Armin Grunwald (Hg.)

Jahrbuch des Instituts für Technikfolgenabschätzung und Systemanalyse (ITAS)

2001/2002

Forschungszentrum Karlsruhe GmbH
in der Helmholtz-Gemeinschaft
ITAS 2001/2002
Jahrbuch des Instituts für Technikfolgenabschätzung und Systemanalyse (ITAS)
September 2003

Herausgeber
Prof. Dr. Armin Grunwald
Forschungszentrum Karlsruhe GmbH
in der Helmholtz-Gemeinschaft
Institut für Technikfolgenabschätzung und Systemanalyse (ITAS)
Postfach 3640
D-76021 Karlsruhe
Telefon: 07247/82-2501, -2500
Telefax: 07247/82-4806
E-Mail: grunwald@itas.fzk.de
Internet: http://www.itas.fzk.de

Redaktion
Ingrid von Berg
Reinhard Coenen
Michael Decker

Layout
Waltraud Laier

Umschlaggestaltung
Tassilo Schnitzer

Druck
Wilhelm Stober GmbH, Eggenstein

ISBN 3-923704-42-9

Gedruckt auf chlorfrei gebleichtem Papier
Inhaltsübersicht

1 Stand und Perspektiven des Instituts 13
2 Praxisfelder der Technikfolgenabschätzung 21
3 Ergebnisse aus den Projekten 105
4 Daten und Fakten ... 255
5 Das Institut ... 301
Inhaltsverzeichnis

Vorwort .. 11

1 Stand und Perspektiven des Instituts 13
	Armin Grunwald

2 Praxisfelder der Technikfolgenabschätzung 21
	2.1 Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung 21
		Armin Grunwald, Torsten Fleischer
	2.1.1 Einführung – Technikgestaltung für Nachhaltigkeit 21
	2.1.2 Was bedeutet Nachhaltigkeit für Technik? 25
	2.1.3 Lebenszyklusbetrachtungen 28
	2.1.4 Reversibilität und Robustheit 30
	2.1.5 Technikfolgenabschätzung als Nachhaltigkeits-
	bewertung ... 32
	2.1.6 Das Helmholtz-Programm „Nachhaltige Entwicklung
	und Technik“ ... 34
	2.2 The Social and Political Control of Knowledge 41
	Nico Stehr
	2.2.1 Knowledge Politics ... 43
	2.2.2 On the Origins of Modern Knowledge Politics 45
	2.2.3 Knowledge Politics and Science Policies 48
	2.2.4 Knowledge Politics in Action 50
	2.2.5 Conclusions .. 53
2.3 Wege zu einer intelligenten Mobilität ... 57
 Günter Halbritter, Torsten Fleischer

2.3.1 Einleitung ... 57
2.3.2 Mobilität mittels „technisierter“ Verkehre – ein Kennzeichen moderner Gesellschaften 58
2.3.3 Gesellschaftliche Einschätzungen technischer Innovationen im Verkehrsbereich 61
2.3.4 Effizienz – Schlüsselbegriff zur Beurteilung technischer Innovationen .. 65
2.3.5 Gestaltung neuer Techniken im Verkehrsbereich 67

2.4 Vorgehensweise und Probleme bei der Durchführung von Stoffstromanalysen ... 72
 Matthias Achternbosch, Klaus-Rainer Bräutigam, Nicola Hartlieb, Christel Kupisch, Bernd Reßler, Gerhard Sardemann (ITAS), Ulf Richers (ITC-ZTS), Peter Stemmermann (ITC-WGT)

2.4.1 Instrument Stoffstromanalyse .. 73
2.4.2 Stoffstromanalysen am Beispiel des Projektes „Schwarzer Rumpf“ .. 76
2.4.3 Stoffstromanalysen am Beispiel des Projektes „Mitverbrennung von Abfällen in Zementwerken“ 82
2.4.4 Zusammenfassung und Ausblick 88

2.5 Technikentwicklung, Technikgestaltung und „Geschlecht“ ... 90
 Bettina-Johanna Krings

2.5.1 Einleitung ... 90
2.5.2 Zur Relevanz der Kategorie „Geschlecht“ 91
2.5.3 IuK aus der Perspektive der Gender- und Frauenforschung ... 94

3 Ergebnisse aus den Projekten .. 105

3.1 Forschungsbereich Nachhaltige Entwicklung 105

3.1.1 Global zukunftsfähige Entwicklung – Perspektiven für Deutschland ... 105
3.2 Forschungsbereich Effizientes Ressourcenmanagement ... 132
 3.2.1 Analyse der Umweltauswirkungen bei der Herstellung, dem Einsatz und der Entsorgung von CFK- und Aluminiumrumpfkomponenten ... 132
 3.2.2 Untersuchung des Einflusses der Mitverbrennung von Abfällen in Zementwerken auf die Schwermetallbelastung des Produkts im Hinblick auf die Zulässigkeit der Abfallverwertung ... 137
 3.2.3 Energie aus biogenen Rest- und Abfallstoffen ... 143

