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Abstract What does it mean to explain data patterns? Cognitive psychologists
and other scientists face this question when observable phenomena have to
be explained in theoretical terms. Frequentist null-hypothesis testing – one
prominent approach in psychology – controls error rates. Machine learning – an
alternative prominent outside of, but not yet inside psychology – focuses on
precise predictions. However, both alternatives often provide little insight into
the data. We propose a combination of formal modeling and Bayesian statistical
inference to ground explanations in data analysis. We support this approach
by reference to philosophy of science and discussions of the current methods
crisis in several empirical sciences and illustrate it with an example from
visual attention research.
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1 Introduction

Empirical scientists seek to explain their observations or data. Providing insight
into data is also a key requirement of practitioners in the field of data science.
An evocative example of the difficulties of explaining data is provided by
Lewandowsky and Farrell (2011)who discussedwhy Ptolemy’s geocentricmodel
was so rapidly replaced by the Copernican heliocentric model. It is commonly
believed that the Copernican model provides the better account of the data. Its
goodness of fit is, however, only slightly better. Its advantages are its simplicity
and elegance. Lewandowsky and Farrell use this example to conclude that:

“ 1. Data never speak for themselves but require a model to be understood and to be
explained. 2. Verbal theorizing alone ultimately cannot substitute for quantitative
analysis 3. There are always several alternative models that vie for explanation
of data, and we must select among them. 4. Model selection rests on both quan-
titative evaluation and intellectual and scholarly judgment” (Lewandowsky and
Farrell, 2011, p. 5).

We would like to add another point: 5. Theory development, modeling and
data collection lead to explanations in an iterative process. Such a process
may start with a vague verbal theory and some loosely connected observations
but develop into an abstract mathematical description of theoretically relevant,
measurable variables. To provide a rigorous argumentation for these 5 points,
we will present positions from the philosophy of science. Initially, we will
review what actually is an explanation in psychology. This approach reveals the
importance of theory. Different theories entail different data patterns. We then
present a framework in which models link data and theory. The quality of this
link is what makes a good explanation.

2 Explanations in Psychology

In epistemology, the fact to be explained is called the explanandum whereas
the part of the explanation doing the explaining is called the explanans. For
psychology – and possibly other sciences dealing with data – finding a causal
relationship between variables (an effect) is no explanation, but the thing to
be explained (Cummins, 2000). A good explanans here would capture the
functional properties of the processes that cause the observed relationship.



Explaining Data by Modeling its Link to Theory 3

These functional properties are latent causes of the data. Psychology thus is a
science that usually asks “How does it work?” (instead of “What are the laws?”
in axiomatic frameworks such as classical physics) and uses functional analysis
to answer this question (Cummins, 2000). Functional analysis means explaining
a disposition of a system by resorting to simpler mechanisms. There are
different frameworks to do so. Examples from psychology include computational
explanations which frame the function as an information processing system that
follows certain algorithms. Within this framework, the cognitive psychologist
may ask what algorithm would warrant an observed effect. A further example is
the neuroscientific framework that resorts to biological properties of neurons
and their interactions. These frameworks have in common that they allow to
explain a system in terms of simpler and less problematic subsystems.

Models play a crucial and often overlooked role in bridging the gap between
hypothetical causes of data and the data themselves. Of course, model is a broad
term whose meaning differs depending on the domain and historic context. We
mean models in the sense of scientific models for which Bailer-Jones (2009)
provides a historical review. Summing up her findings, models were initially
considered “a poor man’s theory”, a form of description or explanation of a
phenomenon that is entirely superseded by a theory if such a theory becomes
available. In present times, models have gained relevance in philosophy of
science because it has been shown that theories cannot be tested directly. Instead,
many assumptions have to be made on different levels to develop a concrete
experiment for testing an abstract theory (Suppes, 1966).
For example, take Newton’s laws of motion. Dropping a feather and a ball

of equal mass from a tower will apparently refute the laws: Although the mass
is equal, the speed of fall will differ. It is only through our theoretical model
of the experimental situation that we know that in this particular situation
air drag an skin friction will be different to a degree that severely affects the
outcome. Even if both objects are equal in mass and surface properties, a precise
empirical measure of speed of fall is highly unlikely to yield exactly Zero as
predicted for the speed difference. Thus, data of a phenomenon is not the same
as the phenomenon itself.
Tackling the difficult relation between empirical phenomenon and theory,

Bailer-Jones (2009) proposed a framework that identifies a hierarchy of models
as the missing link. According to her analysis, “a model is an interpretative
description of a phenomenon that facilitates access to that phenomenon” (p. 1).
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Although neither the term “data” nor the term “theory” is part of this definition,
her analysis reveals that they are what models connect in scientific research.
Models apply abstract theories to concrete phenomena and do this by satisfying
abstract logical constraints of a theory and concrete empirical constraints of a
phenomenon, although as interpretative descriptions they can still be abstract
and incomplete. In other words, models are customizations of theories such that
these become applicable to some of the concrete properties of the phenomena
by filling in the gaps between latent causes and data.
As model and theory can be distinguished, so can phenomenon and data. A

phenomenon is a fact or event in nature – “things happening” in Bailer-Jones’s
words (2009, p. 1). It becomes apparent from observation and is at least suspected
to be stable and not a random fluke. The discovery of a phenomenon can be
theory-laden. To give an example from attention research: When searching for a
unique target item among homogeneous distracting items, search difficulty does
not always stay the same if target and distracting items are swapped. For instance,
it is easier to search for a Q among Os than for an O among Qs (Treisman
and Gormican, 1988). This phenomenon, search asymmetry, would not have
been recognized without previous research on visual attention, especially in the
field of visual search.

