatings to investigate whether changing the physico-chemical properties would 

improve the proliferation of the HSC with reduced differentiation. Hence, RDRP techniques were 

employed to fabricate substrates with tunable material properties. 

 

4.6.2 Propagation of human mesenchymal stem cells on ATRP PMEDSAH coatings 

The experiments in this section was done together with Dr. Thomas Eyster. Cells were assessed 

on the various ATRP surfaces and UVO-grafted surfaces. Concerning cell attachment, more hMSC 

were found on ATRP modified surfaces than on the UVO grafted surfaces (Figure 4.32). After 7 

days of culture, differences in cell morphology were apparent for the different surface treatments. 

HMSC cultured on the UVO-grafted surfaces were larger than those on the ATRP modified 

surfaces. This may occur as a result of there being fewer cells adhered on the UVO-grafted surface 

which affords more area for spreading and thus larger cell areas on average. However, the cell 

sizes on the various ATRP surfaces were comparable indicating that the thickness and thus the 

corresponding wettability differences have little influence on cell morphology (Figure 4.33). 

Additionally, the cell count on the different ATRP surfaces increased compared to the UVO-

grafted PMEDSAH surfaces (Figure 4.33). 
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Figure 4.32: Characterization of hMSC on PMEDSAH UVO-grafted surfaces, 1 h, and 12 h and 24 h 

ATRP surfaces. Fluorescence micrographs of colonies stained with phalloidin and DAPI 

nucleic acid stains. Scale bar = 200 µm. 

 

Figure 4.33: (a) Average number hMSC counted on different surfaces after 1 week of growth, (b) Average 

cell area (pixels) of hMSC grown on different surfaces as observed after 1 week of growth. 

 

Since very little difference was noted in the morphology between the ATRP modified surfaces, 

subsequent experiments with hMSC were done on the 1h ATRP coated surface with ~27 nm thick 

hydrogel. This work was done together with Dr. Aftin Ross295 and Dr. Thomas Eyster, University 

of Michigan. It was used to quantify the extent of cell differentiation as the cells were stained with 

fluorescent dyes for the pluripotency markers of interest. 
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Figure 4.34: Flow cytometry was performed to measure the expression of (a) CD 73 (b) CD 90 (c) CD 105 

(d) CD 34 and (e) CD 45 on hMSC cultured on ATRP substrates after 1 week to determine 

the percentage of cells expressing each marker. 

 

CD73 is an enzyme in humans that commonly serves to convert AMP to adenosine. It is 

expressed in mesenchymal stem cells. Hence it is used as typical positive pluripotent markers for 

hMSC (Figure 4.34(a)). Characterization of CD73 suggested that the surfaces consisted of a 

significant number of pluripotent cells and showed differentiation potential. CD90 is a 25-37 kDa 

heavily N-glycosylated, glycophosphatidylinositol anchored conserved cell surface protein with a 

single V-like immunoglobulin domain. It is used as a positive marker for hMSC. The cultures 

grown on UVO-grafted PMEDSAH and ATRP PMEDSAH showed positive expression for CD90 

(Figure 4.34(b)). The high levels of CD90 expression in UVO-grafted PMEDSAH and ATRP 

PMEDSAH cultures suggested that hMSC are undifferentiated in culture. 
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CD105 is a transmembrane glycoprotein located on cell surfaces and is a part of the TGF beta-

receptor complex.296 It is highly expressed in undifferentiated hMSC. The expression of CD105 

surface markers (Figure 4.34(c)) suggested that the hMSC have retained their pluripotency on 

UVO-grafted and ATRP PMEDSAH surfaces. CD34 protein expression is used as a negative 

marker for hMSC. CD34 negative cells represented ~2% of the human mesenchymal stem cell 

population on all surfaces. CD45 antigen (Leukocyte Common Antigen) is expressed on almost 

all hematopoietic cells except for mature erythrocytes.297 It is also used as a negative marker for 

the characterization of pluripotent hMSC. Negative expression of CD45 on cells grown on the 

ATRP surface indicated that ATRP PMEDSAH surfaces maintained hMSC in their pluripotent 

state. Based on the dot-plots, these cells had low levels of CD45 (~ 9%) on their surface. The 

results did not reveal any significant difference between UVO-grafted PMEDSAH and among 

ATRP PMEDSAH substrates. This showed that the interfacial properties of the substrate do not 

influence the culture of hMSC. ATRP PMEDSAH coatings were able to maintain mesenchymal 

stem cell markers for 7 days. In conclusion, ATRP PMEDSAH-based coatings support hMSC 

culture and the cells were viable. 

 

4.6.3 Propagation of undifferentiated hESC on ATRP PMEDSAH coatings 

Influence of thickness material property of ATRP PMEDSAH brushes on stem cell function 

was investigated. UVO-grafted PMEDSAH coatings were used as control in this study. 20,000 of 

hESC, cultured initially as single cells, were incubated on UVO-grafted PMEDSAH and ATRP 

PMEDSAH brush coatings with three different thicknesses. Cell adhesion was found by counting 

the number of cells present on the surface after 7 days of culture. The total cell number ratio 

compared to the UVO-grafted PMEDSAH coatings was quantified prior to each passage to new 

dishes. They were passaged weekly for five weeks. hESC colony growth was monitored for these 

five weeks and optic al images were acquired after 5 passages of proliferation on day 7 of culture. 
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Figure 4.35: The representative optical images were acquired (10x) for different substrates after 5 passages 

on day 7 of culture. 

 

Figure 4.36: Plot of total cell number ratio compared to UVO-grafted PMEDSAH coatings used as control 

after 5 weeks, indicated ATRP PMEDSAH brushes with 93 nm hydrogel thickness lead to a higher total 

cell number compared to other experimental groups. n = 3; *p < 0.05; data presented as mean ± standard 

deviation (SD). 
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Alkaline phosphatase provides supportive evidence that cells are in the pluripotent state.298 

ALP was used to determine the colony size and density differences of cells on the different 

surfaces. Colony sizes were different between the different coatings, after 5 passages (Figure 4.35). 

Enhanced cell adhesion was observed on 93 nm ATRP PMEDSAH substrates compared to the 

other substrates. The yield of hESC after 5 passages on each substrate was calculated assuming all 

cells obtained at each passage were sub-cultured, instead of the 20,000 cells that were 

propagated.103 The theoretical yield of cells was determined from the formula 

 
𝐶𝑁(𝑛+1) =

C𝑁n × 𝑇𝑁𝑛+1

20,000
 

(20) 

 

where CN was the calculated total cell number, TN was the total cell number in the determined 

week and n represented the culture week. 

The hESC cultures grown on the 93 nm thick brush plates that have moderately self-associated 

PMEDSAH coatings had 2.3-fold more cells compared to hESC cultures grown on UVO-grafted 

PMEDSAH plates (Figure 4.36). Using eq 20, it was estimated that 20,000 hESC cultured on the 

moderately self-associated PMEDSAH brush coating, expanded over a period of five weeks to 

yield up to 4.7 billion undifferentiated cells.103 Additionally, there is a significant difference in the 

propagation rate of hESC expanded on the brushes with unassociated (27 nm) and highly 

associated (178 nm) polymer brush coatings. Thus, moderately self-associated PMEDSAH 

polymer brushes significantly facilitated the expansion of hESC. These studies determined that 

thickness, and in turn, wettability material properties strongly influence the proliferation of 

undifferentiated hESC on PMEDSAH substrates, thus contributing to the design of PMEDSAH 

polymer brush cell culture platforms  

We assessed hESC cultures after the 5th passage for SSEA-4, a key marker of pluripotency. It 

is a regulatory transcription factor necessary for the maintenance of the hESC pluripotent state. 

Flow cytometry was used to quantitatively assess the expression of SSEA-4 in hESC (Figure 4.37). 
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Figure 4.37: Flow cytometry analysis performed by Dr. Xu Qian, University of Michigan. hESC cultured 

on different substrates after the 5th passage was analyzed by flow cytometry to determine the 

percentage of SSEA-4 expressing cells. Background fluorescence and autofluorescence were 

determined using cells without treatment (-Control) and treated with Mouse IgG1 

Phycoerythrin Isotype Control (PE). 

 

As expected, flow cytometric analysis revealed that the percentage of SSEA-4+ cells were 

~99% in all substrates.103 The results were not significantly different (p>0.05) between the ATRP-

modified coatings and UVO-grafted coating. We found that hESC were strongly positive for 

SSEA-4 as compared to control cells stained with non-specific IgG. The results revealed that the 

cells were pluripotent on all the PMEDSAH coatings, and that the different gel architectures 

influence the number of cells grown on the brushes but maintain pluripotency of the cells 

regardless. Thus, modifying the extent of zwitterionic self-association of PMEDSAH coatings 

enhance the propagation rate of hESC. 
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4.6.4 Screening IGT-modified polymer coatings for hESC colony adhesion 

Before conducting experiments to examine the long-term maintenance of hESC on IGT-

modified surfaces, we needed to establish the optimum chain length of IGT molecules to be grafted 

to the surfaces that would maintain the pluripotency of the cells. Adhesion of 20,000 hESC/plate 

plated on substrates modified with IGT of six different molecular weights (5-10 kgmol-1) was 

examined to investigate and find an optimum polymer chain length of IGT that will help in the 

adhesion of hESC. We wished to verify whether a trend in hESC adhesion is observed with 

increasing molecular weights of IGT molecule. 

Throughout the two passages, H9 hESC were observed to adhere to five of the six different 

coatings, albeit at different rates. Plates coated with IGT with a Mn of 6 kgmol-1 were observed to 

have higher cell adhesion than the plates that had been modified with the other molecular weight 

polymers. No attachment was observed on IGT modified substrates with a Mn of 8 kgmol-1. At the 

center of the self-renewal of hESC are the transcription factors Sox2, oct4 and NANOG, whose 

expression is precisely and tightly regulated in hESC. Immunofluorescent staining of OCT4, 

NANOG and SOX2 after each passage was strong when cultured on the five different coatings. 

Thus, hESC remained pluripotent on all the substrates investigated for 2 passages except for IGT 

modified substrates with Mn of 8 kgmol-1 (Figure 4.38). 6 kgmol-1 and 9 kgmol-1 IGT-modified 

substrates had more cell spreading than the other substrates. Though there were differences 

visually on how the cells adhere to the different IGT-modified substrates as observed in 

Figure 4.38, no trend could be observed in hESC adhesion with increasing molecular weight IGT 

modified substrates. 
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Figure 4.38: Cell culture and analysis performed by Dr. Tugba Topal at University of Michigan. 

Fluorescence micrographs of colonies of H9 cells cultured on IGT-modified substrates and 

Matrigel with different molecular weights for 2 passages in human cell-conditioned medium 

showing expression of hESC markers: DAPI, OCT4, NANOG and SOX2. Scale bars, 50 µm. 

 

In addition to immunofluorescence staining, the cells were examined for the expression of 

pluripotency markers for the two passages using quantitative reverse transcription PCR (RT-PCR) 

analysis299 (Figure 4.39). Results demonstrated that the RNA expression levels of hESC markers 

OCT4 for IGT-5 kgmol-1 (0.8 fold change), IGT-6 kgmol-1 (0.9 fold change), IGT-7 kgmol-1 (0.9 

fold change), IGT-9 kgmol-1 (1 fold change) and IGT-10 kgmol-1 (1.1 fold change); KLF 4 for 

IGT-5 kgmol-1 (0.9 fold change), IGT-6 kgmol-1 (0.9 fold change), IGT 7 kgmol-1 (1.2 fold 

change), IGT-9 kgmol-1 (0.9 fold change) and IGT-10 kgmol-1 (1.7 fold change); and SOX2 for 

IGT-5 kgmol-1 (0.4 fold change), IGT-6 kgmol-1 (0.3 fold change), IGT-7 kgmol-1 (0.4 fold 

change), IGT-9 kgmol-1 (0.6 fold change) and IGT-10 kgmol-1 (0.5 fold change); compared to 
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levels expressed by cells cultured on Matrigel (Figure 4.39). The results revealed comparable RNA 

expression levels of KLF 4, OCT4 and SOX2. Though, from the figure, the fold change RNA 

expression levels look different qualitatively, no significant differences were found between hESC 

cells cultured on the different IGT-modified substrates and Matrigel. 

 

 

Figure 4.39: Analysis performed by Dr. Tugba Topal at University of Michigan. Relative transcript levels 

of KLF4, OCT4 and SOX2 from hESC cultured on different IGT-modified substrates and 

Matrigel at passages 1 and 2 after analysis in RT-qPCR. 

 

Figure 4.40: Western blot analysis of OCT4 and NANOG markers expression of hESC cultured on 

Matrigel and the different IGT-modified substrates after the first (left) and second (right) 

passage of culture. 
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Further, Western blotting was utilized to investigate the expression of OCT4 and NANOG in 

hESC cultured on Matrigel and the different surfaces of IGT-modified substrates (Figure 4.40). A 

protein band of approximately 37 kDa corresponding to the predicted size of NANOG was detected 

in cells cultured on all IGT-modified substrates. The result suggested that OCT4 expression in 

hESC cultured on the different IGT-modified substrates and Matrigel did not change. However, 

the expression of NANOG was clearly downregulated for hESC cultured on the different IGT-

modified substrates except for IGT-9 kgmol-1 compared to cells on Matrigel substrates. 

 

Figure 4.41: IGT-6 kgmol-1 supports hESC stemness. (a) Fluorescence image of hESC colonies cultured 

on IGT-6 kg mol-1 modified substrates and Matrigel showing expression of pluripotent 

markers after the second and the third passage. Primary antibodies OCT4, NANOG and 

SOX2 were used to detect the expression of these markers from hESC cultured on IGT-6 kg 

mol-1 and Matrigel substrates. (b) Relative transcript levels of OCT4, NANOG and SOX2 

from hESC cultured on IGT-6 kg mol-1 substrates for passages 2-5 had no significant 

differences compared to hESC cultured on Matrigel substrates. (c) Western blotting of OCT4 

and NANOG markers expression of hESC cultured on Matrigel and the IGT-6 kg mol-1 

modified substrates after 2-5 passages. 
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Since all the substrates showed pluripotency markers of hESC, IGT-6 kgmol-1 modified 

substrates were selected for long-term hESC. This is because these coatings had the closest 

ξ-potential to the grafting-from ATRP 93 nm-thick PMEDSAH brush coating that showed a 

significant increase in the expansion rate of hESC as described in Section 4.6.2. For “grafting-to” 

polymer brushes, the thickness of the brushes does not considerably increase based on the polymer 

chain length when compared to the “grafting-from” polymer brushes. Hence, the surface charge 

and the contact angle were compared with the SI-ATRP PMEDSAH brushes. IGT-6 kgmol-1 

modified substrates had a similar surface charge and contact angle (52°) compared to the SI-ATRP 

PMEDSAH brushes (45°). 