3.3 Forschungsbereich Neue Technologien und Informationsgesellschaft ... 150
 3.3.1 Elektronische Medien und Verwaltungshandeln – Rationalisierung und Demokratisierung ... 150
 3.3.2 Towards Intelligent and Sustainable European Cities: The Sustainability Agenda ... 155
 3.3.3 Wandel der Arbeits- und Lebensbedingungen im Multimediabereich aus der Genderperspektive ... 161
 3.3.4 Online-Buchhandel ... 167
 3.3.5 Neue Medien und Kultur – das Beispiel Internet .. 172
 3.3.6 EU-Projects “MAB” and “Tigers” about ICT-Developments in EU and Candidate Countries .. 176
 3.3.7 FISTERA – A Thematic Network on Foresight on Information Society Technologies in the European Research Area ... 182

3.4 Forschungsbereich Theorie und Methodik ... 187
 3.4.1 Technology Assessment – Between Method and Impact (TAMI) ... 187
 3.4.2 Konzeptionelle Fragen der Technikfolgenabschätzung ... 192
3.4.3 Expertenkommunikation im Konfliktfeld der nuklearen Entsorgung .. 195
3.4.4 ITAS-Aktivitäten in Ländern Mittel- und Osteuropas 203

3.5 Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag ... 208
3.5.1 E-Commerce ... 208
3.5.2 Bioenergieträger und Entwicklungsländer 216
3.5.3 Umweltschutz, Ressourcenschonung, Arbeitsplätze 221
3.5.4 Tourismus in Großschutzgebieten 225
3.5.5 Neue Medien und Kultur .. 230

3.6 Dissertationsprojekte ... 237
3.6.1 Die Entwicklung von Systemforschung und Politikberatung in der Bundesrepublik Deutschland – Die „Studiengruppe für Systemforschung“, Heidelberg 237
3.6.2 Soziale und kulturelle Strukturen neuer Berufsfelder in der Informationsgesellschaft – Informatikfachkräfte und gesellschaftlicher Wandel der Arbeit 240
3.6.3 Neue politische Praktiken in der Informationsgesellschaft? Zum Wandel des Umgangs mit Wissen in informatisierten Verwaltungen ... 242
3.6.4 Die Kluft zwischen Wissen und Handeln – Politisch-administrative Hemmnisse und institutionelle Defizite bei der Umsetzung einer nachhaltigen Entwicklung im Handlungsfeld Bauen und Wohnen .. 244
3.6.5 Analyse des Ernährungssystems im Hinblick auf Nachhaltigkeit am Beispiel tierischer Lebensmittel 246
3.6.6 Massivwasserbau und Naturnaher Wasserbau: Welbilder – Nachhaltigkeit – Ethik .. 247
3.6.7 Systemanalytischer Vergleich zur Herstellung von Ersatzbrennstoffen aus biogenen Abfällen 249
3.6.8 Systemanalyse zur Gaserzeugung aus Stroh und Waldrestholz bei vorgeschalteter Pyrolyse 252
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Abschnitt</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Daten und Fakten</td>
<td>255</td>
</tr>
<tr>
<td>4.1</td>
<td>Publikationen</td>
<td>255</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Buchpublikationen</td>
<td>255</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Zeitschriftenbeiträge</td>
<td>256</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Buchbeiträge</td>
<td>260</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Forschungsberichte</td>
<td>266</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Beiträge zu Konferenzbänden</td>
<td>268</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Vorträge (bislang nicht schriftlich publiziert)</td>
<td>269</td>
</tr>
<tr>
<td>4.1.7</td>
<td>TA-Datenbank-Nachrichten/Zeitschrift „Technikfolgenabschätzung – Theorie und Praxis“</td>
<td>279</td>
</tr>
<tr>
<td>4.2</td>
<td>Wissenschaftliche Veranstaltungen</td>
<td>284</td>
</tr>
<tr>
<td>4.3</td>
<td>Kolloquium</td>
<td>296</td>
</tr>
<tr>
<td>4.4</td>
<td>Lehrveranstaltungen</td>
<td>297</td>
</tr>
<tr>
<td>4.5</td>
<td>Gastwissenschaftler</td>
<td>298</td>
</tr>
<tr>
<td>4.6</td>
<td>Mitgliedschaften, Ehrungen und Preise</td>
<td>299</td>
</tr>
<tr>
<td>5</td>
<td>Das Institut</td>
<td>301</td>
</tr>
<tr>
<td>5.1</td>
<td>Aufgaben und Ziele</td>
<td>301</td>
</tr>
<tr>
<td>5.2</td>
<td>Forschungsprogramm</td>
<td>302</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Forschungsbereich Nachhaltige Entwicklung</td>
<td>302</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Forschungsbereich Effiziente Ressourcennutzung</td>
<td>303</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Forschungsbereich Informationsgesellschaft und Neue Technologien</td>
<td>304</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Forschungsbereich Konzepte, Methoden und Funktionen problemorientierter Forschung</td>
<td>306</td>
</tr>
<tr>
<td>5.3</td>
<td>Arbeitsweise und wissenschaftliches Umfeld</td>
<td>307</td>
</tr>
<tr>
<td>5.4</td>
<td>Mitarbeiterliste – ITAS</td>
<td>310</td>
</tr>
<tr>
<td>5.5</td>
<td>Mitarbeiterliste – TAB</td>
<td>313</td>
</tr>
</tbody>
</table>
Vorwort

Am Anfang des Jahrbuchs steht ein einführender Überblick, der die wesentlichen Ergebnisse darstellt und die weiteren Perspektiven markiert. Im zweiten Teil werden ITAS-Arbeiten in einen größeren wissenschaftlichen, aber auch gesellschaftlichen Zusammenhang gestellt. Aus Praxisfeldern der Technikfolgenabschätzung werden übergreifende Entwicklungen dargestellt, zu denen das ITAS wesentliche Beiträge geliefert hat. Im dritten Teil geht es
dann um die konkreten Ergebnisse der ITAS-Projekte, gegliedert nach den Forschungsbereichen. Der Teil 4 enthält die für einen Rechenschaftsbericht unverzichtbaren Fakten, vor allem die Publikationen und Informationen über die durchgeführten wissenschaftlichen Veranstaltungen. Im letzten Teil schließlich findet sich eine ausführliche Gesamtdarstellung des Instituts und seines Forschungsprogramms.