The phenomenon can changewith investigation. Closer inspection and analysis
may refine a phenomenon or show that it is not as stable as initially suspected so
that it does not warrant investigation. One prominent psychological example is
the face in the crowd effect according to which angry faces are found quicker in
a crowd of neutral faces than happy faces. It is usually explained by one or the
other version of preferential detection/processing of relevant stimuli. Although
it has been under investigation by now for 30 years, it is not yet clear whether the
effect is an artifact of the faces in the crowd (Horstmann et al, 2006) or some
confound in schematic faces such as inward-pointing lines (Coelho et al, 2010;
Kennett and Wallis, 2019); a discussion is provided by Savage et al (2013).
What separates data from the phenomenon is that data arises from specific

ways of observation or experimentation (e.g., a psychological experiment, a
log-file, or a health record), often with a particular goal in mind. The data
collected thus are a limited aspect of the phenomenon and they may be affected
by more than the phenomenon itself. This creates uncertainty.
Having distinguished models and theory as well as phenomena and data,

we now turn to the question how models link data to theory and why this link
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is necessary for science. A theoretical model is necessary as a model of the
situation in which the data is observed. A data model is necessary to deal
with the uncertainty arising from data collection. Consider the initial example
of the Copernican and Ptolemaic models of planetary motion – two different
theories. Both had a comparable fit. Only Kepler provided a better explanation
of the phenomenon of planetary motion by linking the observed data to the
heliocentric theory by a theoretical model that uses ellipses instead of circles
such that a nearly perfect fit was achieved. In visual attention research one might,
for instance, ask whether location is to be conceptualized as a property which
organizes visual information or whether it is a feature of visual objects such as
their color or shape. Both theoretical models accord well with some phenomena
and less well with others. To decide between these theories, a tight coupling
between data and the respective theory in formal models is necessary (following
this logic, Nordfang et al (2018) indeed showed that location is special).

Bailer-Jones’s (2009) example for the second type of model, the data model,
are measurement errors in physics: When measuring the melting point of lead,
the true melting temperature may be not read off the thermometer once during
an experiment. If a normally distributed error is assumed, the mean of many
measured values will be a good indicator for the true melting temperature. To
give a psychological example, the minimal response time to a warning signal in a
semiautonomous car has to be inferred from a sample of responses from different
participants. Because response time cannot be negative, a hierarchical model
based on ex-Gaussian or log-normal distributions represents the functional
properties of the data-generating process adequately.

One may wonder whether measurement theories are an alternative to the data
model in the proposed hierarchy of models. For measurement in psychology,
(Buntins et al, 2017) analysed whether the two prevalent positions on measure-
ment in psychology can guarantee that a measurement is valid in the sense that
it measures indeed what it is supposed to measure. These positions are

1. that measurement is a rule-driven assignment of numbers to objects, and

2. that measurement is based on a homomorph relationship between an
empirical and a numerical relational system (p. 704).

The authors find that both measurement theories cannot resolve competing
theoretical explanations of results and consequentially, psychometrics alone
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does not guarantee a connection of theory and the measurement (data) via the
formal concepts of validity. As such, measurement theories may help to develop
parts of the proposed hierarchy but do not provide a complete link between data
from measurements and theory.
If a scientific hypothesis is to be tested, this cannot be done directly on the

data because of measurement errors and variance from nuisance sources in the
data and because data always needs to be interpreted under a theoretical model.
Data models deal with these inference problems. Such statistical inference
does not directly test a theory, but the prediction of the theoretical model. A
theoretical model represents an experimental or observational situation and
satisfies empirical as well as theoretical constraints. The data model deals with
the uncertainty that collecting data about a phenomenon introduces. Connecting
data model and theoretical model, thus, connects data and theory.
Figure 1(A) depicts Bailer-Jones’s (2009) framework complemented by the

link between theoretical model and phenomenon. This bidirectional connection
symbolizes that a certain phenomenon may compel us to come up with a theoret-
ical conceptualization of the situation in which it occurs – the theoretical model.
A theoretical conceptualization of a situation may lead the researcher to observe
an unexpected event or fact that needs explaining – a new phenomenon.
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Figure 1: (A) Bailer-Jones’s (2009) framework of how models link data and theory. (B) Framework
parts centrally involved in null-hypothesis testing. (C) Framework parts centrally involved in ML.
(D) Framework parts centrally involved in modeling and Bayesian inference.
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Conjointly, Bailer-Jones’s (2009) framework and Cummins’s (2000) analysis
provide a philosophical underpinning for the five points based on Lewandowsky
and Farrell (2011): Because data cannot be understood by themselves and there
are always different possible explanations of data, model selection requires
quantitative evaluation of theoretical ideas. The quality of the explanation
offered by a model can then be evaluated by taking into account the fit and how
well the model satisfies empirical and theoretical constrains. Together, these
authors describe the main requirement for scientific data analysis in psychology
and other sciences dealing with data – a tight coupling of data and theory. In
the following, we will analyze how statistical null hypothesis testing, machine
learning and modeling in conjunction with Bayesian inference techniques meet
this requirement.

