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Abstract

Scheduling for power systems is frequently performed by means of algo-
rithms based on numerical optimization, where the uncertainty inherent
to volatile generation/consumption is handled via sampling-based methods
(i.e. scenario optimization). This approach has the advantage of being ap-
plicable to general models, but it entails a loss of information about the un-
certain parameters—approximated by a finite set of realizations. In contrast
to this state-of-the-art approach, the present thesis investigates a method
that does not approximate the uncertain parameters, but the description of
the physical system and of the scheduling requirements instead.

Taking a holistic perspective and exploiting the interplay between fore-
casting models and numerical optimization, this thesis proposes a frame-
work for optimization-based scheduling algorithms leveraging probabilis-
tic forecasts and approximated—eventually aggregated—energy-models.
This framework shifts part of the computational burden to the forecast-
ing. Specifically, the correlation among uncertain generation/consumption
at subsequent time steps, which is difficult both to forecast and to tackle,
is indirectly included in predictions in terms of energy. Simulations of sev-
eral test cases (a household, an industrial campus, and a charging station
for electric vehicles) and real-life experiments indicate that the proposed
algorithmic framework attains superior performance in comparison to state-
of-the-art techniques based on sampling.
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1 Introduction

1.1 Motivation

The fast advancements in information and communication technologies, the
availability of cheap and efficient means to store and convert electric energy,
and the rising concerns for environmental issues are reshaping the way in
which electric power systems are structured and operated. Diverse scenarios
are under discussion, depending on the interplay of political, economical,
and environmental factors [ENTSOG, 2018]. Despite their differences, all
discussed scenarios involve an increase in the number of Distributed Energy
Resources (DERs).

The exploitation of the technical and economical potential of DERs will
largely depend on their integration within energy markets. Several mar-
ket structures have been suggested in the literature to address this require-
ment, and the debate continues until today [Parag and Sovacool, 2016]. A
well investigated option for the integration of DERs is to allow aggrega-
tions of DERs and loads—such as microgrids, virtual power plants and en-
ergy communities—to participate in existing energy markets [Koirala et al.,
2016]. The idea is that aggregated resources/loads commit to a given value
of active power exchange with the external system, via regulated market
auctions or bilateral agreements, cf. [Wang et al., 2015]. The DERs within
the aggregation are then coordinated such that the total active power output
of the aggregation is dispatched in accordance with the pre-determined com-
mitment. The rational behind this concept is that coordinated operation of
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1 Introduction

DERs allows scalable services, bringing value to the entire system [Burger
et al., 2017].

However, coordinating DERs to dispatch power in accordance with a pre-
computed schedule is not easy. The power output of some loads and DERs
within the aggregation, such as PhotoVoltaic (PV) generation, may be in-
flexible, volatile, and uncertain; in short: not dispatchable. If this is the
case, DERs with a flexible (directly controllable) power output (e.g.: stor-
age systems, demand response) should balance this volatility, such that the
total power exchange of the aggregation complies with the pre-determined
commitment. However, directly controllable power outputs are often lim-
ited by the constraints of their respective device. The flexible DERs can
modify their power output in response to deviations of the inflexible power
outputs from their expected value only if they are not expected to operate at
their capacity or capability limits. Thus, some power and energy reserves
are required.

A challenging decision problem arises: how much power and energy re-
serves should be allocated? Unused reserves do not bring any profit to the
aggregation of DERs. On the contrary, they represent a cost, because they
could have been used to enhance the market revenues (for example, by ac-
tuating energy arbitrage). At the same time, a deficiency of reserves results
in unplanned deviations from the committed dispatch, namely imbalances.
Imbalances are costly, because they are penalized a-posteriori by the mar-
ket regulator [Morales et al., 2013]. In other words, the monetary revenues
(or costs) of the aggregation of DERs highly depend on the chosen trade
off between i) using the flexible resources for energy arbitrage, and ii) us-
ing the flexible resources to compensate for the uncertainty surrounding the
production/consumption of the inflexible DERs and loads. Balancing these
two aspects is non-trivial, and becomes particularly challenging when the
market commitments involve a relatively long time period (e.g.: day-ahead
market). Furthermore, additional constraint may arise whenever the flexi-
ble DERs perform additional functions besides storing energy, e.g. Plug-in
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1.2 Research Questions

Electric Vehicle (PEV) necessitating a specified level of charge by a given
time. All these aspects motivate the design of cost-effective scheduling al-
gorithms, combining the latest advancements in forecasting, stochastic op-
timization, and numerical solvers.

1.2 Research Questions

This thesis focus on the problem of scheduling and operating an aggrega-
tion of flexible DERs and inflexible DERs/loads. In particular, we consider
the context of an energy market that requires an a-priori commitment to a
given dispatch level over a certain period of time, e.g. day-ahead market.
The main challenge is represented by the uncertainty surrounding key data,
such as the future power output of the inflexible DERs, that requires plan-
ning appropriate reserves together with the schedule. This problem is well
studied in the literature, with several works distinguishing by the consid-
ered pricing policies, type of devices, and forecasting method. For example,
Beltran et al. [2013], Perez et al. [2013], and Saez-de Ibarra et al. [2016]
propose to schedule the generation of a “PV power plant” starting from de-
terministic predictions of the solar irradiation and energy prices. Similarly,
Korpaas et al. [2003] and Lampropoulos et al. [2015] utilize deterministic
predictions in scheduling; the first investigate wind generation coupled to
storage, and the second analyze a setting including uncertain load and PV
generation. Kou et al. [2015a] examine a similar case, but they employ
parametric probabilistic forecasts of the uncertain generation. Sossan et al.

[2016] and Namor et al. [2018] tackle planning the dispatch of a distribu-
tion feeder, where the uncertainty affecting the forecasts of the inflexible
elements is compensated by a storage system. Therein, worst case scenarios
for the power and energy prosumption are used in computing the schedule.1

Fabietti et al. [2018] address a similar problem, by adding the option of
using office buildings as thermal storage. In this case, scheduling is based
1 Prosumption denotes coupled production and consumption.
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1 Introduction

on scenario forecasts. Zwartscholten et al. [2018] extend this setting to
multiple “dispatchable systems”, introducing a hierarchy among them. Fi-
nally, Saint-Pierre and Mancarella [2016] and Stai et al. [2018] include grid
constraints in the problem, moving as well from scenario forecasts. Fur-
ther examples can be found in the literature, see the review [Nosratabadi et

al., 2017]. Despite differences in the considered aspects, all the mentioned
works propose a similar approach to the problem itself. In particular, there
is a tendency to address scheduling and operation in subsequent hierarchi-
cal steps: i) a day-ahead dispatch schedule is computed via deterministic
or stochastic optimization; ii) intra-day rescheduling is performed by means
of receding horizon optimization in order to minimize unavoidable imbal-
ances and to re-allocate resources accordingly; iii) a feedback controller is
implemented to regulate the dispatched power to the desired level.

The first step (scheduling) includes (more or less indirectly) the chal-
lenging problem of pre-allocating power and energy reserves, as previously
discussed. With respect to this problem, the majority of the cited works
that consider uncertainty in the scheduling process tackle computational
tractability by means of sampling-based techniques—i.e. the uncertain pa-
rameters are replaced by a finite number of potential realizations.2 A reason
behind this choice is that sampling-based methods are always applicable, re-
gardless of the model of the physical system and of the type of uncertainty
[Shapiro et al., 2009]. Another reason is connected to the fact that com-
puting samples for the uncertain parameters is generally easier and more
accurate than using other descriptions of the uncertain parameter, e.g. para-
metric description based on standard distributions. For example, consider
non-parametric probabilistic forecasting models trained by means of ma-
chine learning, which have shown promising results when predicting the
evolution of inflexible loads and renewable generation [Hong et al., 2016].

2 An exception is the work of Kou et al. [2015a], where computational tractability of chance
constraint is achieved by means of a wraping function obtained by using a sparse online
warped Gaussian process to create the probabilistic forecasts.
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1.2 Research Questions

Their output is a set of density forecasts or quantile forecasts that describe
the distribution of uncertain parameters. Density/quantile forecasts cannot
enter as-is into an optimization problem; however, they can be used to sam-
ple profiles (scenarios) of the forecasted parameters [Pinson et al., 2009;
González Ordiano, 2019].

Unfortunately, there are some pitfalls involved with sampling-based ap-
proaches, causing a loss of information on the uncertainty itself. Informa-
tion is lost because the potentially infinite realizations of the uncertainty are
approximated by a finite set [Nemirovski and Shapiro, 2006], and informa-
tion is lost in generating the samples [González Ordiano, 2019].3 These
downsides motivate investigation of different approaches to the schedul-
ing problem, which can cope with non-parametric probabilistic forecasts
while avoiding sampling. In particular, it is unclear whether methods that
make use of the full information provided by non-parametric probabilis-
tic forecasts—at the cost of assumptions/approximations on the mathemat-
ical description of the physical system and of its control requirements—
would outperform state-of-the-art scheduling based on sampling and sce-
nario forecasts—where some of the available information is anyway lost in
approximating the uncertainty.

Regardless of the extensive amount of schemes proposed in the litera-
ture, a number of open questions still need to be addressed in the design
of a scheduling algorithm that can make use of non-parametric probabilistic
forecasts. We divide these questions into three groups, to be tackled sequen-
tially.

3 Studies presented in [González Ordiano, 2019] highlight that samples generated from non-
parametric probabilistic forecasts are less accurate in describing the tails of the actual distri-
bution then the forecasts from which they originate.
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Investigation and Classification of Existing Methods

Existing approaches should be investigated with respect to their compatibil-
ity with non-parametric probabilistic forecasts. In particular, it is of interest
to understand:

• Which existing approaches to stochastic programming allow for use
of the entire information provided by non-parametric probabilistic
forecasts?

• Are these approaches applicable to scheduling for an aggregation of
several loads, generators and storage systems?

• What are the advantages and disadvantages of these methods?

Extension of Existing Methods in a Novel Algorithmic Framework

Moving from the suggestions proposed in the literature, the next step is to
design a novel algorithmic framework with improved performance in com-
parison to existing ones. This requires the following:

• Can approximations of the mathematical model of the physical system
and of its control requirements improve the use of non-parametric
probabilistic forecasts in scheduling?

• If so, are these approximations justified in practical cases?

• Which additional aspects should be considered in implementation?

• Is aggregated scheduling theoretically justified?

• Can aggregated models ease scheduling when some devices in the
aggregation have uncertain power outputs?

• In this framework, is aggregated scheduling with stochastic program-
ming viable for populations of devices that can connect and discon-
nect over the scheduling horizon?

6
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Test of the Proposed Framework

Finally, the performance of the proposed framework should be tested. To
this end, the following questions shall be answered:

• Does the designed algorithm realize the desired outcomes in simula-
tion?

• How does it perform in comparison to state-of-the-art methods?

• Is it applicable regardless of the size of the considered system?

• Does the scheduling algorithm realize the desired outcomes also in a
real-life experiment?

1.3 Contributions

The present thesis addresses the questions outlined in the previous sec-
tion, aiming at the design of a scheduling approach for the dispatch of an
aggregated energy system—comprising both flexible and uncertain power
outputs—that combine non-parametric probabilistic forecasting and numer-
ical computing without resorting to sampling and scenario forecasts. The
core idea of this thesis is that such a scheduling algorithm can be constructed
around a stochastic program where no constraints involve more than one un-
certain parameter. The formulation of such a stochastic program builds upon
an approximated energy-based model, where a single state lumps together
the energy states of all flexible DERs. In this framework, the uncertain
parameters entering the stochastic program do not necessarily represent a
physical quantity, but they can be values incorporating information on the
system (e.g. virtual energy states). Thus, the proposed algorithm is itself a
bridge between model-based optimization and machine learning: some of
the physical and statistical relations among system quantities are explicitly
modeled in the stochastic program (model-based optimization), while others

7
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are indirectly accounted for into the forecasting models of the uncertain pa-
rameters (built using machine learning techniques). In this perspective, this
thesis locates itself in the emerging field of Energy Informatics because it
deals with interdisciplinary research questions and methods at the interface
of Electrical Engineering, Computer Science and Control Engineering.

Chapter 2: Scheduling with Stochastic Optimization

We introduce a comprehensive classification of the various elements com-
posing scheduling algorithms based on stochastic programming. We discuss
not only the subsequent steps required to obtain a schedule, but also the di-
mensions to consider in formulating a tractable stochastic program when
some parameters are uncertain. Starting from this classification—that to the
best of the author’s knowledge has not been outlined in this way before—we
discuss the potential to improve the performance of the overall scheduling
algorithm by harmonizing the interaction of the various elements rather than
by improving the capabilities of the single elements considered as separate
entities.

Chapter 3: Stochastic Scheduling based on Energy Balance

We propose a novel optimization-based algorithm to schedule the dispatch
of an aggregation of DERs and loads entailing inflexible DERs/loads and a
single flexible Energy Constrained Distributed Energy Resource (EC-DER).
Unlike state-of-the-art schemes based on sampling methods and scenario
forecasts, the proposed algorithm links non-parametric probabilistic fore-
casts with non-sampling based approaches to computational tractability.
The core novelty of the proposed algorithm is the formulation of a stochastic
program where each constraint does not involve more than a single random
parameter. This way, the constraints can be formulated as chance con-
straints, and rendered computationally tractable with the sole knowledge of
the Cumulative Distribution Function (CDF) of the involved random param-
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eter. This CDF can be obtained from a non-parametric probabilistic forecast
via fitting. We also discuss aspects of practical implementation of the al-
gorithm, such as distinction among power flow directions, uncertain energy
state at the beginning of the schedule and length of the optimization interval.

The ideas presented in this chapter have already been published in [Ap-
pino et al., 2018a,b].

Chapter 4: Aggregated Scheduling of Energy-constrained Distributed
Energy Resources

We derive sufficient conditions that an aggregated model can be used for
scheduling without comprising feasibility of the individual constraints, hence
reinforcing the theoretical reasons on which existing works on aggregated
models are based. Furthermore, we propose a new methodology to ensure
consistent online tracking of the aggregated schedule. This methodology
is based on an appropriate “dispersion” (that we call consistent dispersion),
computed via an optimization problem that can be solved point-wise in time.
Moving from our findings, we discuss the case of a dynamic aggregation of
EC-DERs considering multiple sources of uncertainty (e.g. forecast errors
and unknown state of charge of PEVs upon arrival).

Most of the ideas presented in this chapter have already been published in
[Appino et al., 2019b, 2018c].

Chapter 5: Case Studies on a single EC-DER

We run simulations of the proposed scheduling and operation scheme on re-
alistic settings involving a households and an industrial campus, investigat-
ing the performance of the proposed scheduling algorithm against state-of-
the-art methods based on deterministic and scenario forecasts. Both sched-
ule tracking and cost efficiency are considered as evaluating criteria. Fur-
thermore, we examine whether the proposed scheduling algorithm is scal-
able to an industrial setting, with consideration of realistic energy prices
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for the dispatched power. Last, we evaluate the results by applying it to an
experimental setting.

Most of the results presented in this chapter have already been published
in [Appino et al., 2018a,b, 2019a].

Chapter 6: Case Study on a Population of EC-DER

We run simulations of the proposed scheduling and operation scheme for a
population of EC-DERs on a realistic setting involving a charging station
for PEVs located in the parking area of an office building and provided with
PV generation. We investigate the performance of the proposed scheduling
algorithm against state-of-the-art methods based on scenario forecasts.

The results presented in this chapter have already been published in [Ap-
pino et al., 2018c].

1.4 Outline

The main part of this thesis is divided in five chapters: Chapter 2 reviews
and classifies existing methods, Chapter 3 and Chpater 4 describe the pro-
posed algorithmic framework and its theoretical justifications, and Chapter
5 and Chapter 6 report simulation and experimental result obtained from
the application of the proposed framework to realistic cases. In detail, the
chapters are structured as follows.

Chapter 2

The first part of the chapter deals with the elements of automated schedul-
ing with numerical optimization. Next, we introduce uncertain parameters
in terms of random processes. Uncertainty mainly impacts three elements of
the decision scheme: problem structure and model, computational tractabil-
ity, and data processing. We analyze these elements separately and report
state-of-the-art methods to deal with uncertainty in each case.
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Chapter 3

In the first part of the chapter, we present the models and requirements of
the considered system. Then, we introduce a hierarchical scheme for its
scheduling and operation. Next, we proceed by describing each level of the
hierarchical scheme, with particular attention to the scheduling algorithm.
An innovative optimization-based scheduling algorithm is introduced, based
on a novel formulation of the stochastic program at its core. Finally, we
discuss aspects entailing a practical implementation of the method.

Chapter 4

In this chapter, we first present and discuss state-of-the-art aggregated
scheduling for a population of EC-DERs. Next, we examine some defi-
ciencies of such methods. Moving from those considerations, we derive
sufficient conditions that an aggregated “time-varying battery” model for
a population of EC-DERs can be used for scheduling without comprising
feasibility of the individual constraints of the EC-DERs. Then, we pro-
pose a methodology to ensure consistent online tracking of the aggregated
Dispatch Schedule (DS). This methodology is based on an appropriate “dis-
persion” (that we call consistent dispersion), computed via an optimization
problem that can be solved point-wise in time. Finally, we comment on con-
version losses, uncertainty, and aggregations of EC-DERs with time-varying
connections.

Chapter 5 and Chapter 6

In the first part of Chapter 5, we present and discuss simulation results con-
cerning a household case. Then, we proceed with reporting and comment-
ing upon simulation results concerning an industrial campus case. Last, we
compare simulation results with measurements taken from real-life exper-
iments. In Chapter 6, we presents and discusses simulation results over a
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Dispatchable Charging Station (DCS), aggregating uncertain PV generation
and a charging station for PEVs.
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2 Scheduling with Stochastic
Optimization

I don’t think that mankind ever was

meant to apprehend randomness and

probabilities.

J. Hoffmann-Jørgensen

Optimization-based scheduling for systems comprising uncertain param-
eters is a research topic of interest in many scientific areas, ranging from
mathematics to computer science, from production management to energy
systems. The joint—but often uncoordinated—effort of diverse communi-
ties has a twofold outcome: on the one hand, there exists a vast body of
literature on the topic; on the other hand, there is a lack of a coherent notion
and terminology. Since the present thesis builds upon concepts from differ-
ent scientific domains, it is pivotal to introduce a terminology that can be
unambiguously used throughout the thesis. The present chapters deals with
this crucial task. In particular, we first identify the different steps composing
an optimization-based scheduling algorithm and the elements considered in
engineering the optimization problem at its core. Then, we analyze the im-
pact of uncertain parameters on some of those steps and elements, reporting
briefly on some techniques to deal with each of those points, using examples
taken mostly (but not exclusively) from the energy sector. To the best of the
author’s knowledge, such a classification is unprecedented. However, we
remark that this chapter does not constitute a comprehensive report on the
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2 Scheduling with Stochastic Optimization

topic. Such a level of detail is beyond scope here; we redirect the curious
reader to the listed references.

2.1 Introduction

2.1.1 Scheduling

Throughout the thesis, scheduling refers to a method to compute a schedule,
which is an ordered sequence of values assigned to a quantity of interest
over a given time horizon. In particular, we focus on scheduling problems
with the following characteristics:

• the schedule covers a discrete time horizon going from kb to ke,

K :=
{
kb, kb + 1, ..., ke} ⊂ N,

with cardinality K, time index k ∈ K, and sampling period δ;

• scheduling takes place before the scheduling horizon, at

k0 := kb −O · δ < kb

with O ∈ N;

• the schedule is a decision that cannot be adjusted in operation and it
is entirely applied once computed

• subsequent schedules are computed—covering non-overlapping time
intervals1

Examples of scheduling problem presenting the listed properties are the day-
ahead commitment required by the regulation of most energy markets, cf.
1 This scheduling problem represents a decision process following a rolling horizon scheme.

This is different from a receding horizon scheme, where subsequent schedules cover overlap-
ping time intervals and only the first part of the schedule is applied before a new schedule is
computed to overtake the previous one.

14



2.1 Introduction
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Figure 2.1: Discrete-time scheduling horizon, including the offset elapsed between
computation and execution and an extension in the subsequent schedul-
ing horizon.

[EPEX SPOT, 2018; Swissgrid, 2016], and the unit commitment problem in
planning the operation of power plants, cf. [Padhy, 2004].

Note that, even if subsequent schedules are computed one at a time, the
scheduling process should target an efficient operation over a time period
covered by multiple schedules (potentially infinite). To this end, schedul-
ing should pay particular attention to the system state at kb, which couples
subsequent schedules. Different strategies are proposed in the literature,
as described in [Grüne et al., 2010]. These strategies can be sorted into two
main groups: i) methods aiming to steer the system towards an advantageous
starting conditions for the following schedule, and ii) methods entailing an
extension of the scheduling horizon such that the requirements of the fol-
lowing schedule are already explicitly considered in the current one.2 While
both options have been deeply investigated, none can claim to be better than
the other in any case. Deciding upon an appropriate terminal condition can
be as hard as determining a suitable extension of the horizon. Preference of
a method over the other should be decided upon the specific case.

The scheme in Figure 2.1 summarizes the notation for the schedule, in-
cluding an extension of the scheduling horizon of S steps until ks.

2 This way, the rolling horizon structure becomes a receding horizon one, because of the partial
overlap of subsequent schedules.
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Figure 2.2: Phases of an automated decision process and aspects of problem formu-
lation

2.1.2 Decision-making via Numerical Optimization

Scheduling is a challenging task that is often addressed by means of numer-
ical optimization. This procedure hinges on an optimization problem, engi-
neered to comply with the requirements and the constraints of the system.
Formulating an appropriate optimization problem requires consideration of
different items. In absence of coherent notation, we divide these elements
in four main categories (see Figure 2.2): characteristics, structure, model
and computational tractability. The characteristics are the properties and the
requirements that are relevant in scheduling; for example, the requirement
of operating a system with the minimum cost or the limitations on the power
output of a device. The structure is the organization of the decision process;
for example, taking all decision at once rather than in subsequent moments.
The model is the mathematical abstraction of the characteristics and of the
structure, which might involve approximations to a certain degree. Finally,
computational tractability concern the possibility to tackle the optimization
with state-of-the-art numerical solvers.
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Once an optimization problem is formulated, an online decision process
can be set up around it. The online decision process requires three steps to
achieve a schedule:

• Data Collection: collect the data needed for data processing

• Data Processing: deduce the parameters required in the optimization
problem starting from available data3

• Numerical Optimization: solve numerically the optimization problem

This is a well established decision process with a plethora of methods avail-
able to undertake each step; see for an example [Engell and Harjunkoski,
2012; Yang et al., 2015; Nosratabadi et al., 2017] and references therein.
Nevertheless, it should be considered that scheduling involves planning for
the future and some or all of the parameters may be unknown. While ac-
curate forecasting techniques are available for a large range of applications,
predictions may often differ from reality. If this is the case, the uncertainty
surrounding the forecasts should be directly considered both in the formu-
lation of the optimization problem and in the online decision process. In
particular, uncertainty plays a role in:

• problem structure and model,

• computational tractability,

• data processing.

In the following, we will examine each of these points and report state-of-
the-art tools to deal with uncertainty in each case.

3 The term parameter has different meanings in different contexts [Parameter, 2019]. In this
thesis, we employ the term parameter similarly to how it is used in computer science. Specifi-
cally, we consider optimization problems as maps receiving parameters in input and returning
optimal decision variables in output. In this context, we call parameter also what in control
theory is generally regarded as a disturbance [Aström and Murray, 2010] or as an exogenous
signal [Francis and Wonham, 1976].
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2 Scheduling with Stochastic Optimization

2.2 Problem Structure and Models

2.2.1 Multi-stage Optimization

In scheduling with uncertainty, problem structure and models play a crucial
role. Despite the large amount of literature on the topic, a general set of
always applicable rules is missing. Nevertheless, there exists some recom-
mendations to follow when engineering the optimization problem [King and
Wallace, 2012].

To start with, consider the following (deterministic) parametric optimiza-
tion problem

min
{x}K

∑
k∈K

c (x(k),w(k))

s.t. (2.1)

g({x,w}K) ≤ 0,

h({x,w}K) = 0,

with c : R(X+W )·K → R, g : R(X+W )·K → RG, h : R(X+W )·K → RH ,
vector x(k) ∈ RX collecting the decision variables at step k, w(k) ∈ RW

collecting the parameters at step k, and 0 being a vector of zeros of appro-
priate dimension. We introduce the notation {·}K to indicate the sequence
of a time-dependent quantity (or quantities) over K. For example

{x}K :=
{
x(kb), ...,x(ke)

}
.

This notation is used also with functions, for example

g({x}K) := g(x(kb), ...,x(ke)).

We assume that the constraints of (2.1) define a nonempty and compact set,
and that c (x(k),w(k)) is continuous on this set for whatever choice of
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w(k) ∈ RW . Thus, in view of the extreme values theorem, it always exists
a minimizing solution to (2.1).

Introducing uncertainty in the optimization problem implies describing
some (or all) of the parameters and/or the decision variables as a discrete-
time multivariate random (stochastic) process. A descrete-time random pro-
cess {Y(ω)}K associates each element ω of the set S of outcomes of an
experiment to a time-dependent sequence {y}K [Carlton et al., 2014].4 A
sequence {y}K is called a realization of {Y(ω)}K, and S can also be re-
ferred to as sample set.

The first step in introducing uncertainty in (2.1) is to establish what is
uncertain. We refer to this choice as problem structure. First, parameters can
be uncertain. Thus, we subdivide the parameters into a group that we model
using random variables, Wrv(k, ω), and into a group that we model using
deterministic variables, wdv(k). In the following, we refer to the elements
of the first group as random parameters and to the elements of the second
group as deterministic parameters. The meaning of a random parameter
in an optimization problem within a scheduling process is quite intuitive:
it is a parameter that cannot be described with certainty at the moment in
which scheduling takes place because its value stems from the result of a
(subsequent) random experiment. The future profile of uncontrollable loads
is an example of a random parameter in the power system sector.

Similarly, we partition also the decision variables in a group that we model
using random variables, Xrv(k, ω), and into a group that we model using
deterministic variables, xdv(k). As for the parameters, we use the term ran-

dom decision variables to indicate the elements of the first group, and the
term deterministic decision variables to indicate the elements of the sec-
ond group. Contrary to the case of random parameters, not only the role of

4 Here and for the rest of the chapter, we employ the word experiment in the statistical sense,
i.e. an action or activity whose outcome is subject to uncertainty [Carlton et al., 2014]. Fur-
thermore, note that we distinguish random variables from their realization using capitalization
together with a different font.
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a random decision variable is not self-evident, but even the term “random
decision variable” sounds an oxymoron itself. We clarify this point in the
following, introducing the concept of a stage. A stage defines a moment in
which a decision is taken [King and Wallace, 2012]. The introduction of
stages implies a subdivision of the decision variables {x}K in subgroups,
each corresponding to a stage. For example, a single-stage structure models
taking all the decisions required over the horizon at the same time; these
choices are then applied regardless of the realizations of the uncertainty. In
this case, the decision variables are not divided in groups, because there
is only one decision stage. All the decision variables are deterministic,
i.e. {x}K ≡ xdv(k). On the contrary, a two-stage decision structure al-
lows some decisions to be postponed to a second stage, once the outcome
of the experiment ω ∈ S is known [Morales et al., 2013]. In this case,
the decision variables are divided in two groups: i) the first-stage decision
variables xdv(k), which are deterministic; and ii) the second-stage decision
variables (postponed decisions) Xrv(k, ω), which are random variables—
because their value depends on the (unknown) outcome of the experiment.
Observe that both random parameters and random decision variables map
the outcome of an experiment to a value, with the difference that the map-
ping is given in the case of random parameters and it is instead a choice

in the case of random decision variables [Charnes and Cooper, 1959].5 In
short, with the term “random” decision variable we do not refer to a decision
that is taken casually, but a decision that is actually not-taken together with
xdv(k). Introducing random decision variables might be the only mathemat-
ically viable choice to cope with equality constraints when some parameters
are random, as detailed later. However, if the decision problem that is tack-
led by means of numerical optimization permits to postpone some decisions,
a two-stage scheme should still be preferred over a single-stage one. In fact,

5 Note that this mapping does not need to have an explicit form.

20



2.2 Problem Structure and Models

a two-stage scheme includes the so-called value of options, which improves
(statistically) the quality of the solution [Kall et al., 1994].

Despite being commonly used, a two-stage structure can be a misleading
representation of reality, because the realization of the random parameter
{wrv}K, which is directly accessible, is not the outcome of the experiment
ω. In order to map back {wrv}K to its corresponding ω, the entire sequence
of wrv(k) over K is needed. However, a decision xrv(k) may be required
before knowing the entire sequence {wrv}K, which means before knowing
the outcome ω [Fabietti et al., 2016]. This observation pushed the devel-
opment of multi-stage structures, where the correlation between Xrv(k, ω)

and {Wrv(ω)}K′ , with K′ =
{
kb, ..., k

}
, is explicitly described and used to

define the mapping Xrv(k, ω), i.e.

xrv(k) := f({wrv}K′). (2.2)

This mapping enters the problem as an additional constraint, and the deci-
sion to be taken shifts from Xrv(k, ω) to function f . Examples of works
investigating this structure for different applications are [Bitlislioglu et al.,
2017; Warrington et al., 2013].

Summing up, introducing multivariate stochastic processes in (2.1) leads
to the subsequent conceptual problem formulation

“
′′

min
{xdv}K,
{Xrv(ω)}K

∑
k∈K

c
(
xdv(k),Xrv(k, ω),wdv(k),Wrv(k, ω)

)
s.t. (2.3)

g
({

xdv,Xrv(ω),wdv,Wrv(ω)
}
K

)
≤ 0

h
({

xdv,Xrv(ω),wdv,Wrv(ω)
}
K

)
= 0,
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where, following [Kall et al., 1994], the notation “ min′′ indicates that (2.3)
is not a well-defined decision problem. Note that, for the sake of notation
simplicity, we consider here a two-stage structure.

Interpretation of Problem (2.3) raises several questions. What does it
mean to minimize a function of random variables? What is an equality
constraint with random variables? How to interpret an inequality constraint
with random variables? In the following, we examine these points one at a
time. Note that we only discuss the interpretation of Problem (2.3) in this
section, leaving the review of methods to address computational tractability
to Section 2.3.

