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Zusammenfassung

Quantisierung ist der Prozess der Abbildung eines Eingangssignals einer gro3en Menge
meist kontinuierlicher Werte in eine kleinere Menge mit einem endlichen Bereich von
diskreten Werten. Quantisierung stellt eine wichtige Operation fiir praktisch alle Anwen-
dungen im Bereich der digitalen Signalverarbeitung dar, beispielsweise in den Bereichen
Audio-, Bild- und Videoproduktion. Dies schlieBt die Verarbeitung von Fernerkundungs-
daten ein, bei der Daten aus einer analogen Quelle in ein numerisches Format umge-
wandelt werden, um anschliefend iibertragen, weiterverarbeitet und analysiert werden
zu konnen.

Die vorliegende Arbeit konzentriert sich auf die bordseitige, interne Quantisierung fiir
Radarinstrumente mit synthetischer Apertur (SAR). SAR-Systeme ermoglichen wetter-
und tageszeitunabhiingige, hochauflésende Aufnahmen und sind daher sehr gefragt fiir
viele wissenschaftliche und kommerzielle Anwendungen der Erd- (oder planetaren) Be-
obachtung. Allerdings nimmt das bordseitig bendtigte Datenvolumen von gegenwirtig
geplanten und zukiinftigen satellitengestiitzten SAR-Missionen immer mehr zu, da in
modernen Systemen groflere Bandbreiten und Mehrfachkanidle zum Einsatz kommen,
und auBBerdem die Abbildung groBerer Streifenbreiten bei feinerer raiumlicher Auflésung
angestrebt wird. Dies impliziert hohere Anforderungen an Bordspeicher und Ubertra-
gungskapazititen, deren begrenzte Ressourcen oft einen Engpass bei der Planung von
SAR-Missionen darstellen. In diesem Zusammenhang ist eine geeignete Digitalisierung
der vom SAR-Sensor erfassten Rohdaten von grofler Bedeutung: die verwendete Anzahl
von Bits beeinflusst zum einen die Qualitéit der resultierenden SAR-Produkte, definiert
aber auch andererseits die Menge des gesamten Datenvolumens, das vom System erzeugt
wird.

In dieser Dissertation wurde der Einfluss der Quantisierung auf die SAR Leistung und
die interferometrische (InSAR) Qualitit untersucht. Dafiir wurden experimentelle Daten
der X-Band SAR-Mission TanDEM-X des Deutschen Zentrums fiir Luft- und Raum-
fahrt (DLR) genutzt, die mit unterschiedlichen Systemparametern und SAR-Szeneeigen-
schaften aufgenommen wurden. Dariiber hinaus wurde eine neuartige Quantisierungsme-
thode vorgestellt, die “qualitidtsoptimierte blockadaptive Quantisierung” (Performance-
Optimized Block-Adaptive Quantization, PO-BAQ). Diese ermdoglicht eine gemeinsame
Optimierung der Datenrate und gleichzeitig der interferometrischen Qualitéit unter Nut-
zung des a priori Wissens iiber die Stirke der SAR-Riickstreuung. Ferner wurde eine
neuartige SAR-Datenkompressionstechnik entwickelt, die eine effiziente Umsetzung von
nicht-ganzzahligen Quantisierungsraten ermoglicht. Die Machbarkeit der vorgeschla-
genen “Azimuth-Switched Quantization” (ASQ), die eine hohere Flexibilitit in Bezug
auf erzielbare Leistung und Ressourcenallokation ermdglicht, wurde anhand von expe-
rimentellen TanDEM-X Daten erfolgreich demonstriert.

Der zweite Teil der Dissertation konzentriert sich auf die Entwicklung von innovativen



bordseitigen Datenreduktionsverfahren fiir zukiinftige SAR-Systeme. Insbesondere wur-
de ein SAR-System untersucht, das mehrere Empfangsaperturen in Langsrichtung nutzt,
und so eine hochauflosende Abbildung eines breiten Streifens zuldsst, allerdings auf
Kosten einer betrichtlichen Erhohung der Datenmenge. In diesem Kontext wurde eine
geeignete Strategie zur Datenreduktion entwickelt, die “mehrkanalige blockadaptive
Quantisierung” (Multi-Channel Block-Adaptive Quantization, MC-BAQ). Diese Metho-
de nutzt die bestehende Korrelation zwischen aufeinanderfolgenden Azimut-Samples
durch das Ausfiihren einer diskreten Fourier-Transformation des mehrkanaligen SAR-
Datenblocks. AnschlieBend wird eine Quantisierung mit variabler Bitrate angewendet,
was die Optimierung der resultierenden Bildqualitit und Datenrate ermoglicht. Schlief3-
lich wurde der Einsatz von linearer pridiktiver Kodierung zur bordseitigen Datenre-
duktion von sogenannten “staggered” SAR-Systemen untersucht. Staggered SAR ist
ein innovativer SAR-Aufnahmemodus, der einen breiten Streifen mit hoher Auflésung
abbilden kann. Dieser Modus wird realisiert durch eine kontinuierliche Variation des
Impulsfolgeintervalls und erfordert eine erhebliche Uberabtastung in Azimut-Richtung.
Die vorgeschlagene dynamische pridiktive blockadaptive Quantisierung (Dynamic Pre-
dictive Block-Adaptive Quantization, DP-BAQ) nutzt die Redundanz im ungleichmifig
abgetasteten Azimut-Rohdatenstrom und ermoglicht eine deutliche Reduzierung des zu
ibertragenden Datenvolumens zum Boden auf Kosten einer geringfiigigen Erhhung des
bordseitigen rechnergestiitzten Aufwands.
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Abstract

Quantization is the process of mapping an input signal from a large set of often con-
tinuous values into a smaller one with a finite range of discrete values. Quantization
represents a crucial operation for practically all applications in the field of digital signal
processing, ranging from audio, image, and video production, including the elaboration
of remote sensing data, which are converted from an analog source into a numerical
format, in order to be properly transferred and further processed and analyzed.

This work focuses on onboard quantization for synthetic aperture radar (SAR) systems.
SAR systems allow for all-weather, day-night high-resolution imaging and are therefore
very attractive for a large set of scientific and commercial applications related to Earth
(or planetary) observation. For present and next-generation spaceborne SAR missions,
an increasing volume of onboard data is going to be required, due to the employment
of large bandwidths, multiple channels, and the imaging of large swath widths at fine
spatial resolutions. This implies strong requirements in terms of onboard memory and
downlink capacity, which are limited resources and often represent a bottleneck in the
design of SAR missions. In this context, the proper digitization of the raw data acquired
by the SAR sensor represents an aspect of utmost importance, since the number of bits
employed to digitize the recorded radar signal, on the one hand, directly affects the per-
formance of the resulting SAR products and, on the other hand, defines the total volume
of data to be managed by the system.

In this dissertation, the impact of quantization on SAR and interferometric (InSAR) per-
formance has been investigated using experimental data acquired by the X-band SAR
mission TanDEM-X of the German Aerospace Center (DLR) for different system param-
eters and SAR scene characteristics. Furthermore, a novel quantization method, named
performance optimized block-adaptive quantization (PO-BAQ), has been introduced. It
allows for a joint optimization of the data rate and, at the same time, of the interferometric
performance, by exploiting a priori knowledge about the SAR backscatter information.
Furthermore, a novel SAR data compression technique has been developed, which al-
lows for the efficient implementation of non-integer quantization rates. The proposed
azimuth-switched quantization (ASQ) has been successfully demonstrated on TanDEM-
X data and grants higher flexibility in terms of performance and resource allocation.

In the second part of the thesis, the attention has been focused on the definition of inno-
vative onboard data reduction methods for next-generation SAR systems. In particular,
a SAR system exploiting multiple receiving apertures in along-track direction allows for
high-resolution imaging of a wide swath, at the cost of the acquisition of a considerable
amount of data. In this context, a convenient data reduction strategy has been proposed,
named multi-channel block-adaptive quantization (MC-BAQ), which exploits the exist-
ing correlation between adjacent azimuth samples by performing a discrete Fourier trans-
form of the multi-channel SAR data block. Then, a variable-bit quantization is applied,
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allowing for the optimization of the resulting image quality and data rate.

Finally, the use of linear predictive coding has been investigated for onboard data re-
duction in staggered SAR systems. Staggered SAR is an innovative high-resolution
wide-swath SAR acquisition mode which exploits a continuous variation of the pulse
repetition interval and requires, for its operation, a significant azimuth oversampling.
The proposed dynamic predictive block-adaptive quantization (DP-BAQ) exploits the
redundancy exhibited by the non-uniform azimuth raw data stream and allows for a con-
siderable reduction of the data volume to be transmitted to the ground at the cost of a
modest increase of onboard computational effort.
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1 Introduction

Radar is the acronym for “radio detection and ranging” and indicates an active sys-
tem which uses radio waves to detect objects and determine their position, angle of ob-
servation, and/or velocity. The history of radar dates back to the last decades of the
19™ century, when Heinrich Hertz proved the existence of electromagnetic waves [1],
previously predicted and formalized in equations by James C. Maxwell [2]. Between
1886 and 1888, Hertz conducted a series of experiments to demonstrate that radio waves
can actually be reflected by metallic and dielectric objects. Then, in 1904, Christian
Hiilsmeyer invented the first device which utilizes radio waves to detect the presence of
distant objects, the so-called Telemobiloscope [3], [4], mainly intended to prevent colli-
sions between ships in foggy conditions. Relevant experiments were conducted during
the following two decades by Guglielmo Marconi together with Charles S. Franklin, and
by the researchers at the Naval Research Laboratory (NRL), United States of America
(USA). However, despite the promising results, it was only right before the outbreak of
World War II that radar technology experienced a rapid development concurrently in sev-
eral countries, such as Great Britain, France, Italy, Germany, the Netherlands, the Soviet
Union, Japan, and the USA.

A significant development in radar history is then represented by the invention of the
side looking airborne radar (SLAR) in the 1950s, which allowed for the imaging of
ground areas from airborne platforms for military reconnaissance purposes. In 1951,
the working principle of synthetic aperture radar (SAR) was conceived by Carl A. Wi-
ley. SAR allows for high-resolution imaging, independently of the range distance, by
exploiting the relative motion of the radar antenna in the along-track dimension over the
target under illumination [5]. A detailed description of the SAR principle and of the
most relevant SAR systems and performance parameters is provided in Chapter 2. Since
its invention, SAR has been universally acknowledged as a fundamental discovery in
the field of radar for remote sensing applications, and up to the present day a number
of airborne and spaceborne missions have been developed, by progressively and signifi-
cantly improving the sensor capabilities and the provided image quality. Table 1.1 shows
the frequency bands and the corresponding wavelength ranges commonly employed for
spaceborne imaging radar systems. The radar wavelength A is related to the radar carrier
frequency f. by the relation

€0
A 7 (1.1)
being ¢y the speed of light in free space. Each of the frequency bands is characterized by
different interaction and penetration capabilities of the electromagnetic waves in media,
and is therefore selected depending on the specific target application. A detailed his-
torical overview of the most relevant spaceborne SAR missions is presented in the next
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Table 1.1: Frequency bands (and corresponding frequency and wavelength ranges) typi-

cally used for SAR systems.

Frequency Band | Frequency [GHz] | Wavelength [cm]

P 0.25-0.5 60-120

L 1-2 15-30

S 2-4 7.5-15

C 4-8 3.75-7.5

X 8-12 2.5-3.75
Ky 12-18 1.67-2.5

K 18-26.5 1.3-1.67

Ka 26.5-40 0.75-1.3

section.

1.1 Spaceborne SAR: Historical Overview and State of the Art

Table 1.2 provides a historical overview of the civilian spaceborne SAR missions. All
satellites which are still in operation (as indicated in the second column of the table) were
launched within the last 10-15 years, and their frequency bands, except for a few cases,
range from L band to X band. After the invention of the SAR principle in the beginning
of the 1950s, it took almost 30 years until the first civilian SAR satellite, Seasat, was
launched into space by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration (NASA) in 1978 [6]. Seasat was equipped with an L-band
antenna with the main scope of providing relevant information about oceanographic pro-
cesses, such as wave heights and ocean surface winds and temperature, with a mission
duration of about three months. The left-hand side of Figure 1.1 shows an artistic view
of the Seasat sensor, while the right-hand side depicts the SAR amplitude acquired by
Seasat over the Columbia River and the Oregon coastline. Successively, the L-band Shut-
tle Imaging Radar SAR missions SIR-A [7], [8] and SIR-B [9], mounted on board the
Space Shuttle, were launched in 1981 and 1984, respectively. In particular, the SIR-B
mission, during its eight days of operation, acquired for the first time SAR data takes
from multiple incidence angles, thanks to its ability to mechanically tilt the SAR antenna
in elevation.

The first spaceborne SAR mission developed by the European Space Angency (ESA)
was the C-band ERS-1 [10], launched in 1991 and in operation until 2000. Its follow-
on satellites ERS-2 (1995-2011) and ENVISAT/ASAR (2002-2012) provided a funda-
mental continuity in data acquisition and distribution [11], [12]. This aspect has been
further assured by the development of the C-band Sentinel-1a and Sentinel-1b satellites,
launched in 2014 and 2016, respectively, in the frame of the European Union’s Earth
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Figure 1.1: (a) Artist’s illustration of the NASA’s Seasat satellite, launched on June 28,
1978. (b) Seasat SAR image over the Mouth of the Columbia River and
the Oregon coastline, Oregon (USA), acquired on August 10, 1978 (Credits:
NASA 1978, processed by ASF DAAC 2013).

observation program Copernicus [13], and providing enhanced capabilities in terms of
SAR image quality, revisit time, and coverage.

The two C-band SAR missions RADARSAT-1 and RADARSAT-2 were developed by
the Canadian Space Agency and launched in 1995 and 2007, respectively. They are
characterized by swath width capabilities of up to 500 km and aim at the supply and dis-
tribution of data for commercial applications as well as for remote sensing science [14],
[15]. The follow-on RADARSAT Constellation Mission (RCM) was launched on June
12, 2019. The Japanese Space Agency (JAXA) developed a series of L-band spaceborne
SAR sensors, JERS-1 in 1992, ALOS in 2006, and ALOS-2 in 2014 [16], [17], with
main purposes in the fields of cartography, regional observation, disaster monitoring,
and resource surveying.

The SIR-C/X-SAR missions, developed in a joint partnership between NASA JPL, the
German Aerospace Center (DLR), and the Italian Space Agency (ASI) [18], operated on
two Space Shuttle flights in April and October 1994, and were equipped with L-, C-, and
X-bands SAR antennas, representing the first demonstration of multi-frequency SAR in
space. This successful cooperation continued with the development of the Shuttle Radar
Topography Mission (SRTM) [19]. SRTM was launched in February 2000 and, during
its eleven days of mission operation, acquired data in C and X band for the generation
of a nearly global Digital Elevation Model (DEM) of the Earth’s landmasses (latitudes
between 56° S and 60° N).
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Table 1.2: Overview of civilian spaceborne SAR sensors.

Sensor Lifetime Frequency Band Institution, Country
Seasat 1978 L NASA/JPL, USA
SIR-A/B 1981/1984 L NASA/JPL, USA
1991-2000
ERS-1/2 1995-2011 C ESA, Europe
JERS-1 1992-1998 L JAXA, Japan
NASA/JPL, USA
SIR-C/X-SAR 1994 L/C/X DLR, Germany
ASI, Italy
RADARSAT-1 1995-2013
RADARSAT-2 2007-today ¢ 54, Canada
NASA/JPL, USA
SRTM 2000 C/X DLR, Germany
ASI, Italy
ENVISAT/ASAR 2002-2012 C ESA, Europe
ALOS/PalSAR 2006-2011 L JAXA, Japan
TerraSAR-X 2007-toda .
TanDEM.X 2010-to daz X DLR/Airbus, Germany
COSMO-SkyMed-1/4 | 2007...2010-today X ASI/Italian MoD, Italy
RISAT-1 2012-today C ISRO, India
CRESDA/CAST/
HJ-1C 2012-today S NRSCC, China
Kompsat-5 2013-today X KARI, South Korea
Sentinel-1a/1b 2014/2016-today C ESA, Europe
ALOS-2 2014-today L JAXA, Japan
PAZ 2018-today X CDTI, Spain
NovaSAR-1 2018-today S SSTL/Airbus/UKSA, UK
SAOCOM-1a 2018-toda .
SAOCOM-1b Scheduled in 2020 L CONAE, Argentina
ICEYE Constellation | 2018/2019-today X Iceye Oy, Finland
RCM 2019-today C CSA, Canada

The constellation of the four X-band satellites COSMO-SkyMed for Earth observation
was launched into space between 2007 and 2010 [20]. The SAR satellites have been
developed by ASI in cooperation with the Italian Ministry of Defence (MoD) for dual
use applications, both military and civilian. Further on-going spaceborne SAR missions
that deserve to be mentioned are the Indian C-band quad-polarization mission RISAT-1
(2012) [21], S-band sensors HJ-1C (2012) [22] from China and NovaSAR (2018) [23]
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Figure 1.2: (a) Artist’s illustration of the DLR’s TerraSAR-X and TanDEM-X satellites.
(b) Color-coded TanDEM-X DEM over the Pyasina Delta and Kara Sea, Rus-
sia (Credits: DLR).

from UK, the X-band SAR satellites Kompsat-5 (South Korea, 2013) [24] and PAZ
(Spain, 2018) [25], and the Argentinean L-band SAOCOM-1a (2018) [26] (the launch of
the companion satellite SAOCOM-1b is scheduled for 2020).

The first German SAR satellite, TerraSAR-X, was developed under a public-private-
partnership between DLR and Airbus Defence & Space and launched in June 2007.
TerraSAR-X operates at X band and provides SAR imagery with excellent radiomet-
ric and geometric accuracies [27], spatial coverage up to 250 km (Wide ScanSAR mode
[28]) and resolutions down to 20 centimeters (Staring Spotlight mode [29]). In June
2010, TerraSAR-X was enhanced by its almost twin satellite TanDEM-X, to begin the
first bistatic spaceborne SAR mission ever comprising two separate spacecrafts. Since
then, the two X-band SAR satellites have been flying in a close orbit formation at a
few hundred meters distance acting as a large single-pass radar interferometer, with
the opportunity for flexible along- and across-track baseline selection and allowing for
the acquisition of high-resolution interferograms [30]. The primary objective of the
TanDEM-X mission (which stands for “TerraSAR-X add-on for Digital Elevation Mea-
surement”) was the generation of a worldwide and consistent DEM with unprecedented
accuracy, which was successfully completed in 2016 (an additional change-DEM layer is
foreseen to be delivered by 2021 [31]). The left-hand side of Figure 1.2 shows an artistic
view of the TerraSAR-X and TanDEM-X satellites, while the right-hand side depicts the
color-coded TanDEM-X DEM over the Pyasina Delta and Kara Sea, Russia. Nowadays,
TanDEM-X is able to provide the remote sensing scientific community with a unique data
set and to apply innovative techniques for a broad range of commercial and scientific ap-
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plications, such as the monitoring of terrain deformation [32], flooding [33], ice melting
[34], and deforestation events [35]. While being very flexible and powerful systems, the
acquisition capabilities of the TerraSAR-X and TanDEM-X satellites are limited by their
relatively short orbit duty cycle (about 3 minutes per orbit) and small onboard memory
(of 256 Gbit and 512 Gbit, respectively), which pose constraints on the achievable data
rate during the mission. This aspect represents a critical issue for all spaceborne SAR
missions and, in turn, directly dictates a trade off between the quality of the resulting
SAR products and the sensor acquisition capabilities: indeed, about an entire year was
required by TanDEM-X to complete one global interferometric acquisition of the Earth’s
landmasses fulfilling the specified mission requirements [30].

1.2 Motivation and Objectives of the Work

Synthetic aperture radar (SAR) allows for all-weather, day-night high-resolution imag-
ing and is therefore very attractive for a large number of scientific as well as commercial
applications. For present and next-generation spaceborne SAR missions, an increas-
ing volume of onboard data is going to be required, due to the employment of large
bandwidths, multiple channels, and the imaging of large swath widths at fine spatial res-
olutions. An example is Tandem-L, a DLR proposal for a single-pass interferometric
and fully polarimetric L-band radar mission, which exploits innovative high-resolution
wide-swath SAR modes with the main objective of systematically monitoring dynamic
processes of the Earth system, such as deformation events, forest height and biomass
change, and ice/glacier velocity fields [36], [37]. The resulting increase of required data
rate implies hard requirements in terms of onboard memory and downlink capacity. In
this context, a proper quantization of the raw data acquired by the SAR sensor is of ut-
most importance, since the number of bits employed to digitize the recorded radar signal,
on the one hand, directly affects the performance of the resulting SAR products and, on
the other hand, defines the total amount of data to be managed by the system, hence
identifying a key aspect for the design of future SAR missions.

One of the most widely recognized standards for SAR raw data compression is the
block-adaptive quantization (BAQ) [38], [39], which provides a good compromise be-
tween implementation complexity, granted image quality, and achievable compression
ratio. In this dissertation, different quantization strategies as well as efficient data vol-
ume reduction methods for SAR systems are proposed and, in all cases, BAQ has been
considered as the state-of-the-art quantization scheme.

This work focuses on the onboard quantization of synthetic aperture radar (SAR) sys-
tems and is the result of the research activities carried out at the Microwaves and Radar
Institute (HR) of DLR, Germany. The main content and objectives of the thesis are sum-
marized in the following:

1. Assess the impact of raw data quantization on SAR and InSAR performance for
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different SAR image characteristics and system parameters. For this purpose,
bistatic images acquired by the TanDEM-X mission are investigated. Starting from
the obtained results, a novel method, denoted as performance-optimized block-
adaptive quantization (PO-BAQ), is introduced, which exploits the a priori knowl-
edge about the SAR backscattered information to adjust the resource allocation
and, at the same time, to control the interferometric performance degradation.

2. Develop a novel SAR data compression technique, named azimuth-switched quan-
tization (ASQ), which allows for the efficient implementation of non-integer quan-
tization rates, hence enabling finer granularity in terms of achievable performance
and resource allocation for the design of SAR systems. The proposed method has
been successfully demonstrated on experimental data acquired by TanDEM-X.

3. Introduce a new strategy for onboard data reduction for multi-channel SAR sys-
tems [40], which exploits the transform coding paradigm by taking advantage of
the existing correlation between adjacent azimuth samples. The proposed method,
named multi-channel block-adaptive quantization (MC-BAQ), allows for the opti-
mization of the resulting performance and data rate.

4. Address data volume reduction in the context of staggered SAR systems [41]. The
proposed dynamic predictive block-adaptive quantization (DP-BAQ) exploits the
redundancy in the non-uniform staggered SAR azimuth raw data stream and allows
for a significant reduction of the data volume to be downlinked to the ground at the
cost of a modest increase of the onboard computational effort.

The goals of this thesis can be therefore categorized in two main parts: the first one
(corresponding to objectives 1. and 2.) focuses on the analysis and the optimization of
SAR performance with respect to raw data quantization, and to this purpose investiga-
tions on experimental TanDEM-X data have been conducted; the second part (objectives
3. and 4.) addresses innovative onboard data reduction methods for next-generation
SAR systems, whose effectiveness is demonstrated by means of analytical formulations
as well as of Monte-Carlo simulations.

Each of the above mentioned objectives is elaborated in a dedicated chapter of the
dissertation, whose detailed structure is described in the next section.

1.3 Thesis Structure

The thesis is structured as follows:

e A short review of SAR remote sensing is presented in Chapter 2: the SAR acquisi-
tion principle and image formation process are recalled, together with an overview
of the main SAR and interferometric SAR (InSAR) system and performance pa-
rameters and a summary of the most relevant acquisition and operation modes.
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e In Chapter 3 the compression of SAR raw data is discussed. State-of-the-art quan-
tization schemes for SAR systems are reviewed and the impact of quantization
errors is evaluated by means of a dedicated simulation framework for different
target scenarios. Chapter 2 and Chapter 3 are intended to provide all necessary
concepts for the understanding of the work developed in the subsequent chapters.

e The impact of quantization on SAR and interferometric (InSAR) performance
is evaluated in Chapter 4 on experimental TanDEM-X bistatic data for differ-
ent system parameters and SAR scene characteristics. For this, an overview of
the TanDEM-X mission is provided, and the consequent adaptation of the re-
source allocation strategy for the global TanDEM-X DEM acquisition is presented
as well. In addition, a novel performance-optimized block-adaptive quantization
(PO-BAQ) is introduced, which allows for adjusting the target data rate depending
on the specific SAR backscatter information and, at the same time, to control the
interferometric performance degradation.

e Chapter 5 presents a novel SAR data compression technique, named azimuth-
switched quantization (ASQ), which allows for the efficient implementation of
non-integer quantization rates. By this, higher flexibility in terms of resource allo-
cation and achievable SAR performance is enabled. The proposed method is tested
on experimental TanDEM-X data.

e Chapter 6 describes a new method for onboard data reduction for SAR systems
using multiple receiving channels mutually displaced in the along-track direction,
which allows for high-resolution imaging of a wide swath. The proposed multi-
channel block-adaptive quantization (MC-BAQ) exploits the existing correlation
within each multi-channel raw data block by jointly applying a discrete Fourier
transform together with an efficient selection of the quantization rates, hence al-
lowing for the optimization of the resulting performance and data rate.

e Chapter 7 introduces a novel strategy for data volume reduction in the context
of staggered SAR systems [41]. Staggered SAR requires a higher azimuth over-
sampling with respect to a conventional SAR. Hence, the use of linear predictive
coding is investigated, which exploits the correlation properties exhibited by the
non-uniform azimuth raw data stream. The proposed dynamic predictive block-
adaptive quantization (DP-BAQ) allows for a significant reduction of the data vol-
ume to be downlinked to the ground at the cost of a slight increase of the onboard
implementation effort.

e Finally, the conclusions of the thesis are drawn in Chapter 8, together with an
outlook on future research activities.
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Synthetic Aperture Radar (SAR) is an active microwave sensing technique which is
capable of acquiring high-resolution images at day and night. Moreover, since weather
phenomena, such as precipitation or the presence of clouds, do not significantly affect
the microwave propagation, high-quality imaging is achieved regardless of the specific
weather condition. This represents a great advantage with respect to optical sensors,
which need sunlight and clear sky to be able to image the area of interest. Since its
discovery in the early 1950s, an increasing interest has arisen on the utilization of SAR
in remote sensing, representing nowadays a well-recognized and powerful technique to
be applied for a wide range of geoscience applications, such as geology, physical ge-
ography, glaciology, agriculture, forestry, oceanography, and environmental monitoring.
In this chapter, the SAR acquisition principle and image formation process are recalled,
together with an overview of the main SAR performance parameters and of the most
relevant SAR acquisition modes and imaging systems. Afterwards, the basic concepts
of SAR interferometry (InSAR), its acquisition geometry and operation modes, and the
main parameters describing the quality of InSAR products are introduced. An exhaus-
tive treatise on SAR theory, algorithms, and implementation aspects is provided, among
others, in [42], [43], [44], [45], [46].

2.1 Acquisition Geometry and Basic Principles

In a simplified representation, a monostatic SAR imaging system consists of a mi-
crowave transmitter and receiver, which is placed on a moving platform such as an air-
plane or a satellite, as shown in Figure 2.1. The radar sensor flies at an approximately
constant height Ag above the ground and speed vy along the radar track (or azimuth, or
along-track) direction. The antenna height and length is indicated by L. and L, (where
the subscripts stand for elevation and azimuth, respectively). The slant range identi-
fies the direction perpendicular to the radar track pointing to the target 7', whereas the
ground range is the projection of the slant range on ground, i.e., the vector connecting
the point of closest approach on the nadir track and the scatterer 7. Let Ry be the slant
range distance of closest approach between the sensor and the target 7', after the pulse
transmission an echo will be received by the radar with a time delay

2Ry
==

At 2.1)

Hence, discrimination of objects at different range distances is made possible by the
SAR side-looking imaging geometry. The microwave energy radiated by the antenna
illuminates an area on ground which is defined as the antenna footprint. This extends
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Figure 2.1: Schematic SAR acquisition geometry.

over Ly along azimuth direction and W, from near to far range (the so-called swath width),
which are expressed as

AR
Ly="" 0 (2.2)
ARy
Wg - Le-COS(T[)’ (23)

being 7 the angle of incidence as in Figure 2.1. The SAR transmitter unit typically emits
short pulses of electromagnetic radiation each of duration 7, (and spatial length c(7,) at
a constant pulse repetition frequency (PRF), as depicted in Figure 2.2. For spaceborne
SAR the resulting PRF values are typically in the range of a few kilohertz (kHz). The
echo window length (EWL) is the time interval allowed for the echo reception. Due to the
large range distance, each pulse typically takes several pulse repetition intervals (PRIs,
being PRI = 1/PRF) to travel from the sensor to the target 7 and back, i.e., At ~ n-PRI,
where 7 is also known as rank. Given a range Ry, the rank of a SAR system is defined as

2R() 1 J

rank(Ry) = { Co ‘PRI

(2.4)
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As an example, for TerraSAR-X Ry = 600 km and PRF = 3000 Hz, which results in
rank = 12. The echo window length (EWL) as in Figure 2.2 directly determines the
effective imaged swath width Wy ¢ as follows

co- (EWL —1,)

2-sin(nN)
The maximum swath width Wy ax 1s achieved by selecting the largest possible EWL,
which is given by

W eff = (2.5)

EWLax = PRI— 1. (2.6)

SAR is a coherent radar system, hence it records the amplitude and the phase of the
received echoes, which are affected by the physical and dielectric properties of the il-
luminated target, such as its roughness or permittivity, as well as by the characteristics
of the imaging system, such as the radar wavelength, the imaging geometry, and the
polarization channel, the latter describing the geometric orientation of the radar wave
oscillations in the plane perpendicular to the direction of propagation. For this, differ-
ent target responses are possible depending on the polarizations used in transmission
and reception. Often the combination of two linear polarizations, H (horizontal) and V
(vertical) is used. For this, the antenna alternates the transmission of pulses with hor-
izontal and vertical polarizations. The echoes are then simultaneously recorded using
two separate channels with horizontal and vertical polarizations, respectively. In this
way, different polarization combinations can be implemented: HH, HV, VH, and VV (in
monostatic SAR observations, the reciprocity theorem results in the symmetric assump-
tion of the cross-pol channels, i.e. the HV and VH channels carry the same information).
In addition, by combining the polarization components and varying their phase shift and
intensity in time, circularly, elliptically, or linearly (e.g., 45° inclined) polarized waves
can be synthesized as well [47].

The received echo is weighted by the radar antenna pattern (which also depends on
the specific polarization combination). For a rectangular aperture, the two-dimensional
antenna pattern G can be approximated as

G(Va, Ye) = sinc? (%w) sinc? (%w) , 2.7

where . and Y, are the off-boresight angles in elevation and azimuth dimension, re-

spectively, while L. and L, are the corresponding antenna height and length, according

to Figure 2.1. In the above formula, the sinc function denotes the cardinal sinc function
which, for a generic independent variable y, is defined as

, sin(7y)

sinc(y) = , 2.8

() T (2.8)

and appears squared in (2.7) since the patterns are considered both in transmission and

reception. Usually, in radar systems the energy of the antenna pattern is considered

11
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Figure 2.2: Sequence of transmitted SAR pulses (7'x), each one of duration 7, and spaced
out by the pulse repetition interval (PRI). The echo window length (EWL) is
the time interval allowed for the echo reception, which directly defines the
imaged swath width. For each transmitted pulse, an echo is received (Rx)
by the sensor after a time delay At as in (2.1). Such a delay typically lasts
several pulse repetition intervals and is not shown in the figure.

within the half power beam width (Y 34, Wa 3d8) Which, for a sinc pattern, can be well
approximated by a

A

l//e,3dB ~ 0. 886;, (29)
(&
A

Va3 ~ 0. 886;- (2.10)

a

2.2 SAR Image Formation

Differently from optical sensors, which provide ready-to-use information on the im-
aged scene almost at the same time of acquisition, each of the echoes received by a SAR
sensor is composed by the superposition of responses from the group of scatterers on the
ground located within the antenna beam. The echoes are arranged into a two-dimensional
array where the coordinates are given by the time delay and the pulse number in slant
range and azimuth direction, respectively, and are referred to as raw data. Due to the
large number of scatterers contributing to each received radar echo, its In-phase (I) and
Quadrature (Q) components can be well approximated as zero-mean Gaussian stationary
and independent processes, as a consequence of the central limit theorem (CLT) [42].
According to the SAR acquisition geometry, the range time is typically referred to as
fast time, since the time delay between transmission and reception of the SAR pulse is
in the order of milliseconds and, for typical bandwidth values, adjacent range samples
are a few nanoseconds apart. On the other hand, the azimuth time is referred to as slow
time, as the SAR survey typically extends over several seconds. Figure 2.3 depicts a

12
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Figure 2.3: Schematic SAR workflow.

schematic workflow of the relevant steps for SAR imaging. The received analog sig-
nal x(¢) is conveniently sampled (discrete-time) at a certain range sampling frequency
fs and quantized (discrete-amplitude) with a pre-defined number of bits per sample N,
by an analog-to-digital converter (ADC), and the output signal r4[n] is stored on board
in digital format. Once the SAR data take is completed, the raw data are downloaded
to the ground (for spaceborne SAR typically a network of ground stations is employed).
Since the individual targets are defocused in both range and azimuth directions in the
SAR raw data matrix, proper SAR processing needs to be applied in order to reconstruct
a two-dimensional image. Finally, calibration and geocoding are applied to convert the
complex-valued SAR data to a meaningful and georeferenced measurement. These on-
ground processing steps are explained in the following.

2.2.1 Range Focusing

Let s(¢) be a waveform which is modulated and transmitted at a certain time 7 by the
SAR sensor. The signal which is scattered back from a point-like target (i.e., a target
whose response dominates on the other targets within a single resolution cell) located at
a slant range (line-of-sight) distance R and received back by the radar antenna x(¢), after
coherent demodulation, will be an attenuated, delayed, and phase-shifted version of s(z),

13
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summed with an additive white Gaussian noise (AWGN) contribution n(z)

x(t)zA-s(t—z—R)-exp(—j4%R>+n(t). @.11)

€o
In the above equation, A represents the attenuation factor (i.e. A < 1), j is the imaginary
unit, and the factor 2 multiplied by the slant range R takes into account the distance of
the pulse traveling from the sensor to the target and back (see also (2.1)). Given these
assumptions, it is known that the optimal linear time-invariant (LTI) filter for maximizing
the output signal-to-noise ratio (SNR) is the so-called matched filter, whose impulse
response is the conjugated (*) time-reversed replica of the transmitted signal [42], [48]

h(1) = s*(—1). (2.12)

Hence, the focusing process is achieved by convolving the received signal with its matched

filter
—+oo

1(0) = (1) +h(t) = [ x(@)s" (=), (2.13)

where * denotes the convolution operator. Different scatterers on ground can be effec-
tively detected only if their echoes are separated by sufficient time delays. If considering
a rectangular pulse with duration 7, used in transmission, one can show that the spatial
resolution in the slant range direction Oryec is approximately given by

coT,
S Frect & Tp (2.14)

The above equation tells that higher resolutions can be only achieved by shortening the
pulse length 7,, which, in turn, implies a reduction of the radiated energy (which is
proportional to 7p), and hence of the resulting SNR after matched filtering (unless very
high peak power is used for the pulse, which is also limited by technical constraints).
In order to overcome this limitation, radar systems generally transmit a complex linear
frequency modulated (LFM) pulsed waveform known as chirp, which is expressed as

s(t) =exp [j <¢0 + 21 fet + nkrtz)] -rect(%) , (2.15)
p

where t represents the range or fast time and f. is the carrier frequency. The limited
duration of the waveform is indicated by the rectangular rect function, which is defined

as
rect<L) = {1’ i< /2 (2.16)

T 0,[t] > 1p/2.