3 Explaining Data by Linking it to Theory

3.1 Coupling Data and Theory with Frequentist Hypothesis
Testing

The predominant way to couple data and theory in psychology is to derive a
prediction about the data from theory – the hypothesis, a preliminary answer
to a scientific question. Whether the answer is supported by the data or not is
tested by a statistical hypothesis test. The test provides a decision procedure
for which the long-term error rates are controlled. Very often, the goal of
the statistical inference is to check whether an independent variable Y has a
effect on a potentially dependent variable X . In practice, such an analysis is
conducted by first setting up a null hypothesis. This null hypothesis describes
the ‘no mean difference’ or ‘zero correlation’ hypothesis. The exact prediction
of the hypothesis which the researcher is actually interested in – a substantial
theoretical alternative – is not specified. As a second step, a conventional level
for the long-term false-positive error rate (in practice mostly 0.05) is used to
try to reject the null hypothesis. If this is indicated by a p-value of less than
0.05, the result is called significant and the alternative hypothesis – whose
prediction is not explicitly stated – is accepted (for an analysis of the actual
use of this technique, see Gigerenzer, 2004; for a historical and theoretical
analysis, see Dienes, 2008).
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During the last years, many reported findings (effects) could not be replicated,
for instance in psychology, cancer biology, or medicine. A variety of reasons
contributes to this (e.g., Chambers, 2017), but one main cause is application
of statistical practices which critics as Gigerenzer (2004) call “ritualized”,
emphasizing that hypothesis testing is often done mindlessly and that more
inferential power is ascribed to the procedure than it actually has. One problem
is that researchers often “follow” the data. Data trimming is one of the examples:
removing outliers or apparently inadequate data or grouping data by some
criterion. Simmons et al (2011) showed via simulation that such seemingly
minor analysis decisions can increase the chance of falsely significant results
to as high as 60% if several questionable practices are combined, and John
et al (2012) found that some questionable practices actually seem to be the
norm rather than the exception. Even without the intention to apply such
practices, many analysis decisions are contingent on the data and thus affect
the reproducibility and theoretical conclusion. In the context of null hypothesis
testing, this means that researchers use undisclosed freedom in data analysis.
Such practices violate assumptions of the frequentist model used in these tests:
This model presupposes that the hypotheses are not informed by the data and
that all aspects of data sampling (stopping rule, measurement, variables to be
included in tests) are fixed in advance.

To sum up (see Figure 1(B)), the rationale of frequentist hypothesis testing is
to decide on a theoretical idea by setting up another hypothesis and rejecting
it. In the terms of Bailer-Jones (2009), a data model is chosen from a toolbox
of models. The theoretical model is only verbally formulated (if at all). The
connection between theoretical model and data model exists only by the single
decision made against the (often uninteresting) null hypothesis. Because the
coupling of data and theory does not include the theoretically interesting
alternative to the null hypothesis, no strong coupling of data and theory is
achieved. For instance, when applying a t-test, the t-distribution is chosen for
its robust description of the data under the null model while the alternative
models – the ones in which the researcher is actually interested – remain
unspecified. The advantage that this procedure controls the long-term error
rates of the false-positive error is countered by the undisclosed flexibility in
data analysis that can even unconsciously distort the control of error rates.
Of course, the problems of ritualized and mistaken application of frequentist
hypothesis testing can be mitigated. More important is, however, to realize that
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all statistical analyses depend on a specific model (Rodgers, 2010), make certain
presuppositions and are more or less adequate or useful (although there may
not be a true model).

3.2 Coupling Data and Theory with Machine Learning

Machine learning (ML) is a much less canonical way of analyzing data for
psychologists. Yarkoni and Westfall (2017) emphasize the benefit that ML
explicitly tackles the variance-bias trade-off, that is the trade-off between
precision and systematic errors of predictions: Whereas in psychology bias is
usually avoided at all cost, ML is very aware of the costs of such a minimized
bias for prediction errors. ML searches for a trade-off between bias and variance
that minimizes prediction errors.
ML can be put into perspective with Bailer-Jones’s (2009) framework (see

Figure 1(C)): It improves a program’s performance – usually in predicting
unobserved data – by learning from examples. Whether the model corresponds
to the data-generation process is irrelevant to this improvement. The approach
of choosing a model according to performance instead of a similarity to the
data generation process is called algorithmic modeling as opposed to data
modeling which aims to resemble the data-generating process. The focus on
model performance instead of model similarity to a supposed function of the
system makes functional analysis difficult because the connection between
theoretical ideas and the actual data pattern is not spelled out as a model. We
would like to remark here that functional analysis and algorithmic modeling
are not necessarily mutually exclusive: If the algorithmic model is designed
according to a theory about the observed phenomenon, algorithmic modeling can
be insightful. However, such an approach requires knowledge about algorithm
design as well as relevant theories (see e.g., Jäkel et al, 2008).

ML is often viewed with skepticism by psychologists. This is problematic not
only because its predictive power is so high, but also because common ideas of
the predictive power of canonical psychological analyses may be unjustifiably
optimistic. Yarkoni and Westfall (2017) argue that psychologists’ undisclosed
flexibility in data analysis and goodness of fit measures are comparable to
overfitting and psychology as a whole could profit from ML techniques such
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as cross validation and regularization to avoid overly optimistic beliefs in the
predictive power of models.