Function with Random Variable

A function of random variables is a random variable itself. Therefore, min-
imizing a function of random variables is not straightforward, because it
requires to introduce an order among random variables. To this end, a com-
mon practice is to use moments. For example, the cost function of a stochas-
tic program such as (2.3) is commonly interpreted as the minimization of the
expected value of the cost function, cf. [Shapiro et al., 2009]. This means
that, given two random variables X(ω) and Y(ω), X(ω) < Y(ω) holds if
E[X(ω)] < E[Y(ω)], where notation E[X(ω)] denotes the expected value
of X(ω). However, ordering of random variables is not standard, thus the
interpretation of a cost function with random variables is an engineering de-
cision. Other options than using the expected value are indeed proposed:
see [Nagy and Braatz, 2003] for an example including the variance.
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Equality Constraints

An equality constraint involving random variables introduces a correlation
among them. The equality must hold for each outcome ω of the sampling
set S, i.e.

h
({

xdv,Xrv(ω),wdv,Wrv(ω)
}
K

)
= 0 ∀ω ∈ S.

Inequality Constraints

Inequality constraints leave room to different interpretations. An option, of-
ten going under the name of robust optimization [Bertsimas et al., 2011], is
to impose the satisfaction of the inequality constraint for all possible real-
izations, i.e.

g
({

xdv,Xrv(ω),wdv,Wrv(ω)
}
K

)
≤ 0 ∀ω ∈ S.

However, this method can be conservative and it is not applicable whenever
the uncertainty cannot be described with a finite set of outcomes, i.e. in case
of random variables with infinite support. Thus, a common interpretation of
inequality constraints involving random variables is in terms of chance con-
straints [Charnes et al., 1958]. In this case, the satisfaction of the inequality
constraints is required only with at least a given probability (1− ε), i.e.

P
(
{ω : g

({
xdv,Xrv(ω),wdv,Wrv(ω)

}
K

)
≤ 0}

)
≥ (1− ε). (2.4)

The value (1 − ε) is often called security level. Note that if G > 1 (i.e.
the constraints set includes more than one inequality) the chance constraints
can be formulated either as separate chance constraints or as a joint chance
constraint. In the first case, each individual inequality has to be satisfied
with its own security level (1 − ε); in the latter, as in (2.4), (1 − ε) is the
lowest probability of all the inequalities to hold at the same time. Note
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that, as for the cost function, the interpretation of inequalities with random
variables is not standard and is the result of an engineering decision.

In view of these considerations, we rewrite (2.3) in the following (mean-
ingful) form

min
{xdv}K,
{Xrv(ω)}K

E

[∑
k∈K

c
(
xdv(k),Xrv(k, ω),wdv(k),Wrv(k, ω)

)]

s.t. (2.5)

P
(
{ω : g

({
xdv,Xrv(ω),wdv,Wrv(ω)

}
K

)
≤ 0}

)
≥ (1− ε),

h(
{
xdv,Xrv(ω),wdv,Wrv(ω)

}
K) = 0 ∀s ∈ S.

2.3 Computational Tractability

Design of appropriate decision structures and models leads to a meaningful
stochastic program. The next step is to solve the stochastic program. This is
not an easy task: an optimization problem with random variables is poten-
tially infinite dimensional and cannot be solved directly by well established
numerical solvers. Thus, the problem has to be first rendered computation-
ally tractable [Nemirovski and Shapiro, 2006]. In the literature, there are
many methods to handle this task, as discussed in the following. Despite
their differences, these methods can be sorted on a high level into two com-
plementary categories:

• sampling-based approaches

• non-sampling-based approaches

Note that each category requires a specific representation of the uncertainty.
In the next sections, we recall the main aspects of each type, as well as their
advantages and disadvantages.
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2.3.1 Sampling-based Approaches

Sampling-based approaches to stochastic programming are well investigated
[Shapiro et al., 2009]. Scenario-based optimization is a popular sampling-
based approach, especially when a multivariate stochastic processes is in-
volved [Campi et al., 2009; Conejo et al., 2010]. Despite differences, the
basic idea is to augment the dimension of the problem, replicating equality
and inequality constraints for a subset of the outcome set, S ′ ⊂ S with car-
dinality Ω′. All the constraints are considered for each scenario ω′ ∈ S ′,
by substituting the stochastic processes with their realization under ω′ for
both random parameters (whose realizations are given) and random deci-
sion variables (whose realization have to be determined, either directly or as
functions of the realization of random parameters). Furthermore, a proba-
bility πω

′ ∈ R is assigned to each ω′ ∈ S ′ such that∑
ω′∈S′

πω
′

= 1.

This probability is employed in computing the expected cost of c. In partic-
ular, the expected cost of c is the average of the realizations of c under all
ω′ ∈ S ′ weighted with πω

′
. Applying a scenario-based approach to (2.1)

results into

min
{x}K,{

xω′}
K
∀ω′∈S′

∑
k∈K

∑
ω′∈S′

πω
′
· c
(
x(k),xω

′
(k),w(k),wω′

(k)
)

s.t. (2.6)

g(
{
x,xω

′
,w,wω′

}
K

) ≤ 0 ∀ω′ ∈ S ′,

h(
{
x,xω

′
,w,wω′

}
K

) = 0 ∀ω′ ∈ S ′.

where wω′
and xω

′
denote the realization under scenario ω′ of the random

parameters and of the random decision variables, respectively. By compar-
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ing the inequalities in (2.6) to the original chance constraint (2.4), it can be
seen that set S ′ should be chosen such that

P ({ω : ω ∈ S ′}) ≥ (1− ε). (2.7)

Indication on how to construct such a set can be found in [Campi et al.,
2009].

Advantages and Disadvantages

Sampling-based methods are intuitive and can be applied to any problem in
the form (2.5). Therefore, they are largely used, also in the energy sector.
Examples can be found in [Garcia-Gonzalez et al., 2008; Ding et al., 2012;
Su et al., 2013; Stai et al., 2018; Good and Mancarella, 2017]. However,
sampling-based methods present drawbacks which stem from the fact that
the approximation of the original problem obtained using scenarios is it-
self random. In fact, the theoretical number of scenarios required to satisfy
(2.7) may lead to conservative solutions in practice [Shapiro et al., 2009].
Furthermore, augmenting the problem in terms of constraints and decision
variables raises the computational burden. Scenario-reduction techniques
are proposed to partially alleviate these issues. An exemplary algorithm
for scenario reduction can be found in [Conejo et al., 2010]. Alternatively,
Margellos et al. [2014] propose to compute bounds that envelope the set of
scenarios with a given probability, and then to use these bounds to ensure
the satisfaction of the constraints under all the scenarios.

2.3.2 Non-sampling-based Approaches

Contrary to scenario-based approaches, where the starting point is a set of
realizations of the random parameters, non-sampling based methods build
upon the moments or upon an analytic description of the Probability Density
Function (PDF) and/or of the CDF of the multivariate stochastic process.
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The general idea of non-sampling based approaches is to achieve computa-
tional tractability of (2.5) by exploiting some properties of the problem or
of the random variables describing the uncertainties. In particular, two main
aspects have to be addressed: i) how do the equalities translates in rela-
tions among moments, PDF, CDF, or quantiles?, and ii) how to reformulate
chance constraints in terms of moments, PDF, CDF, or quantiles?

Equality Constraints with Non-sampling-based Approaches

For the sake of completeness, we report in the following two non-sampling
based approaches to tackle (non trivial) equalities among random variables.

The first one is Polynomial Chaos Expansion (PCE). PCE is a spectral
method that can be used to expand scalar random variables into a weighted
sum of orthogonal polynomial of independent scalar random variables [Xiu,
2010; Kim et al., 2013]. This way, the original random variable can be
uniquely represented by a set of PCE coefficients—i.e. the weights of the
polynomial series. The advantage of PCE lays in the possibility to describe
each of the random variables of interest as a function of some independent
random variables (namely, the stochastic germ) in a way that preserves the
correlation imposed by the equality constraints. In fact, appropriate pro-
jection techniques can translate the relations among random variables ex-
pressed by the equality constraints into equalities among PCE coefficients,
thus enabling their computational tractability. The major limitation of ap-
plying PCE to stochastic scheduling is the requirement of known PCE co-
efficients for the random parameters. These coefficients should consider the
correlation among random parameters and are not always easy to compute.

A second method to deal with equality constraints with random variables
is moment closure. The idea is to move from an (infinite dimensional) equa-
tion involving random variables to a finite system of equations, each con-
taining only the moments of a given order of the random variables appear-
ing in the original equation. This method is particularly useful in analyzing
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the dynamics of systems involving a large number of random states. By
applying moment closure, the intractable infinite-dimensional dynamics de-
scribing the system behavior can be substituted with a number of (tractable)
equations describing each the evolution of the moments of a given order,
e.g. [Hespanha and Singh, 2005; Lee et al., 2009]. The major limitation
of this method is that an accurate description of the original dynamics may
require a large number of single-moment equations. Therefore, approxima-
tions may be required to express the original dynamics only in terms of a
limited number of “lower-order moments”.

Chance Constraints With Non-sampling-based Approaches

The main idea of tackling computational tractability of chance constraints
with a non-sampling-based approach is to enforce the satisfaction of the
constraints for realizations of the uncertainty within an interval around the
expected value [Calafiore and El Ghaoui, 2006]. To this end, several meth-
ods have been proposed in the literature, distinguishing by the way of com-
puting this interval. The most general methods do not require any specific
knowledge on the distribution of the uncertainty, relying, for example, ei-
ther on the moments of the distribution [Van Parys et al., 2016] or on an
empirical iterative algorithm [Roald, 2016].

More general approaches can be applied whenever additional informa-
tion on the uncertainty are available. For example, chance constraints can
be reformulated exactly in case of log-concave and symmetric distributions
[Lagoa et al., 2001]. In the following, we analyze closely the case of a joint
chance constraint in the form of

P ({ω : gx(Z(ω)) ∈ Y}) ≥ (1− ε), (2.8)

where gx is a continuous invertible function gx : R → R with parame-
ters x ∈ RX ,6 Z(ω) is a random variable and Y is a continuous real in-
6 Note that this requirements excludes the presence of quadratic terms in gx.
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terval. Furthermore, we assume a known CDF for Z(ω), which we denote
as FZ(z).7 Constraint (2.8) with known FZ(z) is of particular interest for
the scheduling problem discussed in the following chapters. Note that we
consider a general shape for FZ(z). Therefore, techniques that require re-
strictive assumptions on the distribution of the random variables, as the one
presented in [Lagoa et al., 2001], do not apply.

We present two methods to deal with (2.8) in its equivalent form

P
(
{ω : Z(ω) ∈ g−1

x (Y)}
)
≥ (1− ε). (2.9)

The first method makes use of the quantiles of Z(ω), the second one of an
analytic description of FZ(z).

First, we analyze the quantile-based approach [Vrakopoulou et al., 2013].
In the following, qZ(j) denotes the j-th quantile of Z(ω), which is the quan-
tity for for which P ({ω : Z(ω) < qZ(j)}) = j [Murphy, 2012]. The main
idea of quantile-based approaches is to use the quantiles of the random vari-
able Z(ω) to compute the interval

Z(1−ε) = [qZ(0.5− 0.5(1− ε)), qZ(0.5 + 0.5(1− ε))] .

Then, imposing
Z(1−ε) ∈ g−1

x (Y) (2.10)

guarantees satisfaction of (2.9). In fact, by definition of Z(1−ε), it holds that

P
(
{ω : Z(ω) ∈ Z(1−ε)}

)
≥ (1− ε). (2.11)

This approach is intuitive, simple to apply, and requires only the knowledge
of an appropriate pair of quantiles of Z(ω). However, it might be inefficient
in practice, because the bounds of Z(1−ε) are computed offline. Thus, there

7 Recall that FZ(z) is defined as FZ(z) = P ({ω : Z(ω) ≤ z}) [Murphy, 2012].
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Figure 2.3: Schematic representation of the computationally tractable reformulation
of chance constraint (2.9).

is no guarantee that a solution with lower cost can be achieved by a different
choice of Z(1−ε) satisfying (2.11).

A second method to deal with (2.9) implies a direct use of the CDF FZ(z).
Given FZ(z), the inequalities

FZ(a)− FZ(b) ≥ (1− ε), (2.12a)

−min(g−1
x (Y)) ≥ −b, (2.12b)

max(g−1
x (Y)) ≥ a, (2.12c)

are a computationally tractable reformulation of the joint chance constraint
(2.9), [Miller and Wagner, 1965]. Figure 2.3 illustrates this reformulation in
order to ease its understanding. In words, the probability of the realization
of Z to lay in the interval [a, b] ⊂ g−1

x (Y) should be equal or higher than
(1− ε). As FZ(z) is increasing, (2.12) is contemporary satisfied if

FZ(max(g−1
x (Y)))− FZ(min(g−1

x (Y))) ≥ (1− ε), (2.13)
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also illustrated in Figure 2.3. The proposed constraints formulation is simi-
lar, yet not equivalent, to the one resulting from a quantile-based approach.
In fact, similar to (2.11), the satisfaction of the joint chance constraint is
achieved by enforcing problem feasibility for a compact subsets of the sup-
port of Z. However, contrary to (2.11), this subsets is chosen using full
information on the distribution of the random variables and does not have to
be symmetric w.r.t. the expected value.

Advantages and Disadvantages

The computationally tractable optimization problem obtained via approaches
that do not require sampling has the advantage of addressing directly the
original stochastic program. Eventual approximations are clearly defined
and are not the results of a random selection. However, the application of
non-sampling-based approaches is not straightforward and should be tai-
lored to the specific case. Depending on the structure of the problem and
on the nature of the uncertainty, dealing with computational tractability
with non-sampling-based approaches may be impossible without introduc-
ing numerous approximations or it may lead to a high computational burden.
Furthermore, non-sampling-based approaches are ineffective in case of lim-
ited information on the uncertainty (shape of the distribution, correlation,
etc.). Resorting to conservative approximations to compensate for this lack
of knowledge may spoil the benefits of the method.

2.4 Data Processing

The last aspect of automatic optimization-based scheduling in which uncer-
tainty plays a role is data processing. In fact, a stochastic program requires
in input some information on the random parameters in terms of probabilis-
tic forecasts. Recall that probabilistic forecasts determine ranges of plau-
sible values and their associated probability, in constrast to point forecasts
which provides only a single value [Antonanzas et al., 2016]. Probabilis-
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tic forecasting methods with applications in the energy sectors have been
deeply investigated in recent years; see [González Ordiano et al., 2018a]
and [Bessa et al., 2017] for a comprehensive review. The core ideas of the
proposed methods can be divided in three major categories:

• based on persistence;

• based on a parametric description of the uncertainty;

• based on a non-parametric description of the uncertainty.

Forecasting algorithms based on persistence use past realizations of the
uncertainty as a forecast for future realizations. These approaches select a
set of past realizations among the available data and consider this set as a set
of scenarios for the realization of the uncertainty; see [Namor et al., 2016]
for an example. Forecasting algorithms based on a parametric description of
the uncertainty assume that the distribution (PDF or CDF) of the uncertain
parameter follows a pre-defined shape which can be described by an ana-
lytic expression. An example involving Gaussian processes can be found in
[Kou et al., 2015b]. Last, forecasting algorithms based on non-parametric
forecasts translate the distribution of the uncertain parameter into a set of
density forecasts or into a number of quantile forecasts. Therefore, these
algorithms are considered distribution-free, see [Zhang et al., 2014] and ref-
erences therein.

Note that the output of each forecasting method describes the uncertainty
in a specific way: with a set of scenarios, with an analytic expression of
the distribution, or with a number of density/quantile forecasts. At the
same time, the forecast output should match the requirements on the in-
put of the optimization problem. Some transformations can harmonize the
forecast output with the optimization input, regardless of the core idea be-
hind the forecasting algorithm. Examples are statistics to turn scenarios into
quantiles, fitting to go from quantiles to CDF, sampling to obtain scenarios
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from a CDF, etc. Nevertheless, these transformation are not always triv-
ial [González Ordiano, 2019]. For example, sampling scenarios from non-
parametric probabilistic forecasts requires to include the correlation among
time steps at subsequent times, which is not directly considered in the non-
parametric probabilistic forecasts;8 see [González Ordiano, 2019] and [Pin-
son et al., 2009] for examples of scenario generation from non-parametric
probabilistic forecasts. Furthermore, some information may be lost in the
transformation. In [González Ordiano et al., 2018b], for example, it is
shown that scenarios obtained via sampling from non-parametric forecasts
are not describing the stochastic process as well as the original forecasts.
Specifically, the sampled scenarios are less accurate in capturing the tails of
the actual distributions.

2.5 Summary

Scheduling under uncertainty by means of multi-stage stochastic optimiza-
tion is well investigated. However, the three aspects of the decision chain
that are mostly affected by uncertainty—problem structure and models,
computational tractability, and data processing—are often examined sep-
arately. This leads to the fact that promising ideas in each of these distinct
fields do not naturally combine together in a scheduling algorithm. One
of the major conflicts raises between forecasting algorithms and methods
to deal with computational tractability. As discussed, non-sampling-based
approaches are supported by a well established theory and can achieve com-
putational tractability while providing a solution to the original problem;
however, they require an explicit description of the correlation among the

8 Forecasting the random process as a multivariate distribution (where each dimension repre-
sents a step in the forecasting horizon) would provide information on the correlation. Even-
tually, this information could be used to obtain linearly independent single-step random vari-
ables, by means of principal component analysis [Abdi and Williams, 2010]. However, such
a forecasting model is difficult to create and computationally demanding for long forecasting
horizon.
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time-steps of the multivariate stochastic process, which is not provided by
non-parametric forecasting techniques. On the other side, non-parametric
probabilistic forecasting techniques show superior performances to other
forecasting techniques in describing stochastic processes that are relevant
in power system applications, such as solar and wind generation [Hong et

al., 2016]. The apparent conflict between computational tractability and
data processing, and between model-based optimization and machine learn-
ing, is traditionally overcome by application of sampling-based methods
with scenario forecasts. However, these approaches indirectly include an
approximation of the uncertainty, which may deteriorate the benefits of
advanced forecasting techniques on the final result. Thus, scheduling for
management and operation of power system calls for alternative methods
to link non-parametric probabilistic forecasting and numerical optimization
without resorting to scenario forecasts. In the following chapter, we tackle
this challenge for the case of aggregated power systems.
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3 Stochastic Scheduling based on
Energy Balance

In this chapter we investigate scheduling and operation of an aggregation
of DERs/loads comprising both inflexible DERs with uncertain power out-
put and a single flexible—but energy constrained—DER. The core of this
chapter is an innovative algorithm to schedule the active power dispatch of
the aggregated system. The novelty of the algorithm is the way it combines
non-parametric probabilistic forecasts with numerical optimization without
resorting to samples of the uncertain parameters. Therein, the major chal-
lenge is the difficulty of forecasting the correlation among the (possibly nu-
merous) uncertain parameters, information required by non-sampling based
approaches to deal with the computational tractability of the energy state
dynamics. We tackle this issue formulating a stochastic program that does
not contain any constraints involving more than one uncertain parameter or
decision variable. Specifically, this formulation is obtained by introducing
(approximated) energy balance equations in spite of the dynamics of the
energy state.

The ideas presented in this chapter have appeared in [Appino et al., 2018a]
and [Appino et al., 2018b].

3.1 Models and Requirements

In this chapter, we deal with scheduling the exchange of active power at the
interface between a utility-owned power grid and a prosumer-owned aggre-
gation of DERs comprising inflexible and uncertain generation/demand and
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Figure 3.1: Schematic representation of a dispatchable feeder.

a single flexible, but energy-constrained, DER (Figure 3.1). Furthermore,
we consider the requirement to dispatch the total power output of the ag-
gregation accordingly to a pre-computed DS. This system can be associated
to the concept of a virtual power plant or of a microgrid [IEEE PES Task
Force on Microgrid Stability Analysis and Modeling, 2018]. However, for
the sake of clarity, we emphasize that the focus of the present work is on
the dispatch of active power, regardless of the provision of any capacity re-
serve or other support services to the grid. The recent work from Sossan et

al. [2016] denotes a system with these characteristics and requirements as a
dispatchable feeder; nevertheless, a commonly accepted terminology is cur-
rently lacking. Details on the models and on the requirements are described
in the following subsections.

3.1.1 System Components

Inflexible Distributed Energy Resources and Loads

We denote devices (whether they are loads or generators) whose power out-
put is either not adjustable or regulated according to independent device-
specific settings as inflexible. This is often the case, for example, with wind
turbines or PV generators, as well as with the majority of domestic loads.
Here, variable l(k) ∈ R indicates the (averaged) aggregated inflexible ac-
tive power output over the k-th step, regardless of the number and nature
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of devices contributing to it. A negative value for l(k) represents power
injection.

Energy-constrained Distributed Energy Resources

The term EC-DER denotes devices that can be associated to an energy state
that is subject to dynamics and constraints. This energy state can represent
either an amount of energy that is physically stored in the device or the
energy exchanged with the EC-DER over a given time period [Evans et al.,
2018]. Examples of EC-DER are batteries and other types of storage, see
[Zhao et al., 2015], or flexible demand. Xu et al. [2016] formalize this
concept by proposing a generic “time-varying battery” model for an EC-
DER.1 Therein, an integrator-like dynamic equation describes the evolution
of the energy state of the EC-DER

e(k + 1) = e(k) + δ · (p(k)− µ |p(k)|) , (3.1)

where the variable p(k) ∈ R is the (averaged) active power output over the
k-th step, e(k) ∈ R is the energy state at time k, and µ is a coefficient
modeling conversion losses. This model moves from ideas on energy con-
servation, supposing that the energy losses are directly proportional—with
coefficient µ—to the absolute value of the power output p(k). Note that
this model simplifies the actual phenomenon which occur in practice. Esti-
mating the energy lost in operation by an EC-DER is still an open question
and it is particularly challenging in the case of batteries [Li et al., 2018].
Nevertheless, dynamics as in (3.1) are frequently applied in the literature
concerning scheduling problems, and have proved to be a valid approxima-
tion also in real-life experiments pSossan16a. Thus, we consider (3.1) to be
sufficiently accurate for the scope of the present work.

1 Xu et al. [2016] use the term “flexible loads” to denote what here is called EC-DERs.

37



3 Stochastic Scheduling based on Energy Balance

The active power output of an EC-DER can be adjusted within the limits
imposed by its power and energy constraints

p(k) ∈ P(k), (3.2a)

e(k + 1) ∈ E(k + 1), (3.2b)

withP(k) and E(k+1) being closed real intervals, i.e. P(k) = [p(k), p(k)] ⊂ R
and E(k + 1) = [e(k + 1), e(k + 1)] ⊂ R.

Interconnection with the Upper Level Grid

Variable g(k) indicates the active power exchange between the system and
its corresponding upper-level grid. For the sake of simplicity, we do not
consider any constraint on the value of g(k).2 All of the devices connect
to the same grid-connected bus, as schematically represented in Figure 3.1.
The connections are assumed to be lossless and such that the system com-
ponents are able to exchange power mutually without any technical limit.
Therefore, the power balance is (see Figure (3.1))

g(k) = p(k) + l(k). (3.3)

3.1.2 Requirements

The scheme proposed in this chapter aims at dispatch-as-scheduled of the
power exchange g(k) by means of a coordinated control of the system com-
ponents. We consider that the dispatchable feeder acts directly on an energy
market of the kind described by Morales13: operating revenues (or costs)
can be directly associated to the DS through a known cost function, while
deviations from the DS (imbalances) are limited by regulations or penalized
in operation.

2 Please note that adding constraints on g(k) does not change the findings outlined in the
present thesis, as long as the feasible set remains non-empty.
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Following this regulation, we first divide the power exchange g(k) into
two components:

g(k) = g̃(k) + ∆g(k), (3.4)

where g̃(k) is the DS for the k-th step, and ∆g(k) is the average imbalance
over the k-th step.

Then, we model the operating revenues (or costs) of the DS via the fol-
lowing cost function cDS(g̃(k), k) : R× N→ R,

cDS(g̃(k), k) = cq(k)g̃2(k) + cl(k)g̃(k). (3.5a)

Here, cq(k) and cl(k) are (known) time-varying cost coefficients. Addition-
ally, the term

cc (g̃(k + 1)− g̃(k))
2
, (3.5b)

can be considered to penalize the incremental change of g(k) (approximat-
ing the derivative of the DS), with cc being a constant weight,. We chose
cost function cDS(g̃(k), k) because of its generality: peak shaving and max-
imization of self-consumption can be considered together with price-based
load shifting.3 We discuss different pricing for selling and buying power
from the grid later in Section 3.3.3.

With respect to the penalization of the imbalances, we analyze two differ-
ent policies: i) a cost of imbalances, and ii) a limitation on the number of
imbalances. The first option can be described by a cost function of ∆g(k),
ci(∆g(k)) : R→ R,

ci(∆g(k)) = c∆ q |∆g(k)|2 + c∆ l |∆g(k)| , (3.6)

3 Note that alternative cost functions (non-quadratic) can as well be used without compromising
the validity of the method described in this chapter.
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with given cost coefficients c∆ q and c∆ l. The second option translates into
requiring the tracking ratio of the DS to be greater than a given security level
(1− ε) ∈ [0, 1] ⊂ R, i.e.

rγ({∆g}K) ≥ (1− ε), (3.7)

where the tracking ratio is a function rγ : RK → R,

rγ({∆g}K) =
# {k ∈ K : |∆g(k)| ≤ γ}

K
, (3.8)

with operator #{·} denoting the cardinality of set {·}. Requirement (3.7)
is equivalent to requiring a minimum number of time steps over the horizon
K in which |∆g(k)| does not surmount a given threshold γ, i.e. it poses a
limit to the number of imbalances over the horizon K. Note that even if the
present dissertation disregard the problem of sizing the storage, the feasibil-
ity of the tracking requirement is strictly coupled with the available storage
capacity. In fact, given an assigned capacity and the uncertainty surrounding
l(k), the tracking requirement may turn unfeasible for arbitrary high values
of (1−ε). We tackle this challenge in Section 3.3.2 by allowing a relaxation
of (1 − ε) whenever its value would cause infeasibility. In this manner, we
decouple the sizing and the scheduling problem, allowing the application of
the proposed method to any storage size. Additional comments on storage
size are discussed in Section 5.2. Nevertheless, we remark that an appropri-
ate storage size is recommended to avoid an excessive relaxation of (1− ε),
which would undermine the meaning of having a tracking constraint at all.
We refer to [Yi et al., 2019] for an example of coupled consideration of both
sizing and scheduling problems for energy storage.

3.1.3 Hierarchical Control

The flexibility provided by the EC-DER enables tracking of the DS for g̃(k).
Similar to [Olivares et al., 2015] and [Lampropoulos et al., 2015], we pro-
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Figure 3.2: Three-level hierarchical scheduling and control scheme.

pose a hierarchical scheduling and control scheme, cf. Figure 3.2. On the
highest level, a DS is computed by means of optimization. At the next level,
online adjustments of the DS is performed using Model Predictive Control
(MPC) [Rawlings et al., 2017]. The lowest layer is the real-time controller
regulating the power output of the dispatchable feeder. Note that each levels
runs on a different time scale. Furthermore, observe that the knowledge of
l(k) is available only at the lowest, real-time level. The DS optimization
and the online rescheduling take place before the realization l(k) becomes
known. Thus, they rely on forecasts for this value. In the following sections,
we analyze these control levels one by one.

3.2 Online Schedule Tracking

The EC-DER is controlled in real-time to compensate for the volatility of
the inflexible elements, aiming to accurate tracking of the DS. Examples of
controllers of this kind can be found in [Citro et al., 2011] for PV gener-
ation, and in [Zhao et al., 2015] for wind turbines. This control action is
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carried out after the power output l(k) is known. From a high level per-
spective, this controller regulates the power output of the storage at step k
depending on the inflexible power output l(k), on the reference gref(k), and
on the energy state e(k) such that the imbalance ∆g(k) is minimized. For
the sake of simplicity, consider in the first place gref(k) = g̃(k). We will
discuss the effect of on-line rescheduling later in Section 3.4. We can for-
malize the behavior of the EC-DER controller with the implicit control law
h : R3 → R2, mapping a realization of [g̃(k) l(k) e(k)] to its corresponding
[p(k) ∆g(k)]:

h(g̃(k), l(k), e(k)) := arg min
p(k),∆g(k)

∆g2(k) s.t. (3.1)− (3.4). (3.9)

Problem (3.9) is a multi parametric quadratic problem. Therefore, its so-
lution h(g̃(k), l(k), e(k)) is a piece-wise affine function of the parameters
[Pistikopoulos et al., 2007], here not reported explicitly.

3.3 Dispatch Schedule Optimization

The first step of the decision process in Figure 3.2 is the computation of the
DS over horizon K, which is the main focus of this thesis. As discussed in
Chapters 1 and 2, scheduling is often performed via numerical optimization,
and the core of this process is a computationally tractable formulation of
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the optimization problem. Combining the system requirements and models
(3.1)-(3.9) gives4

min
{x}K

∑
k∈K

cDS(g̃(k), k) + ci(∆g(k))

s.t. (3.10)

e(k + 1) = e(k) + δ · (p(k)− µ |p(k)|) ∀k ∈ K,

e(kb) = e0,

[p(k) ∆g(k)] = h(g̃(k), l(k), e(k)) ∀k ∈ K,

rγ({∆g}K) ≥ (1− ε),

where e0, is the energy state at the beginning of the DS and vector x(k) ∈
R4 collects the decision variables at k, i.e.

x(k) := [p(k) e(k + 1) g̃(k) ∆g(k)] .

Note that satisfaction of (3.1)-(3.4) is indirectly imposed via the argmin op-
erator h defined in (3.9).

A key parameter in (3.10) is the inflexible power output {l}K. However,
(3.10) should be solved before knowing the value taken by {l}K. Therefore,
this parameter enters the scheduling problem as a stochastic process {L}K,
as described in Chapter 2.5 Furthermore, given that the DS has to be com-
puted before kb, also the initial condition e0 is an uncertain parameter, E0.
This uncertainty reflects into the decision variables. The DS {g̃}K is the de-
cision taken upon scheduling (first-stage); thus, it is a deterministic decision
variable. Instead, p(k) and ∆g(k) depend on the realization of l(k) as well
as on the initial energy state e0. Therefore, these variables are described us-

4 For the sake of notation simplicity, we do not include the penalization of the DS derivative
(3.5b).

5 In order to simplify the notation, from here on we drop the notation indicating the explicit
dependence of a random process on the sample ω. In other words, we denote random variable
X(ω, k) as X(k) and we denote probability P ({ω : X(ω, k) ∈ X}) as P (X(k) ∈ X ).
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ing the stochastic processes {P}K and {∆G}K. Finally, the dynamics (3.1)
describes a stochastic process too, because both the initial energy state and
the sequence of {p}[kb,...,k] are uncertain.

