

Institute of Applied Geosciences Division of Geothermics agw.kit.edu

Validation of multicomponent geothermometer with sensitivity analysis in basaltic geothermal setting

L. H. Ystroem, F. Nitschke, S. Held, T. Kohl ⊠ lars.ystroem@kit.edu

Motivation

- Create an economical exploration tool by using multicomponent geothermometry to estimate reservoir temperatures
- Apply a sensitivity analysis (Nitschke et al. (2017)) for more robust and better temperature estimation

Conclusion and outlook

- The estimated reservoir temperature matches the measured temperature with an error of ±5%
- The developed and calibrated tool can be applied on natural spring water with same results

Define and calibrate a specific mineral set for basaltic rock

Future implementation of new mineral sets to adapt the tool to different geothermal settings

Geothermal fields Krafla and Námafjall

ို

Saturation indices and mineral set

- Temperature estimation is given by the geochemical equilibrium between mineral phases and the reservoir rock
- Therefore the saturation indices of the mineral phases are serving as geothermometers
- The mineral set is based on secondary mineralizations in geothermal systems:

Calibrated basalt specific mineral set

Equilibrium of the mineral phases used for the temperature estimation of the reservoir

Krafla and Námafjall are high-enthalpy geothermal reservoirs up to 350°C at a depth of 2000 m

Sensitivity analysis

- Basic assumption of a chemical equilibrium
- Improvement of the estimated reservoir temperature by minimization of the boxplot spread
- Variation of the value yield of sensitive geochemical parameters: pH, aluminium concentration and redox potential

Example of the sensitivity analysis for the best fit aluminium concentration

Publication of major contribution

Nitschke, F.; Held, S.; Villalon, I.; Neumann, T.; Kohl, T. (2017): Assessment of performance and parameter sensitivity of multicomponent geothermometry applied to a medium enthalpy geothermal system. In: Geotherm Energy 5 (1) Guðmundsson, B. T.; Arnórsson, S. (2002): Geochemical monitoring of the Krafla and Námafjall geothermal areas, N-Iceland. In: Geothermics 31 (2), p. 195–243.

KIT – The Research University in the Helmholtz Association