The perceptive readermay notice thatwe did not discuss unsupervised learning.
Unsupervised learning is characterized by self-organization that is data-driven.
Thus, it may be particularly valuable to come up with a theoretical model in
cases where there is no formal theoretical model available as of yet. However, it
is particularly this powerful data-driven self-organization that can give rise to
“ghosts” as Carlson et al (2018) argue for cognitive neuroscience. By ghosts
the authors mean that results about phenomena are apparently interpretable in
terms of a theory. However, if the link between data and theoretical argument is
required to be spelled out, assumptions are revealed that are superimposed on the
actual ML procedure. These assumptions concern the source ambiguity of the
data, the perceived neutrality of the the ML procedure, and the underconstrained
representational interpretation of results. Although Carlson et al (2018) make a
suggestion on how to cope with these problems, their analysis also reveals that
the connection between phenomenon and theory is neither created automatically
nor does it become obsolete when unsupervised methods are applied.
To sum up, a ML perspective may improve psychology’s predictions by

choosing models according to a variance-bias trade-off that is favorable for
prediction. These models are, however, not required to resemble the data-
generating process proposed by a particular theory. Thus, it is difficult to provide
a quantitative explanation of the data in terms of a theory.

3.3 Coupling Data and Theory with Modeling and Bayesian
Inference

We propose a modeling scheme that is different from the two approaches
described above. It is based on combining formal modeling with Bayesian
inference for explanations grounded in data analysis. The need for this originates
from weaknesses in the two previous modeling views that can be identified
using Bailer-Jones’s (2009) framework: Machine learning intentionally discon-
nects theoretical model and data model. This allows to optimize the prediction
performance, but it hinders causal explanation and theoretical advancement.
Frequentist statistics controls error rates, but its inferential power is often low. Hy-
potheses are not directly connected to the theoretical model that the scientist has
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in mind. In the following, we spell out a different and more substantial modeling
approach based on explicit and formal models and Bayesian inference.
Our focus is on integrating the theoretical model into data analysis. As

Taagepera (2008) shows, data models can be very simple, for instance when
forbidden areas or anchor points in the data space are taken into account
or when adequate probability distributions are used. For example, response
times – an almost ubiquitous variable in psychology – cannot be negative and
their distribution is likely to be skewed. Thus, for example, ex-Gaussian or
log-normal distributions may fit them well. Taagepera calls such models that
take the specific logical properties of the data-generating process into account
logical models. They are more specific than descriptive models that are merely
a convenient description of the data, although both are data models.
One approach to logical modeling of cognitive functions are mathematical

models (Moore, 2015). An example from psychophysics is Steven’s power law
that relates different aspects of physical stimulus strength to perceived stimulus
intensity, resulting in a power function that describes this relation across a wide
range of stimulus features. A yet closer link between theory and data model
can be established when fine-grained mathematical models are available for
different aspects of a theory. These models not only describe the observed data
patterns but the processes that lead to them. These fine-grained components
can be used to assess explanations. For instance, Bundesen’s (1990) theory of
visual attention (TVA; see Bundesen et al, 2015, for a recent account) describes
the encoding processes of visual stimuli in a way that expected data patterns
for different psychophysical tasks can be derived. Moreover, the description
is hierarchical: the encoding process itself can be mathematically described
as a combination of sub-processes, which again can be further dissolved. Of
course, this reductionism cannot be pursued unlimitedly. However, in practice,
an observed data pattern can be explained as arising of relatively simple
components. In section 4 of this article we will illustrate a concrete example of
how TVA can be used in visual perception research, highlighting the merits of
such a fine-grained mathematical model.
Even though such formal models can be treated with various methods

(e.g., maximum likelihood estimation), we believe that Bayesian estimation is
particularly well-suited. As graphical Bayesian models, the different components
of the theoretical model can be linked with deterministic or probabilistic
connections. Moreover, the hierarchical structure of the data (e.g., groups→
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participants → conditions → etc.) can be expressed and posterior parameter
distributions and their uncertainties at the different levels are accessible to the
researcher (Figure 3(F)).

Bayesian inference allows to estimate latent variables, compare models, and
predict data. When parameters are estimated (a decision between models can
be considered a parameter), the researcher assigns prior distributions to the
parameters. The estimation procedure updates these distributions according to the
data, leading to the posterior, a distribution of probable parameter values. Doing
this analytically is challenging and often impossible. However, developments in
probabilistic programming allow to specify models as computer code and to
estimate posteriors by numerical approximations (cf. Salvatier et al, 2016).

Specification of a prior may strike the reader as an unwanted source of discord
and divergence from objective analysis, and the specification of a substantial
model is a somewhat subjective endeavor. However, you may also regard this
as an advantage: The Bayesian approach forces the researcher to make her
implicit assumptions explicit (Rouder et al, 2016). It thus also allows to falsify
theory-derived statements (Gelman and Shalizi, 2013). In fact, as Bailer-Jones
(2009) argues, a model is necessary to state how the theory is interpreted by the
researcher in the particular situation that is supposed to falsify it.
Bayesian statistics are also more intuitive than frequentist methods: Prior

and posterior distributions reflect belief as a degree of confidence and not the
long-run frequencies of outcomes that give frequentist approaches their name.
Long-run asymptotic behavior of a chance experiments seems to be difficult
to grasp (this can be tested by checking one’s intuitions about data analysis
(Dienes, 2008, p. 121)). Given the fact that creating, testing, and improving
models is a creative and central process in modern science, it is helpful if
researchers can follow their intuition here (although we do not want to imply
that intuition is without problems).