Cells grown on IGT-6 kgmol-1 modified substrates with HCCM, was able to support the 

propagation of undifferentiated hESC colonies for five passages. When H9 hESC were cultured as 

single cells on IGT-6 kgmol-1 modified substrates, the number of undifferentiated colonies were 

comparable to the Matrigel control group. Throughout the five passages in HCCM, expression of 

characteristic pluripotent hESC markers were confirmed by immunofluorescent staining of OCT4, 

SOX2 and NANOG, which are associated with the undifferentiated state of hESC (Figure 4.41(a)). 

No significant differences in the relative transcript levels were observed among the IGT-modified 

substrates and the Matrigel control group (Figure 4.41(b)). Taken together, these results 

established that the IGT-modified substrates support hESC colony formation and expansion. 

In summary, a commercially viable method to functionalize substrates for use in hESC culture 

was demonstrated. The IGT-modified substrates were found to support self-renewal of 

undifferentiated hESC in in vitro cell culture conditions tested here; that is culture using HCCM. 

This type of process method utilizes CVD polymerization of modified parylenes, which is a 

commercially available technique. To gain valuable insight into the role of IGT molecules in 

maintaining self-renewal of hESC, different molecular weights of IGT were synthesized and 

immobilized on PPX-aldehyde coatings. Then, H9 hESC were cultured on these substrates. 

Matrigel is the most widely used substrate for feeder-free hESC culture.23 Therefore, it was used 

as a control in the experiments. Though initial cell attachment to the different substrates happened 

at different rates, and in some cases, the rate of growth of cells were slower when compared to 

other molecular weight substrates, no significant differences in the growth of hESC were observed 

after two passages from the different molecular weight IGT-modified substrates. However, in the 
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end, the cells grown on the different molecular weight substrates proliferated and expressed 

pluripotency markers. 

IGT-6 kgmol-1 modified substrates were chosen to investigate five-week hESC expansion. 

This substrate was chosen because its surface charge was the closest to the “grafting from” ATRP 

98 nm thick coating that was shown to significantly higher total hESC cell number than the other 

experimental groups in Section 4.6.2. In addition, hESC retained their pluripotency after five 

passages during culture on IGT-6 kgmol-1, which indicated that IGT-modified surfaces would be 

a potential cell culture platform. 

These findings are well aligned with the long-term goal of large-scale production of clinical 

grade hESC. PMEDSAH is a synthetic polymer coating that does not contain motifs that would 

likely mimic ECM proteins like laminin or RGD.13 However, α6β1 integrin has been identified as 

the dominant integrin present in hESC growing on PMEDSAH grafted plates by Villa-

Diaz et al..300 They also demonstrated that the cells express laminin α5. This suggests that hPSC 

also contributes to remodeling the substrate in which they are cultured by secreting and depositing 

new ECM.300 
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CHAPTER 5 CONCLUSIONS & FUTURE DIRECTIONS 

  Conclusions 

The main objective of this dissertation was to develop a method for growing embryonic stem 

cells in an undifferentiated state without the need for xenogeneic components and further decouple 

the physicochemical properties and cues that determines the embryonic stem cell fate. The 

engineering approach we proposed was the use of reversible deactivation radical process, in which 

the zwitterionic polymer brushes can be prepared on surfaces by RAFT polymerization or ATRP. 

In summary, zwitterionic polymer brushes were extensively used to tailor the interactions of 

biomaterial surfaces with cells and biomolecules. By borrowing these powerful chemical motifs 

from nature, and amplifying them in the form of polymer brushes, we established a modular 

functional materials platform wherein architecture and spatial presentation can be independently 

controlled. Synergies with chemical vapor deposition (CVD) polymerization were identified and 

exploited to discover optimal polymer brush design parameters for several biomedical 

applications. 

In Section 4.1, free radical polymerization of a zwitterionic hydrogel, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH), developed 

in our lab is presented. PMEDSAH coatings have been shown to be stable and robust after a 

prolonged storage period.9 Here, the variability of the PMEDSAH coating process is proved, 

supporting the need for biomaterials design with tunable material properties for pluripotent stem 

cell culture systems. Next, the PMEDSAH coatings were investigated for the proliferation of 

hematopoietic stem cells (HSC). In the first investigative trial, it was found that PMEDSAH 

coatings have little impact on the proliferation of HSC compared to tissue culture polystyrene 

plates. Controlling the physicochemical properties of the material might lead to higher 

proliferation. 
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In Section 4.2, reactive CVD coatings of [2.2]paracylophane-4-methyl 2-bromoisobutyrate 

(PPX-EB) were used as ATRP initiator coatings to grow three zwitterionic hydrogels, PMEDSAH, 

P(M-2.4-S) and P(M-2.6-S) polymer brushes from the surface using surface-initiated atom transfer 

radical polymerization (SI-ATRP). The thickness of the polymer brushes was measured by 

ellipsometry. The thickness of the PMEDSAH and P(M-2.6-S) brushes linearly increased with 

reaction time, showing that the polymerizations followed the typical ATRP kinetics. However, the 

thickness of P(M-2.6-S) brushes was considerably lower (58 ± 4 nm) compared to PMEDSAH 

brushes (176 ± 9 nm) for similar reaction time (24 h). Contact angle measurements of P(M-2.6-S) 

after 24 h reaction time was 31±5°, which falls in the hydrophilic regime. Hence, it can be 

concluded that the P(M-2.6-S) polymer brushes are unassociated and in the dilute region, which is 

comparable to the PMEDSAH brushes of similar thickness. P(M-2.4-S) polymer brushes did not 

show ATRP growth kinetics. 

In Section 4.3, for the first time, alkyne-functionalized CVD films were used as a new platform 

for “click reactions” which were not copper catalyzed and that utilize azide-functionalized RAFT 

agent was demonstrated, thereby expanding the CVD based coatings to RAFT polymerization. 

Reactivity of the alkyne functional groups to the RAFT agent and the subsequent polymerization 

of MEDSAH on these surfaces was clearly demonstrated via IRRAS, XPS, AFM, ellipsometry 

and contact angle measurements. This platform provided a means of generating zwitterionic 

polymer brushes using a grafting-from approach and devoid of any toxic ligands. Other 

zwitterionic monomers could also be polymerized in this fashion. 

In Section 4.4, a “grafting–to” approach that negate the need for glove box facilities was 

investigated. The benefits of “grafting–to” approach for polymer brush generation include working 

under ambient conditions, precise control of molecular weight, and control of dispersity. The facile 

surface modification compensates for the low grafting density typically achieved. Interfacial 

Gemini transformers (IGT) are a novel system developed based on covalent attachment of the 

polymer brushes to the surface. It consists of a zwitterionic polysulfobetaine flanking on either 

side of a small hydrophobic benzaldehyde moiety and is prepared by ATRP. This method can be 

potentially used for any geometry and requires only a minimum of polymer solution. The surfaces 

were characterized by ellipsometry, water contact angle, ξ–potential measurements, XPS and ToF–

SIMS. From these characterization methods, it was observed that a uniform brush layer was 

obtained by the “grafting–to” approach. In addition, one fabrication cycle required approximately 
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48 h to complete, and potential scaling up the production of IGT-modified substrates is possible 

with the right manufacturing, process and infrastructure support. 

Patterned IGT-modified substrates were generated via microcontact printing (µCP) on a 

hydrazide moiety expressing surface via aldehyde-hydrazide coupling. Subsequent immobilization 

with a fluorescently labelled protein proved controlled immobilization of the protein. Moreover, 

IGT displayed both the upper and lower critical solution temperature (UCST and LCST) behaviors, 

respectively. This striking phenomenon can be attributed to the hydrophobic and ionic interactions, 

dominating in the different regimes. Additionally, CPLCST was lower than CPUCST, so that the 

polymer is hydrophobic at intermediate temperatures. The integration of design elements that 

enable stimuli-responsive properties such as change in temperature, change in ionic strength as 

shown by the swelling studies and change in surface charge with pH as shown by ξ-potential 

measurements would facilitate application of these structured materials in therapeutic applications. 

In Section 4.5, RAFT polymerization was employed to create zwitterionic polymer brushes 

with defined molar mass in solution. The polymers investigated are PMEDSAH, poly[2–

(methacryloyloxy)ethyl dimethyl-(3-sulfobutyl)ammonium hydroxide] (P(M–2.4–S)), and 

poly[2–(methacryloyloxy)propyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (P(M–3.3–S)). 

Varying the charge distance between the positive and negative ions in the monomeric side chain 

influences the polymerization kinetics under the same conditions. The growth kinetics of the three 

polymers were investigated in detail. These polymers, prepared in water, could be further modified 

to graft to the surfaces. 

In Section 4.6, hMSC and hESC expansion on different PMEDSAH surfaces were 

investigated. hMSC were cultured on ATRP PMEDSAH coatings of three different thickness. The 

cells proliferated at the same rate on all the substrates, and retained their multipotent state, as 

confirmed by MSC markers (CD73+, CD105+, CD90+, CD34–, and CD45–). PMEDSAH 

substrates prepared by both UVO-grafting and SI-ATRP were able to support hESC adhesion, 

expansion and self-renewal. In particular, the 98 nm thick PMEDSAH brushes led to the successful 

proliferation of undifferentiated hESC throughout 5 passages. In addition, because the molecular 

weight of IGT-modified substrates could be tuned and altered systematically, the impact of hESC 

expansion on the different molecular weight IGT–modified substrates were determined. hESC 

retained their pluripotency after five passages during culture on IGT 6 kgmol-1 substrate. These 
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results indicated that IGT-modified substrates provide a defined environment for hESC 

propagation and pluripotency. 

The different coatings tested in this dissertation affected the physicochemical and biological 

properties of the substrates. Changes in the method of surface preparation changed primarily the 

thickness, which is linked to the wettability of the substrate. It also affected the grafting density 

and nano-scale roughness of the substrates. Thirdly, the substrate rigidity of two-dimensional cell 

cultures impacted the differentiation potential of hESC.301,302 “Grafting-from” methods gave a 

denser, thicker brush architecture whereas the “grafting-to” method could not achieve a similar 

grafting density or thickness. But despite that, the IGT-modified substrates promoted hESC 

adhesion. It could be hypothesized that since the grafting-to method produces less dense brushes, 

a thicker CVD coating underneath augments the stiffness of the substrate overall.  

 Future Directions 

The fibrous nature of the ECM creates a unique microenvironment that enables long range 

mechanical cell-cell communication via cell-induced remodeling of the network.112 Zwitterionic 

polymers are not only reminiscent of chemical structures found in abundance with organisms, but 

can elicit well-defined predictable response from cells and other biomolecules. In this dissertation, 

2D zwitterionic polymer brush surfaces were explored. The next step would be to investigate 3D 

scaffolds for tissue engineering. One way to prepare 3D scaffolds is to introduce the zwitterionic 

polymer brushes on scaffolds by incorporating ATRP initiators on the scaffolds and growing the 

zwitterionic polymer from the scaffold surface. SI-ATRP from electrospun fibers303,304 and 3D 

printed constructs305 have been reported. However, the solvents used for polymerization may not 

be optimal for the fibers. In view of this, the IGTs developed in this dissertation could be directly 

employed in the preparation of cell-compatible polymer scaffolds for tissue engineering. IGT 

hydrogels can be directly used for creating fibers using electrohydrodynamic (EHD) jetting. As a 

proof of concept, IGT fibers from a 33 wt% water solution of IGT was prepared (Figure 5.1(a)). 

In the future, 3D jet writing,306 a modified electrospinning process, could be used to generate 3D 

structures consisting of IGT. The full exploration of IGT in its ability to form scaffolds could lead 

to a range of biomedical applications including 3D cell culture platform, cancer biology, and stem 

cell biotechnology. 
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Figure 5.1: Optical images of the (a) as-jetted IGT fibers and (b) as-jetted IGT particles 

 

In yet another perspective, the IGTs could also be jetted as microparticles (Figure 5.1(b)). The 

use of zwitterionic microparticles holds great therapeutic potential as drug carriers.307 The drug 

could be covalently bound to functional group present in IGT through a pH sensitive linkage. 

Currently, the physical and thermodynamic behavior of the tethered IGT chains is being 

investigated by molecular dynamics (MD) simulations to understand the molecular conformation 

of the polymer at the molecular level. MD simulations have been used to investigate the behavior 

of zwitterionic surfactants in aqueous solutions.308 Hence, MD simulations could shed light on the 

relationship between IGT brush parameters and the surrounding environment. Simulating the 

physiological environment could show the gel architectures that the brushes would assume in that 

environment. This could lead to a better understanding of how the brushes influence the adhesion 

and proliferation of hPSC. 

IGT also could be conjugated to complex architectures found in nature, as in proteins 

(Figure 5.2). Polymer-protein conjugates are crucial in therapeutic protein formulation design 

including vaccine formulations, antibody-drug conjugates, etc.309,310 The central benzaldehyde 

aldehyde moiety can be replaced with more reactive biocompatible groups such as 

N-hydroxysuccinimide (NHS), pentafluorophenyl (PFP) esters, or maleimide groups for more 

efficient protein conjugation.311 Alternatively, IGT could serve as zwitterionic coatings on 

nanoparticles (Figure 5.2). Nanoparticles represent highly promising platforms for the 

development of diagnostic and therapeutic agents, including multi-modal imaging agents or 

theranostics.312 

(a) (b)
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Figure 5.2: Schematic representing the potential conjugation of interfacial gemini transformer to the free 

cysteine (CYS-34) residue of bovine serum albumin (BSA) and surface functionalized 

particles. FG = Functional group. 

 

A major challenge to their development and clinical translation, however, is the fact that many 

opsonized nanoparticles accumulate in the liver and spleen as a result of phagocytic cell 

scavenging system.313 Zwitterionic IGT could be conjugated to bicompartmental anisotropic 

particles generated by EHD co-jetting which could make them more viable for biological 

applications and reduce the rate of non-specific adsorption of proteins and lipids to the particle 

surface. Moreover, in vivo studies have demonstrated that particles with zwitterionic coating have 

extended circulatory lifetimes. The anisotropic particles in itself allows the possible incorporation 

of multiple therapeutics – and polymers – in selected compartments and can result in distinct 

release profiles for each therapeutic.314 IGT coatings on such particles could be a potential carrier 

system for drug delivery. 