The instantaneous frequency of the chirp is

fi(t) = fe+ ki, (2.17)

14
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where k; is the chirp rate. If a positive (negative) value of k; is employed, a so-called
up-chirp (down-chirp) is obtained. In both cases, the chirp bandwidth can be derived as

Big = |ki|7p- (2.18)

The amplitude of the chirp signal stays constant throughout the entire transmission,
whereas the phase quadratically varies during the pulse extension (¢ is the initial phase
shift). If a chirp signal as in (2.15) is employed, the normalized output x(¢) of the
matched filter, for large values of the time-bandwidth product B, 7, and aside from a
scaling factor, can be well approximated by

X (t) ~ sinc(Bygt). (2.19)
As R = cpt /2, the above equation can be rewritten as
2B
2(R) ~ sinc( < ) . (2.20)
€0

The resulting range resolution is related to the width of the main lobe of | (R)|>. If the
width between the maximum and the first null of | (R)|? is considered (according to the
definition of Rayleigh resolution), the attainable slant range resolution Or is given by

€0

or~ .
"~ 2B,

(2.21)

Differently from Orect defined in (2.14), chirp signals achieve better resolutions when
longer waveforms are radiated, according to (2.18), which also allow for the transmis-
sion of a larger amount of energy, hence resulting in higher SNRs. The ground range
resolution O, is obtained by projecting the slant range resolution as

Org = L

sin(n)
Hence, the ground resolution varies with the incidence angle 1 along the swath. This
variation is much larger for airborne SAR, where 11 may vary up to several tens of degrees
within a stripmap scene, than for spaceborne configurations (only a few degrees), due to
the different sensor altitude. For modern SAR systems, B, typically ranges between
few tens up to several hundreds of MHz, so that range resolutions in the order of a
few meters can be achieved. Figure 2.4 shows an exemplary chirp signal: its real and
imaginary part are depicted in Figure 2.4 (a) and Figure 2.4 (b), respectively. Figure 2.4
(c) shows the instantaneous chirp frequency (for this example, a chirp pulse duration
Tp = 20 us and a range bandwidth B, = 10 MHz are considered), and Figure 2.4 (d)
depicts the signal obtained after matched filtering. Due to the property of the matched
filter of concentrating the signal energy and increasing the resulting SNR, the described
process is also referred to as range focusing, and the filtered data () (¢) in (2.13)) are also
known as range-compressed (or range-focused) data.

(2.22)
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Figure 2.4: (a) Real part and (b) imaginary part of an exemplary chirp signal; (c) Instan-
taneous frequency shift; (d) Pulse-compressed amplitude.

2.2.2 Azimuth Focusing

In the azimuth direction, the resolution of a real aperture radar (RAR) system, i.e., if
no additional processing is applied, is directly related to the size of the azimuth antenna
footprint on ground, as in (2.2), which is recalled here

AR
Sapar =Ls =" 0 (2.23)

a

As an example, the DLR satellites TerraSAR-X and TanDEM-X have an azimuth antenna
length L, = 4.8 m and operate at X band (i.e., A = 3.1 cm). By assuming a slant range R
of about 600 km, an azimuth resolution of dagar ~ 4 km is obtained, which is clearly
not sufficient for most applications requiring high-resolution imaging. A better agar
could be achieved by, e.g., increasing the antenna length, using shorter wavelengths, or
reducing the distance between sensor and scatterer, but these requirements can not be
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accomplished due to technical limitations.
The basic principle of synthetic aperture radar exploits the fact that, due to the move-
ment of the sensor, a scatterer stays in the antenna beam (which has an angular aperture
W, = A /L,, as shown in Figure 2.5 (a)) for a time interval, also referred to as integration
time tin, which is given by
LS A«RO
ling= — = .
Vs Lavs

In particular, the echo received by the sensor at azimuth position a(¢) from a point target,
assuming a rectangular antenna pattern, can be expressed as

w(a) = exp(— j4ni(a)) -rect(Lﬁ), (2.25)

where, for the sake of notation simplicity, the time dependence of the azimuth coordinate
a(t) has been omitted. At a certain azimuth or slow time 7, the distance between the
radar moving at constant velocity vs and the point on the ground is obtained by using the

Pythagorean theorem as
a2
R(a)=\/Ri+a®>~Ry+— (2.26)
2Ry

As typically Ry >> L, Taylor series expansion of R(a) to the 13-order term is sufficient.
The range distance R can be rewritten as function of the azimuth time (being a = vgt) as
follows

(vst )2

2R

Hence, the azimuth phase history ¢ () = 47R(¢)/A has, with good approximation, a
quadratic behavior. Figure 2.5 (b) shows the response of a non-moving target 7" (i.e.,
vr = 0) in the data after range compression (see previous section): it is spread over
several range cells, it is curved and the curvature varies along range. This phenomenon
is also referred to as range cell migration and needs to be accurately corrected during the
focusing operation [45].

Similarly to the range dimension, it can be demonstrated that the output of the matched
filter applied to the azimuth signal w(a) can be well approximated by [42]

(2.24)

R(t) =~ Ry+

(2.27)

v(a) = sinc (%a) . (2.28)

a

The best azimuth resolution attainable by a SAR da is related to the width of the main
lobe of |v(a)|? and is given by

L,
~ —. 2.2
da 5 (2.29)
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Hence, a finer azimuth resolution can, in principle, be achieved by reducing the azimuth
antenna size. Moreover the resolution is independent of the range distance R and of the
wavelength A, as a result of the increasing length of the synthetic aperture (i.e., the larger
the footprint, the longer the integration time, the sharper the resulting Doppler beam).

Another way to approach to the same problem is by considering that, during the time
interval fi,; (2.24), the target is located at distinct azimuth angles y with respect to the
radar sensor. Therefore, it returns echoes each with a different instantaneous Doppler
frequency shift fp relative to the carrier frequency, which, in case the target 7 is fixed
can be expressed as

~ 2vssin(y (7)) 2vsa(t) 2v?

fo(t) = P ~ Ry AROt. (2.30)

In the above equation, the small angle approximation for ¥ has been made. From the
last term of (2.30) the Doppler rate can be derived as
dfp(t) 21?2
kp = =2 2.31

D ot }.R() ) ( )
similarly to the range chirp rate (see (2.17) and (2.18)). Figure 2.5 (c) shows the Doppler
frequency shift resulting from the SAR configuration in Figure 2.5 (a) as a function of
the azimuth time (or, equivalently, of the platform position). The analysis of the resulting
Doppler frequency spectrum allows to improve the azimuth resolution, as discussed in
the following. In particular, the Doppler frequency resolution 8 fp can be approximated
as the reciprocal of the integration time #;,; in (2.24)
1 Lvg

SfD:E: )L,RO

(2.32)

By substituting in (2.30) one can finally derive the azimuth resolution for a SAR system

as
ARy

A{RO LaVS La
dar~

20 Ofp = 2vs ARy 2’ (2.33)
which is equivalent to the result obtained in (2.29). Moreover, similarly to the definition
of the range bandwidth in (2.18), the Doppler bandwidth can be expressed as the recip-
rocal of the time interval employed by the SAR to “travel” through one resolution cell

or, equivalently, as a function of the Doppler rate kp

Bp = Sa = |kp |tine = —. (2.34)
Typically, an azimuth low-pass filter of width Bp < PRF is applied to the focused SAR

image to meet ambiguity requirements (as later on discussed in Section 2.3.4), which
leads to an alternative definition of the best attainable azimuth resolution
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Figure 2.5: (a) Synthetic aperture; (b) Range cell migration; (c) Doppler frequency shift.

Sa= %
Bp
In conclusion, SAR processing basically consists of two linear filtering operations in

range and azimuth dimension, respectively, to obtain focused SAR images. These are

typically complex-valued two-dimensional matrices which are displayed as intensity val-
ues, often referred to as digital numbers. The so-called absolute calibration represents the
subsequent necessary step to convert such numeric values into a physical quantity (such
as the backscattering coefficient, see 2.3.2), which can be effectively used for informa-
tion retrieval and/or to compare different sensors, e.g., operating at different frequency
bands. Absolute calibration is typically carried out by using passive or active reference

targets, such as corner reflectors and transponders, respectively [49], [50].

Focused SAR images are projected in radar coordinates, or slant-range geometry,
which means that the position of each pixel depends on the corresponding range time
delay and azimuth pulse number (or fast-slow times, respectively). Geocoding allows
to locate each pixel into its georeferenced (latitude/longitude) position and, for this pur-
pose, the precise knowledge of the sensor position (derived from the so-called orbit state
vectors), the timing information associated to the SAR pulses, together with a suffi-
ciently accurate reference digital elevation model (DEM) are needed as input. In case of
a multi-polarization acquisition, the mentioned processing steps (focusing, calibration,

(2.35)
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geocoding) are carried out for each channel, which can be then jointly exploited in order
to retrieve relevant information on the scattering properties of the imaged scene [47].

2.2.3 SAR Acquisition Modes

By properly controlling the radiation pattern of the SAR antenna (see also Section 2.1),
data acquisitions can be carried out in different modes, whose main characteristics are
recalled in the following [46]:

20

e Stripmap: represents the “classical” SAR operation mode, where the antenna ra-

diation pattern points to a fixed direction, so that the swath width remains con-
stant over time and a single continuous strip is covered on ground (as shown in
Figure 2.1). An expression of the Stripmap resolution in azimuth is derived in
(2.33). For, e.g., an X-band SAR such as TanDEM-X, the swath width is typically
of about 30 km and an azimuth resolution of about 3 m (in single polarization) can
be attained.

ScanSAR: Similarly to Stripmap, the ScanSAR mode is also a continuous imaging
mode, meaning that the acquisition is in principle not limited along the azimuth di-
rection. However, the swath width position is adjusted by continuously and cycli-
cally switching the elevation angle of the antenna radiation pattern (hence in range
direction), which allows for the acquisition of multiple sub-swaths and hence of a
wider resulting swath. This increase in imaged swath width (up to several hundreds
of kilometers) requires a proportional degradation in azimuth resolution (typically
20 m or larger). Moreover, due to the continuous beam switching, each target is
illuminated by a different portion of the antenna pattern, which results in a periodic
amplitude fluctuation in the resulting SAR image, also known as scalloping.

Spotlight: The antenna pattern is steered in the azimuth direction so that a defined
area on ground is illuminated for a longer time as the antenna moves along the
flight path. This, in turn, results in an improved azimuth resolution, which is typi-
cally in the order of 1 m, even though a limited area of a few kilometers in azimuth
can be acquired (in this sense, spotlight is not a continuous imaging mode).

Terrain Observation with Progressive Scan (TOPS). As for ScanSAR, in TOPS
mode [51] multiple sub-swaths are acquired quasi-simultaneously by switching the
antenna pattern from burst to burst, and the increased swath coverage is achieved at
the cost of a reduced azimuth resolution. Nevertheless, in TOPS mode a dynamic
antenna steering along azimuth in the opposite direction as done in Spotlight mode
is added. In this way, the same performance in terms of coverage and resolution
as ScanSAR is achieved, but with a more uniform image performance (drastic
mitigation of scalloping effects).
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Table 2.1: Acquisition modes and corresponding azimuth resolution and swath width for
the imaging modes available for the TerraSAR-X system.

Mode Azimuth Resolution [m] | Swath Width [km]
Wide ScanSAR 40 250
ScanSAR 18 100
Stripmap 3 30
Sliding Spotlight 1 10
Staring Spotlight 0.2 5

As an example, Table 2.1 summarizes the performance in terms of swath width and az-
imuth resolution achieved by the different acquisition modes available for the TerraSAR-
X system [52], [53], [28]. The parameters are considered for single-polarization mode. It
can be noticed that, in general, a better azimuth resolution has to be traded with a smaller
swath width.

In the last decades, innovative spaceborne radar techniques have been proposed to
overcome these limitations, allowing for high-resolution imaging of a wide swath. For
this purpose, multiple azimuth channels (MAC) [40] or the cyclic variation of the system
PRI (so-called staggered SAR mode [41]) can be exploited together with digital beam-
forming (DBF) in elevation to achieve Scan-on-Receive (SCORE), [54], [55], [56], [57],
[58]. The resulting improvements in coverage and azimuth resolution imply a propor-
tional increase in terms of data volume which has to be managed by the SAR system,
hence requiring efficient strategies for onboard data volume reduction, as it will be fur-
ther detailed in Chapter 6 and Chapter 7.

2.2.4 Geometric Distortions

Due to the peculiar side-looking operation of SAR sensors, SAR images are typ-
ically affected by geometric distortions, which occur because the radar projects the
three-dimensional scene under illumination into a two-dimensional plane (also called
slant-range geometry). Such distortions are independent of the antenna footprint and are
caused by the specific relation between the elevation angle 6. employed by the sensor for
the SAR survey and the local terrain slope &. They are shortly recalled in the following:

e Foreshortening: If the terrain slope is positive (@ > 0, i.e., facing towards the
sensor) a compression of the distances with respect to the sensor is observed in the
SAR image. The larger the local slope &, the stronger the foreshortening, which
can be effectively resolved after image geocoding;

e Layover: Above the limit where o > 6, the region is said to be in layover, which
results in a point inversion in the SAR image. This is shown in Figure 2.6 (a),
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Figure 2.6: (a) Condition for layover: if o > 6, the radar echo associated to the target
A is received by the sensor before the one associated to the target B, being
R4 < Rp, which results in a point inversion in the SAR image; (b) If ¢ <0
and 7 — |a| < 6, shadow occurs, which is highlighted by the gray area; (c)
SAR amplitude acquired the over Austrian Alps by the TanDEM-X satellite
on April 11, 2012 which shows perspective deformations: extremely bright
and dark areas correspond to layover and shadow, respectively.

where the distance between the sensor and the target A (R4) is smaller than the
distance between the sensor and the target B (Rp);

e Shadowing corresponds to ground areas which are not illuminated by the radar
beam because they are hidden behind high-relief terrain. Shadow areas occur when
a < 0 (i.e., the terrain faces away from the sensor) and § — |a| < 6, and appear as
missing data in the SAR image, as shown in Figure 2.6 (b). In addition, areas for
which the above conditions are not met may be shadowed by parts of the imaged
surface at smaller slant range.

In general, the observation angle 6, of the sensor should be chosen to balance, and to
minimize, the occurrence of layover and shadow. Figure 2.6 (c) shows the SAR ampli-
tude of an area in the Austrian Alps acquired by the TanDEM-X satellite and affected by
geometric distortions: the mountains look compressed towards the sensor (which flies
bottom-left to top-left of the image) as a consequence of foreshortening; bright and dark
areas correspond to layover and shadow, respectively.
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2.3 System and Performance Parameters

In this section the main parameters and performance figures of a SAR system, which
are relevant for the proper system design with respect to typical applications, are re-
viewed.

2.3.1 Resolution and Sidelobes

In Section 2.2 the system resolution has been derived from the two-dimensional (azi-
muth-range) response from a single point target in the scene. This is typically referred
to as the SAR impulse response function (IRF) and can be well approximated as the
product of the output of the matched filter y(R) and v(a), which have been defined in
(2.20) and (2.28) as a function of the slant range and azimuth coordinate, respectively.
The two-dimensional IRF I(R,a) is expressed as

I(R,a) = x(R)-v(a) = sinc (%(R - R0)> -sinc (Lz(a - a0)> ) (2.36)
0 a
being Ry and ag the slant range and azimuth coordinates where the point target is located.
The SAR impulse response has a mainlobe centered in (R,a) = (Ry,ao), and the half-
power widths in the two perpendicular dimensions correspond to the slant range and
azimuth resolution, as in (2.21) and (2.33), respectively. However, I(R,a) also presents
sidelobes, which affect the image quality possibly leading to the masking of neighboring
weaker targets. A way to mitigate sidelobes is by employing additional weighting to
the transfer function of the matched filters, which however implies a degradation in the
resulting resolution [59].
The presence of sidelobes is quantified by the peak sidelobe ratio (PSLR), which is
equal to the ratio between the peak intensity of the highest (usually the first) sidelobe
Is1..max and the peak intensity of the mainlobe /.

I
PSLR = mX, (2.37)
Ivii,
Alternatively, the integrated sidelobe ratio (ISLR) is the ratio of the energy outside the
mainlobe integrated over a region of size 200a x 209r, Esp, to the energy integrated over

the mainlobe Eyjp, which is defined as lying within an area of size 26a x 20r centered

on the IRF peak

E
ISLR = L (2.38)
Emi

2.3.2 Radar Backscatter and Speckle

As observed by a SAR sensor, the scatterers can generally be categorized in two types:
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24

e A point target is characterized by the presence of a single dominant scatterer within

the resolution cell. Let us consider a single point target located at distance R from
the sensor. The target is illuminated by the antenna beam, transmitting at polar-
ization p, and reflects the radiated energy in different directions. Therefore, only
a fraction of the scattered energy at polarization g is received by the sensor, which
is described by the point target radar equation [60]. For a monostatic radar, it can
be expressed as follows

. PiGpG A?

qg = W(qu, (239)

where P;, and P} are the transmitted p-polarized power and the received g-polarized
power, respectively (the p and ¢ indices may correspond, e.g., to the linear hori-
zontal polarization H and/or the vertical polarization V). Using the same notation,
G, and G, are the transmit and receive antenna gains for the p and g polariza-
tion channels, respectively (for a monostatic radar, given a p-polarization, it holds
G;, = G;, = Gp). Finally, o), is the so-called radar cross section, which is a mea-
sure of the fraction of power density effectively re-radiated (backscattered) to the

sensor S, with respect to the power density intercepted by the target Si, and is
defined as [60]

s 25
Opg = lim | 47K ). (2.40)
p

The above equation is valid in far-field approximation, denoted by the limit R — oo.

Differently from point targets, distributed targets can be understood as the ensem-
ble of many non-dominant scatterers within a single resolution cell. According to
this, distributed targets can be modeled as Gaussian random variables, as a conse-
quence of the central limit theorem.

The radar equation for distributed targets is derived by integrating (2.39) over the
illuminated area As:

PtG ee; aG 667 alz
P;://A pGp6e 00) GO0 g (2.41)

(47)3R*

where 6, and ¢, are the boresight elevation angle and the squint angle of the trans-
mitter, respectively, and identify the direction to a point inside the considered area
As with respect to the sensor. Gl(,)q represents the backscattering coefficient per unit
area. It is a dimensionless number and is defined as the radar cross section 6, of
a distributed target of area Ay, normalized with respect to Ay itself:



2.3 System and Performance Parameters

0 _ 1 Opq
o, = Jim (E) . (2.42)

A SAR image consists of pixels of varying intensities, any one of which is obtained
as coherent combination of all point scatterers lying within the corresponding resolution
cell. Due to the random distribution of the scatterers, this superposition effect implies ar-
eas having the same backscatter coefficient Gl(,)q to show different pixel intensities. Such
spatial variance of the pixels’ intensity is also referred to as speckle. Speckle can be
modeled as a multiplicative disturbance source, i.e., its variance increases with the sig-
nal intensity [46], hence it cannot be mitigated by simply increasing the transmit power
and/or the antenna gain. On the other hand, speckle can be reduced by applying a non-
coherent averaging (i.e., only the pixels’ intensity or amplitude is averaged) to the radar
image, a technique which is known as multi-looking [48]. In particular, if N} pixels of the
same region are averaged together, a consistent degradation of the resolution by a factor
M is observed in the multi-looked image, together with a reduction of the standard devi-
ation of the backscatter by a factor \/N; (despeckling). This implies an improvement in
terms of radiometric resolution and, in general, may greatly improve the interpretability
of the final SAR image. In this sense, multi-looking can be considered as a low-pass filter
applied to the processed SAR image, which can be implemented in different domains:

e Spatial domain: Adjacent pixels within a window with fixed dimension are aver-
aged over the number of pixels;

e Time domain: The synthetic aperture of the antenna is separated into N shorter
segments (temporal sub-looks), and each segment is separately processed, result-
ing in a set of Nj SAR images at lower resolution;

e Frequency domain: Similarly to the multi-looking in time domain, the Doppler
spectrum of the raw data is split into segments (frequency sub-looks) and then
separately processed.

2.3.3 Noise Equivalent Sigma Zero

The signal-to-noise ratio (SNR) describes how much a signal has been corrupted by
noise and is a measure of image quality for remote sensing systems. The SNR is maxi-
mized after matched filtering and, from a processed pg-polarized SAR image, it can be

computed as follows
0

SNR _ %4 (2.43)
P4 NESZ,,’ '

being NESZ the noise equivalent sigma zero. It describes the sensitivity of a SAR system
to areas of low radar backscatter and includes contributions such as the antenna gain, the
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instrument thermal noise, and the processing filters. The SNR depends on the local
backscatter distribution, whereas the NESZ corresponds to the backscattering coefficient
that leads to SNR = 1, hence giving information about the system sensitivity to low
backscatter intensities. The NESZ can be derived from the radar equation as

443 R3vgsin(n ) kp Ty Bro P Liot
PLG,GyA3coT,PRF ’

NESZpq = (2.44)

where kg is the Boltzmann constant, 7; is the receiver temperature, Fy is the noise figure,
and L includes all loss contributions (such as, e.g., system, processor, atmosphere). On
spaceborne SAR, NESZ is typically estimated by means of receive-only pulses, which
are commanded during each imaging data take.

2.3.4 Ambiguities and Nadir Returns

As a consequence of the Shannon sampling theorem, the pulse repetition frequency
(PRF) used for transmission must be larger than the signal Doppler bandwidth

PRF > Bp (2.45)

or, equivalently,
L
vs-PRI < ?a (2.46)

In general, the finite sampling of the Doppler spectrum at frequency PRF causes aliasing
in the processed SAR image and increases the so-called azimuth ambiguities, which
correspond to those portions of the signal which fold back into the main part of the
processed spectrum. Azimuth ambiguities are typically visible over weak backscatter
regions close to strong ones (e.g., the sea closed to an urban area) and are quantified
by the azimuth ambiguity-to-signal ratio (AASR), defined as the ratio between the local
power of the ambiguous signal and the local power of the main signal as

oo BD/2
Y [ G(+mPRE)-Q(fdf
m—=—oo, JC:—BD/2

AASR = 72

e : , (2.47)
| G-

f=-Bp/2

where f is the Doppler frequency, Q(f) accounts for the amplitude weighting of the
Doppler spectrum in the processing, Bp < PRF is the processed Doppler bandwidth and
G” represents the two-way antenna power pattern. For the sake of simplicity, the depen-
dency on the polarization has been here neglected, hence G, = G, = G, differently from
the previous equations, e.g., (2.44). According to (2.46), the radar must send at least one
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pulse before moving by half of the antenna length L, to achieve the best achievable reso-
lution and to avoid the emergence of ambiguities. Moreover, a finer azimuth resolution is
attained by increasing the Doppler bandwidth of the received signal (as in (2.35)). This,
in turn, increases the required PRF, hence limiting the extension of the swath width W,
as in (2.5).

Range ambiguities arise from echoes which precede and/or follow the desired returns
and are received by the radar all together. Range ambiguities are therefore generated
from regions outside the focused image and their impact is evaluated by means of the
RASR (range ambiguity-to-signal ratio), which is a function of the elevation angle 6.
and is defined as follows

ol ~/BD/2 G2(6e.;,f) - 0
n;) (Be.j, f)- O~ (f)df

0 f=-Bp/2
- R3sin(n);
RASR(6e) = P — ;) , (2.48)
Go(nmain)/ Gz(ee,mainyf) ’ Qz(f)df
Jf=—Bp/2
R?nainSin(nmai“)

where the subscript j (j = 1,...,Na) refers to the Ny ambiguous returns preceding and
following the desired return, which is indicated with the subscript “main”.

Summarizing, the PRF is constrained by the following

2vg co
— <PRF< ————, 2.49
L, 2W, sin(n) (249)
which implies the constraint
co La
‘ 2.50
e<% sin(n) (50

In addition to that, the PRF needs to be selected in order to accurately synchronize the
transmission and the reception of the radar pulse. Indeed, for spaceborne SAR, each
pulse typically takes several PRIs to travel from the sensor to the target and back (the so-
called rank), as it has been illustrated in Section 2.1. Moreover, for each pulse the first
echo is received from the nadir, i.e., the direction pointing vertically from the sensor to
the ground. Due to the coherent backscatter over a large area, nadir echoes can have very
strong response. Hence, the PRF must be selected such that nadir echoes are sufficiently
attenuated by the antenna gain or, if this is not possible, they must be received outside
the receive echo window (e.g., during a pulse transmission, when the system is blind to
reception).
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2.4 SAR Interferometry

SAR interferometry (InSAR) represents nowadays a well-recognized technique for
many remote sensing applications. It exploits the phase difference of at least two com-
plex SAR images, acquired from different orbit positions and/or at different times. This
derived information allows for the estimation and assessment of many geophysical pa-
rameters, such as ocean currents, ground deformations, and Earth’s topography by gen-
eration of digital elevation models (DEMs). About four decades of research studies,
technical progress, and developments in the field have demonstrated the potentials of
spaceborne and airborne InSAR systems, and DEMs are widely employed in a broad
range of commercial and scientific applications, such as, for example, Geographic In-
formation System (GIS), Global Positioning System (GPS), as well as many geoscience
fields, like geology, physical geography, glaciology, and oceanography. A comprehen-
sive overview of the most relevant concepts and applications of SAR interferometry can
be found in [61], [62], [63], [64]. The basic principles of InNSAR and its different modes
of operations are shortly described in the following.

2.4.1 Geometry and Operation Modes

Figure 2.7 shows two SAR sensors S and S, at approximate orbit height /g and ele-
vation angle 6.. They observe a target T at height z from different positions and fly in
a direction perpendicular to the plane of the figure, as indicated by the symbol on the
right-hand side. The slant range distances are denoted with R; and R», respectively, and
the distance between the two sensors B is the interferometric baseline. If two images are
simultaneously acquired, then the interferometric acquisition is said to be in single-pass
mode. If, on the other hand, the two images are acquired at different times, it is said to
be in repeat-pass mode. In this case the individual acquisitions can be carried out by
the same or by different sensors revisiting the area of interest. Furthermore, the InSAR
acquisition can be performed in monostatic or bistatic configuration. In the former both
satellites are used for transmission and reception, whereas in the latter either S; or S, is
used for transmission and both satellites simultaneously record the signal backscattered
from the Earth’s surface. If the two SAR antennas are aligned in the flight direction
and are separated by a certain distance (so-called along-track baseline, which is ideally
equal to zero in Figure 2.7) then along-track interferometry is performed. This mode
is employed, e.g., for the estimation of ocean currents, and is typically carried out in
single-pass mode. If the two SAR antennas are separated in the plane perpendicular to
the flight direction, like in Figure 2.7, across-track interferometry is considered. Across-
track interferometry can be performed both in single-pass and repeat-pass configurations
and is primarily used for topography estimation (DEM). For this, the baseline perpendic-
ular to the line of sight (or across-track baseline B ) is relevant for the interferometric
height inversion and for the resulting accuracy, as it will be clarified in the next subsec-
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Figure 2.7: Interferometric SAR geometry in across-track configuration.

tion. Looking at Figure 2.7, the topographic height z can be derived using trigonometric
relations as

z=hs— Rjcos(6,). (2.51)

The two-dimensional image obtained as the product of the reference image (or master,
e.g., I1) and the conjugate of the slave image I, defines the interferogram v

v=1 -1 = |I||L]e/ "% (2.52)

The phase recorded by each SAR sensor ¢; > is composed of two terms: the propaga-
tion phase, which is proportional to the distance between the sensor and the target, and
the backscattered phase, which is influenced by the surface backscattering characteristics
(such as, e.g., moisture and roughness). Assuming a repeat-pass monostatic configura-
tion, for the sensor §; the phase of each complex pixel of the SAR image I, is then given
by

4r
¢1 = _TRI + ¢scat,17 (2.53)
and for the image I, acquired by the sensor S it is given by
47
(PZ = _TRZ + ¢scat72- (2~54)
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According to the acquisition geometry depicted in Figure 2.7, and assuming the scatter-
ing phase to be the same in both images (i.€., @scat,1 = Pscar,2) the interferometric phase
¢ can be expressed as

4r
O=/0=¢0— = TAR’ (2.55)

where AR = |R| — R;| represents the travel path difference between the signals received
by S and S3, and is highlighted by the bold red segment in Figure 2.7. Hence, the InSAR
phase is a very sensitive measure for the range difference, and with this it is possible to
measure small path length differences with centimetric or even millimetric accuracy,
which is independent of the distance between the radar and the target.

Clearly, the interferometric phase difference is still ambiguous (i.e., “wrapped”) to
within integer multiples of 27, which leads to the well-known interferometric “fringes”.
Therefore, to reconstruct the topographic height, the wrapped interferometric phase needs
to be properly converted into an absolute phase ¢,s, a process which is known as phase
unwrapping. Several methods and different algorithms have been developed throughout
the years to solve the unwrapping problem, the most important of those are presented in
[65], [66], [67], [68]. The final phase-to-height conversion is carried out by means of the
so-called height of ambiguity h,m,p, which represents the height difference corresponding
to a complete 27 cycle of the interferometric phase and is defined as

ARsin(6;)

, (2.56)
pB |

hamb =

being R ~ (R + R,)/2 the mean slant range and p a scaling factor which depends on the
specific acquisition configuration: in the monostatic case p = 2, whereas in the bistatic
configuration (single-pass mode) p = 1. Hence, the phase-to-height scaling resulting
from bistatic InSAR is twice as much with respect to the one from a monostatic acquisi-
tion operated with the same interferometric baseline B | .

2.4.2 Interferometric Coherence

One of the key parameters used to evaluate the quality and performance of InSAR
products is the interferometric coherence 7. It represents the normalized complex corre-
lation coefficient between master /; and slave I, acquisitions and provides information
about the amount of noise in the interferogram [63], [69], [70]

ElL -I3]
VE[LP]-E[L]

where E[-]| represents the expectation operator. The magnitude of coherence values
ranges from 0 (no correlation) to 1 (perfect correlation). The higher the coherence, the

Y=I1-¢""=

(2.57)
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more accurate the resulting DEM will be. Practically, due to the non-stationarity of the
imaged SAR scene, for each pixel of indices [m,n] the coherence is estimated from the
interferometric pair within a typically rectangular window W centered on the pixel of
interest and extending up to a few tens of pixels in azimuth and range [70]. For perfor-
mance assessment the absolute value of the estimated coherence 7 is taken into account

| Zh [m,n] I3 [m,n]|

$lm,n)| = —2 .
\/Zm (m,n] 2 Y |15 [m,n) 2
w w

| (2.58)

Before coherence computation, proper coregistration of the two complex SAR images
needs to be applied to compensate for the different acquisition geometry: each pixel of
the slave image must be resampled to the corresponding pixel location in the master one,
and an accuracy in the order of a small fraction of an image pixel is required for typical
interferometric applications. As an example, Figure 2.8 (a) shows the SAR amplitude
(in slant-range coordinates) acquired by TanDEM-X for an area located in Death Valley
(Nevada, USA) and Figure 2.8 (b) depicts the wrapped interferometric phase (for this
bistatic data take, h,mp ~ 30 m). Figure 2.8 (c) illustrates the geocoded coherence map
(0: black, 1: white) and 2.8 (d) represents the resulting color-coded digital elevation
model. As it can be seen, different areas of the coherence map show different degrees of
correlation. Indeed, several error sources may contribute to a loss in the interferometric
coherence, which, assuming statistical independence, can be rewritten as [30], [63], [69],
[71], [72]

Y = YsNR - Wol " YAmb * YRg * YAz * ¥Temp * YQuant, (259)

where each correlation factor on the right-hand side describe coherence loss due to: lim-
ited signal-to-noise ratio (YsNr), volume decorrelation (%4,1), ambiguities (Yamp), base-
line decorrelation (YRg), errors due to relative shift of Doppler spectra (Ya,), temporal
decorrelation (Yremp). The last term Yquant represents the coherence loss due to raw data
quantization. In general, the use of lower bit rates for the onboard raw data digitization
results in an increased loss of coherence (hence smaller values of Yquant), and vice versa.
Clearly, there exists a trade off between the quantization rate employed and, eventually,
the total number of acquisitions achievable within a certain time interval, which both
directly impact the total data rate and the resulting interferometric image quality. This
trade off must be carefully taken into account due to typical limitations in the downlink
capacity and due to mission constraints. The investigation and assessment of quantization
errors on interferometric SAR performance, specifically in the context of the TanDEM-X
mission, is investigated in detail in Chapter 4.
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(®)

Figure 2.8: (a) SAR amplitude and (b) interferometric phase after flat-Earth removal,
both in slant-range geometry; (c¢) Geocoded interferometric coherence and
(d) digital elevation model of the Death Valley (Nevada, USA) acquired by
TanDEM-X on June 9, 2012.

In addition to quantization, it is worth recalling the error sources which typically most
affect the performance of interferometric SAR. In particular, the limited system sensitiv-
ity causes a loss in the SNR which, in turn, degrades the quality of the measured phase
and the interferometric coherence as [63]

1
YSNR =
\/(1+SNR;) (14 SNR; )

, (2.60)

where SNR| and SNR, are the signal-to-noise ratio (SNR) estimates for the interfero-
metric channels associated to /; and I, respectively, as defined in (2.43). Deviations
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Figure 2.9: Estimated interferometric coherence § over signal-to-noise ratio (SNR). The
red line indicates the theoretical SNR correlation factor YR, as defined in
(2.60).

between SNR; and SNR; may be due to changes in the scene backscatter or due to dif-
ferences/changes in the antenna patterns among the two channels.

Figure 2.9 [71] shows the estimated interferometric coherence 7 as a function of SNR
for single-pass interferograms acquired by TanDEM-X over test sites showing different
vegetation and soil characteristics (for TanDEM-X, the SNR difference between the two
channels of a single bistatic acquisition is typically very small, in the order of a fraction
of a dB, hence SNR| ~ SNR, with reasonable approximation). The red line on the top of
the figure indicates the theoretical SNR coherence as defined in (2.60), i.e., the expected
coherence as if the finite sensitivity of the SAR system was the only error source, which
proves, indeed, the presence of additional decorrelation (as in (2.59)). For most of the
land cover types SNR values typically higher than 5-6 dB and coherence almost always
greater than 0.6 is obtained. However, performance over sandy desert (blue squares in
Figure 2.9) is strongly affected by the weak power of the backscattered signal from sand:
for SNR smaller than 2 dB a coherence above 0.5 can be rarely observed. For this reason,
an optimization of the imaging geometry over sandy regions has been carried out during
the TanDEM-X mission, mainly by employing steeper incidence angles (for TanDEM-X,
the nominal incidence angle interval ranges between about 30° and 50°). This allowed
for the maximization of the backscatter power over such low backscatter areas and for the
improvement of the overall interferometric performance, as discussed in [73], [74]. On
the other hand, areas characterized by tropical rainforest (marked in green) and boreal
forest (light blue triangles) additionally degrade the coherence due to the existence of a
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scattering volume within each single resolution cell (a similar mechanism occurs over
snow/ice covered areas), an effect which is known as volume decorrelation (4, term
in (2.59), [69], [75]). According to this, each scatterer is located at a different height z
and contributes with a different interferometric phase ¢ = 27” . The resulting correlation
factor is obtained from the ensemble average over all scatterers within the volume [76]

hy
/ Go(z)-exp(jZn' < )dz
0 hamp
hy
/ 0'(z)- dz
0

where £, is the volume height and 6¥(z) is the vertical scattering profile. By assuming a
defined extinction rate through a homogeneous medium, 6°(z) is modeled as [76]:

Wol = ) (2.61)

0%(z) =exp {—Zﬁ : c}(l)vs(_nz)] , (2.62)

being 3 the one-way extinction coefficient. Figure 2.10 shows the estimated volume cor-
relation factor $, as a function of the ambiguous height /,,,,, which has been retrieved
by inverting (2.58) for a time series of TanDEM-X bistatic data takes over a test area in
the Amazon rainforest, acquired with incidence angles of 30° (blue dots) and 48° (red),
respectively [75]. The theoretical volume correlation factor Yy, as in (2.61) is shown
for both the 30° and the 48° incidence angle case, by the turquoise and brown lines, re-
spectively. The resulting extinction coefficient 3 is of about 0.4 dB/m, which is in good
agreement with typical values over forest at X band [77]. For a given h,,, smaller co-
herence values are observed for steeper incidence angles, because of the larger number
of scatterers projected within a single resolution cell. On the other hand, for shallow in-
cidence angles a more “‘surface-like” volume is imaged, which in turn results into higher
coherence values. On the other hand, as shown in Figure 2.9, non-vegetated areas are not
affected by volume decorrelation effects. This aspect makes the volume correlation fac-
tor very helpful for, e.g., classification purposes. As an example, a classification method
for the generation of a global forest/non-forest classification map from TanDEM-X inter-
ferometric data is presented in [35], [78], and an approach for discriminating Greenland
snow facies by using the combined information of volume correlation and backscatter is
described in [79].