We would like to remark that the Bayesian and the frequentist understanding
of probability are often identified with “subjective” and “objective” proba-
bilities, respectively. In his comprehensive book on inductive logic, Hacking
(2001, p. 131) emphasizes that these are ideology-loaded terms and recommends
to avoid them in debates. It is true that Bayesian notion of probability is belief-
centered whereas frequentist notion is event-centered. However, dismissing all
beliefs as merely subjective can be misleading: Reasoning about the probability
of an asteroid hitting the earth causing the extinction of the dinosaurs based



Explaining Data by Modeling its Link to Theory 13

on the physical laws and iridium traces is not what we commonly mean by a
subjective opinion. However, integrating the evidence for or against an event in
the past is a prototypical example of the Bayesian notion of probability. Similarly,
in physics research, Bayesian data analysis is not understood as particularly
subjective because the researchers usually have to select a model and decide
upon the likelihood, based on scientific judgment independently of whether
Bayesian priors are selected by scientific judgment as well (von Toussaint, 2011).
One reason why the event-centered probability concept may be so dominant
when discussing the normatively right and objective way of doing statistics
is given by Gigerenzer (1991): He proposes that theories of rationality and
cognitive abilities are not conceived independently of the methods used. With
frequentist statistics being the method of choice since the cognitive revolution,
theories on rationality and cognitive abilities often treated a deviation from the
frequentist analysis of uncertainty as subjective and irrational even though it
can be rational under a Bayesian perspective. Consequentially, we think that
associating one type of probability with objective facts and the other type with
subjective opinions is an oversimplification that should be avoided.

In sum, formal modeling goes well together with Bayesian inference. A tight
coupling of the data and theory can be achieved by explicitly stating and
connecting the data model and the theoretical model. This allows quantitative
comparisons of models, model predictions and latent causes of data.

3.4 Comparison of the Three Approaches

In the previous sections, we introduced three approaches to explain data by
linking it to theory with different analysis methods that are currently applied.
Also, we argued that a combination of formal modeling and Bayesian inference
is particularly well suited for this task. In the present section, we aim at
providing a concise comparison.
There are different levels on which these methods can be compared. The

most abstract level is inductive logic, a part of philosophy. On this level,
the implications of different understandings of probability are discussed (for
an introduction see Hacking, 2001). These include belief-type probability,
the Bayesian understanding of the term, and frequency-type probability as
in the common event-based statistics. Inductive logic has implications for the
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understanding of science and for the understanding of statistics (for two opposing
views see Mayo, 1996; Gelman and Shalizi, 2013). Bayesian inference and
null-hypothesis testing have fixed understandings of probability. ML does not
buy into one of these understandings and is seldom discussed on this level.
However, the idea of different types of quantifiable uncertainty, i.e. probability,
can be used in ML to distinguish uncertainty that stems from the model used
from uncertainty that stems from a lack of knowledge (Senge et al, 2014).
An exception that discusses science as a possible instance of meta-learning
is provided by Korb (2004).
If we want to compare approaches on a level connected more tightly to

psychological research, an interesting level concerns the inference techniques
that are actually used in a community. Oakes (1986), for instance, analyses
how statistical methods have been used in social, biological, and behavioral
sciences. More recently, Dienes (2008) discussed null-hypothesis tests, maxi-
mum likelihood estimation and Bayesian inference for the field of psychology.
This is different from the conceptual understanding because these debates
revolve not only around the theoretical properties of methods but their actual
usage. In psychology, Bayesian inference and frequentist hypothesis testing have
been compared by e.g. Dienes (2011); recommendations for their respective
usage are provided by statisticians (e.g., Little, 2006; Efron, 2005). Our
evaluation of the fledgling use of ML in psychology has been drawn from
Yarkoni and Westfall (2017).

Within psychology, three criteria are especially relevant for researchers. These
are the estimation of theoretically relevant parameters (e.g., the speed of visual
processing, or the capacity of visual short term memory), the possibility to
predict new data given some observations (e.g., for a particular participant or
the population), and the ability to compare different theories (e.g., theories
that propose different functions for the data model). Table 1 summarizes the
evaluation of the approaches with respect to these criteria.