One unique feature of polymers synthesized by RAFT polymerization is the presence of a 

thiocarbonylthio group at the end of the polymer chain, which can be modified to an alkene, thiol, 

or a dienophile.315 The RAFT end group of the zwitterionic polymers synthesized by RAFT 

polymerization in solution as discussed in Section 4.5, could be modified and further used to 

orthogonally immobilize them on vapor-based reactive coatings. This would be an alternative to 

circumvent the use of organic solvents and initiators for the preparation of IGT-type polymers as 

described in Section 4.4. In addition, as RAFT polymerization is performed in water and does not 

require toxic components, this approach is relevant for applications in the biological regime. 

Interfacial gemini

transformer

PBS (pH 7.4)



G. Venkidasubramonian 

  125 

 

LIST OF TABLES 

 

Table 3.1: List of primers used in qPCR....................................................................................... 55 

Table 4.1: Design matrix for the variation of reaction conditions (TFE/H2O solvent ratio; NaBr 

concentration; [Monomer]0/[CTA]0/[I]0). .................................................................. 69 

Table 4.2: Comparing the impact of design variables on thickness and contact angle ................ 70 

Table 4.3: MEDSAH polymerization using benzaldehyde initiator ............................................. 82 

Table 4.4: XPS analysis of PPX-aldehyde coated on silicon substrates. Silicon contamination 

probably from the vacuum grease constituted 1.4 at%. The theoretical values agree 

well with literature [184]. .......................................................................................... 85 

Table 4.5: Chain density ............................................................................................................... 87 

Table 4.6: Evolution of molecular weight and Đ for MEDSAH polymerization using 

[M]0/[CTA]0/[I]0 = 1500:5:1 ...................................................................................... 97 

Table 4.7: Data for M-2.4-S polymerization using [M]0/[CTA]0/[I]0 = 1500:5:1. ..................... 101 

 

 

 

 

 

 

 

 

 

 

  



G. Venkidasubramonian 

  126 

  



G. Venkidasubramonian 

  127 

 

LIST OF FIGURES 

 

Figure 1.1: Dissertation outline. Biomimetic polymer brushes are synthesized by free radical 

polymerization and reversible deactivation radical polymerization processes. The 

surfaces are characterized, and the structure and function of the polymer interfaces are 

probed. Tunable zwitterionic polymer brushes are then used as model systems to 

examine the roles of polymer brush architecture and interfacial properties on human 

pluripotent stem cell-biomaterial interactions. ............................................................ 2 

Figure 2.1: Schematic representation of the origin of stem cells. (a) Embryonic stem cells shown 

in green are derived from blastocysts. (b) Induced pluripotent stem cells shown in 

brown generated from skin fibroblasts which are somatic cells. (c) Tissue-specific 

adult stem cells (for example skeletal muscle stem cells) shown in purple are derived 

from muscle fibers. Adapted from Lutolf et al.16 ........................................................ 7 

Figure 2.2: Environmental factors that regulate hPSC self-renewal, adapted from Azarin et al.29 

and Vining et al.30 ........................................................................................................ 9 

Figure 2.3: (a) Zwitterionic polyphosphobetaine, (b) zwitterionic polysulfobetaine and (c) 

zwitterionic poly(carboxybetaine) polymers. They are resistant to non-specific protein 

adsorption, cell and bacterial adhesion. The polymer backbone can be 

polymethacrylate or polyacrylamide. ........................................................................ 14 

Figure 2.4: Number of hits for the search term for each substrate. The search term “Matrigel” 

provided 9,775 hits, with 304 hits alone in 2018. ...................................................... 19 

Figure 2.5: Description of self-assembled monolayers................................................................. 20 

Figure 2.6: Schematic illustration of a three-source chemical vapor deposition (CVD) 

copolymerization system containing three inlet sources that each contain an 

independent sublimation zone and a pyrolysis zone, and the three sources are 

connected to a center deposition chamber. [2.2]paracyclophanes are sublimed in the 

sublimation zone, transported to the pyrolysis zone and deposited in the deposition 

chamber. Adapted from Kratzer.142 ........................................................................... 22 

Figure 2.7: Preparation of polymer brushes by “grafting-to”, “grafting-from” and “grafting-

through” strategy. Cartoon adapted from Kratzer.142 ................................................ 25 

Figure 2.8: Examples of commonly used initiators and ligands for ATRP: ethyl α-

bromoisobutyrate (EBiB), ethyl α-bromophenylacetate (EBPA), 2,2’-bypyridine (bpy) 

and tris[2-(dimethylamino)ethyl]amine (Me6TREN), N,N,N´,N´´,N´´-

pentamethyldiethylenetriamine (PMDETA). ............................................................ 28 



G. Venkidasubramonian 

  128 

Figure 3.1: Components of interfacial tension used to derive Young’s equation ......................... 44 

Figure 3.2: Electron attenuation depth d, inelastic mean free path λ and emission angle θ. ........ 45 

Figure 3.3: Particle beam interaction using ToF-SIMS. Incident particles bombard the surface 

liberating single ions (positive and negative) and molecule compounds. Reproduced 

with permission from Hofmann et al.231. ................................................................... 47 

Figure 3.4: Schematic diagram of electrical double layer model at the surface. Bright grey 

(positive) and yellow (negative) ions from the ionic solution concentrate near the 

charged surface introduced in the ionic solution. This layer is called the Stern layer. 

The concentration of ions decreases further from the surface towards the extended 

liquid phase. The liquid phase between the surface and the extended liquid is called 

the diffuse layer. The potential between the Stern layer and the diffuse layer is known 

as the ζ-potential. Reproduced with permission from Cai et al.236 ............................ 48 

Figure 4.1: Fourier transform infrared (FTIR) spectrum of PMEDSAH coating showing distinct 

bands at 1732 cm-1 and 1215 cm-1, which indicate the presence of carbonyl and 

sulfonate groups, respectively. .................................................................................. 58 

Figure 4.2: ATRP PMEDSAH film thickness vs time on vapor-based coatings at room temperature 

measured by ellipsometry. The data are indicated by the points and the curve shows 

the best fit to eq 16. .................................................................................................... 61 

Figure 4.3: Hydrogel wettability as a function of reaction time for PMEDSAH ATRP modified 

surfaces. The schematic represents the architecture of a PMEDSAH brush and its 

interaction with water. It is unassociated in the hydrophilic regime. The PMEDSAH 

brushes switched from hydrophilic to hydrophobic due to zwitterionic self-association 

following a transition thickness regime. Images of representative water droplets 

illustrate the wettability differences. Schematic adapted from Qian et al.102 ............ 62 

Figure 4.4: Kinetics of PMEDSAH, (P(M-2.4-S)) and P(M-2.6-S) brush growth from vapor based 

coatings. ..................................................................................................................... 63 

Figure 4.5: IRRAS confirms the presence of (a) PPX-alkyne, (b) PMEDSAH brushes. ............. 66 

Figure 4.6: XPS measurements of carbon and oxygen content indicate the presence of PPX-alkyne 

coating. ....................................................................................................................... 66 

Figure 4.7: (a) N1s and (b) S2p high-resolution X-ray photoelectron spectroscopy of the PPX-alkyne 

coating and the S-CTA. ............................................................................................. 68 

Figure 4.8: Brush thickness of runs 1, 2, 3 and 28 with time. Run 1: 

[Monomer]0/[CTA]0/[Initiator]0 = 1200/0.8/1 in water/TFE (99:1 v/v); Run 2: 

[Monomer]0/[CTA]0/[Initiator]0 = 1200/0.8/1 in water/TFE (99:1 v/v) and 0.01 M 

NaBr; Run 3: [Monomer]0/[CTA]0/[Initiator]0 = 1200/0.8/1 in water/TFE (99:1 v/v) 

and 0.5 M NaBr; Run 28: [Monomer]0/[CTA]0/[Initiator]0 = 3000/2/1 in water/TFE 

(1:1 v/v) and 2 M NaBr. ............................................................................................ 71 

Figure 4.9: AFM was used to measure the surface roughness of PMEDSAH brushes. (a) 2 h; 

thickness = 2 nm, Rq = 0.2 nm; (b) 4 h, thickness = 9 nm, Rq = 1.6 nm; (c) 6 h, 

thickness = 14 nm, Rq=3.1 nm; (d) 8 h, thickness = 20 nm, Rq = 0.6 nm. ................. 72 



G. Venkidasubramonian 

  129 

Figure 4.10: Dry brush thickness grown from RAFT agent modified reactive polymer coatings by 

RAFT polymerization. [Monomer]0/[CTA]0/[Initiator]0 = 7500/10/1, temperature = 70 

°C. .............................................................................................................................. 73 

Figure 4.11: Change in ellipsometric brush thicknesses with time for the polymerization of 

MEDSAH from silicon and gold surfaces at 80°C. Reaction 

conditions = MEDSAH/CTA/V501 = 7500/10/1.0. .................................................. 74 

Figure 4.12: X-ray photoelectron spectroscopy of C1s (a) N1s (b) and S2p (c) for PMEDSAH film 

with a thickness of 20 nm grafted onto the RAFT agent-decorated surface via SI-RAFT 

polymerization. .......................................................................................................... 75 

Figure 4.13: AFM was used to measure the surface roughness of (a) PPX-alkyne coating and 

(b) PMEDSAH brushes. Three-dimensional projections of the surfaces obtained from 

AFM imaging of dry substrates. PPX-alkyne thickness = 20 nm. PMEDSAH brush 

thickness = 20 nm. ..................................................................................................... 76 

Figure 4.14: Water contact angle. Vertical error bars represent standard deviation of experimental 

measurement. ............................................................................................................. 76 

Figure 4.15: 1H NMR spectrum of interfacial Gemini transformer in D2O. ................................. 81 

Figure 4.16: ATRP polymerization kinetics of IGT synthesized using benzaldehyde initiator. (a) 

Monomer conversion (▲) vs time and (b) ln([M]0/[M]) vs time. Reaction conditions: 

[M]0:[benzaldehyde initiator]:[bpy]0:[Cu(I)]0 = 100:1:3:1 in methanol/water (4/1 v/v) 

at room temperature. .................................................................................................. 81 

Figure 4.17: Representative hydrodynamic diameter measurement by DLS of interfacial gemini 

transformer in water. .................................................................................................. 83 

Figure 4.18: Light absorbance of a 1 gL-1, 3 gL-1 and 10 gL-1 solution of IGT3.57kgmol
-1

 in H2O. The 

lines show CPUCST and CPLCST; (green ··) for 1 gL-1, (black --) for 3 gL-1 and (purple- 

- - ). The lines are guides to the eye. Cooling runs not shown. ................................. 83 

Figure 4.19: IRRAS confirms the chemical structures of PPX-aldehyde reactive coating and IGT-

modified substrates. ................................................................................................... 86 

Figure 4.20: XPS characterization of IGT. (a) S2p, (b) N1s and (c) C1s XPS spectra. ................... 88 

Figure 4.21: (a) Zeta potential values of IGT-modified coatings and PMEDSAH coatings 

polymerized through surface-initiated ATRP. (b) Evolution of isoelectric pH of 

different substrates. .................................................................................................... 89 

Figure 4.22: (a) Controlled deposition of fluorescent-labeled bovine serum albumin (BSA) occurs 

in areas where zwitterionic interfacial Gemini transformer (IGT) are absent. No 

protein adsorption occurs in domains where the IGT are grafted. (b) Fluorescence-

labeled bovine serum albumin only adheres to regions where IGT is absent. Scale bar 

is 200 µm. (b), (c), (d) ToF-SIMS snapshot of SO2
- and SO3H

- fragments reveal high 

sulfonate intensity where IGT is present but very weak signals where IGT is absent. 

Scale bar = 500 µm. ................................................................................................... 90 

Figure 4.23: Negative ToF-SIMS spectrum of IGT bound to reactive polymer via adipic acid 

dihydrazide spacer: (a) reactive polymer coating, (b) adipic acid dihydrazide spacer, 

(c) IGT. Characteristic peaks are mentioned here. (d) Negative ToF-SIMS spectra of 



G. Venkidasubramonian 

  130 

the PPX-aldehyde, adipic acid dihydrazide surface and immobilized IGT. SO3H
- ion 

peak is found only in IGT. ......................................................................................... 91 

Figure 4.24: (a) XPS mapping of lines and square island pattern of IGT. (b), (c) Principal 

component analysis of all S2p and N1s spectra from the 1.5 × 1.5 mm2 area. ............ 92 

Figure 4.25: (a) Semi-logarithmic and conversion vs. time plots demonstrating MEDSAH 

polymerization, (b) Shifts in SEC peaks with the MEDSAH RAFT polymerization, (c) 

evolution of PMEDSAH molecular weight with conversion, in 0.5 M NaBr solution 

using V501 as initiator and CPA as the chain transfer agent at 70°C and 

[M]0/[CTA]0/[I]0 = 1500:5:1 ...................................................................................... 96 

Figure 4.26: (a) Semi-logarithmic and conversion plot vs. reaction time; (b) shifts in SEC peaks; 

(c) evolution of PMEDSAH molecular weight with conversion, with MEDSAH RAFT 

polymerization in 0.5 M NaBr, using the initiator V501 and chain transfer agent CPA 

at 70°C with a target DP of 600 and [CTA]0/[I]0 = 2.5. ............................................ 98 

Figure 4.27: (a) Semi-logarithmic and conversion plot vs. reaction time; (b) shifts in SEC peaks; 

(c) evolution of PMEDSAH molecular weight with conversion, with MEDSAH RAFT 

polymerization in TFE, using the initiator V501 and chain transfer agent CPA at 70°C 

with a target DP of 300 and [CTA]0/[I]0  = 5. ........................................................... 99 

Figure 4.28: Polymerization of M-2.4-S in water: (a) plot of conversion and ln([M]0/[M]) as a 

function of polymerization time; (b) SEC trace; (c) evolution of molecular weight and 

Đ with monomer conversion in 0.5 M NaBr solution at 70°C using [M]0/[CTA]0/[I]0 

= 1500:5:1. ............................................................................................................... 100 

Figure 4.29: M-2.4-S polymerization in TFE using initiator V501 and RAFT agent CPA at 70 °C 

[CTA]0/[I]0 = 5. Conversion determined by NMR vs time. .................................... 101 

Figure 4.30: Polymerization of M-3.3-S: (a) plot of conversion and ln([M]0/[M]) as a function of 

polymerization time; (b) SEC trace; (c) evolution of molecular weight and Đ of M-

3.3-S with monomer conversion in 0.5 M NaBr solution at 70°C using 

[M]0/[CTA]0/[I]0 = 1500:5:1, confirming controlled polymerization...................... 102 

Figure 4.31: HSC proliferation assays were performed by Dr. Lisa Rodling at Karlsruhe Institute 

of Technology. (a) The percentage of CD34 positive cells was determined after HSC 

culture for 7 days on tissue culture polystyrene and UVO-grafted PMEDSAH surfaces. 