Armin Grunwald

Karlsruhe, September 2003
1 Stand und Perspektiven des Instituts

Armin Grunwald

Das Institut

Das Institut für Technikfolgenabschätzung und Systemanalyse (ITAS)\(^1\) geht auf eine Tradition der Systemforschung zurück, die bis in die fünfziger Jahre des letzten Jahrhunderts reicht.\(^2\) Ausgangspunkt dieser Entwicklung war die Erkenntnis der zunehmenden gesellschaftlichen Komplexität und der wachsende Beratungsbedarf von Politik und Gesellschaft über Trends gesellschaftlicher Entwicklungen, Technikfolgen und Handlungsstrategien zur Bewältigung von Problemlagen. Im Mittelpunkt der Forschungsarbeiten des ITAS stehen die umfassende Analyse und Bewertung der Entwicklung und des Einsatzes von Technik in Wechselwirkung mit gesellschaftlichen Wandlungsprozessen. Es werden umweltbezogene, ökonomische, soziale, kulturelle sowie politisch-institutionelle Fragestellungen verfolgt und alternative Handlungs- und Gestaltungsoptionen entworfen und bewertet. Dies geschieht in den Forschungsbereichen

- Nachhaltige Entwicklung
- Effizientes Ressourcenmanagement
- Neue Technologien und Informationsgesellschaft

Zu dieser „problemorientierten Forschung“ gehören untrennbar die systematische Reflexion normativer Aspekte und die Weiterentwicklung von Methoden und konzeptionellen Ansätzen, denen ein eigener Forschungsbereich „Theorie und Methodik“ gewidmet ist. Integraler Bestandteil der wissenschaftlichen Praxis ist, die Ergebnisse an Wissenschaft, Politik und Öffentlichkeit zu vermitteln und auf diese Weise zum gesellschaftlichen Diskurs

\(^1\) Eine ausführliche Institutsbeschreibung und Darstellung des Forschungsprogramms findet sich in Kapitel 5.

\(^2\) Die Entstehung der Systemforschung ist Gegenstand einer geschichtswissenschaftlichen Dissertation am ITAS (vgl. Kap. 3.6.1).
über Ziele, Rahmenbedingungen und Optionen der Wissenschafts- und Technikentwicklung beizutragen.

Entwicklungen im Berichtszeitraum

- Großen Raum nahm die Arbeit an dem Verbundprojekt „Global zukunftsfähige Entwicklung – Perspektiven für Deutschland“ ein, das Ende 2002 abgeschlossen wurde (vgl. Kap. 3.1.1). Die Operationalisierung des Leitbildes der nachhaltigen Entwicklung entwickelte sich zu einem Hauptthema im ITAS.
- Für den Bereich der Nanotechnologie wurden vorbereitende Untersuchungen durchgeführt, die in der Einrichtung eines neuen ITAS-Themenfeldes „Technikfolgenabschätzung Nanotechnologie“ mündeten; die Arbeiten haben dann konkret Anfang 2003 begonnen.
- Vorbereitungen für die programmorientierte Förderung in der Helmholtz-Gemeinschaft, in die das ITAS ab 2004 eingebettet sein wird, reichten weit in den Berichtszeitraum zurück, zumal der Leiter des ITAS Sprecher des entsprechenden Programms „Nachhaltige Entwicklung und Technik“ ist; diese Aktivitäten hatten eine Intensivierung der Kooperationen innerhalb der HGF und im Forschungszentrum Karlsruhe zur Folge, vor allem
in den Bereichen „Gaserzeugung aus Biomasse“ (vgl. Kap. 3.2.3) und „Nachhaltiges Bauen und Wohnen“.

- Die Arbeiten zur Informationsgesellschaft und zu Informations- und Kommunikationstechnologien wurden fortgesetzt und intensiviert in den Bereichen Elektronischer Handel, Arbeit und Gender, Neue Medien und Kultur sowie zu e-Governance.
- Wissenschaftliche Kontakte zu europäischen und internationalen TA-relevanten Einrichtungen konnten erheblich ausgebaut werden, vor allem durch Gastwissenschaftler-Austausch und durch Netzwerktätigkeit im europäischen Raum.
- Der Aufbau einer Doktorandengruppe im Rahmen der Doktorandenförderung des Forschungszentrums Karlsruhe wurde fortgesetzt (vgl. Kap. 3.6).

Im Folgenden werden die wesentlichen Entwicklungen in den Forschungsgebieten für den Berichtszeitraum aufgezeigt.