Null-hypothesis testing offers the outstanding advantage of controlling error
rates (Mayo, 2016). In domains like quality assurance, this property is indis-
pensable. When linking theoretical parameters to data, maximum likelihood
estimations is used that is – roughly speaking – equivalent to the Bayesian
approach without using a prior – hence the brackets around the check mark
in Table 1. Because null-hypothesis testing works with the rejection of the
eponymous null models without specifying the alternative explicitly, it is not
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possible to predict data for the scientifically interesting alternative model. Also,
theory comparison is indirect: If the null model cannot be rejected for theory A
but can be rejected for theory B, this may serve as a comparison in favor of theory
B. However, the two theories are not compared directly. This is advisable only
if no model can be derived from the theories. Otherwise, a direct comparison of
both models given the observed evidence is prudent.
ML is usually not able to estimate a particular theoretical parameter. The

reason for this is also the reason for ML’s outstanding capacity for prediction:
ML is not bound to find the stochastic process that generates the data but
to apply algorithmic models while it treats the data mechanism as unknown
(Breiman, 2001). However, we do not want to withhold that algorithmic
modeling as used in ML can be used to compare theories. Doing so, however,
requires deep understanding of algorithmic modeling as well as the theories to
be tested so that the theoretical model can be translated into an algorithm. In
the study of cognition, algorithmic modeling has gained less interest than the
more abstract computation level (e.g., models of the different parts of human
memory such as long-term or working memory) as well as the more concrete
implementation level (e.g. neuroscientific evidence) on which researchers often
focus to advance understanding (Peebles and Cooper, 2015).
Bayesian inference and modeling allows to estimate parameters of interest

because it requires the analyst to spell out the connection between theoretical
model and data. This estimation proceeds from effects to causes by the Bayes
rule. However, for data prediction, parameter distributions can also be assumed
for the causes to derive a prediction. Data prediction and parameter estimation
depend on the model used. That is, an inadequate model leads to bad predictions
and estimations. It may come as a surprise that this is actually advantageous for
the search for a good explanation of the data: Because a bad model is – within
the framework of Bailer-Jones (2009) – derived from a theoretical model, it
will not be unknown why the model performs poorly: A bad model represents
poor theoretical ideas about the data generation process. If another theoretically
motivated model performs better, the result can be counted as a comparison
of theories. Such comparisons are made possible by the Bayes factor (e.g.,
Rouder et al, 2009) or information criteria (e.g., WAIC, Watanabe, 2010). The
resulting comparisons facilitate good explanation because neither their fit nor
their theoretical origin is evaluated independently.
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Table 1: Summary of the comparison of null-hypothesis testing, machine learning, and a combination
of modeling and Bayesian inference.

Null-hypothesis Testing Machine Learning Modeling and Bayesian
Inference

Parameter Estimation (3) 7 3

Data Prediction 7 3 3

Theory Comparison (3) (3) 3

4 Application in Cognitive Psychology

We have seen that Bailer-Jones’s (2009) framework can accommodate different
modeling perspectives. Moreover, we have argued in favor of a close coupling
between data and theory via formal theoretical models and data models and
Bayesian inference. However, it may have remained somewhat unclear how
these concepts can be applied in practice. In the following, we look at concrete
common and often interlocked research activities: interpreting published studies,
modeling, simulation, and obtaining inferences. For this purpose, we will
return to TVA, the theory of visual attention, which was briefly introduced
above, and show that it is a well-specified logical model with a deep and
broad theory integrating neural interpretations and applications in fundamental
as well as clinical research (Bundesen et al, 2015). For another, detailedly
spelled-out example from organizational psychology, we refer the reader to a
yet unpublished study by Ballard et al.

Bailer-Jones’s (2009) framework provides a road map that can guide research
at different stages. As we will see, it is less important to follow all directions
exactly as specified in Figure 1(D). In fact, depending on the current goal –
casting a study from the literature into our theoretical framework, or drawing
conclusions from our own experiments – we may need to wander in different
directions along the connections of Bailer-Jones’s diagram. However, even
though we can exploratively go back and forth between phenomenon, data, and
the different theoretical levels, we must make sure that our roads are well paved:
All the connections should be as firm as possible. The concepts of a possibly
verbal or metaphorical theory should be turned into mathematical entities whose
relations can be formally defined. Together with the phenomenon and the context
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that generates the data (e.g., the experiment), the theoretical model and, taking
statistical aspects into account, the data model can be formalized.
As a research topic, we look at processing speed differences in the visual

hemifields. In particular, we are interested whether processing speed is higher
in the left visual hemifield, the so-called left visual field (LVF) advantage.
This phenomenon has been reported by different researchers with different
explanations, for instance by Matthews and Welch (2015). They related it to
the system responsible for motion perception, in their study specifically an
attentional motion system. One of their experimental tasks is the temporal-order
judgment (TOJ) in which participants judge which of two stimuli was shown
first (see Figure 3(A) for an illustration of the TOJ stimulus presentation). While
Matthews and Welch include further tasks in their study, we limit the discussion
here to the TOJs, to provide a concise picture of the methodological aspects
on which our article focuses. Moreover, the descriptions below are just the first
steps of a more thorough study (Tünnermann and Scharlau, 2019), which can be
consulted for more background, interpretations and follow-up experiments.

Figure 2: Investigating left visual field advantages with Bundesen’s theory of visual attention. The
different research stages are mapped to the Bailer-Jones Framework in subfigures A to D.
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Matthews and Welch’s (2015) study was guided by substantial theoretical
considerations about the origin of the possible LVF advantage in systems
responsible for motion perception and the way to measure them by temporal-
order judgments and other tasks. The study discusses findings on a quantitative
level exceeding that of many experimental psychology studies which only detect
the presence or absence of certain effects. Matthews and Welch discuss temporal
thresholds from the TOJ task (that reflect how much earlier the LVF stimulus
finishes processing) and compare them to earlier findings from different, but
comparable tasks.