Introducing the uncertainty in (3.10) leads to

min
{g̃}K,
{X}K

∑
k∈K

cDS(g̃(k), k) + E

[∑
k∈K

ci(∆G(k))

]
(3.11a)

s.t. ∀k ∈ K

E(k + 1) = E(k) + δ · (P(k)− µ |P(k)|) , (3.11b)

E(kb) = E0, (3.11c)

[P(k) ∆G(k)] = h(g̃(k), L(k),E(k)), (3.11d)

E

[∑
k∈K

B(k)

]
≥ (1− ε) ·K, (3.11e)

where the random decision variables are collected in vector

X(k) := [P(k) E(k + 1) ∆G(k)] ,

and B(k) is a Bernoulli random variable whose realization is

b(k) =

1 if |∆g(k)| ≤ γ

0 otherwise
. (3.12)

The uncertainties affecting the cost function and the inequality constraints
are dealt with as described in Chapter 2. The cost includes the expected cost
of the imbalances. The inequalities interpret the original requirement (3.7)
as E [

∑
K B(k)] ≥ (1−ε) ·K, requesting the expected number of time steps

over K without imbalances to be at least (1− ε) ·K.
Problem (3.11) implements a two-stage structure where the only actual

decision is the first-stage one, i.e. the DS. In fact, for a given DS, the equality
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constraints are such that the realization of all the random decision variables
is uniquely determined depending on the realization of {L}K and E0.

Solving (3.11) requires two preliminary steps, as described in Chapter 2:
forecasting of the random parameters, and rendering (3.11) computation-
ally tractable. Non-parametric forecasts are promising in predicting {L}K
with separate forecasts for each time step in K. In other words, they can
predict L(k) at each k separately, without any information on the corre-
lation among these random variables: forecasting the distribution FL(k)(l)

for each k ∈ K is possible, but forecasting the multivariate distribution
FL(kb),...,L(ke)(l(k

b), ..., l(ke)) is difficult. Non-sampling based approaches
to computation tractability of (3.11) would require an explicit description of
this correlation, because the constraints in (3.11) involve functions having
correlated random variables as arguments. On the other hand, combining
non-parametric forecasting methods with sampling in a suitable manner al-
lows to generate scenarios for {L}K that capture the correlation between
L(k) at subsequent time instants [Pinson et al., 2009; González Ordiano
et al., 2018b]. As already mentioned in Chapter 2, this is the reason why
a combination of scenario forecasting and sampling-based method is com-
monly used in dealing with (3.11). In contrast to this popular approach, we
propose in the following a method to overcome the incompatibility of non-
parametric forecasts and non-sampling based method in tackling (3.11).

3.3.1 Model Modification

Next, we elaborate on (3.11) to simplify computational tractability. In par-
ticular, we aim to remove the dependencies between correlated random vari-
ables in the dynamics (3.11b) and in the mapping h (3.11d). In other words,
we seek for an approximated yet accurate version of (3.11) that does not in-
clude more than one random parameter and more than one random variable
per constraint. The proposed modification of (3.11) can be subdivided in
seven subsequent steps, addressed one by one in the following.
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3 Stochastic Scheduling based on Energy Balance

Step 1: Introducing Chance Constraints

First, we elaborate on constraint (3.11e). For the sake of simplicity, consider
the extreme case γ ' 0, i.e. each small deviation from the DS is considered
an imbalance. Under this condition, b(k) is equal to 1 only if ∆g(k) = 0.
We address (3.11e) with a separate constraint per each time-step. Given the
properties of expected values,6 satisfaction of (3.11e) is achieved if

P (B(k) = 1) ≥ (1− ε) ∀k ∈ K.

Summing up, from γ ' 0 it follows that (3.11e) is satisfied when

P (∆G(k) = 0) ≥ (1− ε) ∀k ∈ K. (3.13)

Note that (3.13) allows to tackle (3.11e) with separate constraints per each
time step. Recall that the realization of ∆G(k) depends on the realization of
g̃(k), l(k), and e(k) via the piece-wise affine function h(g̃(k), l(k), e(k)),
cf. (3.9). In particular, h(g̃(k), l(k), e(k)) gives a ∆g(k) = 0 whenever
g̃(k), l(k), and e(k) are such that

g̃(k)− l(k) ∈ P(k), (3.14a)

e(k) + δ · ((g̃(k)− l(k))− µ |(g̃(k)− l(k))|) ∈ E(k + 1). (3.14b)

Thus, constraint (3.11e) with γ ' 0 is equivalent to chance constraint

P (P(k) ∩ E(k + 1)) ≥ (1− ε) ∀k ∈ K. (3.15)

6 It holds that E
[∑

K B(k)
]
=
∑

K E [B(k)] which can be derived from the linearity of sum.
A demonstration of this property using the definition of marginal density can be found in
[Ross, 2014, Chapter 4]; however, a more rigorous demontration requires the application of
the Tonelli-Fubini’s Theorem, which can be found in [Hoffmann-Jørgensen, 1994, Chapter
3].
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with events P(k) and E(k + 1) defined as

P(k) := g̃(k)− l(k) ∈ P(k) (3.16a)

E(k + 1) := e(k) + δ · ((g̃(k)− l(k))− µ |(g̃(k)− l(k))|) ∈ E(k + 1).

(3.16b)

Step 2: Neglecting of the Cost of Imbalances

The next step in the elaboration of (3.11) involves an approximation: remov-
ing the expected cost of imbalances from the cost function of (3.11). This
approximation does not take the tracking requirement out of the problem,
because the requirement is still considered in the form of constraint (3.15)
(equivalent to (3.13)). However, (3.15) accounts only for the number of im-
balances and not for their intensity. Therefore, by neglecting the expected
cost of imbalances, the possibility to penalize the intensity of the imbalances
is lost.

Step 3: Assuming Perfect Tracking of the Dispatch Schedule

Next, we proceed with manipulating the equality constraints (3.11b) and
(3.11d). Once more, we introduce an approximation: we consider ∆g(k) to
be constantly equal to zero. This approximation is aligned with a desirable
operation of the dispatchable feeder, as a ∆g(k) = 0 is certainly preferred.
However, it also leads to a different physical interpretation of the entire set
of constraint: under the assumption of ∆g(k) = 0, chance constraint (3.15)
is constraining the probability of having a deviation from the DS at k after
that there have been no deviations over the time period {k0, ..., k}. This is
a conservative approximation: the demanded tracking becomes higher than
what originally required in (3.11e). Furthermore, it has a fundamental im-
plication in the optimization problem: the higher the k, the more difficult
it is to satisfy (3.15). To avoid over conservative solutions, a (1 − ε) de-
creasing with increasing k can be used in (3.13). However, it is not trivial

47



3 Stochastic Scheduling based on Energy Balance

to determine a sequence of decreasing (1− ε) guaranteeing that the original
constraint (3.11e) is satisfied. Thus, we maintain the same (1 − ε) for all
k ∈ K and further discuss this point later in Section 3.3.2.

If ∆g(k) = 0, then p(k) is uniquely determined by the power balance

p(k) = g̃(k)− l(k). (3.17)

Thus, we replace constraint (3.11d) with

P(k) = g̃(k)− L(k). (3.18)

Step 4: Separating Expected Values and Deviations

A further step in the elaboration of (3.11b)-(3.11d) is to introduce additional
parameters and decision variables to describe L(k), P(k) and E(k) in terms
of their expected value and deviations from expectancy. The first ones are
point (or “deterministic”) parameters/decision variables, while the second
ones remain random processes:

L(k) = l̂(k) + ∆L(k), (3.19a)

P(k) = p̂(k) + ∆P(k), (3.19b)

E(k) = ê(k) + ∆E(k). (3.19c)

Here, notation x̂ indicates the expected value of X. In this way, (3.11b) and
(3.17) become

g̃(k) = p̂(k) + l̂(k), (3.20a)

0 = ∆P(k) + ∆L(k), (3.20b)

ê(k + 1) = ê(k) + δ · (p̂(k)− µ |p̂(k)|) , (3.20c)

∆E(k + 1) = ∆E(k) + δ · (∆P(k)− µ |∆P(k)|) . (3.20d)
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Note that assuming perfect tracking of the DS (∆g(k) = 0) implies that
the uncertainty affecting the forecasts is completely compensated by the
storage; in fact, from (3.20b) it follows

∆P(k) = −∆L(k). (3.21)

Furthermore, substituting constraint (3.11d) with (3.20a) and (3.21) re-
moves from stochastic program (3.11) one of the two constraints requiring
the knowledge of the correlation among random variables.

Step 5: Neglecting the Stochastic Losses

In the next step, we introduce another approximation: negligible stochastic
losses, i.e. µ |∆P(k)| ' 0. This assumption is motivated by the fact the
integral of their realizations (which can also be negative whenever the ex-
pected losses are higher than the realized ones) is often small in comparison
to the stored energy. However, the severity of this approximation should be
validated a posteriori, eventually introducing an appropriate counterbalanc-
ing measure. We undertake this analysis later in Chapter 5. In the case of
µ |∆P(k)| ' 0, (3.20d) becomes

∆E(k + 1) = ∆E(k) + δ ·∆P(k).

Considering (3.21), we obtain

∆E(k + 1) = ∆E(k)− δ ·∆L(k).

This dynamics implies that the state ∆E(k+ 1) is given by its initial condi-
tion ∆E(k0) and the sum of δ ·∆L(k) over the time interval from k0 to k,
i.e.

∆E(k + 1) = ∆E(k0)−
k∑

i=k0

δ ·∆L(i).
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Note that e(k0) is known with certainty at k0 because it can be measured.
Therefore, ∆E(k0) = 0, and

∆E(k + 1) = −
k∑

i=k0

δ ·∆L(i). (3.22)

Summarizing, we describe the deviation from the expected energy state at
k + 1 as the sum of all the deviation from the expected inflexible power
output, starting from the moment in which the DS is computed, k0.

Step 6: Introducing the Energy Forecasts

The approximated stochastic dynamics (3.22) motivates the introduction
of a new concept: energy as a stochastic process. Consider the sequence
{el}K0 , with K0 = {k0 + 1, ..., ke} and

el(k + 1) =

k∑
i=k0

δ · l(i), el(k
0) = 0.

20/09 21/09
-400

-200

0

200

400

600

(a) Inflexible power sequence.
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(b) Inflexible energy sequence.

Figure 3.3: Example of inflexible power and energy sequences.

Figure 3.3b depicts an example of the sequence {el}K0 for an industrial
case, aggregating inflexible loads and generation. Figure 3.3a shows the
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(a) Power forecast.
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(b) Energy forecast.

Figure 3.4: Example of probabilistic forecasts for l and el. Forecasts with different
horizons computed at 12:00 of 19 Sep 2018.

sequence of l(k) generating the {el}K0 in Figure 3.3b. From a physical per-
spective, el(k) can be interpreted as a the total energy exchanged with the
inflexible devices up to time step k. Upon scheduling, el(k) is a stochas-
tic process, El(k). The variability of el(k) can be observed in Figure 3.4,
which reports probabilistic forecasts for the time series of l(k) and el(k) de-
picted in Figure 3.3. Similarly to the case of the other stochastic processes,
see (3.19), we divide El(k) into a deterministic and a stochastic part, i.e.
El(k) = êl(k) + ∆El(k). Therefore,

∆El(k + 1) =

k∑
i=k0

δ ·∆L(i). (3.23)

Finally, from (3.22) and (3.23) it follows

∆E(k + 1) = −∆El(k + 1). (3.24)

Once more, this equation is a natural consequence of the assumption of per-
fect tracking of the DS. As the power output of the storage compensates
for the uncertainty affecting the inflexible power output, the uncertainty on
the energy state also depends on the integrated uncertainty of the inflexible
power output. Using (3.24) in place of (3.20d) in the stochastic scheduling
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program allows to remove also the second of the equality constraints requir-
ing the knowledge of correlation among random variables. In fact, El(k)

is a stochastic process for which a forecast can be computed. This forecast
includes (indirectly) the correlation among L(k) at different time instants.
The approximations presented in the previous steps and the introduction of
a stochastic process for energy allows to formulate (3.16b) in its equivalent
form

E(k + 1) :=ê(k + 1) + ∆E(k + 1) ∈ E(k + 1)

=ê(k + 1)−∆El(k + 1) ∈ E(k + 1),

which does not contain anymore the sum of correlated random variables (i.e.
E(k + 1)− δL(k)− δµ |L(k)|).

Step 7: Separating Chance Constraints for Power and Energy

Chance constraint (3.15) requires events P(k) and E(k) to occur contem-
porary. However, enforcing this condition necessitates the knowledge of
the correlation between L(k) and ∆El(k + 1), because L(k) plays a role in
event P(k) and ∆El(k + 1) plays a role in event E(k). Aiming to remove
any expression involving correlated random variables from (3.11), we first
address separate chance constraints for power and energy,

P (P(k)) ≥ (1− εP), (3.25a)

P (E(k + 1)) ≥ (1− εE), (3.25b)

instead of the original constraint (3.15).
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Then, we require the DS to be robust against worst-case realization of
the uncontrolled power output P(k),7 i.e. (1 − εP) ' 1, which implies
P (P(k)) ' 1 and P (P(k) ∪ E(k + 1)) ' 1. Thus

P (P(k) ∩ E(k + 1)) = P (P(k)) + P (E(k + 1))− P (P(k) ∪ E(k + 1))

' P (E(k + 1)) ,

meaning that (3.15) is respected if (3.25) is satisfied with (1− εP) ' 1 and
(1− εE) ≥ (1− ε).

Correlation-free Stochastic Scheduling

Following the previously described steps, we reformulate (3.11) as

min
{x}K

∑
k∈K

cDS(g̃(k), k) (3.26)

s.t. ∀k ∈ K (3.27)

ê(k + 1) = ê(k) + δ · (p̂(k)− µ |p̂(k)|) ,

ê(kb) = ê0,

g̃(k) = p̂(k) + l̂(k),

P
(
g̃(k)− l̂(k)−∆L(k) ∈ P(k)

)
≥ (1− εP) ' 1,

P (ê(k + 1)−∆El(k + 1) ∈ E(k + 1)) ≥ (1− ε).

For the sake of clarity, we summarize in Table 3.1 the model approxima-
tions on which (3.26) is based.

3.3.2 Reformulation of Chance Constraints

The constraints defined by (3.25) entail linear combinations of decision vari-
ables and parameters. Thus, (3.25) satisfies the requirements for the appli-
7 Throughout all simulations reported in Chapter 5, this worst-case choice for (1 − εP) does

not lead to infeasibility of the scheduling problem.
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cation of the approaches to tractability of chance constraints presented in
Section 2.3.2.

We address computational tractability of (3.25a) using a quantile-based
approach, as described in Section 2.3.2. Thus, (3.25a) becomes

g̃(k)− p(k) ≤ l(1−εP)(k), (3.28)

l(1−εP)(k) ≤ g̃(k)− p(k), (3.29)

with

l(1−εP)(k) = qL(k)(0.5− 0.5(1− εP)),

l(1−εP)(k) = qL(k)(0.5 + 0.5(1− εP)).

The decision of using a quantile-based approach is motivated by the fact
that a more advanced method would not bring any advantage: having

Table 3.1: List of approximations used in (3.26).

Initial

constraint
Approximation Description Effect

(3.11a)

Step 2
E
[∑

k∈K c
i(∆G(k))

]
= 0

neglect the expected

cost of imbalances

impossibility

of penalizing

the intensity

of imbalances

(3.11d)

Step 3
∆g(k) = 0

perfect tracking of

the dispatch schedule

constraint (3.11e)

means no imbalances

at k after not having

had imbalances

over
{
kb, ..., k

}
(3.11b)

Step 5
µ |∆P(k)| = 0

neglect

stochastic losses

underestimation

of losses
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(1− εP) ' 1 requires P(k) to verify for approximately the entire support of
L(k).

The case of the energy constraint (3.25b) is different. Tackling tractability
of this constraint via a quantile-based approach is certainly possible. How-
ever, as already described in Section 2.3.2, this method has some drawbacks.
First, considering different—even if larger—intervals with the same proba-
bility of containing the realizations of ∆El(k + 1) might lead to a DS that
is worst than what it would have been possible. Second, the scheduling
problem might be infeasible for an arbitrarily large value of (1 − ε). This
second issue is particularly relevant in the case of long-term scheduling. As
already mentioned, satisfying (3.25b) becomes harder over time: the sup-
port of ∆El(k + 1) grows with k (see Figure 3.4b) and can become large in
comparison to the available capacity. For these reasons, we propose to refor-
mulate (3.25b) with a direct use of the CDF of ∆El(k+1), F∆El(k+1)(∆el),
as in (2.13). Introducing, for the sake of compact notation, the set

G(α) := {I ⊂ R |FZ(max(I))− FZ(min(I)) ≥ α} , (3.30)

we reformulate (3.25b) as

[ê(k)− e(k), ê(k)− e(k)] ∈ G((1− ε)) (3.31)

The reformulation of the energy constraint (3.31) contains (1 − ε) as an
explicit parameter. Thus, it enables to overcome the infeasibility problem
appearing towards the end of the DS by means of constraint softening [Ker-
rigan and Maciejowski, 2000]. Specifically, (3.31) can be replaced by

[ê(k)− e(k), ê(k)− e(k)] ∈ G((1− ε)− ε(k)), (3.32a)

ε(k) ≥ 0, (3.32b)
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adding the penalty term α · ε(k) to the cost function of the scheduling prob-
lem with a sufficiently large α [Kerrigan and Maciejowski, 2000]. This tech-
nique maximizes the probability of satisfying the energy constraint when it
is not possible to guarantee the desired security level, making this approach
particularly interesting for robust optimization ((1− ε) ' 1). Furthermore,
it can partially counterbalance the conservativeness of the DS induced by
the approximation introduced in Step 3 of Section 3.3.1.

A representation of constraint (3.32), for the case of an industrial campus
with a large storage (capacity of 1.5 MWh) and high uncertainty surround-
ing the forecasts, is depicted in Figure 3.5. There, the dashed lines represent
the storage limits and the colored areas illustrate values that the realization
e(k) can take with a given probability. Graphically, constraint (3.32) means
that the probability associated with the energy states enclosed within the
storage limits should be at least (1 − ε), or, when this is not feasible, the
highest possible. For the results depicted in Figure 3.5, (1 − ε) is set to
70%. However, given the high level of uncertainty, a (1 − ε) = 70% is
feasible only for the first hours of the day. Then, the area covered by the
possible energy states becomes so wide that a (1− ε) = 70% is not feasible
and constraint softening is required. Specifically, the probability of having
a feasible realization of E(k) (i.e. a realization comprised within the min-
imum and maximum storage capacity) is reduced below 40% towards the
end of the schedule.

3.3.3 Implementation Aspects

Besides computational tractability, Problem (3.26) raises a few implemen-
tation issues on which we comment next.

Distinguish Among Power Directions

Different variables can be employed to distinguish opposite power flow di-
rections. These additional variables are of interest to model different prices
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Figure 3.5: Representation of chance constraint on energy state.

for buying/selling power to the grid (differentiating between the directions
of g̃(k)), and to avoid the non-differentiability introduced by the absolute
value in dynamics (3.20c) (differentiating between the directions of p̂(k)).
Distinguishing between the directions of a power flow implies the intro-
duction of two more variables and four more constraints. In general, con-
sider power flow x(k) as composed of a non-negative component x+(k)

and a non-positive component x−(k). Then, the quantities x(k), x+(k) and
x−(k) are subject to the following constraints

x+(k) + x−(k) = x(k), (3.33a)

x+(k) ≥ 0, (3.33b)

−x−(k) ≥ 0, (3.33c)

x+(k) · x−(k) = 0. (3.33d)

that we summarize with the shorthand notation

[
x−(k) x+(k)

]
∈ Fd(x(k)),
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with
Fd(x(k)) =

{[
x−(k) x+(k)

]
∈ R | satisfy (3.33)

}
.

Consider the case of power flow g̃(k) and introduce variable g̃+(k) to de-
note non-negative values of g̃(k) and variable g̃−(k) to denote non-positive
values of g̃(k), with [g̃−(k) g̃+(k)] ∈ Fd(g̃(k)). A similar discrimina-
tion can be undertaken for p̂(k), with variables p̂+(k) and p̂−(k) subject to
[p̂−(k) p̂+(k)] ∈ Fd(p̂(k)).

Constraint (3.33d) is structurally similar to complementary conditions and
it might cause problems because of its non-differentiability. Several convex
relaxations for such constraints have been proposed in the literature, see
[Perez et al., 2013; Sossan et al., 2016; Braun et al., 2016]. These relax-
ations rely on the observation that dropping complementary conditions does
often not affect the optimal solution. In other words, the convex set

F ′d(x(k)) =
{[
x−(k) x+(k)

]
∈ R | satisfy (3.33a)− (3.33c)

}
,

is used in place of Fd.
Let us discuss a practical example of this latter point. Consider a cost

function cDS with distinct directions of g̃(k), i.e.

cDS+/-(g̃+(k), g̃−(k), k) = cq+(k)
(
g̃+(k)

)2
+ cq-(k)

(
g̃−(k)

)2
+ cl+(k)g̃+(k) + cl-(k)g̃−(k),

(3.34)

with cost coefficients greater or equal to zero. Additionally, apply a similar
distinction to p̂(k) and remove the absolute value from the dynamic equation
(3.20c):

ê(k + 1) = ê(k) + δ ·
(
p̂(k)− µp̂+(k) + µp̂−(k)

)
. (3.35)

In this case, (3.33d) in Fd(g̃(k)) can be relaxed completely without affect-
ing the solution because its violation would increase the cost. The same does
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not apply to Fd(p̂(k)). In fact, given (3.35), relaxing (3.33d) in Fd(p̂(k))

allows an unrealistic increase of the storage losses. This unrealistic en-
ergy dissipation can increase p̂(k)—and, consequently, g̃(k)—without vi-
olating the capacity constraint of the storage. Given the quadratic penaliza-
tion of g̃(k) in cost function (3.34), there are values under which the cost
increases with decreasing g̃(k). Thus, increasing g̃(k) by means of unre-
alistic conversion losses can reduce (3.34), and F ′d(p̂(k)) cannot replace
Fd(p̂(k)) because (3.33d) is not fulfilled indirectly anyway. Nevertheless,
the use of a smooth constraint relaxation is numerically advisable because
the boundaries of the feasible set generated by (3.33d) are not differentiable
at x+(k) = x−(k) = 0. To this end, we employ the set

F ′′d (x(k)) = {
[
x−(k) x+(k)

]
∈ R | satisfy (3.33a)− (3.33c),

x+(k) · x−(k) ≤ β, },

with 0 < β � 1, as an alternative relaxation of Fd(x(k)) that can be used
for the case of p̂(k). Summarizing, different relaxations can be employed
to tackle non-differentiability of constraint set Fd(x(k)), depending on the
properties of the problem; in this thesis we employ F ′d(g̃(k)) as a substitute
ofFd(g̃(k)), andF ′′d (p̂(k)) as a substitute ofFd(p̂(k)). Otherwise, one may
attempt reformulation as a mixed integer problem, introducing, for example,
a binary variable to model the switch of power flows, see for example [Mur-
ray et al., 2018]. This choice leads to mixed-integer non-linear programs,
which are not straightforward to solve [Trespalacios and Grossmann, 2014].

Uncertainty of Initial Condition

The expected value of the energy state at kb, ê0, is a parameter of the
scheduling problem that requires to be estimated at k0. A computation of ê0

coherent with the model presented in the previous section would make use
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of dynamics (3.20c), a measurement of ê(k0), and the expected sequence of
p(k) over O = {k0, ..., kb − 1},8 i.e.

p̂(k) = g̃(k)− l̂(k) ∀k ∈ O. (3.36)

However, this might lead to problems in practice. In fact, {g̃}O is deter-
mined at the previous scheduling iteration to guarantee feasibility of {ê}O
according to a profile of

{
l̂
}
O

forecasted on the day before. Thus, solving

(3.36) and (3.20c) with the latest forecasts for
{
l̂
}
O

(which is coherent with
the model) might lead to an unfeasible value of e(k). The consequence is
that the computed DS can present power peaks at kb, necessary to restore
the feasibility of the energy state. To avoid this issue, ê0 should be com-
puted using (3.36) with a power profile {p̂}O in accordance to the complete

control law

[p̂(k) ∆g(k)] = h
(
g̃(k), l̂(k), p̂(k)

)
∀k ∈ O. (3.37)

Even if (3.37) is not entirely coherent with the utilized model (because it
allows imbalances), it ensures feasibility of the estimated ê0.

However, the DS can still exhibit unnecessary peaks of power at the begin-
ning of the horizon, even with a feasible ê0. This is caused by the fact that
not only e(kb +1) has to be feasible, but also an interval of values around it.
The dimension of this interval depends on the uncertainty of ∆El(k

b + 1)

and on the security level (1 − ε). To resolve this issue, we relax the en-
ergy constraint (3.32) at the beginning of the scheduling horizon utilizing a
slack variable as standard in non-linear programming [Nocedal and Wright,
2006]. In other words, we add variable ρ(k) ≥ 0 to constraint (3.32), and
penalize it linearly in the cost function with a time-dependent coefficient
γ(k). The relaxation should apply only at the beginning of the DS; thus,

8 Recall that the uncertainty affecting the EC-DER is calculated by integrating the uncertainty
on the forecasts starting from k0.
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coefficient γ(k) should increase with k. In particular, it should be equal to
+∞ for all the portion of the scheduling horizon for which the constraint
relaxation is not needed and therefore undesirable.

Length of the Optimization Horizon

The requirement of operating the system continuously, i.e. of computing
subsequent dispatch schedules, should enter the optimization problem to
avoid the complete discharging of the EC-DER at the end of the DS. To this
end, we consider an extended horizon Ks as discussed in Chapter 2. The
extension of the horizon should be such that increasing the horizon further
would not influence the decision on the DS. Given the cyclic behavior of
load and generation, we observed that an extension of 6 to 10 hours should
suffice for the analyzed case. Alternatively, this could be achieved by adding
a terminal penalty that rewards a minimum energy content towards the end
of the horizon, as in [Lampropoulos et al., 2015]. However, designing this
penalty term is not easy.
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3 Stochastic Scheduling based on Energy Balance

3.3.4 Computationally Tractable Formulation

Finally, we summarize all the concepts discussed in this Section in the fol-
lowing optimization problem

min
{x}Ks

∑
k∈Ks

cDS+/-(g̃+(k),g̃−(k), k) + α · ε(k) + γ(k) · ρ(k)

s.t. ∀k ∈ Ks (3.38)

ê(k + 1) = ê(k) + δ ·
(
p̂(k)− µp̂+(k) + µp̂−(k)

)
,

ê(kb) = ê0,

g̃(k) = p̂(k) + l̂(k),[
g̃+(k) g̃−(k)

]
∈ F ′d(g̃(k)),[

p̂+(k) p̂−(k)
]
∈ F ′′d (p̂(k)),

g̃(k)− p(k) ≤ l(1−εP)(k),

l(1−εP)(k) ≤ g̃(k)− p(k),

[ê(k)− e(k), ê(k)− e(k)] ∈ G((1− ε)− ε(k)− ρ(k)),

ε(k) ≥ 0,

ρ(k) ≥ 0,

with decision variables at k collected in vector x(k) ∈ R9,

x(k) :=
[
g̃(k) g̃+(k) g̃−(k) ε(k) ρ(k) ê(k + 1) p̂(k) p̂+(k) p̂−(k)

]>
.

The parameters of the problem, besides the one involved by the cost func-
tion, are ê0,

{
l̂(k)

}
Ks
,
{
l(1−εP)(k)

}
Ks ,
{
l(1−εP)(k)

}
Ks

, the bounds of the
intervals P(k) and E(k), and the function F∆El(k)(·) for each k ∈ Ks. Ob-
serve that despite the nine decision variables per time step, Problem (3.38)
has (practically) only three degrees of freedom per time step (the schedule
g̃(k), the constraint softening coefficient ε(k), and the constraint relaxation
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3.4 Online Rescheduling

coefficient ρ(k)).9 The non-linear program (3.38) fulfills the desired re-
quirements, i.e. it can be solved with available solvers, and its parameters
can be obtained via non-parametric forecasts. Recall that a summary of the
approximations on which (3.38) is based is provided in Table 3.1.

3.4 Online Rescheduling

The security level (1− ε) is generally smaller than one; therefore some im-
balances may be unavoidable. These imbalances are more likely to occur
towards the end of the horizon, as a consequence of the already discussed
approximation ∆g(k) = 0. Excessive or extended imbalances might nega-
tively affect the stability of the overall system, especially in case of a large
scale application of the proposed method. Hence, we add an additional on-
line optimization layer. This control layer makes use of the most recent
information about the system—both in terms of power forecast and of the
energy state of the EC-DER—to predict eventual upcoming energy/capacity
shortage and to re-compute the power output reference accordingly. In par-
ticular, the aim of this level is to avoid sudden peaks of power deviation from
the DS and to redistribute the imbalances along the entire scheduling hori-
zon. The re-scheduling is obtained via MPC [Rawlings et al., 2017]. For
the sake on notation simplicity, we adopt the same discrete time notation
used for the DS.10 In the following, we refer to an optimization performed
at time k over horizonM(k) = {k, k + 1, ..., k +M}. The outcome is the
sequence {gref}M(k), of which only the first value, gref(k), is sent as refer-
ence for the lower controller, see Figure 3.2.

9 There are six equality constraints, because the constraint sets F ′
d(g̃(k)) and F ′′

d (p̂(k)) are
implicitly including two equality constraints each.

10 A different discretization with higher resolution is clearly possible, see the case study in
Section 5.3.
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3 Stochastic Scheduling based on Energy Balance

Similar to the scheduling case, also the online optimization is performed
via automatic decision making entailing numerical optimization. To this
end, we formulate the optimization problem

min
{x}M(k)

∑
i∈M(k)

(g̃(i)− gref(i))
2

s.t. ∀i ∈M(k) (3.39)

ê(i+ 1) = ê(i) + δ ·
(
p̂(i)− µp̂+(i) + µp̂−(i)

)
,

ê(k) = ek,

gref(i) = p̂(i) + l̂(i),[
p̂+(i) p̂−(i)

]
∈ F ′′d (p̂(k)),

p̂(i) ∈ P(i),

ê(i+ 1) ∈ E(i+ 1).

where the decision variables are

x(i) :=
[
gref(i) p̂(i) p̂+(i) p̂−(i) ê(i+ 1)

]> ∈ R5.

