KIT | KIT-Bibliothek | Impressum | Datenschutz

Digital reality: a model-based approach to supervised learning from synthetic data

Dahmen, Tim; Trampert, Patrick; Boughorbel, Faysal; Sprenger, Janis; Klusch, Matthias; Fischer, Klaus; Kübel, Christian ORCID iD icon; Slusallek, Philipp

Abstract (englisch):

Hierarchical neural networks with large numbers of layers are the state of the art for most computer vision problems including image classification, multi-object detection and semantic segmentation. While the computational demands of training such deep networks can be addressed using specialized hardware, the availability of training data in sufficient quantity and quality remains a limiting factor. Main reasons are that measurement or manual labelling are prohibitively expensive, ethical considerations can limit generating data, or a phenomenon in questions has been predicted, but not yet observed. In this position paper, we present the Digital Reality concept are a structured approach to generate training data synthetically. The central idea is to simulate measurements based on scenes that are generated by parametric models of the real world. By investigating the parameter space defined of such models, training data can be generated in a controlled way compared to data that was captured from real world situations. We propose the Digital Reality concept and demonstrate its potential in different application domains, including industrial inspection, autonomous driving, smart grid, and microscopy research in material science and engineering.


Verlagsausgabe §
DOI: 10.5445/IR/1000100748
Veröffentlicht am 11.12.2019
Originalveröffentlichung
DOI: 10.1186/s42467-019-0002-0
Dimensions
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2019
Sprache Englisch
Identifikator ISSN: 2523-398X
KITopen-ID: 1000100748
HGF-Programm 43.22.02 (POF III, LK 01) Nanocatalysis
Erschienen in AI Perspectives
Band 1
Heft 1
Seiten Article No.2
Vorab online veröffentlicht am 03.09.2019
Schlagwörter 2018-021-024109 TEM
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page