Nutzung der Möglichkeiten der Informations- und Kommunikationstechnologien untersucht (vgl. Kap. 3.3.2).

Im Forschungsbereich „Effizientes Ressourcenmanagement“ führte die Analyse des Potenzials der energetischen Nutzung von Biomasse dazu, dass FuE-Arbeiten zu einer großtechnischen Realisierung dieses Potenzials zu einem Schwerpunkt im Programm UMWELT des Forschungszentrums Karlsruhe wurden. ITAS ist daran mit systemanalytischen Arbeiten zur Wirtschaftlichkeit und zum Vergleich technischer Optionen unter Nachhaltigkeitsaspekten beteiligt (vgl. Kap. 3.2.3). Die Stoffstromanalysen zur Mitverbrennung von Abfällen als Sekundärbrunstoffe in Zementwerken wurden fortgesetzt und stehen nun kurz vor dem Abschluss (vgl. Kap. 3.2.2). Im Rahmen des HGF-Strategiefondsprojektes „Schwarzer Rumpf“, das federführend vom DLR bearbeitet wird, wurden die am ITAS durchgeführten vergleichenden Stoffstromanalysen zur Verwendung von CFK-Materialien und herkömmlichen Materialien im Flugzeugbau abgeschlossen (vgl. Kap. 3.2.1).

Themen und Methoden bei der Erforschung der Potenziale und Risiken der IuK-Technologien und der Informationsgesellschaft unter Beweis stellen.

Zurzeit werden acht Dissertationsprojekte am ITAS betreut (vgl. Kap. 3.6). Damit sind die im Doktorandenprogramm des Forschungszentrums Karlsruhe enthaltenen Möglichkeiten ausgeschöpft.

Die Außenkontakte von ITAS entwickelten sich im Berichtszeitraum sehr erfreulich. Angestoßen einerseits durch eine große Zahl von Verbundprojekten in der HGF bzw. im europäischen Bereich, andererseits durch eine

Perspektiven

Die weiteren Perspektiven der Arbeit des ITAS ergeben sich aus den sich verändernden gesellschaftlichen Problemverständnissen hinsichtlich Technik, aus den eingegangenen Verpflichtungen und aufgebauten Kompetenzfeldern, aus den Intentionen und Visionen des Instituts und aus den Änderungen der externen Rahmenbedingungen. In Bezug auf letztere steht es bekanntlich zurzeit nicht zum Besten. Budgetkürzungen für die Helmholtz-Gemeinschaft und speziell das Forschungszentrum Karlsruhe bleiben nicht ohne Folgen für ITAS.

Ein weiterer Eckstein der entgegen dem eher lamentierenden Zeitgeist hier geäußerten positiven Zukunftserwartung ist natürlich die Einschätzung, dass es an Aufgaben für Technikfolgenabschätzung nicht mangelt. Der Bedarf an Erforschung von Technikfolgen und ihrer Implementationsbedingungen und der Bedarf an wissenschaftlicher Politikberatung sind unzweifelhaft vorhanden und wachsen weiter. Die Aufgaben und Themen gehen uns nicht aus. Vor diesem Hintergrund stellen sich in der nächsten Zeit folgende inhaltlichen Herausforderungen:

- Im Zuge der allgemeinen Entwicklung in der prospektiven Befassung mit Technik wird sich das ITAS konzeptionell, methodisch und thematisch stärker mit „Technology Foresight“ befassen.
- Im Zuge der programmorientierten Förderung der Helmholtz-Gemeinschaft wird sich die Kooperation mit technologieorientierten Arbeiten der HGF verstärken. Hierzu gehören die Gaserzeugung aus Biomasse, Rahmenbedingungen für nachhaltiges Wohnen und Bauen sowie Systemanalysen zur Abfallwirtschaft im Rahmen des Programms „Nachhaltige Entwicklung und Technik“.

Zum Abschluss schließlich ein weiterer Eckpfeiler einer optimistischen Zukunftsperspektive, die zum Inhalt dieses Jahrbuches zurückführt. Die Forschungs- und Beratungserfolge der letzten Jahre und ihre Resonanz in Wissenschaft, Politik und Gesellschaft, wie sie in diesem Band nachzulesen sind, machen deutlich, dass Technikfolgenabschätzung und Systemanalyse produktiv und kreativ sind, und dass wir als Institut ein motiviertes und engagiertes Team bilden, das die vor uns liegenden Aufgaben mit Elan angehen wird.
2 Praxisfelder der Technikfolgenabschätzung

2.1 Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung

Armin Grunwald, Torsten Fleischer

2.1.1 Einführung – Technikgestaltung für Nachhaltigkeit

Um Technik tatsächlich im Sinne der Nachhaltigkeit nutzen zu können, sind sowohl eine entsprechende Gestaltung der relevanten Entscheidungsprozesse in der Technikentwicklung selbst als auch eine Berücksichtigung der – und ggf. Einflussnahme auf die – Rahmenbedingungen ihrer Nutzung angezeigt. Da es jeweils verschiedene Optionen gibt, welche Technik mit welchen Leistungsmerkmalen entwickelt, produziert und verbreitet wird, ist es erforderlich, in den betreffenden Entscheidungen jeweils die Nachhaltigkeitsrelevanz zu beachten. Hierfür wird Wissen über nachhaltigkeitsrelevante Aspekte der verschiedenen Optionen benötigt:

- Systemwissen in Form von analytischem Folgenwissen und Wissen über Ursache/Wirkungszusammenhänge,
• **Orientierungswissen**, welches für Bewertungen herangezogen werden kann, und
• **Handlungswissen** als Basis für die Erarbeitung geeigneter Instrumente, Maßnahmenbündel und Strategien in Richtung auf eine nachhaltige Entwicklung.

