

MuIT_predict A multicomponent geothermometer with integrated sensitivity analyses

L. H. Ystroem, F. Nitschke, S. Held, T. Kohl

INSTITUTE OF APPLIED GEOSCIENCE (AGW), DIVISION OF GEOTHERMICS

Multicomponent geothermometry

Basic assumptions:

- Mineral assemblage and fluid are in equilibrium
- Temperature-dependent reaction between minerals and fluid
- Temperature determination based on saturation state of reservoir minerals

Motivation

- Uncertainties of classical solute geothermometers (n = 23) are often >200K (e.g. Villarrica)
- Uncorrected multicomponent geothermometry is more precise but systematically too cool
- **Goal:** Create a precise green field exploration tool with minimal calc. input data

Lars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl 11 December MulT predict – A multicomponent geothermometer with integrated sensitivity analyses 2019

Interference of equilibrium

- **Boiling** resulting in steam loss
- **Mixing** resulting in dilution

2019

- **Chemical variation** due to re-equilibration, degassing, sampling, laboratory etc.
- **Lithology** to reconstruct the reservoir mineral assemblage

Institute of Applied Geosciences (AGW) **Division of Geothermics**

Lars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl 11 December MulT_predict – A multicomponent geothermometer with integrated sensitivity analyses

Numerical reconstruction

pH sensitivity 300 250 ပ္ပ်ာ 200 Temperature 150 100 25%~75% 50 Min~Max Median 8.35 8.25 8.15 8.05 7.95 7.85 7.75 7.65 7.55

pH value

- best-fit reservoir temperature estimation via reconstruction of reservoir conditions
- Similar approaches require an additional gas analysis [e.g. WATCH (Arnórsson, Bjarnason), iGeoT (Spycher, Finsterle)]

Reconstruction via integrated sensitivity analysis to minimize equilibrium temperature spread

511 December
2019Lars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl
MulT_predict – A multicomponent geothermometer with integrated sensitivity analyses

Sensitive parameters

- System parameters vulnerable to secondary processes
- Trace elements which are main components of minerals
 - pH valueSteam loss

6

Al concentration

Integrated sensitivity analysis

Variation of sensitive parameters to minimize equilibrium temperature spread

7 11 De 2019

Lars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl MulT_predict – A multicomponent geothermometer with integrated sensitivity analyses

Method Validation

Applying MuIT_predict to well-studied geothermal systems with measured *in-situ* temperatures

Krafla and Reykjanes (Iceland)

- Development of basaltic mineral assemblage
- Testing the tool for robustness in saline brines

Results

9

Precise temperature reconstruction, fitting in-situ temperature measurements

11 DecemberLars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl2019MulT_predict – A multicomponent geothermometer with integrated sensitivity analyses

Conclusion

10

- Proof-of-concept: Reconstruction of in-situ conditions based only on equilibria of reservoir minerals is valid
- High accuracy: Calculated temperatures match measured temperatures
- Robustness: no interference from salinity

Électricité de Strasbourg Géothermie (ÉSG)

 11
 11 December
 Lars H. Ystroem, Fabian Nitschke, Sebastian Held, Thomas Kohl

 2019
 MulT_predict – A multicomponent geothermometer with integrated sensitivity analyses