Observe that out of five decision variables per time step, there is practically
only one degree of freedom per time step, cf. Footnote 9. Differently from
the scheduling case, we do not consider here any uncertainty. The initial
condition ek is known, as (3.39) is solved online right before the applica-
tion of its output. Furthermore, we employ point forecasts for the unknown
sequence

{
l̂
}
M(k)

. This choice is motivated by the small uncertainty af-

fecting short-term forecasts. Additionally, recall that the use of probabilistic
forecasts has the effect of allocating energy reserves to deal with the real-
ization of the uncertainties. As these reserves have already been allocated
at the highest level, it is not necessary to add further reserves during the
on-line phase. Given this modeling choice, the parameters of (3.39) are: ek,{
l̂(i)
}
M(k)

, and the intervals P(k) and E(k). Last, we considerM ≤ O; in
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3.5 Summary

this way, the DS for the following optimization interval is always computed
before its first value is utilized in Problem (3.39). Note that, if required by
the utility, Problem (3.39) could be extended with constraints forcing ∆g(i)

below a given threshold. This threshold can be either fixed or dependent on
the conditions of the entire system. For this latter case, a mechanism sim-
ilar to the Balance Area ACE Limit (BAAL) can be implemented [NERC,
2018].

3.5 Summary

Scheduling and operation of a market-integrated aggregation of flexible and
inflexible generators, loads, and storage is generally structured in hierarchi-
cal decision and control steps. Among them, the computation of a day-ahead
DS is particularly challenging because of the uncertainty affecting the fore-
casts of the future inflexible outputs. While methods such as non-parametric
probabilistic forecasting can quantify this uncertainty, their integration in a
computationally tractable optimization for scheduling is non-trivial. Tradi-
tionally, sampling-based methods are applied. In contrast to this approach,
we propose a novel optimization-based scheduling algorithm that can make
use of non-parametric probabilistic forecasting without resorting to samples.
The most difficult task in designing such an algorithm is represented by the
dynamic equation describing the storage, which—in a stochastic setting—
contains a sum of correlated random variables (the power output at subse-
quent time steps is a function of the uncertain power outputs, which are
time-correlated) and is non-linear (an energy loss follows from an exchange
of power with the storage, regardless from the direction). Key concept of
the proposed method is to accept some approximations on the system model
to achieve a more complete use of the information obtained via forecasting.
In particular, we overcome the previously described obstacles in the stor-
age dynamics by substituting it with an approximated energy balance and
by assuming a conservative setting where the storage compensates entirely
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3 Stochastic Scheduling based on Energy Balance

for the forecast uncertainty. The resulting approximated model entails only
chance constraints with at most one uncertain parameter for which a non-
parametric probabilistic forecast can be computed. Such constraints can be
easily rendered tractable as described in Chapter 2, without losing any of
the information obtained via forecasting nor recurring to any approximation
on the uncertainty. On the other hand, this approach does not hold with
multiple EC-DERs. In fact, with multiple EC-DERs, it is not enough to
impose that the storage compensates for the uncertainty, but it is necessary
also to decide in which proportion the storage devices contribute to this pro-
cess. Deciding upon this point via optimization requires the consideration of
constraints including multiple random decision variables, thus undermining
the idea of one random decision variable per constraint. The next chapter
deals with this problem by presenting a comprehensive analysis on how a
DS computed with respect to a single (aggregated) storage can be dispersed
in operation among multiple devices.
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4 Aggregated Scheduling of
EC-DERs

The control of a large force is the

same principle as the control of a few

men: it is merely a question of

dividing up their numbers.

Sun Tzu, The art of War

The previous chapter describes a stochastic scheduling algorithm that al-
lows the use of non-parametric probabilistic forecasts without sampling.
One of the major limitations of this technique is that it cannot handle multi-
ple uncertain energy states. Nevertheless, its application to a population of
EC-DERs is permitted if, upon scheduling, one considers the energy states
of the various resources lumped into a single one describing the entire clus-
ter. This procedure, often referred to as “aggregation”, is common in the
scientific literature, see [Xu et al., 2016]. However, to the best of the au-
thor’s knowledge, a thorough discussion of its mathematical properties is
still missing. In particular, it is unclear i) if or under which conditions the
consideration of separate constraints for each device leads to the same re-
sults of aggregated scheduling, and, if so, ii) how to disperse in operation
the aggregated DS among the various storage devices. In this chapter, we
fill this theoretical gap. The ideas presented in this section have appeared in
[Appino et al., 2019b, 2018c].
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Figure 4.1: Schematic representation of an aggregated energy system.

4.1 Models and Requirements

In this Chapter, we recall the case of N inflexible DERs and loads, and Nl
EC-DERs. We consider the case where all the inflexible DERs, loads and
EC-DERs have the same owner, or where they are at least all controlled in
view of the same scope: regulating the power exchange between the cluster
of devices and an external grid according to a pre-computed dispatch sched-
ule. Note that, as in the case of Chapter 3, we assume the point of view
of an aggregator trading electrical energy on the day-ahead energy market.
Similar to the system described in Chapter 3, all the devices are connected
to the same grid-connected bus, as schematically represented in Figure 4.1a.
There, variable g indicates the active power exchange between the system
and its corresponding upper-level grid. The connections are assumed to be
lossless and such that the system components are able to exchange power
mutually without any technical limit. This assumption is justified in many
cases, since, on average, about 80% of the capacity of distribution grids is
unused [Priebe et al., 2019]. Extending the notation introduced in Chap-
ter 3, we denote the active power output of each i-th inflexible DER/load
as li with i ∈ Nl = {1, . . . , Nl}, and the active power output of the j-th
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4.1 Models and Requirements

EC-DER with j ∈ N as pj with j ∈ N = {1, . . . , N}. Each EC-DER is
subject to a dynamics and to a power and an energy constraint

ej(k + 1) = ej(k) + δ · pj(k), (4.1)

and

pj(k) ∈ Pj(k), (4.2a)

ej(k + 1) ∈ Ej(k + 1), (4.2b)

with Pj(k) and Ej(k) being closed real intervals, i.e.

Pj(k) = [p
j
(k), pj(k)] ⊂ R, Ej(k + 1) = [ej(k + 1), ej(k + 1)] ⊂ R.

Note that (4.1) differs from (3.1) because it neglects potential conversion
losses. We discuss this point later in Section 4.6.

With respect to the requirements, we target dispatch-as-scheduled of the
power exchange g(k) by means of a coordinated control of the system com-
ponents as in Chapter 3. Also in this case we distinguish the DS g̃(k) from
the imbalances ∆g(k), see (3.4), with operating revenues (or costs) that are
directly associated to the DS through a known cost function, cDS(g̃(k), k) :

R×N→ R, see (3.5). However, in the following we assume perfect knowl-
edge of {li}K for all i ∈ Nl ,1 implying that we do not have to be concerned
with planning reserves to avoid imbalances. In other words, we consider
∆g(k) = 0 and focus on using the storage solely for energy arbitrage.

4.1.1 Hierarchical Control

Following the scheme described in Chapter 3, we consider a hierarchical
structure for the decision and control process (cf. Figure 3.2).

1 At the end of this chapter, we discuss dropping this assumption and thus extending the
scheduling algorithm presented in Chapter 3 to the case of multiple EC-DERs.
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4 Aggregated Scheduling of EC-DERs

In absence of random parameters, there is no need to introduce any ran-
dom decision variable nor multiple decision stages. All the relevant infor-
mation can be taken at once by solving the scheduling problem

min
{x}K

∑
k∈K

cDS(g̃(k),k) (4.3a)

s.t.

g̃(k) =1>p(k)− 1>l(k) ∀k ∈ K, (4.3b)

e(k + 1) = e(k) + δ · p(k) ∀k ∈ K, (4.3c)

e(kb) = e0, (4.3d)

p(k) ∈×
j∈N
Pj(k) ∀k ∈ K, (4.3e)

e(k + 1) ∈×
j∈N
Ej(k + 1) ∀k ∈ K. (4.3f)

Here, we use the vector notation

l(k) := [l1(k) . . . lNl
(k)]> ∈ RNl ,

p(k) := [p1(k) . . . pN (k)]> ∈ RN ,

e(k) := [e1(k) . . . eN (k)]> ∈ RN ,

x(k) := [g̃(k) p>(k) e>(k + 1)]> ∈ R(2N+1).

Furthermore, parameter e0 is the initial energy level, 1 is a column vector of
ones whose dimension follows from context, and notation×j∈N indicates
the cartesian product of all the sets indexed in N , i.e.

×
j∈N
Pj(k) = P1(k)× ...× PN (k) ⊂ RN , (4.4a)

×
j∈N
Ej(k) = E1(k)× ...× EN (k) ⊂ RN . (4.4b)
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The constraints are as follows: Equality (4.3b) is the power balance and
(4.3c)-(4.3f) model the EC-DERs, see (4.1) and (4.2). Note that the sets

×j∈N Pj(k) and×j∈N Ej(k) are hyperboxes of RN built upon the con-
straints of the single devices.

4.2 Scheduling with Aggregated Models

Upon solving (4.3)—and provided it is feasible—{p(k)}K and {e(k)}K
are obtained. However the DS itself, i.e. {g̃}K, is the only decision variable
entering the cost function directly, and the only information of interest for
the coordination with the upper-level grid. Thus, the question arises whether
it is possible to reduce the number of constraints and decision variables in
(4.3) by means of aggregation.

The idea guiding an aggregated model is to calculate one DS for aggre-
gated DERs instead of computing individual schedules for each DER, this
way immediately reducing the number of variables. An obvious advantage
of a reduced number of variables is to lower the computational burden of
large-scale problems. Furthermore, aggregation is especially convenient to
tackle uncertainty in multi-stage stochastic scheduling, as discussed later in
Section 4.7. Examples of aggregated models for population of devices in en-
ergy applications are [Subramanian et al., 2013] for energy storage systems,
[Wenzel et al., 2017; Zhang et al., 2016; Vandael et al., 2013] for plug-in
electric vehicles, [Mathieu et al., 2014; Hao et al., 2015] for thermostati-
cally controlled loads, and [Xu et al., 2016; Bernstein et al., 2015; Evans et

al., 2018] for heterogenous storage-like devices. Despite differences, all the
cited methods build upon the same aggregation concept, summarized in the
following.

To start with, the power outputs of DERs are grouped in inflexible and
energy-constrained ones, see Figure 4.1b. To this end, consider the function

s : RNy → R, y 7→ y = 1>y, (4.5)
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4 Aggregated Scheduling of EC-DERs

which sums—i.e. aggregates—the elements of a vector y ∈ RNy . Formally,
its inverse

s−1 : R→ RNy , s−1(y) = {y ∈ RNy | y = 1>y}, (4.6)

is the set-valued (pre-image) map. We refer to s−1(y) ⊂ RNy as the set of

dispersions of y to y.2 The aggregated power outputs and the aggregated
energy are

l(k) := s(l(k)), p(k) := s(p(k)), e(k) := s(e(k)). (4.7)

These aggregated variables allow re-writing (4.3) as follows:

min
{x}K,{p}K,{e}K+

∑
k∈K

cDS(g̃(k), k) (4.8a)

s. t.

g̃(k) = p(k)− l(k) ∀k ∈ K (4.8b)

e(kb) =e0, (4.8c)

e(k + 1) = e(k) + δ · p(k) ∀k ∈ K, (4.8d)

p(k) ∈×
j∈N
Pj(k) ∀k ∈ K, (4.8e)

e(k + 1) ∈×
j∈N
E(k + 1) ∀k ∈ K, (4.8f)

p(k) = s(p(k)) ∀k ∈ K, (4.8g)

e(k + 1) = s(e(k + 1)) ∀k ∈ K, (4.8h)

which is equivalent to (4.3) with the additional decision variables {p}K and
{e}K+ . Note that K+ = {1, ...,K + 1} ⊂ N.

2 This notion is chosen to the end of avoiding confusion with statistical distributions of random
variables, which are also discussed in this thesis.
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Aggregated scheduling builds upon (4.8), by dropping the constraints on
p(k) and e(k) and replacing them with constraints on the aggregated vari-
ables. This yields

min
{g̃}K,{p}K,{e}K+

∑
k∈K

cDS(g̃(k), k) (4.9a)

s. t.

g̃(k) = p(k)− l(k) ∀k ∈ K, (4.9b)

e(kb) =s(e0), (4.9c)

e(k + 1) = e(k) + δ · p(k) ∀k ∈ K, (4.9d)

p(k) ∈P(k) ∀k ∈ K, (4.9e)

e(k + 1) ∈E(k + 1) ∀k ∈ K. (4.9f)

The aggregated problem refrains from computing {p}K and {e}K+ along-
side with {g̃}K. However, computing of {g̃}K by using (4.9) as a substitute
of (4.3) may cause issues whenever the aggregated constraints setsP(k) and
E(k + 1) do not coincide with the propagation of the feasible sets of p(k)

and e(k) from (4.3).
Let us clarify this point with an abstraction. Conceptually, Problem (4.9)

equals

min
{y}K+

∑
k∈K+

` (h(y(k))) (4.10a)

s.t. y(k + 1) ∈×
j∈Ny

Yj(k + 1,y(k)) ⊂ RNy , (4.10b)

where the cost function `◦h : RNy → R is continuous in y and for all k ∈ K
the constraint set×j∈Ny

Yj(k + 1,y(k)) ⊂ RNy , which depends both on
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4 Aggregated Scheduling of EC-DERs

the time and on the state y(k), is non-empty and compact. Aggregation, as
in (4.9), consists of applying the linear mapping

h : RNy → R, y 7→ y = h(y),

to reduce the number of variables. Applying this to (4.10) yields

min
{y}K+

∑
k∈K+

` (y(k))) (4.11a)

s.t. y(k + 1) ∈ Y(k + 1, y(k)) ⊂ R. (4.11b)

Note that the cost functions of (4.10) and (4.11) are equivalent by construc-
tion. Let h(×j∈Ny

Yj) denote the point-wise application of h to×j∈Ny
Yj ,

i.e.

h

(
×
j∈Ny

Yj

)
=

{
y = h(y) |y ∈×

j∈Ny

Yj

}
.

The following lemma is easily obtained.

Lemma 1 (Optimality preserving aggregation). Let {y?}K+ ∈ RK denote

a solution of Problem (4.11), extended to include the initial condition y0. If

Y(k + 1, y(k)) ≡ h

(
×
j∈Ny

Yj(k + 1,y(k))

)
, (4.12)

for all k ∈ K, then there exists at least a {y?}K+ ∈ RNy·K solving Problem

(4.10) for which

{y?}K+ = h({y?}K+)

holds for arbitrary continuous choices of ` : R→ R. �
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The proof of this result is straightforward and thus omitted. Observe that
condition (4.12) is not easily enforced via direct calculation of

h(×
j∈Ny

Yj(k + 1,y(k))).

In fact, this computation would require the knowledge of the state y at each
time step, knowledge that is lost during aggregation by construction. Thus,
there is a need of alternative approaches characterizing the setY(k+1, y(k))

such that (4.12) is satisfied. The next section presents a popular choice to
achieve this computation for the sets P(k) and E(k + 1) in (4.9).

4.3 Bounds for the Aggregated Model

The construction of the sets P(k) and E(k+ 1) in (4.9) is not unique. How-
ever, a common practice (see for example [Xu et al., 2016]) is to consider
intervals of R given by the (point-wise) mapping of the hyperboxes P(k)

and E(k + 1),

P(k) = s(×
j∈N
Pj(k)), E(k + 1) = s(×

j∈N
Ej(k + 1)). (4.13)

Practically speaking, this choice leads to

P(k) = [p(k), p(k)], E(k + 1) = [e(k + 1), e(k + 1)], (4.14a)

with
p(k) =

∑
j∈N

p
j
(k), p(k) =

∑
j∈N

pj(k), (4.14b)

and

e(k + 1) =
∑
j∈N

ej(k + 1), e(k + 1) =
∑
j∈N

ej(k + 1). (4.14c)
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Figure 4.2: Ilustration of Example 1.

In the following, we assume aggregated constraints sets P(k) and E(k + 1)

obtained via (4.13). The underlying ratio derives from interval arithmetics
[Jaulin et al., 2001]. Indeed, it can be shown that

p(k) = s(p(k)) ∈ s(×
j∈N
Pj(k)),

when p(k) ∈×j∈N Pj(k). The same applies for the aggregated energy
e(k),

e(k + 1) = s(e(k + 1)) ∈ s(×
j∈N
Ej(k + 1)).

Thus, feasibility of p(k) and e(k+ 1) in (4.8e)-(4.8h) implies their feasibil-
ity with respect to (4.9e)-(4.9f). Moreover, it is easy to see that if e(k + 1)

and p(k) satisfy (4.8d), then p(k) and e(k + 1) satisfy (4.9d). To summa-
rize, considering (4.13), the aggregated dynamics (4.9d) and the constraints
(4.9e)-(4.9f) do not restrict the feasible set of (4.8). Rather, they are a relax-
ation of the propagation of the original constraint set in (4.3). Thus, there
can be cases in which the aggregated schedules of p(k) and e(k+ 1) cannot
be dispersed without violating individual constraints on p(k) and e(k + 1).
We illustrate this issue with a simple example.
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4.3 Bounds for the Aggregated Model

Example 1 (Non-dispersable aggregation). Consider two EC-DERs, i.e.
N = {1, 2}, and two subsequent time instants, k and k + 1. For the sake of
simplicity, let the EC-DERs have identical time-invariant power and energy
limits, i.e. P1(k) = P2(k) = [0.5p, 0.5p] ⊂ R, and E1(k) = E2(k) =

E1(k + 1) = E2(k + 1) = [0.5e, 0.5e] ⊂ R. Moreover, let p = −p 6= 0

with 2pδ ≤ e − e and, clearly, e > e.
Now, consider the case in which e1(k) = 0.5e and e2(k) = 0.5e, imply-

ing e(k) = 0.5e+0.5e. The constraints limiting e1(k+1) and e2(k+1) are
depicted in Figure 4.2a and Figure 4.2b respectively. The striped intervals
represent the feasible states according to the energy constraint; the cones
indicate the states admissibly reachable from e1(k) and e2(k). According
to (4.13), the aggregated constraints are

p(k) ∈
[
p, p
]
, e(k + 1) ∈ [e, e] , (4.15)

see Figure 4.2c.
For the sake of illustration, consider e(k + 1) = 0.5 (e + e) + δ · p; the

corresponding value of p(k) = p follows. This choice is feasible for the
aggregated model; it satisfies (4.15). In Figure 4.2c, this choice of e(k + 1)

is represented by a filled circle. However, the dispersion of e(k + 1) and
p(k) to individual devices leads to infeasibility on the individual side.

A feasible choice of p(k), such that p(k) = s−1(p) exists, it is:

p1(k) = 0.5p ∈ [0.5p, 0.5p], p2(k) = 0.5p ∈ [0.5p, 0.5p].

Yet this implies

e1(k + 1) = 0.5e + δ · 0.5p /∈ [0.5e, 0.5e],

e2(k + 1) = 0.5e + δ · 0.5p ∈ [0.5e, 0.5e],
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4 Aggregated Scheduling of EC-DERs

which violates the energy constraint of EC-DER j = 1. This can be seen
in Figure 4.2a and 4.2b, where empty circles indicates energy values which
sum up to e(k+1) and are reachable from e1(k), e2(k) but not feasible with
respect to e1(k + 1) ∈ [0.5e, 0.5e].

At the same time, a feasible choice of e(k + 1) such that e(k + 1) =

s−1(0.5 (e + e) + δ · p) is

e1(k + 1) = 0.5e ∈ [0.5e, 0.5e],

e2(k + 1) = 0.5e + δ · p ∈ [0.5e, 0.5e].

This implies p1(k) = 0.5(e−e)
δ = 0 ∈ [0.5p, 0.5p], and

p2(k) =
0.5e − (0.5 (e + e) + p)

δ
/∈ [0.5p, 0.5p],

which violates the power constraint of EC-DER j = 2. This is depicted in
Figure 4.2a and 4.2b by filled circles, which indicate energy values summing
up to e(k+1) that are feasible but not reachable for EC-DER j = 2. Hence,
the chosen values for e(k + 1) and p(k) are feasible for the aggregated
model, but cannot be dispersed to p(k) and e(k + 1). �

Example 1 points out that an aggregated model with power and energy
constraints computed as in (4.13) might lead to infeasibilities in practice.
The time-wise coupling between the variables pj(k) and ej(k)—and, con-
sequently, between constraints (4.2)—introduced by the discrete-time dy-
namics (4.1) is the main source of these infeasibilities. In other words, the
constrained reachability properties of the dynamics are ignored in (4.13).
Therefore, the solution of the “relaxed” aggregated problem (4.9) differs
from the one of the original problem (4.3) whenever those properties play
an active role in restricting the feasible space at the following time step.
In order to investigate this aspect, we first derive an energy constraint that

78



4.3 Bounds for the Aggregated Model

summarizes the power and the energy constraints (4.2)—given the initial
condition e(kb).

Given ej(k), the power constraint (4.2a) can be seen as an implicit con-
straint on ej(k + 1) because it limits the energy state that can be reached
at the following step k + 1. This aspect can be formalized considering the
1-step reachable set of (4.1), which is

ej(k)⊕ δ · Pj(k). (4.16)

Here⊕ denotes the Minkowski sum.3 Note a slight abuse of notation: for the
sake of compact notation, the set {ej(k)} is indicated with its sole element
ej(k). However, not all ej(k + 1) ∈ ej(k) ⊕ δ · Pj(k) are feasible with
respect to the energy constraint at k + 1, (4.2b). Combining (4.1) and (4.2)
leads to

ej(k + 1) ∈ Rj(k + 1, ej(k)), (4.17)

where

Rj(k + 1, ej(k)) := Ej(k + 1) ∩ (ej(k)⊕ δ · Pj(k)) . (4.18)

The setRj(k + 1, ej(k)) is the interval of feasible and reachable ej(k + 1)

given ej(k). To ease readability, we will omit the explicit dependency of the
interval Rj(k + 1, ej(k)) on ej(k) in the sequel. Evidently, one needs to
avoid cases in which the intersection in (4.18) is the empty set. To this end,
we consider the following assumption.

Assumption 1 (Consistency of constraints). For all j ∈ N EC-DERs and

all k ∈ K, let the sampling time δ and the intervals Pj(k), Ej(k), and

Ej(k + 1) be such that for all ej(k) ∈ Ej(k)

Ej(k + 1) ∩ (ej(k)⊕ δ · Pj(k)) 6= ∅ (4.19)

3 Recall that the Minkowski sum between two setsA and B is defined asA⊕B = {a+b | a ∈
A, b ∈ B}.
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holds. �

This condition can be regarded as controlled forward invariance of the
entire (time-varying) state constraint set Ej(k), k ∈ K. Practically speaking,
it can be satisfied by reducing the state constraints—i.e. if there are no
feasible ej(k+ 1) reachable from ej(k), then this ej(k) should be excluded
from Ej(k)—or by enlarging the set δ · Pj(k) by considering a different
time-discretization—and, consequently, a different time step δ.

Under Assumption 1, the bounds of

Rj(k + 1) =
[
erj(k + 1), erj(k + 1)

]
(4.20a)

are

erj(k + 1) = max
{
ej(k + 1), ej(k) + δ · p

j
(k)
}
, (4.20b)

erj(k + 1) = min
{
ej(k + 1), ej(k) + δ · pj(k)

}
; (4.20c)

which follows from standard tools of interval arithemetics [Jaulin et al.,
2001]. Going back to Example 1, a sketch of R1(k + 1) and R2(k + 1) is
shown in Figure 4.3a and Figure 4.3b. Therein, these intervals are depicted
by crossed intervals.

An energy constraint summarizing the power and the energy constraints
can be elaborated also for the aggregated states. This model requires a joint
power and energy constraint (per time step), i.e.

e(k + 1) ∈ R(k + 1, e(k)), (4.21)

with
R(k + 1, e(k)) := E(k + 1) ∩ (e(k)⊕ δ · P(k)) .
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Figure 4.3: Illustration of the feasible and reachable energy states in Example 1.

Henceforth, we simplify the notation by dropping in the following the ex-
plicit dependency of R(k + 1, e(k)) on e(k). Similar to (4.20), the bounds
of

R(k + 1) =
[
er(k + 1), er(k + 1)

]
(4.22a)

are

er(k + 1) = max
{
e(k + 1), e(k) + δ · p(k)

}
, (4.22b)

er(k + 1) = min {e(k + 1), e(k) + δ · p(k)} . (4.22c)

However, given e(k), the actual aggregation of the feasible and reachable
energy intervals of each EC-DERRj(k + 1) gives

R∗(k + 1) := s(×
j∈N
Rj(k + 1)). (4.23)

The propagation of set×j∈N Rj(k + 1) with s from (4.5) is again to be
understood as the point-wise image. Considering (4.20), this can be written
as

s(×
j∈N
Rj(k + 1)) =

∑
j∈N

erj(k + 1),
∑
j∈N

erj(k + 1)

 .
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Next, we investigate the relation between the bounds of s
(
×j∈N Rj(k + 1)

)
and R∗(k + 1). The application of (4.13) to (4.22) implies the following
inequalities

er(k + 1) ≤
∑
j∈N

erj(k + 1), (4.24a)

er(k + 1) ≥
∑
j∈N

erj(k + 1). (4.24b)

Consequently, we have that

R(k + 1) ⊇ R∗(k + 1). (4.25)

Specifically, there are values of e(k+1) which are feasible for (4.9b)-(4.9c)
but not for (4.8b)-(4.8c) every time that one of the inequalities (4.24) holds
strictly. Practically speaking, there are values of e(k + 1) that are feasible
for the aggregated model but that cannot be dispersed into a feasible e(k +

1). This is the case of Example 1, illustrated in Figure 4.3c. It can be
seen that the interval R∗(k + 1) is a “narrower” subset of R(k + 1). The
e(k + 1) chosen in Example 1 is feasible and reachable according to the
aggregated model, as it is contained withinR(k+1). However, this solution
is unfeasible for the complete constraint set, because it lays outside of the
intervalR∗(k + 1).

To summarize, the aggregated constraints from (4.13) might undesirably
enlarge the feasible space of p(k) and e(k). Recalling the abstract problem
presented at the end of Section 4.2, this is the case if

Y(k + 1, y(k)) ⊇ h

(
×
j∈Ny

Yj(k + 1,y(k))

)
, (4.26)
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which violates condition (4.12) of Lemma 1. Subsequently we present suf-
ficient conditions under which the aggregated constraints equal the propa-
gation of the original constraints.

4.4 Ensuring Schedule Feasibility

From Lemma 1, the aggregation preserves the optimality of the solution if
and only if

R(k + 1) ≡ R∗(k + 1). (4.27)

In the previous section we have showed that R(k + 1) obtained by appli-
cation of (4.13) does not guarantee (4.27). A natural consequence would
be to find a different way to compute R(k + 1) such that (4.27) holds. In
contrast, we propose to pursue a reversed approach. Instead of computing
a “narrower” R(k + 1) such that (4.27) is satisfied, we suppose the exis-
tence of an e(k)—whose elements sum up to the selected e(k)—for which
(4.27) holds for a R(k + 1) with aggregated bounds computed via (4.13).
Example 2 demonstrates this.

Example 2. Consider the setting of Example 1, but with e1(k) = e2(k) =

0.25(e+ e). Figure 4.4 depicts this case. Therein,R(k+ 1) andR∗(k + 1)

are equivalent and e(k + 1) = 0.5(e + e)—which is feasible and reach-
able for the aggregated model as discussed in Example 1—is feasible and
reachable with respect to the constraints of each EC-DER:

p1(k) = 0.5p ∈ [0.5p, 0.5p], p2(k) = 0.5p ∈ [0.5p, 0.5p],

e1(k + 1) = 0.25(e + e) + δ · 0.5p ∈ [0.5e, 0.5e],

e2(k + 1) = 0.25(e + e) + δ · 0.5p ∈ [0.5e, 0.5e]. �

Comparison of Examples 1 and 2 points out that certain feasible disper-
sions of e(k) are preferable over others. The energy states e1(k) and e2(k)

are a feasible dispersion of aggregated energy e(k) both in Example 1 and
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Figure 4.4: Illustration of Example 2.

in Example 2. However, the values for e1(k) and e2(k) chosen in Example 1
compromise the existence of a feasible dispersion of the desired (aggregated
feasible) e(k+ 1). The same e(k+ 1) has instead a feasible dispersion with
the values of e1(k) and e2(k) chosen in Example 2.

Let us rephrase this observation using the abstraction from Section 4.2.
Given a value of y(k), we define

h−1(y(k)) =

{
y(k) ∈×

j∈Ny

Yj(k,y(k − 1)) |h(y(k)) = y(k)

}

as the set of feasible pre-images of y(k) with respect to the mapping h.
If the set h−1(y(k)) is not a singleton, each of its elements maps to y(k).
However, some of those can restrict the feasible set at the next time step,

×j∈Ny
Yj(k+1,y(k)), more than others. Hence, given a set Y(k+1, y(k))

for which (4.26) holds, satisfaction of (4.12) depends on y(k) ∈ h−1(y(k)),
because the set h(×j∈Ny

Yj(k + 1,y(k))) varies with y(k).
Motivated by these considerations, we denote

Ẽ(k, e(k)) :=×
j∈N
Ej(k) ∩ s−1(e(k)),
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Figure 4.5: Graphical representation of a consistent dispersion of e(k).

as the set of feasible dispersions of e(k).

Definition 1 (Consistent dispersion of e(k)). Given e(k), the vector e(k) is

said to be a consistent dispersion of e(k) at time k+ 1, if e(k) ∈ E(k, e(k))

and

R(k + 1) ≡ R∗(k + 1),

withR(k + 1) as in (4.22) andR∗(k + 1) from (4.23). �

The meaning of consistent e(k) is illustrated in Figure 4.5. Starting from
the top-left corner, Figure 4.5 shows that an aggregated state e(k) can be
dispersed in different ways, namely all the points in Ẽ(k, e(k)). Among
them, a consistent dispersion of the aggregated state e(k) leads to a feasible
and reachable set×j∈N Rj(k+ 1) (on the right) whose propagation on the
aggregated space, R∗(k + 1), is equivalent to the aggregated feasible and
reachable set obtained via direct computation, i.e. from e(k) and relative
aggregated constraints as in (4.13). Considering the complete problem, the
DS {g̃}K can be computed via (4.9) as much as via (4.8) if e(k) is a con-
sistent dispersion of e(k) for all k ∈ K, because the conditions of Lemma 1
are satisfied at each time step.