\(^1\) Dieser Beitrag geht in Teilen auf Fleischer/Grunwald 2002 zurück.

zu untersuchenden Fragestellungen in Bezug auf eine bewusste Technikgestaltung unter Nachhaltigkeitsaspekten zählen:

- Kann Technik so gestaltet werden, dass mehr Nachhaltigkeit möglich wird? Welche und wie große Beiträge können Erforschung, Entwicklung und Nutzung neuer Techniken zur Nachhaltigkeit leisten? Wie verhalten sich die Beiträge von Technik zur Nachhaltigkeit im Vergleich zu Beiträgen anderer Herkunft (z. B. veränderter Lebensstile und eines „nachhaltigen Konsums“)? In welchen Zeiträumen sind die nachhaltigkeitsrelevanten Auswirkungen zu erwarten?

- Wie kann beurteilt werden, ob und inwieweit Technikeinsatz zu mehr oder weniger Nachhaltigkeit führt? Welche Nachhaltigkeitskriterien können Grundlage dieser Bewertungen sein und wie werden sie begründet? Sind sie widerspruchsfrei?

- Welches sind die Vergleichsmaßstäbe, Gewichtungsregeln und Abwägungskriterien in Situationen, in denen konkurrierende Effekte in Bezug auf Nachhaltigkeit auftreten? Welche Hinweise geben sie auf mögliche zukünftige Konfliktlinien wie Bewertungskonflikte, Konflikte zwischen verschiedenen Dimensionen der Nachhaltigkeit oder Akzeptanzkonflikte und ihre konstruktive Bewältigung?

- Welche vorliegenden Methoden, z. B. aus Technikfolgenabschätzung und Ökobilanzierung, können für Nachhaltigkeitsbewertungen herangezogen werden? Wo sind methodische Neu- oder Weiterentwicklungen erforderlich?

- Wie verlässlich oder unsicher sind Nachhaltigkeitsbewertungen von Technik? Wie wird mit der in Bezug auf Folgenwissen und Bewertungsprobleme unvermeidlichen Unsicherheit und Ambivalenz umgegangen?

- Welche gesellschaftlichen Rahmenbedingungen sind dafür geeignet, dass Technik als Beitrag zu mehr Nachhaltigkeit entwickelt, produziert und in den Markt integriert werden kann? Welche politischen Instrumente zu ihrer Unterstützung gibt es?

Die Beantwortung dieser Fragen gehört zu den Aufgaben der Technikfolgenabschätzung. Dabei muss sie mit anderen Bereichen der Nachhaltigkeitsforschung kooperieren (vgl. Grunwald 2002a). Im Folgenden wird zunächst das Verhältnis von Technik und Nachhaltigkeit näher bestimmt (Kap. 2.1.2). Sodann werden mit den Lebenszyklusbetrachtungen (Kap. 2.1.3) und den Aspekten von Reversibilität und Robustheit (Kap. 2.1.4) zwei Aspekte hervorgehoben, in denen sich aus dem Nachhaltigkeitspostulat spezifische Konsequenzen für die Technikfolgenabschätzung ergeben. Nach einem kleinen
Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung

Resümee in Bezug auf Anforderungen an Technikfolgenabschätzung (Kap. 2.1.5) wird der Ansatz der Helmholtz-Gemeinschaft vorgestellt, Technikfolgenabschätzung in den nächsten Jahren im Programm „Nachhaltige Entwicklung und Technik“ zu betreiben (Kap. 2.1.6).

2.1.2 Was bedeutet Nachhaltigkeit für Technik?

Nachhaltige Entwicklung lässt sich sowohl aus (gerechtigkeits-)theoretischen Gründen als auch aus Gründen vieler gegenseitiger Beeinflussungen nicht auf die Umweltdimension beschränken, sondern weist auch soziale, ökonomische und politische Aspekte auf. Im integrativen Verständnis von Nachhaltigkeit (vgl. Kofmüller et al. 2001, Kap. 3.1.1 in diesem Band) werden diese Aspekte durch Mindestanforderungen beschrieben, die in Form von Regeln formuliert sind (Tab. 1). Die „Was-Regeln“ stellen inhaltliche Mindestanforderungen für eine Erreichung dieser generellen Ziele dar. Die ökologische, die ökonomische, die soziale und die politisch-institutionelle Dimension der Nachhaltigkeit werden gleichrangig und integriert behandelt. Die Regeln sollen sowohl als Leitorientierung für die weitere Operationalisierung des Konzepts dienen als auch die Funktion von Prüfkriterien haben, mit deren Hilfe Zustände oder Entwicklungen auf Nachhaltigkeit bewertet werden können.