The CD34 isotype control is shown in red. (b) The proliferation of the cells is 

visualized by plotting the number of events against the CellTrace Violet fluorescence 

intensity. Each peak indicates a subpopulation of cells that has undergone a certain 

number of cell divisions. The lower the fluorescence intensity the more the dye was 

diluted in cell division events and thus more cell divisions have taken place. ........ 104 

Figure 4.32: Characterization of hMSC on PMEDSAH UVO-grafted surfaces, 1 h, and 12 h and 

24 h ATRP surfaces. Fluorescence micrographs of colonies stained with phalloidin 

and DAPI nucleic acid stains. Scale bar = 200 µm. ................................................ 106 

Figure 4.33: (a) Average number hMSC counted on different surfaces after 1 week of growth, 

(b) Average cell area of hMSC grown on different surfaces as observed after 1 week 

of growth. ................................................................................................................. 106 



G. Venkidasubramonian 

  131 

Figure 4.34: Flow cytometry was performed to measure the expression of (a) CD 73 (b) CD 90 (c) 

CD 105 (d) CD 34 and (e) CD 45 on hMSC cultured on ATRP substrates after 1 week 

to determine the percentage of cells expressing each marker. ................................. 108 

Figure 4.35: The representative optical images were acquired (10x) for different substrates after 5 

passages on day 7 of culture. ................................................................................... 110 

Figure 4.36: Plot of total cell number ratio compared to UVO-grafted PMEDSAH coatings used 

as control after 5 weeks, indicated ATRP PMEDSAH brushes with 93 nm hydrogel 

thickness lead to a higher total cell number compared to other experimental groups. n 

= 3; *p < 0.05; data presented as mean ± standard deviation (SD). ........................ 110 

Figure 4.37: Flow cytometry analysis performed by Dr. Xu Qian, University of Michigan. hESC 

cultured on different substrates after the 5th passage was analyzed by flow cytometry 

to determine the percentage of SSEA-4 expressing cells. Background fluorescence and 

autofluorescence were determined using cells without treatment (-Control) and treated 

with Mouse IgG1 Phycoerythrin Isotype Control (PE). .......................................... 112 

Figure 4.38: Cell culture and analysis performed by Dr. Tugba Topal at University of Michigan. 

Fluorescence micrographs of colonies of H9 cells cultured on IGT-modified substrates 

and Matrigel with different molecular weights for 2 passages in human cell-

conditioned medium showing expression of hESC markers: DAPI, OCT4, NANOG 

and SOX2. Scale bars, 50 µm. ................................................................................. 114 

Figure 4.39: Analysis performed by Dr. Tugba Topal at University of Michigan. Relative transcript 

levels of KLF4, OCT4 and SOX2 from hESC cultured on different IGT-modified 

substrates and Matrigel at passages 1 and 2 after analysis in RT-qPCR. ................ 115 

Figure 4.40: Western blot analysis of OCT4 and NANOG markers expression of hESC cultured 

on Matrigel and the different IGT-modified substrates after the first (left) and second 

(right) passage of culture. ........................................................................................ 115 

Figure 4.41: IGT-6 kgmol-1 supports hESC stemness. (a) Fluorescence image of hESC colonies 

cultured on IGT-6 kg mol-1 modified substrates and Matrigel showing expression of 

pluripotent markers after the second and the third passage. Primary antibodies OCT4, 

NANOG and SOX2 were used to detect the expression of these markers from hESC 

cultured on IGT-6 kg mol-1 and Matrigel substrates. (b) Relative transcript levels of 

OCT4, NANOG and SOX2 from hESC cultured on IGT-6 kg mol-1 substrates for 

passages 2-5 had no significant differences compared to hESC cultured on Matrigel 

substrates. (c) Western blotting of OCT4 and NANOG markers expression of hESC 

cultured on Matrigel and the IGT-6 kg mol-1 modified substrates after 2-5 passages.

 ................................................................................................................................. 116 

Figure 5.1: Optical images of the (a) as-jetted IGT fibers and (b) as-jetted IGT particles ......... 123 

Figure 5.2: Schematic representing the potential conjugation of interfacial gemini transformer to 

the free cysteine (CYS-34) residue of bovine serum albumin (BSA) and surface 

functionalized particles. FG = Functional group. .................................................... 124 

 

 



G. Venkidasubramonian 

  132 

 

  



G. Venkidasubramonian 

  133 

 

LIST OF SCHEMES 

 

Scheme 2.1: Dynamic equilibrium between propagating radicals and various dormant species in 

reversible-deactivation radical polymerization. ......................................................... 24 

Scheme 2.2: Mechanism of Atom Transfer Radical Polymerization (adapted from [150]). (a) 

Initiation. (b) Equilibrium with dormant species. C) Propagation. (Lig)Mtz = 

transition-metal complex; Pn-X = halogen-terminated dormant species; (Lig)Mtz+1-X 

= Oxidized transition metal complex-halogen atom; Pn
• = active radicals; M = 

monomer; R-X = initiator; kact = rate constant of activation; kdeact = rate constant of 

deactivation; kp = propagation rate constant; kt = termination rate constant. ............ 26 

Scheme 2.3 Generally accepted mechanism for RAFT polymerization, adapted from [169]. ..... 30 

Scheme 4.1: Schematic of ATRP coatings on CVD initiator coatings. N = 3 for PMEDSAH, n = 4 

for P(M-2.4-S) and n = 6 for P(M-2.6-S)). ................................................................ 60 

Scheme 4.2: Schematic illustration of the processes of CVD polymerization and the 

immobilization of the azide- functionalized CTA (azido-CTA) by copper-free click 

reaction on the alkyne-functionalized reactive polymer coatings (PPX-alkyne surface). 

During the CVD polymerization process, sublimation occurred for PCP-alkyne at 

approximately 100–120°C. The sublimed paracyclophane was transferred from the 

source to the pyrolysis zone and exposed to elevated temperatures of 510°C to 

thermally convert them into quinodimethanes. Finally, the quinodimethanes 

spontaneously polymerized upon condensation on a cooled (approximately 15°C) 

substrate to generate PPX-alkyne surfaces. The surface-initiated RAFT 

polymerization of the MEDSAH monomer from the RAFT agent-decorated surface 

(S-CTA) followed. ..................................................................................................... 65 

Scheme 4.3: (a) CVD polymerization of 4-formyl[2.2]paracyclophane (PCP-aldehyde) to yield 

poly[(4-formyl-p-xylylene)-co-(p-xylylene)]. Step I is the pyrolysis step (660°C, 0.16 

mbar) and step II is the polymerization step (14°C, 0.16 mbar). (c) Immobilization of 

PMEDSAH interfacial gemini transformer (IGT) using a [(4-formyl-p-xylylene)-co-

(p-xylylene)] (PPX-aldehyde) coating. ...................................................................... 79 

Scheme 4.4: Polymerization of zwitterionic monomers by RAFT technique in 0.5 M NaBr solution 

at 70°C, using V501 as the thermally degradable initiator and CPA as the chain transfer 

agent. .......................................................................................................................... 94 

 

  



G. Venkidasubramonian 

  134 

  



G. Venkidasubramonian 

  135 

 

LIST OF ABBREVIATIONS 

2D 2-dimensional 

3D Three-dimensional 

ξ Zeta 

APMAAm Aminopropylmethacrylamide 

a.u. Arbitrary unit 

AFM Atomic force microscopy 

ATRP Atom transfer radical polymerization 

ATR Attenuated total reflection 

bFGF Basic fibroblast growth factor 

Bpy 2,2´-Bipyridine 

BSA Bovine serum albumin 

CP Cloud point 

CTA Chain transfer agent 

CVD Chemical vapor deposition 

Ð Dispersity 

D2O Deuterium oxide 

DAPI 4´,6-diamidino-2-phenylindole 

DP Degree of polymerization 

D-PBS Dulbecco’s phosphate buffered saline 

DCM Dichloromethane 



G. Venkidasubramonian 

  136 

DEPT Distortionless enhancement by polarization transfer 

E Elasticity 

EB Embryoid body 

EBiB Ethyl 2-bromoisobutyrate 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EHD Electrohydrodynamic 

EtOAc Ethyl acetate 

Eq. Equation 

GMP Good manufacturing practice 

FBS Fetal bovine serum 

Fe External force 

FGF Fibroblast growth factor 

Fi Internal force 

FITC Fluorescein-5-isothiocyanate 

1H NMR Proton nuclear magnetic spectroscopy 

HCCM Human-cell-conditioned medium 

Hz Hertz 

HEMA 2-hydroxymethacrylate 

hESC Human embryonic stem cell 

hMSC Human mesenchymal stem cell 

hPSC Human pluripotent stem cell 

HSC Hematopoietic stem cell 

IGT Interfacial Gemini transformer 

iPSC Induced pluripotent stem cell 



G. Venkidasubramonian 

  137 

IRRAS Infrared refection-absorption spectroscopy 

KATRP ATRP equilibrium constant 

kact Activation rate constant 

kdeact Deactivation rate constant 

kp Propagation rate constant 

kt Termination rate constant 

KE Kinetic energy 

L End-to-end distance 

LB Langmuir-Blodgett 

LbL Layer-by-layer 

LCST Lower critical solution temperature 

LN Laminin 

M Monomer (unless it is a unit) 

Mbar Millibar 

MEF Mouse embryonic feeder cells 

MEDSAH [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide 

MEM Minimal essential medium 

µCP Microcontact printing 

mg milligram 

MHz megahertz 

mL Millilter 

MD Molecular dynamics 

mmol Millimol 

min minutes 

Mn Number average molecular weight 



G. Venkidasubramonian 

  138 

Mn,th Theoretical molecular weight 

Mw Weight average molecular weight 

Me6TREN Tris[2-(dimethylamino)-ethyl]amine 

NaCl Sodium chloride 

NHS N-hydroxysuccinimide 

NMP Nitroxide-mediated radical polymerization 

NMR Nuclear Magnetic Resonance Spectroscopy 

Oct4 Octamer-binding transcription factor 4 

PBS Phosphate buffered saline 

PCP [2.2]paracyclophane 

PDMS Polydimethylsiloxane 

PE Phycoerythrin 

PEG Poly(ethylene glycol) 

PEGMA Poly(ethylene glycol) methacrylate 

PEO Poly(ethylene oxide) 

PFP Pentafluorophenyl 

PMEDSAH Poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] 

Pn
● Polymeric radical 

ppm Parts per million 

RG Radius of gyration 

RAFT Reversible addition-fragmentation chain transfer 

RDRP Reversible deactivation radical process 

RGD Arginylglycylaspartic acid 

Rh Hydrodynamic radius 

RMS root-mean-square 



G. Venkidasubramonian 

  139 

SEC Size exclusion chromatography 

SEM Standard error mean 

SD Standard deviation 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

TCPS Tissue culture polystyrene 

TGF-ß Tissue Growth Factor-ß 

TLC Thin layer chromatography 

TMS Tetramethylsilane 

ToF-SIMS Time-of-flight secondary ion mass spectrometry 

UCB Umbilical cord blood 

UCST Upper critical solution temperature 

VDP Vapor deposition polymerization 

WCA Water contact angle 

XPS X-ray photoelectron spectroscopy 

 

 

 

 

 

 

 

 

 

 

 



G. Venkidasubramonian 

  140 

  



G. Venkidasubramonian 

  141 

 

BIBLIOGRAPHY 

1. Thomson, J. A. et al. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 

282, 1145–1147 (1998). 

2. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell 

lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 

(2000). 

3. Takahashi, K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by 

Defined Factors. Cell 131, 861–872 (2007). 

4. Lindvall, O., Kokaia, Z. & Martinez-Serrano, A. Stem cell therapy for human 

neurodegenerative disorders-how to make it work. Nat. Med. 10, S42–S50 (2004). 

5. Schulz, T. C. et al. A scalable system for production of functional pancreatic progenitors 

from human embryonic stem cells. PLoS One 7, (2012). 

6. Global Stem Cells Market Size, Market Share, Application Analysis, Regional Outlook, 

Growth Trends, Key Players, Competitive Strategies and Forecasts, 2017 to 2025. (2017). 

7. Serra, M., Brito, C., Correia, C. & Alves, P. M. Process engineering of human pluripotent 

stem cells for clinical application. Trends Biotechnol. 30, 350–359 (2012). 

8. Kirkeby, A. et al. Predictive Markers Guide Differentiation to Improve Graft Outcome in 

Clinical Translation of hESC-Based Therapy for Parkinson’s Disease. Cell Stem Cell 20, 

135–148 (2017). 

9. Ross, A. M., Nandivada, H., Ryan, A. L. & Lahann, J. Synthetic substrates for long-term 

stem cell culture. Polymer 53, 2533–2539 (2012). 

10. Chen, W. L., Cordero, R., Tran, H. & Ober, C. K. 50th Anniversary Perspective: Polymer 

Brushes: Novel Surfaces for Future Materials. Macromolecules 50, 4089–4113 (2017). 



G. Venkidasubramonian 

  142 

11. Deng, X., Friedmann, C. & Lahann, J. Bio-orthogonal ‘double-click’ chemistry based on 

multifunctional coatings. Angew. Chemie - Int. Ed. 50, 6522–6526 (2011). 

12. Sumerlin, B. S. & Vogt, A. P. Macromolecular engineering through click chemistry and 

other efficient transformations. Macromolecules 43, 1–13 (2010). 

13. Villa-Diaz, L. G. et al. Synthetic polymer coatings for long-term growth of human 

embryonic stem cells. Nat. Biotechnol. 28, 581–3 (2010). 

14. Villa-Diaz, L. G. et al. Derivation of mesenchymal stem cells from human induced 

pluripotent stem cells cultured on synthetic substrates. Stem Cells 30, 1174–1181 (2012). 

15. Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human 

pluripotent stem cells. Nat Mat 9, 768–778 (2010). 