Remark 1 (Dispersions and two-stage scheduling). Introducing the concept
of a consistent dispersion helps understanding why (4.9) is successfully ap-
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plied, cf. [Xu et al., 2016; Appino et al., 2018c]. Therein, hierarchical con-
trol is often used to solve (4.8) in a sequential manner. First, (4.9) is used
(with (4.13)) on an upper level to provide long-term aggregated schedules.
Second, a lower level feedback control (e.g. MPC) assigns the dispersion
of the aggregated energy state in a way that guarantees the feasibility of the
pre-computed DS over the subsequent time-steps. Essentially, this controller
consistently disperses the aggregated DS.

4.5 Existence and Computation of Consistent
Dispersions

The considerations above motivate investigation of the existence of a con-
sistent dispersion. To this end, we make the following assumption.

Assumption 2 (Forward Invariance and Reachability of Energy Constraints).
For all j ∈ N and all k ∈ K, let the sampling time δ and the intervalsPj(k),

Ej(k) and Ej(k+ 1) be such that there exists at least one ej(k) ∈ Ej(k) for

which

ej(k)⊕ δ · Pj(k) ⊆ Ej(k + 1), (4.28a)

(Ej(k)⊕ δ · Pj(k)) ⊇ Ej(k + 1), (4.28b)

holds. �

Condition (4.28a) implies that there exists a controlled invariant (time-
varying) subset of Ej(k), and furthermore that there exists a subset of Ej(k)

from which all reachable states are feasible. The second part (4.28b) instead
requires that the entire set Ej(k+1) is contained in the reachable set Ej(k)⊕
δ · Pj(k).
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Moreover, consider dl : N× RN → R given by

dl(k, e(k)) =
∑
j∈N
−
(
ej(k) + δ · p

j
(k)+

−max
{
ej(k) + δ · p

j
(k), ej(k + 1)

})
, (4.29a)

and du : N× RN → R given by

du(k, e(k)) =
∑
j∈N

(
ej(k) + δ · pj(k)+

−min
{
ej(k) + δ · pj(k), ej(k + 1)

})
. (4.29b)

Theorem 1 (Existence of a consistent dispersion).
Suppose Assumptions 1 and 2 hold. If

e(k) ∈ arg min
e(k)∈Ẽ(k,e(k))

(dl(k, e(k)) + du(k, e(k))) (4.30)

with dl and du from (4.29), thenR(k + 1) from (4.22) andR∗(k + 1) from

(4.23) satisfy

R(k + 1) ≡ R∗(k + 1),

i.e. e(k) is a consistent dispersion of e(k) at time k + 1. �

The proof of Theorem 1 will be given in Section 4.5.1. Note that Assump-
tion 2 is quite mild. Set relation (4.28a) can, for example, be enforced by
reducing the set δ · Pj(k). Set realation (4.28b), instead, requires to exclude
all the values of e(k + 1) that are feasible from an energy perspective but
that cannot be reached from any feasible e(k). Note that (4.28b) is trivially
fulfilled when Ej(k) is constant (or decreasing with respect to set-inclusion)
provided 0 belongs to Pj(k). Similar to the case of Assumption 1, this
latter aspect is an additional modeling effort that is normally avoided, but
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that is fundamental in case of aggregation. In short, Assumption 2 can be
seen as requiring that the set of feasible energy states of each device does
not “change too much” from one time step to the next, which can be ob-
tained by excluding never-reachable states and increasing the granularity
of the time-discretization. In this sense, Assumptions 1 and 2 are indi-
rectly coupling the power and the energy constraints (4.2). Note that the
use of time-varying power constraints is particularly useful to avoid that the
most stringent energy constraint limits the power constraint over the entire
scheduling horizon.

Furthermore, observe that cost function dl(k, e(k))+du(k, e(k)) as stated
in Theorem 1 involves the energy state e(k) only at time step k. This
means that the computation of a consistent dispersion is independent from
the knowledge of e(h) with h 6= k. Thus, e(k) (and consequently the vec-
tor p(k − 1) leading to e(k) from e(k − 1)) can be determined at each k
by a lower-level controller without any need for information about past or
future states of the system. This has two important consequences. On the
one hand, it avoids any dependency between dispersion at subsequent time
instants in the scheduling problem, which complicates dealing with eventual
random decision variables and parameters. On the other hand, the compu-
tation of e(k) does not require any load forecasts nor MPC strategies (the
long-term perspective is already accounted for in the aggregated DS). How-
ever, we remark that the main results are: i) that a combination of energy
states that is feasible with respect to the constraints of the individual EC-
DERs (4.3c)-(4.3f) exists whenever the aggregated energy state is feasible
with respect to the aggregated constraints (4.9d)-(4.9f) and (4.13), and ii)
that such a feasible realization can be computed online. In fact, other meth-
ods to determine—online—a consistent dispersion of the aggregated energy
state can be applied alternatively to the one proposed in Theorem (1), e.g.
MPC as mentioned in Remark 1. These alternative techniques might be use-
ful to discriminate among consistent dispersions whenever there exist mul-
tiple ones, i.e. whenever function (dl(k, e(k)) + du(k, e(k))) is not strictly
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convex. Note that while a consistent dispersion e(k) implies that the set
of feasible dispersion Ẽ(k, e(k)) is not empty, it does not guarantee that a
consistent dispersion at k + 1 exists. We address this point in the following
theorem.

Theorem 2 (Recursive existence of consistent dispersions). Suppose As-

sumptions 1 and 2 hold. If e(k + 1) ∈ E(k + 1) and e(k) is a consistent

dispersion of e(k), then there exists at least one consistent dispersion of

e(k + 1). �

The proof of Theorem 2 will be given in Section 4.5.1. An important
consequence of Theorem 2 is that given that the initial e(kb) is a consis-
tent dispersion of e(kb), then a consistent dispersion of {p}K and {e}K+ is
always possible as long as (4.9b)-(4.9c) hold with (4.13). In other words,
the aggregated DS can always be tracked. Furthermore, note that while the
existence of a consistent dispersion is a property of the entire system, the
requirements of Assumptions 1 and 2 involve each EC-DER separately, in
line with the task of aggregating heterogeneous devices.

Besides justifying the use of aggregated scheduling (4.9) in presence of
a consistent dispersion of the aggregated energy state, Theorem 1 and The-
orem 2 lead to further considerations in more general problems. We will
discuss this in Section 4.5.2 after providing the proofs in the next section.

4.5.1 Proofs of Theorem 1 & 2

Proof of Theorem 1.

The main idea behind the proof of Theorem 1 is showing that the bounds
of the real intervals R(k + 1) and R∗(k + 1) coincide when e(k) satisfies
(4.30). If the bounds ofR(k+1) andR∗(k+1) coincides, thenR(k+1) ≡
R∗(k+ 1). First we prove technical lemmata to then turn towards the proof
of Theorem 1.

From (4.22) it follows that there are two possible cases for each of the two
bounds ofR(k + 1):
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• Case (i):
e(k) + δ · p(k) ≥ e(k + 1), (4.31a)

respectively,
e(k) + δ · p(k) ≤ e(k + 1). (4.31b)

• Case (ii):
e(k) + δ · p(k) > e(k + 1), (4.32a)

respectively,
e(k) + δ · p(k) < e(k + 1). (4.32b)

Observe that, differently from Case (i), the inequalities in Case (ii) are strict.
Furthermore, note that the feasible and reachable states at time k are limited
by the reachability (power) constraint (??) in Case (i), and by the feasibility
(energy) constraint in Case (ii). We analyze both cases in two technical
lemmata.

Lemma 2 (Case (i)). Suppose Assumptions 1 and 2 hold and let e(k) satisfy

(4.30).

(a) If (4.31a) holds, then the lower bound er(k + 1) of R(k + 1) from

(4.22) and the lower bound
∑
j∈N e

r
j(k + 1) ofR∗(k+1) from (4.23)

satisfy

er(k + 1) =
∑
j∈N

erj(k + 1).

(b) If (4.31b) holds, then the upper bound er(k + 1) of R(k + 1) from

(4.22) and the upper bound
∑
j∈N e

r
j(k + 1) ofR∗(k+1) from (4.23)

satisfy

er(k + 1) =
∑
j∈N

erj(k + 1).
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Proof. First, consider the lower-bound case (a), i.e. that (4.31a) holds. From
e(k) + δ · p(k) ≥ e(k + 1), we have

e(k) ≥ −δ · p(k) + e(k + 1).

Thus, for a e(k) ∈ E(k + 1) = s(×j∈N Ej(k + 1)) there exists a e(k) =

s−1(e(k)) such that

ej(k) ≥ −δ · p
j
(k) + ej(k + 1) ∀j ∈ N , (4.33)

Equation (4.28a) in Assumption 2 implies that there is at least one e(k)

feasible for (4.3c)-(4.3f) for which

ej(k) ≥ −δ · p
j
(k) + ej(k + 1) ∀j ∈ N .

Thus, that there exists at least one feasible e(k) = s−1(e(k)) for which
(4.33) holds. In other words, there exists a e(k) ∈ Ẽ(k, e(k)) satisfying
(4.33).

Observe that dl(k, e(k)) reaches its global minimum, which is zero, for
any e(k) satisfying (4.33). Furthermore, from (4.28a) in Assumption 2 it
holds that

ej(k + 1)− δ · pj(k) ≥ ej(k + 1)− δ · p
j
(k). (4.34)

This implies that diminishing the values of any ej(k) below −δ · p
j
(k) +

ej(k + 1) does not reduce the value of du(e(k), k). Therefore, (4.30) for
Case (i)-(a) implies (4.33).

In turn, it follows from (4.33) that

ej(k) + δ · p
j
(k) ≥ ej(k + 1) ∀j ∈ N .
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Therefore, the lower bound ofR∗(k + 1) is equal to∑
j∈N

erj(k + 1) =
∑
j∈N

ej(k) + δ ·
∑
j∈N

p
j
(k) = er(k + 1).

The second part of Case (i)—e(k) + δ · p(k) ≤ e(k + 1)—follows mutatis
mutandis and it is skipped for the sake of brevity.

Lemma 3 (Case (ii)). Suppose Assumptions 1 and 2 hold and let e(k) satisfy

(4.30).

(a) If (4.32a) holds, then the lower bound er(k + 1) of R(k + 1) from

(4.22) and the lower bound
∑
j∈N e

r
j(k + 1) ofR∗(k+1) from (4.23)

satisfy

er(k + 1) =
∑
j∈N

erj(k + 1).

(b) If (4.32b) holds, then the upper bound er(k + 1) of R(k + 1) from

(4.22) and the upper bound
∑
j∈N e

r
j(k + 1) ofR∗(k+1) from (4.23)

satisfy

er(k + 1) =
∑
j∈N

erj(k + 1).

Proof (by contradiction). First, consider the lower-bound case (b), i.e. that
(4.32a) holds. Assume that there is a group of devices I ⊂ N for which

ei(k) + δ · p
i
(k) > ei(k + 1), ∀i ∈ I (4.35)

and another group of devicesH = N \ I for which

eh(k) + δ · p
h
(k) ≤ eh(k + 1), ∀h ∈ H. (4.36)
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From (4.7) it follows that

e(k) =
∑
I
ei(k) +

∑
H
eh(k).

Suppose that H = ∅, then (4.32a) is false and we fall back to Case (i).
Hence H 6= ∅. Moreover, for at least one ĥ ∈ H, Inequality (4.36) holds
strictly (otherwise we again fall back to Case (i)).

Consider a small positive increment ∆ > 0 for which êĥ(k) = eĥ(k) + ∆

still satisfies (4.36). The increment of êĥ(k) is always allowed. In fact,
given Assumption 2, we have

eĥ(k) + δ · p
ĥ
(k) ≥ eĥ(k + 1).

Thus, from (4.36) (which is strictly satisfied for ĥ), it follows that eĥ(k) <

eĥ(k). Next, consider w.l.o.g. one EC-DER î ∈ I for which the energy
êî(k) = eî(k) − ∆ is decreased such that êî(k) still satisfies (4.35). This
reduction is always possible: given Assumption 2 we have

eî(k) + δ · p
î
(k) ≤ eĩ(k + 1);

thus, (4.35) implies eî(k) > eî(k).
Increasing the energy at EC-DER ĥ and reducing it at the same time at

EC-DER î maintains the satisfaction of equality (4.7), as

e(k) = −∆ +
∑
I
ei(k) +

∑
H
eh(k) + ∆.

However, dl(ê(k), k) < dl(e(k), k). Moreover, du(ê(k), k) ≤ du(e(k), k).
In fact, the increment of eĥ(k) cannot increase du(e(k), k), because the
contribution of the components eh(k) to du(e(k), k) is zero: given (4.34),
then êĥ(k) ≤ eĥ(k + 1) − δ · pĥ(k). Thus, e(k) does not minimize
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dl(e(k), k) + du(e(k), k). We arrive at a contradiction, i.e. I 6= ∅ con-
tradicts (4.30). Hence we arrive at I = ∅ if (4.30) holds.

Given that (4.36) hold for all the EC-DERs, then the lower bound of
R∗(k + 1) is equal to∑

j∈N
erj(k + 1) =

∑
j∈N

ej(k + 1) = er(k + 1).

Summing up, the lower bounds of R(k + 1) and R∗(k + 1) also match
in Case (ii)-(a) under (4.30). In a similar fashion, it can be shown that the
upper bound of R(k + 1) equals the upper bound of R∗(k + 1) in Case
(ii)-(b) under (4.30).

Now we can finalize the proof of the theorem. As we have seen in Lemma
2 for Case (i) and in Lemma 3 for Case (ii), if (4.30) holds, then the upper
and lower bound ofR(k+1) andR∗(k+1) coincide, leading toR(k+1) ≡
R∗(k + 1). This finishes the proof of Theorem 1.

Proof of Theorem 2.

By construction, if e(k) is a consistent dispersion of e(k) and e(k + 1) ∈
R(k+ 1), then there exist at least a feasible dispersion of e(k+ 1), cf. Def-
inition 1. Thus, the set E(k + 1, e(k + 1)) is not empty. The cost function
dl(k+ 1, e(k+ 1)) +du(k+ 1, e(k+ 1)) is real-valued and continuous and
the set Ẽ(k + 1, e(k + 1)) is compact. Thus, by virtue of the extreme val-
ues theorem, the function dl(k+ 1, e(k+ 1)) + du(k+ 1, e(k+ 1)) attains
a minimum over Ẽ(k + 1, e(k + 1)) meaning that at least one minimizer
e(k+ 1) exists. Consequently, applying Theorem 1, there exist a consistent
dispersion of e(k + 1).

4.5.2 Discussion

Theorems 1 and 2 indicate the following approach to scheduling problems
in the form of (4.3):
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(i) Check/impose consistency of constraints (4.3c)-(4.3d) to Assump-
tions 1 and 2.

(ii) Aggregate decision variables and constraint sets via mapping s, as in
(4.7) and (4.13).

(iii) Solve (4.9) to compute the DS {g̃}K.

(iv) Guarantee feasibility of the aggregated DS by dispersing the aggre-
gated variables such that (4.30) holds.

Next, we show how the results from Theorem 1 and 2 can be used to
extend the applicability of the scheduling algorithm analyzed in Chapter 3
to an aggregation of EC-DERs and inflexible loads/generators. To this end,
we analyze three aspects neglected in (4.3): non-linearities in the EC-DERs
dynamics (4.1) caused by conversion losses, uncertain {li}K for all i ∈ Nl,
and aggregations of EC-DERs with time-varying connections.

4.6 Aggregation and Conversion Losses

Consider a dynamic model of the energy state including conversion losses
as in (3.1), i.e.

ej(k + 1) = ej(k) + δ · (pj(k)− µj |pj(k)|) , (4.37)

where the coefficient µj describes the amount of energy that is lost in con-
version.

Next, consider an alternative—yet equivalent—model describing the con-
version losses in terms of lost power. First, we define

tj(k) = pj(k)− µj · |pj(k)| , (4.38)
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as the actual power exchange with the storage. Then, we introduce tj(k)

into (4.37), which gives

ej(k + 1) = ej(k) + δ · tj(k). (4.39)

Given (4.38), the power constraint (4.2a) can be equivalently expressed as a
constraint on tj(k), i.e.

T (k) =

{
t(k) | ∃p(k) ∈×

j∈N
Pj(k) satisfy (4.38)

}
. (4.40)

In other words, conversion losses modify the boundaries of the set of reach-
able states at k + 1. Note that T (k) is a closed real interval.

Finally, consider the scheduling problem (4.8) including conversion losses
as modeled by (4.38)-(4.40),

min
{g̃}K,{t}K,{e}K+ ,
{t}K,{e}K+

∑
k∈K

cDS(g̃(k), k) (4.41a)

s. t. ∀k ∈ K

g̃(k) = t(k)− l(k) + ploss(k), (4.41b)

e(k + 1) = e(k) + δ · t(k) e(kb) = e0, (4.41c)

e(k + 1) = s(e(k + 1)), (4.41d)

t(k) ∈×
j∈N
T j(k), (4.41e)

e(k + 1) ∈×
j∈N
Ej(k + 1), (4.41f)

t(k) = s(t(k)), (4.41g)

ploss(k) =f(t(k)). (4.41h)

The value ploss(k) aggregates the total conversion losses (in terms of power)
resulting from t(k). Equation (4.41h) is the only practical difference be-
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tween problem (4.41) and (4.8). Thus, the question arises if the solution of
(4.41) can be approached in two steps (aggregated scheduling and subse-
quent dispersion), as for (4.8), without compromising the result.

The aggregated version of (4.41) would be

min
{g̃}K,{t}K,{e}K+

∑
k∈K

cDS(g̃(k), k) (4.42a)

s. t. ∀k ∈ K

g̃(k) = t(k)− l(k)− fagg(t(k)), (4.42b)

e(k + 1) = e(k) + δ · t(k), e(kb) = s(e0), (4.42c)

t(k) ∈T (k), (4.42d)

e(k + 1) ∈E(k + 1). (4.42e)

Observe that constraints (4.41c)-(4.41d) and (4.42c)-(4.42e) have the exact
same structure of the corresponding ones in (4.8) and (4.9). Therefore, the
idea of a consistent dispersion and the statements of Theorems 1 and 2 still
hold. The main difficulty is represented here by enforcement of the equiva-
lence between (4.42b) and (4.41b), (4.41h).

Consider a symmetric system where the losses are the same on each device
and independent of pj(k), i.e. µj = µ for all j ∈ N . Furthermore, consider
the absence of mutual exchange of power among devices, i.e. sign(pj(k)) =

sign(pi(k)) for all {j, i} ∈ N ×N . Then, defining

fagg(t(k)) =


µ

1−µ t(k) if t(k) ≥ 0

−µ
1+µ t(k) if t(k) < 0

, (4.43)

the equivalence fagg(t(k)) = f(t(k)) holds exactly for each t(k) ∈ T (k).
Thus, in this specific case, (4.42b) is equivalent to (4.41b), (4.41h), and
aggregation as in (4.42) leads to the same solution of (4.41). However, in
general fagg(t(k)) can only approximate f(t(k)) and the solution of (4.42)
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deviates from the one of the original problem (4.41) depending on this ap-
proximation. This aspect might compromise the effectiveness of aggrega-
tion. Eventually, aggregation of groups of EC-DERs with similar conversion
losses can reduce the severity of the approximation at the price of a slightly
higher number of variables in the aggregated problem.

Note that we use the transformation pj(k) → tj(k) only to show under
which conditions Theorems 1 and 2 hold when conversion losses are con-
sidered. For the discussed case of µj = µ for all j ∈ N , this transformation
is unnecessary in practice. Aggregation can be done directly on pj(k) with
using (3.1) as aggregated dynamics.

4.7 Aggregation and Uncertainty

The assumption of perfect knowledge of the inflexible power outputs upon
scheduling, {li}K for all i ∈ Nl, is unrealistic. As discussed in Chapter 3,
a better representation of the inflexible power outputs is in terms of random
variables, which leads to a stochastic version of (4.3) where all the decision
variables representing the power outputs and the energy states of the EC-
DERs are stochastic variables. Similarly to (3.11), we interpret this problem
by moving from inequalities on the single devices to a chance constraint
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limiting the number of deviations from the schedule, and by considering the
cost function in terms of its expected value. This leads to

min
{g̃}K,
{X}K

∑
k∈K

cDS(g̃(k), k) + E

[∑
k∈K

ci(∆G(k))

]

s.t. ∀k ∈ K (4.44)

Ej(k + 1) = Ej(k) + δ · Pj(k), ∀j ∈ N

Ej(k
b) = E0

j , ∀j ∈ N

[P>(k) ∆G(k)] = h′(g̃(k),L>(k),E>(k))

E

[∑
K

B(k)

]
≥ (1− ε) ·K,

where the random decision variables are collected in vector

X(k) :=
[
P>(k) E>(k + 1) ∆G(k)

]>
,

and B(k) is defined as for (3.11). Problem (4.44) is more challenging than
(3.11): the more parameters, the more difficult it is to compute their mul-
tivariate distribution; the more correlated random variables, the harder it is
to obtain a tractable formulation of the stochastic program. Thus, one may
wonder whether aggregation allows to reduce the number of random vari-
ables, and eventually to elaborate the problem with the reasoning presented
in Chapter 3 (based on avoiding chance constraints with multiple random
variables and multiple random parameters). To this end, let us include the
forecast uncertainty in the aggregated scheduling problem (4.9) instead of
on (4.3). By doing so, we shift from multiple to a single aggregated uncer-
tain power output, L(k). At the same time, we can consider the aggregated
EC-DER to compensate for the uncertainty stemming from L(k). In this
framework, (4.44) is reduced to (3.11), and the same reasoning and approx-
imations detailed in Section 3.3.1 can be applied directly—the constraints
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of the aggregated EC-DER are equal to the ones of a single EC-DER, which
is the case considered in Chapter 3. Practically speaking, we consider—
upon scheduling—that the power required to maintain g(k) at g̃(k) will
be provided by some devices, leaving the decision on which specific de-
vice provides this power to a subsequent decision stage, taking place after

scheduling. Note that this model matches particularly well a multi-stage de-
cision structure. Planning an aggregated response to the uncertainty models
a greater freedom in subsequent choices than responses to the uncertainty
that are fixed at the first stage for each decision variable (and usually affine,
cf. Section 3.2). In case of scheduling for power dispatch, this additional
freedom translates in the need of fewer reserves for the compensation of
imbalances, because the EC-DERs respond to the uncertainty collectively

instead of reacting to “individually assigned” uncertainties (which would
require individual and conservative energy reserves).

However, it remains to clarify whether the statistical properties of the re-
sulting DS hold with consideration of multiple EC-DERs and how the un-
certainty affecting the aggregated power output and energy state should be
dispersed among the various devices. From Theorem 2 it follows that, as
long the dispersion of the aggregated energy state at the previous time step
is consistent, whatever feasible realization of the uncertain aggregated en-
ergy state has a feasible dispersion. Thus, the statistical properties of the DS
are preserved. Additionally, Theorem 1 suggests how to derive a realization
of the uncertain dispersed energy states from a realization of the aggregated
energy state. In other words, determining a-priori the relation between the
realization of the uncertain energy states and of the uncertain inflexible out-
puts is not necessary, because such realization can be computed online fol-
lowing Theorem 1. Alternatively, if there are reasons to prefer a consistent
dispersion over another, an MPC scheme can be implemented to disperse
the aggregated energy state. This situation occurs, for example, in the case
study presented in Chapter 6.
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4.8 Time-Varying Connections

4.8.1 Aggregated Model with Time-Varying Connections

The last aspect of practical relevance that should be considered in aggre-
gated scheduling is the possibility that some devices are not connected for
the entire duration of the DS. This is, for example, the case of charging sta-
tions for PEVs, where the PEVs can arrive and leave within the time spanned
by a DS. It should be mentioned that there exists several works proposing to
exploit the storage of PEVs for the benefit of the system by means of appro-
priate charging strategies; see [Mukherjee and Gupta, 2015] and references
therein. The interest on the topic is motivated by the fact that vehicles inher-
ently rely on storage for their transportation function and on average they
are in-use only for 4% of the time [Kempton and Tomić, 2005]; thus PEVs
are promising in providing capacity reserves and storage to power systems.
To account for this situation, we extend the model presented in Section 4.1.
To this end, we introduce set NK collecting all the indexes associated with
the EC-DERs connecting for at least one k ∈ K and the set NK(k) ⊂ NK
containing the indexes of the EC-DERs connected at k. The active power
balance is

g(k) = l(k) +
∑

j∈NK(k)

pj(k). (4.45)

In this framework, ej(k), j ∈ NK, exists only within the interval [ka
j , k

d
j ],

where ka
j and kd

j denote the arrival and departure times of the j-th EC-DER,
respectively. Furthermore, we consider the ordered index sets AK(k) =

{j ∈ NK|ka
j ≤ k}, modeling the EC-DERs arriving until k, and DK(k) =

{j ∈ NK|kd
j ≤ k}, representing the EC-DERs leaving until k.

Whenever an EC-DER connects to the aggregation, it brings the energy
already stored in its battery into the system. At the same time, an EC-DER
disconnecting removes from the system a quantity of energy equivalent to
the one stored in its battery. This sudden injection or absorption of energy is
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not represented in the aggregated dynamics (4.9d). Thus, we extend (4.9d)
as

e(k + 1) = e(k) +
∑
j∈I(k)

ej(k
a
j) + δ · p(k), (4.46)

where I(k) = {j ∈ NK|ka
j = k} is the set of EC-DERs arriving at k. This

dynamics is similar to (4.9d), with the inclusion of sudden energy increases
at each ka

j . This energy addition accounts for the fact that when an EC-DER
connects, the energy stored in its battery is immediately added to the energy
stored in the aggregated system. Observe that we employ different models
for the connection and the disconnection of an EC-DER, as the energy de-
crease caused by an EC-DER disconnecting is not modeled in (4.46). We
further discuss this aspect later.

The bounds for the set of feasible aggregated power and energy, P(k) and
E(k+1), should as well consider the possibility of connecting/disconnecting
devices. We compute the bounds of P(k), following (4.14b), as the sum of
the ones of the devices connected at time k,

p(k) =
∑

j∈NK(k)

p
j
, p(k) =

∑
j∈NK(k)

pj .

For the energy constraints instead, we use a model that is slightly different
from (4.14c), i.e.

e(k) = e(k − 1) +
∑

j∈AK(k)

ej , (4.47a)

e(k) = e(k − 1) +
∑

j∈AK(k)

ej +
∑

j∈DK(k)

emin
j , (4.47b)

with

e(k0) = e0 +
∑

j∈AK(k0)

ej , , e(k0) = e0 +
∑

j∈AK(k0)

ej .
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feasible states limited trajectories

Figure 4.6: Example of aggregated energy state and of its bounds (time-varying bat-
tery).

For the sake of shorthand notation, we employ the notation emin
j to indi-

cate the minimum amount of energy that has to be stored in the j-th EC-
DER upon disconnection, ej(k

d
j). An example of the energy constraint of a

time-varying battery is depicted in Figure 4.6. Once more, connection and
disconnection of an EC-DER are modeled in different ways.

Summarizing, the arrival of the j-th EC-DER corresponds to an increment
of both lower and upper capacity limits in (4.47) together with an “energy
addition” of ej(ka

j) in (4.46). This model does not compromise the feasi-
bility of the aggregated schedule when the power and energy constraints of
EC-DER j satisfy Assumptions 1 and 2, and ej(ka

j) forms a feasible disper-
sion of e(ka

j) together with the energy state of the other connected devices.4

An equivalent model for the departure of an EC-DER would be a reduction
of the boundaries e(kd

j) and e(kd
j) at kd

j and a subtraction of ej(kd
j) from

e(kd
j − 1). However, this latter model would require the precise knowl-

edge of ej(kd
j), which is lost in aggregation. The aggregated model does

not distinguish among the energy states of its single components: once an
EC-DER connects, its available storage capacity is added to the aggregation
and its energy state becomes indistinguishable from the ones of the other

4 Theorem 1 and Theorem 2 address step-wise properties, and are indifferent to a change in the
number of devices along the scheduling horizon.
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devices. Thus, the disconnection of an EC-DER cannot be appropriately
modeled. We consider instead as if the EC-DER would remain connected
with Pj(k) = [0, 0] and Ej(k) = [emin

j , e(kd
j)] for all k > kd

j . This choice
solves the issue of having unknown departure energy states ej(kd

j), but it
introduces an additional challenge. In fact, it can be easily seen that the
modified constraints for disconnecting devices do not satisfy Assumption 2.
This is because the storage capacity E(k) = [emin

j , e(kd
j)] and any eventual

excess of energy ej(kd
j)− emin

j are still included in the aggregated model af-
ter the disconnection of the j-th EC-DER, even if not physically accessible
(pj(k) = 0). Consequently, not every trajectory connecting feasible states
e after the first disconnection of a device is actually a feasible trajectory, as
illustrated in Figure 4.6.

Summarizing, aggregated scheduling is justified in case of EC-DERs con-
necting within the scheduling horizon, but it can lead to problems whenever
some EC-DERs are disconnecting within the scheduling horizon. Nonethe-
less, the proposed aggregation can still be applied to many practical cases
with disconnecting devices by adding few corrections. For example, take
an aggregation including a Battery Energy Storage System (BESS) and a
charging station for PEVs. Furthermore, assume a situation in which charg-
ing the j-th PEV over its emin

j should be avoided as much as possible be-
cause it does not bring any additional revenues (which is the case consid-
ered in the simulation study reported later in Chapter 6). In this context, the
PEVs should store any eventual excess of energy only if the BESS is fully
charged; denoting the BESS with index 1, this leads to a ej(kd

j) > emin
j ,

j 6= 1, only if e1(kd
1) = e1.5 One recurring error in this case is scheduling

an excessive discharge at the end of the horizon. We address this issue as

5 In case of an aggregation that includes only PEVs, the priority should go to the PEV leaving
last.
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follows. Let kd
j′ indicate the departure time of the last vehicle leaving, i.e.

kd
j′ = max

{
kd
j , j ∈ {NK \ {1}}

}
. Then, including constraint

e(ke)− e(kd
j′) ≤ e1 − e1, (4.48)

in the aggregated scheduling problem guarantees that not more than the en-
ergy excess stored in the BESS is scheduled to be transferred to the utility
grid after that the last PEV has left.6 While introducing this additional con-
straint does not entirely solve the problem of disconnecting devices, it can
suffice to obtain a feasible aggregated schedule, as shown by the results re-
ported in Chapter 6.