Was diese Nachhaltigkeitsregeln für Technikgestaltung heißen, ist nicht so ohne weiteres zu beantworten. Auf keinen Fall lassen sich die Nachhaltigkeitsregeln direkt in Vorgaben für Technikgestaltung oder gar in Leistungsmerkmale für Technik übersetzen. Nachhaltigkeitsregeln beziehen sich nicht auf technische Anforderungen, sondern auf Aspekte der gesellschaftlichen Wirtschaftsweise, in der die Technik nur eine Rolle neben anderen Aspekten spielt. Wenn es um Konsequenzen für Technik geht, ist jeweils kontextspezi-
26 Praxisfelder der Technikfolgenabschätzung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Schutz der menschlichen Gesundheit</td>
<td>2.1 Nachhaltige Nutzung erneuerbarer Ressourcen</td>
<td>3.1 Chancengleichheit im Hinblick auf Bildung, Beruf, Information</td>
<td></td>
</tr>
<tr>
<td>1.2 Gewährleistung der Grundversorgung</td>
<td>2.2 Nachhaltige Nutzung nicht-erneuerbarer Ressourcen</td>
<td>3.2 Partizipation an gesellschaftlichen Entscheidungsprozessen</td>
<td></td>
</tr>
<tr>
<td>1.3 Selbstständige Existenzsicherung</td>
<td>2.3 Nachhaltige Nutzung der Umwelt als Senke</td>
<td>3.3 Erhaltung des kulturellen Erbes und der kulturellen Vielfalt</td>
<td></td>
</tr>
<tr>
<td>1.4 Gerechte Verteilung der Umweltnutzungs-möglichkeiten</td>
<td>2.4 Vermeidung unverträglicher technischer Risiken</td>
<td>3.4 Erhaltung der kulturellen Funktion der Natur</td>
<td></td>
</tr>
<tr>
<td>1.5 Ausgleich extremer Einkommens- und Vermögensunterschiede</td>
<td>2.5 Nachhaltige Entwicklung des Sach-, Human- und Wissenskapitals</td>
<td>3.5 Erhaltung der sozialen Ressourcen</td>
<td></td>
</tr>
</tbody>
</table>

2.1.3 Lebenszyklusbetrachtungen

Während die obige Betrachtung davor warnte, eine Nachhaltigkeitsbewertung von Technik auf die rein technischen Leistungsmerkmale von Produkten zu beschränken, wie sie in der Entwicklung und Produktion festgelegt wurden, steht nun die Gefahr einer umgekehrten Einseitigkeit im Blickpunkt.

Auch in der „anderen Richtung“ muss eine entsprechende Bilanz gezogen werden: Nach der Nutzung fallen wichtige nachhaltigkeitsrelevante Entscheidungen (Entsorgung in Form von Stoffrückgewinnung, Deponierung etc.). Nur durch eine Lebenszyklusanalyse können die vollständigen nachhaltigkeitsrelevanten Wirkungen eines technischen Produkts erfasst werden. In Bezug auf Ökobilanzen ist dieses Prinzip längst etabliert. Es betrifft aber auch soziale Aspekte einer Technikbewertung, wenn sich z.B. auf dem Lebensweg eines technischen Produkts und seiner Vorprodukte in sozialer Hinsicht nicht hinnehmbare Prozesse wie Kinderarbeit, unzumutbare Zustände im Rohstoffabbau oder nicht sachgerechte Entsorgung aufweisen lassen. Technische Produkte tragen nicht nur ökologische „Rucksäcke“, sondern
auch ökonomische und soziale, insofern im Prozess der Herstellung entsprechende Nachhaltigkeitsregeln (vgl. Tab. 1) verletzt worden sind.

2.1.4 Reversibilität und Robustheit

Auf der anderen Seite müssen in der Technikgestaltung und -entwicklung ständig Entscheidungen getroffen werden. Entscheidungen über die angestrebten Leistungsmerkmale, über den Entwurf und die Ausführung, über das Aussehen eines Prototyps oder Demonstrators oder über das fertige Produkt sind zu treffen. Diese Entscheidungen bilden jeweils die Basis für darauf aufbauende Prozesse der weiteren Entwicklung und sind daher in einem gewissen Rahmen „einzufrieren“. Hierbei entsteht das Problem, dass die Fixierung von Entscheidungen häufig in späteren Entwicklungsstadien kaum noch oder gar nicht zu revidieren ist, auf jeden Fall aber hohe Kosten bedeutet. An dieser Stelle kollidieren also das unvermeidliche Maß an Nichtwissen und die Vorläufigkeit von Bewertungen mit der Notwendigkeit, Entscheidungen zu treffen, die nur begrenzt an neues Wissen oder veränderte Bewertungsmaßstäbe angepasst werden könnten.

bedürfen Nachhaltigkeitsbewertungen einer noch weitergehenderen Einbeziehun
gesellschaftlicher Rahmenbedingungen und Entwicklungen.

In wirtschaftlicher Hinsicht wäre diese utopisch anmutende Forderung nach einem „reversiblen“ Prozess der Technikontwicklung möglicherweise in einer anderen Lesart reizvoll. Statt die Technik möglichst anpassungsfähig zu gestalten, wäre die komplementäre Herangehensweise, Technik für nachhaltige Entwicklung so zu gestalten, dass eine Anpassung gar nicht erforder-

Robustheit gegenüber neu eintretenden Entwicklungen und unvorherge-
schiedenen Anforderungen als Alternative zur Reversibilität ist mit anderen technischen Anforderungen und mit einem höheren Maß an antizipativer Leistung im Hinblick auf mögliche neue Anforderungen konfrontiert. Dass eine abstrakte Robustheit nicht möglich ist, folgt aus dem obigen Ergebnis, dass nämlich das Attribut „nachhaltig“ nicht einer Technik als solcher zu-
kommen kann, sondern immer ihren Nutzungskontext berücksichtigen muss. Wenn es „nachhaltige Technik“ gäbe, wäre sie per definitionem robust gegen-
über Änderungen in Wissen und Bewertungen. Und obwohl Robustheit streng genommen nicht erreichbar ist, lohnt sich das weitere Nachdenken darüber, wie Technik möglichst robust gestaltet werden kann.