Finally, the term ¥remp in (2.59) describes the so-called temporal decorrelation, which
is due to possible changes of the scatterer structure between the two interferometric ac-
quisitions. This term can be neglected for single-pass interferometry (i.e., Yremp = 1),
like for the TanDEM-X mission [30], [71].

In conclusion, constraints on the temporal baseline, in case of repeat-pass configura-
tion, and on the interferometric (spatial) baseline B | are typically imposed in order to
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Figure 2.10: Estimated volume correlation factor f; over height of ambiguity retrieved
from repeated TanDEM-X acquisitions over a single test area in the Ama-
zon rainforest, with incidence angles of 30° (blue circles) and 48° (in red).
The theoretical ¥y as in (2.61) is depicted for the steeper incidence angle
(turquoise line), and for the shallower one (in brown) as well.

ensure a sufficient correlation between the two interferometric SAR images and hence to
fulfill the specified performance requirements.

2.4.3 Interferometric Phase Errors

As explained in the previous section, a loss in the interferometric coherence y implies
an increase of the associated interferometric phase errors. In order to reduce the phase
noise, multi-looking is usually applied, which consists in averaging N} values of the com-
plex interferogram before estimating the phase value of interest. Hence, the knowledge of
the total coherence ¥ and of the independent number of looks N} used for multi-looking
allows for a statistical description of the interferometric phase errors. The probability
density function (pdf) of the random variable describing the phase difference between
two interferometric SAR channels ¢ can be expressed as [30], [80]

DY (1= M9cos — 92
po(®) = I'(M+5)(1=9)"feos(o) +(1 7

)" Lo o
= : F(Nl,l;—;yzcos ((p)), (2.63)
2VAL(N)(1 - Peos?(g))VF2 2T ?

where I is the gamma function and F' denotes the hypergeometric function [81]. The
standard deviation of the single-point phase errors is typically used for performance as-
sessment and is defined as
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Figure 2.11: Standard deviation of the interferometric phase errors, as function of the
coherence and of the number of looks (indicated close to each curve).

Cp = \//_7r 0?py(@)-do. (2.64)

In general, a decrease in the coherence Y results in an increase in the standard deviation
of the phase errors 0, as shown in Figure 2.11 for different number of looks (indicated
above each curve). Alternatively, the 90% point-to-point phase error @9, can be consid-
ered [30]. For this, the difference between two random variables, each one describing the
fluctuation of a single phase estimate, must be computed. The corresponding pdf results
from the convolution * between the two pdfs and is finally derived as [30]

Po0%
/_% [Po (@) Po(@)] -dp =0.9. (2.65)

Assuming the pdf in (2.63) to be approximated by a Gaussian probability distribution
[82], the 90% point-to-point height errors can be expressed, for a sufficiently large num-
ber of looks, as

Voo ~ 2.33~(7(P, (2.66)

being 0, the standard deviation of the single-point phase error defined in (2.64).
Regarding the estimation of the independent number of looks Nj used for multi-looking,

in practice, for real SAR mission scenarios a target azimuth and range independent inter-

ferometric posting A p,, A p, is imposed, and the actual number of looks N is determined
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by the azimuth resolution da and range resolution dr of the SAR system as

_ Apq ) Apy
da Or

For TanDEM-X, the ground range and azimuth resolution is of about 3 meters (in partic-
ular, the ground range resolution also depends on the incidence angle, as in (2.22)), and
a final independent posting Ap, = Ap, = 12 m is set such that N typically ranges in the
interval between 16 and 32 looks [30].

M

(2.67)

2.4.4 Relative Height Errors for DEMs

The interferometric phase error affects the performance of the resulting DEMs. In
particular, the relative height error is defined as the uncertainty on a height estimation
due to random noise-like disturbance contributions and can be derived as

Ah = hypp - A_(p, (2.68)

2

where A@ is given by either 0 or @oo. The product specifications for digital elevation
measurements are typically expressed as 90% linear error of the point-to-point relative
height accuracy. From real DEM data, the point-to-point estimation of the relative height
errors can be assessed by subtracting two repeated DEM acquisitions with identical imag-
ing geometry and configuration parameters, each of them affected by independent noise
components [82]. After that, a high pass filter is performed to remove slowly varying
error sources such as baseline and orbit uncertainties [83] to finally derive the relative
height error contribution.

The impact of SAR raw data quantization on interferometric performance (coherence,
phase errors, and resulting DEM accuracy) is investigated in detail in Chapter 4.

2.5 Chapter Summary

This chapter aims at providing the reader with the fundamental background on syn-
thetic aperture radar (SAR) remote sensing and SAR interferometry, which is necessary
for a complete understanding of the analyses and investigations presented in the follow-
ing chapters.

The reader should now be aware of the basic principles of SAR, specifically regard-
ing: the processing steps required to obtain range/azimuth focused images from SAR
raw data; the different SAR acquisition modes, which trade off the resulting azimuth
resolution and achievable swath width; and the perspective distortions depending on the
specific acquisition geometry and terrain slope. The most representative system perfor-
mance parameters have been introduced, such as the resolution and sidelobes, which are
derived from the impulse response function (IRF), together with the concepts of radar

37



2 Synthetic Aperture Radar (SAR) Remote Sensing

backscatter and speckle. The system sensitivity (or noise equivalent sigma zero, NESZ),
range/azimuth ambiguities, and nadir returns represent key performance measures, and
have been described to provide a complete overview on the different aspects to be con-
sidered for SAR system design.

In the second part of the chapter, the basic concepts of SAR interferometry (InSAR),
its acquisition geometry, and possible operation modes have been recalled, together with
parameters describing the quality of InNSAR products, such as the interferometric coher-
ence, phase errors, and relative height accuracy of the resulting digital elevation model
(DEM). The knowledge of these performance measures is of importance to understand
the investigations presented in the following chapters, where the impact of raw data dig-
itization on SAR and InSAR data acquired by the TanDEM-X mission is presented. For
this purpose, a detailed introduction on SAR data quantization, including a description
of typical quantization errors, supported by simulation results on a variety of SAR image
scenarios, is presented in the next chapter.
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In this chapter, quantization of SAR raw data is addressed. In its most general for-
mulation, quantization can be defined as the process of mapping a large (continuous
or discrete) set of input values to a countable smaller one. As outlined in Figure 3.1,
each radar echo x(¢) received by the SAR antenna is an analog (i.e., continuous-time
continuous-valued) signal, which needs to be conveniently sampled (discrete-time n) at
a certain range sampling frequency fs and quantized (discrete-amplitude xq) with a pre-
defined number of bits per sample N,. Both, sampling and quantization are deterministic
operations, and the hardware or software block implementing the described signal digiti-
zation is usually referred to as analog-to-digital converter (ADC). In the context of SAR,
lossy compression schemes are typically used (i.e., the output of the quantizer xy[n] is
a distorted copy of the input signal x[n]), due to the limited capacity in terms of data
rate achievable by the system (the loss introduced by the quantization is usually larger
for spaceborne than for airborne SAR systems, due to the more constrained onboard
resources and acquisition requirements typical of spaceborne SAR). The discrete-time
discrete-valued signal x4[n] is then stored in the onboard digital memory and, succes-
sively, downloaded to ground for further data processing and elaboration, as discussed in
Chapter 2. It is well known [42] that the In-phase (I) and Quadrature (Q) components of
the received SAR echo x(¢) can be described as zero-mean Gaussian stationary and inde-
pendent processes, as a consequence of the central limit theorem (CLT). Hence, x[n] and
xg[n] are typically modeled as stochastic processes as well. Clearly, both f; and N, are
directly proportional to the resulting data rate DR to be managed by the system, which is
measured in bits per second and can be expressed as follows

DR = (2-Ny)- f;-EWL- N, - PRF, (3.1)

being EWL the echo window length (as in Figure 2.2) and N, the number of channels
(Nh > 1 for, e.g., multi-polarimetric SAR systems or for a SAR including multiple az-
imuth apertures [40]). Since the SAR raw data are complex numbers, a Cartesian quan-
tizer is typically applied, which operates independently on the real and imaginary part,
and justifies the factor 2 in the above equation. The azimuth sampling frequency (PRF)
does not appear in the schematic description in Figure 3.1, where a single SAR echo is
considered. If, on the one hand, the range sampling frequency f; is determined by the
target range resolution and, hence, by the chirp bandwidth B, (according to (2.18) and
(2.21)), on the other hand, the degree of fidelity of the signal after the digitization pro-
cess directly affects the resulting SAR image quality. For this reason, the number of bits
per sample M, allocated must be traded off between a sufficiently accurate data recon-
struction (N, too low may irreparably degrade the quality of the obtained SAR products,
making their interpretation impossible) and the resulting volume of data to be managed
by the system (N, too large leads to the overflow of onboard memory, hence limiting the
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Figure 3.1: Block diagram of an analog-to-digital converter (ADC) at the radar front end.
Each analog radar echo received by the SAR antenna x(z) is sampled at a
certain range sampling frequency f; and quantized with a pre-defined number
of bits per sample M,. The digital signal x4[n] is then stored in the onboard
memory. The signals x(¢) and, consequently, x[n] and x4[n] are typically
modeled as stochastic processes.

acquisition capabilities of the system). In this scenario, efficient techniques for onboard
data reduction are of utmost importance, yet the computational complexity needs to be
kept as low as possible to ensure high performance and throughput while requiring mini-
mal satellite resources. An exhaustive description of quantization theory, algorithms and
implementation aspects is provided, among others, in [84], [85], [86].

3.1 Fundamentals of Quantization Theory

Quantization typically refers to the operation of mapping the amplitude of the input
signal with the nearest value out of a set of predefined possible outputs, which cover the
signal amplitude range [84]. The discretization process always introduces a certain error,
i.e., it is a lossy operation. The limited amount of reconstructed values is defined by
the number of bits used for each sample, which identifies the alphabet of the quantizer.
Since digitized signals are typically encoded in binary representation, the length of the
quantizer alphabet is usually M = 2™ Clearly, the higher the resolution of the quantizer
(i.e., larger Ny, values), the smaller the resulting reconstruction error, and vice versa. In
the next sections, different possible quantizer settings and characteristics are discussed,
and a detailed description of the error contribution introduced by data compression is
recalled.

3.1.1 Quantizer Types and Description

Figure 3.2 shows the typical input-output function of a quantizer, characterized by a
non-linear staircaise-like function with M levels and bounded between the maximum
and minimum output values +rp, since the input signal values outside the interval
[—Vetip, +Vetip) (With Vegip > 0) are “clipped” to the corresponding boundary value (in
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Figure 3.2: Graphic representation for the function relating the input x to the output xg
for a (a) uniform midtread, (b) uniform midrise, (c) non-uniform midtread,
and (d) non-uniform midrise quantizer.

principle, the clipping and corresponding reconstruction value may coincide, i.e., Veiip = relip)-
According to the schemes depicted in Figure 3.2 the operation performed by the quan-
tizer can be divided in two steps: the first step consists of splitting the input domain in a

set of M intervals &

&E={&.%,....6u}. (3.2)

Then, every input signal sample x (i.e., the realization of the stochastic process x[n| at
the time instant n) contained in the i-th interval &; will be described as:

Eii(di<x<diyy), i=12,....M, 3.3)
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where the d; and d;; | are the end points (or decision levels) delimiting the i-th quanti-
zation interval. The second step consists in mapping each interval &; into an amplitude
Xq, which must belong to the set of possible outputs (or reconstruction levels) of the
quantizer {r;}

xq €{ri,ra,...,;ru}. (3.4)

In conclusion, the input/output relation of a quantizer fy(-) can be described as follows
Xqg=fqlx)=r; if xe§ (3.5)

and is depicted in Figure 3.3.

Figure 3.2 (a) and (b) show the input-output function for a uniform quantizer, where
the step size A, representing the interval of the input signal mapped to each output value,
is constant for all quantization levels. This implies that the decision levels of the quanti-
zation intervals and the reconstruction levels are uniformly spaced. On the other hand, a
quantizer having a variable step size is said to be non-uniform, as shown in Figure 3.2 (¢)
and (d). In this case, the decision levels are densely located for low-amplitudes and
coarsely elsewhere, hence tolerating larger errors for higher signal amplitude, and vice
versa. In addition, depending on the position of the decision levels within the signal dy-
namic range, it is possible to define a midtread and a midrise quantizer. A midtread quan-
tizer (Figure 3.2 (a) and (c)) has a zero-valued reconstruction value xq = 0. As an exam-
ple, the input-output relation for the midtread (MT) uniform quantizer in Figure 3.2 (a)
can be expressed as

x 1 .
XgMT = fq(x) = A- { + —J if  x € [~Veip, +Valip), (3.6)

A2

where | - | returns the greatest integer less than or equal to its argument (so-called “floor”
function). Hence, an input value with magnitude less than A/2 is mapped to 0 without
considering its sign. On the other hand, a midrise scheme (Figure 3.2 (b) and (d)) has a
decision threshold d; at zero, meaning that this value is not present in the possible output.
For the midrise (MR) uniform quantizer in Figure 3.2 (b), the input-output relation can
be expressed as

1
XgMR = fo(x) = A- ( &J + 5) if  x € [~ Vetip, +Vetip)- (3.7)

3.1.2 Quantization Errors

As it has been previously explained, the digitization of an analog signal is an irre-
versible process which leads to an information loss and represents a critical aspect for
data compression, as the reconstructed signal will be a distorted version of the input de-
pending on the bit rate and on the particular quantization scheme used. The difference
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Figure 3.3: Quantization of a signal x as defined in (3.5).

between input and corresponding output is therefore often referred to as quantization
error q

g=x—xq=x— fq(x). (3.8)

This error (or noise) contribution is totally deterministic, since for a given input always
the same (single) output is returned. On the other hand, if the input x has a random nature,
the error ¢ can be reasonably modeled as an additive and signal-correlated random noise
contribution [85] (this assumption strictly holds for the so-called granular errors, but it
is not valid for overload errors, which are described in the following).

Let X be the random variable describing the stochastic processes x[n] at the time instant
n. Without loss of generality, X has zero mean and variance G)% and is described by the
probability density function (pdf) px(x), i.e.,

+oo +oo
ux =E[X] = / xpx(x)dx=0 = oz =E [XZ} = / x? px (x) dx, 3.9
where E -] represents the expectation operator. If py # 0, it can be opportunely sub-
tracted from the input signal and added back after quantization, an operation that is equiv-
alent to a shift of the quantizer to the input mean value py. Due to the random nature of
the input signal, the quantizer output x4 is modeled as a random variable X; = f; (X). Ac-
cording to this, the quantization error ¢ is also a zero-mean random variable Q = X — X
characterized by its pdf pp(g) and variance

2 2 e 2
03 =E[0%] = /_ = f,(0)]? px(x) dx, (3.10)
where, in the above calculation, the pdf of the input signal px(x) needs to be consid-
ered. Assuming NV, bits allocated for the quantizer, the quantization error power is finally
obtained by integrating over the M = 2™ decision levels and (3.10) becomes

M rdiy

ob=E[’)=} |

k

(x—rk)2 px (x)dx, (3.11)
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(a) (b)

Figure 3.4: Graphic reppresentation of the quantization error g (bottom) for (a) midrise
uniform and (b) midrise non-uniform quantizer, as a function of the input
signal x. The corresponding input-output functions are given on the top of

the figure.
being di = —o and djs;| = . In order to describe the performance of a quantizer, the
signal-to-quantization noise ratio (SQNR) is typically used, which is defined as the ratio
between the input signal variance G)% and the quantization noise variance Gé
o2
SQNR = X (3.12)
%

Figure 3.4 depicts the deterministic nature of the quantization error (bottom of the fig-
ure) for an exemplary uniform (Figure 3.4 (a)) and non-uniform (Figure 3.4 (b)) midrise
quantizer, whose input-output functions f; (-) are depicted on the top of the figure. A
quantizer typically has a limited dynamic range, which truncates the input signal to a
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maximum and minimum level given by +V¢y;,. If the input signal x has unbounded sup-
port, the clipping introduces a distortion, which is referred to as overload error and is
indicated by the diverging dashed lines at the bottom of Figure 3.4. On the other hand,
the quantization step A > 0 defines the accuracy of the reconstruction values within the
supported range, and the distortion introduced by this finite spacing is referred to as gran-
ular error, as depicted by the bold lines at the bottom of Figure 3.4. According to the
definition of quantization noise power derived in (3.11) and to the schemes in Figure 3.4,
the granular and clipping noise power contributions can be expressed as

5 M—1 di+1 )
e = ) / (x —ri)” px (x) dx, (3.13)
k=2 /dk
2 7Vclip ) ~+o0 )
Cpc = / (x+retip)” px (x) dx+ o (x —retip)” px (x) dx, (3.14)
- clip

respectively, and the total quantization error power can be derived as the sum of granular
and overload error variances [85]

05 =044+ 0p- (3.15)

In the case of a uniform quantizer, the step size A is constant and each reconstruc-
tion value is chosen as midpoint of the corresponding decision levels (as shown in
Figure 3.4 (a)), as

di+diy
Vi —= —
2
If the input signal x has bounded support, i.e., X € [—Xmax,Xmax]» it is straightforward to
design the optimum midrise quantizer such that V¢j;, = xmax and

if 1<i<M. (3.16)

A2MN

x| < Veiip = =AM (3.17)
If the step size of the quantizer is sufficiently small, then it can be reasonably assumed the
granular error to be uniformly distributed in the interval [—A/2,A/2] (so-called “high-
rate approximation” [85]) and the probability density function of the error is given by

1/A if |g| <A/2
po(q) = _ (3.18)
0 otherwise.
In this case, the variance of the quantization noise can be derived according to (3.11) as
1
o5 =A"/12= ginp 272, (3.19)
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Hence, under the assumption of high-rate approximation, the power of the quantization
error quadratically increases with the step size A and exponentially decreases with the
bit rate M.

It is now worth recalling the definition of loading (or crest) factor of a random process
X, Kx, as the ratio between its peak value and its root mean square value

Xmax
Ox ’

Kx = (3.20)

This allows one to finally express the signal-to-quantization noise ratio SQNR for a uni-
form quantizer, according to (3.12), in logarithmic scale, (or decibel, dB), as

o% 305 Jo Kx
SQNR|4s = 10log, (?) = 10log, (TZ b) ~ 6N, —10log, (?> if Np> 1.
0 clip

(3.21)
The above equation shows that if a binary code is used for the reconstruction levels of
a uniform quantizer, the resulting SQNR increases by about 6 dB for each additional
quantization bit, which is a known result from the rate-distortion theory [85].

3.1.3 Quantizing Theorem

Figure 3.5 sketches an exemplary pdf of the quantizer input X, px (x), and the resulting
probability mass function (pmf) of the quantizer output Xq, px, (xq). The graphic is pro-
vided for a uniform (Figure 3.5 (a)) and non-uniform (Figure 3.5 (b)) quantizer, and the
input signal is assumed to be continuous, whereas the output one is obviously discrete.
Following the discussion in [87], it is possible to demonstrate that the output signal is
related to the input one through a specific sampling operation. Indeed, the output pmf is
represented by the Dirac impulses, each one located at the corresponding reconstruction
level, and whose area A; is just the area under the input pdf within the corresponding
decision interval

dit1
A= / px (x)dx. (3.22)
d;

In this sense, quantization can be understood as a sampling of the probability density
function of the input signal (hence operating in the amplitude domain instead of in the
“classical” time domain), an operation which is often referred to as area sampling [87].
In this context, it is worth first recalling the concept of characteristic function (CF) as
the Fourier transform of the pdf

Py (u) = /+OO px(x)e/™dx=E [ejux} , (3.23)
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Figure 3.5: Quantization as area sampling of the continuous input pdf px(x). The prob-
ability mass function (pmf) of the quantized signal px,(xq) is represented
by the Dirac impulses, each one located in the corresponding reconstruction
level. (a) Uniform and (b) non-uniform quantizer. The Lloyd-Max quantizer
optimizes the distribution of the decision and reconstruction levels in order
to minimize the quantization error variance Gé.

where u represents the transformed domain of the CF (pdf frequency). According to this,
the Quantizing Theorem [87] can be formulated as follows: let A be the quantization step
and ¥ the corresponding “repetition frequency” of the CF given by

27
! ity 3.24
A (3.24)

If the CF of X is band-limited, so that,
T
Px(u)=0 for |u|> A3 (3.25)

then

e the CF of X can be derived from the CF of X, and

e the pdf of X can be derived from the pmf of Xj.

This theorem derives a sufficient condition such that, given a quantized signal, it is pos-
sible to capture all the information from the original band-limited continuous-amplitude
signal. This theorem represents a sort of equivalent in quantization of the well-known
Nyquist-Shannon sampling theorem, which establishes a sufficient condition for the
sampling rate of a discrete sequence of values to capture all the information from a
continuous-time signal of finite bandwidth.
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If, on the other hand, in the frequency domain the signal is not band-limited, an anti-
aliasing filter is typically applied to it before sampling in order to remove undesired
portions of the spectrum. For this purpose, filtering is applied either in time domain (by
convolution of the direct signals) or in frequency domain (by multiplication of their spec-
tra). Analogously, in the quantization domain a product of characteristic functions cor-
responds to a convolution of the probability density functions. In turn, pdf convolution
is obtained by summing the corresponding independent random variables. Therefore,
the band ¥ of the CF as in (3.24) can be limited by adding a properly defined indepen-
dent random variable with limited CF bandwidth, which is often referred to as dither in
the context of analog-to-digital conversion and digital signal processing [87], [88], [89],
[90]. It is worth to point out that the described low-pass filter in the CF domain deserves
careful consideration, since its inverse transform (i.e., the associated signal pdf) must be
a non-negative function.

3.1.4 Lloyd-Max Optimum Quantizer

Although representing the simplest compression scheme, uniform quantization is not
necessarily the most effective one. If, as an example, a normally distributed input is
considered (which is a suitable model for SAR raw data, as it has been discussed in
Chapter 2), a uniform quantizer will assign the same resources to reconstruct the equally
spaced intervals, disregarding whether they are more or less likely to occur, as shown
in Figure 3.5 (a). Instead, a more plausible choice to increase the overall reconstruc-
tion quality would intuitively consist in allocating more resources (i.e., tinier decision
intervals) for value ranges occurring with larger probability, and vice versa, as depicted
in Figure 3.5 (b). In this scenario, a reasonable criterion for the design of the optimum
quantizer is therefore to define the distribution of the decision and reconstruction levels,
for a given number of bits M, in order to minimize the quantization noise power Gé (or,
equivalently, to maximize the SQNR),

{dopt, Fopt } = argmin  65(Ny). (3.26)
{d.r}

If the pdf of the input signal is known, a necessary condition for minimizing the quan-
tization error is that the derivative of 6(22 with respect to the decision and reconstruction
levels (obtained from (3.11)) is zero [91], which leads to the following conditions,

0} 2 2 .
Sds =0 = (dr—rr1)" = (dr—rr)” if px(dy) #0, k=2,3,....M (3.27)
k
and
aﬁé di+1
—==0 = (x—rr) px(x)dx=0, k=1,2,....M, (3.28)
ary dy
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being M = 2N, According to the relations in (3.27) and (3.28) the optimum decision
level dop x and reconstruction level rqp ;. can be finally derived as

(ropt,k + Topt,k—1 )

dOth{ = D) k= 27 cee 7M7 dOpt,l = —9%9, opt M+1 — o0 (329)
and p
() d
Fopuie =~ k=1,2,....M. (3.30)
T e (x)

Hence, the optimum decision levels are in the mid-point between neighboring reconstruc-
tion levels, which, in turn, must be set as the centroid of the pdf (i.e., its expected value)
in the corresponding decision interval. The obtained quantizer minimizes the resulting
mean square error (MMSE), and is also referred to as the Lloyd-Max quantizer [91]. It
is straightforward to demonstrate that, if the input signal is uniformly distributed, dop «
and rop ¢ are equally spaced, hence leading to a uniform quantizer. In all other cases,
the optimum decision and reconstruction levels are non-uniformly distributed (such as,
e.g., the ones obtained for the normally distributed signal in Figure 3.5 (b)). However,
for a generic input pdf an analytical solution of (3.29) and (3.30) does not exist, which
is therefore computed numerically as an iterative procedure as follows: the initial value
for the first reconstruction level rop,1 18 chosen and the succeeding dopx and rope i are
derived by using the relations in (3.27), (3.28), (3.29), and (3.30). If the last rop s is
actually the centroid of the last interval &y = [dopt,M, +oo} then the guess estimation of
ropt,1 Was correct, otherwise it must be chosen again. Hence, the choice of employing a
uniform quantizer instead of a non-uniform one depends on the statistics of the quantizer
input, if known. As an example, the optimum sets {dopt, ropt} obtained for a normally
distributed input with zero mean and unitary variance (hence resulting in a symmetric
quantizer), are listed in [91] for different number of levels M.

These results allow for deriving interesting properties about the quantization error
statistics [85]. In particular, the reconstruction values derived in (3.30) can be seen as the
expectation of the input random variable X conditioned to X € Eopi

Foptk = B [X | X € Gopa] - (3.31)

This implies that for a Lloyd-Max quantizer the quantization error Q in each decision
interval éopgk has zero mean, i.e.,

E [X — Fopt,k ’ X e éopt,k} =E [Q ’ X e gopt,k] =0, (3.32)

which is also a direct consequence of (3.28). By summing up all error contributions
weighted by the output probability mass function px, (xq) it follows that also the un-
conditioned mean of the quantization noise Q is zero, i.e.,

M
Y E[X —ropik | X € Eopui] px,(Xqx) = E[Q] =0, (3.33)
k=1
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where
dopt,k+ 1

Pxy(Xq k) = / px (x)dx, (3.34)

dopt,k
which is indicated, e.g., by the Dirac impulses in Figure 3.5. By multiplying (3.33) with
Topt,k» ONE obtains
E [0X,] =0, (3.35)

i.e., the quantization error is orthogonal to the output of the Lloyd-Max quantizer. On
the other hand, the input signal and the quantization error are correlated, since

E[XQ] =E[Q(Q+X,)] = 5. (3.36)
The variance of the output signal can be finally derived as
ox, =E[X;] =E[(X-0)’] =E[X*| +E[Q’] -2-E[XQ] = 0{ —0p.  (3.37)

Hence, the power of the output signal is always smaller than the power of the input one,
which is due to the non-zero probability of clipping events [85]. This effect becomes

negligible for a sufficiently large bit rate Ny, (i.e., M — 4-o0), which implies Gé — 0 and

therefore G)%q — G)%. Another interesting result can be derived on the variance of the

quantization error from (3.29) and (3.30):

PXq (xq,m) E [Q2 ’ X e éopt,m] = Pxq (xq,n) E [QZ ’ X e éopt,n} vV m,n, (3.38)

which means that, even if the step size changes, the expected error variances (i.e.,
weighted by the probability value of X being in the m-th interval Eoptm, px,(Xqm)) are
identical for all decision intervals.

As a consequence of the findings discussed in this section, the quantization process can
be properly modeled as a scaling of the discrete-time input signal x by a factor Aq < 1,
which accounts for the power reduction as in (3.37), followed by an additive noise source
wg, such that

Xq=Aq X+ wg, (3.39)

as depicted in Figure 3.6. According to this model, the variance of the quantized signal
is derived as
ox, = E[X3] = E [(AgX +W,)*] = Ajox + oy, (3.40)

where the variables expressed in capital letters refer to the associated random variables
and

(3.41)
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Quantizer

,,,,,,,,,,,,,,,,,,,,,

Figure 3.6: A quantizer can be modeled as a variable gain amplifier Ay < 1 and an ad-
ditive noise source wq; hence the output signal xq is a distorted copy of the
input x.

3.1.5 Relevant Parameters and Performance Measures

In this subsection the most relevant parameters used to describe a quantizer and its
performance are recalled.

Signal-to-clipping ratio, ¥;,: Given an input signal x with standard deviation oy and
being V¢jip the clipping value of the quantizer, the signal-to-clipping ratio Y;p is defined

as
2 2
o \/Oxs T 0y
x _V 0 (3.42)

- )
Vclip Vclip

Yelip =

where G)i ; and G)i o are the powers of the In-phase (I) and Quadrature (Q) components
of the quantizer input x, which is modeled as a complex signal as for the case of SAR
raw and focused data. Once fixed the number of bits M, and the dynamic range of the
quantizer Vjip, if the statistics of the input signal are known, %, should be neither
too small (i.e., 6y << Vjjp) in order to mitigate granular errors, nor too large (i.e., Oy
comparable to Vj;p) to reduce the occurrence of clipping errors.

Signal-to-Quantization Noise Ratio, SQNR: It has been defined in (3.12) and repre-
sents the figure of merit of a quantizer describing how much the output signal has been
corrupted by quantization noise. It is defined as the power ratio of the input signal x to
the quantization error g = x — xq, being x4 the quantized signal, and is given by

2 2
cy)c,l + cyx,Q

= (3.43)
2 2
o-qJ + O-q,Q

2
SQNR = 2 —
Gy
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where Gq271 and G;Q are the power of the In-phase (I) and Quadrature (Q) component
of the complex quantization noise, respectively. If an SQNR map has to be estimated
from a SAR image 1 and its compressed version 1, for the p-th image pixel it is simply

calculated as

SQNR :-—Eﬂi— (3.44)
14 A (27 :
|t = )|

The SQNR for a normally distributed complex signal obtained at the output of a uni-
form ADC is plotted in Figure 3.7 (a) as a function of ¥j;p and for different bit rates Ny,
depicted with different colors. For low values of ¥;, (i.e., the signal dynamic is small
compared with the dynamic range of the quantizer) the SQNR is degraded predominantly
due to the occurrence of granular errors, whereas, in the case of large ¥.ip values, clip-
ping errors mostly affect the resulting performance. As expected, a larger number of bits
used for quantization results in high SQNR and vice versa.

Quantization Coherence, ¥g,ane:  As recalled in Section 2.4.2 the quantization coher-
ence YQuant describes the amount of noise affecting a SAR interferogram due to quanti-
zation and can be derived from the SQNR as

1 _ SQNR

m. (3.45)

YQuant T 1
1+ SQNR
The quantization coherence resulting from the SQNR in Figure 3.7 (a) is shown in
Figure 3.7 (b) as a function of ¥, and for different bit rates N, depicted with differ-
ent colors.

Phase Errors, A@: Once Yquant and the number of looks N; employed for multi-
looking are known, one can derive the interferometric phase errors as expressed by (2.63)
in Section 2.4.2. In general, the relation between coherence and phase errors is highly
non-linear, as shown in Figure 2.11. From real or simulated data, the single-point phase
error can be evaluated as the phase difference between the compressed x4 and the original
signal x as

A = atan(x-xg). (3.46)

The standard deviation of the phase errors 6, for the Gaussian signal of Figure 3.7 (a)
is shown in Figure 3.7 (¢) as function of ¥, and for different ADC rates N,, depicted
with different colors.
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Figure 3.7: (a) SQNR, (b) quantization coherence Yquant, and (c) standard deviation of
the phase error 6, for a Gaussian signal after uniform ADC, as a function
of ¥1ip and for N, varying between 2 and 8 bits/sample.

3.2 Quantization Schemes for SAR Systems: State of the Art

3.2.1 Block-Adaptive Quantization (BAQ)

During the imaging survey, the SAR system transmits radar pulses and receives echoes
backscattered from the Earth’s surface. These include responses from both, low- and
high-backscatter regions, hence the resulting amplitude values in the SAR raw data are
space-varying. In order to handle such a varying dynamic range, a conventional quantizer
would require a large number of bits/sample N, to keep a sufficient image quality for
most SAR applications. To overcome this limitation, adaptive quantizers are typically
employed for SAR systems, which trade off an increased scheme complexity with a
reduced date rate required for a target performance.

One of the most widely recognized methods for raw data compression for SAR sys-
tems is the block-adaptive quantization (BAQ) [38], [39]. BAQ is a lossy data reduction
technique which uses local statistics of raw data blocks in order to set the re-quantization
decision levels: a space-varying estimation of raw data statistics is performed for each
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block of the input data, which is then used to determine the quantization decision levels
that best match with the observed statistics. The raw data blocks typically have a fixed
size of Npjock Samples. Npjock must be sufficiently large to allow for a correct estimation
of the local statistics, but, at the same time, it should be sufficiently small to include
regions with similar power statistics (for this, the weighting effect of the range/azimuth
SAR antenna patterns must be taken into account as well). The compression can be ap-
plied either directly on the SAR raw data (i.e., in “time” domain) or in frequency domain
after proper signal transformation. The former leads to a good signal-to-quantization
noise ratio, but it does not optimize the compression scheme according to the frequency
envelope of the signal power in range/azimuth directions. On the other hand, the com-
pression in frequency domain increases the performance, at the cost of a significant effort
for its onboard implementation [92]. Due to the limited resources available for onboard
processing operations, block-adaptive quantization of the SAR raw data (i.e., in time do-
main) is typically employed on spaceborne SAR systems. BAQ represents a good com-
promise between scheme complexity (a simple scalar quantization algorithm), granted
image quality, and achievable compression ratio, and is therefore an attractive solution
for spaceborne SAR systems, where a huge amount of onboard data need to be stored
and then transmitted to the ground.

In this dissertation, quantization effects on interferometric SAR data acquired by the
TanDEM-X mission are investigated in Chapter 4 and Chapter 5. Hence, in the fol-
lowing, the BAQ algorithm implemented on the TerraSAR-X and TanDEM-X satellites
is detailed and is taken as reference quantization method, whereas an overview of the
TanDEM-X mission is given in Section 4.2.

On both SAR satellites, the BAQ compression rate is individually configured before
every data take by instrument commanding and is kept constant for the whole acquisi-
tion. In particular, the BAQ is separately applied for the in-phase (I) and quadrature (Q)
channel and the decision and reconstruction levels are adapted to the local statistics of
the received SAR data block.

The input analogue signal is first scaled and clipped within the range [—Vciip, +Veiip]
(Vetip = 250 mV) and then digitized using an 8-bit analog-to-digital converter (ADC). At
the ADC output, the I- and Q-component of each sample xuqc = [lagc, Qadc] is an 8-bit
number in signed magnitude as

Lgc — Kl,adc = [Kl,adc.,laKI,adc,Za e 7Kl,adc,8} y (3.47)

Oude — Ko .ade = [Kp,ade,1,KQ.adc.2: - - -+ K@ ade 8] » (3.48)

where Kj a4c,; and Kg ,qc ; 18 the value of the i-th bit (O or 1) for the in-phase and quadra-
ture component at the ADC output, respectively. The corresponding decimal interpreta-
tion is simply obtained from
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Figure 3.8: Flow diagram of the block-adaptive quantizer (BAQ). The input is encoded
in mantissa My,q and exponent Ey,,q which are stored in the onboard register
in binary format.

8
Iadc — (_1)Sl‘adc : <05 + ZKI,adc,i : 21) 5 (349)
i=2
8 .
Qadc = (_I)SQ’adC : <05 + Z KQ,adc,i : 21) ) (3.50)
i=2

being s;adc = Kjade,1 and sg ade = Kp ade,1 the sign bit for the in-phase and quadra-
ture component at the ADC output, respectively, whose values range in the interval
[—127.5,4127.5]. The ADC-quantized signal is then provided as input to the block-
adaptive quantizer (BAQ), which is described in the following.

BAQ Algorithm: The block diagram for the BAQ implementation is shown in
Figure 3.8. For TerraSAR-X and TanDEM-X, possible compression rates are 8:2, 8:3,
8:4, 8:6 and 8:8, where, e.g., 8:2 indicates that the data are digitized from the 8-bit ADC
to the 2-bit BAQ, and the latter 8:8 corresponds to BAQ bypass [27], [93], [94]. Table 3.1
contains the values of the parameters used for the different compression rates N in the
BAQ algorithm, which consists of the following steps:

Step 1: The ADC digitized raw data 4. and Q,qc, given in (3.49) and (3.50), respec-
tively, are divided into blocks of Nyjock = 128 range samples (corresponding to a slant
range extension of about 70-200 m);

Step 2: Depending on the quantization rate N, used for compression, the correspond-
ing C value is taken from Table 3.1 and the value E is calculated as follows

1 Nolock
E, :4‘10g2<1+ Z (‘Iadqn“i"QadgnD) _C7 (3~51)
block ,—1
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Table 3.1: Parameters used for the BAQ algorithm for different compression rates as im-

plemented on the TerraSAR-X and TanDEM-X satellites.