16. Biehl, J. K. & Russell, B. Introduction to Stem Cell Therapy. J. Cardiovasc. Nurs. 24, 98–

103 (2009). 

17. Lutolf, M. P., Gilbert, P. M. & Blau, H. M. Designing materials to direct stem-cell fate. 

Nature 462, 433–441 (2009). 

18. Bryder, D., Rossi, D. J. & Weissman, I. L. Hematopoietic stem cells: The paradigmatic 

tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006). 

19. Broxmeyer, H. E. et al. Growth characteristics and expansion of human umbilical cord 

blood and estimation of its potential for transplantation in adults. Proc. Natl. Acad. Sci. USA 

89, 4109–13 (1992). 

20. Ertl, P., Sticker, D., Charwat, V., Kasper, C. & Lepperdinger, G. Lab-on-a-chip 

technologies for stem cell analysis. Trends Biotechnol. 32, 245–253 (2014). 

21. Villa-Diaz, L. G. et al. Analysis of the Factors that Limit the Ability of Feeder Cells to 

Maintain the Undifferentiated State of Human Embryonic Stem Cells. Stem Cells Dev. 18, 

641–651 (2009). 

22. Chen, K. G., Mallon, B. S., McKay, R. D. G. & Robey, P. G. Human Pluripotent Stem Cell 

Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell 14, 

13–26 (2014). 

23. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. 



G. Venkidasubramonian 

  143 

Biotechnol. 19, 971–974 (2001). 

24. McDevitt, T. & Palecek, S. Innovation in the Culture and Derivation of Pluirpotent Human 

Stem Cells. Curr Opin Biotechnlol 19, 527–533 (2008). 

25. Hovatta, O. et al. A culture system using human foreskin fibroblasts as feeder cells allows 

production of human embryonic stem cells. Hum. Reprod. 18, 1404–1409 (2003). 

26. Ma, X., Li, H., Xin, S., Ma, Y. & Ouyang, T. Human amniotic fluid stem cells support 

undifferentiated propagation and pluripotency of human embryonic stem cell without b-

FGF in a density dependent manner. Int. J. Clin. Exp. Pathol. 7, 4661–4673 (2014). 

27. Hwang, S. T. et al. The expansion of human ES and iPS cells on porous membranes and 

proliferating human adipose-derived feeder cells. Biomaterials 31, 8012–8021 (2010). 

28. Martin, M. J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells express an 

immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005). 

29. Villa-Diaz, L. G., Ross, A. M., Lahann, J. & Krebsbach, P. H. Concise review: The 

evolution of human pluripotent stem cell culture: From feeder cells to synthetic coatings. 

Stem Cells 31, 1–7 (2013). 

30. Azarin, S. M. & Palecek, S. P. Development of scalable culture systems for human 

embryonic stem cells. Biochem. Eng. J. 48, 378–384 (2010). 

31. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development 

and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017). 

32. Higuchi, A. et al. Polymeric design of cell culture materials that guide the differentiation of 

human pluripotent stem cells. Prog. Polym. Sci. 65, 83–126 (2017). 

33. Jarvelainen, H., Sainio, A., Koulu, M., Wight, T. N. & Penttinen, R. Extracellular Matrix 

Molecules: Potential Targets in Pharmacotherapy. Pharmacol. Rev. 61, 198–223 (2009). 

34. Morrison, S. J. & Spradling, A. C. Stem cells and niches : mechanisms that promote stem 

cell maintenance throughout life. Cell 132, 598–611 (2008). 

35. Frantz, C., Stewart, K. M. & Weaver, V. M. The extracellular matrix at a glance. J. Cell Sci. 

123, 4195–4200 (2010). 



G. Venkidasubramonian 

  144 

36. Capozza, R. et al. Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of 

Membrane Bending and Traction Forces. ACS Appl. Mater. Interfaces 10, 29107–29114 

(2018). 

37. Dalby, M. J. et al. The control of human mesenchymal cell differentiation using nanoscale 

symmetry and disorder. Nat. Mater. 6, 997–1003 (2007). 

38. Ross, A. M., Jiang, Z., Bastmeyer, M. & Lahann, J. Physical aspects of cell culture 

substrates: Topography, roughness, and elasticity. Small 8, 336–355 (2012). 

39. Hynes, R. O. Integrins: Bidirectional, allosteric signaling machines. Cell 110, 673–687 

(2002). 

40. Dalby, M. J. et al. Nanomechanotransduction and interphase nuclear organization influence 

on genomic control. J. Cell. Biochem. 102, 1234–1244 (2007). 

41. Moore, S. W., Keller, R. E. & Koehl, M. A. R. The dorsal involuting marginal zone stiffens 

anisotropically during its convergent extension in the gastrula of Xenopus laevis. 

Development 121, 3131–3140 (1995). 

42. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and 

adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005). 

43. Goetzke, R., Sechi, A., De Laporte, L., Neuss, S. & Wagner, W. Why the impact of 

mechanical stimuli on stem cells remains a challenge. Cell. Mol. Life Sci. 75, 3297–3312 

(2018). 

44. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat. Mater. 11, 

642–649 (2012). 

45. Gerecht, S. et al. The effect of actin disrupting agents on contact guidance of human 

embryonic stem cells. Biomaterials 28, 4068–4077 (2007). 

46. Underwood, P. A., Steele, J. G. & Dalton, B. A. Effects of polystyrene surface-chemistry 

on the biological-activity of solid-phase fibronectin and vitronectin, analyzed with 

monoclonal-antibodies. J. Cell Sci. 104, 793–803 (1993). 

47. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed 

biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 



G. Venkidasubramonian 

  145 

(2004). 

48. Takebe, J., Champagne, C. M., Offenbacher, S., Ishibashi, K. & Cooper, L. F. Titanium 

surface topography alters cell shape and modulates bone morphogenetic protein 2 

expression in the J774A.1 macrophage cell line. J. Biomed. Mater. Res. 64A, 207–216 

(2003). 

49. Refai, A. K., Textor, M., Brunette, D. M. & Waterfield, J. D. Effect of titanium surface 

topography on macrophage activation and secretion of proinflammatory cytokines and 

chemokines. J. Biomed. Mater. Res. - Part A 70, 194–205 (2004). 

50. Huang, S. & Ingber, D. E. The structural and mechanical complexity of cell-growth control. 

Nat. Cell Biol. 1, E131–E138 (1999). 

51. Xu, R. H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated 

proliferation of human ES cells. Nat. Methods 2, 185–190 (2005). 

52. Chadwick, K. et al. Cytokines and BMP-4 promote hematopoietic differentiation of human 

embryonic stem cells. Blood 102, 906–915 (2003). 

53. Park, K. S. TGF-beta family signaling in embryonic stem cells. Int. J. Stem Cells 4, 18–23 

(2011). 

54. Li, Y., Powell, S., Brunette, E., Lebkowski, J. & Mandalam, R. Expansion of human 

embryonic stem cells in defined serum-free medium devoid of animal-derived products. 

Biotechnol. Bioeng. 91, 688–698 (2005). 

55. Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem 

cells in chemically defined conditions. Proc. Natl. Acad. Sci. USA 103, 6907–12 (2006). 

56. Lu, J., Hou, R., Booth, C. J., Yang, S.-H. & Snyder, M. Defined culture conditions of human 

embryonic stem cells. Proc. Natl. Acad. Sci. USA 103, 5688–5693 (2006). 

57. Hoss, M. et al. Integrin α 4 impacts on differential adhesion of preadipocytes and stem cells 

on synthetic polymers. J. Tissue Eng. Regen. Med. 7, 312–323 (2013). 

58. Kim, M. H. & Kino-oka, M. Switching between self-renewal and lineage commitment of 

human induced pluripotent stem cells via cell-substrate and cell-cell interactions on a 

dendrimer-immobilized surface. Biomaterials 35, 5670–5678 (2014). 



G. Venkidasubramonian 

  146 

59. Meng, Y. et al. Characterization of integrin engagement during defined human embryonic 

stem cell culture. FASEB J. 24, 1056–1065 (2010). 

60. Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. 

Biotechnol. 24, 185–187 (2006). 

61. Peppas, N. & Langer, R. New challenges in biomaterials. Science 263, 1715–1720 (1994). 

62. Lewis, A. L., Tolhurst, L. A. & Stratford, P. W. Analysis of a phosphorylcholine-based 

polymer coating on a coronary stent pre- and post-implantation. Biomaterials 23, 1697–

1706 (2002). 

63. Ganet, F. et al. Development of a smart guide wire using an electrostrictive polymer: Option 

for steerable orientation and force feedback. Sci. Rep. 5, 1–12 (2015). 

64. Jiang, S. & Cao, Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic 

Materials and Their Derivatives for Biological Applications. Adv. Mater. 22, 920–932 

(2010). 

65. Madl, C. M. & Heilshorn, S. C. Engineering Hydrogel Microenvironments to Recapitulate 

the Stem Cell Niche. Annu. Rev. Biomed. Eng. 20, 21–47 (2018). 

66. Hubbell, J. A. Biomaterials in tissue engineering. Bio/technology 13, 565–576 (1995). 

67. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S. & Whitesides, G. M. A survey 

of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 

17, 5605–5620 (2001). 

68. Jeon, S. I., Lee, J. H., Andrade, J. D. & De Gennes, P. G. Protein-surface interactions in the 

presence of polyethylene oxide. I. Simplified theory. J. Colloid Interface Sci. 142, 149–158 

(1991). 

69. Hern, D. L. & Hubbell, J. A. Incorporation of adhesion peptides into nonadhesive hydrogels 

useful for tissue resurfacing. J. Biomed. Mater. Res. 39, 266–276 (1997). 

70. Hamburger, R., Azaz, E. & Donbrow, M. Autoxidation of polyoxyethylenic non-ionic 

surfactants and of polyethylene glycols. Pharm. Acta Helv. 50, 10–7 (1975). 

71. Lowe, S., O’Brien-Simpson, N. M. & Connal, L. A. Antibiofouling polymer interfaces: 

poly(ethylene glycol) and other promising candidates. Polym. Chem. 6, 198–212 (2015). 



G. Venkidasubramonian 

  147 

72. Benhabbour, S. R., Sheardown, H. & Adronov, A. Protein Resistance of PEG-

Functionalized Dendronized Surfaces: Effect of PEG Molecular Weight and Dendron 

Generation. Macromolecules 41, 4817–4823 (2008). 

73. Hlídková, H., Kotelnikov, I., Pop-Georgievski, O., Proks, V. & Horák, D. Antifouling 

Peptide Dendrimer Surface of Monodisperse Magnetic Poly(glycidyl methacrylate) 

Microspheres. Macromolecules 50, 1302–1311 (2017). 

74. Mrabet, B. et al. Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with 

specific bacteria recognition capabilities. Surf. Sci. 603, 2422–2429 (2009). 

75. Zhang, Z., Chao, T., Chen, S. & Jiang, S. Superlow fouling sulfobetaine and carboxybetaine 

polymers on glass slides. Langmuir 22, 10072–10077 (2006). 

76. He, Y., Hower, J., Chen, S. & Bernards, M. Molecular simulation studies of protein 

interactions with zwitterionic phosphorylcholine self-assembled monolayers in the presence 

of water. Langmuir 22, 10358–10364 (2008). 

77. Higaki, Y. et al. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic 

Poly(sulfobetaine) Brushes. Langmuir 33, 8404–8412 (2017). 

78. Georgiev, G. et al. Electrostimulated shift of the precipitation temperature of aqueous 

polyzwitterionic solutions. Macromol. Symp. 210, 393–401 (2004). 

79. Sin, M. C., Sun, Y. M. & Chang, Y. Zwitterionic-based stainless steel with well-defined 

polysulfobetaine brushes for general bioadhesive control. ACS Appl. Mater. Interfaces 6, 

861–873 (2014). 

80. Cheng, N., Brown, A. A., Azzaroni, O. & Huck, W. T. S. Thickness-dependent properties 

of polyzwitterionic brushes. Macromolecules 41, 6317–6321 (2008). 

81. Sin, M.-C., Chen, S.-H. & Chang, Y. Hemocompatibility of zwitterionic interfaces and 

membranes. Polym. J. 46, 436–443 (2014). 

82. Moelbert, S. & De Los Rios, P. Hydrophobic interaction model for upper and lower critical 

solution temperatures. Macromolecules 36, 5845–5853 (2003). 

83. Chang, Y. et al. Dual-thermoresponsive phase behavior of blood compatible zwitterionic 

copolymers containing nonionic poly(N-isopropyl acrylamide). Biomacromolecules 10, 



G. Venkidasubramonian 

  148 

2092–2100 (2009). 

84. Milner, S., Witten, T. & Cates, M. Theory of the grafted polymer brush. Macromolecules 

21, 2610–2619 (1988). 

85. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. 

Rev. 58, 1655–1670 (2006). 

86. Singh, N. K. & Lee, D. S. In situ gelling pH- and temperature-sensitive biodegradable block 

copolymer hydrogels for drug delivery. J. Control. Release 193, 214–227 (2014). 

87. Chang, Y., Chen, S., Zhang, Z. & Jiang, S. Highly protein-resistant coatings from well-

defined diblock copolymers containing sulfobetaines. Langmuir 22, 2222–2226 (2006). 

88. Chen, S., Zheng, J., Li, L. & Jiang, S. Strong resistance of phosphorylcholine self-assembled 

monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic 

materials. J. Am. Chem. Soc. 127, 14473–14478 (2005). 

89. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with Water 

Stress : Evolution of Osmolyte Systems. Science 217, 1214–1222 (1982). 

90. Zhang, Z., Chen, S. & Jiang, S. Dual-functional biomimetic materials: Nonfouling 

poly(carboxybetaine) with active functional groups for protein immobilization. 

Biomacromolecules 7, 3311–3315 (2006). 

91. Ladd, J., Zhang, Z., Chen, S., Hower, J. C. & Jiang, S. Zwitterionic polymers exhibiting 

high resistance to nonspecific protein adsorption from human serum and plasma. 

Biomacromolecules 9, 1357–1361 (2008). 

92. Huxtable, R. J. Physiological actions of taurine. Physiol. Rev. 72, 101–163 (1992). 

93. Bernards, M. T., Cheng, G., Zhang, Z. & Chen, S. Nonfouling Polymer Brushes via Surface-

Initiated, Two-Component Atom Transfer Radical Polymerization. Macromolecules 41, 

4216–4219 (2008). 

94. Chang, Y. et al. A highly stable nonbiofouling surface with well-packed grafted zwitterionic 

polysulfobetaine for plasma protein repulsion. Langmuir 24, 5453–5458 (2008). 