Casting the study in Bailer-Jones’ (2009) framework, we see two main origins
of vagueness (cf. Figure 2(A)):

1. The authors draw connections between the LVF advantage (phenomenon),
the TOJ task, and theories of motion perception which are merely
qualitative, building on the idea that TOJs are computationally similar to
motion perception.

2. The data model they use is a default psychometric function.

They apply a logistic function that describes the S-shaped data pattern (cf. Fig-
ure 3(D)) typically observed in psychophysical judgments. It is not derived from
a theoretical model of the processes as in the TVA-based perspective we have
described. Although it is a model of differential perceptual latencies, and thus
theoretically justified, it is impossible to analytically trace effects evident in its
parameters to deeper meaningful concepts of the theory.
How can we improve on, or at least substantially contribute to Matthews

and Welch’s (2015) analysis? In section 3.3 we described how mathematical
models can be fruitfully combined with Bayesian parameter estimation (see
also section 3.4). We will now apply one such model, TVA, to investigate the
potential LVF advantage in TOJs. With TVA, the components of Bailer-Jones’s
(2009) framework can be linked firmly. TVA’s concepts are mathematically
formalized, enabling a theoretical TOJ model with a precise data model (see
Figure 3(B)–(E) for a brief overview and Tünnermann et al, 2017).

TVA describes how visual stimuli presented to a human observer (metaphori-
cally) race for encoding into visual short-term memory (VSTM; see part (A) of
Figure 2). VSTM is an early storage system which holds the visual information
active for the task at hand or for forwarding it to more permanent memory
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structures. In healthy adults it is limited to three to four visual items. TVA
includes several meaningful parameters that characterize this process. For in-
stance, K is the VSTM limit mentioned above, and C is the overall capacity
that determines the overall speed with which the items in the visual field race
for VSTM entry. Parameter vx is the rate with which one particular stimulus
x races to be encoded. As TVA considers encoding to occur in “exponential
races” (see Bundesen, 1990), it is mathematically described by the cumulative
density function in Figure 2, part (B). This function models whether a stimulus’
race has already finished at time t.

In broad terms, TVA assumes that overall capacity C can be distributed across
the objects in a visual scene. As an example, imagine the children playing in a
playground when you look for your daughter. Your capacity C is allocated to the
stimuli depending on weights, for instance a higher weight of green objects when
you know that your daughter wears a green coat. Thus, the stimulus that is your
daughter will be processed at a higher rate than, for example, her friend who
wears a blue jacket. In the case of Matthews andWelch’s (2015) study, one might
assume that weights (or rates) are higher in the left than in the right visual field
which is their prediction in TVA terms. Exceeding their approach, we can then
trace the origin of weight (or rate) differences in three further parameters, the
(objective) visual evidence for a target (η), the (subjective) pertinence (π), and
the (subjective) bias (β). Pertinence values reflect favoring object features such
as certain colors, and biases pertain to categorization. As indicated at the bottom
of panel (B) in Figure 2, speed can be decomposed into visual evidence, bias and
weight, and weight into pertinence and evidence (note that the two evidences
differ in their subscript). These parameters specified by TVA have well-defined
meanings which are established across different attention-related phenomena;
they have furthermore been interpreted within the neural interpretation of the
theory. Further details of the these components and how they interact can be
found in fundamental descriptions of TVA (Bundesen et al, 2015).
In the present context, we derive a model for TOJs (the “which stimulus

appeared first” task, see Part (C) of Figure 2) from TVA. In TOJs, participants
of the experiment judge which of two similar stimuli appeared first. They do
so for a number of different intervals between the stimuli and a large number
of repetitions (typically in the hundredth). The judgment may be difficult if
the stimulus onsets are separated by only a very small time interval, but is
easy to understand and perform.
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Part (D) of Figure 3 illustrates a typical data pattern gained by judging temporal
order: Across stimulus onset asynchronies (SOAs), judgment probability follows
an S-shaped function. With large SOAs, observers make few mistakes, whereas
around zero, mistakes are common. To be more precise, in the present example,
the observers saw two letters appearing one in the left and one in the right visual
field and named the first letter. This judgment is transferred into the probability
that the stimulus in the left visual field was judged first. This probability is high
when the left letter was indeed first by a large interval and low when in was
second by a large interval.
If there is a LVF advantage in processing speed, observers might see the

left stimulus first in a high proportion of trials, even when the two stimuli
are presented at the same time (SOA zero) or the right stimulus leads with
a small interval. Indeed, the whole psychometric function would be shifted
horizontally (cf. Figure 3(D)). This is what Matthews and Welch (2015) ob-
served. Modelling with TVA can now help to pin down how this shift arises
from lower-level processes.

Figure 3: Components of formal cognitive modeling. (A) Metaphorical model in which two stimuli
race for encoding into the VSTM (visual short-term memory) and (B) its formal description according
to Bundesen’s theory of visual attention. (C) The temporal-order judgment task (SOA = stimulus
onset asynchrony). (D) Typical data pattern of temporal-order judgments (LVF = left visual field).
(E) Formal model of (D) based on (C). (F) Part of the hierarchical graphical model and exemplary
group-level estimates (µ = mean; σ = standard deviation).
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A TOJ model can be derived from TVA by turning the probabilities of one
stimulus’ encoding finishing before time t (as in Figure 2 Part B) into the
probability of one stimulus being encoded earlier as another one (see Figure 2
Parts (D) and (E)). Thereby, this model relates the data to assumed processes
and parameters, most importantly v, the assumed rate of processing (which,
depending on the experimental conditions, can be broken down further in the
components mentioned above).