Compression Rate, N, | C Value | E,x Value | M, Value
8:2 2.20374 24 1
8:3 5.28038 20 3
8:4 8.50475 16 7
8:6 15.2549 8 31

where log, is the logarithm of base 2. The value E; provides an estimate of the average
magnitude of the complex raw data block of length Nyjock;

Step 3: The obtained E; value is compared with the corresponding Enax value in
Table 3.1. The exponent E is finally derived as follows

E = min{Enay, |E1] }, (3.52)

where |E|| denotes the closest integer less than or equal to E; and min{ } gives the
minimum of its arguments. For TanDEM-X, the exponent E is coded using 5 bits in the
register;

Step 4: Once obtained the exponent value E, the 4. and Q,q. samples are scaled as
follows

lade A Qadc_
and Q = W’

I= 2E/4

(3.53)

Step 5: The BAQ quantized I and Q channels are obtained by comparing the scaled [
and Q values, respectively, with M.« taken from Table 3.1 according to the BAQ rate
used. The resulting mantissa My,q = [Mj, M) is given by

o

My == -min{|l_|7Mmax} and Mo =

"I 'min{lQ_|aMmax}a (3.54)

Qi

where I'/|I| = +1;

Step 6: As last step, M; and Mg are uniformly quantized in the range between
[—Mmax — 0.5,Mpax +0.5] and encoded in binary representation using Ny
bits/sample

M; — Ki = [Kipag,1,Kipaq2: - - - Kipag .y | » (3.55)
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Mo — Ko = [Kobag,1, K0 bag2: - -+ K0 bag .y » (3.56)

where Kj paq,i and Ko paq,; is the value of the i-th bit (0 or 1) for the in-phase and quadra-
ture component, respectively. Summarizing, the input signal is encoded in mantissa Mp,q
and exponent Ep,q and stored in the onboard register in binary format.

According to the described algorithm, the quantized blocks are encoded, stored in
the on board memory, and then transmitted to ground. Here, the SAR raw data are
reconstructed and, after decoding, each sample xp,q = [Ibaq, Qbaq} is simply given by

Np '
Ibaq = (_1)S[’baq : (05 + Z Kl,baq.,i ) 21) ’ 2E/47 (3.57)
i=2
Np )
Qbaq = (_l)SQ,baq . (()'5 + ZKQbaq,i . 21) DE/4 (3.58)
i=2

being s;baqg = Kibag,1 and g paq = K bag,1 the sign bit for the in-phase and quadrature
component of the mantissa, respectively.

3.2.2 Polar Block-Adaptive Quantization

The SAR raw data exhibit a circular Gaussian symmetry [42], so polar quantization
can be considered as a possible alternative to a Cartesian quantization scheme for effi-
cient SAR raw data compression. According to that, input I/Q values are transformed
to magnitude-phase representation using rectangular to polar conversion. Since the ob-
tained polar components are not independent from each other, they must be jointly quan-
tized. Polar block-adaptive quantization is investigated in [95], where a detailed descrip-
tion of the design of the polar quantizer is provided as well (i.e., the optimum decision
sectors and reconstruction values as derived in Section 3.1.4 [91]). However, it is shown
that polar quantization does not improve much the resulting image quality, being the
gain in terms of phase errors in order of 1° [95]. Hence, if considering the additional im-
plementation complexity required for the polar quantizer, the traditional Cartesian BAQ
remains a more attractive solution for efficient SAR raw data compression.

3.2.3 Flexible Dynamic Block-Adaptive Quantization (FDBAQ)

The SAR Sentinel-1a and Sentinel-1b SAR satellites have been launched in 2014 and
2016, respectively, in the frame of the European Union’s Earth observation program
Copernicus [13], with the main goal of providing enhanced capabilities in terms of SAR
image quality, revisit time, coverage, timeliness, and reliability for operational services
and applications. The Sentinel-1 satellites operate at C band (A ~ 5.5 cm) and employ the
so-called flexible dynamic block-adaptive quantization (FDBAQ) [96] for onboard data
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compression. The FDBAQ extends the concept of block-adaptive quantization (BAQ),
by adaptively adjusting the quantization rate according to the local signal-to-noise ra-
tio (SNR): raw data showing large SNR values are quantized with more bits/sample,
whereas, on the other hand, for regions affected by poor SNRs, smaller bit rates are al-
located, since the performance gain would be negligible [96]. In this way, the resulting
data rate is correspondingly reduced. Such an optimization procedure, in terms of local
SNR estimation and data rate selection, is entirely done on board, which means that for
the FDBAQ implementation no additional information has to be transmitted to the satel-
lite (apart of the look-up tables linking the bit rates to the corresponding raw data power
intervals); this implies that the data volume required for a specific acquisition cannot
be accurately estimated before the commanding of each data take. Finally, the FDBAQ
optimizes the performance and data rate in the raw data domain, and therefore the ac-
tual degradation in the final (focused) SAR and InSAR products is not considered in the
algorithm.

In the last decade, alternative compression schemes for SAR systems based on the
FDBAQ principle have been implemented to allow for a finer performance and resource
optimization, by following the quantizer (commonly based on a BAQ scheme) with ad-
ditional software/hardware blocks (as, e.g., an entropy or Huffman coder) at the cost
of increasing the overall system complexity [97], [98]. A comprehensive overview of
several algorithms for SAR raw data compression is provided in [92].

3.2.4 Efficient Onboard Quantization for Future SAR Systems

In the context of the design of future SAR systems, novel methods for efficient data
volume reduction for multi-channel SAR [40] based on the joint use of transform coding
and BAQ have been developed in [99] and [100], the latter being described in Chapter 6.
Finally, in [101] a new approach based on linear predictive coding is suggested for effi-
cient data volume reduction on staggered SAR systems [102], which is further detailed
in Chapter 7.

3.3 BAQ and Low-Amplitude Errors

As it has been described in Section 3.1.2, quantization errors are mainly given by the
sum of two contributions, the granular and the overload noise: the first one is due to the
finite number of output decision levels within the supported range, whereas the second
one is introduced by the clipping of input signals exceeding the supported range.

In addition to granular and clipping errors, inhomogeneities in the SAR backscatter
distribution cause a further signal-dependent performance degradation due to quantiza-
tion. This occurs, for example, in urban areas, where a high dynamic range of backscatter
can be expected. Such an effect is also known as low scatterer suppression [103], it is
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raw data

L chirp

Figure 3.9: The impulse response of the two point scatterers s; and s, overlap in the raw
data domain if their distance d is small with respect to the synthetic antenna
L and the chirp length Lepirp, respectively, as shown in (3.59) and (3.60).

peculiar of the SAR acquisition principle and has to be considered as an additional quan-
tization error source, different from granular and clipping noise, since it is visible only
after SAR processing. Figure 3.9 shows two targets, s1 and s,, with different magnitude
response. They overlap in the raw data domain if both the azimuth and range distances
daz and dyg are small with respect to the synthetic antenna Lg and the chirp length Ly,
respectively

R
Aoy << Ly = A=2, (3.59)
Ly
T
drg << Lenip = % (3.60)

As an example, for the TerraSAR-X and TanDEM-X satellites, values of Ly and Leprp
are commonly in the order of a few kilometers. According to the BAQ algorithm, the
decision levels and the clipping thresholds for the compression are determined by the
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Figure 3.10: (Bottom) probability density functions for the two targets in Figure 3.9,
sketched with different colors. (Top) according to the BAQ algorithm, the
decision levels A, as well as the dynamic range of the quantizer +Vy;p, are
set as a function of the mean power of the raw data block, which, in this
example, is mostly determined by s; (since 61 >> 03). Therefore, if two
overlapping targets have different power responses, the strong signal is bet-
ter reconstructed, whereas the weak one is heavily distorted.

mean power for each raw data block, as shown in Figure 3.10. Therefore, if two overlap-
ping targets have different magnitude responses, the strong signal is better reconstructed,
whereas the weak one is heavily distorted. In order to quantify the described effect, dif-
ferent simulations on two one-dimensional azimuth-compressed point targets have been
carried out: the power of the strong target P is kept constant, whereas the power of the
low one A is varying, to evaluate the distortion for different power ratios between the
two. The targets are located at about 50 meters distance in azimuth, in order to ensure a
sufficient overlapping of the echo responses in the raw data. The resulting performance
degradation is shown in Figure 3.11, where the phase error is plotted for the available
BAQ rates and along the power ratio P,

P
Pratio = F: (3.61)

The phase error is obtained as the phase difference evaluated at the peak of the point
target with lower amplitude, and is calculated for different BAQ rates with reference
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Figure 3.11: Low scatterer suppression effects are evaluated by means of simulations of
two azimuth-compressed point-like targets: the power of the strong target Py
is kept constant, whereas the power of the low one A varies. The phase error
is derived taking as reference the data quantized with 8 bits/sample and is
evaluated at the peak of the compressed target with lower amplitude and is
plotted for the available BAQ rates and along the power ratio, expressed as
in (3.61).

to the data quantized with 8 bits/sample (the latter corresponding to the BAQ-bypass
case). From Figure 3.11 it can be noticed that the phase error strongly depends on the
power ratio of the two targets and, at the same time, on the quantization rate employed
for compression: while for the case of 6 bits/sample almost no degradation is observed
(less than 1°), a significant performance loss is shown when reducing the quantization
rate to 2 bits/sample, for which a phase error of about 14° (for a power ratio of 15 dB)
is obtained. The phase error has been evaluated for the strong magnitude target as well
and, as expected, it has been found to be independent of the power ratio (the dependence
on the quantization ratio, of course, remains).

Based on the present investigations, one can conclude that, in the most general case,
quantization errors are to be treated as a nonlinear and signal-dependent error source af-
fecting SAR data, for which the correlation between noise and data can not be neglected.
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The impact of the described low-amplitude errors on simulated SAR data as well as on
real TanDEM-X acquisitions is further discussed in Chapter 4 and Chapter 5.

3.4 Chapter Summary

This chapter aims at providing the reader with the fundamental background on quanti-
zation theory, specifically applied to synthetic aperture radar (SAR) data, which is nec-
essary for the understanding of the analyses and investigations presented in the next
chapters.

The relevant parameters, which define the quantizer type (e.g., uniform, non-uniform)
and its performance, are recalled, together with a description of the system and signal
models and of the typical sources of quantization errors. The constraints for designing the
MMSE (or Lloyd-Max) quantizer are provided along with the definition of the quantizing
theorem, which derives a sufficient condition, so that it is possible to reconstruct all the
information of a quantized signal from the original band-limited continuous-amplitude
one (thus representing a sort of equivalent in quantization of the well-known Nyquist-
Shannon sampling theorem).

The reader should be aware of the state-of-the-art quantization schemes for SAR sys-
tems, such as the well-established block-adaptive quantization (BAQ), and of the so-
called low-amplitude errors, which are introduced by the use of adaptive quantizers and
cause an increased reconstruction error for weak targets in close vicinity of stronger
ones in SAR raw data. Indeed, in addition to the well known granular and clipping er-
rors, inhomogeneities in the SAR backscatter distribution cause a further performance
degradation due to raw data quantization. This has to be therefore treated as a nonlinear
and signal-dependent error source affecting the SAR performance, for which the corre-
lation between noise and data cannot be neglected. A few simulation results are shown,
whereas, in the next chapter, an extensive analysis on the impact of raw data quantization
on TanDEM-X interferometric SAR data is presented.
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In this chapter, the impact of quantization on TanDEM-X monostatic and interfero-
metric data is investigated. For this purpose, key quantities in estimating interferometric
and SAR image quality, like NESZ, coherence, phase errors, and resulting DEM inac-
curacies, are evaluated in detail. From this, a statistical characterization of the resulting
performance degradation is provided and a novel method, named performance-optimized
block-adaptive quantization (PO-BAQ), is introduced, which allows for an optimization
of the resource allocation and, at the same time, for controlling the interferometric per-
formance degradation, by exploiting a priori knowledge about the SAR backscatter in-
formation. Part of the analyses presented in this chapter have been published in [94].

4.1 Introduction

SAR interferometry (InSAR) represents a well-recognized technique for many remote
sensing applications. About three decades of research studies, technical progress, and
developments in the field have demonstrated the potential of spaceborne InSAR sys-
tems for the assessment and monitoring of many geophysical parameters, such as ground
deformations, ocean currents, and Earth’s topography by generation of digital eleva-
tion models (DEMs). In 2000, the Shuttle Radar Topography Mission (SRTM) created
the first elevation data on a nearly global scale, limited to a latitude range from 56° S
to 60° N [19]. Ten years later, TanDEM-X (TerraSAR-X add-on for Digital Elevation
Measurement) has opened a new era in spaceborne radar remote sensing, by generating
a global, high-resolution DEM with unprecedented accuracy [104]. The next big chal-
lenge to be addressed by future spaceborne remote sensing missions is now turning to the
estimation and the long-term monitoring of dynamic processes in the Earth environmen-
tal system, such as surface deformation, forest height and biomass change, ice/glacier
melting, as well as ocean currents. This represents the main objective of Tandem-L, a
DLR single-pass interferometric and fully polarimetric L-band radar mission proposal,
which exploits innovative high-resolution wide-swath SAR modes, together with the use
of large bandwidths, high pulse repetition frequencies (PRFs), and multiple acquisition
channels [37], [105]. Definitely, this is associated with the clear demand of gathering
an increasing amount of information in a shorter time interval, which implies, from mis-
sion design, stronger requirements in terms of onboard memory and downlink capacity
(a strategy for data volume reduction for Tandem-L-like SAR systems is presented in
Chapter 7).

In this scenario, SAR raw data quantization represents an aspect of primary impor-
tance, since the data rate employed to digitize the recorded radar signal defines on the
one hand the amount of data to be collected and transmitted to the ground, and also,
on the other hand, directly affects the performance of the SAR products. The impact
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of raw data quantization on the SAR image quality is often considered as an additive
white Gaussian noise source. However, quantization effects strongly depend on the spe-
cific characteristics of the SAR scene, and have to be treated as a signal-dependent and
highly nonlinear error source, as shown in Chapter 3. The goal of this chapter is there-
fore to assess the impact of raw data quantization on SAR imaging and interferometric
performance using bistatic TanDEM-X data. In the next section a short overview on the
TanDEM-X mission is provided, and the investigation approach followed for the present
analyses is shown. In Section 4.3 the impact of raw data quantization is evaluated on
key InSAR performance descriptors such as the noise equivalent sigma zero (NESZ),
the interferometric coherence, the interferometric phase errors, and the relative height
accuracy in DEMs. In particular, the attention is focused on those scene and system
parameters which most affect quantization errors in SAR data (in addition, of course,
to the quantization rate NV, ), such as the degree of inhomogeneities in the backscatter
response, described by the standard deviation of the SAR backscatter 650, the number
of interferometric acquisitions N,cq, and the number of looks N;. Based on the obtained
results, a novel performance-optimized block-adaptive quantization (PO-BAQ) method
is introduced in Section 4.4, which allows for an optimization of the compression rate to
control the resulting image degradation by exploiting a priori knowledge about the SAR
backscatter information of the imaged scene. The chapter is concluded in Section 4.5
with a summary and outlook for future research.

4.2 The TanDEM-X Mission

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is the first oper-
ational spaceborne bistatic SAR system, which comprises two separate spacecrafts. De-
veloped under a public-private partnership between the German Aerospace Center (DLR)
and Airbus Defense & Space (ADS) [30], [106], the TerraSAR-X SAR satellite (TSX,
launched in 2007) is enhanced by its twin radar satellite TanDEM-X (TDX, launched in
2010). A list of the main TanDEM-X system parameters is given in Table 4.1. After six
months of commissioning phase, the mission officially started in December 2010. Since
then, the two satellites have been operationally acquiring interferometric SAR images
in stripmap single HH polarization mode, with a typical resolution of about 3 meters in
azimuth and range. Both satellites have been flying in a closely controlled orbit forma-
tion with the opportunity for flexible along- and across-track baseline selection and the
primary objective of generating a global, consistent and high-precision digital elevation
model (DEM) [30] at a final independent posting of 12 m x 12 m. TanDEM-X nominally
operates in bistatic SAR acquisition mode, i.e. either TerraSAR-X or TanDEM-X is used
as a transmitter (master) and both satellites (master and slave) simultaneously record the
signal scattered back from the Earth’s surface. By this, TanDEM-X provides the commu-
nity with a unique data set to be exploited for a broad range of commercial and scientific
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Table 4.1: System parameters for the TanDEM-X mission.

Parameter Value

Satellite Height (Equator), A | 514 km

Carrier Frequency, f; 9.65 GHz

Radar Wavelength, A 3.11 cm

Chirp Bandwidth, B, 100 MHz

Chirp Pulse Duration, 7, 10 - 60 us

Antenna Size, L, X L, 4.8 m x 0.8 m

Incidence Angles, n 29° - 48°

Available BAQ Rates, N, 2,3, 4, 6, 8 bits/sample
Satellite Memory TSX: 256 Gbit, TDX: 512 Gbit
Downlink Capacity ~260 Mbits/s (total net data rate)

applications. The global TanDEM-X DEM has been finalized and delivered in September
2016 [104] and is shown in Figure 4.1. In Table 4.2 the specifications for SRTM [107]
and TanDEM-X [108] missions are compared. Such high-demanding requirements have
been achieved by performing at least two global mappings of the Earth’s land masses
and multiple acquisitions over selected regions (such as mountainous terrain, forested
areas, or sandy desert regions) to improve the overall product accuracy [109]. Since the
beginning of the mission, more than half a million high-resolution bistatic scenes, ex-
tending over an area of about 30 km in range by 50 km in azimuth, have been acquired
and processed, with incidence angles ranging between 30° and about 50°. For the first
DEM global coverage of TanDEM-X, the height of ambiguity (hayp, defined in (2.56))
was typically between 45 m and 60 m, ensuring good unwrapping quality over most land
types. For the second one, larger baselines were considered (/4 around 35 m), in or-
der to increase the final DEM accuracy. The combination of at least two acquisitions
by means of multi-baseline phase unwrapping algorithms allowed then to fully meet the
mission requirements [110].

On board the TerraSAR-X and TanDEM-X satellites, the received backscattered signal
is first digitized by an 8-bit analog-to-digital converter (ADC) and then further com-
pressed by a block-adaptive quantizer (BAQ), which has been introduced in Section 3.2.
For the space-varying estimation of raw data statistics blocks of fixed size of Npjock = 128
range samples are used, for the in-phase (I) and quadrature (Q) channels separately.
This information is then employed to determine the quantization decision levels that
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Figure 4.1: The global TanDEM-X DEM.

Table 4.2: Comparison of SRTM and TanDEM-X specifications.
Requirement Specification SRTM TanDEM-X
90% linear point-to-point | 12 m (slope < 20%) 2 m (slope < 20%)

error over a 1° x 1° cell | 15 m (slope > 20%) 4 m (slope > 20%)

Relative Vertical Accuracy

Absolute Vertical Accuracy 90% linear error 18 m 10 m

Absolute Horizontal Accuracy 90% circular error 23 m 10 m
30 12

Spatial Resolution independent pixels o o

(1 arc sec at equator) | (0.4 arc sec at equator)

best match with the observed statistics. Possible compression rates are 8:2 (i.e., from
8-bit ADC to 2-bit BAQ), 8:3, 8:4, 8:6 and 8:8, where the latter corresponds to BAQ
bypass [27], [93]. The compression rate is individually configured before every data take
by instrument commanding and is kept constant for the whole acquisition.

For the raw data acquired by TSX and TDX, the granular noise can be considered as
the dominant error source caused by quantization, as the instrument parameters are set
to minimize the occurrence of saturation effects. In particular, in [27] the overflow rate
occurring in the raw data is investigated for the TerraSAR-X satellite: several hundreds
of data takes are considered and each one is divided into raw data blocks, and it is ver-
ified that for more than 99% of the blocks the occurrence of signal saturation remains
below 1%. Similar results have been obtained for the TanDEM-X satellite from analyses
conducted during the initial commissioning phase, few months after its launch. More-
over, in [30] it is verified that the performance loss due to raw data digitization within
TanDEM-X, resulting from the quantization process, matches quite well with the the-
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TSX TDX

SAR raw data
8 bits/sample

SAR raw data
8 bits/sample

On-ground compressioné
to available BAQ rates |

SAR raw data SAR raw data
2, 3, 4, and 6 bits/sample 2, 3, 4, and 6 bits/sample

...........................................

SAR processing§

SAR images SAR images
2, 3, 4, 6, and 8 bits/sample| |2, 3, 4, 6, and 8 bits/sample

EInSAR processingé

Interferograms and coherence maps
different BAQ combinations

l Phase unwrapping

Digital Elevation Models (DEMs)
different BAQ combinations

Figure 4.2: Workflow for test data acquisition, on-ground quantization, and processing.
Raw data commanded with BAQ bypass are compressed on ground into mul-
tiple data sets using all available quantization rates. The obtained products
are then processed into SAR images, from which interferograms, coherence
maps, and DEMs are derived.

oretic predictions for an optimum uniform Cartesian quantizer (i.e., where no clipping
effects exist).

4.2.1 Investigation Approach

The steps performed to evaluate quantization effects on TanDEM-X data are sketched
in Figure 4.2: bistatic acquisitions are commanded with BAQ bypass in both TSX and
TDX SAR instruments. The recorded SAR raw data are compressed on ground into
multiple data sets using all available BAQ rates. The employment of different BAQ
settings for the two satellites (e.g., TSX 8:4 and TDX 8:3) allows to further refine the
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Table 4.3: Test sites for quantization analysis. For each test site, bistatic acquisitions have
been commanded with BAQ bypass in both TSX and TDX SAR instruments.

Test Site Land Cover [Lat./Lon.]

1. Salar de Uyuni (Bolivia) Salt Lake [20° S, 67° W]
2. Amazon Forest 1 (Brazil) Rainforest [4°S, 64° W]

3. Amazon Forest 2 (Brazil) Rainforest [7°S, 66° W]

4. Amazon Forest 3 (Brazil) Rainforest [6° S, 63° W]

5. Greenland Ice and Snow [71° N, 42° W]
6. Antarctica Ice and Snow [74° S, 10° W]
7. Las Vegas Urban Area [36° N, 115° W]
8. Mexico City Urban Area [19° N, 99° W]
9. Borneo Forest (Indonesia) Tropical Forest [3°S, 113° E]
10. Appalachian (USA) Mountainous Forest | [35° N, 82° E]
11. Death Valley (USA) Soil and Rocks [41° N, 119° W]
12. Taklamakan Desert (China) | Sandy Desert [39° N, 82° E]
13. Iowa (USA) Agricultural Area [41° N, 93° W]

granularity of the achievable performance, and is investigated as well. The obtained raw
data products are then processed into single-look complex (SLC) SAR images, with a
ground-range resolution of about 3 m. From SLC images, interferograms, coherence
maps, and DEMs are derived. The interferometric products have a final ground-range
resolution of approximately 12 m, obtained by applying a boxcar multi-looking to the
bistatic interferogram. The total number of independent looks N; is mostly between
16 and 32, depending on the incidence angle (specified in Table 4.1) as well as on the
processed bandwidths [30]. Each bistatic scene typically extends over 30 km in range
and 50 km in azimuth and the complete SAR and InSAR processing is performed by
the Interferometric TanDEM-X Processor (ITP) [111]. By reprocessing the same data
acquisitions with different BAQ rates, the effects of quantization are isolated from other
error sources. For the present investigations, dedicated acquisitions were carried out
on defined test sites showing different land cover types and topography characteristics,
which are listed in Table 4.3. From each of these sites, up to six product sets, obtained
from different compression rates, were then generated for performance comparison.
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4.3 Performance Analysis

In this section the performance impact of different raw data quantization rates on
TanDEM-X data is presented. As key SAR parameters, the NESZ (investigated in Sec-
tion 4.3.1), the interferometric coherence (Section 4.3.2), and the phase errors (Section
4.3.3) are investigated. For this, a detailed assessment on parameters influencing quanti-
zation errors is provided, such as the degree of inhomogeinities in the SAR backscatter,
the number of interferometric acquisitions, and the number of looks. Finally, quantiza-
tion effects on the DEM relative height accuracy (Section 4.3.4) are investigated.

4.3.1 Noise Equivalent Sigma Zero (NESZ)

The noise equivalent sigma zero is a measure of the system sensitivity to areas of low
radar backscatter. It is described in (2.44), and represents the value of the backscat-
ter coefficient corresponding to a signal-to-noise ratio (SNR) equal to one. The NESZ
quantifies the system noise floor and includes contributions induced by the system, like
antenna pattern, instrument thermal noise, as well as processing filters [42]. In order to
quantitatively estimate the noise power affecting TanDEM-X SAR products, a distributed
target analysis over regions characterized by very low backscatter has been carried out.
In particular, areas covered by water bodies almost completely reflect the radar signal in
specular direction. Hence, the signal received by the antenna over such low backscatter
areas can be approximated with the system noise. The procedure adopted for NESZ es-
timation is shown in Figure 4.3. The test area depicted on the top of the figure is located
in the Amazon rainforest and is entirely crossed by one river from near to far range.
Forested areas are identified as pixels with 6” > —17 dB (a threshold value which can
be slightly adapted for each scene), they correspond to the black areas in the mask in the
middle and are filtered out. Then, water pixels (white areas in the mask) are averaged
along the azimuth direction, to finally derive the corresponding NESZ profile shown at
the bottom of Figure 4.3. For the present analysis, incidence angles going from 39° to
48° have been investigated over different test areas, and the NESZ has been estimated
for the master satellite (however, for TSX and TDX, the observed difference in terms of
NESZ is usually less than 1 dB [112], [113]). The NESZ profile curves, resulting from an
interpolation along range of the measured values, are depicted in Figure 4.4 (a) for each
quantization rate of four different data acquisitions over the salt lake of Uyuni (Bolivia)
and over the Amazon rainforest, corresponding to the test sites 1, 2, 3, and 4 of Table 4.3
(the respective NESZ profiles in Figure 4.4 are numbered accordingly).

In order to validate the present results, they have been compared with the NESZ degra-
dation estimated by adopting the theoretical model presented in [93], where a perfor-
mance analysis of BAQ is carried out by simulating the complete system and signal
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Figure 4.3: Steps followed for NESZ estimation. (Top) The test site is located in the
Amazon rainforest and is crossed by one river from near to far range. (Mid-
dle) A threshold on backscatter is applied to locate water bodies and the cor-
responding pixels are depicted in white. (Bottom) The NESZ profile curves
are finally derived by averaging the water pixels along azimuth.
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Figure 4.4: (a) NESZ over incidence angle for different BAQ rates (depicted with dif-
ferent colors), derived as explained in Figure 4.3. The four profiles pl-p4
correspond to data acquired over different areas, corresponding to the test
sites 1, 2, 3, and 4 of Table 4.3. The highest and lowest curve indicate the
NESZ for the case of BAQ 8:2 and BAQ 8:8 (bypass), respectively. (b) NESZ
degradation introduced by quantization with respect to the bypass case. The
theoretical degradation has been derived for the different quantization rates
according to [93] and is represented by the horizontal lines. Only the profile
pl matches quite well with the theoretical predictions (see also Figure 4.5).
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models for the TSX and TDX satellites. According to the NESZ definition, quantization
effects are evaluated considering the SNR degradation when assuming a unitary input
SNR, which is kept constant and homogeneous in all simulations.

Figure 4.4 (b) shows the NESZ degradation with respect to the bypass case (for each
data take all the other acquisition and processing parameters are the same), and the NESZ
degradation with reference to BAQ 8:8 obtained by simulations is indicated with hori-
zontal lines depicted with different colors, each one representing the compression rate
indicated in the figure legend. A general underestimation of the employed model is evi-
dent, except for the profile pl. In order to better understand the observed discrepancy, the
backscatter distribution of the considered scenes has to be inspected. A representative
scene, from which the profiles p2, p3, and p4 are derived, is depicted in Figure 4.3. Here,
the rivers considered for NESZ estimation are usually not more than a few hundreds me-
ter wide, about one order of magnitude smaller than the typical synthetic antenna and
the chirp length for TanDEM-X. Therefore, the responses from the close and stronger
backscatter area (such as forest, soil and rocks) considerably overlap with the ones com-
ing from the water area, and the consequent setting of the quantization decision levels
is biased by the strong target responses, leading to a suppression of the low backscatter
region (as explained in Section 3.3). This results in an increase of the noise floor (i.e.,
of the NESZ degradation), that becomes more evident when fewer bits are employed for
quantization, and explains the observed inconsistency with the simulation results, where
a uniform and homogeneous backscatter response was considered. Indeed, the perfor-
mance resulting from BAQ with 6 bits/sample and 8 bits/sample is practically the same
for all the analyzed test sites and in good agreement with the simulation results, whereas
a substantial degradation in terms of radiometric accuracy up to 6 dB is observed for the
profiles p2, p3, and p4 when employing 2 bits/sample. This is due to the described low
scatterer suppression effect: even if 75% of memory consumption could be spared for
one acquisition, such a configuration setting causes a noticeable loss in the SAR image
quality, and should be avoided when possible. On the other hand, the SAR image, from
which the profile pl is derived, is shown in Figure 4.5. It is located in the salt lake of
Uyuni (test site 1 in Table 4.3), and low backscatter due to the temporary presence of wa-
ter (most probably caused, in turn, by a rain event) is observed on an area extending by
about 4 km along azimuth, which is comparable to the synthetic antenna length. There-
fore, the setting of the quantization decision levels over the salt lake is on average little
influenced by the neighboring high backscatter areas. The resulting NESZ degradation
of pl, depicted in Figure 4.4 (b), matches quite well with the theoretic prediction. There-
fore, the backscatter characteristics of the imaged scene strongly impact the sensitivity
of a SAR system, especially when low BAQ rates are used, an aspect which needs to be
necessarily taken into account for performance definition and design.
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Figure 4.5: (Left) SAR amplitude of the salt lake of Uyuni, Bolivia. (Right) Mask used
for NESZ estimation. The low backscatter region, highlighted in white, is
probably due to a rain event where the area was temporarily flooded. It ex-
tends by about 4 km along azimuth direction (which is comparable to the syn-
thetic antenna length), and entirely from near to far range. It can be therefore
assumed that the quantization decision levels in the low backscatter zones are
less influenced by the adjacent high backscatter areas. The resulting NESZ
degradation corresponds to the profile pl in Figure 4.4 and agrees quite well
with the simulation results in [93].

4.3.2 Interferometric Coherence

The key quantity to evaluate InSAR performance is the interferometric coherence. As
already introduced in Section 2.4.2, it represents the normalized correlation coefficient
between the master (monostatic channel) and the slave (bistatic channel) acquisition, and
its absolute value provides valuable information about the amount of noise affecting the
interferogram. Several error sources contribute to coherence loss in bistatic TanDEM-X
data [71]. In the Interferometric TanDEM-X Processor (ITP) [111], the interferometric
coherence is estimated from the full-resolution SAR images pair by using an estimation
window of typically 11 x 11 pixels in azimuth and range. Areas showing different land
cover characteristics have been acquired with different polarization channels, incidence
angles, and baselines (corresponding to the test sites 1, 2, and 5-13 of Table 4.3). For
each scene, the mean coherence over land has been evaluated by applying a water mask.

Figure 4.6 (a) depicts the interferometric coherence for the analyzed scenes and BAQ
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Figure 4.6: (a) Interferometric coherence over BAQ rates and (b) coherence degradation
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with respect to the bypass case (8:8), for different test sites (depicted with
different colors). Different BAQ settings for the two satellites (e.g., TSX 8:4
and TDX 8:3) are investigated as well. The black bars in the bottom plot rep-
resent the average and the standard deviation of the estimated degradations
for each BAQ rate, while the short horizontal green lines indicate the theo-
retical prediction for the case of 2, 3, and 4 bits/sample, as derived in [30].
Each curve corresponds to one acquisition compressed and reprocessed for
different BAQ rates.
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rates. As expected, lower coherence values are observed, for the same test site, when
fewer bits are employed for quantization. The results plotted in Figure 4.6 are obtained
for quantization rates of 2, 3, 4, and 6 bits/sample. Additionally, bistatic acquisitions with
different quantization rates between master and slave SAR images have been generated
as well. For example, 3 bits/sample for TSX has been combined with 2 bits/sample on
TDX and, secondly, 4 bits/sample on TSX together with 3 bits/sample on TDX. By doing
so, also the non-integer quantization rates of 2.5 and 3.5 bits/sample, respectively, can be
implemented and investigated. Figure 4.6 (b) shows the resulting coherence degradation
with respect to the bypass case. Each curve describes the performance of one acquisition,
which has been compressed to different BAQ rates. In particular, an average coherence
degradation of about 1% and 3.5% is noticed by using rates of 4 and 3 bits/sample for
both satellites, respectively, which are the nominal configurations which have been used
for the first global DEM acquisition of TanDEM-X. The black bars represent the average
and the standard deviation of the estimates for each BAQ rate, and a good agreement with
the theoretic prediction is observed, marked by the green lines for the case of 2, 3, and
4 bits [30]. It can be noticed that the standard deviation of the estimates increases when
reducing the quantization rate. Again, an explanation of this effect is given by looking
at the backscatter distribution within the scene: in Figure 4.7, the coherence degradation
for the case of 2 bits/sample (for which the dispersion is most evident) is plotted over
the standard deviation of the measured radar backscatter ¢°, which gives information
about the degree of homogeneity in the backscatter response of the imaged area. The ob-
served quantization decorrelation is approximately 8% for flat and homogeneous areas
with standard deviations typically smaller than 2.5 dB like the Taklamakan desert (China)
and the salt lake of Uyuni (Bolivia), depicted in flesh tone and violet, respectively. On
the other hand, a quantization decorrelation up to 20% is observed for the urban area of
Mexico City, marked in pink. Here, the backscatter distribution is very inhomogeneous
(showing high standard deviations above 6 dB). Moreover, over urban areas the perfor-
mance is further degraded due to the presence of additional geometric distortions, such
as multiple reflections, which increase the noise in the interferometric phase (see also
next section). Low scatterer suppression effects represent therefore an additional non-
linear and signal-dependent error, which vitiates the hypothesis of additive independent
Gaussian noise for quantization errors, and needs to be taken into account when defining
resource allocation strategies for SAR missions.

4.3.3 Interferometric Phase Error

As it has been described in Section 2.4.3, the error affecting the interferometric phase
is directly related to the coherence and to the equivalent number of looks N; employed
within the multi-looking process [30], [80]. The error affecting the interferometric phase
is a key quantity for the assessment of interferometric SAR data quality. For this anal-
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Figure 4.7: Increase of coherence loss for BAQ 8:2 with respect to the bypass case, due to

inhomogeneities in the backscattered response, represented by the standard
deviation of the measured radar backscatter 6” over a test site.

ysis, interferograms with different compression rates have been obtained by using the
experimental TanDEM-X processor (TAXI), developed at the Microwaves and Radar In-
stitute, DLR [114]. The interferometric azimuth and ground-range resolution is about
12 m, corresponding to NV, values typically between 16 and 32. The impact of raw data
quantization on the interferometric phase has been evaluated by comparing, for a single
data take, the non-compressed interferograms @pypass With the ones generated by differ-
ent BAQ rates @y,

Aps = Poypass — PNy 4.1)

where N indicates the used compression rate (in bits/sample). The differential phase
A @ is nominally confined in the interval [—27,27]. However, the maximum real phase
error achievable is equal to £, and all possible values outside the interval [—7, 7] are
wrapped around the corresponding bound, i.e.