95. Liaw, D., Lee, W. & Whung, Y. A. Aqueous Solution Properties of Poly[3-Dimethyl 

(Methacryloyloxyethyl) Ammonium Propane Sulfonate. J. Appl. Polym. Sci. 34, 999–1011 



G. Venkidasubramonian 

  149 

(1987). 

96. Azzaroni, O., Brown, A. A. & Huck, W. T. S. UCST Wetting Transitions of 

Polyzwitterionic Brushes Driven by Self-Association. Angew. Chemie Int. Ed. 45, 1770–

1774 (2006). 

97. Zhu, Y., Noy, J.-M., Lowe, A. B. & Roth, P. J. The synthesis and aqueous solution 

properties of sulfobutylbetaine (co)polymers: comparison of synthetic routes and tuneable 

upper critical solution temperatures. Polym. Chem. 6, 5705–5718 (2015). 

98. Lowe, A. B., Billingham, N. C. & Armes, S. P. Synthesis and properties of low-

polydispersity poly(sulfopropylbetaine)s and their block copolymers. Macromolecules 32, 

2141–2148 (1999). 

99. Willcock, H. et al. One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT 

polymerisation: the effect of branching on the UCST cloud point. Polym. Chem. 5, 1023–

1030 (2014). 

100. Lee, W. F. & Chen, C. F. Poly(2-hydroxyethyl methacrylate-co-sulfobetaine) hydrogels. II. 

Synthesis and swelling behaviors of the [2-hydroxyethyl methacrylate-co-3-dimethyl 

(methacryloyloxyethyl) ammonium propane sulfonate] hydrogels. J. Appl. Polym. Sci. 69, 

2021–2034 (1998). 

101. Han, D., Letteri, R., Chan-Seng, D., Emrick, T. & Tu, H. Examination of zwitterionic 

polymers and gels subjected to mechanical constraints. Polymer 54, 2887–2894 (2013). 

102. Kasák, P., Kroneková, Z., Krupa, I. & Lacík, I. Zwitterionic hydrogels crosslinked with 

novel zwitterionic crosslinkers: Synthesis and characterization. Polymer 52, 3011–3020 

(2011). 

103. Qian, X., Villa-Diaz, L. G., Kumar, R., Lahann, J. & Krebsbach, P. H. Enhancement of the 

propagation of human embryonic stem cells by modifications in the gel architecture of 

PMEDSAH polymer coatings. Biomaterials 35, 9581–90 (2014). 

104. Kirouac, D. C. & Zandstra, P. W. The Systematic Production of Cells for Cell Therapies. 

Cell Stem Cell 3, 369–381 (2008). 

105. McKee, C. & Chaudhry, G. R. Advances and challenges in stem cell culture. Colloids 



G. Venkidasubramonian 

  150 

Surfaces B Biointerfaces 159, 62–77 (2017). 

106. Klim, J. R., Li, L., Wrighton, P. J., Piekarczyk, M. S. & Kiessling, L. L. A defined 

glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7, 

989–994 (2010). 

107. Rodin, S. et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin 

matrix in defined and xeno-free environment. Nat. Commun. 5, 1–13 (2014). 

108. Chen, A. K.-L., Chen, X., Lim, Y. M., Reuveny, S. & Oh, S. K. W. Inhibition of ROCK–

Myosin II Signaling Pathway Enables Culturing of Human Pluripotent Stem Cells on 

Microcarriers Without Extracellular Matrix Coating. Tissue Eng. Part C Methods 20, 227–

238 (2014). 

109. Chen, A. K. L., Chen, X., Choo, A. B. H., Reuveny, S. & Oh, S. K. W. Critical microcarrier 

properties affecting the expansion of undifferentiated human embryonic stem cells. Stem 

Cell Res. 7, 97–111 (2011). 

110. Leino, M. et al. Human embryonic stem cell dispersion in electrospun PCL fiber scaffolds 

by coating with laminin-521 and E-cadherin-Fc. J. Biomed. Mater. Res. - Part B Appl. 

Biomater. 106, 1226–1236 (2018). 

111. Gao, S. Y. et al. Modeling the adhesion of human embryonic stem cells to poly(lactic- co -

glycolic acid) surfaces in a 3D environment. J. Biomed. Mater. Res. Part A 92A, 683–692 

(2010). 

112. Kim, I. G. et al. Mechanotransduction of human pluripotent stem cells cultivated on tunable 

cell-derived extracellular matrix. Biomaterials 150, 100–111 (2018). 

113. Morris, A. H., Stamer, D. K. & Kyriakides, T. R. The host response to naturally-derived 

extracellular matrix biomaterials. Semin. Immunol. 29, 72–91 (2017). 

114. Derda, R. et al. Defined Substrates for Human Embryonic Stem Cell Growth Identified from 

Surface Arrays. ACS Chem. Biol. 2, 347–355 (2007). 

115. Klimanskaya, I. et al. Human embryonic stem cells derived without feeder cells. Lancet 

365, 1636–1641 (2005). 

116. Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation 



G. Venkidasubramonian 

  151 

of human embryonic stem cells. Proc. Natl. Acad. Sci. 104, 11298–11303 (2007). 

117. Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture 

microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012). 

118. Khetan, S. et al. Degradation-mediated cellular traction directs stem cell fate in covalently 

crosslinked three-dimensional hydrogels. Nat. Mater. 12, 458–465 (2013). 

119. Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required 

for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010). 

120. Miyazaki, T. et al. Laminin E8 fragments support efficient adhesion and expansion of 

dissociated human pluripotent stem cells. Nat. Commun. 3, 1210–1236 (2012). 

121. Braam, S. R. et al. Recombinant Vitronectin Is a Functionally Defined Substrate That 

Supports Human Embryonic Stem Cell Self-Renewal via αVβ5 Integrin. Stem Cells 26, 

2257–2265 (2008). 

122. Higuchi, A. et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels 

with optimal elasticity. Sci. Rep. 5, 1–16 (2015). 

123. Chang, C.-W. et al. Engineering cell–material interfaces for long-term expansion of human 

pluripotent stem cells. Biomaterials 34, 912–921 (2013). 

124. Amit, M., Shariki, C. & Margulets, V. Feeder Layer- and Serum-Free Culture of Human 

Embryonic Stem Cells. Biol. Reprod. 70, 837–845 (2004). 

125. Hughes, C. S., Radan, L., Betts, D., Postovit, L. M. & Lajoie, G. A. Proteomic analysis of 

extracellular matrices used in stem cell culture. Proteomics 11, 3983–3991 (2011). 

126. Brafman, D. et al. Long-term human pluripotent stem cell self-renewal on synthetic polymer 

surfaces. Biomaterials 31, 9135–9144 (2010). 

127. Irwin, E. F., Gupta, R., Dashti, D. C. & Healy, K. E. Engineered polymer-media interfaces 

for the long-term self-renewal of human embryonic stem cells. Biomaterials 32, 6912–6919 

(2011). 

128. Mohr, J. C., de Pablo, J. J. & Palecek, S. P. 3-D microwell culture of human embryonic 

stem cells. Biomaterials 27, 6032–6042 (2006). 



G. Venkidasubramonian 

  152 

129. Love, J. C., Estroff, L. a., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-Assembled 

Monolayers of Thiolates on Methals as a Form of Nanotechnology. Chem. Rev. 105, 1103–

1169 (2005). 

130. Arima, Y. & Iwata, H. Effect of wettability and surface functional groups on protein 

adsorption and cell adhesion using well-defined mixed self-assembled monolayers. 

Biomaterials 28, 3074–3082 (2007). 

131. Mahapatro, A. et al. Surface modification of functional self-assembled monolayers on 316L 

stainless steel via lipase catalysis. Langmuir 22, 901–905 (2006). 

132. Langmuir, I. & Schaefer, V. J. The Effect of Dissolved Salts on Insoluble Monolayers. J. 

Am. Chem. Soc. 59, 2400–2414 (1937). 

133. Blodgett, K. B. Films Built by Depositing Successive Monomolecular Layers on a Solid 

Surface. J. Am. Chem. Soc. 57, 1007–1022 (1935). 

134. Roberts, G. Langmuir-Blodgett Films. (Kluwer Academic, 1990). 

135. Ulman, A. An Introduction to Ultrathin Organic Films Academic. (Academic Press, 1991). 

136. Peterson, I. R. Langmuir-Blodgett films. J. Phys. D. Appl. Phys. 23, 379–395 (1990). 

137. Erokhin, V. Handbook of Thin Film Materials. (Academic, 2002). 

138. Crawford, N. F. & Leblanc, R. M. Serum albumin in 2D: A Langmuir monolayer approach. 

Adv. Colloid Interface Sci. 207, 131–138 (2014). 

139. Tang, Z., Wang, Y., Podsiadlo, P. & Kotov, N. A. Biomedical applications of layer-by-layer 

assembly: From biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006). 

140. Keeney, M. et al. Nanocoating for biomolecule delivery using layer-by-layer self-assembly. 

J. Mater. Chem. B 3, 8757–8770 (2015). 

141. Lvov, Y., Decher, G. & Sukhorukov, G. Assembly of thin films by means of successive 

deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26, 5396–

5399 (1993). 

142. Carlsson, J.-O. & Martin, P. M. Handbook of Deposition Technologies for Films and 

Coatings. (Elsevier, 2010). 



G. Venkidasubramonian 

  153 

143. Gleason, K. K. CVD Polymers: Fabrication of Organic Surfaces and Devices. (Wiley-

VCH: Weinheim, Germany, 2015). 

144. Coclite, A. M. et al. 25th Anniversary Article: CVD polymers: A new paradigm for surface 

modification and device fabrication. Adv. Mater. 25, 5392–5423 (2013). 

145. Alf, M. E. et al. Chemical vapor deposition of conformal, functional, and responsive 

polymer films. Adv. Mater. 22, 1993–2027 (2010). 

146. Vaddiraju, S., Seneca, K. & Gleason, K. K. Novel strategies for the deposition of -COOH 

functionalized conducting copolymer films and the assembly of inorganic nanoparticles on 

conducting polymer platforms. Adv. Funct. Mater. 18, 1929–1938 (2008). 

147. Kim, J., Kwon, S., Han, S. & Min, Y. Nanofilms based on vapor deposition of polymerized 

polypyrrole and its characteristics. Jpn. J. Appl. Phys. 43, 5660 (2004). 

148. Chen, H. Y. & Lahann, J. Designable biointerfaces using vapor-based reactive polymers. 

Langmuir 27, 34–48 (2010). 

149. Gorham, W. F. A New, General Synthetic Method for the Preparation of Linear Poly-p-

xylylenes. J. Polym. Sci. Part A-1 Polym. Chem. 4, 3027–3039 (1966). 

150. Lahann, J., Choi, I. S., Lee, J., Jensen, K. F. & Langer, R. A new method toward 

microengineered surfaces based on reactive coating. Angew. Chemie - Int. Ed. 40, 3166–

3169 (2001). 

151. Lahann, J., Höcker, H. & Langer, R. Synthesis of Amino[2.2]paracyclophanes - Beneficial 

Monomers for Bioactive Coating of Medical Implant Materials. Angew. Chemie - Int. Ed. 

40, 726–728 (2001). 

152. Elkasabi, Y., Chen, H.-Y. & Lahann, J. Multipotent Polymer Coatings Based on Chemical 

Vapor Deposition Copolymerization. Adv. Mater. 18, 1521–1526 (2006). 

153. Lahann, J., Klee, D. & Hocker, H. Chemical vapour deposition polymerization of 

substituted [2.2]paracyclophanes. Macromol. Rapid Commun. 19, 441–444 (1998). 

154. Hopf, H. et al. Metal-Containing Poly(p-xylylene) Films by CVD: Poly(p-xylylene) with 

Germanium Crystals. Chem. Vap. Depos. 3, 197–200 (1997). 

155. Gerasimov, G. N. et al. Ge- and Sn-containing poly ( p-xylylene ): synthesis , structure and 



G. Venkidasubramonian 

  154 

thermal behavior. Macromol. Chem. Phys. 199, 2179–2184 (1998). 

156. Popova, E. et al. New monomers for organometallic poly-p-xylylenes: Synthesis of silyl-, 

germyl- and stannyl[2.2]paracyclophane derivatives. Eur. J. Inorg. Chem. 1733–1737 

(1998). 

157. Kratzer, D. Synthese neuer zwitterionischer Methacrylate und deren Anwendungen in 

oberflächeninitiierten Polymerisationen. (Karlsruhe Institute of Technology, 2015). 

158. Chen, H. Y. et al. Substrate-independent dip-pen nanolithography based on reactive 

coatings. J. Am. Chem. Soc. 132, 18023–18025 (2010). 

159. Lahann, J. & Langer, R. Novel poly(p-xylylenes): Thin films with tailored chemical and 

optical properties. Macromolecules 35, 4380–4386 (2002). 

160. Lahann, J. Reactive polymer coatings for biomimetic surface engineering. Chem. Eng. 

Commun. 193, 1457–1468 (2006). 

161. Gołda, M., Brzychczy-Włoch, M., Faryna, M., Engvall, K. & Kotarba, A. Oxygen plasma 

functionalization of parylene C coating for implants surface: Nanotopography and active 

sites for drug anchoring. Mater. Sci. Eng. C 33, 4221–4227 (2013). 

162. Cieślik, M. et al. Parylene coatings on stainless steel 316L surface for medical applications 

- Mechanical and protective properties. Mater. Sci. Eng. C 32, 31–35 (2012). 

163. Dorozhkin, S. V. Calcium orthophosphate coatings on magnesium and its biodegradable 

alloys. Acta Biomater. 10, 2919–2934 (2014). 

164. Tan, C. P. & Craighead, H. G. Surface Engineering and Patterning Using Parylene for 

Biological Applications. Materials 3, 1803–1832 (2010). 

165. Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nat. 

Mater. 9, 101–113 (2010). 

166. Jiang, X., Chen, H. Y., Galvan, G., Yoshida, M. & Lahann, J. Vapor-based initiator coatings 

for atom transfer radical polymerization. Adv. Funct. Mater. 18, 27–35 (2008). 

167. Venkidasubramonian, G. et al. Surface-initiated RAFT polymerization from vapor-based 

polymer coatings. Polymer 150, (2018). 