2.1.5 Technikfolgenabschätzung als Nachhaltigkeitsbewertung

Es ist wohl nicht unberechtigt zu sagen, dass die Bearbeitung zentraler Herausforderungen der Nachhaltigkeitsdiskussion, insbesondere der Nachhaltigkeitsbewertungen von Technik, durch die jahrzehntelangen Erfahrungen der Technikfolgenabschätzung vorbereitet ist: Die Berücksichtigung der Lang-
zeitperspektive, der Umgang mit dem Integrationsproblem, komplexe Ursache/Wirkungs-Zusammenhänge und die Einbeziehung außerwissenschaftli-
er Kommunikation sind – nicht in allen, aber doch in vielen Fällen – in der Technikfolgenabschätzung als Vorsorgeforschung bereits unter anderen Vor-

Nachhaltigkeit stellt ein Rahmenkonzept für die Bewertung von Technik dar. Technikfolgenabschätzung hebt bisher allgemein auf die Analyse ökolo-
Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung

Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung 33

gischer, ökonomischer und sozialer Folgen und deren Bewertung ab, ohne einen konkreten Bewertungsrahmen vorzugeben. Das Nachhaltigkeitskonzept und die daraus abgeleiteten Regeln präzisieren den Bewertungsrahmen und schaffen eine Voraussetzung für die Ableitung von – quantitativen und qualitativen – Kriterien für die vergleichende Bewertung technischer Entwicklungen in Bezug auf konkrete Ziele.

Zu berücksichtigen ist hierbei, dass Technik und Gesellschaft sich nicht isoliert voneinander entwickeln, sondern in vielfältiger Weise miteinander verbunden sind. Es gibt keine nachhaltige Technik für sich genommen, sondern über Nachhaltigkeit wird entschieden in der Art und Weise, wie Technik in Gesellschaft eingesetzt wird: in einer Kombination aus Technik, Lebensstil und Konsum (s.o.). Weiterhin gibt es keinen Grund zu einer Planungseuphorie: Auch Technikgestaltung unter Nachhaltigkeitsaspekten hat, wie jede Technisierung, trotz aller Technikfolgenüberlegungen ex ante immer experimentelle Züge, die den unabdingbaren Anteilen des Nichtwissens und des Wissens unter Unsicherheit geschuldet sind (s. o.).

2.1.6 Das Helmholtz-Programm „Nachhaltige Entwicklung und Technik“

Diese allgemeinen und teils theoretischen Überlegungen zum Verhältnis von Nachhaltigkeit, Technik und Technikfolgenabschätzung standen – im Verein mit praktischen Projekterfahrungen – Pate bei der Konzeption des Helmholtz-Programms „Nachhaltige Entwicklung und Technik“ im Rahmen des Forschungsbereiches „Erde und Umwelt“.

• die Endlichkeit vieler natürlicher Ressourcen (Materialien, Wasser, fossile Energieträger, landwirtschaftlich nutzbare Flächen etc.) erfordert die Erhöhung der Ressourcenproduktivität, den Ausbau der Kreislaufwirtschaft und die Substitution nicht-erneuerbarer durch erneuerbare Ressourcen. Dabei beugen innovative technische oder soziale Lösungen wirtschaftlichen Problemen vor und fördern die ökonomische Modernisierung (z.B. durch Effizienzsteigerungen);

• die begrenzte Belastbarkeit der Umwelt (vor allem Atmosphäre, Grund- und Fließwasser, Ozeane und Böden) und der Ökosysteme erfordert
Emissionsreduktionen und häufig die Sanierung bzw. Regenerierung geschädigter Umweltbestandteile;
• die Prävention zukünftiger und die Behebung gegenwärtiger sozialer Probleme in der Folge nicht-nachhaltiger Stoffströme (Gesundheit, Wasser- und Abfallproblematik, Nahrungsmittelsicherheit, Verminderung der Bodenfruchtbarkeit etc.) erfordern die vorausschauende Befassung mit Stoffströmen und ihren Auswirkungen.