A@s:tmt+e=FnteVee|0,n]. 4.2)

Taking into account the above equivalence, the phase error due to quantization for the
case of Ny bits/sample may be finally expressed as:

Ags, if |[Aps| <7
Ap— ®s |A@s| “3)

—sign(A@s)- (2m —|A@s]|), if |A@s| > T,
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Figure 4.8: (Left) Increase of the interferometric phase error due to quantization. Each
value represents the standard deviation of the differential interferometric
phase for each compression rate with reference to the bypass case 64 ¢ (being
A @ derived as in (4.3)), for a given acquisition. The total equivalent number
of looks N, for each test site is specified in the legend. (Right) Increase of the
errors introduced in the SAR amplitude due to quantization. Each value rep-
resents the standard deviation of the radar backscatter difference Ac® (of the
master acquisition) for different compression rates with respect to the bypass
case.

being A@g defined in (4.1). In general, A@ can be well approximated by a zero-mean
random variable (as described in Section 3.1.4), independently of the employed quantiza-
tion rate. On the other hand, its standard deviation gives information about the dispersion
of the phase errors, and has therefore been chosen as a quality parameter for performance
assessment. The increase of the interferometric phase errors due to quantization is shown
on the left-hand side of Figure 4.8. Each value represents the standard deviation of the
phase error, 044 for each compression rate with reference to the bypass case. For this
analysis, the test sites 1, 5, 6, 8, and 11 of Table 4.3 have been investigated. For the case
of Ny = 3 bits/sample, which is typically selected for nominal TanDEM-X acquisitions,
phase errors between 5° and about 22° are observed for the (flat and homogeneous) salt
lake of Uyuni and the urban area of Mexico City, respectively. It is worth recalling that
the interferograms used for comparison have been generated from the same original raw
data, i.e., they differ only in the quantization rate employed for compression. Therefore,
the observed phase error degradation is solely due to an increase in the quantization noise,
as all other error contributions, such as limited SNR or volume scattering, affect the data
in the same way (for a given test site). On the right-hand side of Figure 4.8, the stan-
dard deviation of the difference between the radar backscatter (of the master acquisition)
generated from BAQ bypass and the ones from different BAQ rates Ao is depicted for
the same test areas. The highest deviation is again observed for the urban area of Mex-
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Figure 4.9: (Left) Radar backscatter map of the urban area of Mexico City. (Right) Cor-
responding coherence map. The area is characterized by a very high dynamic
range of backscatter due to the combined presence of man-made structures
as well as rugged topography.

ico City, which is characterized by a very high dynamic range of backscatter due to the
dominant presence of man-made structures, as well as of rugged topography, as shown
in Figure 4.9. Here, the amplitude and coherence maps prior to quantization are depicted
on the left-hand and right-hand side, respectively. The absolute value of the phase error
for the case of My, = 2 bits/sample is shown on the left-hand side of Figure 4.10, and the
phase error is plotted as function of the signal-to-noise ratio (SNR) for each pixel on the
right-hand side of the figure. The SNR is derived as in (2.43), and a detailed description
about the procedure for estimating the signal-to-noise ratio from TSX and TDX data, to-
gether with a quantitative assessment on the interferometric performance of TanDEM-X
is provided in [71]. The red line shows the standard deviation of the phase error distri-
butions as a function of the SNR. It can be noticed that higher phase errors are located
in areas of lower backscatter. This aspect is due to the fact that low backscatter areas
are more strongly affected by the nonlinear distortions introduced by the Cartesian I/Q
quantization. In particular, for low amplitude signals, only few discrete phase values are
obtainable at the output of the quantizer, whereas, for high amplitude signals, more phase
values are available, and therefore smaller errors, resulting from different quantization
settings, are observed in the interferometric phase [95]. In addition to that, low scatterer
suppression effects (as described in Section 3.3) also degrade the performance, whereas,
on the other hand, for very high SNRs the phase errors due to quantization asymptoti-
cally tend to zero, showing that an increase of the compression rate has, over such areas,
a negligible impact on the absolute performance degradation.

Furthermore, it is of interest to evaluate the impact of raw data quantization on the
overall end-to-end interferometric performance. The interferometric phase errors can
be estimated by means of the well-established theoretical model proposed in [80] for
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Figure 4.10: (Left) Phase error map A ¢ of the urban area of Mexico City, obtained as in
(4.3), for Ny, = 2 bits/sample. (Right) Phase error over signal-to-noise ratio
(SNR), derived from the map on the left-hand side. The red line shows the
standard deviation of the phase error distributions, as a function of the SNR.
Higher phase errors are located in areas of lower backscatter (and vice versa)
as a consequence of nonlinearities introduced by the quantization together
with the occurrence of low scatterer suppression effects.

the statistical determination of the interferometric quality descriptors. According to the
model, the interferometric phase error is estimated directly from the coherence 7y and
the independent number of looks N} employed within the multi-looking process. In par-
ticular, the coherence includes all decorrelation contributions, due to, e.g., limited SNR
or volume scattering effects, therefore the resulting phase error is referred to as A Q.
The probability density function of the phase difference between two interferometric
SAR channels is provided in (2.63) [80]. Hence, from each value of a coherence map
originated with N bits/sample, the corresponding standard deviation of the phase error
OA gy, 18 estimated according to [80], whereas the standard deviation of the phase er-
ror generated from the non-compressed (i.e., BAQ bypass) coherence is indicated with
OA @ropypass» SINCE 1t includes all decorrelation sources except the one due to quantization.
The performance degradation due to quantization is finally expressed by the phase error

ratio

Pag=——T0— (4.4)
GA PTot,bypass

and is depicted in Figure 4.11 for different compression rates. Each value represents the
ratio between the mean values (-) of the corresponding phase error maps,
(OAQry)s (OA@rypypass)- FOT the Antarctica test site (gray circles) a small phase error
degradation lower than 20% is observed. The same area shows a poor coherence of
about 0.55 (see Figure 4.6 (a)), which is mainly due to the occurrence of SNR and vol-
ume decorrelation effects. Therefore, the impact of quantization errors on the overall
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Figure 4.11: Phase error ratio p, o estimated according to (4.4) for different compression
rates and test sites. Each value represents the ratio between the mean values
of the corresponding phase error maps. The total equivalent number of looks
M for each test site is specified in the legend.

performance decreases. On the other hand, for the urban area of Mexico City a degra-
dation up to 70% is observed. The corresponding phase error ratio map for the case
of N, = 2 bits/sample (calculated according to (4.4)) is shown on the left-hand side of
Figure 4.12, and the phase error ratio over the coherence prior to quantization is depicted
on the right-hand side of Figure 4.12. The red line shows the mean value of the phase
error ratio distributions as a function of the coherence. As previously explained, over
low-coherence areas other decorrelation sources, such as limited SNR and/or volume
scattering, become dominant. There, phase errors due to quantization are indeed high,
but their relative impact on the overall performance is smaller (for this the left-hand side
of this figure should be compared also with Figure 4.9 and Figure 4.10).

Based on the present results, in the following the attention is focused on those system
and scene parameters which most affect the interferometric phase errors due to quanti-
zation. In addition to the BAQ compression rate N, which has been already discussed,
the degree of inhomogeneities in the backscatter distribution, quantified by the standard
deviation of the SAR backscatter 050, and the number of interferometric looks N, are
investigated. Finally, the combined effect of quantization rate and number of available
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Figure 4.12: (Left) Phase error ratio map p, ¢ of the urban area of Mexico City, obtained
as in (4.4), for N, = 2 bits/sample. (Right) Phase error ratio over coher-
ence prior to quantization, derived from the map on the left. The red line
shows the mean value of the phase error ratio distributions, as a function
of the coherence. Over low-backscatter/coherence areas, other phase error
sources (such as limited SNR and/or volume scattering) become dominant
and quantization errors have a smaller impact on the overall performance.

acquisitions N,cq on the resulting phase errors is assessed for a fixed data rate.

Backscatter Inhomogeneities: As it has been recalled many times in the previous
sections, quantization errors are significantly affected by the local SAR backscatter dis-
tribution, and it has been shown that homogeneous areas are in general less affected by
quantization errors, when compared to regions showing heterogeneities in the backscat-
ter response. Looking at local scale, an example of low scatterer suppression caused by
raw data quantization in presence of inhomogeneities in the backscatter distribution is
given in Figure 4.13. On the left-hand side, the radar backscatter (sigma-nought, ¢°) for
an area located in the Death Valley (USA) is depicted (test site 13 in Table 4.3). The
region extends by about 5 km in azimuth and range direction. The backscattered signal
shows a discontinuity along the range direction, due to a change of the land cover char-
acteristics from rocky to sparsely vegetated terrain. For the present analysis, the subset
marked in pink has been considered and the measured o* together with the correspond-
ing interferometric phase error, the latter calculated as in (4.3), have been evaluated. The
resulting phase error profiles (their absolute value has been considered, i.e., |[A@|) are
depicted on the right-hand side of Figure 4.13 for different compression rates. In corre-
spondence of a sudden decrease of about 6 dB in the backscatter response, a clear jump
in the interferometric phase error is visible and, as expected, a raw data quantization
with fewer bits results in a higher degradation in the phase error (i.e., the “height” of

81



4 Quantization Effects in TanDEM-X Data

T 25
Sigma Nought, o
Phase Error for 2 bits/sample

Phase Error for 4 bits/sample 20

'
w

s

=]

"

—_ —_ 5]

[an] m =

= = W

o =] [1}]

o [] 7]

— — ©

5 100 3

3 3 [T}

2 2 =

© © g

£ £ 5

£ =2 = =
E o 0 15 2
Q

3 E

Range 20 » R » o . 10
“0 100 200 300 400 500
Range [Pixels]

Figure 4.13: (Left) Radar backscatter map o of an area located in Death Valley (USA).
Over the area highlighted in pink, the o and interferometric phase error
profiles A ¢ are sketched for different quantization rates (right). A notable
degradation of the phase is observed in case of sudden variations in the
backscatter response, as a consequence of the low scatterer suppression ef-
fect.

the jump). For the case of 4 bits/sample (blue line in Figure 4.13), the phase error goes
from about 2° in the high backscatter area to 4° in the low backscatter one. Therefore,
an additional degradation of about 2° due to the low scatterer suppression is observed.
On the other hand, for the case of 2 bits/sample (red line in Figure 4.13), the phase error
goes from 5° in the high backscatter region to approximately 13° in the low backscatter
one: the low scatterer suppression effect for the case of 2 bits/sample causes therefore an
additional degradation of about 8°. In correspondence to the low backscatter area, it can
be noticed that the error profiles are very sensitive to the backscatter behavior and look
almost “complementary” to it, showing higher values exactly where the corresponding
oY becomes lower, and this effect is more visible, if fewer bits are employed for com-
pression. However, one has to consider that phase errors are of course already higher
in the low backscatter area and, therefore, the additional effect from quantization may
be less severe than it may appear from the results shown here. On the other hand, only
a slight dependence of the phase noise on backscatter is observed for all compression
rates within the slice showing higher backscatter (left side of the image). The strong
dependency on backscatter of the interferometric phase errors due to quantization needs
to be strictly taken into account for the performance budget definition, since errors in the
interferogram affect both the relative height accuracy (as discussed in the next section),
and the phase unwrapping quality, which represents a critical step for DEM generation.
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Figure 4.14: (a) Radar backscatter map ¢ of an agricultural region located in Iowa
(USA) and (b) corresponding histogram. The area is quite flat and homo-
geneous, and a 050 ~ 3.5 dB is observed (c) Phase error map A¢ and (d)
corresponding histogram for M, = 3 bits/sample, and a phase error standard
deviation G5y ~ 8.7° is obtained.

Indeed, for the global DEM produced by TanDEM-X, at least two interferometric ac-
quisitions are required in order to meet the mission specification [103] and to ensure, in
most cases, a sufficient phase unwrapping quality [110].

As further examples, the interferometric phase errors have been evaluated for areas
showing different degrees of inhomogeneity in the backscatter distribution. This can be
quantified by means of the standard deviation of the SAR backscatter 650. Figures 4.14,
4.15, and 4.16 show the two-dimensional maps and the corresponding histograms of ¢
and of the resulting interferometric phase error A @ obtained as in (4.3) for the areas over
Iowa, Death Valley, and Mexico City, respectively (corresponding to the test sites 13, 11,
and 8 in Table 4.3). All maps are derived for a BAQ rate N, = 3 bits/sample and N| = 9
looks. As expected, the phase error has zero mean in all cases, and its standard deviation
is positively correlated with the degree of inhomogeneities of 6. Indeed, 050 ranges
from about 3.5 dB for the homogeneous agricultural area in Iowa, to more than 6 dB for
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Figure 4.15: (a) Radar backscatter map 0¥ of an area located in the Death Valley (USA)
and (b) corresponding histogram. The region shows rugged terrain, and a
050 ~ 5.3 dB is observed. (c) Phase error map A¢@ and (d) corresponding
histogram for N, = 3 bits/sample, for which a phase error standard deviation
Op¢ ~ 13.8° is obtained.

the highly inhomogeneous urban area of Mexico City, which corresponds to 6, ranging
between 8.7° and 22.6°.

As it can be noticed, in all cases lower backscatter values (dark areas in
Figure 4.14-4.16 (a)) are associated to larger errors in the interferometric phase (green-
yellow pixels in Figure 4.14-4.16 (c)), and vice versa.

Number of Looks: In SAR interferometry, multi-looking is typically applied to mit-
igate the noise affecting the interferometric phase, as it has been introduced in Section
2.3.2. Multi-looking typically consists in averaging N pixels of the same region together.
Hence, a consistent degradation of the resolution by a factor M is observed in the multi-
looked image, together with a reduction of the standard deviation of the backscatter (de-
speckling) by a factor 1/N,. In this sense, multi-looking can be considered as a low-pass
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Figure 4.16: (a) Radar backscatter map o for the urban area of Mexico City (Mexico)
and (b) corresponding histogram. The region shows a high dynamic range of
backscatter, due to the presence of man-made structures (such as buildings
and roads), which results in a 650 ~ 6.3 dB. (c) Phase error map A¢ and
(d) corresponding histogram for N, = 3 bits/sample, for which an increased
phase error 0y &~ 22.6° is obtained.

filter applied to the SAR interferogram, which may greatly improve the interpretability
of the resulting InSAR products.

For TanDEM-X, the ground range and azimuth resolution is about 3 meters (in par-
ticular, the ground range resolution depends also on the incidence angle, as in (2.22)).
Hence, according to (2.67) the final DEM posting Ap, = Ap, = 12 m results in num-
ber of looks N typically in the range between 16 and 32 looks [30]. As an example,
Figure 4.17 shows the phase error for an area over the Amazon rainforest (corresponding
to the test site 3 in Table 4.3), which is characterized by a flat terrain and a homoge-
neous backscatter distribution. The BAQ compression rate has been fixed to N, = 2.5
bits/sample (obtained by setting 3-bit BAQ for the TerraSAR-X acquisition and 2-bit

85



4 Quantization Effects in TanDEM-X Data

Phase Error Ag
V] o 7,

Azimuth [Pixels]

'] 1000

2000 3000
Range [Pixels]

4000 5000

0 5 10 15 20 25 30
.
Ap[7]

(a)

Phase Error Ag

(=]

w
o
(=1

1000

1500

Azimuth [Pixels]

2000

1000 2000 3000

Range [Pixels]

4000 5000

(=]
w

10 20 25 3

(=]

15q
A 7]

(©)

Phase Error Ag

u
o
o

1000

1500

Azimuth [Pixels]

2000

2000
Range [Pixels]

3000 4000

1Sq
A [7]

(e)

500000 4

400000

Occurences

100000 4

800000 A

Occurences

200000 4

1200000 -

1000000 4

Occurences

400000 4

200000

04

300000 4

200000

600000 -

400000 4

Histogram, Ag
=== Mean = 0.03°
~- Stddev = 30.4°
|
I
I
I
I
i
I
I
I
M~
T T T T E T T
-60 -40 =20 0 . 20 40 60
Ag [7]
(b)
Histogram, Ag
! -=- Mean = -0.02°
NI =16 ~- Stddev = 11.62°

—60 -40 20 o
Ag[]
(d)

20 40 60

800000 4

600000 4

Histogram, Ag

=== Mean = -0.03°
~ - Stddev = 7.38°

=20

®

Ou
A [7]

20 a0 60

Figure 4.17: (a) Phase error map and (b) corresponding histogram for a homogeneous
area located in the Amazon rainforest and obtained from interferograms
with Ny = 1 look (i.e., no multi-looking has been applied), resulting in

O-A(p ~ 300.

(c) phase error map and (d) corresponding histogram for

N =16 looks, and 044 =~ 11.6°. (e) Phase error map and (f) correspond-
ing histogram for Ny = 32 looks, and the phase error deviation decreases to
about 7.4°. The quantization rate is fixed to N, = 2.5 bits/sample.
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BAQ for the TanDEM-X one), and phase error maps originating from interferograms
with M set to 1 (i.e., no multi-looking applied), 16, and 32 looks have been generated.
Figure 4.17 (a), (c), and (e) shows the phase error maps for different N; values, which
are indicated in the corresponding histograms on the right-hand side (Figure 4.17 (b),
(d), and (f), respectively). As expected, lower phase errors are obtained for larger val-
ues of N (the increase in performance matches quite well with the theoretical model
in [80]), which clearly plays a key role in defining the performance degradation due to
quantization in interferometric products.

Number of Acquisitions: As it has been pointed out, the limited onboard memory
and downlink capacity often represent a bottleneck which directly affect the acquisition
capabilities of SAR systems and may impact, e.g., the required mission duration to fulfill
the given requirements and product specification [108]. In this context, it is of interest to
investigate the joint effect on the final performance of the quantization rate N, and of the
number of acquisitions N,cq, Which can be commanded over the same area, given a fixed
total data rate Ry, such that

Riot = Nacq* Ny bits/sample. 4.5)

In case, e.g., a single acquisition is considered (i.e., Nacq = 1), the maximum data rate
Np = R0t can be then employed and low quantization errors are consequently obtained;
if, on the other hand, multiple data takes N,cq > 1 are commanded over a certain area, the
available data rate per acquisition is given by N, = Ryot/Nacg, resulting in larger quan-
tization errors affecting each acquisition. The obtained phase error after combination
A ONoeq Riot is derived from the maximume-likelihood estimator (MLE) as [30]

1
AQN,eq Rt = T (4.6)
acq 1

Yol ag7

being A ¢; the phase error estimated from the i-th acquisition. From TanDEM-X InSAR
data, the phase error has been estimated following the method presented in [82], which
is shortly recalled in the following: for each image pixel with indices {m,n} the standard
deviation of the single-point phase error 6 ¢[m,n] is estimated according to the model
as in [80] and expressed by (2.63), by using the corresponding coherence value §[m,n]
and the number of looks N, as shown in Figure 2.11 in Chapter 2. The error probability
function is then approximated as a Gaussian pdf with zero mean and standard devia-
tion G4 ¢[m,n]. Then, the normalized sum of the pdfs derived for all pixels represents
the phase error distribution for the entire SAR image, and its standard deviation Gx ¢
finally expresses the measure to be considered for performance assessment, i.e., for each
acquisition AQ; = O in (4.6).
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Figure 4.18: Phase error ratio obtained as in (4.7) for Ny =9 looks and a total data rate
Rt = 6 bits/sample. The resulting BAQ rate is derived from (4.5). Accord-
ing to it, the performance is calculated for the cases Nycq = 2 with Ny, =3
bits/sample and Nucq = 3 with N, = 2 bits/sample. The case of Nyeq =1
with N, = 6 bits/sample is used as reference.

For this analysis the ratio of the phase error resulting from the combination of Nycq > 1
acquisitions, AQn,., r. to the one resulting from Naeq = 1, A@g,,, has been considered

APNyeq R
PAMc e = " fgp 4.7)
for different values Ryy. Figure 4.18 shows the phase error ratio p Praeq R for the cases

Nacq =2 and N,cq = 3 for a total data rate Ry, = 6 bits/sample, for which BAQ rates
of 3 bits/sample and 2 bits/sample are employed, respectively. The performance is as-
sessed for Ny = 9 looks and for different test sites (as in Table 4.3). It can be seen
that a performance gain is in general obtained when combining more acquisitions (i.e.,
PAPN g Rt < 1). However, this is not the case for highly inhomogeneous test sites like the
urban area of Mexico City and Las Vegas (depicted in pink and blue, respectively), for
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Figure 4.19: Phase error ratio obtained as in (4.7) for Ny =9 looks and a total data rate
R = 8 bits/sample. The resulting BAQ rate is derived from (4.5). Accord-
ing to it, the performance is calculated for the cases Nycq = 2 with M, =4
bits/sample and N,cq = 3 using for two acquisitions Ny, = 3 bits/sample and
for one acquisition N, = 2 bits/sample. The case of Nycq =1 with N, =8
bits/sample is used as reference.

which the phase error for Nycq = 3 is higher than for N,cq = 2. This fact can be explained
by the very large performance degradation obtained when using lower BAQ rates over
such heterogeneous areas, which prevails on the performance improvement which results
from the combination of N,.q > 1 acquisitions. Nevertheless, in real mission scenarios,
the number of data takes which can be commanded over the same area within a certain
time interval, which is referred to as ““ system duty cycle”, is typically rather limited.
As an example, TanDEM-X can acquire for about 180 seconds within each 95-minute
orbit, hence the number of acquisitions N,cq 1s typically kept as small as possible. Figure
4.19 and 4.20 show the same plot for a total data rate Rio; = 8 and Ry = 12 bits/sample,
which show similar results. In particular, for Figure 4.20 the performance is calculated
taking as reference the case of Nycq = 2 and NV, = 6 bits/sample. It can be concluded that
for most natural land cover types an increase of the number of acquisitions, for a con-
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Figure 4.20: Phase error ratio obtained as in (4.7) for Nj = 9 looks and a total data rate
Riot = 12 bits/sample. The resulting BAQ rate is derived from (4.5). Ac-
cording to it, the performance is calculated for the cases Nycq =3 with
Ny = 4 bits/sample, Naeq =4 with M, = 3 bits/sample, and Nyeq = 6 with
Ny, = 2 bits/sample. The case of Nyeq = 2 with N, = 6 bits/sample is used
as reference.

stant total data rate, improves the overall quantization performance, whereas for areas
characterized by large dynamic range in backscatter the use of low BAQ rates should be
avoided, as the resulting performance may be dramatically degraded.

If, on the other hand, the number of acquisitions is increased by keeping the same bit
rate Ny for each acquisition (hence without imposing the constraint in (4.5)), according to
the maximum likelihood estimation (MLE) the phase error after combination is reduced
by the square root of number of acquisitions as [30]

Ay,
A(PNac oY = 2 )
e \/Nacq

being A @y, the phase error resulting from a single acquisition which has been quantized
using Ny bits/sample as defined in (4.3).

(4.8)
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Figure 4.21: Workflow for relative height error analysis from repeat-pass DEMs.

4.3.4 Relative Height Error

Once the interferometric phase error has been estimated, the relative height accuracy
of a DEM A#h can be understood as the uncertainty of a height estimation due to noise-
like disturbance contributions. Its expression is provided in (2.68) and is recalled in the
following
Ao
Er e
In particular, the relative height error is proportional to the height of ambiguity Ay,
which represents the height difference corresponding to a complete 27 cycle of the in-
terferometric phase and its expression is provided in (2.56). The estimation of the point-
to-point relative height error requires the computation of the probability density function
obtained by evaluating the difference between two random variables, each of them de-
scribing the fluctuation of the height estimate within one digital elevation model (DEM)
[30]. From real data, the point-to-point relative height accuracy can be estimated by
evaluating the difference between repeated DEM acquisitions with identical imaging ge-
ometry and configuration parameters, each of them affected by independent noise com-
ponents [82], as shown in Figure 4.21. A high-pass filtering is then performed to remove
slowly-varying error sources, such as baseline or attitude uncertainties, which will be cal-
ibrated out during the final DEM generation process [83]. Due to a baseline estimation
error in the order of millimeters, the resulting DEM horizontal localization accuracy, for
typical TanDEM-X baselines and incidence angles, is in the order of a few meters [115].
Together with the dominant noise-like contribution, additional error sources may be due

Ah = hypmp - 4.9
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Table 4.4: Test sites for relative height error analysis. For each test site, repeated bistatic
TanDEM-X acquisitions have been commanded with BAQ bypass and with

identical imaging geometry.

Test Site 1% Pass 2"d Pags hamb
Salar de Uyuni (Bolivia) | 2010-11-16 | 2012-06-10 | 36 m
Mexico City 2012-02-07 | 2012-02-29 | 67 m
Greenland 2012-01-15 | 2012-02-06 | 81 m
Amazon Forest (Brazil) | 2012-01-17 | 2012-02-19 | 84 m
Death Valley (USA) 2010-11-24 | 2010-12-05 | 150 m

to phase unwrapping errors, as well as temporal changes in the scene occurring between
the two bistatic data takes. For the present analysis, we have considered repeated bistatic
TanDEM-X acquisitions commanded with BAQ bypass. The 90% point-to-point relative
height error, as required by TanDEM-X mission specifications [30], [108], has been eval-
uated for the test areas listed in Table 4.4 (corresponding to the sites 1, 3, 5, 8, and 11 of
Table 4.3). It is computed as the 90" percentile of the absolute value of the height error
matrix and is evaluated according to the workflow in Figure 4.21. The relative height er-
ror, Ahggg,, resulting from different compression rates is shown in Figure 4.22 (a). Each
value represents the 90% point-to-point relative height error obtained from two repeat-
pass DEM acquisitions, and for each height error estimation both DEMs result from data
takes that all use the same compression rates. According to (4.9) the relative height ac-
curacy is directly proportional to the height of ambiguity h,,,. Indeed, looking again
at Figure 4.22 (a), it can be noticed that the highest height error values are obtained for
the test area of Death Valley (from 6 m to 8 m), acquired with a height of ambiguity of
about 150 m. On the other hand, the height errors estimated over the Uyuni salt lake are
about four times smaller (approximately 2 m), which is consistent with the ratio of the
heights of ambiguity of the corresponding DEM acquisitions (150 m/36 m). Therefore,
in order to consistently compare the performance between the different test areas, a nor-
malization with respect to the height of ambiguity characterizing each acquisition pair
is needed. The normalized relative height error degradation can be defined, for a single
data take, as the difference between the 90% point-to-point height error, derived from
non-compressed DEMs, and the ones originated from different rate values N as

1

Ah90% oy = h_b(Ah90%,bypass — Ahoog. N, )-
am:

The resulting normalized height error degradation, expressed in percent of Ay, is de-
picted in Figure 4.22 (b) for different compression rates. It is worth pointing out once

(4.10)
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Figure 4.22: (a) 90% point-to-point (p-to-p) relative height error as a function of the
compression rate for the repeated acquisitions listed in Table 4.4. (b) Nor-
malized degradation of the relative height error with respect to the bypass
case, expressed as a fraction of the height of ambiguity, derived as in (4.10).
The horizontal lines represent the corresponding height error degradation
obtained from the theoretical model in [80].

more that, for a given test site, the DEMs used for comparison have been created from
the same original raw data, i.e., they differ only in the quantization rate employed for
compression. Therefore, the observed height accuracy degradation represents the con-
tribution to the total relative height error in the DEM which is produced uniquely by
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the quantization process. As expected, the performance degrades more severely over the
urban area of Mexico City, for which a degradation up to 4% of hyyp 1s observed. If
considering typical heights of ambiguity employed for TanDEM-X nominal acquisitions
(between 30 to 50 m), the use of 2 bits/sample for both coverages would in this case
have resulted in an increase between 1.2 m and 2 m in terms of relative height accuracy,
ultimately leading to a probable violation of the DEM specifications. As previously men-
tioned, for most of the global DEM acquisitions of TanDEM-X, BAQ 8:3 (mainly) and
BAQ 8:4 are employed, which cause a mean additional error of about 30 cm with respect
to the uncompressed data (and below 60 cm for the worst case).

The present results have been also validated with the well-established theoretical model
proposed in [80], which has been recalled in Section 2.4 and Section 4.3.3. According
to the model, the interferometric phase error A can be directly estimated from the in-
terferometric coherence ¥ and the independent number of looks N} employed within the
multi-looking process as in (2.63) [80]. In particular, for each pixel of a processed in-
terferogram, the 90% relative height error, Ahggq, is estimated, and the mean value per
scene is then considered. The relative height error degradation derived from the model
in [80] is given by the horizontal bars in Figure 4.22 (b). A good agreement between
the two approaches can be seen for the sites of “Amazon Rain Forest”, “Greenland”, and
“Uyuni”. These areas are characterized by flat and regular height profiles, which are free
of phase unwrapping errors. On the other hand, for the “Death Valley” and “Mexico
City” test sites the theoretical model underestimates the height error degradation derived
from the data. As previously mentioned, both test areas are characterized by an inhomo-
geneous backscatter distribution, together with rugged topography, where suppression
of low scatterers causes an additional performance degradation. The combination of the
described effects, together with the possible increase of phase unwrapping errors (which
may be more severe in the case that fewer bits are employed for quantization), leads to
incorrect height estimates in the resulting DEM. Such errors, as well as possible tempo-
ral changes in the scene occurring between the two repeated acquisitions, are not taken
into account in the theoretical model used for comparison, which explains the observed
discrepancy.

4.3.5 Resource Allocation for the TanDEM-X DEM A cquisition

For nominal mission operation, mainly BAQ 8:3 for TerraSAR-X and TanDEM-X has
been employed for the acquisition of two global DEMs in bistatic configuration. Indeed,
both satellites have a relatively limited downlink capacity, which is due to an average
contact time with the ground station network of about 10 min/orbit at a total net data rate
of about 260 Mbits/s, as indicated in Table 4.1 (the downlink time has to be shared among
the two spacecraft, since the close satellite formation does not permit the simultaneous
downlink of the data). If nominal acquisition parameters are considered, this implies an
allowed time for bistatic data takes of about 180 s per orbit, for the case of a quantization
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with 3 bits/sample [30]. Based on the analyses presented in this chapter, the strategy for
optimizing the resource allocation for the second global acquisition of TanDEM-X was
consequently adapted. Areas showing very good performance as well as homogeneous
backscatter characteristics have been acquired with reduced BAQ rates. These have been
identified by considering the coefficient of variation of the interferometric coherence.
The coefficient of variation cy is defined as the ratio of the standard deviation 6y and the
mean Uy of the coherence y

Oy

Ly
It is calculated for each processed scene, which extends for an azimuth length of about
50 km, and a range width of about 30 km, and is shown in Figure 4.23 for the first
global DEM coverage of TanDEM-X (acquired between the end of 2010 and the begin-
ning of 2012). Usually, high variations in amplitude are associated with high variation
in the coherence distribution. On the other hand, for high coherence, smaller variation
has been typically observed (cy < 0.2) for the most part of natural land areas. The main
regions, which have been selected for resource optimization, are highlighted in the black
circles. Here, high coherence (usually bigger than 0.8), homogeneous backscatter dis-
tribution, as well as good unwrapping quality is observed. In particular, quantization
rates of 2 bits/sample and 2.5 bits/sample (the latter obtained using 3 bits/sample on one
satellite and 2 bits/sample on the other satellite), have been employed over such selected
areas. The mean BAQ rate was then reduced from 3.09 bits/sample for the first global
DEM acquisition to 2.95 bits/sample for the second one, and a consequent reduction in
terms of mean data rate of about 5% was gained, without impacting on the overall mis-
sion performance (for many of these areas a single acquisition was already sufficient to
fulfill the relative height error mission requirements [71], [116]). The resulting freed-up
orbit usage (about 125 seconds more per day) was exploited for re-acquisition with opti-
mized imaging geometry of areas affected by poor performance [117], [118], [119], such
as forest areas and difficult terrain (depicted in yellow and red in Figure 4.23) to improve
their final DEM quality [109], [120].

@.11)

Cy

4.4 Performance-Optimized Quantization for InSAR Applications

The influence of several parameters on phase errors due to quantization in TanDEM-X
interferometric data has been assessed in Section 4.3.3. Further, these have been inves-
tigated for all the available test sites characterized by different terrain and land cover
types and listed in Table 4.3. To this purpose, each complex SAR image matrix has been
divided into blocks, each one extending by the chirp length Lcp;,p and the synthetic aper-
ture L in range and azimuth, respectively. As it has been explained in Section 3.3, the
responses of the scatterers under illumination overlap in the raw data domain within an
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Figure 4.23: Variation coefficient ¢, of the interferometric coherence for the first global
DEM acquisition. For each scene (50 km x 30 km), ¢y is calculated as the
ratio of the standard deviation and the mean coherence, according to (4.11).
The main regions considered for resource optimization for the second global
acquisition are outlined with black circles. Here, homogeneous backscatter
distribution and very good performance (y > 0.8) is usually observed. On
the other hand, yellow and red areas require additional acquisitions with
optimized imaging geometry to further improve the overall DEM perfor-
mance.

arca
ASAR =LsX Lchirp- (4.12)

In this way, each block has been independently analyzed from the others, in terms of
local statistics and resulting performance.

Figure 4.24 shows the standard deviation of the single-point phase error 6, as func-
tion of the standard deviation of the SAR backscatter o0 derived from single-look inter-
ferograms (i.e., Ny = 1). Each dot represents the value obtained from a single SAR image
block of area Agar as defined in (4.12). The colors represent different quantization rates
and the legend indicates the number of bits used for the master and the slave acquisition
[No,m>Np,s), respectively (the combination of, e.g., Np v = 3 and Ny, s = 2 results in an
equivalent BAQ rate of 2.5 bits/sample). Figures 4.25, 4.26, and 4.27 show the same plot
for N = 9 looks, N} = 16 looks, and N} = 25 looks, respectively. It is worth pointing out
that for this analysis the multi-looking has been applied for the calculation of the phase
error only, and not for the calculation of 050, which has been always derived from single-
look SAR images. From the figures, it can be verified that 650 and 0, are positively
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Figure 4.24: Single-point standard deviation of the interferometric phase error due to
quantization G, ¢ as a function of the standard deviation of the backscatter
coefficient 650 for Ny = 1 look and different BAQ rates, depicted with dif-
ferent colors. The BAQ rates in the legend indicate the number of bits used
for the master and the slave acquisition [Ny, M, Ny 5], respectively.

correlated and, as expected, larger phase errors are obtained for heterogeneous areas. As
an example, if one considers Figure 4.26, values of 650 smaller than 5.5 dB are typically
obtained for natural scenes, such as forests, snow/ice areas, agricultural, and bare soil
regions, both with flat and rugged topography characteristics. For these, if considering
the 2-bit BAQ case (blue dots), 04 ¢ varies in the range between 8° and 20°. On the other
hand, 60 values larger than 5.5 dB are typically observed over urban areas, where quan-
tization errors further increase leading to still larger interferometric phase errors (e.g.,
O¢ is typically in the range from 10° up to 30° for N} = 16 looks).

The present results can be exploited to optimize the resource allocation (i.e., the com-
manded BAQ rate) by controlling, at the same time, the resulting phase error degradation.
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Figure 4.25: Single-point standard deviation of the interferometric phase error due to
quantization G, as a function of the standard deviation of the backscatter
coefficient 040 for Ny = 9 looks and different quantization rates, depicted
with different colors. The BAQ rates in the legend indicate the number of
bits used for the master and the slave acquisition [Ny m, Ny s], respectively.

For this, a novel method for SAR raw data compression, named performance-optimized
block-adaptive quantization (PO-BAQ), is introduced, according to which the bit rate
Np req to be employed for SAR raw data compression is determined as a function of the
considered parameters as

Nb7req :f(Nl,Nacq7A(preq’GGO) . (4.13)

In the above equation, the number of looks M is defined by the system resolution and by
the target posting as in (2.67), the number of available acquisitions N,q is typically deter-
mined at mission planning, and 4o is estimated from the local backscatter information,
which must be therefore provided as external input before data take commanding. A @req
indicates the required phase error degradation (i.e., the maximum allowed phase error
due to quantization determined from the performance budget), and can be expressed in
terms of, e.g., the standard deviation or the 90th percentile of the single-point or point-
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Figure 4.26: Single-point standard deviation of the interferometric phase error due to
quantization G ¢ as a function of the standard deviation of the backscatter
coefficient 050 for Nj = 16 looks and different BAQ rates, depicted with
different colors. The BAQ rates in the legend indicate the number of bits
used for the master and the slave acquisition [Ny, v, Ny 5|, respectively.

to-point interferometric phase errors. The function f(-) in (4.13) is described by the
information shown, e.g., in Figures 4.24-4.27. These can be regarded as a sort of look-
up-tables (LUTSs) providing a statistical characterization of the performance degradation,
estimated from real data, and can be in principle generated for any value of M.