G. Venkidasubramonian 

  155 

168. Jenkins, A. D., Jones, R. G. & Moad, G. Terminology for reversible-deactivation radical 

polymerization previously called ‘controlled’ radical or ‘living’ radical polymerization 

(IUPAC Recommendations 2010). Pure Appl. Chem. 82, 483–491 (2010). 

169. Braunecker, W. A. & Matyjaszewski, K. Controlled/living radical polymerization: Features, 

developments, and perspectives. Prog. Polym. Sci. 32, 93–146 (2007). 

170. Greszta, D., Mardare, D. & Matyjaszewski, K. “Living” Radical Polymerization. 1. 

Possibilities and Limitations. Macromolecules 27, 638–644 (1994). 

171. Fischer, H. The Persistent Radical Effect:  A Principle for Selective Radical Reactions and 

Living Radical Polymerizations. Chem. Rev. 101, 3581–3610 (2001). 

172. Perrier, S. 50th Anniversary Perspective: RAFT Polymerization - A User Guide. 

Macromolecules 50, 7433–7447 (2017). 

173. Huang, X. & Wirth, M. J. Surface-initiated radical polymerization on porous silica. Anal. 

Chem. 69, 4577–4580 (1997). 

174. Azzaroni, O. & Szleifer, I. Polymer and Biopolymer Brushes : for Materials Science and 

Biotechnology. (John Wiley and Sons, 2018). 

175. Wang, J. S. & Matyjaszewski, K. Controlled/"Living" Radical Polymerization. Halogen 

Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process. 

Macromolecules 28, 7901–7910 (1995). 

176. Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current status and 

future perspectives. Macromolecules 45, 4015–4039 (2012). 

177. Fairbanks, B. D., Gunatillake, P. A. & Meagher, L. Biomedical applications of polymers 

derived by reversible addition - fragmentation chain-transfer (RAFT). Adv. Drug Deliv. Rev. 

91, 141–152 (2015). 

178. Rizzardo, E. & Solomon, D. H. On the origins of nitroxide mediated polymerization (NMP) 

and reversible addition fragmentation chain transfer (RAFT). Aust. J. Chem. 65, 945–969 

(2012). 

179. Chiefari, J. et al. Living Free-Radical Polymerization by Reversible 

Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules 31, 5559–



G. Venkidasubramonian 

  156 

5562 (1998). 

180. Georges, M. K., Veregin, R. P. N., Kazmaier, P. M. & Hamer, G. K. Narrow Molecular 

Weight Resins by a Free-Radical Polymerization Process. Macromolecules 26, 2987–2988 

(1993). 

181. Hawker, C. J., Bosman, A. W. & Harth, E. New Polymer Synthesis by Nitroxide Mediated 

Living Radical Polymerizations. Chem. Rev. 101, 3661–3688 (2001). 

182. Kocak, G., Tuncer, C. & Bütün, V. pH-Responsive polymers. Polym. Chem. 8, 144–176 

(2017). 

183. Boyes, S. G. et al. Polymer brushes - Surface immobilized polymers. Surf. Sci. 570, 1–12 

(2004). 

184. Lemieux, M. et al. Reorganization of Binary Polymer Brushes:  Reversible Switching of 

Surface Microstructures and Nanomechanical Properties. Macromolecules 36, 7244–7255 

(2003). 

185. Hong, S. C. et al. Polyolefin graft copolymers via living polymerization techniques: 

Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-

mediated living olefin polymerization and atom transfer radical polymerization. J. Polym. 

Sci. Part A Polym. Chem. 40, 2736–2749 (2002). 

186. Minisci, F. Free-Radical Additions to Olefins in the Presence of Redox Systems. Acc. Chem. 

Res. 8, 165–171 (1975). 

187. Taylor, M. J. W., Eckenhoff, W. T. & Pintauer, T. Copper-catalyzed atom transfer radical 

addition (ATRA) and cyclization (ATRC) reactions in the presence of environmentally 

benign ascorbic acid as a reducing agent. Dalt. Trans. 39, 11475–11482 (2010). 

188. Hui, C. M. et al. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional 

(Nano-)Engineered Hybrid Materials. Chem. Mater. 26, 745–762 (2014). 

189. Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. Polymerization of Methyl 

Methacrylate with the Carbon Tetrachloride/Dichlorotris-

(triphenylphosphine)ruthenium(II)/ Methylaluminum Bis(2,6-di-tert-butylphenoxide) 

Initiating System: Possibility of Living Radical Polymerization. Macromolecules 28, 1721–



G. Venkidasubramonian 

  157 

1723 (1995). 

190. Di Lena, F. & Matyjaszewski, K. Transition metal catalysts for controlled radical 

polymerization. Prog. Polym. Sci. 35, 959–1021 (2010). 

191. Grimaud, T. & Matyjaszewski, K. Controlled/“Living” Radical Polymerization of Methyl 

Methacrylate by Atom Transfer Radical Polymerization. Macromolecules 30, 2216–2218 

(1997). 

192. Fischer, H. The Persistent Radical Effect in Controlled Radical. J. Polym. Sci. Part A Polym. 

Chem. 37, 1885–1901 (1999). 

193. Xiao, D. & Wirth, M. J. Kinetics of surface-initiated atom transfer radical polymerization 

of acrylamide on silica. Macromolecules 35, 2919–2925 (2002). 

194. Tang, W. et al. Understanding Atom Transfer Radical Polymerization: Effect of Ligand and 

Initiator Structures on the Equilibrium Constants. J. Am. Chem. Soc. 130, 10702–10713 

(2008). 

195. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–

2990 (2001). 

196. Xia, J., Zhang, X. & Matyjaszewski, K. Atom transfer radical polymerization of 4-

vinylpyridine. Macromolecules 32, 3531–3533 (1999). 

197. Matyjaszewski, K., Mu Jo, S., Paik, H. & Gaynor, S. G. Synthesis of Well-Defined 

Polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules 30, 6398–

6400 (1997). 

198. Teodorescu, M. & Matyjaszewski, K. Controlled polymerization of (meth)acrylamides by 

atom transfer radical polymerization. Macromol. Rapid Commun. 21, 190–194 (2000). 

199. Göbelt, B. & Matyjaszewski, K. Diimino- and diaminopyridine complexes of CuBr and 

FeBr2as catalysts in atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 

201, 1619–1624 (2000). 

200. Matyjaszewski, K., Göbelt, B., Paik, H. J. & Horwitz, C. P. Tridentate nitrogen-based 

ligands in Cu-based ATRP: A structure-activity study. Macromolecules 34, 430–440 

(2001). 



G. Venkidasubramonian 

  158 

201. Zhang, Y. et al. Copper-mediated CRP of methyl acrylate in the presence of metallic copper: 

Effect of ligand structure on reaction kinetics. Macromolecules 45, 78–86 (2012). 

202. Boyer, C. et al. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical 

Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to 

Bioapplications. Chem. Rev. 116, 1803–1949 (2016). 

203. Zhou, D., Gao, X., Wang, W. & Zhu, S. Termination of Surface Radicals and Kinetic 

Modeling of ATRP Grafting from Flat Surfaces by Addition of Deactivator. 

Macromolecules 45, 1198–1207 (2012). 

204. von Werne, T. & Patten, T. E. Atom transfer radical polymerization from nanoparticles: A 

tool for the preparation of well-defined hybrid nanostructures and for understanding the 

chemistry of controlled/"living" radical polymerizations from surfaces. J. Am. Chem. Soc. 

123, 7497–7505 (2001). 

205. Lele, B. S., Murata, H., Matyjaszewski, K. & Russell, A. J. Synthesis of uniform protein-

polymer conjugates. Biomacromolecules 6, 3380–3387 (2005). 

206. Carlmark, A. & Malmström, E. Atom transfer radical polymerization from cellulose fibers 

at ambient temperature. J. Am. Chem. Soc. 124, 900–901 (2002). 

207. Matyjaszewski, K., Dong, H., Jakubowski, W., Pietrasik, J. & Kusumo, A. Grafting from 

Surfaces for “Everyone”:  ARGET ATRP in the Presence of Air. Langmuir 23, 4528–4531 

(2007). 

208. Discekici, E. H. et al. Simple Benchtop Approach to Polymer Brush Nanostructures Using 

Visible-Light-Mediated Metal-Free Atom Transfer Radical Polymerization. ACS Macro 

Lett. 5, 258–262 (2016). 

209. Beuermann, S. et al. Critically evaluated rate coefficients for free-radical polymerization, 

2.. Propagation rate coefficients for methyl methacrylate. Macromol. Chem. Phys. 198, 

1545–1560 (1997). 

210. Moad, G., Rizzardo, E. & Thang, S. H. Living radical polymerization by the RAFT process. 

Aust. J. Chem. 58, 379–410 (2005). 

211. Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 8, 



G. Venkidasubramonian 

  159 

177–219 (2017). 

212. Chiefari, J. et al. Thiocarbonylthio Compounds (SC(Z)S−R) in Free Radical Polymerization 

with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of 

the Activating Group Z. Macromolecules 36, 2273–2283 (2003). 

213. Barner-kowollik, C. Handbook of RAFT Polymerization. (Wiley-VCH, 2008). 

214. Zoppe, J. O. et al. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, 

Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. 

Chem. Rev. 117, 1105–1318 (2017). 

215. Pirri, G., Chiari, M., Damin, F. & Meo, A. Microarray glass slides coated with block 

copolymer brushes obtained by reversible addition chain-transfer polymerization. Anal. 

Chem. 78, 3118–3124 (2006). 

216. Moraes, J., Ohno, K., Gody, G., Maschmeyer, T. & Perrier, S. The synthesis of well-defined 

poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein J. 

Org. Chem. 9, 1226–1234 (2013). 

217. Stenzel, M. H., Zhang, L. & Huck, W. T. S. Temperature-responsive glycopolymer brushes 

synthesized via RAFT polymerization using the Z-group approach. Macromol. Rapid 

Commun. 27, 1121–1126 (2006). 

218. Günay, K. A., Schüwer, N. & Klok, H. A. Synthesis and post-polymerization modification 

of poly(pentafluorophenyl methacrylate) brushes. Polym. Chem. 3, 2186 (2012). 

219. Zamfir, M. et al. Controlled growth of protein resistant PHEMA brushes via S-RAFT 

polymerization. J. Mater. Chem. B 1, 6027 (2013). 

220. Zengin, A. & Caykara, T. RAFT-mediated synthesis of poly[(oligoethylene glycol) methyl 

ether acrylate] brushes for biological functions. J. Polym. Sci. Part A Polym. Chem. 50, 

4443–4450 (2012). 

221. Islam, M. R., Bach, L. G., Vo, T. S., Tran, T. N. & Lim, K. T. Nondestructive chemical 

functionalization of MWNTs by poly(2- dimethylaminoethyl methacrylate) and their 

conjugation with CdSe quantum dots: Synthesis, properties, and cytotoxicity studies. Appl. 

Surf. Sci. 286, 31–39 (2013). 



G. Venkidasubramonian 

  160 

222. Grande, C. D. et al. Grafting of polymers from electrodeposited macro-RAFT initiators on 

conducting surfaces. React. Funct. Polym. 71, 938–942 (2011). 

223. Ye, Y. S. et al. Versatile grafting approaches to star-shaped POSS-containing hybrid 

polymers using RAFT polymerization and click chemistry. Chem. Commun. 47, 10656 

(2011). 

224. Huang, X. et al. Synthesis of Hetero-Polymer Functionalized Nanocarriers by Combining 

Surface-Initiated ATRP and RAFT Polymerization. Small 8, 3579–3583 (2012). 

225. McDonald, J. C. & Whitesides, G. M. Poly(dimethylsiloxane) as a material for fabricating 

microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002). 

226. Lahann, J. Vapor-based polymer coatings for potential biomedical applications. Polym. Int. 

55, 1361–1370 (2006). 

227. Nandivada, H., Chen, H. Y. & Lahann, J. Vapor-based synthesis of poly[(4-formyl-p-

xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications. Macromol. 

Rapid Commun. 26, 1794–1799 (2005). 

228. Nandivada, H. et al. Fabrication of synthetic polymer coatings and their use in feeder-free 

culture of human embryonic stem cells. Nat. Protoc. 6, 1037–1043 (2011). 

229. Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London 95, 65–87 

(1805). 

230. Watts, J. F. & Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES. 

(Wiley, 2005). 

231. Heide, P. V. d. X-Ray Photoelectron Spectroscopy: An Introduction to Principles and 

Practices. (John Wiley & Sons, Ltd, 2011). 

232. O’Connor, D. J., Sexton, B. A. & Smart, R. S. C. Surface Analysis Methods in Materials 

Science. 23, (Springer-Verlag, 1992). 

233. Scofield, J. H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. 

J. Electron Spectros. Relat. Phenomena 8, 129–132 (1976). 

234. Parry, K. L. et al. ARXPS characterisation of plasma polymerised surface chemical 

gradients. Surf. Interface Anal. 38, 1497–1504 (2006). 



G. Venkidasubramonian 

  161 

235. Barlow, A. J. et al. Chemically specific identification of carbon in XPS imaging using 

Multivariate Auger Feature Imaging (MAFI). Carbon 107, 190–197 (2016). 

236. Muramoto, S., Brison, J. & Castner, D. G. Exploring the Surface Sensitivity of TOF-

Secondary Ion Mass Spectrometry by Measuring the Implantation and Sampling Depths of 

Bin and C60 Ions in Organic Films. Anal. Chem. 84, 365–372 (2012). 

237. Vickerman, J. C. & Briggs, D. ToF-SIMS: Materials Analysis by Mass Spectrometry. (IM 

Publications LLP and Surface Spectra Limited, Chichester, 2013). 

238. Belu, A. M., Graham, D. J. & Castner, D. G. Time-of-flight secondary ion mass 

spectrometry: Techniques and applications for the characterization of biomaterial surfaces. 

Biomaterials 24, 3635–3653 (2003). 

239. Benninghoven, A. Chemical Analysis of Inorganic and Organic Surfaces and Thin Films by 

Static Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Angew. Chem. Int. 

Ed. Engl. 33, 1023–1043 (1994). 

240. Hofmann, J. P., Rohnke, M. & Weckhuysen, B. M. Recent advances in secondary ion mass 

spectrometry of solid acid catalysts: Large zeolite crystals under bombardment. Phys. 

Chem. Chem. Phys. 16, 5465–5474 (2014). 

241. Kumar, R., Kopyeva, I., Cheng, K., Liu, K. & Lahann, J. Examining Nanoparticle 

Adsorption on Electrostatically “Patchy” Glycopolymer Brushes Using Real-Time ζ-

Potential Measurements. Langmuir 33, 6322–6332 (2017). 