4.8.2 Additional Sources of Uncertainty

Additional uncertainties can arise from the (often unknown) parameters of
the devices connecting after the computation of the DS [Lee et al., 2012].
Going back to the example of the charging station, the parameters of the con-
necting PEVs can be unknown, and so can be their connection/disconnection
times and their energy state upon connection. Here, we focus on the uncer-
tainty surrounding the energy state of connecting devices, which we denote
as random variable Ev(k

a
v) with realization ev(ka

v), and on how to integrate
this additional uncertainty to the one stemming from uncertain power out-
put discussed in Section 4.7. In particular, we assume that the aggregated
EC-DER compensates not only for the uncertainties surrounding the gener-
ation forecasts but also for the uncertainty characterizing the energy state of
arriving EC-DERs.

Recall that we regard the aggregated EC-DER to compensate for the un-
certain power output as described in Chapter (3), i.e. ∆P(k) = −∆L(k),

6 In case uncertainty is considered, this constraint should be imposed to the expected value, i.e.
to ê(ke)− ê(kd

j′ )
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see (3.21). The main difference with Chapter 3 is that dynamics (4.46) sub-
stitutes (3.1). Including the uncertainty, this becomes

E(k + 1) = E(k) +
∑

v∈I(k)

Ev(k
a
v) + δ · P(k). (4.49)

As already discussed in Chapter 3, the summation of correlated random
variables causes difficulties in an optimization problem. The use of an ap-
proximated energy balance may help also in this case.

Separating the deterministic and stochastic components of (4.49) as in
(3.19) leads to

ê(k + 1) = ê(k) + δ · p̂(k), (4.50a)

∆E(k + 1) = ∆E(k) +
∑

v∈I(k)

Ev(k
a
v) + δ ·∆P(k). (4.50b)

Note that (4.50a) is equivalent to (3.20c), as it excludes the “energy incre-
ment” caused by arriving EC-DERs. Indeed, the “energy increment” Ev(ka

v)

is a stochastic variable affecting only the stochastic component of (4.49), see
(4.50b).

Further elaboration of (4.50b) (similar to Step 5 in Section 3.3.1) gives

∆E(k + 1) =∆E(k) + δ ·∆P(k) +
∑

v∈I(k)

Ev(k
a
v)

=∆E(k)− δ ·∆L(k) +
∑

v∈I(k)

Ev(k
a
v)

=− δ
k∑

i=kb

∆L(k) +
∑

v∈AK(k)

Ev(k
a
v).
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with initial condition ∆E(kb) = 0. Recall the notation ∆El(k) from (3.23).
Then

∆E(k) = −∆El(k) +
∑

v∈AK(k)

Ev(k
a
v). (4.51)

Note that the energy state of each EC-DER and the uncontrolled load/generation
refer to completely different devices. Thus, it is reasonable to consider that
∆El(k) and Ev(k

a
v) are independent, and that so are Ej(ka

j) and Eh(ka
h) with

j 6= h. Therefore, f∆E(k)(∆e), is given by the convolution of f∆El(k)(∆el)

and fEv (ev) for each v ∈ AK(k) [Carlton et al., 2017]. In other words,
f∆E(k)(∆e) = f̃kmax(AK(k)) with

f̃kj = f̃kj−1 ∗ fEv
(y), j ∈ AK(k) and f̃0 = f∆El(k)(−y), (4.52)

where ∗ indicates the operation of convolution and the support of fEv
(y)

and f∆El(k)(y) is trivially extended to the real line by setting them to zero
outside of their original support.

To ease the understanding, we illustrate the stochastic energy constraint
(3.32) for aggregated EC-DERs with time-varying connections in Figure
4.7. The full line represents the expected state of charge ê(k), the colored
areas represent values that the realization e(k) can take with a certain proba-
bility, and the dashed lines depict the energy limits. Figure 4.7 is the equiv-
alent of Figure 3.5: the probability associated to the energy states laying
within the energy limits has to be at least (1−ε). However, differently from
Figure 3.5, in Figure 4.7 the energy limits are time-varying. One could also
observe the sudden increase in the energy states corresponding to the arrival
of one or more EC-DERs at respective time instants.

4.9 Summary

Aggregated modeling is a promising option to extend the applicability of the
scheduling algorithm proposed in Chapter 3 to a system including hetero-
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Figure 4.7: Scheduling for a DCS: graphical representation of the stochastic energy
state E(k) and of its corresponding constraint with (1− ε) = 0.75.

geneous EC-DERs. Aggregated models are well studied and often applied
in the literature, because they reduce the number of parameters and deci-
sion variables in the scheduling problem, lowering the computation burden
and improving the management of the uncertainties. However, feasible in-
tervals for the aggregated power and energy state determined by summing
the feasible intervals of each devices in the cluster may extend the feasible
space to values that cannot be attained in practice. Understanding to which
extend this relaxation influences the result of an optimization problem for
scheduling is pivotal to a successful application of aggregated modeling on
power systems with uncertain power outputs. To this end, we show in this
chapter that, whenever the energy states of the individual devices satisfy
a specific (collective) property—that we define as consistent dispersion of

the aggregated energy state—the aggregation does not alter the feasible set
at the subsequent time-step and thus it does not imply a loss of optimal-
ity. Furthermore, we prove that a consistent dispersion always exists un-
der mild assumptions on the constraints of the various devices, considered
separately. Our findings justify the application of the algorithm described
in Chapter 3 to schedule the aggregated dispatch of a cluster of heteroge-

108



4.9 Summary

neous flexible and inflexible distributed energy resources, without any loss
of optimality or robustness. Additionally, we show that conversion losses,
uncertain power outputs and time-varying connections of EC-DERs can all
be considered in this scheduling scheme. Next, we investigate the results of
applying the proposed scheduling and operation scheme to realistic and real
systems, looking at cases comprising both a single EC-DER (Chapter 5) and
a time-varying population of EC-DERs (Chapter 6).
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The theories which I have expressed

there, and which appear to you to be

so chimerical, are really extremely

practical—so practical that I depend

upon them for my bread and cheese.

A. C. Doyle, A Study in Scarlet

This chapter reports the results obtained applying the scheduling and con-
trol scheme described in Chapter 3 to a number of diverse case studies.
The focus is on a system with a single EC-DER as described in Chapter 3,
see Figure 3.1. The chosen cases involve diverse settings, allowing to test
different properties of the algorithm. The first case study concerns a house-
hold equipped with battery storage and PV generation. There, we evaluate
the performance of the algorithm with respect to state-of-the-art methods
based on deterministic and scenario-based forecasts. The second case study
involves an industrial campus equipped with a large-scale solar field and
battery storage. Scope of this study is to investigate the scalability of the
proposed method to industrial-size systems together with the response of
the algorithm to actual market prices. The third case study refers to an ex-
perimental generation system that couples PV panels and battery storage.
The scope of this study is to validate the proposed scheme in real-life ex-
periments. The results presented in this section have appeared in [Appino et

al., 2018b, 2019a].
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5.1 Case Study 1: Simulation of a Household

The first case study entails simulations of prosumption at household level.
The scope of this test case is to assess the performance of the proposed
scheduling algorithm with respect to state-of-the-art ones. In the following,
we first report the characteristics of the case study, of the data and of the
tools employed in the simulations. Then, we detail the results and comment
on them.

5.1.1 Description of the Case study

A household with a rooftop PV generator controlled at his maximum power
point and a domestic BESS represents the case study for simulation. The
data of PV production and load consumption are retrieved from the freely
available dataset provided by Ausgrid [Ratnam et al., 2015]. The dataset of-
fers the time series of the load and PV generation profile of 300 Australian
households with installed rooftop PV systems for the time frame of 1 Jul
2010 to 30 Jun 2013. Specifically, the data utilized here concerns house-
hold 109. The technical specifications of the BESS come from the catalog
of a commercial producer.1 Considering only the usable capacity, these are:
e = 0 kWh, e = 13.5 kWh, p = −5 kW, p = 5 kW, µ = 5%. Note that
the power and energy constraints in Chapter 3 allow time-varying limits;
however, a BESS has time-invariant constraints. Furthermore, we remark
that we choose a BESS with a capacity that is relatively small for the pro-
posed application, aiming to illustrate the benefits of the proposed scheme in
challenging conditions. Finally, note that we arbitrarily initialize the energy
state of the BESS at the beginning of each simulated period to 6 kWh.

Consider the following regulation for the operation of the system. The
power exchange with the higher level grid is adjusted according to a day-
ahead DS. The scheduling horizon spans midnight to midnight and it is di-

1 www.tesla.com/powerwall [Accessed: 15-Jan-2018]
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vided into 24 steps of 1 hour, i.e. K = 24, O = 12 and δ = 1h. The cost
of the DS follows (3.34), with time invariant coefficients cq+ = 0.05 e·hkW2 ,
cq- = 0.05 e·hkW2 , cl+ = 0.3e·hkW , cl+ = 0.15e·hkW . These values reflect a pricing
policy rewarding self-consumption and load leveling. No penalization of the
derivative, cf. (3.5b), is considered in this case. Regarding the imbalances,
their cost is as in (3.6). We analyze two different pricing policies, denoted in
the following as C1 and C2, where the tariff of imbalances is twice (policy
C1) and ten times (policy C2) as high as the one of the DS (considering both
power excess and power shortage as purchased power), i.e.

C1: ci(∆g(k)) = 2cq+ |∆g(k)|2 + 2cl+ |∆g(k)| , (5.1)

C2: ci(∆g(k)) = 10cq+ |∆g(k)|2 + 10cl+ |∆g(k)| . (5.2)

Additionally to these pricing schemes, we require a minimum tracking ratio
rγ({∆g}K), see (3.8), with γ = 10−4 and values for (1 − ε) ranging from
0.42 to 0.72.

5.1.2 Simulation Setup

The simulations cover five different weeks in the time frame going between
1 Feb 2010 and 30 Jun 2013. To the end of covering the effects of seasonal
changes, these weeks have been selected in different months.

For each day, we simulate the hierarchical scheme depicted in Figure 3.2.
First, we compute a DS with discrete time steps of one hour. In this process,
we use only the information practically available at midday of the previous
day, in accordance to the considered day-ahead market regulation. Then, we
simulate the effects of the DS by computing sequentially the power outputs
and the energy state at each hour of the day. Specifically, we account for the
on-line rescheduling at each simulated hour by solving an additional opti-
mization, using the information available at the beginning of that hour, see
Section 3.4. The output of this optimization is then used together with the
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realization of the uncertain load (with one-hour resolution) to compute the
power outputs and the energy state over the hour under analysis. These val-
ues provide the input for the next iteration. Note that we arbitrarily initialize
the energy state of the BESS at the beginning of each simulated week to 6
kWh.

The simulations are carried out in MATLAB, employing standard open-
source optimization tools developed in the systems and control community
to solve the scheduling problems. Specifically, we use CasADi [Andersson,
2013] with the IPOPT [Wächter and Biegler, 2006]. All the computations
have been performed using a PC with an Intel® CoreTM i5-6400 CPU at 2.70
GHz and 8.00 GB RAM.

5.1.3 Forecasts

Considering an extension of the scheduling interval of S = 6h, the opti-
mization problem requires forecasts of {L(k)}Ka and {El(k)}Ka with Ka =

O ∪ K ∪ S for O + K + S = 42h hours. These forecasts are requested
at every DS computation, i.e. every day at 12:00. Furthermore, the online
rescheduling requires hourly updates the forecasts of

{
l̂(k)

}
M

. The fore-
casts are obtained as follows:

Load and Generation Power Forecasts

The structure of the data-driven models is selected to be a polynomial of
at most degree three. With the selected structure, 99 data-driven quantile
regressions ranging from the 0.01 to the 0.99 quantiles in 0.01 intervals are
trained for several forecast horizons ranging from 1h to 48h.2 All power
forecasting models are trained with current and past power values as well as
current and past values of other time series as input. Those extra time series
contain maximal, minimal, and mean power values obtained by assuming

2 PV generation forecasting models are trained only on values considered to be day values, i.e.
all night values are automatically eliminated from the utilized training set.
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power time series to be periodic. The values of these additional time series
are promising for the estimation of forecast uncertainties. Please note that
all forecasts are only based on historical power time series, since the Aus-
grid dataset does not contain weather forecast data. For further informa-
tion regarding weather-free forecasting models refer to [González Ordiano
et al., 2016]. The polynomials are created for the four most relevant fea-
tures, selected by a forward feature selection. The method and constraints
(to assure positive power/energy values and no quantile crossing) are de-
scribed in [González Ordiano et al., accepted]. The quantile regressions for
the different forecast horizons are combined into a forecasting model able
to deliver at 12:00 every day forecasts for the next 48 hours and to update
their forecast every hour.

Load and Generation Energy Forecasts

After obtaining the probabilistic power forecasts, the quantile regression for
the median is applied to the training data. The power forecasts obtained
at 12:00 for the next 48 hours are integrated and utilized as input for the
creation of 99 data-driven quantile regressions (using the same method and
constraints as before). These regressions predict the quantiles of the future
energy values for the same periods as the utilized power forecasts.

Forecasts for {L(k)}Ka and {El(k)}Ka

The quantile regressions for both {L(k)}Ka and {El(k)}Ka —which repre-
sent the sum of load and PV generation, whereby the generation is consid-
ered to be a negative load—are obtained by convolution of the generation
and load forecasts (under the assumption that load and generation are sta-
tistically independent and that their quantile regressions correctly approxi-
mate the distribution functions of their future values). The regressions de-
scribing the median are assumed to be forecasting models approximating
the expecting values

{
l̂(k)

}
Ka

and {êl(k)}Ka . Pairs of the obtained quan-
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tile regressions—centered on the regression describing the median—can be
combined to create intervals,

[
l(1−εP)(k), l(1−εP)(k)

]
, with a given proba-

bility that future values of {L(k)}Ka will lay inside, cf. (3.28). Finally,
the quantiles of {∆El(k)}Ka are used to fit the parameters of two logistic
functions whose sum is utilized as a description of F∆El(k)(∆el). The fit-
ting is undertaken using a least-squares optimization. Extensive numerical
studies have shown that the choice of a logistic function with six parameters
[a1...a6], i.e.

F∆El(k)(∆el) =
a1

1 + e−a2(∆el−a3)
+

a4

1 + e−a5(∆el−a6)
, (5.3)

is able to reproduce the skewness of the quantiles. Other choices, e.g. hyper-
bolic tangent, arctangent or specific algebraic functions, have shown poorer
results.

All utilized forecasting models are created with the open-source MAT-
LAB toolbox SciXMiner [Mikut et al., 2017].3. The data from 1 Sep 2010
to 1 Dec 2012 is used for the data-driven training of the forecasting model.
The models are then applied to the remaining data.

5.1.4 Benchmarks

Besides the scheduling algorithm described in Chapter 3 and denoted in
the following as Probabilistic Forecast Scheduling (PFS), we simulate and
compare the effects of other two scheduling algorithms. For the sake of
readability, we indicate the deterministic cost of the DS as

CDS :=
∑
k∈Ks

cDS+/-(g̃+(k), g̃−(k), k) ∈ R,

3 www.sourceforge.net/projects/scixminer/
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and the expected cost of imbalances as

C i :=
∑
k∈Ks

∑
ω′∈S′

πω
′
· ci
(

∆gω
′
(k)
)
∈ R.

Deterministic Forecast Scheduling

The first technique is to ignore the uncertainty and solve a deterministic
scheduling problem similar to (3.10), without the consideration of imbal-
ances and with differentiation of power directions, i.e.

min
{x}Ks

CDS

s.t. ∀k ∈ Ks,

g̃(k) = p(k) + l̂(k),

e(k + 1) = e(k) + δ ·
(
p(k)− µp+(k) + µp−(k)

)
,

e(kb) = e0,[
g̃+(k), g̃−(k)

]
∈ F ′d(g̃(k)),[

p+(k), p−(k)
]
∈ F ′′d (p(k)),

p(k) ∈ P(k),

e(k + 1) ∈ E(k + 1),

with decision variables collected in the vector

x(k) =
[
g̃(k) g̃+(k) g̃−(k) e(k + 1) p(k) p+(k) p−(k)

]> ∈ R7.

The value of
{
l̂(k)

}
Ka

is estimated as described in the previous Section.
We denote this scheduling technique as Deterministic Forecast Scheduling
(DFS). The aim of comparing PFS to DFS is to evaluate the effects of con-
sidering forecast uncertainty in the scheduling algorithm.
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Scenario Forecast Scheduling

The second benchmark scheduling scheme that we consider consist in solv-
ing (3.11) without constraint (3.11e) by means of sampling, as described in
Section 2.3.1.

min
{x}Ks ,{

xω′}
Ks
∀ω′∈S′

CDS+C i

s.t. ∀k ∈ Ks,∀ω′ ∈ S ′

g̃(k) = pω
′
(k) + lω

′
(k),

eω
′
(k + 1) = eω

′
(k) + δ ·

(
pω

′
(k)− µp+,ω′

(k) + µp−,ω
′
(k)
)
,

eω
′
(kb) = e0,[

g̃+(k), g̃−(k)
]
∈ F ′d(g̃(k)),[

p+,ω′
(k), p−,ω

′
(k)
]
∈ F ′′d (pω

′
(k)),

pω
′
(k) ∈ P(k),

eω
′
(k + 1) ∈ E(k + 1),

with scenario-independent decision variables collected in vector

x(k) =
[
g̃(k) g̃+(k) g̃−(k)

]> ∈ R3,

and scenario-dependent decision variables grouped in vector

xω
′
(k) =

[
eω

′
(k + 1) pω

′
(k) p+,ω′

(k) p−,ω
′
(k) ∆gω

′
(k)
]>
∈ R5 ∀ω′ ∈ S ′.

We denote this scheduling technique as Scenario Forecast Scheduling (SFS).
We choose this technique as a benchmark because of its large utilization in
the existing literature. However, the insight of comparing SFS to PFS is
twofold. On one side, it allows to assess the performance of the proposed
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PFS against a state-of-the-art technique. On the other, it provides an esti-
mate of the severity of the approximations included in (3.38) and listed in
Table 3.1. In fact, sampling techniques do not require approximations. In
particular, excluding constraint (3.11e) leads to a formulation of the opti-
mization problem for SFS where the requirement of limiting the imbalances
is restricted to pure cost considerations. Recall that a cost-aware allocation
of the energy reserves to compensate for imbalances is neglected in the PFS,
see Table 3.1. Therefore, the a-priori expectation is to use the cost achieved
by the SFS as a benchmark for the minimum achievable total cost with con-
sideration of the uncertainty. If so, comparing the total costs obtained by the
PFS with the one achieved by the SFS can quantify the consequences of the
approximations in Table 3.1.

Similar to the case of probabilistic forecasts, we generate scenarios of{
li(k)

}
Ka by applying quantile regressions as described in [González Or-

diano, 2019]. In this case the regressions predict the quantiles of the power
value an hour into the future. Each scenario is created (i) by randomly se-
lecting one of the predicted quantiles, (ii) by using it as input of the one-
hour-ahead quantile regressions, and (iii) by repeating the first two steps for
the length of the extended scheduling horizon. We extract 100 equiprobable
scenarios.4 Then, we apply the algorithm presented in [Conejo et al., 2010]
to reduce the number of scenarios to S′ = 30 and assign a weight πi to each
of them.

Discussion

Note that the forecast-dependent parameters are computed using the same
technique for all the analyzed algorithms. In particular, we train data-driven
quantile regressions from which we obtain the parameters required in input
by each scheme. This way, we target a fair comparison of the schedul-
ing schemes that is as independent as possible from the performance of

4 We selected the number of samples empirically: increasing the number of samples over this
value did not have a significant impact on the solution.
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the forecasting algorithm. Nevertheless, the engineering choices on prob-
lem structure and models, computational tractability, and data processing in
the design of a scheduling algorithm are strongly interconnected, and con-
tribute jointly to the final outcome, a mentioned in Chapter 2. Thus, it can be
practically impossible to ascribe the results to a single, specific algorithmic
choice. We comment further on this point while presenting the results.

5.1.5 Results

The average computation times required to solve the considered scheduling
problems are reported in Table 5.1. One can see that all three variants are
solved within fractions of a second (DFS and PFS) or within a few seconds
(SFS). Thus, the computational load does not appear to be an implementa-
tion barrier for any of the scheduling formulations.

The average values of rγ({∆g}K) resulting from the different scheduling
schemes are depicted in Figure 5.1 and detailed in in Table 5.1. Additionally,
Table 5.1 lists also the average amount of energy required daily from the grid
to compensate for the imbalances; this energy has to be considered as the
total daily energy request, regardless of whether it was absorbed or injected

Table 5.1: Simulation of a household results, lowest costs in bold.

DFS PFS SFS

(1− ε) or C1/C2 - 0.42 0.48 0.54 0.60 0.66 0.72 C1 C2

computation time (s) 0.07 0.41 0.43 0.41 0.42 0.43 0.43 5.33 3.81

rγ({∆g}K) 0.45 0.60 0.68 0.71 0.75 0.75 0.78 0.61 0.71

balancing energy (kWh) 5.82 4.39 3.56 3.10 2.86 2.79 2.66 4.81 3.56

cost {g̃}K (e) 4.86 5.48 5.87 6.29 6.68 6.84 6.96 5.40 6.24

cost {∆g(k)}K C1 (e) 4.06 3.07 2.51 2.19 2.02 1.98 1.90 3.41 -

cost total C1 (e) 8.92 8.55 8.38 8.48 8.70 8.83 8.86 8.81 -

cost {∆g(k)}K C2 (e) 27.77 19.86 16.56 14.46 13.53 13.43 13.10 - 17.51

cost total C2 (e) 30.36 25.34 22.42 20.75 20.21 20.27 20.06 - 23.39
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Figure 5.1: Simulation of a household: tracking of the DS, sorted by scheduling
scheme.

into the grid. The detailed imbalances profile for three different cases over
a week is depicted in Figure 5.2.

The DFS has the worst tracking performance. This can be noticed both
from Figure 5.1 and Figure 5.2 The PFS, instead, always achieves the de-
sired outcome of meeting the security level, i.e. rγ({∆g}K) ≥ (1 − ε).
Furthermore, the imbalances are such to include both positive and negative
deviations from the schedule. In the SFS the tracking ratio depends on the
pricing policy of the imbalances. This is aligned with the motivations behind
the SFS, aiming at the best trade off between the DS cost and the expected
cost of imbalances.

However, while the SFS achieves indeed a total cost lower than the one
of the DFS, the minimum total cost is unexpectedly obtained by the PFS
with an appropriate security level in both pricing policies C1 and C2. This
result is evident in Figure 5.3 on Page 124, which illustrates the average
total cost achieved under different scheduling schemes decomposed in its
schedule-dependent and its imbalance-dependent parts. Detailed costs are
also reported in Table 5.1. Observing Figure 5.3, it can be inferred that en-
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Figure 5.2: Simulation of a household: comparison of imbalances profiles over a
simulated week. Cost case C1, PFS with (1− ε) = 0.54.

hancing the internal reserves raise the cost of the DS, while reducing the
cost of imbalances. When the sole PFS is considered, these opposite ten-
dencies result in a total cost varying with (1− ε). The value for (1− ε) that
achieves the minimum cost under policy C1, (1 − ε) = 0.48, lays within
the selected range. The explanation is rather simple: the increase in the cost
of the DS caused by high values of (1 − ε) overcomes the savings attained
by a higher reliability under this policy. Likewise, low values of (1 − ε)

cause expensive imbalances that spoil the benefits deriving from a low-cost
DS. In the case of policy C2, instead, the minimum cost is achieved by the
highest security level, i.e. (1−ε) = 0.72. In this case, the imbalances are so
expensive in comparison to the cost of the DS that reducing them by raising
the requirement on the security level is worth the increase in the cost of the
DS. To conclude, the value of (1 − ε), whenever not imposed by require-
ment, can be regarded as a schedule parameter, which regulates the total
cost depending on the specific policy. Consequently, even if the proposed
algorithm is designed to achieve a given security level and not to minimize
the total cost, this latter scope can still be fulfilled with an appropriate tuning
of (1− ε). Additionally, the PFS can reduce the total cost even further than
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a SFS specifically designed for the purpose; Figure 5.3 indicates that this
happens for both considered pricing policies, C1 and C2. This phenomenon
can be explained considering that the SFS has the limitations already dis-
cussed in Chapter 2 connected to the approximation of the uncertainty to a
set of realizations. These limitations do not affect the PFS, where infinite
possible realizations of {l(k)}K are considered without any assumption on
an optimized redistribution of imbalances. Observe that the PFS does not
obtain a lower cost than the SFS for each value of (1 − ε), and that such a
value (or range of values) differs with the pricing policies of the imbalances.
The best (1− ε) is thus circumstantial, a function of the pricing policy that
is difficult to compute analytically. Nevertheless, (1− ε) can be tuned on a
specific case by means of simulation.

Figure 5.4 describes the profiles of the energy state for the different cases.
Therein, it can be noticed that the PFS improves the allocation of energy
reserve in comparison to the other methods, as it leads to a complete ex-
ploitation of the BESS capacity.

Finally, we report the power output profiles over the same week applying
different scheduling procedures in Figure 5.5. There, the dotted line repre-
sents the baseline profile {l(k)}K, the dashed line represents the DS {g̃}K,
and the full line the actual profile {g(k)}K. Even in this case one can see
that while the DFS leads to the DS with minimum cost, this DS cannot be
tracked as efficiently as the one computed using the PFS. In contrast, both
the SFS and the PFS try to balance these two aspects, with PFS attaining a
better behavior.

In conclusion, the PFS satisfies efficiently both requirements of limiting
the number of imbalances and of minimizing the total operating cost. Ad-
ditionally, the PFS outperforms the benchmark algorithms (DFS and SFS)
under all the analyzed aspects of the case study.
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Figure 5.3: Simulation of a household: average daily cost under different imbalance
pricing policies, sorted by scheduling scheme.
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Figure 5.4: Simulation of a household: comparison of energy state profiles over a
simulated week. Cost case C1, PFS with (1− ε) = 0.54.

5.1.6 Summary

The results of the first case study show that the proposed PFS algorithm not
only meets the desired requirements, but it performs better than state-of-the-
art scheduling algorithms, too. This latter aspect is particular important in
supporting one of the core-concepts of this thesis, i.e. the idea that an atten-
tive handling of the uncertainty at the expense of some approximations in the
mathematical description of the system and of its requirement can improve
the overall scheduling performance in comparison to an opposite case (i.e.
precise system and requirement modeling, uncertainties approximated by a
set of realization). In fact, the PFS obtains better results than the SFS also
under the aspects that are mostly affected by its approximations. While the
SFS is expected to perform best cost-wise, because it accounts for the actual
cost of schedule and imbalances, it is instead the PFS that obtains the lowest
cost, despite the indirect consideration of the imbalance price. Motivated by
these promising results, we carry on the analysis of the proposed scheduling
algorithm by investigating its application to a larger, industrial-size setting.
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Figure 5.5: Simulation of a household: power profiles of the inflexible load l, of the
power exchange with the grid g, and of the DS g̃ over a simulated week.
Cost case C1, PFS with (1− ε) = 0.54.
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5.2 Case Study 2: Simulation of an Industrial
Campus

The second case study in this Chapter concerns simulations of an indus-
trial campus, using a realistic cost function for the DS based on the ac-
tual day-ahead prices in the German electric energy market. After assess-
ing the goodness of the proposed scheduling algorithm against state-of-the-
art schemes, we address different research questions in this section. Is the
proposed algorithm scalable to large prosumption? Can it balance energy-
arbitrage and reserve allocation with realistic prices? Which are the benefits
of using external inputs in the forecasting process, e.g. weather informa-
tion? Similar to the previous case, we first report the characteristics of the
selected system, of the data, and of the tools employed in the simulations.
Then, we report the results and comment on them.

5.2.1 Description of the Case Study

The case study involves an industrial-size campus, specifically the KIT cam-
pus north [Hagenmeyer et al., 2016]. We consider a system composed of
three elements: the aggregated electric load of a medium voltage substation
serving office buildings and laboratories, a large-scale PV generator track-
ing its maximum power point, and a large-scale BESS. Even in this case,
we consider a simplified model that lumps these three elements in one node,
accounting solely for the exchange of active power at the interfaces with the
high voltage transmission grid. The characteristics of the devices and all
the data concerning consumption, generation, and weather are taken from
on-site measurements. In detail, the load is the active power consumption
at one of the medium-voltage substation of the distribution grid of the cam-
pus, with a yearly average value of 365 kW and peak consumption of 722
kW. The substation is serving office buildings, with a base load of about 350
kW. During the central hours of the day (working hours), the load increases
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to ca. 600 kW or 700 kW of peak load. The PV data stems from the 1
MW peak PV plant of the campus, located at 49.1°N, 8.44°E. Practically,
this data is obtained by scaling the measurements of an instrumented 10 kW
peak PV array with an inclination of 30° and an orientation of -15°, for
which weather information are available. The outcome of this choice is that
we suppose as if the entire solar field face south-east, with the peak of pro-
duction shifted towards the morning. The BESS is a Li-ion BESS with 1.5
MWh of usable capacity and it is capable of delivering a maximum of 1.8
MW of power. Regarding conversion losses, we consider a µ = 0.1 [Barry
and Thomas, 2017]. We arbitrarily initialize the energy state of the BESS at
the beginning of each simulated period (covering several days) to 750 kWh
(storage half full).

As in the previous case-study, the scheduling should balance the use of the
BESS between two opposite requirements. On one side, the BESS should
maintain sufficient energy reserves (in terms of energy excess and available
free storage) to compensate for forecast uncertainty in tracking the DS. On
the other side, the available storage should be used for energy arbitrage. The
tracking requirement translates in enforcing a minimum tracking ratio, cf.
constraint (3.8), with values of (1− ε) ranging from 0.50 to 0.80. This case
study does not include a pricing scheme for the imbalances. Regarding the
energy arbitrage, we consider the power exchange with the grid as priced (or
rewarded) as in the German day-ahead energy market. We consider a DS of
24 hours with hourly time step, i.e. K = 24 and δ = 1h. The DS has to be
computed at midday of the previous day, O = 12. Despite the market prices
change day by day, there exists a daily trend. Figure 5.6 reports the average
daily profile of the price for a time period with low energy prices (from 29
Apr 2018 to 12 May 2018) and for a time period with high energy prices
(from 07 Oct 2018 to 20 Oct 2018).5 While exhibiting different values,

5 https://www.epexspot.com/en/market-data/dayaheadauction
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Figure 5.6: Trend of energy prices for a day in different time periods of 2018 at the
EPEX day-ahead market (German market).

these two profiles follow the same trend, peaking at the same time of the
day. Motivated by these observations, we consider a cost of the DS equal to

cDS(g̃(k), k) = cl(k)g̃(k). (5.4)

Here, the time-varying cost coefficient cl(k) equals a price of energy that
averages the one of the high and of the low price period. This average price
profile is also depicted in Figure 5.6.