According to the proposed method, the procedure to estimate the bit rate to quantize
the raw data associated to a given SAR image block is determined as follows:

Step 1: Once A @req, Vi, and N,cq are fixed, the standard deviation of the SAR backscat-
ter block o0 is calculated. In the following, without loss of generality the performance
requirement is expressed in terms of the single-point standard deviation of the phase
erTor, i.., AQreq = Opg req. @S depicted in Figures 4.24-4.27. In addition, Nycq =1 is
assumed, whereas the performance improvement obtained when combining a stack of
acquisitions is discussed in Section 4.3.3.
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Figure 4.27: Single-point standard deviation of the interferometric phase error due to
quantization G, as a function of the standard deviation of the backscatter
coefficient 650 for Nj = 25 looks and different BAQ rates, depicted with
different colors. The BAQ rates in the legend indicate the number of bits
used for the master and the slave acquisition [Ny, v, Ny 5], respectively.

Step 2: The phase error values 0 associated with the estimated 050 are fetched
from the corresponding LUT, which is determined by the actual number of looks NV, for
all the available bit rate combinations [Nb,M,Nb,s]- In order to get a sufficient number
of samples, the values of 050 must be considered within a reasonable interval of, e.g.,
40.25 dB. Figure 4.28 shows the phase error values (depicted in blue) as function of
the bit rate N, obtained for an exemplary image block with 650 between 3.25 dB and
3.75 dB and for Ny = 9 looks (i.e., the values are taken from Figure 4.25). The bit rate
values used on the abscissa of Figure 4.28 are simply the average of the corresponding
master and slave rates, i.e., N, = (Nb,M +Nb75) /2.

Step 3: For each available M, the phase error Oag is estimated as, e.g., the gQth
percentile of the corresponding values distribution (blue dots in Figure 4.28), which is
indicated by the red dots (instead of the gQth percentile, the maximum value can be
alternatively used; however, this choice could result in significantly larger phase error
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Figure 4.28: Estimation of the required number of bits N, oq according to the proposed
PO-BAQ for a SAR backscatter block with o0 between 3.25 dB and 3.75
dB for Ny = 9 looks.

values due to the presence of possible outliers in the corresponding LUT estimation
interval). The resulting values are then interpolated, as indicated by the dark green line
in Figure 4.28.

Step 4: The number of bits NV, ;eq required for quantizing the considered SAR raw data
block is finally derived as

Noreq=  argmax AQ(Nj,050) for AQ <A@, (4.14)
No€[Np min»No,max]
being Ny min and Ny max the minimum and maximum allowed bit rates. As an example,
in Figure 4.28 A Qreq = Op g req = 7.5° is set, which is sketched by the dashed horizontal
line, Npmin = 2 bits/sample, Ny max = 4 bits/sample, and Ny req ~ 2.75 bits/sample is
finally determined as the abscissa corresponding to the intercept between the green line
(expected degradation) and the black one (maximum allowed degradation).

Step S: The procedure described above (Steps 1 to 4) is repeated for each SAR image
block of the area to be acquired. In particular, for this purpose a certain step length,

101



4 Quantization Effects in TanDEM-X Data

corresponding to the distance dsep used for sliding the SAR image block at each iter-
ation, has to be defined. Once all iterations are completed, the output of the PO-BAQ
is a two dimensional bit rate map (BRM), which contains the quantization rates to be
employed for SAR raw data compression. As it is shown in Figure 4.28, the resulting
rates are typically non-integer numbers. These can be implemented by including addi-
tional hardware (e.g., a Huffman coder) prior to the quantizer block, as proposed in [96],
[97]. Alternatively, although a standard BAQ scheme implements integer quantization
rates only, non-integer compression rates can be effectively synthesized by toggling the
integer BAQ rates along azimuth and/or range according to predefined bit rate sequences,
as it is proposed in [121] and discussed in the next chapter.

As an example, Figure 4.29 shows the SAR backscatter map o acquired by
TanDEM-X over the area of Berlin (Germany). The region includes urban settlements,
characterized by a large dynamic range in 6°, surrounded by farmland, rivers, and small
lakes, showing a more homogeneous backscatter distribution. Figure 4.30 depicts two bit
rate maps generated according to the proposed PO-BAQ for the same area of Figure 4.29
and for N| = 9 looks. In particular, Figure 4.30 (a) shows the BRM for 0 ¢ req = 5° while
Figure 4.30 (b) for 0 ¢ req = 10°. For this example, a step length dgep = 500 m in az-
imuth and range was set, which is comparable to the range extension of one BAQ block
for TanDEM-X (128 samples) and corresponds to the pixel size for the BRMs shown
in Figure 4.30. As expected, larger values of M, req are obtained in the neighborhood of
the urban region with respect to the surrounding agricultural area, for which smaller bit
rates are sufficient. In Figure 4.30 (2) (Cag,req = 5°), Np req ranges typically from about
4 bits/sample to 6 bits/sample. If the specification in terms of performance degradation
is relaxed (Figure 4.30 (b), O ¢ req = 10°), the required bit rates significantly decrease,
ranging from about 2 bits/sample over the homogeneous regions up to 4.5 bits/sample
over the city area.

The proposed method has been tested on other test sites, showing different backscatter
characteristics and for different number of looks and allowed degradation G ¢ req, and
consistent bit rate maps have been obtained. The next step is then to validate the PO-
BAQ on real data, to verify that the degradation resulting from the raw data quantization
according to the derived BRM matches with the expected one. At the moment this has
not be done yet and will be investigated in following research studies. Moreover, since
the responses of the scatterers under illumination overlap in the raw data domain within
a certain area Agar defined in (4.12) (for this, the responses are opportunely weighted
by the azimuth and elevation antenna pattern), the use of a given bit rate N, applied to
a certain subset of the raw data, affects the performance, in the focused image, also in
areas located in close vicinity, as it is sketched by the red arrows in Figure 4.31. In turn,
the performance of the central block is impacted by the bit rates used for quantizing the
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Figure 4.29: SAR backscatter map 6 of the area of Berlin (Germany) acquired by
TanDEM-X on June 20, 2011. The region is characterized by the presence
of urban settlements surrounded by farmland, rivers, and small lakes.

raw data located within the same area Agar, an effect which is ideally represented by
the blue arrows in Figure 4.31 (for TanDEM-X, the synthetic aperture Lg and the chirp
length Lepirp are in the order of a few kilometers). The described mixing effect of the
target responses in the raw data results in a sort of low-pass filtering in the resulting
bit rate map, for which smooth transitions between different values of N, are typically
observed. In the figure, the green segment dp indicates the step length, assumed for
simplicity the same in azimuth and range, used for sliding the SAR image block at each
PO-BAQ iteration, which also defines the pixel size of the resulting bit rate map. All
that considered, in the context of the proposed PO-BAQ it is of relevance to investigate
the degree of granularity (i.e., the effective “resolution” of the bit rate maps shown in
Figure 4.30) that can be achieved by the space-variant bit allocation when dealing with
SAR data, an aspect which will be further investigated as well.
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Figure 4.30: Bit rate maps generated according to the proposed PO-BAQ (Npreq In
(4.14)) for the area of Berlin depicted in Figure 4.29, N; = 9 looks, and
(@) Opg req = 5° and (b) Opgp req = 10°.

Although a number of aspects still deserve to be carefully taken into account, the main
advantage of the proposed PO-BAQ with respect to the existing quantization methods is
that it aims at optimizing the performance of the processed SAR and InSAR data (and
not of the raw data, as it is suggested, e.g., in [96]). This allows for achieving a targeted
bit rate allocation depending on a predefined performance degradation, which can be
therefore adapted to the specific SAR application and to the corresponding performance
requirements. Moreover, since the bit rate definition is performed on ground before the
data take commanding, the total required volume of data is known in advance. On the
other hand, the bit rate map needs to be uplinked to the sensor, and the resulting bit
rate selection must be properly implemented on board, which may require additional
computational and processing effort.
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Figure 4.31: The responses of the scatterers under illumination overlap in the raw data
domain within an area Agar as defined in (4.12), which for typical space-
borne SAR extends of several tens of square kilometers. Hence, the use of
a given bit rate for a certain subset of raw data (e.g., My, in the central block)
affects the performance, in the focused data, in the areas located in close
vicinity, an effect which is ideally sketched by the red arrows. In turn, the
degradation observed in the area corresponding to the red image block is
affected by the bit rates used for quantizing the raw data located within the
area Agar (for this, the weighting carried out by the antenna pattern in az-
imuth and elevation must be taken into account as well). The closest blocks
are indicated by M, ;, for i € [1,8] and the effect is represented by the blue
arrows. Finally, the green segment dgep, indicates the step length, assumed
for simplicity the same in azimuth and range, which defines the pixel size
of the resulting bit rate map.

4.5 Chapter Summary

In this chapter the effects of raw data quantization on TanDEM-X bistatic data have
been investigated. Experimental data sets were acquired with 8 bits/sample (i.e., by-
passing BAQ compression). On ground, all available quantization rates have been syn-
thetically applied to the SAR raw data providing multiple data sets per satellite stream.
Reprocessing with the interferometric chain was performed, even combining mixed data
rates: as an example, 2 bits/sample from one satellite data and 3 bits/sample from the
other satellite data result in an equivalent compression rate of 2.5 bits/sample. By this,
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a dedicated comparison to the original data was possible, isolating the quantization ef-
fects from other error sources. Key parameters in determining SAR and interferomet-
ric performance have been evaluated over test areas showing different land cover types
and topographic characteristics. The radiometric sensitivity of a radar system (the noise
equivalent sigma zero, NESZ) is severely affected by quantization, and a degradation
of up to 4 to 6 dB when using 2-bit BAQ with respect to the bypass case has been ob-
tained. Quantization effects on the interferometric coherence are strongly dependent
on the backscatter distribution of the imaged scene (low scatterer suppression), and the
observed decorrelation for, e.g., the 2-bit case varies between 8% for flat and homo-
geneous areas, and 20% for irregular regions, such as urban areas. Consistent results
have been observed for the interferometric phase errors, and for this several scene and
system parameters which critically affect quantization errors have been investigated. In
addition, of course, to the quantization rate NV, these are identified with the degree of
inhomogeneities in the backscatter response, described by the standard deviation of the
SAR backscatter 050, the number of interferometric acquisitions N,cq, and the number of
looks MNVi. Further, quantization effects on the relative height accuracy of the DEM have
been assessed, and it has been verified that for typical TanDEM-X acquisition configura-
tions, the employment of 2-bit BAQ for both coverages could have resulted in increased
height errors ranging from 0.5 m to 1.8 m, leading in many areas to a violation of the
DEM specifications. Therefore, for the first global DEM acquisition of TanDEM-X,
mainly 3 bits/sample on both satellites are employed, which grant an acceptable perfor-
mance degradation and, at the same time, a sufficient compression ratio in consideration
of the nominal mission duration. Based on the presented analyses, an optimization of
the resource allocation strategy for the second global DEM acquisition of TanDEM-X
has been carried out. Acquisitions over areas showing very good performance as well as
homogeneous backscatter distribution have been commanded with reduced quantization
rates of 2 bits/sample and 2.5 bits/sample. On the other hand, the resulting free onboard
resources could be exploited for reacquisition of areas affected by poor performance to
further improve the global DEM performance.

Looking at present and next-generation spaceborne SAR missions, an increasing vol-
ume of onboard data is going to be demanded, which implies, from the mission design
point of view, more stringent requirements in terms of onboard memory and downlink
capacity. In this scenario, SAR raw data quantization represents an aspect of primary im-
portance, since the data rate employed for raw data digitization defines the amount of data
to be stored and transmitted to the ground, but also, at the same time, it directly affects
the performance of the SAR products. Exploiting the state-of-the-art quantization algo-
rithms for SAR systems, a novel method, named performance-optimized block-adaptive
quantization (PO-BAQ), has been introduced, which aims at optimizing the resource al-
location and, at the same time, the resulting interferometric performance, by exploiting
a priori knowledge about the SAR backscatter information. This allows for achieving a
targeted bit rate allocation depending on a predefined performance degradation, which
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can be therefore adapted to the specific SAR application and to the corresponding per-
formance requirements. The results presented in this chapter can be therefore combined
with the precise, high-resolution knowledge of the Earth’s topography and backscatter
characteristics produced by the TanDEM-X global data set [122], [123], [124], in or-
der to provide a helpful tool for performance budget definition and optimization of the
resource allocation strategies for future SAR missions.
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In this chapter, a novel azimuth-switched quantization (ASQ) technique is introduced,
which allows for the implementation of non-integer quantization rates in a new, efficient
way. This grants higher flexibility in terms of performance design and resource alloca-
tion, without increasing the complexity and the computational load of the quantization
scheme. The proposed method has been patented [125] and verified on interferometric
SAR data acquired by the TanDEM-X mission, as discussed in [121].

5.1 Introduction

One of the most widely recognized methods for raw data digitization is the block-
adaptive quantization (BAQ). As it has been recalled in Section 3.2, BAQ is a lossy data
reduction technique (i.e., the data reconstructed after decompression are a distorted copy
of the original input samples) which performs a space-varying estimation of the raw data
statistics, to be calculated for each block (with fixed size) of input data. This informa-
tion is employed to set the quantization decision levels that best match with the observed
statistics [38], [39]. The compression rates M, are typically fixed to integer numbers of
bits and, clearly, the fewer the bits employed for data compression, the higher the result-
ing quantization noise power, which directly affects the SAR image quality. Despite its
simplicity, BAQ has shown itself as an efficient solution for spaceborne SAR systems,
where a huge amount of onboard data needs to be stored and then transmitted to the
ground. In the last years, non-integer quantization rates have been implemented to al-
low for a finer performance and resource optimization, by complementing the quantizer
(commonly based on a BAQ scheme) with additional software/hardware blocks (as, e.g.,
an entropy or Huffman coder) at the cost of increasing the overall system complexity
[97], [96], [98]. Moreover, for such quantization schemes part of the optimization pro-
cess is performed on board and, therefore, the amount of data required for an acquisition
cannot be exactly calculated during mission planning.

In this chapter, a novel azimuth-switched quantization (ASQ) technique is introduced,
which provides the capability of synthesizing fractional quantization rates without im-
pacting the complexity and computational load of the quantization scheme. The impact
on SAR and interferometric product quality is evaluated, and it is shown that perfor-
mance and resources can be dynamically scaled with a very fine discretization. For
this, investigations have been carried out in the frame of the TanDEM-X mission. As
it has been introduced in Chapter 4, TanDEM-X (TerraSAR-X add-on for Digital El-
evation Measurement) is the first operational spaceborne bistatic SAR mission and is
served by the twin satellites TerraSAR-X and TanDEM-X, launched in 2007 and 2010,
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respectively. The primary objective of TanDEM-X is to generate a worldwide, consis-
tent, and highly accurate DEM in bistatic configuration [30], [104]. On the TerraSAR-X
and TanDEM-x satellites the received backscattered signal is first digitized by an 8-bit
ADC and then further compressed by the block-adaptive quantizer. Available BAQ com-
pression rates are 2, 3, 4, and 6 bits/sample. Full resolution 8-bit data can be obtained
as well by bypassing the BAQ. [27], [93]. By taking into account the limited downlink
capacity and onboard memory of TanDEM-X, mainly 3 bits/sample have been selected
for operational DEM acquisitions. Furthermore, 2.5 bits/sample (obtained by selecting
3-bit BAQ on one satellite and 2 bits-BAQ on the other one) and 2 bits/sample have been
employed over highly coherent (i.e., flat and non-vegetated) areas. This allowed for the
completion of two global acquisitions and several additional coverages on selected re-
gions [117] within the nominal mission duration [30], [94]. However, the main drawback
of employing constant and integer compression rates is the coarse discretization in terms
of achievable data rate, and hence of the corresponding image performance, especially
for long data acquisitions. The proposed ASQ can overcome such limitations, allowing
for a finer optimization of memory resources and performance. Moreover, the amount of
data to be stored and transmitted to the ground can be precisely calculated during mission
planning.

The chapter is organized as follows. The principle of azimuth-switched quantization
(ASQ) is introduced in the next section and a performance analysis on experimental
TanDEM-X data is presented in Section 5.3. The impact of ASQ on the noise equivalent
sigma zero (NESZ), azimuth ambiguities, and interferometric coherence is investigated
in detail, verifying that ASQ can successfully be employed for state-of-the-art SAR sys-
tems. The chapter ends in Section 5.4, where the conclusions and a short summary are
provided.

5.2 The Azimuth-Switched Quantization (ASQ) Principle

The basic principle of azimuth-switched quantization is explained as follows. During
the data collection by the SAR system, integer compression rates are toggled along the
azimuth direction, from echo to echo (within a range line the quantization rate is kept
constant). After performing the azimuth focusing over one synthetic aperture, an equiv-
alent non-integer quantization rate is synthesized, which results from an average of the
different rates used. This way, highly flexible adaptation of SAR performance and calcu-
lation of memory resources are possible, by just exploiting the peculiar SAR acquisition
concept. Indeed, only a simple quantizer with integer rates is required (the capability of
changing acquisition parameters during a SAR data take is a feature normally provided
by state-of-the-art technology). Figure 5.1 depicts the ASQ workflow for a target output
bit rate of 2.5 bits/sample. During the acquisition, the quantization setting is switched
between 2 and 3 bits/sample at every range line (left part of the figure). The image is
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Figure 5.1: Workflow for the implementation of the azimuth-switched quantization
(ASQ) on a SAR system. Integer rates are switched along the azimuth di-
rection during the data take. After SAR processing, the focused image shows
performance equivalent to as if the raw data were acquired with an “average”
of the original sequence. In the example, a fractional quantization rate of 2.5
bits/sample is obtained as a result of switching between 2 bits/sample and 3
bits/sample, range line by range line.

then processed (central part), showing performance equivalent to the average of the com-
pression rates used along azimuth. It is worth recalling that such a fractional rate is not
the one of the focused image, for which an always constant bit-rate is used (e.g., 8 or
16 bits/pixel). Instead, it refers to an equivalent compression rate employed for the raw
data, i.e., the processed image shows a performance as if the raw data were acquired with
the rate resulting from the average of the original sequence.

On the TerraSAR-X and TanDEM-X satellites the BAQ rate can be set for each range
line, to support different compression rates for, e.g., dual polarization data. Anyhow,
one could think to further extend the presented technique, by adapting the quantization
settings for each block within one echo window (i.e., range line). This capability allows
for achieving an even finer granularity in terms of performance and resource allocation,
such as the FDBAQ technique operated on the Sentinel-1 mission [96], or for the im-
plementation of the Performance Optimized (PO-BAQ) method discussed in Chapter 4.
As the compression rate can be theoretically changed from PRI to PRI, the maximum
number of range lines (nyg, max) to be taken into account for determining the effective
average quantization rate are those lying inside one synthetic aperture Lg (2.2):

lint Ls 1

_ fm _Ls 1 51
irg, max = ppT = 1 PRI’ SRY

where vg is the satellite velocity and #;, is the integration time defined in (2.24). For
the TanDEM-X mission (and typical space-borne configurations), vs is of about 7 km/s,
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the synthetic aperture Ly is of about 3-4 km, and the pulse repetition frequency (PRF) is
bigger than 2 kHz (i.e., PRI < 0.5 ms). The resulting 7y max is around 1000: in practice,
with the presented technique, bit rates until a fraction of a thousandth of a bit can be
effectively implemented. A given ASQ rate Ny asq is synthesized by replicating along
azimuth direction the appropriate sequence of integer BAQ rates of length Ngeq whose
average is just Ny AsQ

N, seq

1
Y Nog (5.2)

Nseq k=1

SNoaso = [Vo,1,Nb.2,No 35 s No Nygg |+ No.AsQ =

In principle, given a certain Ny A5, the corresponding Sy, ¢, has to be as short as pos-
sible, and the distribution of the rates needs to be homogeneous, in order to avoid biases
in terms of performance loss within one synthetic aperture.

In the next section, the impact of the proposed ASQ on TanDEM-X interferometric and
SAR performance is discussed and evaluated. For this purpose, experimental acquisitions
with BAQ bypass (i.e., 8 bits/sample) have been recompressed on ground using different
ASQ rates. The obtained products have then been focused to SAR images, allowing for
the generation of interferograms and coherence maps.

5.3 Performance Analysis

In this section a performance analysis of ASQ on TanDEM-X data is presented. The
impact on the NESZ (Section 5.3.1), azimuth ambiguities (Section 5.3.2), and interfer-
ometric coherence (Section 5.3.3) is investigated. The ASQ rates and the correspond-
ing azimuth sequences used for the present investigations are listed in Table 5.1 for
Nseq = 10. Each element of a sequence represents the compression rate employed for
one range line, and the corresponding sequence is then replicated along azimuth direc-
tion in the raw data matrix.

5.3.1 Noise Equivalent Sigma Zero (NESZ)

As it has been introduced in Chapter 2, the signal-to-noise ratio (SNR) is a measure to
describe the image quality of remote sensing systems, estimating how much a signal has
been corrupted by noise (just as coherence does for interferograms). From a SAR image,
the SNR is computed according to the definition in (2.43) as follows:

ol

R=——+ 5.3
NESZ’ (5-3)

where oV is the backscatter coefficient (2.42) and NESZ stands for Noise Equivalent
Sigma Zero, which accounts for the several noise sources affecting the data, and has
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ASQ Rate Azimuth Sequence

[bits/sample] [bits/sample]
21 2222222223
2.2 2222322223
23 2232232232
24 2322323223
25 2323232323
2.6 2323232333
2.7 2323332333
2.8 2333323333
29 2333333333

Table 5.1: ASQ rates (Np asq) and corresponding azimuth sequences Sy x5, With
Nseq — 10. '

been defined in (2.44). For the present analysis, the NESZ can be formally decomposed
into the sum of two main contributions

NESZ — NESZSyS + NESunan[. (5.4)

The first term on the right-hand side NESZy includes all noise contributions induced
by the system, like antenna pattern, instrument thermal noise, as well as processing fil-
ters [30]. The second term describes the noise power solely due to quantization, which
directly affects the radiometric resolution of the focused data. In order to estimate noise
power from SAR images a distributed target analysis over regions showing very low
backscatter response has been carried out. For our investigations, the area depicted in
Figure 5.2 has been considered. It is located in the Amazon rainforest and is crossed
by two rivers entirely from near to far range: in particular, areas covered by flat water
reflect almost completely the incident radar signal to specular direction, and, therefore,
the recorded signal is of the same order of magnitude as the system noise (in this case,
over the two rivers 6° < —19 dB). After an averaging of the corresponding pixels along
azimuth direction the NESZ for different ASQ rates could be evaluated. The results are
depicted on the left-hand side of Figure 5.3. The dots indicate the measured values from
a distributed target analysis. By interpolating along range direction, the resulting NESZ
profile curves are derived (the integer rates have been obtained by using “pure” BAQ).
On the right-hand side of Figure 5.3, the NESZ degradation with respect to the bypass
case is shown. Being all the acquisition and processing parameters the same except the
ASQ rate employed, it can be concluded that the obtained profiles correspond just to
the degradation term NESZgyap¢ in (5.4). As expected, a higher compression ratio corre-
sponds to a higher degradation, varying between about 1 dB to 3.5 dB for the case of 3
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Figure 5.2: Test area for NESZ estimation, located in Amazon rainforest (Stripmap
mode, HH polarization, acquired on June 21, 2012). NESZ profiles for dif-
ferent ASQ rates are estimated considering the backscatter response over the
two rivers located on the upper-left and lower-right part of the scene.

bits/sample and 2 bits/sample, respectively.

5.3.2 Azimuth Ambiguities

Azimuth-switched quantization can be exploited to reduce the impact, among the oth-
ers, of the azimuth ambiguities for a given data rate. In order to satisfy the sampling re-
quirement, the PRF must be sufficiently high, depending mainly on the antenna flight ve-
locity and on its azimuth length. In general, the higher the PRF, the smaller the azimuth-
ambiguity-to-signal ratio (AASR). For a SAR system, the amount of data stored during
an acquisition is proportional to the data rate DR and the acquisition duration AT,cq. The
data rate is, in turn, proportional to the quantization rate N, and the PRF, as expressed in
(3.1)

DR =< N, -PRF, (5.5

and often represents a bottleneck for spaceborne SAR systems. In order to evaluate the
combined effect of quantization and PRF, simulations of a one-dimensional azimuth-
compressed point target were carried out. In Figure 5.4, the peak AASR 1is depicted for
ASQ rates between 2 bits/sample and 5 bits/sample and for different azimuth data rates (8
kbits/s, 9 kbits/s, and 10 kbits/s; only one sample has been considered in range direction).
The corresponding PRFs are in the range between 1500 Hz and 5000 Hz. As expected,
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Figure 5.3: (Left) NESZ for different ASQ rates, estimated from the rivers in the data
take in Figure 5.2. The points show the recorded values from a distributed
target analysis. By interpolating them, corresponding NESZ profiles are ob-
tained, which are depicted with different colors. The highest (brown) and
lowest (black) curve indicate the NESZ for the case of BAQ 8:2 and BAQ
bypass, respectively. (Right) NESZ degradation introduced by quantization
with respect to the 8-bit case (BAQ bypass).

when fewer bits are employed for quantization (i.e., higher PRFs are allowed for the
given data rate), smaller values of AASR are observed. In particular, for a fixed data
rate, a reduced ambiguous signal power can be obtained by reducing the quantization
rate (i.e., moving to the left along one of the curves in Figure 5.4 and thus allowing for
an increased PRF). Alternatively, one can exploit a much finer-grained set in terms of
acquisition parameters design and resource allocation in order to keep the ambiguous
signal below a certain threshold (i.e., “jumping” horizontally from one curve to another
one). However, one has to be aware that for too high PRFs it may happen that several
successive pulses arrive at the receiving antenna at the same time, as discussed in Section
2.3.4. This produces artifacts in the SAR images known as range ambiguities, and a
non-negligible worsening of the resulting range-ambiguity-to-signal ratio (RASR) can be
obtained, which depends on the characteristics of the target under illumination together
with the specific acquisition geometry and system parameters [30], [42], [126].
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Figure 5.4: Azimuth-ambiguity-to-signal ratio (AASR) over ASQ rates, for different data
rates (depicted with different colors). For the described scenario, the result-
ing PRFs are in the range between 1500 Hz and 5000 Hz.

5.3.3 Interferometric Coherence

The key quantity to evaluate interferometric SAR (InSAR) performance is the coher-
ence. It represents the normalized correlation coefficient between master (monostatic
channel) and slave (bistatic channel) acquisition and several error sources may contribute
to a coherence loss [30], [63], [69], [70], [71], as it has been described in Section 2.4.2.
Figure 5.5 shows the interferometric coherence for rates between 2 bits/sample and 3
bits/sample and for different test sites, and the performance resulting from uncompressed
data is shown as well for comparison. Each curve shows the mean coherence values de-
rived from a single bistatic acquisition (extending by about 30 km by 50 km in range and
azimuth, respectively), which has been compressed to different ASQ rates. The corre-
sponding sequences are listed in Table 5.1. As expected, when fewer bits are employed
for quantization, lower coherence values are obtained for the same test site. Figure 5.6
depicts the corresponding coherence degradation with respect to the bypass case (8:8)
for the same test sites. The black bars represent the average and the standard deviation
of the estimations for each ASQ rate, and good agreement with the theoretic prediction
is observed, marked by the green lines for the case of two and three bits [30]. Moreover,
it can be noticed that the dispersion of the estimations increases with a decreasing of the
quantization rate. The reason for that is the presence of different backscatter distribu-
tions within the analyzed scenes. Figure 5.7 shows the histograms for ¢” of two areas
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Figure 5.5: Interferometric coherence over ASQ rates for different test sites (depicted
with different colors). Each curve corresponds to one acquisition at different
ASQ rates. On the upper part of the chart, the compression ratio for each
ASQ rate is specified.

with different backscatter characteristics. The salt lake of Uyuni (Bolivia), depicted in
blue, is a quite homogeneous region, and the corresponding coherence loss (violet dots
in Figure 5.6) goes from about 2% to 8%. On the other hand, the urban area of Las
Vegas (USA), represented in red in Figure 5.7, shows a very inhomogeneous backscat-
ter distribution, and a higher coherence degradation is observed (between 5% and 14%,
marked in blue in Figure 5.6). This discrepancy in terms of performance is due to the
so-called low scatterer suppression, which has been recalled in Chapter 3 and detailed in
[94] and [103], and which occurs if the responses from neighboring targets (with respect
to the synthetic antenna and the chirp length) overlap considerably in the raw data do-
main. The decision levels as well as the clipping threshold for the quantization process
are set according to the mean power of the raw data block. Therefore, if two targets have
different magnitude response, the quantizer best matches with the strong signal, whereas
the low one is heavily distorted. Such an effect represents an additional nonlinear and
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Figure 5.6: Coherence degradation with respect to the bypass case, for different test sites
(depicted with different colors). The black bars represent the average and the
standard deviation of the estimated degradations for each ASQ rate, and the
short horizontal green lines indicate the theoretic prediction for the case of
two and three bits [30]. Each curve corresponds to one acquisition at different
ASQ rates. On the upper part of the charts, the compression ratio for each
ASQ rate is specified.

signal-dependent error source in the SAR data which does not appear in the raw data but
becomes visible only in the SAR focused image.

TerraSAR-X and TanDEM-X have a relatively limited downlink capacity, which is due
to an average contact time with the ground station network of about 10 min/orbit at a to-
tal net data rate of about 260 Mbits/s. If considering nominal acquisition parameters,
this implies a maximum allowed time for data takes of about 180 s per orbit, in the case
a quantization rate of 3 bits/sample is employed [30]. In order to speed up the comple-
tion of the global DEM acquisition, the opportunity to further reduce the quantization
rate has been considered: in particular, a “hybrid” quantization of 2.5 bits/sample has
been exploited, using 3 bits/sample on one satellite and 2 bits/sample on the other, for
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Figure 5.7: Histogram for 6 measured over the salt lake of Uyuni (Bolivia) and the
urban area of Las Vegas (USA). The continuous (dotted) lines indicate the
mean (standard deviation) for each distribution. The linear scale highlights
the difference in terms of dynamic range in backscatter.

the acquisition of areas showing very good performance and homogeneous backscatter
response, as described in Section 4.3.5. It has been verified that the interferometric per-
formance was essentially the same as that employing an ASQ rate of 2.5 bits/sample, and
that a considerable increase, in terms of allowed acquisition time, of about 40 s per orbit
(compared to a quantization with 3 bits/sample) could be obtained.

5.4 Chapter Summary

In this chapter, a novel azimuth-switched quantization (ASQ) scheme for SAR raw
data has been introduced, which allows for implementing non-integer compression rates
in a new, efficient way. The principle of the proposed technique has been described and
the impact on SAR and interferometric performance of TanDEM-X experimental data
has been evaluated and quantified. It has been shown that highly flexible adaptation of
SAR performance and calculation of memory consumption is achievable. This provides
more freedom in the design and operation of SAR missions, when memory and downlink
resources are limited.
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6 Efficient Onboard Quantization for Multi-Channel
SAR Systems

In this chapter, a novel method for onboard data reduction for multi-channel synthetic
aperture radar (SAR) systems is presented. Such systems allow for high-resolution imag-
ing of a wide swath but require for their operation the acquisition and downlink of a con-
siderable volume of data. Together with the intrinsic requirement related to resolution
and swath width, this is due to the use of a pulse repetition frequency (PRF) typically
higher than the processed Doppler bandwidth, which introduces a certain oversampling
in the azimuth raw data. In this context, a convenient data reduction strategy is proposed,
named multi-channel block-adaptive quantization (MC-BAQ), which exploits the exist-
ing correlation between subsequent azimuth samples by performing a discrete Fourier
transform of the multi-channel SAR data block. Then, a variable-bit quantization is
applied, which allows for the optimization of the resulting performance and data rate.
Simulations have been carried out on scenes with distributed scatterers showing differ-
ent backscatter characteristics, to demonstrate that the proposed MC-BAQ allows for a
significant reduction of the data volume to be downlinked to the ground at the cost of
a modest increase of the onboard computational effort. The proposed method has been
first introduced in [127], and then further investigated and detailed in [100].

6.1 Introduction

For conventional single-channel SAR systems, it is well known that the pulse repetition
frequency (PRF) poses opposite constraints for the imaging of wide swaths and, at the
same time, of fine azimuth resolutions. Indeed, the former dictates a low PRF to allow
for a sufficient temporal separation between subsequent SAR pulses, whereas the latter
requires a large Doppler bandwidth and, therefore, high PRFs. Such inherent limitations
can be overcome by exploiting multiple receiving apertures which are mutually displaced
in along-track. The coherent combination of the individual received signals allows for
adequate suppression of the ambiguous parts of the Doppler spectra and, in this way,
high-resolution wide-swath imaging is achieved [40], [58]. Besides an increased system
complexity, the downside for such an improvement of swath coverage and resolution is
represented by a significantly larger data volume to be acquired and transmitted to the
ground, which poses more stringent demands on the onboard memory and downlink ca-
pacity. In this scenario, efficient data volume reduction is of utmost importance, as the
data rate selected for the digitization of the recorded radar signals directly affects the
quality of the resulting SAR products. In the context of single-channel staggered SAR,
a method for data volume reduction based on onboard Doppler filtering (i.e., exploiting
the lower processed Doppler bandwidth with respect to the PRF) and decimation is pro-
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posed in [128]. However, this technique cannot be directly applied to the multi-channel
case since the data of the individual receive channels are highly ambiguous. In the last
years, a data-driven data reduction technique for multi-channel SAR based on a princi-
pal component decomposition has been proposed in [99], at the cost of a large onboard
implementation effort.

The approach described in this chapter aims at exploiting the intrinsic correlation
among the azimuth samples. In particular, the multi-channel SAR data are decomposed
by means of a non-adaptive orthogonal transformation (a simple discrete Fourier trans-
form). Then, an optimized allocation of the quantization rates is applied to the trans-
formed coefficients, allowing for an increase of the resulting performance for a pres-
elected data rate. For data digitization, a standard block-adaptive quantizer (BAQ) is
considered. In particular, in this chapter a quantitative assessment in terms of achiev-
able data volume reduction is presented, and the optimization of the bit allocation for the
transformed coefficients is discussed in detail.

The chapter is structured as follows: the principle of multi-channel block-adaptive
quantization (MC-BAQ) for efficient data volume reduction is introduced in the next sec-
tion. Section 6.3 presents simulations for the considered C-band single-platform multi-
channel SAR, proving the effectiveness of the proposed compression scheme. Finally,
conclusions and chapter remarks are summarized in Section 6.4.

6.2 Multi-Channel Block-Adaptive Quantization

Let us consider a multi-channel SAR with N, receiving azimuth apertures which flies
at velocity v, PRFyq is its transmit PRF, and / is the azimuth separation between the sub-
apertures, i.e., the total azimuth antenna length L, = Ny, - /. If the following constraint

on the PRF is fulfilled

2
PRFys = %

a

; (6.1)

then the azimuth raw data stream is uniformly sampled, hence the resulting system is
equivalent to a single-channel SAR with PRF.¢ = N¢p, - PRFy and basically a conven-
tional SAR processing can be applied. More in general, due to timing constraints and
requirements on the ambiguity-to-signal ratio, the PRF is often selected slightly devi-
ating from (6.1). In this case, an appropriate signal reconstruction of the unambiguous
Doppler spectrum from the non-uniform azimuth data, based on the generalized sampling
expansion, needs to be carried out on ground by properly combining the N, subsampled
channels as in [40], [129]. On the other hand, the Doppler bandwidth of the reconstructed
multi-channel signal is larger than the system (transmit) PRF, i.e., a finer azimuth reso-
lution is achieved with respect to the corresponding single-channel SAR operating with
the full antenna length L, and at the same PRFsy;. Indeed, with multi-channel SAR
systems a swath width of hundred kilometers and more can be imaged with an azimuth
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resolution in the order of one meter [58], [130]. For such a system, the raw data samples
received by its N¢, azimuth channels exhibit a certain degree of correlation, which is
introduced by the specific antenna pattern (or Doppler spectrum) together with a certain
signal oversampling (defined by PRFjy) of the azimuth data stream [131]. Typically, for
multi-channel SAR a processed Doppler bandwidth Bp that is significantly smaller than
the product of the number of apertures and the PRF (Bp < Nj, - PRFgys) is required in
order to get a sufficient azimuth ambiguity-to-signal ratio (AASR) [40], [58]. However,
a direct downlink of the acquired multi-channel data is associated with an unnecessarily
high data rate, as the effective PRF is significantly higher than the processed Doppler
bandwidth. On the other hand, according to the specific system configuration, i.e., its
antenna patterns, PRF, and processed bandwidth, one simple way to exploit the exist-
ing spectral selectivity is to perform a (lossless) discrete Fourier transform (DFT) on the
multi-channel azimuth block before data compression. The DFT is chosen because of
the intuitive correspondence between Doppler spectrum and antenna pattern, but in gen-
eral other orthogonal transformations could be used for this purpose as well. Then, an
efficient quantization strategy is implemented, which allocates less resources for those
sub-bands which carry a smaller amount of information, i.e., that are located outside the
processed bandwidth, and vice-versa for those sub-bands lying in the more “useful” por-
tion of the Doppler spectrum. By applying the transform coding paradigm, this strategy
aims at removing the redundancy existing in the multi-channel data block and enables a
better (more targeted) quantization, hence resulting in an increased quality of the final
SAR image. For single-channel SAR, a similar compression scheme has been introduced
in [92].