242. Krajewski, A., Malavolti, R. & Piancastelli, A. Albumin adhesion on some biological and 

non-biological glasses and connection with their Z-potentials. Biomaterials 17, 53–60 

(1996). 

243. Abramson, H. A. Electrokinetic phenomena and their application to biology and medicine. 

J. Phys. Chem. 38, 1128–1129 (1934). 

244. Roessler, S., Zimmermann, R., Scharnweber, D., Werner, C. & Worch, H. Characterization 

of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current 

measurements. Colloids Surfaces B Biointerfaces 26, 387–395 (2002). 

245. Cai, K. et al. Surface functionalized titanium thin films: Zeta-potential, protein adsorption 



G. Venkidasubramonian 

  162 

and cell proliferation. Colloids Surfaces B Biointerfaces 50, 1–8 (2006). 

246. Walker, S. L., Bhattacharjee, S., Hoek, E. M. V. & Elimelech, M. A novel asymmetric 

clamping cell for measuring streaming potential of flat surfaces. Langmuir 18, 2193–2198 

(2002). 

247. Werner, C., Zimmermann, R. & Kratzmüller, T. Streaming potential and streaming current 

measurements at planar solid/liquid interfaces for simultaneous determination of zeta 

potential and surface conductivity. Colloids Surfaces A Physicochem. Eng. Asp. 192, 205–

213 (2001). 

248. Topal, T. et al. Acoustic Tweezing Cytometry Induces Rapid Initiation of Human 

Embryonic Stem Cell Differentiation. Sci. Rep. 8, 1–11 (2018). 

249. McCloy, R. A. et al. Partial inhibition of Cdk1 in G2phase overrides the SAC and decouples 

mitotic events. Cell Cycle 13, 1400–1412 (2014). 

250. Burgess, A. et al. Loss of human Greatwall results in G2 arrest and multiple mitotic defects 

due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc. Natl. Acad. Sci. 107, 12564–

12569 (2010). 

251. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT 

method. Nat. Protoc. 3, 1101–1108 (2008). 

252. Musah, S. et al. Glycosaminoglycan-Binding Hydrogels Enable Mechanical Control of 

Human Pluripotent Stem Cell Self-Renewal. ACS Nano 6, 10168–10177 (2012). 

253. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: A dynamic 

microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506–2519 (2014). 

254. Wang, Y.-K. & Chen, C. S. Cell adhesion and mechanical stimulation in the regulation of 

mesenchymal stem cell differentiation. J. Cell. Mol. Med. 17, 823–832 (2013). 

255. Kleinman, H. K. & Martin, G. R. Matrigel: Basement membrane matrix with biological 

activity. Semin. Cancer Biol. 15, 378–386 (2005). 

256. Caliari, S. R. & Burdick, J. A. A practical guide to hydrogels for cell culture. Nat. Methods 

13, 405–414 (2016). 

257. Kolhar, P., Kotamraju, V. R., Hikita, S. T., Clegg, D. O. & Ruoslahti, E. Synthetic surfaces 



G. Venkidasubramonian 

  163 

for human embryonic stem cell culture. J. Biotechnol. 146, 143–146 (2010). 

258. Chen, W. et al. Nanotopography influences adhesion, spreading, and self-renewal of Human 

embryonic stem cells. ACS Nano 6, 4094–4103 (2012). 

259. Sun, Y. et al. Mechanics regulates fate decisions of human embryonic stem cells. PLoS One 

7, 1–7 (2012). 

260. Pyun, J., Kowalewski, T. & Matyjaszewski, K. Synthesis of Polymer Brushes Using Atom 

Transfer Radical Polymerization. Macromol. Rapid Commun. 24, 1043–1059 (2003). 

261. Husseman, M. et al. Controlled Synthesis of Polymer Brushes by ‘Living’ Free Radical 

Polymerization Techniques. Macromolecules 32, 1424–1431 (1999). 

262. Kratzer, D., Barner, L., Friedmann, C., Bräse, S. & Lahann, J. A Synthetic Route to 

Sulfobetaine Methacrylates with Varying Charge Distance. European J. Org. Chem. 2014, 

8064–8071 (2014). 

263. Li, G. et al. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. 

Biomaterials 29, 4592–4597 (2008). 

264. Kuang, J. & Messersmith, P. B. Universal surface-initiated polymerization of antifouling 

zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir 28, 7258–7266 

(2012). 

265. Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. Biomaterials Science. 

Biomaterials Science - An Introduction to Materials in Medicine (Academic Press, 1996). 

266. Tsujii, Y., Ejaz, M., Sato, K., Goto, A. & Fukuda, T. Mechanism and kinetics of RAFT-

mediated graft polymerization of styrene on a solid surface. 1. Experimental evidence of 

surface radical migration. Macromolecules 34, 8872–8878 (2001). 

267. Gabler, C. et al. Corrosion properties of ammonium based ionic liquids evaluated by SEM-

EDX, XPS and ICP-OES. Green Chem. 13, 2869 (2011). 

268. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray 

Photoelectron Spectroscopy. (Eden Prarie (MN), 1992). 

269. Azzaroni, O. Polymer brushes here, there, and everywhere: Recent advances in their 

practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. 



G. Venkidasubramonian 

  164 

Part A Polym. Chem. 50, 3225–3258 (2012). 

270. Huang, J. et al. Nonleaching Antibacterial Glass Surfaces via “Grafting Onto”: The Effect 

of the Number of Quaternary Ammonium Groups on Biocidal Activity. Langmuir 24, 6785–

6795 (2008). 

271. Edmondson, S., Osborne, V. L. & Huck, W. T. S. Polymer brushes via surface-initiated 

polymerizations. Chem. Soc. Rev. 33, 14–22 (2004). 

272. Zhao, B. & Brittain, W. J. Polymer brushes : surface-immobilized macromolecules. 25, 

677–710 (2000). 

273. Farrell, E. & Brousseau, J. Guide for DLS sample preparation from Brookhaven 

instruments. Brookhaven Instruments 

274. Schulz, D. N. et al. Phase behaviour and solution properties of sulphobetaine polymers. 

Polymer 27, 1734–1742 (1986). 

275. Bally-Le Gall, F. et al. Co-immobilization of biomolecules on ultrathin reactive chemical 

vapor deposition coatings using multiple click chemistry strategies. ACS Appl. Mater. 

Interfaces 5, 9262–8 (2013). 

276. Hermanson, G. T. Bioconjugation Techniques. (Academic Press, 2013). 

277. Starck, P. et al. Surface chemistry and rheology of polysulfobetaine-coated silica. Langmuir 

23, 7587–7593 (2007). 

278. Tan, K. Y., Gautrot, J. E. & Huck, W. T. S. Formation of Pickering emulsions using ion-

specific responsive colloids. Langmuir 27, 1251–1259 (2010). 

279. Ramstedt, M. et al. Synthesis and Characterization of Poly ( 3-Sulfopropylmethacrylate ) 

Brushes for Potential Antibacterial Applications. Langmuir 23, 3314–3321 (2007). 

280. Tan, K. Y. et al. Decoupling geometrical and chemical cues directing epidermal stem cell 

fate on polymer brush-based cell micro-patterns. Integr. Biol. 5, 899 (2013). 

281. Elkasabi, Y. et al. Partially fluorinated poly-p-xylylenes synthesized by CVD 

polymerization. Chem. Vap. Depos. 15, 142–149 (2009). 

282. Chen, H. Y., Elkasabi, Y. & Lahann, J. Surface modification of confined microgeometries 



G. Venkidasubramonian 

  165 

via vapor-deposited polymer coatings. J. Am. Chem. Soc. 128, 374–380 (2006). 

283. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft 

lithography. Macromolecules 33, 3042–3049 (2000). 

284. Wu, J., Lin, W., Wang, Z., Chen, S. & Chang, Y. Investigation of the hydration of 

nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic 

resonance. Langmuir 28, 7436–7441 (2012). 

285. Gang Cheng, Zheng Zhang, Shenfu Chen, James D. Bryers,  and S. J. Inhibition of Bacterial 

Adhesion and Biofilm Formation on Zwitterionic Surfaces. Biomaterials 28, 4192–4199 

(2007). 

286. Zhang, Z. et al. Polysulfobetaine-grafted surfaces as environmentally benign ultralow 

fouling marine coatings. Langmuir 25, 13516–13521 (2009). 

287. Vickerman, J. C., Briggs, D. & Henderson, A. Static SIMS Library. (SurfaceSpectra Ltd., 

2012). 

288. Siegwart, D. J., Oh, J. K. & Matyjaszewski, K. ATRP in the design of functional materials 

for biomedical applications. Prog. Polym. Sci. 37, 18–37 (2012). 

289. Lowe, A. B. & McCormick, C. L. Synthesis and solution properties of zwitterionic 

polymers. Chem. Rev. 102, 4177–4189 (2002). 

290. Donovan, M. S., Sumerlin, B. S., Lowe, A. B. & McCormick, C. L. Controlled/"living" 

polymerization of sulfobetaine monomers directly in aqueous media via RAFT. 

Macromolecules 35, 8663–8666 (2002). 

291. Bhuchar, N., Deng, Z., Ishihara, K. & Narain, R. Detailed study of the reversible addition-

fragmentation chain transfer polymerization and co-polymerization of 2-

methacryloyloxyethyl phosphorylcholine. Polym. Chem. 2, 632–639 (2011). 

292. Valdebenito, A. & Encinas, M. V. Effect of solvent on the free radical polymerization of 

N,N-dimethylacrylamide. Polym. Int. 59, 1246–1251 (2010). 

293. Huglin, M. B. & Radwan, M. a. Properties of poly[N-2-(methyacryloyloxy)ethyl-N,N-

dimethyl- N-3-sulfopropylammonium betaine] in dilute solution. Makromol. Chem. 192, 

2433–2445 (1991). 



G. Venkidasubramonian 

  166 

294. Villa-Diaz, L. G., Kim, J. K., Lahann, J. & Krebsbach, P. H. Derivation and long-term 

culture of transgene-free human induced pluripotent stem cells on synthetic substrates. Stem 

Cells Transl. Med. 3, 1410–1417 (2014). 

295. Ross, A. M. Biomolecular Interactions with Synthetic Surfaces. (2012). 

296. Haruta, Y. & Seon, B. K. Distinct human leukemia-associated cell surface glycoprotein 

GP160 defined by monoclonal antibody SN6. Proc. Natl. Acad. Sci. 83, 7898–7902 (1986). 

297. Nakano, A., Harada, T., Morikawa, S. & Kato, Y. Expression of Leukocyte Common 

Antigen (CD45) on Various Human Leukemia/Lymphoma Cell Lines. Pathol. Int. 40, 107–

115 (1990). 

298. O’Connor, M. D. et al. Alkaline Phosphatase-Positive Colony Formation Is a Sensitive, 

Specific, and Quantitative Indicator of Undifferentiated Human Embryonic Stem Cells. 

Stem Cells 26, 1109–1116 (2008). 

299. Hoffman, L. M. & Carpenter, M. K. Characterization and culture of human embryonic stem 

cells. Nat. Biotechnol. 23, 699–708 (2005). 

300. Villa-Diaz, L. G., Kim, J. K., Laperle, A., Palecek, S. P. & Krebsbach, P. H. Inhibition of 

Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell 

Self-Renewal. Stem Cells 34, 1753–1764 (2016). 

301. Evans, N. D. et al. Substrate stiffness affects early differentiation events in embryonic stem 

cells. Eur. Cells Mater. 18, 1–13 (2009). 

302. Przybyla, L., Lakins, J. N. & Weaver, V. M. Tissue Mechanics Orchestrate Wnt-Dependent 

Human Embryonic Stem Cell Differentiation. Cell Stem Cell 19, 462–475 (2016). 

303. Ameringer, T. et al. Surface grafting of electrospun fibers using ATRP and RAFT for the 

control of biointerfacial interactions. Biointerphases 8, 1–11 (2013). 

304. Higaki, Y., Kobayashi, M., Hirai, T. & Takahara, A. Direct polymer brush grafting to 

polymer fibers and films by surface-initiated polymerization. Polym. J. 50, 101–108 (2018). 

305. Wang, X. et al. I3DP, a robust 3D printing approach enabling genetic post-printing surface 

modification. Chem. Commun. 49, 10064–10066 (2013). 

306. Jordahl, J. H. et al. 3D Jet Writing: Functional Microtissues Based on Tessellated Scaffold 



G. Venkidasubramonian 

  167 

Architectures. Adv. Mater. 30, 1–9 (2018). 

307. Cai, M. et al. Colloids and Surfaces B : Biointerfaces Synthesis of amphiphilic copolymers 

containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids 

Surfaces B Biointerfaces 126, 1–9 (2015). 

308. Xu, Y., Guo, S., Mao, X. & Feng, J. Molecular simulation study on the self-assembly 

behaviors of zwitterionic heterogemini surfactant in aqueous solution. J. Dispers. Sci. 

Technol. 39, 443–451 (2018). 

309. Duncan, R., Ringsdorf, H. & Satchi-Fainaro, R. Polymer therapeutics - Polymers as drugs, 

drug and protein conjugates and gene delivery systems: Past, present and future 

opportunities. J. Drug Target. 14, 337–341 (2006). 

310. Greenwald, R. B., Choe, Y. H., McGuire, J. & Conover, C. D. Effective drug delivery by 

PEGylated drug conjugates. Adv. Drug Deliv. Rev. 55, 217–250 (2003). 

311. Lockett, M. R., Phillips, M. F., Jarecki, J. L., Peelen, D. & Smith, L. M. A tetrafluorophenyl 

activated ester self-assembled monolayer for the immobilization of amine-modified 

oligonucleotides. Langmuir 24, 69–75 (2008). 

312. Bejarano, J. et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial 

infarction: evolution toward prospective theranostic approaches. Theranostics 8, 4710–

4732 (2018). 

313. García, K. P. et al. Zwitterionic-Coated “Stealth” Nanoparticles for Biomedical 

Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake 

by the Mononuclear Phagocyte System. Small 10, 2516–2529 (2014). 

314. Rahmani, S., Park, T.-H., Dishman, A. F. & Lahann, J. Multimodal delivery of irinotecan 

from microparticles with two distinct compartments. J. Control. Release 172, 239–245 

(2013). 

315. Willcock, H. & O’Reilly, R. K. End group removal and modification of RAFT polymers. 

Polym. Chem. 1, 149–157 (2010). 

 

 