We combined a TVA-based psychometric function with hierarchical Bayesian
estimation (Figure 3(F)). What can we then learn about the alleged LVF
advantage? To ask how Matthews and Welch’s (2015) data is explained by
TVA we fitted them with the model. The LVF bias is reflected in a higher
processing rate for LVF stimuli vLVF = 8 Hz compared to the RVF vRVF = 6 Hz.
In TVA, the overall processing rate is then C = 14 Hz (vLVF + vRVF) and the
left-side attentional weight wLVF = 0.57 (vLVF/C = wLVF) is increased. What can
cause higher attentional weights? TVA tells us (cf. Figure 3(C)) that higher
weights result from stronger visual evidence for a target (η), a higher pertinence
(π), or a stronger bias (β). Because Matthews and Welch (2015) used targets
with constant visual evidence and the same importance to report them, η and
β cannot vary, thus the difference must be in π. In TVA, π modulates the
filtering of stimuli based on their attributes (here locations) and thus represents
a spatial attention effect.

Because TVA is applied to various research questions and domains – with the
same theoretical model – the estimates from re-fitting Matthews and Welch’s
(2015) data can be put into perspective: The attentional weightwLVF of 0.57 is typ-
ical for attention shifts (caused by, for instance, increased conspicuousness), but
the overall rate C of 15Hz is exceptionally low compared to rates we usually find
(see Tünnermann, 2016, p. 153–154, for an overview of typical TVA estimates).
Because C depends on the visual evidence, it is likely that the faint gratings
used by Matthews and Welch (2015) have low visual impact. Another difference
between this experiment and many TVA-based TOJs is that both stimuli were
always presented in one hemisphere whereas we often use judgments across
hemispheres. If both hemispheres have different attentional weights, the effect
should also occur across hemispheres. We thus decided to replicate Matthews
and Welch’s (2015) finding in our usual TOJ procedure with our usual stimuli
to confirm the phenomenon in general and the predictions sketched above.
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Because of TVA’s formal theoretical model, we can make concrete quantitative
predictions how the phenomenon should show up in the new experiment: If
we assume an overall processing rate of 60 Hz (which we expect based on the
experience with our stimuli) and take the attentional weight of wLVF = 0.57
estimated from Matthews and Welch’ 2015 data, we can predict the left-side
processing rate vLVF = C · wLVF = 60 Hz · 0.57 = 34.2 Hz and the right-side rate
as vRVF = C · (1 − wLVF) = 60 Hz · 0.43 = 25.8 Hz (cf. Figure 2(B)). Note that
instead of this quick calculation we could also generate expected distributions,
taking the typical dispersions of the parameters (and group-level parameters) into
account. We could also then fit multiple such simulations to estimate the power
of our new experiment. These informative steps are possible because of the
graphical Bayesian data model. However, in the present case we only predicted
the expected parameter values based on the quick calculations above.

We conducted bilateral TOJs with 17 participants and obtained the processing
rate posteriors depicted at the bottom of Figure 2(D). The estimates are very
close to the predictions, with vLVF = 35.48 Hz (maximum of the posterior
distribution; 34.2 Hz predicted) and vRVF = 24.55 Hz (25.9 predicted). This
replicates the LVF advantage with a weight of wLVF = 0.59 and an overall rate
C = 60 Hz. Admittedly, predictions rarely turn out as accurately as this one.
With its consistent results the present experiment provides further support for
TVA as a theory and the TVA-based TOJ model (theoretical model). It also
provides a new perspective on the LVF advantage, which now appears as an
attentional phenomenon rooted in filter criteria (TVA’s π). Because πs are
adjustable and task-dependent, the phenomenon could result from biases in the
typical reading direction. It remains open how a detailed explanation may look
(how do the πs change?) or whether alternatives are more likely.

5 Conclusion

An important point that our examples make is the following: When we set up
formal models that provide well-defined connections in Bailer-Jones’s (2009)
framework, data and theory can be explored relatively freely. For instance, we
ask questions like “What does the data show according to our model?” and
make decisions for follow-up analyses contingent on outcomes not anticipated
in advance. In the process of this, much can be learned about the problem under
investigation and the applied theory in general. Intriguingly, this may sound
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just like how research is typically conducted or at least like how researchers
typically would like to proceed. However, there is a difference, and it is
an important one. The typical “effect-based” studies, those that confirm the
existence (or rather reject the absence) of phenomena with no close link to
theory beyond a tool-box frequentist null model do not warrant this degree of
freedom. Researchers have to commit in advance to statistical tests (including
many implicit assumptions). Positive results often provide little insight beyond
the existence of the phenomenon under certain conditions without any formal
link to related problems. What researchers take home from negative results
is even thinner. Of course they inform the researcher’s intuition and thereby
influence subsequent studies, but none of this happens in a form that allows
to effectively accumulate knowledge. We therefore suggest to turn to formally
specified models derived from theory combined with Bayesian statistics.

Optimally, whenmuch research is conducted in this manner, it may be possible
to link models from different domains. This may still be a long – but as we
believe an enlightening – way to go.
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