The workflow for the proposed onboard data reduction strategy for a multi-channel
SAR with Ny, receiving azimuth apertures is sketched in Figure 6.1: for each instant of
time n, the signal received by the i-th azimuth channel x;, ; (x € RNen) is first digitized by a
high-resolution analog-to-digital converter (the input to an ADC is typically continuous-
time, but here it is assumed to be already a discrete-time signal). The multi-channel raw
data block xapc is then decomposed by the orthogonal transformation F into a set of
K azimuth beams y = Fx (F corresponds to the discrete Fourier transformation matrix
and y € RK), each one corresponding to a different portion of the Doppler spectrum, and

derived as
N, ch

yeln] = Y (xapc,i[n]) e Imil=)/New =12 . K. 6.2)
i=1

In the above equation, the term % in the argument of the complex exponential implies that
the DC component arises for k = % In our case, without loss of generality, the number
of output coefficients K is assumed to be equal to the number of the input samples, i.e.,

K = Ny, and F € RE*Nen (for K < N, the transformation is not strictly orthogonal). The
output transformed coefficients are then further compressed by means of a set of block-
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Figure 6.1: MC-BAQ for onboard data reduction for a SAR system with multiple azimuth
channels: for each time instant n, the signal received by the i-th azimuth
channel, x;, ; 1s first digitized by a high-precision analog-to-digital converter
(e.g., 10-bit ADC). The multi-channel azimuth block xspc of length Ny, is
then decomposed by means of a discrete Fourier transform. As a next step,
a proper bit allocation is applied to the transformed coefficients (the BAQ
Ny blocks on the right-hand side) to optimize the resulting data volume
and performance. The quantized coefficients y are then downloaded to the
ground, where inverse Fourier transform, multi-channel reconstruction, and
SAR focusing are performed.

adaptive quantizers (BAQ) [39], which are indicated on the right-hand side of Figure
6.1. For this, a proper selection of each compression rate Ny, associated to the k-th
coefficient y; needs to be applied. The set of quantized coefficients y is then downloaded
to the ground, where the inverse Fourier transform, multi-channel reconstruction, and
SAR focusing are finally carried out. The optimum bit rate to be selected for the k-th
output channel is derived from rate-distortion theory [85] as

2
Oy

[Hﬁ 10 }I/K

where N, is the mean allowed bit rate, sz is the power associated to the k-th sub-band,
and ANy is the resulting bit rate contribution to be added (AN, x > 0) or subtracted

(AN < 0) for the k-th channel. Clearly, Y., ANy, = 0 (the above equation strictly

- 1 -
Nb,k =N+ Elogz =N, + ANbJ{, (6.3)
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holds for high rates, when the pdf of the quantization error is approximately uniform in
the decision interval, which may not be representative for the typical spaceborne SAR
scenarios). The power contribution sz is estimated as the fraction of the corresponding
power spectrum integrated over the processed Doppler bandwidth as

;) /BD/z sin(ithJFPRFgl({/FZ—k)/K) 2df 6
KTk g, ” sin(ﬂ: f+PRF§)11<{éH)/K) ' :

Hence, aside from the normalization factor 1/ K2, sz is proportional to the integral of
the Dirichlet kernel of the discrete Fourier transform over the processed bandwidth Bp,
scaled by the power associated to the k-th transformed coefficient P,. This latter term,
in turn, represents the contribution of the antenna pattern in the corresponding portion
of the Doppler spectrum, and can be numerically estimated by means of Monte-Carlo
simulations for sequences of coefficients y; of sufficient length Lp as

1 L

Y [vilp]l- (6.5)

P = —

k Ir P
Moreover, the term % in the argument of the Dirichlet kernel in (6.4) implies that the DC
component arises for k = %, which is consistent with (6.2).

As a result from (6.3), Ny is typically a non-integer number: fractional quantization
rates can be implemented by toggling the bit rate selection of an integer-bit BAQ along
azimuth and/or range as introduced in Chapter 5 and in [121]. This way, higher flexibility
of compression is achieved without increasing the overall scheme complexity.

6.3 Simulation Results and Bit Rate Optimization

In this context a single-platform C-band multi-channel SAR with Ny, = 8 azimuth
channels is considered, which is described in Table 6.1. Figure 6.2 shows the patterns
for the transmit antenna (in blue) and a single receiver element (in red) for the considered
system. Phase spoiling is applied in transmission [132], and a system PRFy of 1265 Hz
is selected. The actual processed bandwidth Bp is represented by the shaded orange area
and is of about 5.6 kHz, which corresponds to about 55% of the effective PRF (delimited
by the dashed green lines). According to these system assumptions, the azimuth raw
data stream is non-uniformly sampled (i.e., the relation in (6.1) is not fulfilled), hence a
reconstruction of the unambiguous Doppler spectrum needs to be carried out on ground.
According to, e.g., [40], this essentially consists of Ny, linear filters that are individu-
ally applied to the subsampled signals of the receive channels and then superimposed.
Figure 6.3 shows the power spectrum for the antenna pattern displayed in Figure 6.2 for
the N, = 8 azimuth channels, each one depicted with a different color. The effective
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Table 6.1: System parameters for the considered multi-channel SAR.

Parameter Value

Satellite height, A 700 km

Carrier frequency, f. 5.5 GHz (C-band)
Antenna type Planar array
Azimuth antenna length, L, 12.8 m

Number of azimuth channels, Ny, | 8

Pulse repetition frequency, PRFy | 1265 Hz
Total processed bandwidth, Bp 5630 Hz

Target azimuth resolution, &, 1.2m
Swath width, W, 100 km
ADC Resolution 10 bits

PRF and the processed bandwidth intervals are delimited by the dashed black and red
lines, respectively. For any arbitrary average rate Ny, the set of quantization rates to be
used for the transformed coefficients is entirely described by the array ANy = {AN, x},
defined according to (6.3). For the system configuration as in Figure 6.3 one obtains

ANy =[~2.0,—1.3,40.9,+0.8,40.9,4+0.8,+1.0,—1.1] bits/sample, (6.6)

i.e., the three (high-Doppler) channels depicted in black, blue and brown in Figure 6.3,
respectively, will be quantized with less bits than the average rate N, whereas, for the
five channels lying in the center of the Doppler spectrum, about one bit/sample more will
be allocated.

To assess the performance of the proposed MC-BAQ method the signal-to-quantization
noise ratio (SQNR) has been evaluated on the focused SAR image. For this purpose, an
artificial SAR scene is simulated and the raw data are generated by using the inverse
focusing kernel. The multi-channel raw data are then Fourier transformed and input to
the BAQ which compresses them to available bit rates. The quantized raw data are then
focused back to obtain a distorted version of the original simulated image. According to
the definition in (3.44), the SQNR is defined as the power ratio of the non-compressed
SAR image 1, composed of P pixels, to the quantization error affecting the reconstructed
SAR image 1, which is calculated as

2

5:1 |

SQNR = .
Zp:] ‘lp - lp

5. (6.7)
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Figure 6.2: Transmit (blue) and single element receive patterns (red) versus Doppler fre-
quency (in transmission a phase spoiled pattern is employed). The shaded
orange area indicates the processed bandwidth, whereas the effective sam-
pling bandwidth (Ncp, - PRFy) is delimited by the dashed green lines.

As an example, Figure 6.4 shows the SQNR obtained for a homogeneous scene, as a
function of the average rate Ny, for the system parameters in Table 6.1 and for different
quantization schemes: the performance of a standard BAQ is taken as reference and
is depicted in red. Then, the SQNR for the proposed MC-BAQ with the bit allocation
derived from rate distortion theory (R-D) as in (6.3) is shown in turquoise: as an example,
a 4-bit BAQ has the same SQNR as a 3.5-bit MC-BAQ (both around 20 dB), hence
allowing for a saving of about 0.5 bits/sample. However, it could be verified that the
rate sequences derived as in (6.3) do not actually correspond to the optimum ones, i.e.,
there exist other sets of quantization rates that lead to a better performance. A reason for
this could be that the SQNR associated to the typically fractional bit rate M, ; resulting
from (6.3) is a nonlinear function of the SQNR values associated to the integer BAQ
rates used for its implementation according to [121], which further impacts the final
performance, as it is discussed in Section 7.3. Hence, for the given system PRF, Bp, and
antenna patterns, the optimum rate sequence has been derived by an iterative search. For
this, as initial point the values obtained from R-D theory were used, and then the set of
quantization rates which provides the best SQNR was found by means of iterative search.
The result is shown by the green curve and dots in Figure 6.4. Again, if one considers
as target performance the one obtained with a 4-bit BAQ, with the proposed MC-BAQ
one would achieve a gain of about 4 dB with respect to a standard BAQ operating at the
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Figure 6.3: Doppler power spectrum for the Ny, = 8 azimuth channels, depicted with
different colors, each one scaled by the corresponding power contribution
Py, as in (6.5). The power associated to each channel O'k2 is estimated by
integrating the corresponding power spectrum in the range between —Bp/2
and Bp/2 (indicated by the dashed red lines), according to (6.4). The dashed
black lines delimit the PRF interval.

same rate. Alternatively, the same SQNR is shown by the MC-BAQ at 3.25 bits/sample,
hence achieving a data reduction of about 18-20%. On the other hand, if a 3-bit BAQ is
used as reference, the resulting data reduction is around 25%.

An example of the optimization procedure for the MC-BAQ bit rate allocation de-
scribed above (i.e., the green line in Figure 6.4) is shown in Figure 6.5, which depicts the
SQNR as a function of different combinations of quantization rate sets for an average rate
Ny = 4 bits/sample. Based on the symmetry shown by the power channel distribution in
Figure 6.3 any possible rate sequence can be described, with reasonable approximation,
by means of a set of three bit rate values {Nb7high, Nb.mid> Nb low }: Np high (the largest rate)
is associated to the five sub-bands located in the center of the Doppler spectrum of Figure
6.3, Np miq refers to the bit rate for the two adjacent channels (blue and brown sub-bands
in Figure 6.3), and Ny, joy 1s for the black sub-band in Figure 6.3. The latter represents
the lowest rate and, once the average rate Ny, has been defined, it is uniquely determined
as

Nojow = 8Ny — 5 Np high — 2 Np mid- (6.8)

According to this, the best SQNR, of about 23.5 dB, is achieved for

{Nb7high>Nb,mid7Nb,low} = {5.6,2.0,0.0} bits/sample, (6.9)
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Figure 6.4: Signal-to-quantization noise ratio (SQNR) for a homogeneous scene for dif-
ferent quantization schemes: standard BAQ (red), MC-BAQ with bit alloca-
tion derived from rate distortion theory (R-D, turquoise), and MC-BAQ with
optimum bit allocation (green), as a function of the average rate Nj,.

as indicated by the dashed black lines sketched in Figure 6.5. Clearly, setting Ny jow = 0
means that the corresponding DFT coefficient is just discarded on board and hence not
downlinked at all.

In addition, the proposed method has been assessed for the backscatter profile depicted
in Figure 6.6 in black, which shows a “jump” of 10 dB (left vertical axis) along azimuth,
typically occurring over highly inhomogeneous scenes, such as, e.g., urban areas. The
resulting SQNR profiles (right vertical axis) are shown for a standard BAQ in red and
for the proposed MC-BAQ in green (for this, the optimum bit allocation was chosen
as in Figure 6.5), and a consistent performance gain can be observed. In particular, a
significant loss in terms of SQNR is observed for both compression techniques in the
part of the low backscatter area (with a mean backscatter of -10 dB) close to the high
backscatter one. This is due the masking effect which is induced by the presence of
high backscatter targets within a distance comparable to the synthetic aperture Ls [94],
[103] (for the considered system, L is in the order of a few tens of kilometers). As
already pointed out, the performance of the proposed method strongly depends on the
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Figure 6.5: SQNR for different combinations of quantization rates applied for the pro-
posed MC-BAQ for N, = 4 bits/sample. Based on the symmetry shown
by the power channels distribution in Figure 6.3, any sequence is approxi-
mated by a set of three bit rates {Nb7high,Nb7mid,Nb’1ow}, each one associated
to different Doppler sub-bands of Figure 6.3. The dashed black lines indi-
cate the maximum SQNR, of about 23.5 dB, which is achieved by setting
Np high= 5.6 bits/sample and Ny g = 2 bits/sample.

oversampling factor o = PRF/Bp, i.e., the closer or is to one, the lower the resulting
gain. Different values of of have been considered by varying the processed bandwidth
only. As an example, for of = 1.67 the data rate can be reduced by about 0.5 bits/sample,
whereas for of = 1.43 only a negligible SQNR gain is obtained with respect to a nominal
BAQ, making the proposed method not suitable for data reduction purposes. On the other
hand, the number of azimuth receiving channels N,y also plays a key role in determining
the achievable performance of MC-BAQ: the larger Ny is, the better the power spectrum
of the transformed coefficients (shown in Figure 6.3 for NV, = 8) approximates the actual
one, hence more accurate bit allocation and ultimately more effective data reduction can
be achieved. Regarding the required onboard complexity, the proposed multi-channel
compression technique can be performed in real time by using a state-of-the-art FPGA
without excessive memory storage and retrieval capability. For the implementation of

128



6.4 Chapter Summary

50 . . Ny, = 4. bits/sample . . . 30.0
== SQNR BAQ E : E : .
2.5}| m== SQNR MC-BAQ f------- e ROREEEE beeeeee oo -----127.5
=== Backscatter, o° L ! : : :
0.0 = - - - oo e i------25.0
3 N
i I ey T - flf - oo FIESeTS 22.5_
- N L e g
o -5.0 |- AN 20.0c
— 1 i Z
S ! : : : : ' : ! g
B A | R RRGEEIEEER. VEE | CERRECEPER (SR EELY SELEEEE R EELY de o mm o 17.5
o ' ' ' ' ' ' '
1] ' ' Il ' ' '
[an] " AN : : A !
~10.0 - R 15.0
—12.5f------- RS RREEEE R EEEEE RRCELEE Lot beeee ORCITES SRSRLE 12.5
-15.0 20 40 60 80 100 120 140 160 00

Azimuth Distance [km]

Figure 6.6: Backscatter profile (¢°, in black) and corresponding SQNR as a function
of the azimuth distance for BAQ (red) and MC-BAQ (green) for an average
rate N, of 4 bits/sample. The performance gain obtained with the proposed
method can be exploited to reduce the resulting data rate.

a Ngp, points DFT (being Ny, the number of azimuth channels) a limited amount, in the
order of a few tens, of additional operations Ny, is required for each multi-channel data
block (consisting, in this case, of N, samples), being Nop = O (Nch -log, (Nen) )

6.4 Chapter Summary

In this chapter a novel method for onboard data volume reduction for multi-channel
SAR systems has been proposed. Such systems require the acquisition of an increased
volume of data in order to achieve high-resolution imaging of a wide swath width. The
suggested approach exploits the intrinsic correlation exhibited by the received multi-
channel SAR raw data samples. For this purpose, a discrete Fourier transform combined
with an optimized selection of the quantization rates is applied to the multi-channel az-
imuth data samples. Simulations are carried out for a single-platform C-band system with
eight azimuth receive channels, and for different SAR backscatter distributions, showing
that with the proposed method a data volume reduction of 20%-25% can be achieved for
typical BAQ rates employed for SAR applications. Future studies will include the inves-
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tigation of alternative orthogonal transformations and the detailed analysis of different
system configurations, in terms of, e.g., antenna patterns, number of azimuth channels,
and required processed bandwidth and PRF. MC-BAQ can also be exploited in the con-
text of polarimetric SAR data, by applying it on each polarization channel independently.
Since the power spectrum of the azimuth antenna pattern is approximately the same for
all polarization channels, one could practically employ the same set of bit rates {N, 4}
for each of the available polarimetric combinations. Finally, the proposed method could
be extended to multiple transmit pulses by combining transform coding in the Doppler
domain with alternative compression schemes such as, e.g., vector quantization [92], to
achieve a more effective data reduction.

130



7 Predictive Quantization for Data Volume Reduction
in Staggered SAR Systems

Staggered synthetic aperture radar (SAR) is an innovative SAR acquisition concept
which exploits digital beamforming (DBF) in elevation to form multiple receive beams
and continuous variation of the pulse repetition interval to achieve high-resolution imag-
ing of a wide continuous swath. Staggered SAR requires an azimuth oversampling higher
than a SAR with constant PRI, which results in an increased volume of data. In this
chapter the use of linear predictive coding is investigated, which exploits the correlation
properties exhibited by the non-uniform azimuth raw data stream. According to this, a
prediction of each sample is calculated on board as a linear combination of a set of pre-
vious samples. The resulting prediction error is then quantized and downlinked (instead
of the original value), which allows for a reduction of the signal entropy and, in turn,
of the onboard data rate achievable for a given target performance. In addition, the a
priori knowledge of the gap positions can be exploited to dynamically adapt the bit rate
allocation and the prediction order to further improve the performance. Simulations of
the proposed dynamic predictive block-adaptive quantization (DP-BAQ) are carried out
considering a Tandem-L-like staggered SAR system for different orders of prediction and
target scenarios, demonstrating that a significant data reduction can be achieved with a
modest increase of system complexity. The proposed method has been first investigated
in [133] and [134], and then further elaborated in [101].

7.1 Introduction

Nowadays, synthetic aperture radar (SAR) represents a well-recognized technique for
a broad variety of remote sensing applications, being able to acquire high-resolution im-
ages of the Earth’s surface independently of daylight and weather conditions. However,
conventional SAR is constrained by the pulse repetition frequency (PRF) for the imag-
ing of wide swaths and, at the same time, of fine azimuth resolutions. To overcome these
limitations, in the last decades innovative spaceborne radar techniques have been pro-
posed, which allow for high-resolution imaging of a wide swath by exploiting multiple
azimuth channels (MAC) and digital beamforming (DBF) in elevation to achieve Scan-
on-Receive (SCORE) [40], [54], [55], [56], [57], [58]. Alternatively, single-channel SAR
based on the simultaneous recording of multiple echo pulses received from different el-
evation directions (so-called “multibeam” mode) [135], [136] enables a further increase
of the imaged area by keeping the antenna length within reasonable limits and avoiding
the employment of burst modes. Such systems are still limited by the presence of blind
ranges across the swath, which arise since the radar cannot receive while transmitting.
The opportunity of exploiting the variation of the PRI to solve the blind ranges problem
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was first independently proposed in [137] and in [135], [138]. Then, the idea culminated
in the staggered SAR concept, which includes a refined design of the PRI sequences, the
use of proper interpolation on the raw data and consideration of the ambiguities [41],
[102], [139], [140]. By cyclically changing the pulse repetition interval (PRI), staggered
SAR allows to vary (i.e., to “stagger’”) the range positions of such data gaps along the
azimuth dimension. In this way, high-resolution imaging of a large continuous swath
of up to 350 km without the need for a long antenna with multiple apertures becomes
possible [41].

The requirement on swath width and resolution, together with the use of large band-
widths and multiple acquisition channels, is clearly associated to the generation of a
large volume of data, which implies, from the mission design point of view, stringent re-
quirements in terms of onboard memory and downlink capacity. In the context of single-
channel staggered SAR systems, a method consisting of an interpolation combined with
low-pass Doppler filtering and decimation of the acquired raw data has been proposed
in [102], [128], which allows for achieving a data reduction of up to 50% at the cost of
a significant onboard computational effort. In this scenario, SAR raw data quantization
represents an aspect of utmost importance, since the number of bits employed to digitize
the recorded radar signal, on the one hand, directly affects the performance of the result-
ing SAR products and, on the other hand, defines the total amount of data to be managed
by the system.

Conventional SAR raw data usually show very little correlation among nearby sam-
ples, which, therefore, can be only partially used for compression algorithms. On the
other hand, in staggered SAR a significant azimuth oversampling is mandatory to prop-
erly reconstruct the information lost within the blind ranges [102]. The resulting data
redundancy can be exploited to reduce the data volume to be acquired and stored on
board.

This chapter addresses the use of linear predictive coding for onboard data reduction in
staggered SAR systems. Linear predictive coding [85] exploits the existing correlation
between adjacent azimuth samples, i.e., samples which are located at successive range
lines and within the same range bin. Such a correlation is introduced by the antenna pat-
tern and a significant azimuth oversampling: a prediction of each sample is estimated on
board through a linear combination of a set of previously received samples in the azimuth
dimension. The resulting prediction error is characterized by a signal entropy which is
smaller than the one of the original SAR raw data. This allows for a reduction of the
number of quantization bits for a given target performance, at the cost of a modest com-
putational burden. Moreover, the proposed method preserves the nonuniform sampling
of the staggered SAR data, allowing for the use of more advanced processing techniques
on ground, which would be more difficult to apply to resampled raw data as proposed,
e.g., in [141]. The use of predictive quantization in the context of conventional SAR has
been previously investigated in [142], [143].

The chapter is organized as follows: the proposed method for data volume reduction
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based on linear predictive quantization, its detailed mathematical formulation, and appli-
cation for onboard data volume reduction in staggered SAR are discussed in Section 7.2.
Moreover, a strategy to effectively reconstruct the blind ranges, through a dynamic se-
lection of the prediction order together with a variable bit allocation in the vicinity of the
gap position, is proposed as well. Simulations for different orders of prediction and dif-
ferent target scenarios are presented in Section 7.3 for a Tandem-L-like staggered SAR
system and demonstrate the effectiveness of the proposed compression scheme. Finally,
Section 7.4 concludes the chapter with a summary and further research outlook.

7.2 Dynamic Predictive Block-Adaptive Quantization

7.2.1 SAR Signal Statistical Characterization

It is well known that the In-phase (I) and Quadrature (Q) components of the received
SAR raw signal x(¢) can be described as zero-mean Gaussian stationary and independent
processes with a slowly changing variance in both range and azimuth directions [144].
This assumption holds as a consequence of the central limit theorem (CLT) and is almost
independent of the type of spaceborne SAR sensor used (frequency, resolution) as well
as of the characteristics of the scene under illumination: indeed, a very large number
of targets overlap their response in the raw data domain within the imaged scene. This
is due, in turn, to the large extension on ground of the azimuth antenna footprint and
of the range pulse, which, for the considered spaceborne SAR systems, are in the order
of several kilometers. The samples of the SAR raw azimuth signal, received at different
time instants, can be modeled as partially correlated random variables. Such a correlation
is introduced by the azimuth antenna pattern (or Doppler spectrum) and by the selected
pulse repetition frequency (PRF), and can be described by the normalized autocorrelation
function R, () as

Ru(7) = B{x" (1) -x(t +0) } /E{|x(1) *}, (7.1)

where T represents the time lag in the azimuth dimension. Correlation in the range
dimension is not considered here due to the negligible data oversampling (indeed, the
range bandwidth is typically sharply limited and only a small oversampling is usually
employed). The azimuth autocorrelation function can be expressed as the inverse Fourier
transform of the Doppler power spectral density Py(f)

Re(7) =F P}, (7.2)

where f is the Doppler frequency. If a uniformly illuminated rectangular azimuth aper-
ture of length L, is considered, the power spectral density can be expressed as [145],
[131]

PA(f) = X(f)X*(f) = sin’ (nf—f) / (nZL—f)4 13)
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being X (f) the spectrum of x(¢) and vy the satellite velocity. The above equation allows
for the derivation of the autocorrelation in closed form as [145]

3 ; 3 ’ 1
Z(Bp- —Z(Bp- 1 0<t<—
4(Rf) 2(Rr)+ S
Ri(t)={ 1 3 1 2 (7.4)
—(Bp-T—2 <7<
4( k ) Br = T Bp
0 elsewhere.

In the above equation Bg represents the bandwidth of the spectral power density function

and is defined as
_ 2

Ly
Hence, longer antennas give a more directive beam, which can be considered as a nar-
rower low-pass filter in the Doppler domain. On the other hand, a lower satellite velocity
results in a higher correlation time, since, for a given time lag 7, two targets will be more
overlapped in the raw data space and therefore more similar to each other.

It is worth pointing out that the function in (7.4) represents the correlation which is
introduced by the system for a white noise input. Indeed, there could be additional
correlation due to the properties of the scene under illumination (e.g., point-like targets).
Hence, using only the system-induced correlation also represents a sort of worst case
scenario, i.e., assuming fully developed speckle.

As already mentioned, for staggered SAR systems a certain azimuth oversampling
is necessary to properly recover the raw data information in the neighborhood of gaps
introduced during the SAR acquisition. The azimuth oversampling factor oy is defined as
the ratio between the pulse repetition frequency and the processed Doppler bandwidth,
of = PRF/Bp. In this scenario, a compression algorithm based on differential pulse
code modulation (DPCM) is proposed, which aims at exploiting the correlation exhibited
by adjacent azimuth samples by encoding, instead of the original raw data sample, the
difference between the original one and its prediction. This allows for a reduction of the
signal dynamic (i.e., its entropy), and hence for a decrease of the required bit rate for a
given quantization performance [85]. By having a priori information on the raw signal
statistics, a proper design of the predictor can be implemented, as it is detailed in the
following.

Br (7.5)

7.2.2 Mathematical Formulation and Algorithm Implementation

Let x[n] be the raw azimuth sample received by the SAR system at the discrete time
instant n. According to the linear prediction theory, the estimate of the sample x[n], X[n],
is a linear combination of its Np preceding samples

Np
Z[n] = Z Bk x[n-k], (7.6)
k=1
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where Np defines the so-called prediction order, while f; is the weight associated to the
k-th previous sample x[n —k]. From this, the prediction error €[n] is defined as

€[n] = x[n] — X[n]. (7.7)

The set of weights B = {1, B2, ..., Bnp } is chosen to minimize the mean square prediction
error and is derived as [85]

B=cCp, (7.8)

where C € RM*™ g the covariance matrix of the random process x[n] and is populated
by the correlation values among the Np preceding samples used for the prediction (i.e.,
considering two samples at discrete time instants i and j,

Ci.j = R:[|i— j|-PRI]. (7.9)

Furthermore, p € R represents the vector of the correlation values between the Np
previous samples and the sample to be predicted at the time instant n, i.e.,

Px = Ry [k-PRI]. (7.10)

The encoding process is shown in Figure 7.1. The prediction error €[n], derived as in
(7.7), is given as input to the block-adaptive quantizer (block “BAQ”). The quantized
prediction error &[n] is the information which is actually downlinked to the ground, but
it is also used on board in a feedback loop, together with the sample prediction %[n], in
order to obtain a quantized version of the true input signal £[n| as

%[n] = X[n] + &4[n]. (7.11)

This quantity, in turn, is then used as input for the prediction of the next sample. The
decoding process is shown in Figure 7.2: the received signal is first decoded (block
“BAQ~!”) and then the same prediction loop is implemented to finally get a quantized
version of the original SAR raw data sample £[n| as in (7.11). It is worth to point out
that the prediction block takes as input the quantized version of the prediction error. In
this way, the exact same sample value &q[n] is employed both, at encoding and decod-
ing stage, hence avoiding stability problems due to the propagation and accumulation
of reconstruction errors in the feedback loop. The scheme depicted in Figure 7.1 and
Figure 7.2 refers to a prediction order Np = 1. Obviously, if Np > 1 a corresponding
number of preceding samples needs to be used for prediction in the feedback loop as
in (7.6).

It is worth to point out that, for the present investigations, a causal predictor has been
considered, i.e., only preceding samples are used in the prediction process, according
to (7.6). A causal filter represents the simplest prediction scheme, which minimizes the
required onboard storage and computational effort, if compared to other predictor types
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and, e.g., the alternative method proposed in [128]. For a causal predictor, the decoder
reconstructs each sample by using the information (i.e., the quantized prediction errors)
received at previous time instants, and both the encoding and decoding loops are im-
plemented by a recursive filter, as shown in Figure 7.1 and Figure 7.2. Equivalently, an
anti-causal filter could be also employed: in this case, the encoder cannot operate in
real time (since it needs first to “wait” for the future samples needed for the prediction),
hence requiring an increased onboard complexity for its implementation. Then, the de-
coder reconstructs the data stream from the last received sample to the first one (i.e., “in
the opposite direction” with respect to a causal prediction scheme). A causal predictor
achieves the same performance gain of an anti-causal one of the same order, being the
autocorrelation of the SAR raw signal an even function, and both require, for their im-
plementation, the storage in the onboard memory of at least of two range lines at a time,
i.e., one for the prediction and the actual one for calculating the prediction error.

Different is the scenario represented by a non-causal filter, where both past and future
samples are exploited in the prediction process, and at least three range lines need to be
stored at a time (i.e., two for the prediction and the actual one for calculating the predic-
tion error). Similarly to an anti-causal predictor, a non-causal filter must wait for future
sample(s) to derive the corresponding prediction value, hence requiring an increased im-
plementation complexity. For this, a relevant issue is represented by the fact that, if for
a causal predictor the samples used for the prediction are, in their turn, the result of a
prediction and quantization operation within the recursive loop (as in Figure 7.1), this is
not true for a non-causal predictor: here, the future samples employed in the prediction
filter are used “as is”, whereas, at decoding stage, only the quantized version of the pre-
diction errors is available. This inconsistency between the information available at the
encoding stage and the one available at the decoding stage must be carefully taken into
account in order to avoid stability problems in the reconstruction loop due to possible
error propagation caused by quantization. Moreover, for a non-causal predictor the re-
construction process cannot be carried out “sample by sample” (differently from a causal
or an anti-causal filter), but must be approached as a linear equations system, where each
equation represents the linear combination of the preceding/following samples (this oper-
ation requires additional processing effort on ground, which, however, does not represent
a critical aspect). To conclude, non-causal prediction can in principle be used for data
volume reduction in a staggered SAR system. However, the possible performance im-
provement with respect to a causal or an anti-causal predictor, which is implied by the
better exploitation of the correlation between neighboring samples, must be traded by
taking into account the increased scheme complexity and the larger number of samples
to be stored on board, and by considering the impact of all the aforementioned aspects.
These will be addressed in details in future research studies and investigations.

The performance gain Gy, obtained with a Nf)h-order predictor is expressed as the
ratio between the variance of the prediction error 682,Np and the one of the input signal
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Figure 7.1: Predictive quantization encoding scheme.
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Figure 7.2: Predictive quantization decoding scheme.
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that is, the smaller the dynamic of the prediction error (i.e., its entropy), the larger the
resulting coding gain.

Since the prediction error is obtained as a linear combination of Np Gaussian random
variables (see Section 7.2.1), according to (7.6) and (7.7), €[n] is also Gaussian (this
is strictly true if no quantization is applied in the recursive loop, but holds in practice
with reasonable accuracy). The Gaussian nature of the prediction error implies that a
reduction of the signal dynamic, achieved by means of the prediction process, results in
a decrease of its information entropy. For a given set of system parameters, this allows
for the derivation, in closed form, of the prediction gain Gy, by estimating the standard
deviation of the prediction error Og », and substituting it into (7.12). Let us consider the
simplest case of a 1%-order predictor, where Np = 1 and the previous sample only is used
in the prediction filter. According to the notation used in (7.7), the random variable € is
obtained as the difference between the random variables X and X as

€=X-X~N(0,0%+ 07 —2p;-0x 0g), (7.13)

being p; the autocorrelation value obtained for the time lag T = PRI, according to (7.10),
where, in turn, R,(7) is expressed in (7.4). By modeling the input signal as a stationary
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random process (i.e. its unconditional probability distribution does not change in time),
due to the weighting introduced in the prediction process, it follows that

oz = Biox. (7.14)

According to (7.8), B; = p; (being C1 ; = 1, see (7.9)) and the variance of the prediction
error in (7.13), 682 Np—1> €an be further simplified as

07 o1 = 0% (1—p1)- (7.15)

By substituting (7.15) in (7.12), the prediction gain for a 15'-order predictor can be finally
expressed as
G =(1-p7)". (7.16)

The prediction gains Gy, for Np = {2, 3, 4} are derived by following the same proce-
dure and are expressed as

Gy = (1+B{+B7+2p1(Bi1B2— 1) —2p2B2) ", (7.17)

Gy =[1+B7 +B7 + B+
+2p1(B1 B2+ B2B3 — Br1)+ (7.18)
+202(B1Bs — B2) —2p3Bs] ',

Ga =[1+B7 + B3 + B3 + Bi+
+2p1(B1B2+ B2z + B3Bs — B1 )+
+2p2(B1B3 + B2 s — B2)+ (7.19)

+203(B1Bs — B3) —2paPa) .

The weights {3,} are obtained from (7.8) for each prediction order. Their expression
as function of the autocorrelation values {p, } is not included in the above equations to
avoid large formulations.

For data digitization, a block-adaptive quantizer (BAQ) is considered, which, as it has
been already mentioned, exploits the input signal statistics to perform a block-wise quan-
tization of the SAR raw data [38]. Hence, the encoding/decoding schemes pictured in
Figure 7.1 and Figure 7.2 are implemented on samples located in successive range lines
and for blocks of Myjock range samples: first, the prediction process is carried out for each
of the Nyjock range samples (i.e., located at Nypjocx consecutive range bins) independently;
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then, once the difference from the data block and its prediction has been calculated sam-
ple by sample for each range bin, the BAQ adapts the quantization levels to the statistics
of the corresponding prediction error block, and a Cartesian scheme is usually imple-
mented, i.e., the I and Q components of the complex raw signal are separately treated
and quantized.

7.2.3 Gap Considerations

The location of blind ranges (gaps) along the azimuth dimension of a staggered SAR
acquisition and their range extension is related to the specific PRI sequence employed,
and is therefore known a priori (i.e., at commanding time). This valuable information can
be exploited to dynamically optimize the bit rate allocation and to adapt the prediction
process for the samples located in the gap vicinity, in order to better recover the missing
information and, ultimately, to improve the overall signal reconstruction quality. The
left-hand side of Figure 7.3 shows a hypothetical distribution of the blind ranges (black
rectangles) within a staggered SAR acquisition. The range and azimuth dimensions are
indicated at the bottom-left of the figure. Each vertical stripe represents a single range
line, while each gap region ideally extends by many hundreds of samples along the range
dimension. In particular, if elaborated non-uniform PRI sequences are employed, gaps
can be displaced in range such that two consecutive azimuth samples at the same range
are never missed [102]. The right-hand side of Figure 7.3 shows a zoom of the raw data
matrix which is affected by a blind range (in black). Each cell corresponds to a raw data
sample. The proposed technique is implemented by jointly applying a variable bit rate
allocation (which is provided in each box; M, represents the mean bit rate in bits/sample)
together with a dynamic selection of the prediction order in the gap vicinity. In particu-
lar, the order of the prediction filter is dynamically set as indicated on the right-hand side
of Figure 7.3. The first azimuth sample after the gap is quantized by means of a stan-
dard BAQ (i.e., no prediction is applied). Then, the following sample (in red) is encoded
through a 1%%-order predictor (P-BAQ), which exploits the information carried out by the
previous sample only. The next one (in green) is then encoded through a 2"-order pre-
dictor (in general, the n-th sample after the gap is encoded with a predictor filter of order
n-1). The operation is repeated until the operative prediction order Np is reached, where
Np is defined at system design stage as trade off between system complexity and achiev-
able prediction gain (this relevant aspect will be further detailed in the next section). The
described precaution, which consists of an adaptive selection of the order of the predic-
tion filter (as sketched by the different colors on the right-hand side of Figure 7.3), aims
at excluding the missing samples in the prediction process, hence allowing for a better
signal reconstruction. Indeed, the prediction filter is designed under the assumption that
the SAR raw data can be modeled as a stationary random process, and therefore the gaps
are in principle not taken into account in the weight definition in (7.8). If, on the other
hand, a constant Nf)h-order predictor were used, this would result in a larger prediction
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Figure 7.3: (Left) Distribution of the blind ranges (black rectangles) within a staggered
SAR acquisition. Each gap region typically extends by several hundreds of
samples in the range direction. (Right) Zoom-in of a raw data region affected
by gaps. Each cell corresponds to a raw data sample. The proposed method
is implemented by jointly applying a variable bit rate allocation (indicated in
each box, where N, represents the mean bit rate in bits/sample) together with
a dynamic selection of the prediction order (depicted with different colors
and shown on the top of the figure) in the gap vicinity.

error, hence degrading the performance gain in (7.12).