5.2.2 Simulation Setup

The simulations cover four different periods of six days each, ranging from
summer to autumn: six days in August, six days in September, six days in
October and six days in November. For each case, we consider a range of
values for (1− ε). As in the first case study, we run multiple calculation per
each day to mimic the hierarchical scheme depicted in Figure 3.2. The DS
is calculated once a day at 12:00, with a horizon extension of S = 6. The
power outputs and the energy state are instead computed sequentially with
higher granularity; specifically, we consider discrete time steps of 15 min-
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utes each. The on-line rescheduling is performed every 15 minutes, using
the information available at that point in time. The output of this optimiza-
tion and the realization of the uncertain load/generation (with a 15-minutes
resolution) contribute to the calculation of the energy state and of the power
outputs, which are then used as starting point for the following iteration.
The simulations are carried out in MATLAB, employing CasADi [Anders-
son, 2013] with the IPOPT [Wächter and Biegler, 2006]. All the computa-
tions have been performed using a PC with an Intel® CoreTM i5-6400 CPU
at 2.70 GHz and 8.00 GB RAM.

5.2.3 Forecasts

As in the previous cases, probabilistic forecasts for the sequences of inflexi-
ble power and energy overKa, {l}Ka and {el}Ka , are required in the schedul-
ing problem. Similar to the case study in Section 5.1, the total inflexible
load l is divided into consumption and PV generation (modeled as negative
load). The forecasts in terms of power are obtained using quantile regres-
sions based either on polynomials with a maximum degree of two, in the
case of consumption, or artificial neural networks (i.e. multi-layer percep-
trons with six hidden neurons), in the case of PV generation [González Or-
diano et al., accepted]. The load forecasting models use information of the
past month of load measurements as input. The PV generation models have
as input the PV power generated over the last 24 hours and the correspond-
ing weather forecasts, which use in turn solar irradiation and temperature
forecast data from the GFS model6 (as in [Barry and Thomas, 2017]). The
forecasts in terms of energy are created based on the power forecasts as in
Section 5.1.3. Finally, the forecasts of the total aggregated load l in terms
of power and energy are obtained by combining the PV generation and load
forecasts via a convolution operation for each time step. Note that the use
of weather inputs reduces the uncertainty affecting the forecasts in compar-

6 Available: ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/.
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Figure 5.7: Comparison of probabilistic forecasts for a campus load (consumption +
PV generation) with and without weather input.

ison to a purely auto-regressive forecast. This can be observed in Figure
5.7, which illustrates the probabilistic forecasts of L used for scheduling of
a given day with and without the consideration of the weather input.

5.2.4 Results

Figure 5.9a on Page 135 depicts the power profiles of l(k), g(k) and g̃(k)

over the September days for a (1 − ε) = 0.7. The DS profile shows that
the scheduling algorithm balances between using the storage as a reserve
and using it for energy arbitrage. On days with higher production (and,
therefore, higher volatility), such as 24 Sep 2018, the DS g̃(k) follows the
profile of l(k): the BESS capacity is used almost entirely as reserve because
of the high uncertainty. On days with lower production, instead, such as 22
Sep 2018, the BESS is used also for energy arbitrage: the system purchases
additional energy during the price minimum in the early morning and resells
it around the morning price peak.7 This behavior can be observed also in
Figure 5.9b on Page 135, representing the trend of the energy state of the

7 The morning price minimum is around 4:00, while the morning price peak occurs at 8:00, see
Figure 5.6.
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BESS. Therein, the morning energy arbitrage assume the form of a peak in
the energy state, mostly evident on 22 Sep 2018.

Why does this energy arbitrage occur only in the morning? One has to
consider that the uncertainty on the energy forecasts grows in time and that
the DS has to be computed at 12:00 of the day before. Observe from Figure
5.7 that the PV generation is the main source of uncertainty. Despite the use
of weather information in forecasting, the uncertainty affecting the energy
forecasts in the period of interest (from midnight to midnight) remains quite
high, especially at the end of the scheduling period. Specifically, the pos-
sible energy states span intervals in the order of 5 MWh around midnight
of the following day. The uncertainty becomes so high that it can be hardly
compensated even when using the storage only as a reserve. Consequently,
the further in the future the DS is planned, the lower becomes the possibil-
ity of using the storage for energy arbitrage while guaranteeing the required
tracking at the same time. These results indicates that the scheduling hori-
zon can be directly linked to a cost of reserves.

For similar reasons, the use of the storage for energy arbitrage is increased
in months with low generation, for example November. This can be ob-
served in Figure 5.10a on Page 136, which shows results that are conceptu-
ally equivalent to the ones of Figure 5.9a, but for a November week. The
cause of the additional energy arbitrage can be found in the relatively low
solar generation in this period, resulting in a lower uncertainty compared to
the summer case and, consequently, in a greater amount of the BESS storage
capacity that can be used for energy arbitrage. Alternatively, the scheduler
can be influenced towards energy arbitrage by selecting lower (1 − ε). For
an extreme comparison, we report in Figure 5.11 on Page 137 the same type
of data of Figure 5.9, but for a (1−ε) = 0.4. An increased used of the avail-
able capacity for energy arbitrage—at the cost of numerous imbalances—is
evident (note that the power profiles in 5.11 are reported in MW, and not in
kW as in the previous figures).
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Figure 5.8: Simulation of an industrial campus: tracking of the DS with different
values of (1− ε).

The influence of (1− ε) on the amount of imbalances can be observed in
Figure 5.8 and in Table 5.2, reporting the average daily values of rγ({∆g}K)

for different choices of (1 − ε). Note that constraint (3.8)—rγ({∆g}K) ≥
(1− ε)—is satisfied for (1− ε) ranging from 0.50 to 0.70, implying that the
tracking requirement is achieved. That is not the case for a (1− ε) = 0.80.
As already mentioned, the storage capacity of the BESS is small relatively to
the uncertainty affecting the forecasts of the inflexible power output. There-
fore, arbitrary values of rγ({∆g}K) cannot be reached: over a certain value
of (1 − ε), the scheduling algorithm can only pursue the DS that can be
tracked with the highest probability. This is also the probable cause of the
small increment of rγ({∆g}K) with increasing (1− ε). This example illus-
trates the importance of the constraint softening presented in Section 3.3.2.
Assessing a-priori the feasibility of a given value of (1 − ε) is difficult,
because it depends on the forecast uncertainty, which varies daily. Without
constraint softening, the scheduling problem would fail in computing a DS
each time the selected (1− ε) is unfeasible, and this would compromise the
robustness of the scheduling and control scheme.
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Table 5.2: Simulation of an industrial campus results.

(1− ε) 0.50 0.60 0.70 0.80

rγ({∆g}K) 0.769 0.773 0.774 0.780

cDS,p({g̃}K) (e) −56.14 − 56.95 − 56.99 − 61.46

Table 5.2 details also the values of cDS({g̃}K) with varying (1 − ε). As
already mentioned, higher values of (1 − ε) imply higher costs of the DS.
This is caused by a reduced energy arbitrage in favor of choices for {g̃}K
that are more conservative and thus able to achieve higher rγ({∆g}K).

5.2.5 Summary

This second case study points out an interesting aspect connected to the in-
crease of large-scale generation from renewable energy sources. While the
uncertainty affecting the forecasts of a “traditional” large-scale load (e.g.
power absorbed at a medium voltage substation of an industrial campus)
is small relatively to the expected load, the uncertainty affecting the fore-
casts of PV generation grows with the dimension of the generator to a con-
siderable percentage of the expected value—even when weather inputs are
considered. In fact, the large-scale load is composed of many, uncoordi-
nated small loads, whose deviation from expectation can take opposite di-
rection, balancing out when only the total load is considered. On the con-
trary, large-scale uncontrolled PV generation is composed of small gener-
ators that behave similarly, because subject to the same weather condition.
Consequently, dispatching PV generation robustly over a day-long time pe-
riod requires larger energy reserves in comparison with the case of “tradi-
tional” load, especially towards the end of the DS. The results presented
in this section show that the proposed scheduling algorithm can efficiently
cope with this challenge. First, it can balance using the BESS for both
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Figure 5.9: Simulation of an industrial campus: power and energy profiles over a
simulated week in September 2018 with (1− ε) = 0.70.
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Figure 5.10: Simulation of an industrial campus: power and energy profiles over a
simulated week in November 2018 with (1− ε) = 0.70.
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Figure 5.11: Simulation of an industrial campus: power and energy profiles over a
simulated week in Semptember 2018 with (1− ε) = 0.40.
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energy-arbitrage and reserve provision, adapting to the growing uncertainty
during the day. Second, it can respond to the degree of robustness desired
by the user. Finally, it can deal with security levels that are higher than
what practically allowed by the forecast uncertainty without running into
scheduling failures.

After having assessed the potential of the proposed scheduling algorithm
by simulation, it is left to research whether the response of a real-life system
would be aligned with simulation. We tackle this research question in the
next section, where an experimental application of the proposed scheduling
is presented.

5.3 Case Study 3: Experimental Dispatch of
Solar Generation

The third case study compares simulation results to experimental measure-
ments. The experiment allows evaluation of two aspects that are neglected
in simulation: an accurate model of storage losses and the intra-step fluctu-
ation of PV generation. In the following, we first describe the considered
system, then we report and comment on the results.

5.3.1 Description of the Case Study

Similar to the case study presented in Section 5.2, we utilize some equip-
ment allocated at the KIT campus north [Hagenmeyer et al., 2016]. As in
the previous case, we model the hardware assuming a single bus bar and we
target dispatch-as-scheduled of the total active power output of the system.
However, we consider in this case a system composed only of uncertain PV
generation and a BESS. The power exchange with the external grid is not
directly measured, but rather calculated by summing the power output of the
generator and of the BESS. The PV generator is the same instrumented 10
kW peak PV array described in Section 5.2.1; no scaling has been applied in
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this case. The BESS is Li-ion with a capacity of 25 kWh; we constrain the
energy state to remain between e = 5kW and e = 22.5kW to reduce aging
of the battery [Keil et al., 2016].8 The BESS interfaces with the AC grid
via a DC/AC converter with a power output adjustable in the range between
p = −30kW and p = 30kW. A low level controller is in place to track the
reference power gref, as described in Section 3.2. Further information on
the implemented controller can be found in [Barry and Thomas, 2017]. The
measurements of both the PV generation and the power output of the BESS
have a sampling time of 500 ms.

The scheduling requirements are as in Section 5.2.1. The tracking require-
ment imposes a security level (1−ε) = 0.70, with no explicit consideration
of an imbalance price. The revenues coming from the dispatched power fol-
lows the day-ahead pricing scheme described in Section 5.2.1, with hourly
prices varying as depicted in Figure 5.6 on Page 129. We perform online
rescheduling every 15 minutes, as described in Section 3.4.

It has to be mentioned that the equipment used in the experiment has been
designed as a pilot project aiming at a different scope than schedule compli-
ance. In particular, the converter is designed to deliver high power and it is
highly inefficient when working within a relatively low power range—which
is the case when tracking the schedule. Figure 5.12 depicts the efficiency
of the AC/DC conversion for battery charging.9 We have estimated, from
previous prototypical implementations, that the round trip efficiency of the
BESS is of about 60% (µ = 0.2) when controlled to track a typical DS. Fur-
thermore, the converter cannot deliver power in the range 0kW ≤ p ≤ 1kW,
and in the range −1kW ≤ p ≤ 0kW. Therefore, whenever the difference
between the DS and the actual power output is lower than 1 kW (in absolute
value), the schedule cannot be tracked. To summarize, while the installed

8 These bounds have been suggested by the operators of the battery.
9 We maintain in Figure 5.12 the original sign convention from [Barry and Thomas, 2017],

which is opposite to the one utilized in the present thesis.
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Figure 5.12: Conversion efficiency of the AC/DC conversion for battery charging;
adapted from [Barry and Thomas, 2017].

converter enables a control targeting schedule compliance, it is highly inef-
ficient and incapable of precise tracking.

5.3.2 Implementation Aspects

Measurements of the Energy State

The proposed algorithm relies on the measurement of the energy state e,
which is used as a feedback for the online rescheduling (see Figure 3.2).
Furthermore, measurements of this value are needed to evaluate the results.
However, this quantity is not directly accessible. In the literature there exists
a large body of work addressing the problem of estimating this value from
directly measurable quantities (e.g. voltage and current at the terminals of
the battery), but the investigation is still ongoing, see [Li et al., 2017] and
references therein. In the present work, we employ a simple technique based
on the estimation of the State Of Charge (SOC), which is provided by the
battery manufacturer. We performed charging and discharging cycles from
SOC = 5% to SOC = 95% at constant power for different power levels.
For each cycle, we measured the power exchanged with the battery on the
DC side of the storage converter (so to exclude the conversion losses from
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the measure), and use this measurement to estimate the energy state of the
BESS. This way, we could associate a SOC to a correspondent energy state
for each charging and discharging process, allowing creation of a lookup
table that allows the energy state to be estimated from the available SOC
information. Note that different energy sates may correspond to the same
SOC, depending on the redistribution of charges within this storage. This
redistribution is influenced by the charging/discharging profile and implies
a spread of energy states mapping to the same SOC that grows with the SOC
itself up to more than 1kWh. We considered the average energy state in this
range in the creation of the lookup table.

Unusable Operating Region

The equipment utilized in this case study requires further elaboration of the
scheduling problem (3.38). In particular, given the impossibility of operat-
ing the BESS within the ranges 0kW ≤ p ≤ 1kW and −1kW ≤ p ≤ 0kW,
we modify the storage constraint such that at least the expected power out-
put of the storage p̂ lays outside this interval. This does not ensure that p
will remain outside of this range, but it can simplify the operation of the
system.

To this end, we substitute (3.33b), (3.33c) and (3.33d) in F ′′d (p̂(k)) with

z(k)p(k) ≥ p̂+(k) ≥ z(k), (5.5a)

(−1 + z(k)) ≥ p̂−(k) ≥ (1− z(k))p(k), (5.5b)

z(k) ∈ {0, 1} . (5.5c)

Adding the binary decision variable z(k) renders the scheduling problem a
mixed-integer non-linear program, which is not easy to solve [Trespalacios
and Grossmann, 2014]. Furthermore, (5.5) does not allow p̂ = 0. Thus,
we first solve (3.38) without the constraint substitution detailed in (5.5).
Then, we set up the scheduling problem comprising the decision integer
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variable z(k), initializing z(k) = 1 whenever the solution of Problem (3.38)
indicates a positive p̂, and z(k) = 0 otherwise. Additionally, we neglect
(5.5) and force p̂ = 0 whenever the solution of Problem (3.38) indicates a
−1kW ≤ p̂ ≤ 1kW in the range between -1 kW and 1 kW.

Forecasts

The forecasting models for both offline scheduling and online re-scheduling
are created as described in Section 5.2.1.

5.3.3 Simulation and Experimental Setup

First, we simulate the behavior of the considered system under the schedul-
ing and control scheme proposed in Chapter 3 as in Section 5.2.2 for the
time period from 18 Sep 2018 to 22 Sep 2018. In particular, we con-
sider a discrete-time setting with δ = 0.25h, and compute the energy state
according to (3.1).10 Then, we observe the behavior of the experimental
system over the same time period, with the same scheduling and control
scheme. The only difference with the simulation is that, instead of comput-
ing e(k+ 1) starting from gref(k), l(k), and e(k) using the simplified model
(3.9) and (3.1), the signals are sent to the actual equipment and e(k + 1)

can be estimated as described in Section 5.3.2. In other words, we utilize
the BESS within a hardware-in-the-loop framework. Note that the chosen
time period involves a range of meteorological conditions. This way, we can
observe the response of the controlled system in different situations, includ-
ing both clear sky and cloudy days. The optimization problems are solved
in MATLAB, using CasADi [Andersson, 2013] with IPOPT [Wächter and
Biegler, 2006] for the non-linear program and quadratic program, and with
Bonmin [Bonami et al., 2008] for the mixed-integer non-linear program.

10 Given the linear model used to approximate the conversion losses in (3.1), simulating the
behavior of the system between two subsequent rescheduling events is meaningless, because
it would give the same results of the average model at the sampled times.
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5.3.4 Results

We divide the analysis of the results in two parts. In the first part, we com-
pare the results of the experiment to the ones of the simulation. In the second
part, we take a closer look to the experimental results.

Comparing Simulation and Experiment

In this section, we compare experimental and simulation results. For the
sake of a fair comparison, we consider δ = 0.25 h in both cases. Similarly
to previous sections, Figure 5.13 reports the profiles of l, gref, and g̃ obtained
both in experiment and in simulation. We compare two aspects: the DS, and
the imbalances.

First, we discuss the DS. From comparative observation of Figures 5.13a
and 5.13b, it can be seen that the profiles for g̃ obtained in the experiment
are similar to the ones obtained in simulation. To quantify this aspect, we
calculate the revenues of the DS as in Section 5.3, using (5.4) and the time-
varying price depicted in Figure 5.6. The total revenues over the considered
time periods are of 2.02e in the simulation and of 2.00e in the experiment,
i.e. the experimental revenues are 99 % of the simualtion revenues. From
this we can deduce that the simulation provides a good estimation of the
revenues that can be achieved in practice.

The case of the imbalances is slightly different. Figure 5.14 depicts the
imbalance profiles over the considered time period, both for the experiment
and for the simulation. These imbalances have been computed comparing
the reference signal gref resulting from online rescheduling and the DS g̃ at
the same time step. In this context, we assume perfect tracking of gref both
in the simulation and in the experiment. We comment on further tracking
errors observed in the experiment in the next section. Both experiment and
simulation indicate that the desired tracking ratio of rγ({∆g}K) = 70% is
obtained and exceeded, with a rγ({∆g}K) = 90% in the simulation and of
rγ({∆g}K) = 86% in the experiment. However, the tracking ratio in the

143



5 Case Studies on a single EC-DER

19/09 20/09 21/09 22/09
2018   

0

2

4

6

8

(a) Experimental results

19/09 20/09 21/09 22/09
2018   

0

2

4

6

8

(b) Simulation Results

Figure 5.13: Experimental dispatching: power profiles of the inflexible load l, of the
power exchange with the grid g, and of the DS g̃.
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experiment is 4% lower than what expected from simulation. Figure 5.14
indicates that the imbalance profiles are similar in cloudy days (e.g. the
21 Sep 2018), but they differ in clear sky days (e.g. the 20 Sep 2018). In
this latter case, the imbalances are more numerous and more severe in the
experiment (denoted with superscript ER) than in the simulation (denoted
with superscript SR). The reason is that in these days the online reschedul-
ing plans deviations from the DS more often than expected in simulation,
because of a mismatch between the model of a BESS utilized in simulation,
and the behavior of the real system. This mismatch can be imputed to mul-
tiple causes. At a first glance, the fact that the experimental energy state is
almost always lower than the simulated one seems to indicate an underes-
timation of conversion losses. This effect can be attenuated by increasing
µ or by adding a corrective term to (3.1). However, this mismatch should
be mostly imputed to an erroneous estimation of the energy state itself. In
fact, it can be observed that, on the one hand, the experimental energy state
deviates from the simulated one whenever the storage discharge but, on the
other hand, the experimental energy state returns to the simulated value dur-
ing charging. It is as if the error made in estimating the energy state during
discharging is compensated during charging. Thus, an improved method to
estimate the energy state would probably reduce the mismatch between the
simulated and the experimental profiles.

Online rescheduling is able to correct the errors in the storage model and
thus maintains the energy state within the required bounds, at the cost of
imbalances. This is shown in Figure 5.15, depicting the energy state profiles
in the experiment and in the simulation. One can observe that even if the
two profiles diverge from time to time, the experimental profile remains
almost always above the lower bound of 5 kW. Nonetheless, forecasting
errors at the rescheduling stage may cause slight constraint violation in both
the experiment and in the simulation. This is evident in the late evening of 21
Sep 2018. Note that—because of the already discussed model mismatch—
the fluctuations of the energy state measured experimentally are more severe
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Figure 5.14: Experimental dispatching: imbalances profiles, comparison of simula-
tion and experimental results.

than the ones seen in simulation. Furthermore, the BESS is set up to turn
off after sunset whenever g̃ = 0. Thus, after the last violation of the energy
constraint on the evening of 21 Sep 2018 caused by forecasting errors, the
online rescheduling is able to bring the energy state above the required lower
bound only on the following morning. To summarize, the ER point out
the need for some corrections in the implemented control system. First,
an increase in the frequency of rescheduling would reduce the impact of
forecasting errors, avoiding constraint violation. Second, the system should
be turned off at night only if g̃ = 0 and the energy state is within the desired
bounds.

To conclude, the experimental results show that a simulation may under-
estimate the amount and severity of imbalances that would occur in real-
ity, particularly in clear-sky days. However, this underestimation is mild
(4%) and the required tracking ratio is also reached in the experimental set-
ting. Regarding the DS, the experimental results are aligned with the simu-
lation results. Overall, the experimental results confirm the properties of the
method observed in simulation. However, further experiments on different
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Figure 5.15: Experimental dispatching: stored energy profiles, comparison of simu-
lation and experimental results.

systems (purposely designed for schedule compliance) would be beneficial
to confirm this trend.

Experimental Profiles

In this section, we report and comment on the experimental results with a
sampling period of 1 minute. Figure 5.16 reports the power profile; this
figure is equivalent to Figure 5.13a with a higher resolution. Figure 5.16,
and in particular Figure 5.16b, illustrates that the fast fluctuations in the PV
generation are almost entirely averaged out by the BESS, which is one of the
main benefits of the proposed control strategy for the external grid. Note that
this effect is independent from the imbalances: the BESS counterbalances
the fluctuations of the PV generator even when deviations from the DS are
planned.

Figure 5.16 also illustrates the limits of the used equipment: the BESS
fails in providing accurate tracking every time the difference between g̃ and
l is smaller than 1 kW in absolute value. For the sake of completeness, we
report the SOC profile with sampling period of 1 minute in Figure 5.17.
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Figure 5.16: Experimental dispatching: power profiles of the inflexible load l, of the
power exchange with the grid g, and of the DS g̃, sampling period of 1
minute.
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Figure 5.17: Experimental dispatching: state of charge profile, sampling period of 1
minute

5.3.5 Summary

This third case study corroborates the findings discussed in the previous sec-
tions by means of real-life measurements on an experimental set up. In par-
ticular, we compare simulation and experimental results on a dispatchable
solar generator. The comparison indicates that the simulations are accurate
in reproducing the DS that would be computed in real-life. At the same
time, it shows that the simplified storage model used in simulation and the
difficulties of evaluating the energy state of the BESS may cause an under-
estimation of the number and of the severity of imbalances. However, this
underestimation is mild and does not compromise previous findings. The
experimental results also indicate that the online rescheduling should be per-
formed frequently enough to avoid forecasting errors to cause the violation
of any constraint. Last, the proposed hierarchical control strategy is able to
counterbalance locally the volatility of solar generation, thus lowering the
power balancing burden on the external grid.
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5.4 Summary

In this chapter, we analyze the performance of the scheduling algorithm pro-
posed in Chapter 3 in different settings, both by means of simulations and
of real-life experiments. The results indicate that the proposed scheme can
cope with the system requirements, that it can achieve better revenues/costs
in comparison with state-of-the-art scheduling based on sampling and sce-
nario forecasts, and that it is applicable to real systems independently of
their scale. However, all the analyzed cases included only one EC-DER with
time-invariant power and energy constraints (specifically, a single BESS).
The case study examined in the next chapter overcomes this restriction, in-
vestigating the effects of the proposed scheduling algorithm on a system
comprising a population of EC-DER changing over time.
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EC-DERs

The case study presented in this chapter extends the analysis of the proposed
scheduling algorithm to multiple EC-DERs. The purpose is to provide an
example of how the algorithm presented in Chapter 3 can be applied to mul-
tiple EC-DERs by using the findings on aggregated models described in
Chapter 4. The specific system considered here groups together a BESS,
PEVs, and inflexible and volatile PV generation into what we define a DCS.
The idea behind a DCS is to use the storage provided by both the BESS and
the PEVs to dispatch the active power exchange between an external power
network and the group of devices comprised in the station itself. Computa-
tion of a day-ahead DS for a DCS is a challenging problem that requires con-
sideration not only of multiple storage devices, but also of multiple sources
of uncertainties. In particular, the uncertainty affecting the connection of
PEVs should be regarded in addition to the uncertainty of the forecasts of
the power output of the PV generator. The ideas presented in this section
have appeared in [Appino et al., 2018c].

6.1 General Modeling of a Dispatchable
Charging Station

6.1.1 Device Models

The considered DCS is composed of a charging station for PEVs, a BESS
and a generator exploiting intermittent renewable energy sources, such as a
PV generator. All the devices are connected to the same bus, as depicted
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Dispatchable Charging Station

inflexible 
generation

direct 
controllable: 

PEVs and
BESS

BESS

Figure 6.1: Schematic diagram of a DCS.

with a scheme in Figure 6.1. The connections are assumed lossless and
such that the system components can exchange power mutually without any
technical restriction. Note that the number of connected PEVs might vary
over time. As in the previous chapters, g(k) denotes the power exchange
with the main grid, l(k) the aggregated power output from uncontrollable
generation, and pj(k) the power output of the j-th controllable device. The
sign convention is the same for all power variables, with positive power
flow directed as depicted in Figure 6.1. Following the notation introduced
in Chapter 4, we denote the index set of devices connecting to the DCS
over K withNK, where index 1 corresponds to the BESS and the remaining
indexes to the PEVs.

The dynamics and constraints of each device follow (4.37) and (4.2). For
the sake of simplicity, we assume that the BESS and all the PEVs are subject
to the same efficiency µ1 = ... = µN = µ. The capability and capacity
limits of the devices are time-invariant, and such to satisfy Assumptions 1
and 2.

Regarding the system parameters, we account for two sources of uncer-
tainty (as in Section 4.8.2): the inflexible power output {l}K, and the energy
state of the v-th PEV at ka

v , ev(ka
v) for all v ∈ {NK \ {1}}. We consider
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6.1 General Modeling of a Dispatchable Charging Station

the remaining characteristics of each v-th PEV—pv, pv, ev, ev, e
min
v , ka

v , and
kd
v—as known.1

6.1.2 Requirements

The scheduling and control scheme tested in the present chapter aims at
dispatch-as-scheduled of the power exchange g(k), with the aid of a coor-
dinated and collaborative control of the system components. Thus, the DCS
has the same requirements of the system presented in Chapter 4, with the
addition of a further requirement on the energy state of the PEVs.

Regarding the requirement on the power exchange g(k), operating rev-
enues (or costs) can be directly associated to the DS through a cost function
cDS(g̃(k), k), see (3.5), while imbalances are penalized in operation and/or
limited by regulation, see (3.6) and (3.7).

Additionally, scheduling for the DCS should account for the charging re-
quests of each PEV. We suppose that, upon departure, the energy state of
each v-th PEV (v ∈ {NK \ {1}}) should have reached at least a minimum
threshold emin

v . We model this requirement by modifying the constraints of
each v-th PEV at kd

v to

emin
v ≤ ev(kd

v) ≤ ev. (6.1)

Note that, as in [Kou et al., 2016], we consider a setting without any operat-
ing revenues proportional to the power exchanged with the PEVs. Although
possible, charging the battery of the v-th PEV beyond emin

v would not yield
any additional revenue, with the only (practically rare) exception of negative

1 It may seem that this is an unrealistic modeling choice. However, it is reasonable in several
cases. A trivial example is given by a setting in which the PEVs declare their intended arrival
and departure times on the day before. A second case can be found in parking lots of office
buildings, where the variance on ka

v , and kd
v is generally smaller than an hour [Sarabi et

al., 2016]. With respect to the DCS, if the variance on ka
v and kd

v is of the same order of
the duration of the dispatch intervals δ, the arrival and departure times of a PEV could be
considered as certain. Last, worst case estimates can be used if these considerations do not
apply.
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6 Case Study on a Population of EC-DERs

costs for acquiring power from the grid. Additionally, we avoid modeling
that certain energy states or charging profiles should be preferred over oth-
ers to avoid deteriorating the battery health. Such phenomena are still under
discussion, see [Schwenk et al., 2019]. Therefore, their consideration is left
to future works. Summing up, the requirements on the charging of PEVs are
such to provide flexibility to balance uncertainty in two different manners:
i) flexibility in regulating the charging profile over the parking period, and
ii) flexibility in the energy state of a PEV upon departure.

6.2 Three-stage Scheduling and Operation

Following the framework presented in Chapters 3 and 4, and similarly to
[Vandael et al., 2013], we undertake the scheduling and operation of a DCS
in three subsequent decision stages. A separate optimization is conducted at
each stage depending on a stage-specific model. This three-stage structure
extends the hierarchical scheduling and control scheme depicted in Figure
3.2, adding the aggregation and dispersion phases described in Chapter 4.

At the first stage, a DS is computed based on an aggregation of the con-
straints of all controllable devices. At the second stage, a charging plan for
the PEVs is computed. This second stage serves two purposes at once: i) it
performs the online rescheduling that is necessary to control the imbalances,
as described in Section 3.4, and ii) it computes a consistent dispersion of the
aggregated energy state, as described in Chapter 4. At the third and last
stage, the power output of the BESS is regulated in compliance with the DS.
We depict this three-stage scheme in Figure 6.2 and summarize the main
aspects of each decision stage in the following.

Stage 1: Dispatch Schedule

The first decision stage is the calculation of the DS {g̃}K at k0, by means
of optimization. We tackle this task by means of aggregated scheduling, as
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(a) Stage 1: dispatch schedule

time-varying battery

(b) Stage 2: power outputs of the PEV

(c) Stage 3: power output of the BESS

pre-determined

power outputs

BESS

BESS

BESS

Figure 6.2: Device aggregation at different stages.
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6 Case Study on a Population of EC-DERs

described in Chapter 4. In particular, we utilize the results on aggregations
with time-varying connections, as detailed in Section 4.8.

