KIT | KIT-Bibliothek | Impressum | Datenschutz

Cultivation of Exoelectrogenic Bacteria in Conductive DNA Nanocomposite Hydrogels Yields a Programmable Biohybrid Materials System [Preprint]

Hu, Yong; Rehnlund, David; Klein, Edina; Gescher, Johannes; Niemeyer, Christof M.

Abstract (englisch):
The use of living microorganisms integrated within electrochemical devices is an expanding field of research, with applications in microbial fuel cells, microbial biosensors or bioreactors. We describe the use of porous nanocomposite materials prepared by DNA polymerization of carbon nanotubes (CNT) and silica nanoparticles (SiNP) for the construction of a programmable biohybrid system containing the exoelectrogenic bacterium Shewanella oneidensis. We initially demonstrate the electrical conductivity of the CNT-containing DNA composite by employment of chronopotentiometry, electrochemical impedance spectroscopy, and cyclic voltammetry. Cultivation of Shewanella oneidensis in these materials shows that the exoelectrogenic bacteria populate the matrix of the composite, while non-exoelectrogenic Escherichia coli remain on its surface. Moreover, the ability to use extracellular electron transfer pathways is positively correlated with number of cells within the conductive synthetic biofilm matrix. The Shewanella containing composite remains stable for several days. Programmability of this biohybrid material system is demonstrated by on-demand release and degradation induced by a short-term enzymatic stimulus. ... mehr

Open Access Logo


Zugehörige Institution(en) am KIT Institut für Angewandte Biowissenschaften (IAB)
Institut für Biologische Grenzflächen (IBG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2019
Sprache Englisch
Identifikator KITopen-ID: 1000100667
HGF-Programm 47.02.01 (POF III, LK 01) Zellpopul.auf Biofunk.Oberflächen IBG-1
Erschienen in bioRxiv beta
Verlag Cold Spring Harbor Laboratory Press
Vorab online veröffentlicht am 05.12.2019
Externe Relationen Abstract/Volltext
Schlagwörter Carbon nanotubes: DNA; silica nanoparticles; nanocomposites; rolling circle amplification; Shewanella; extracellular electron transfer
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page