Possible non-stationarities may be caused by temporal changes of the target during the
integration time, which, for typical spaceborne SAR systems, are in the order of a few
seconds. Such a temporal decorrelation leads to an increase of the Doppler bandwidth
and, in turn, to a worsening of the performance (e.g., defocusing) in the resulting SAR
image. However, in the present scenario, azimuth samples which are only a few PRI
intervals apart are used in the prediction filter. Even for a very long predictor of, e.g.,
10t order (Np = 10), a maximum time lag Az = N,,- PRI ~ 3.7 ms is obtained, which is
much shorter than the decorrelation time typically observed for any kind of vegetation
imaged at X band at moderate to high wind speeds, as discussed in [146].

Regarding the variable bit rate allocation to be applied in the gap vicinity, it is worth
noting that the bits originally used for a missing sample could be ideally not downloaded
at all, i.e., O bits are used. Indeed, it could be verified that the best way to exploit the
gained M bits is, as expected, to allocate them, in equal measure, before and after the
gap (i.e., a “distributed” bit allocation), leading to the N, + %Nb = §Nb bits/sample for
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Table 7.1: Bit allocation applied to the samples in the gap vicinity.

. before 1% after | 2" after | 3" after
bit rate on gap
gap gap gap gap
2 3 0 3 2 2
3 4 0 4 4 3
4 6 0 6 4 4
6 8 0 8 8 6

the samples in the gap vicinity on the right-hand side of Figure 7.3. Since the BAQ
operates at certain integer bit rates, the actual bit allocation in the neighborhood of a gap
is defined in Table 7.1 for bit rates of 2, 3, 4, and 6 bits/sample, which are indicated in
the first column of the table.

To obtain focused images, staggered SAR raw data need to be first interpolated on a
uniform grid. For this purpose, a Best Linear Unbiased (BLU) interpolation is employed
[41], [128], which exploits the correlation between neighbouring azimuth samples to
optimally estimate the values on the output grid and to reconstruct the gap samples.
This efficient allocation allows for a consistent mitigation of the errors introduced by the
combined effect of quantization and interpolation. Indeed, it has been verified that this
simple but effective strategy allows for a quality of the reconstructed signal (in terms of
error power) which is practically equivalent to the one obtained for gap-free data.

The proposed method jointly exploits a dynamic bit rate allocation and a variable
prediction order in the gap vicinity and is therefore named dynamic predictive block-
adaptive quantization (DP-BAQ), whose effectiveness for data volume reduction is
demonstrated in the next section for a real mission scenario.

7.3 Simulation Results

Staggered SAR is currently considered as the baseline acquisition mode for Tandem-L,
a DLR proposal for a highly innovative L-band single-pass interferometric and fully
polarimetric radar satellite mission to monitor dynamic processes on the Earth surface
[37], [105]. A list of the system parameters for the Tandem-L mission is given in Ta-
ble 7.2. In order to assess the proposed method for data volume reduction, simulations
of SAR raw data for a Tandem-L-like system in single-pol staggered SAR mode have
been carried out, and the performance of different data compression algorithms has been
compared.

The azimuth pattern of the Tandem-L reflector antenna, with a diameter of 15 m, can
be well approximated by the one generated by a planar array with uniform aperture and
azimuth length L, = 10 m [41]. For the present analyses, the planar approximation has
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Table 7.2: Tandem-L system parameters.

Parameter

Value

Orbit height, hg

745 km (@ equator)

Carrier frequency, f.

1.25 GHz (L band)

Polarization single/dual/quad
Horizontal baselines 800 m...20 km
Revisit time 16 days

Range bandwidth, B;g | up to 84 MHz
Mean (staggered) PRF | 2700 Hz
Doppler bandwidth, Bp | 1130 Hz
Azimuth resolution, 6, | 7m

Swath width, W,

175 km (quad) ...350 km (single/dual)

Raw data quantization

BAQ @ 4 bits/sample

Downlink capacity ~8 Terabyte/day
Reflector diameter I5m
Mission lifetime 10 years

been considered since it allows for the expression of the theoretical autocorrelation func-
tion in closed form as in [131], and which is shown in Figure 7.4 as a function of the
time lag, Ry(7) (in red). For Tandem-L, the mean PRI is about 0.37 ms, hence lead-
ing to a correlation between adjacent azimuth samples of about 0.67, which is identi-
fied by the dashed black lines in the figure. As introduced in Section 7.1 and summa-
rized in Table 7.2, such a high correlation is caused by the large system oversampling
of = PRF/Bp ~ 2.39 (i.e., the data volume to be downlinked increases by almost 140%),
which is required for the proper staggered SAR operation.

Figure 7.5 shows the theoretical gain as a function of the PRF up to the 6!"-order pre-
dictor, derived as in (7.16)-(7.19). For this, a constant (i.e., not staggered) PRF has been
employed. As expected, the larger the PRF, the larger the correlation among the raw
data samples, the higher the resulting prediction gain. In particular, the upper boundary
of the prediction gain strictly depends on the system characteristics (i.e., antenna size
and shape of the azimuth antenna pattern, satellite velocity, and PRF, according to (7.3)-
(7.5)), which directly affect the values of the correlation array p and of the covariance
matrix C. These, in turn, define the resulting gains according to the mathematical ex-
pression in (7.8) and (7.16)-(7.19). The best achievable prediction gain can therefore be
numerically estimated once the specific system parameters are set (for a given PRF, the
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Figure 7.4: Theoretical autocorrelation of the azimuth SAR raw data as a function of
the mutual time shift 7. For Tandem-L the mean PRI is of about 0.37 ms,
which leads to a correlation of about 0.67 between adjacent azimuth samples
(dashed black lines).

gains practically saturate beyond a certain prediction order). The oscillating behavior
shown by the higher order predictors is due to the inversion of the covariance matrix C
for the weights derivation in (7.8), in presence of very low correlation values: indeed, an
Np-order prediction gain Gy, starts to increase again when a not negligible correlation
value of the same order (i.e., py, derived as in (7.10)) is obtained for the corresponding
PREF value.

The mean PRF of the single polarization mode of Tandem-L is 2700 Hz and is indi-
cated by the dashed black line. For this, the prediction gain ranges between 2.5 dB and 5
dB for predictors up to the 4™ order (red curve), whereas for higher orders no significant
additional gain is obtained.

Let us now focus on the staggered SAR case. Figure 7.6 shows the PRI sequence which
has been employed for the present simulations. It consists of about 230 different PRIs,
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Figure 7.5: Theoretical prediction gain Gy, for up to the 6" order as a function of the
PRF for a Tandem-L-like system (see Table 7.2). The gains for a PRF of
2700 Hz are obtained in correspondence to the dashed black line.

which are cyclically repeated during the staggered SAR acquisition (the dashed horizon-
tal red line indicates the mean PRI, which is about 0.37 ms). For the considered system,
about 4% of the acquired raw data are affected by gaps [102]. Moreover, a 4-bit BAQ is
up to now foreseen for the entire Tandem-L mission, which guarantees an interferometric
coherence loss smaller than 1% [94], [71], hence minimizing the effects of quantization
errors (the block size for BAQ is set to Nyjock = 128 range samples, which corresponds
to a realistic block size implemented on board, e.g., the DLR satellites TerraSAR-X and
TanDEM-X [94]). Based on the theoretical coding gains in Figure 7.5 for a mean PRF
of 2700 Hz, a prediction order Np < 4 is assumed in the following.

As performance measure, the signal-to-quantization noise ratio (SQNR) of the focused
SAR image has been evaluated, according to the definition in (6.7). For this analysis,
non-uniformly sampled raw data have been generated, which have then been compressed
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Figure 7.6: Example of a PRI-sequence employed for the present simulations, which is

cyclically repeated during a staggered SAR acquisition [102]. The dashed
red line indicates the mean PRI, which is of about 0.37 ms.

with the proposed DP-BAQ as well as with a standard BAQ for comparison; then, a Best
Linear Unbiased (BLU) interpolation was applied to resample the non-uniform staggered
SAR raw data on a uniform grid and, finally, SAR focusing was performed. By select-
ing the elaborated sequence of PRIs shown in Figure 7.6, one can impose that no more
than one sample at a time is missed in the azimuth direction [41]. Figure 7.7 shows
the SQNR obtained for a homogeneous target as a function of the average rate Ny, and
for different quantization schemes. The performance of a BAQ with constant bit rate
is taken as reference and is given in black; then, the SQNR for the proposed DP-BAQ
for different prediction orders is depicted as follows: 1% order in turquoise, 2" order in
blue, 3™ order in green, and 4" order in red. No significant additional gain is observed
for prediction orders Np > 4. Assuming now as target performance the one obtained with
a 4-bit BAQ, the proposed DP-BAQ allows for an improvement of SQNR of up to around
5.5 dB. Alternatively, a 4M-order DP-BAQ at 3 bits/sample approximately provides the
same SQNR of a 4-bit BAQ (both around 22 dB), hence allowing for a data reduction
of about 25%. Analogously, if a 3-bit BAQ is used as reference, about 2.25 bits/sample
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Figure 7.7: Signal-to-quantization noise ratio (SQNR) obtained from a homogeneous
SAR scene as a function of the average rate Ny, for a standard BAQ with
constant bit rate (black), and for the proposed DP-BAQ (up to the 4™ order),
with variable bit rate allocation and dynamic selection of the prediction order
in the gap vicinity.

can be used for the proposed method, corresponding again to a data reduction of about
25%. When using lower compression rates, a poorer performance gain can be reasonably
expected. This is due to the larger quantization noise affecting the raw data, which im-
plies an additional loss in the azimuth correlation, hence resulting in a more “imprecise”
prediction (i.e., a larger (782’ Np 10 (7.12)). Tt is worth highlighting that the estimates of data
rate reduction provided above are derived assuming that, for the reference BAQ scenario
(black curve), the missing raw data samples are treated as valid (gap-free) signals and
are hence quantized with the corresponding number of bits (indicated on the x-axis of
Figure 7.7). If one assumes, on the other hand, that the missing samples can be actually
“cut” from the raw data matrix and not downlinked at all, the effective data rate to be
considered as reference reduces by about 4% (which corresponds to the percentage of
acquired raw data affected by gaps for the present staggered SAR system). This implies
a slightly lower data reduction of about 22% for both, the 3-bit and 4-bit case.
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If compared with the method proposed in [128], DP-BAQ results in a higher data rate,
but allows for a simpler and cheaper onboard implementation. Indeed, the prediction
process basically consists of a linear combination of Np < 4 range lines, which can be
performed in real time by using a single state-of-the-art FPGA. In addition to that, the
proposed method preserves the non-uniformly sampled SAR raw data that may be used
for a more advanced on-ground processing as in [141] and [147]. On the other hand, the
data reduction technique in [128] typically requires the storage and processing of more
than 15 range lines. For this, a larger number of new-generation FPGAs is required (due
to their strong storage limitations), and the number of operations to be executed signifi-
cantly increases, making the onboard real-time implementation a cost-driving challenge.

Looking at Figure 7.7, it can also be noticed that the SQNR values show, going from
one integer rate to the next one, first a slow variation and then a steeper trend, which
can be explained as follows: the fractional quantization rates shown in Figure 7.7 are
implemented by toggling the bit rate selection of an integer-bit BAQ quantizer along
azimuth and/or range, as proposed in [121], hence allowing for higher flexibility of com-
pression without increasing the overall system complexity. For this, let us assume a
target non-integer bit rate Ny, frac. According to [121], Ny frac can be “synthesized” by
means of a sequence of integer rates of length Nyeq, where the next smaller integer rate
(Nbint = [N frac|) occurs with a relative frequency fisr € [0,1], and the next greater in-
teger one (Np sup = [Nb frac |) occurs with a relative frequency 1 — fipr. By applying the
described rate sequence of length Nyeq for the quantization of the SAR data, e.g., along
azimuth, the expected SQNRy,,. associated to the resulting non-integer rate is expressed
as

SQNRsup ' SQNRinf
finf : SQNRsup + (1 - finf) ’ SQNRinf,

SQNRfp,e = (7.20)

being SQNR;,; and SQNRg,, the signal-to-quantization noise ratio associated to N jnf
and Ny sup, respectively. As an example, the non-integer rate Ny, frac = 3.25 bits/sample
can be implemented by employing a sequence of, e.g., Nseq = 20 bit rate values and se-
lecting 15 times Ny = 3 bits/sample (corresponding to a relative occurrence
finf = 0.75) and the remaining 5 times N syp = 4 bits/sample. The above equation is
derived by simply weighting the noise power contributions associated to the integer rates
according to the factor fi,r. Moreover, it explains the non-linear trend shown by the
SQNR for fractional bit rates and has been verified by the simulation results in Figure 7.7.
It is worth highlighting that possible variations in the image quality among neighboring
pixels, resulting from the use of a variable bit rate along azimuth, are actually averaged
after SAR processing, provided that the extension Lgsq (in meters) of the azimuth se-
quence of length Nyeq, used to synthesize the target fractional rate, is sufficiently smaller
than the synthetic aperture Ly, i.e., Lseq << Ls (indeed, Ls represents the azimuth dis-
tance within which the targets overlap their response in the raw data domain). These two
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quantities are expressed as
Lseq - VS'PRI'Nseq, (7.21)

Li=A—. (7.22)
a

For the aforementioned example of Ny, froc = 3.25 bits/sample, the corresponding se-
quence of length Ngeq = 20 results in an azimuth extension of about 60 meters. In this
case, Lgeq 1s (more than) two orders of magnitude smaller than Lg, which, for the above
listed parameters, is in the order of a few tens of kilometers. As a consequence, the vari-
able quality in the raw data is completely “smoothed” after data focusing and hence not
detectable in the resulting SAR and InSAR products, where, instead, a uniform perfor-
mance loss is observed, as if an equivalent fractional bit rate My, roc Was used.

As it has been already pointed out, the main advantage of employing azimuth-switched
quantization (ASQ) [121] is that it allows for a higher flexibility in terms of achiev-
able compression rate and performance without increasing the onboard computational
effort. Alternatively, native non-integer bit rates can be implemented by following a uni-
form quantizer with additional hardware/software blocks, such as an entropic (Huffman)
coder. This solution achieves in general slightly better performance with respect to a
traditional May-Lloyd non-uniform quantizer and constant length coding, such as BAQ
[148], at the cost of an increased overall system complexity. However, as the length (i.e.,
the number of bits) of the encoded symbols is determined by the input signal statistics,
the use of an entropic coder does not allow to exactly predict the data volume for a cer-
tain SAR acquisition (differently from ASQ, where indeed the data rate can be accurately
calculated before the SAR survey), which causes additional complexity for the operation
of SAR missions. A comparison between the two referred schemes will be subject of
future research and investigations.

When considering the variable PRI shown in Figure 7.6, for the application of predic-
tive coding in staggered SAR systems one should in principle take into account the time-
variant autocorrelation properties of the non-uniform azimuth SAR raw signal. However,
it could be verified that the performance of the predictor obtained by employing a set of
weights derived for each one of the around 230 PRI intervals is practically the same as
the one obtained by using, for all pulses, the weights derived from the mean PRI of about
0.37 ms (the difference in SQNR is less than 0.1 dB). This means that, once the antenna
pattern, the PRI sequence and the prediction order are defined, the resulting weights f3;
are constant values that can be derived before commanding, and then stored on board in
registers and recalled by the predictor during the SAR data take.

The importance of exploiting the a priori knowledge about the gap locations in order
to dynamically adapt the order of the prediction filter is shown in Figure 7.8, which
depicts the SQNR estimated on the raw data for a homogeneous target as a function of
the azimuth samples (the average over a large number of range samples is considered),
and for different quantization schemes. In this example, two gaps are highlighted by
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Figure 7.8: Signal-to-quantization noise ratio (SQNR) as a function of the azimuth sam-
ples (averaged along range), for different quantization schemes: standard
BAQ (black), predictive BAQ with constant bit rate and fixed 4™-order pre-
diction (orange), and the proposed DP-BAQ with dynamic 4"-order predic-
tion and constant bit rate (red). Two gaps are highlighted by the vertical
grey lines, and a significant improvement in performance of 3-4 dB can be
observed with the proposed method right after the gap occurrence, which
outperforms all other considered approaches.

the vertical grey lines. The performance of a standard BAQ is depicted in black and is
obviously almost constant for all the samples, since the gaps do not have any impact on
it. Then, the performance of a 4"-order prediction (P-BAQ) with fixed predictor order
and constant bit rate at 4 bits/sample is shown in orange, and a clear drop of performance
is visible after each gap, as a consequence of the larger prediction error introduced by
the missing sample. The prediction error gradually reduces (i.e., the SQNR increases)
for the following samples, and the method reaches again its “regime” SQNR of about 24
dB after 5 samples, i.e., when the gap is not employed anymore by the prediction filter.

A significant gain of about 3-4 dB is observed if a dynamic prediction order is selected
after the gap occurrence (in red), according to the proposed DP-BAQ. It is worth noting
that, in this example, the bit rate has been kept constant in the gap vicinity, in order to
better highlight the impact of the dynamic prediction order only on the final performance.
Moreover, one can notice that the SQNR values observed in Figure 7.8 are different, and
in particular smaller, than those shown in Figure 7.7. This is due to the fact that the
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latter are calculated on the focused SAR scene, where a processed Doppler bandwidth
Bp = 1130 Hz is applied, which is less than half of the PRF (being PRF = 2700 Hz).
Such a low-pass filtering operation contributes to mitigate the effect of digitization er-
rors, since it averages out high-frequency contributions in the focused data and alleviates
also the occurrence of saturation effects, ultimately resulting in a better quantization per-
formance (on the other hand, for the raw data the full Doppler bandwidth is used).

In addition, the proposed method has been evaluated for the simulated SAR backscat-
ter profile 6¥ depicted in Figure 7.9 in brown, which shows a “jump” of 10 dB along the
azimuth dimension. Such a large dynamic range typically occurs over highly inhomoge-
neous targets, such as, e.g., urban areas. The two graphs depict the SQNR as a function
of the azimuth distance for different quantization schemes: Figure 7.9 (a) shows the BAQ
(black) and P-BAQ (1% order in turquoise, 4™ order in red) with fixed prediction order
and with constant bit rate N, = 4 bits/sample; Figure 7.9 (b) depicts the BAQ (black)
and the proposed DP-BAQ (1% order in turquoise, 4™ order in red), all exploiting vari-
able bit rate in the gap vicinity for N, = 4 bits/sample (see Table 7.1). Again, if a fixed
prediction order is employed (Figure 7.9 (a)), the presence of gaps (for the considered
staggered SAR system, about 4% of the acquired raw data is affected by gaps) degrades
the reconstruction so much that a 4®-order predictor performs worse than a 15-order
one. On the other hand, the use of a dynamic prediction order (as for the DP-BAQ in
Figure 7.9 (b)), together with a distributed bit rate allocation in the gap neighborhood,
significantly improves the resulting performance, which can be exploited to reduce the
resulting data rate. In particular, the increase in performance due to the optimized bit
rate allocation around the gap (hence, disregarding the gain introduced by the predictive
coding) can be noticed when comparing the two black curves depicted in Figure 7.9 (a)
and Figure 7.9 (b). Indeed, these show the performance for a “pure” BAQ (i.e., where
no prediction is applied), and about 1.5 dB SQNR improvement is observed when an op-
timized (variable) bit rate is applied around the gap (Figure 7.9 (b)), with respect to the
case where a constant bit rate is used (Figure 7.9 (a)). A significant loss in SQNR is ob-
served for all considered compression techniques over the area of low backscatter (with
a mean backscatter of -10 dB) close to the high-backscatter one. Such a performance
degradation is due to the masking effect caused by the presence of high-backscatter tar-
gets in close vicinity and “propagates” up to a distance comparable with the synthetic
aperture Lg [94], [103]. Indeed, L is expressed in (7.22) and, for the considered system
(A =23.9cm, L, = 10 m, and, for an elevation angle 6, = 40° considered in this simula-
tion, Ry ~ 900 km), it results that Lg ~ 22 km. This distance approximately corresponds
to the extension up to which the SQNR profiles are affected from about 30 km to the
first discontinuity at 50 km, and from the second discontinuity at 100 km to 120 km.
The described effect strongly affects the reconstruction in the focused SAR image: as an
example, in Figure 7.9 (a) the SQNR varies from 15-17.5 dB in the low-backscatter area
up to about 25-27.5 dB in the high-backscatter one.
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Figure 7.9: Backscatter profile (¢°, in brown) and corresponding SQNR as a function of
the azimuth distance for different quantization schemes: (a) BAQ (black) and
P-BAQ with fixed prediction order (1% order in turquoise, 4" order in red)
and constant bit rate; (b) BAQ (black) and the proposed DP-BAQ (1% order
in turquoise, 4™ order in red), by applying variable bit rate in the gap vicinity.
The curves are derived for an average rate Ny, of 4 bits/sample.
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7.4 Chapter Summary

In this chapter, onboard data volume reduction in staggered SAR systems is addressed.
Such systems require the acquisition of a large volume of data for the imaging of wide
swath widths with fine azimuth resolution. Staggered SAR raw data samples exhibit
a certain correlation in azimuth, which is introduced by the antenna pattern and a sig-
nificant oversampling. The proposed method is based on the use of linear predictive
coding, which aims at removing the data redundancy by means of an efficient encoding
and quantization of the azimuth SAR raw samples. In particular, for the present investi-
gations a causal predictor has been considered, i.e., only preceding samples are used in
the prediction process. Dynamic predictive block-adaptive quantization (DP-BAQ) ex-
ploits the a priori knowledge of the position of the gaps occurring during the staggered
SAR operation, by adaptively selecting the bit rate and the prediction order in the gap
vicinity, in order to improve the resulting performance. Simulations for a Tandem-L-like
L-band staggered SAR system have been conducted for different compression settings (in
terms of quantization scheme, prediction order, and bit rate allocation strategy) and SAR
backscatter distributions, showing that the proposed technique allows for a significant
reduction of the data volume by requiring, at the same time, a modest processing effort
for its onboard implementation. The proposed technique will be applied and verified on
real staggered SAR data, similar to [140], as subject of further research and publications.
Furthermore, the investigation of alternative prediction techniques, such as non-causal
and/or non-linear prediction schemes, or the inclusion of polar quantization methods,
will be another topic for possible studies and could be considered for the design of future
SAR systems, where the combined use of even larger PRFs and/or oversampling factors
will lead to a further improvement of the data reduction capacity.
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The work presented in this thesis is the result of research activities conducted at the
Microwaves and Radar Institute (HR) of DLR, Germany, from 2013 to 2019. Several
aspects of onboard quantization for SAR systems have been analyzed and novel quan-
tization algorithms have been developed. In this chapter, the overall research work is
summarized, the main results are discussed, and an outlook for further investigations is
provided.

8.1 Summary and Discussion

Thanks to its high-resolution, day-night, and weather-independent imaging capabil-
ities, synthetic aperture radar (SAR) represents a powerful and well-recognized tech-
nique for a large number of remote sensing applications. For the design of present and
next-generation spaceborne SAR missions, the implementation of innovative acquisition
modes and system architectures allows for high-resolution imaging of a wide swath, to-
gether with the use of large bandwidths, high pulse repetition frequencies (PRFs), and
multiple acquisition channels. Such an increased capability implies that a considerable
volume of data needs to be acquired and transmitted to the ground, which poses more
stringent demands on the onboard memory and downlink capacity. Therefore, a proper
quantization of the SAR raw data is of utmost importance, as the compression rate ap-
plied for the digitization of the recorded radar signal, on the one hand, directly affects
the quality of the resulting SAR products and, on the other hand, defines the volume of
data to be stored and managed by the system, being a key aspect for the design of SAR
missions.

In Chapter 1, the most important stages in the radar and SAR history, together with an
overview of the civilian spaceborne SAR missions are summarized.

Chapter 2 provides a general overview of SAR remote sensing. Relevant system per-
formance parameters are introduced, such as the resolution and sidelobes, which are
derived from the impulse response function (IRF), together with the concepts of radar
backscatter and speckle. The system sensitivity (NESZ), range/azimuth ambiguities, and
nadir returns represent key performance measures to be considered for SAR system de-
sign. Furthermore, the basic concept of SAR interferometry (InSAR), the acquisition
geometry, and the different operation modes are illustrated. InSAR quality parameters,
such as the interferometric coherence, phase errors, and relative height accuracy of the
resulting DEM are directly impacted by quantization errors, and are therefore recalled as
well.

In Chapter 3, the fundamental background on quantization theory is provided, specif-
ically applied to SAR data. Relevant parameters, which define the type of quantizer and
its performance, are recalled, together with a description of the system and signal mod-
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els and of the typical sources of quantization errors. The constraints for designing the
optimum (Lloyd-Max) quantizer are detailed along with the definition of the quantizing
theorem. An overview of the state-of-the-art quantization schemes for SAR systems is
given, with particular focus on the widely used block-adaptive quantization (BAQ) [38],
[39]. Low-amplitude quantization errors are described as well, which are introduced by
the use of adaptive quantizers in SAR data and represent an additional significant error
source specifically in presence of heterogeneous SAR backscatter distributions.

The novel contributions of the thesis begin in Chapter 4, where the effects of raw data
quantization on TanDEM-X data are investigated in detail. Experimental data takes ac-
quired with best quantization resolution (i.e., 8 bits/sample) are recompressed on ground
to all available BAQ rates, hence providing multiple data sets per satellite stream. Key
parameters in determining SAR and interferometric performance are evaluated over test
areas showing different land cover types and topography characteristics. The effect of
system and acquisition parameters which critically affect quantization errors, such as the
standard deviation of the SAR backscatter 00, the number of interferometric acquisi-
tions N,cq, and the number of looks M, are taken into account as well.

As an example, the coherence loss due to quantization for, e.g., the 2-bit BAQ case
ranges from 8% for flat and homogeneous areas, to 20% for irregular regions, such
as urban areas. Based on the obtained results, a novel method is introduced, named
performance-optimized block-adaptive quantization (PO-BAQ), which aims to optimize
the required resource allocation and, at the same time, to control the interferometric
performance degradation, by exploiting a priori knowledge about the SAR backscatter
information. If combined with high-resolution and precise information of the Earth’s
topography and backscatter, which is by now provided by a variety of SAR sensors oper-
ating at different radar wavelengths, the proposed method may represent a helpful tool to
adapt the data rate to the specific SAR application, depending on the associated require-
ments.

State-of-the-art compression schemes (such as the BAQ) are not able to grant a suf-
ficient flexibility in terms of performance and resource allocation, since integer quanti-
zation rates only (e.g., 2, 3, or 4 bits/sample) are allowed. For this reason, fractional
compression rates can be realized by including additional hardware (e.g., a Huffman
coder) prior to the quantizer block [96], [97]. In Chapter 5, a novel compression method,
named azimuth-switched quantization (ASQ) has been suggested, whereby non-integer
rates are synthetized by properly toggling the integer BAQ rates along azimuth and/or
range according to predefined sequences. The performance of the proposed ASQ is eval-
uated and assessed on SAR and interferometric TanDEM-X experimental data. ASQ
enables highly flexible adaptation of SAR performance and resulting onboard data rate,
hence providing an increased flexibility for the design and planning of SAR missions.

For conventional single-channel SAR systems, it is well known that the PRF poses
contradictory constraints for the imaging of wide swaths and, at the same time, of fine
azimuth resolutions. Indeed, the former dictates a low PRF to allow for a sufficient
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temporal separation between subsequent SAR pulses, whereas the latter requires a large
Doppler bandwidth and, therefore, high PRFs. Such inherent limitations can be over-
come by using multiple receiving apertures, which are mutually displaced in the along-
track direction. The coherent combination of the individual received signals allows for
adequate azimuth ambiguity suppression and, in this way, high-resolution wide-swath
imaging is achieved [40], [58]. Besides an increased system complexity, the drawback
for such an improvement in swath coverage and resolution is represented by a signif-
icantly larger data volume to be acquired and transmitted to the ground, which poses
stringent constraints on the onboard memory and downlink capacity. The novel approach
proposed in Chapter 6 exploits the intrinsic correlation among the azimuth samples, and
the multi-channel SAR data are decomposed by means of a non-adaptive orthogonal
transformation (a simple discrete Fourier transform). Then, an optimized allocation of
the quantization rates is applied to the transformed coefficients (for data digitization, a
standard BAQ is considered), allowing for an increase of the resulting performance for
a preselected data rate. Simulations are carried out for a single-platform C-band system
with eight azimuth receive channels and show that, with the proposed method, a data
volume reduction of about 20%-25% can be achieved for typical BAQ rates employed
for SAR applications.

Finally, Chapter 7 addresses onboard data volume reduction in staggered SAR systems.
Staggered SAR is an innovative SAR acquisition concept which exploits digital beam-
forming (DBF) in elevation to form multiple receive beams and continuous variation
of the pulse repetition interval to achieve high-resolution imaging of a wide continu-
ous swath. Staggered SAR is currently considered as the baseline acquisition mode for
Tandem-L, a DLR proposal for a highly innovative L-band single-pass interferometric
and fully polarimetric radar satellite mission to monitor dynamic processes on the Earth
surface [37], [105]. The suggested method is based on the use of linear predictive coding,
which exploits the correlation exhibited by the azimuth raw data samples, introduced, in
turn, by the antenna pattern and by a significant oversampling required for the staggered
SAR operation. According to this, a prediction of each sample is calculated on board
as a linear combination of a set of previous samples. The resulting prediction error is
then quantized and downlinked, which allows for a reduction of the signal entropy and,
in turn, of the onboard data rate achievable for a given target performance. In addition,
the a priori knowledge of the gap positions can be used to dynamically adapt the bit
rate allocation and the prediction order to further improve the performance, as discussed
in Section 7.2.3. Simulations for a Tandem-L-like L-band staggered SAR system are
conducted for different compression settings, showing that the proposed technique al-
lows for a significant reduction of the data volume of about 20%-25% by requiring, at
the same time, a modest processing effort for its onboard implementation. Indeed, the
required onboard processing consists of a linear filter typically of a few (around five)
coefficients, such that the suggested algorithm can be performed in real time by using a
single state-of-the-art FPGA.
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8.2 Outlook

A detailed analysis of quantization effects in SAR data is presented in this work, to-
gether with the definition of novel compression methods aimed, on the one hand, to
achieve a better flexibility in terms of quality and resulting onboard data rate, and, on
the other hand, to reduce the volume of the required onboard data for a given perfor-
mance. Further research developments can lead to improvements in the efficiency of
the onboard quantization and of the potentials for data volume reduction for present and
next-generation SAR systems, and are summarized in the following.

A description of the performance-optimized block-adaptive quantization (PO-BAQ) is
given in Chapter 4. The proposed technique must be validated on real data, to verify
that the degradation resulting from the raw data quantized according to the derived bit
rate map (BRM) matches with the expected performance. In particular, it is necessary to
understand the effective spatial “granularity” in terms of resource allocation achievable
with the resulting BRM, since the bit rates used to quantize portions of the raw data ma-
trix, which are close to each other, reciprocally influence the quality of the focused SAR
images. In this context, a novel contribution will be represented by the use of innovative
acquisition concepts such as cognitive radar [149]. These systems combine intelligent
signal processing with an efficient feedback from the receiver to the transmitter, fostered
by a continuous learning process through the interaction of the radar with the surrounding
environment. This will allow for an efficient resource allocation during the SAR acqui-
sition, such as, e.g., the optimized pointing of the antenna beam and transmit power, but
also a dynamic adaptation of the employed sampling and compression rate towards the
area of interest, as proposed in [150] for maritime surveillance applications.

In the framework of onboard data volume reduction for multi-channel SAR, it is of
interest to investigate the potentials of different orthogonal transformations with respect
to the considered discrete Fourier transform (DFT), such as the discrete cosine (DCT) or
the principal component transform (PCT), together with the detailed analysis of different
system configurations, in terms of, e.g., antenna patterns, number of azimuth channels,
and required processed bandwidth and PRF. Moreover, the suggested MC-BAQ can be
extended to multiple transmit pulses by combining transform coding in the Doppler do-
main with alternative compression schemes such as, e.g., vector quantization [92], in
order to achieve a more effective data reduction. This approach could become of par-
ticular interest if a multi-channel ScanSAR system is considered, as in this case the
azimuth time-variant impulse response, introduced by the burst operation, requires the
illumination of a significantly wider Doppler bandwidth than required for the focusing
of a single target. This means that a receive beam pointing at the edges of the Doppler
spectrum suffers from a certain scan loss, which imposes the use of a higher azimuth
sampling. Furthermore, similarly to the approach proposed in Chapter 7 in the context of
staggered SAR systems, predictive quantization is identified as a promising approach to
exploit the redundancy introduced by the large receive PRF for multi-channel SAR and
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will be investigated as well. For this purpose, alternative techniques, such as, e.g., non-
causal and/or non-linear prediction, or the inclusion of polar quantization schemes, will
be subject of further studies to be included for the design of future SAR systems, where
the combined use of larger PRFs and/or oversampling factors will lead to an additional
improvement of the data reduction capacity.

In the last decades, the radar system technology has experienced significant advance-
ments, which will very likely revolutionize radar system concepts [151]. Recent studies
demonstrate that multi-static SAR missions will pave the way for unprecedented poten-
tials in radar remote sensing [152]. In particular, in [153] the new MirrorSAR system
concept is proposed, consisting of a fractionated SAR system where the scene illumi-
nation and the spatial sampling of the scattered radar signal is carried out by different
platforms. The functionality of the receiver satellites is limited to a transponder-like
routing of the received radar echoes to the active transmitter(s), hence significantly re-
ducing the hardware and downlink requirements for an affordable implementation cost.
The described system architecture can achieve very high resolution SAR imaging of
ultra-wide swaths and allows, among other applications, for single-pass tomography for
the three-dimensional imaging of volume scatterers, and for multi-baseline cross-track
interferometric acquisitions for very high-resolution DEM generation and the monitor-
ing of vector deformation [153], [154]. For such systems, the resulting huge amount
of data, collected by the multiple independent apertures, represents a critical challenge.
However, the simultaneous availability of all received signals on a centralized node can
be exploited by applying, e.g., a proper onboard preprocessing to exploit the mutual re-
dundancy which characterizes multi-static radar signals from close satellite formations.
More specific, the described data correlation can be conveniently represented by means
of an appropriate three-dimensional “information cube”, where the three axes correspond
to time, frequency, and direction of arrival of the recorded signals [155]. Thus, an ef-
ficient bit-allocation in the transformed space may be derived by applying the general
concept of rate distortion analysis to the multi-channel SAR system [87], [156].

Currently, all the compression schemes employed for SAR systems are based on BAQ,
which offers a good trade off between scheme complexity and achievable performance
for a given compression rate. Looking at latest research trends towards big data and
global satellite missions, it is of interest to investigate the capabilities offered by machine
learning and deep learning approaches applied to SAR raw data for the development
of more powerful and complex onboard quantization schemes. If taking into account
the signal-dependent and highly nonlinear behaviour shown by quantization errors in
SAR imaging, the potentials of convolutional neural networks (CNNs) for SAR image
denoising will be further investigated, following the approaches proposed in [157], [158],
[159]. Alternatively, the higher-level information for specific SAR applications can be
selectively extracted on board and downloaded. This choice, on the one hand, requires a
considerable processing effort and represents a non-reversible data reduction approach,
but, on the other hand, it significantly ease the direct data distribution to the users.
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