Stage 2: Power Outputs of the Plug-in Electric Vehicles

The power outputs of the PEVs at k, pv(k) for v ∈ {NK(k)\{1}} are deter-
mined at the second stage. This is equivalent to “dispersing” the aggregated
energy state among the various devices, as discussed in Chapter 4. Note
that we perform the dispersion by means of receding horizon optimization,
see Remark 1, and not with direct computation of a consistent dispersion,
as described in Theorem 1. One reason guiding this choice is that in the
case of a DCS some consistent dispersions are preferable over others, be-
cause they reduce the probability of leading to a trajectory that is unfeasible
(even if composed by a sequence of feasible states, cf. Section 4.8), es-
pecially towards the end of the schedule. As mentioned in Section 4.8, it
is preferable to charge the BESS before the PEVs. Another reason is the
possibility of planning ahead imbalances that cannot be avoided, eventually
re-distributing them over different time-steps, see Section 3.4.

For the sake of simplicity, we set the second-stage receding horizon op-
timization to be performed at each step of the DS, i.e. pv(k) is com-
puted at k. Similarly to the on-line rescheduling presented in Section
3.4, the second-stage optimization solved at k spans the interval M(k) =

{k, k + 1, ..., k +M}. Aggregation is not possible anymore; Figure 6.2b
depicts the model of the DCS used at this stage. The optimization aims
at determining pv(h) and the expected power output of the BESS, ê1(h),
h ∈M, for which g(h) follows the DS.
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6.2 Three-stage Scheduling and Operation

For the sake of clarity, we report the second-stage optimization problem
entirely

min
{xM (h)}M(k)

∑
h∈M(k)

α∆g(h) +
∑

v∈L(M(k))

cv
v

(
ev(k

d
v)− emin

v

)2
(6.2a)

s.t. ∀h ∈M(k)

g̃(h) + ∆g(h) = l̂(h) + p̂1(h) +
∑

v∈{NM(k)(h)\{1}}

pv(h), (6.2b)

(4.37), (4.2) for j ∈ NK(h), (6.2c)

pv(h) = 0 for v /∈ {NK(k) \ {1}}, (6.2d)

with decision variables collected in vector

xM (h) := [∆g(h) p̂0(h) p1(h) ... pN (h)]> ∈ R2(2+V ).

Therein, (6.2b) represents the power balance, (6.2c) and (??) cover the
constraints of the connected devices,2 and (6.2d) sets to zero the power out-
puts of the not-connected PEVs. The imbalance ∆g(h) is introduced to
guarantee the feasibility of the power balance, acting as a soft-constraint
slack variable. In other words, the controller can schedule deviations from
the DS whenever the system is in a state from which such imbalances can-
not be avoided. Even if not considered in this test case, requirements on
imbalances can be enforced as discussed in Section 3.4. The cost function
(6.2a) is designed accordingly to penalize ∆g(h) with an appropriate weight
α [Kerrigan and Maciejowski, 2000]. Additionally, over-charging of the v-
th PEV is also penalized with weight cv

v , which can differ for distinct PEVs
and which can adapt in subsequent iteration of (6.2). As discussed in Sec-
tion 4.8, it may be useful to delay the “departure” of any eventual energy
excess as long as possible. In this manner, any excess of energy stored in

2 Note a slight simplification of notation: in (6.2c) one should consider the expected power
output and energy state of the BESS, p̂1 and ê1, and not their realizations p1 and e1.
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6 Case Study on a Population of EC-DERs

the PEVs remains available for compensation of uncertainty as much as pos-
sible. This is attained with (6.2) by setting higher values of cv

v for the PEVs
leaving at first.

Note that the values of the intermittent power output l(h) overM(k) and
of the energy state of the not-yet-connected PEVs upon arrival are still un-
certain at this stage. However, consistently with the online rescheduling
presented in Section 3.4, the second-stage optimization does not involve ran-
dom variables, making use of a deterministic forecast l̂(h) and deterministic
vehicle parameters. The DS itself already accounts for long-term uncer-
tainty and short-term uncertainty is compensated by the BESS (see the de-
scription of the next stage). Finally, note that the DS overM(k) enters (6.2)
as a parameter. Therefore, the horizon M should satisfy M < (kb − k0),
thus ensuring the availability of a reference for g̃ over the entire time interval
covered by (6.2).

Stage 3: Power Outputs of the Energy Storage System

The power output of the BESS p1 is finally computed at the third stage,
once the uncontrolled power output is known. Figure 6.2c illustrates the
system model used at this stage. At k, the power outputs of the PEVs follow
the references computed at the second stage while the BESS regulates the
power exchange with the grid to gref(k) = g̃(k) + ∆g(k), as in Section 3.2.
In other words, the actual power output p1 complies with the realization l(k)

in accordance to the power balance

p1(k) = g̃(k) + ∆g(k)− l(k)−
∑

v∈{NK(k)\{1}}

pv(k). (6.3)

6.3 Simulation

Next, the efficacy of the proposed scheduling and control scheme is evalu-
ated by simulating a realistic test case built upon real data of uncontrolled
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generation and vehicle traffic. Furthermore, a state-of-the-art two-stage
stochastic programming with scenario forecast is implemented as a bench-
mark for the computation of the DS. As in the previous chapter, PFS denotes
the proposed method and SFS refers to the selected benchmark.

6.3.1 Description of the Case Study

A small parking lot of an office building, similar to the one examined in
[Mouli et al., 2016], provides the case study. The parking lot is equipped
with a PV generator, a BESS and five charging spots. All the devices are
connected to the distribution grid and operate together as a DCS. A DCS
controller is responsible: i) to communicate the DS to the system operator,
ii) to regulate the power output of the chargers, and iii) to set the value
of gref(k) for the low-level storage controller. The details of the various
components are as follows.

Photovoltaic Generator

The PV generator has 10 kW of peak power, and it is controlled to track its
maximum power point. The PV generation data is taken from the dataset for
the solar track of the Global Energy Forecasting Competition of 2014 [Hong
et al., 2016]. This dataset consists of time series—with hourly resolution—
of measured PV generation and of their corresponding solar irradiation fore-
casts. The measurements have been taken in an unnamed region of Aus-
tralia.

Energy Storage System

The parameters of the BESS are retrieved from the catalog of a commercial
producer.3 Table 6.1 details the power and energy limits (only the usable
capacity is considered), while µ = 0.05.

3 www.tesla.com/powerwall [Accessed: 15-Jan-2018]
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Table 6.1: Parameters of BESS and PEV

BESS parameters PEV parameters

p
1

-5 kW p1 5 kW p
v

0 kW pv 10 kW

e1 0 kWh e1 13 kWh ev 7 kWh ev 40 kWh

Table 6.2: Arrival/departure data

v 1 2 3 4 5

arrival time 07:00 08:00 09:00 09:00 10:00

departure time 17:00 16:00 17:00 17:00 18:00

Plug-in Electric Vehicle

For the sake of simplicity, we consider that all the charging stations are used
daily, i.e. NK = [1 . . . 6] every day (weekends included), and that all the
connecting PEVs have the same characteristics. These values have been se-
lected after a consultation of the catalogs of different producers, as average
values among the chosen products.4 Table 6.1 reports the power and energy
limits, while µ = 0.05 (same as for the BESS, cf. Section 6.1.1). Even
if the model considered in designing the scheduling and control scheme
is fully general, we suppose in the case study the challenging situation in
which the owners of the PEVs do not allow for a vehicle-to-grid service, i.e.
the DCS cannot discharge a connected PEV. Thus, p

v
is set to 0. The mini-

mum charge required at departure is emin
v = 30kWh ∀v ∈ {NK(k)\{1}}. A

survey on vehicle usage carried out within the Institute for Automation and
Applied Informatics at the Karlsruhe Institute of Technology over a time
period of three months is the reference for the data on the vehicle mobility

4 Tesla Model 3, Chevrolet Bolt 2017, Nissan Leaf 2018, BMW i3s
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Figure 6.3: Relative frequency of the energy state (in % of the total capacity) of the
PEVs upon arrival.

(energy state upon arrival, arrival and departure times).5 The arrival times of
the five PEVs are assigned proportionally to their statistical frequency. The
departure times, instead, are chosen as the weighted average of the departure
times of the PEVs arriving within the same hour, rounded down. Table 6.2
lists the resulting data. The (statistical) relative frequency of the energy state
of the PEVs upon arrival is estimated on the base of the traveling distance,
as in [Sarabi et al., 2016]. We consider an autonomy of 280km with full
charge and that each v-th PEV charges only at the DCS, up to emin

v . The re-
sults are depicted in Figure 6.3. In simulation, ev(ka

v) is randomly extracted
in accordance with this frequency.

Scheduling Requirements

The chosen case study observes the regulation for day-ahead markets: the
DS is computed at 12:00 of the previous day and it extends over 24 hours
with discrete steps of one hour, i.e. δ = 1h, kb = 12, K = 24 and
k0 at 12:00. The coefficients of the cost function cDS(g̃(k), k) are time-
independent and equal to cq+ = cq- = 0.05 e·hkW2 , cl+ = 0.3e·hkW , cl- =

0.015e·hkW , cc = 0.02 e·hkW2 , and cd
v = 0.03 ekW .

5 We report here only the results of the survey that are relevant for the present work. Please
note that the only aim of the survey is to provide a realistic test case for the proposed scheme
and does not allow to infer general trends on the vehicle usage. However, our data is aligned
with the tendencies described by other works, cf. [Sarabi et al., 2016; Lee et al., 2012].
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6.3.2 Forecasts

As for the case studies analyzed in Chapter 5, we use the data of PV gen-
eration and radiation forecasts to train several quantile regressions based on
a method described in [González Ordiano et al., accepted] with the open-
source MATLAB toolbox SciXMiner [Mikut et al., 2017]. Thereafter, we
derive probabilistic forecasts for both power and energy from those models,
using the procedure detailed in 5.1.3. Then, we apply (4.52) approximat-
ing fEv

(y) by the frequency illustrated in Figure 6.3. Finally, we obtain the
analytic description of F∆Ec(k)(∆ec) required in the scheduling problem by
fitting the quantiles to a logistic function as in Section 5.1.3.

6.3.3 Benchmark Scheduling Method

In order to find a benchmark case for the proposed scheduling and con-
trol method, we examine existing work from the literature. Among these
works, aggregated scheduling of PEVs is well investigated, and does not
constitute a novelty. Examples can be found in [Momber et al., 2015; Liu
and Etemadi, 2017; Alipour et al., 2017; Zhang et al., 2018; Baringo and
Amaro, 2017; Herre et al., 2019]: aggregated scheduling is a common ele-
ment among these works, which distinguish by the specifics of the investi-
gated problem and by the feedback to the uncertainty realization. For exam-
ple, Zhang et al. [2018] consider a sub-hourly regulation signal with offers
of regulation capacity determined by means of optimization; Momber et al.

[2015]; Liu and Etemadi [2017]; Alipour et al. [2017] include the volatil-
ity of price signals and of reserve activation directly in the computation of
the schedule; Baringo and Amaro [2017] conceive price-dependent bidding
functions; Herre et al. [2019] consider the case of a risk-adverse aggregator
bidding on multiple energy markets. The main difference between the cited
works and the proposed method lies in the computation of a DS. In fact, de-
spite their differences, all the cited works cope in the same manner with the
long-term uncertainties affecting the scheduling. In particular, they engineer
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a stochastic optimization problem with a two-stage strucutre and they solve
the problem using a sampling based method with scenario forecasts [Conejo
et al., 2010]. Alternatives to stochastic optimization with scenario forecast-
ing for scheduling the charging of a fleet of PEVs exist, e.g. [Kou et al.,
2016], but they have received little attention. For these reasons, stochastic
optimization with scenario forecast provides a benchmark for the evaluation
of the proposed DS computation, similar to the household case study, cf.
Section 5.1.4. The three-stage scheme as well as the aggregation model are
instead both maintained in the benchmark case.

For the sake of completeness, we report in the following the computation-
ally tractable optimization problem with scenario forecasts

min
{x}Ks ,{

xω′}
Ks
∀ω′∈S′

CDS + C i

s.t. ∀k ∈ Ks, ∀ω′ ∈ S ′

g̃(k) + ∆gω
′
(k) = pω

′
(k) + lω

′
(k),

eω
′
(k + 1) = eω

′
(k) +

∑
v∈AK(k)

eω
′

v (ka
v)

+ δ ·
(
pω

′
(k)− µp+,ω′

(k) + µp−,ω
′
(k)
)
,

eω
′
(kb) = e0,[

g̃+(k), g̃−(k)
]
∈ F ′d(g̃(k)),[

p+,ω′
(k), p−,ω

′
(k)
]
∈ F ′′d (pω

′
(k)),

pω
′
(k) ∈ P(k),

eω
′
(k + 1) ∈ E(k + 1),

with scenario-independent decision variables collected in vector

x(k) =
[
g̃(k) g̃+(k) g̃−(k)

]> ∈ R3,
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and scenario-dependent decision variables in vector

xω
′
(k) =

[
eω

′
(k + 1) pω

′
(k) p+,ω′

(k) p−,ω
′
(k) ∆gω

′
(k)
]>
∈ R5 ∀ω′ ∈ S ′.

6.3.4 Simulation Setup

The simulations investigate six different weeks in the time frame between
October 2013 and May 2014. Seasonal changes are examined by selecting
weeks from separate months. Multiple simulations are conducted for each
week, with different values for the security level (1− ε). Horizon M is set
to 11. The simulations are implemented in MATLAB, using standard open-
source optimization tools developed in the systems and control community.
Specifically, we use CasaDi [Andersson, 2013] with IPOPT [Wächter and
Biegler, 2006]. All the calculations have been performed using a PC with
an Intel® CoreTM i5-6400 CPU at 2.70 GHz and 8.00 GB RAM.

6.3.5 Results

The results of the simulations are summarized in the following. First, we re-
port the results achieved with the application of the proposed method. Then,
we compare these results with the ones generated with the SFS.

Performance of Proposed Method

The average time to compute the DS, reported in Table 6.3, is always a
fraction of a second. Hence, the computational load does not restrain the
implementation.

The average values of rγ({∆g}K) (defined in (3.8)) measure the track-
ing performance. Values of rγ({∆g}K) obtained with different choices
of (1− ε) are depicted in Figure 6.4 and listed in Table 6.3. The real-
ized rγ({∆g}K) is always higher than (1 − ε), implying that the proposed
method fulfills the reliability requirement. The accurate tracking is notice-
able also in Figure 6.5, showing various power profiles over simulated sum-
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Table 6.3: Simulation of a DCS results.

PFS SFS

(1− ε) 0.55 0.65 0.75 0.85

rγ({∆g}K) 0.77 0.83 0.87 0.89 0.82

bal. energy (kWh) 7.67 5.94 4.12 3.51 7.00

comp. time (s) 0.51 0.52 0.52 0.54 12.54

cost {g̃}K (e) −0.25 0.37 1.28 2.86 −0.02

cost {∆g}K (e) 4.60 3.56 2.47 2.10 4.20

cost total (e) 4.35 3.94 3.76 4.96 4.18

0
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80

100

PFS 0.55 PFS 0.65 PFS 0.75 PFS 0.85 SFS

Security level Tracking

Figure 6.4: Simulation of a DCS: tracking of the DS with different values of (1 − ε)
/ scheduling schemes.

mer days (Figure 6.5a) and autumn days (Figure 6.5b). There, the dotted
line represents an eventual baseline prosumption l′(k),

l′(k) = l(k) +
∑

v∈{NK(k)\{1}}

emin
v − ev(ka

v)

(kd
v − ka

v)
,

corresponding to the case where the power absorbed by each v-th PEVs
cannot be manipulated and remains constant over the interval [ka

v, k
d
v]. The
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Figure 6.5: Simulation of a DCS: power profiles of the inflexible load l, of the power
exchange with the grid g, and of the DS g̃ over two simulated week with
(1− ε) = 0.75.

dashed line depicts the DS g̃(k) and the full line is the realized power ex-
change g(k). Note that the DS is not trivial and varies daily in accordance
with the forecasts and the initial energy state of the BESS. Seasonality has
a great impact on the DS, because of its influence on PV generation.

In Figure 6.5 it can be also observed that imbalances are more likely to
appear towards the end of the day, where the uncertainty on the aggregated
energy state is higher (see Figure 4.7). Note that extended or excessive im-
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balances might negatively affect the stability of the overall system. This is
an important aspect that should be considered within the operation require-
ments to consent the implementation of the proposed method on a large
scale. Options to deal with this issue at the second decision stage (concep-
tually similar to the online rescheduling level of the hierarchical scheme in
Section 3.1.3) can be found in Section 3.4. Last, Figure 6.5 exhibits that the
proposed method highly reduces the ramp power required from the grid. In
particular, the average of the daily maximum difference among two subse-
quent values of l′ is of 2.98 kW, which diminishes to 1.34 kW for g (55%

less).
A quantitative evaluation of the improvements in the power profile is

obtained by applying cost functions cDS(g̃(k), k) (see (3.5) and (3.5b)) to
{g}K, considering the linear coefficients in e/kW, and the quadratic ones
in e/kW2. The average daily cost of the hypothetical baseline load l′, eval-
uated according to cDS(g̃(k), k) as if it was dispatched, is of 7.07e. The
average daily costs of the DS, reported in Table 6.3, are between −0.25e

and 2.86e. Table 6.3 also details an hypothetical daily cost of the imbalance
profile {∆g}K calculated with respect to cost function ci(∆g(k)) introduced
in (3.6), with tariffs that are twice as high as the one of the DS counting both
power excess and shortage as purchased power, i.e. c∆ q = 0.1e/kW2 and
c∆ l = 0.6e/kW. The total costs obtained with different values of (1 − ε)
are depicted in Figure 6.6, with different colors differentiating the compo-
nent associated to the schedule from the one associated to the imbalances.
As for the test case in Section 5.1, one notices that a higher (1 − ε) corre-
sponds to a higher cost of the schedule and to a reduced cost of imbalances.
The chosen pricing implies that values in the middle of the selected range
achieves the best trade off between reducing the cost of the DS and the one
of imbalances.

Figure 6.7 depicts the energy state profile of the BESS and of two of the
five PEVs over the same days illustrated in Figure 6.5, with varying values
for (1 − ε). First, observe that the proposed scheme meets the requirement
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Figure 6.6: Simulation of a DCS: average daily cost with different values of (1− ε) /
scheduling schemes.

on the minimum energy state of each PEV upon departure in every case.
Then, note how the behavior of the system changes with (1 − ε). This is
caused by a different allocation of the energy reserves: increasing (1 − ε)
reduces the reserves required on the grid side (see Table 6.3 on Page 165)
and increases the internal ones.6 Consequently, with low values of (1− ε):
i) the available capacity of the BESS is used both to provide energy reserves
and to optimize the DS, and ii) the final energy state of each PEVs rarely ex-
ceeds its respective emin

v . In contrast, with high values of (1−ε): i) the BESS
is almost solely used for reserves purposes, and ii) the PEVs are generally
charged over their emin

v . In this latter case the BESS is maintained charged
such that it can inject power in case of underproduction; concurrently, the
PEVs have to absorb production excess.

Benchmark Comparison

The DS calculated with the SFS considers explicitly the expected cost of
imbalances and aims at minimization of the total cost. The PFS can tar-
get (indirectly) cost minimization with an appropriate choice of (1 − ε),

6 As in Table 5.1, “balancing energy” indicates the average amount of energy needed each day
to compensate for deviations from the DS, which is considered positive regardless of whether
it is absorbed or injected into the grid.
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as described in the previous chapter. Thus, in a similar way to the house-
hold case in Section 5.1, a fair comparison between SFS and PFS should
be based on the total cost, accounting for a range of (1 − ε). It can be ob-
served that the total cost in the SFS case is indeed lower than the one of the
“dispatched baseline”, which is of 7.07e. However, the PFS attains better
results than the SFS for a range of values of (1 − ε): both (1 − ε) = 0.75

and (1− ε) = 0.65 lead to a total cost lower than the one of the SFS.
Additionally, note that the computation time required by the SFS is more

than twenty times higher than the one required by the proposed method.
Thus, the PFS reduced the computational burden significantly.

6.4 Summary

In this chapter we analyze scheduling and operation of a DCS, i.e. an aggre-
gation of flexible and inflexible power devices comprising a BESS, PEV
and PV generation. As outlined in Chapter 3, we resort to hierarchical
scheduling and operation by distributing the decision making over subse-
quent stages, each based on a different model of the system. The core of
the study is the first decision stage, i.e. the computation of a DS for the
entire system, where the application of probabilistic forecasts to a dynamic
aggregation of diverse devices leads to a DS with a given probability of be-
ing realized in operation. The simulation results show that the requirements
on vehicle charging and power dispatch are always met, thus attesting the
goodness of the proposed method. In simulations the proposed scheduling
scheme also exhibits better performance than two-stage stochastic program-
ming based on scenario forecast, coherently with what has been already
observed in Section 5.1.
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7.1 Conclusions

This thesis deals with scheduling the active power output of an aggregation
of distributed energy resources including controllable and uncertain power
outputs.

In Chapter 2 we report and analyze existing techniques to deal with such
scheduling problems. The literature review indicates that the majority of the
works addressing the problem proposes algorithms based on numerical op-
timization, where the optimization parameters are evaluated via appropriate
data processing. In this framework, the state-of-the-art procedure to deal
with the uncertainty affecting some parameters of the optimization problem
(e.g. future PV generation) is to approximate the uncertain parameters by a
finite set of possible realizations—in other words, by sampling. This choice
is motivated by the generality of this approach and allows to tackle data pro-
cessing and numerical optimization separately. The data processing outputs
a set of realizations of the uncertain parameter; the numerical optimization
receives a set of realization of the uncertain parameters in input. In other
words, these two elements work in a “plug-and-play manner”: modifying
one does not require the other to change. However, in Chapter 2 we also
observe that approximating the uncertain parameters with a finite set of re-
alizations might compromise the performance of the computed schedule.
Thus, it is worth investigating different scheduling algorithms that do not
rely on sampling.
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Extending the state-of-the-art methods, this thesis proposes to design
scheduling algorithms that avoid sampling by joint consideration of data
processing and numerical optimization. Chapter 3 describes a novel schedul-
ing algorithm for an EC-DER coupled with uncertain generation/load that
does not resort to samples of the uncertain parameters. Key idea is that the
mathematical model describing the system is such that no equality includes
uncertain parameters and each inequality contains no more than one uncer-
tain parameter. This way, computational tractability is achieved by describ-
ing the constraints containing an uncertain parameter as chance constraints
and then reformulating them as deterministic inequalities by exploiting the
CDF of their uncertain parameter, received from data processing. Obtaining
such a model requires the use of uncertain parameters described as func-
tions of the directly measurable quantities. For example, the algorithm in
Chapter 3 leverages on forecasts of the uncertain generation/consumption in
terms of both power (directly measurable) and energy (constructed integrat-
ing power measurements). One of the main advantages of this techniquey
is that the correlation among subsequent uncertain power outputs does not
have to be explicitly estimated and dealt with in the numerical optimization,
but it is indirectly considered in the forecasting model. From a high level
perspective, we design the scheduling algorithm with a holistic approach
that shifts parts of the computation from the numerical optimization to the
data processing by requiring the estimation of parameters that indirectly
embed some calculation that would have otherwise be undertaken by the
numerical optimization. However, if on the one hand the considered math-
ematical description of the system does not approximate the uncertainties
(no sampling is required), on the other hand it approximates the physical
characteristics of the devices and of their operating requirements.

Chapter 4 examines the possibility of applying the ideas presented in
Chapter 3 to systems comprising multiple EC-DERs. To this end, we for-
mulate an optimization problem for scheduling that contains not only aggre-
gated parameters, but also aggregated decision variables. This approach,
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common in the literature, poses the questions of whether the solution of
the aggregated problem attains the same cost of the original problem and
whether there exists a feasible combination of the original decision vari-
ables that corresponds to the optimal aggregated decision variable. The in-
vestigation in Chapter 4 proves that both these questions have a positive
answer whenever the models of the single-device constraints respect some
assumptions. Our findings justify the application of an aggregated model in
scheduling, provide a technique to check the consistency of an aggregated
model, and propose a way to disperse the aggregated energy state which is
free from any time dependence.

We validate the proposed scheduling method against realistic test cases in
Chapters 5 and 6. In Chapter 5, we analyze via simulation different cases in-
volving a single BESS. We conclude that the proposed algorithm attains the
desired outcome and that it attains better results (with an appropriate tun-
ing of the tracking requirement) than state-of-the-art scheduling algorithms
based on deterministic or scenario forecasting. Furthermore, we notice that
the algorithm can be applied to a household as much as to an industrial set-
ting, and that it could be regulated towards different scheduling objectives
(e.g. peak-shaving, price-dependent energy arbitrage...). Finally, we report
experimental results indicating that the simulation results are inline with
what is practically obtainable in real-life.

Last, in Chapter 6, we address scheduling of a population of EC-DERs.
To this end, we analyze the case of a DCS, clustering a charging station
for PEVs with a BESS and uncertain renewable generation. The chosen
test case requires to further extend the scheduling algorithm described in
Chapters 5 and 6 to include multiple sources of uncertainty and time-varying
connections. Even in this case, the result supports the proposed algorithm
with respect to state-of-the-art approaches based on scenario forecasts.
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7.2 Suggestions for Future Work

The promising performance showed in the analyzed case studies motivate to
further investigate the scheduling algorithm proposed in this thesis. In fact,
while answering to the research questions presented in Chapter 1, the work
outlined here raises new research questions that can initiate novel research
lines along three main directions.

Extension of the Proposed Framework

The first direction consists in extending the scheduling algorithm proposed
in Chapters 3 and 4. Aspects that have yet to be analyzed comprise:

• aggregated scheduling with consideration of network constraints

• dispersing the aggregate states with respect of location and network
constraints

• distributed computation of a feasible dispersion.

Additional simulations and real-life experiments are also required to further
validate the proposed scheduling algorithm and its eventual extensions.

Proposed Framework at a System Level

Another research direction involves analyzing the results of the proposed
scheduling algorithm from a system perspective, similarly to the study pre-
sented in Bozorg et al. [2018]. In particular, it is of interest to examine
the interaction among clusters of resources that are dispatching their aggre-
gated power output in accordance to a schedule computed with the proposed
algorithm. Possible research studies include:

• sizing of the aggregations in view of an economically viable alloca-
tion of reserves
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• designing tracking constraints and policies to penalize the imbalances
that enforce network requirements (e.g. stability of the overall system,
minimization of allocated reserves, ...)

• sizing of the energy reserves for the entire system by means of prob-
abilistic energy forecasts.

Holistic Approach to Scheduling

The last research direction indicated by this thesis is to investigate the ap-
plication of a holistic approach to the design of scheduling algorithms (sim-
ilar to the one presented in this thesis) to different settings. In particular,
it would be of interest to explore the idea of shifting part of the compu-
tation from the numerical optimization to the data processing by creating
synthetic random processes that incorporate multiple uncertain parameters
and constraints. To this end, an appealing problem in the energy sector is
the participation of aggregated distributed resources, including storage, on
real time energy markets—as the Australian one. In this context, examples
of synthetic stochastic processes that are worth examining are:

• time-integration of wholesale prices

• time-integration of prices spanning multiple energy markets

• time-integration of curtailed generation from uncertain renewable re-
sources.
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Ideas, though, are not singular.

E. Catmull, Creativity.Inc

An old professor once asked his students what mankind hungers for. The
students gave in return the more diverse answers: power, money, love...
However, none of their answers seemed to satisfy the professor. “Nothing
of that", he replied, “mankind hungers for only two things: energy and in-
formation".

The professor’s answer may seem disappointing, an answer that only an
engineer could have given, but it is actually a wise one. While it is question-
able whether energy and information suffice, humans need both to tackle the
challenges they face, to bring their visions to reality, to thrive: energy pro-
vides the power, and information yields the knowledge. It was only a matter
of time before mankind discovered that energy and information would have
been even more powerful together. The massive, global communication in-
frastructure that we use on a daily base to exchange information hinges on
energy consumption. And soon enough, the infrastructures we use to pro-
duce, transport and consume energy will pivot on collecting, processing and
exchanging a large amount of information. Different terms are in use to
denote this phenomenon: “smart grid", “internet of things", “energy infor-
matics".

Energy empowering information, and information empowering energy.
Nowadays, this is a potent, diffuse, even unquestionable vision. One may
wonder why this powerful idea, which claims to touch humanity’s cravings
at their core, is not yet reality. What else is still required when numerous
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minds agree on this vision and most of the technology is already there?
Working at this thesis, I found an answer.

This vision requires connecting existing technologies from different fields.
However, visions alone will not suffice to connect the pieces. Imagining a
bridge in the right spot is one thing, building the bridge is a different one:
it requires both parts reaching towards the other while remaining each on
their side. Connections, likewise a bridge, cannot be imposed from above
by an omniscient mind overlooking both shores. Instead, they need to be
built from the ground by one-sided experts; which is difficult, especially in
science. Sometimes, pride grows with knowledge. Sometimes, explaining
is tiring and understanding is an even greater effort. Sometimes, pushed by
a need for belonging, we hold so much on the comfort of an identity that we
become reluctant towards whatever does not comply with it.

Because of all these reasons, it seems to me that we keep on forgetting an
obvious truth: whenever the completion of a process depends on multiple
sub-tasks, the way in which the various tasks connect is more influential on
the final outcome than the means in which the isolated tasks are completed.
Even the greatest tool (being it a powerful forecasting model or an advanced
numerical solver) is useless if it is unable to link with the other pieces. For
this reason, it is pivotal to find the courage to face the uncomfortable diffi-
culties of joining expertise and knowledge. Staying curious, seeing value in
the works of others, entering worlds in which we have to humbly leave the
chair of the expert and sit trustfully in the pupil’s spot.

In the years required to write this thesis, I have encountered the struggle
of connecting: I have seen it in others, and felt it myself. Nonetheless, I
have also experienced the price for going beyond these obstacles. Creativity
awaits those who can peace the mindset-clash and embrace unfamiliar ideas,
who can venture in the chaos and find a new order. So grew this thesis, on a
ground fertilized by different scientific fields.

Going through this manuscript has probably overwhelmed you, dear reader,
with concepts, equations and diagrams. I hope that you could find some-

178



Personal Remarks

thing interesting in here, something capable of whetting your curiosity and
fostering bright ideas in your mind. If that was not the case, you should
take away from this long flow of words and equations at least this final—
non-scientific—message: dare to connect, challenge and contaminate your
world with the surrounding ones. It will be rewarding.
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