In diesem Programm sind Technikentwicklung und Technikfolgenabschätzung eng miteinander verbunden. Das Programm beinhaltet Forschung für innovative Technikentwicklung und Technikfolgenabschätzung. Auf diese Weise wird die gesamte Kette vom Problem bis zur Lösung abgedeckt: Problemidentifikation, Übersetzung in Anforderungen an technische und soziale Innovationen, Durchführung der erforderlichen Grundlagenforschung, Entwicklung geeigneter Technik, Erforschung und Bewertung ihrer absehbaren Folgen, Lebenszyklusbetrachtungen, Bedingungen ihrer erfolgreichen Einbringung in die gesellschaftliche Praxis, politisch-gesellschaftliche Rahmenbedingungen. Folgende Bereiche technischer Entwicklungen werden betrieben:

Wasser

Kohlenstoff

Kohlenstoff steht im Mittelpunkt vieler Nachhaltigkeitsprobleme (z.B. Klimaänderung, Ressourcenvorverfügbarkeit). Nachhaltige Entwicklung muss daher auf die verstärkte Nutzung regenerativer oder auf die effiziente Nutzung fossiler Kohlenstoffquellen ausgerichtet sein. Im Programm 6 wird für die Gaserzeugung aus pflanzlicher Rest-Biomasse zur energetischen und chemisch-stofflichen Nutzung und die Ermöglichung nachhaltiger Synthesen und Katalysen Forschung betrieben, die von der Grundlagenforschung bis zur technischen Anwendung reicht.
Baustoffe

Abfälle
Die noch weit verbreitete Deponierung unbehandelter Abfälle stellt langfristig ein hohes Gefährdungspotenzial für Mensch und Umwelt dar (z. B. Trinkwasserqualität). Im Programm 6 werden thermische Verfahren (Verbrennung, Pyrolyse und Vergasung von Abfallströmen) weiterentwickelt, um Mensch und Umwelt durch Inertisierung und Schadstoffzerstörung zu schützen, zur CO₂-Minderung beizutragen und Ressourcen durch Rückstandsverwertung und Substitution fossiler Brennstoffe (waste-to-energy) zu schonen.

Technikfolgenabschätzung und Systemanalyse begleiten diese Forschungsarbeiten durch Betrachtung des sozioökonomischen Umfeldes und der gesellschaftlichen Rahmenbedingungen, durch Lebenszyklusbetrachtungen und durch Nachhaltigkeitsbewertungen (hieran sind neben dem ITAS auch die Zentralabteilung für technikbedingte Stoffströme des FZK sowie die Programmgruppen MUT und STE aus Jülich beteiligt). Im Mittelpunkt stehen eine Konkretisierung des Leitbildes der nachhaltigen Entwicklung und seine Operationalisierung. Szenarien werden zur Strukturierung der Zukunft und zur Charakterisierung von Chancen und Risiken unterschiedlicher zukünftiger Entwicklungen in Bezug auf Nachhaltigkeit entwickelt. Diese Forschung ist geprägt durch das Zusammenwirken der wissenschaftlich-technischen Entwicklung mit folgenden Elementen:

- **Potenziale von Innovationen:** Technikfolgenabschätzung zielt darauf ab, Potenziale konkreter Technikfelder (z. B. Gaserzeugung aus Biomasse, Brennstoffzelle, CO₂-Minderungstechniken, Gebäudeautomation) für nachhaltige Entwicklung zu identifizieren, diese im Systemzusammenhang zu charakterisieren sowie Verfahren zu ihrer Bewertung weiterzuentwickeln und anzuwenden. Dies erfolgt unter gleichzeitiger Erforschung und Bewertung möglicher Chancen und Risiken (Vorsorgeprinzip).
Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung

- **Gesellschaftliche Rahmenbedingungen**: Die Realisierung nachhaltiger Entwicklung bedarf der Verbindung von effizienter Technik, verantwortungsvollen Konsummustern und geeigneten gesellschaftlichen und institutionellen Rahmenbedingungen. Hierzu werden spezifische Analysen durchgeführt (z. B. für die Bau-, die Metall- und die Energiewirtschaft) und Möglichkeiten zum Abbau hemmender sowie zur Ausgestaltung fördernder Faktoren analysiert.

- **Governance und Partizipation**: Die Realisierung des Leitbilds der nachhaltigen Entwicklung fordert die Kooperation betroffener gesellschaftlicher Gruppen, um einen intra- und intergenerativ gerechten und chancengleichen Zugang zu natürlichen und gesellschaftlichen Ressourcen zu erreichen (new governance). Es wird untersucht, welche Anforderungen sich daraus konkret für den Einsatz vorhandener und die Entwicklung neuer Techniken ergeben und welche Empfehlungen für Steuerungsinstrumente sich ableiten lassen (z. B. in der Energiepolitik und zur Überwindung des „digital divide“).

Stoffströme

Feld bestehen zu den technikorientierten Programmthemen der Wassertechnologie, der Baustoffe und der Abfallstoffe (s. o.).

Energie

Information und Kommunikation

Nachhaltigkeit und Technik – Neue Aufgaben für die Technikfolgenabschätzung

Sicherheit, Offenheit, Zugang, Effektivität und Effizienz sowie seiner Wirkungen auf nachhaltige Entwicklung.

Gesellschaftliche Entscheidungsprozesse über Technik

Auf diese Weise wird im Rahmen des Helmholtz-Programms „Nachhaltige Entwicklung und Technik“ in den nächsten Jahren ein breites Spektrum an Technikfolgenabschätzungen erarbeitet, teils in direkter Kooperation mit der Technikentwicklung. Diese themenbezogenen Arbeiten werden darüber hinaus das Material liefern, die Technikfolgenabschätzung als Nachhaltigkeitsbewertung konzeptionell und methodisch weiter zu entwickeln.

Literatur

Hauff, V. (Hg.) (1987): Unsere gemeinsame Zukunft. Greven

2.2 The Social and Political Control of Knowledge

Nico Stehr

The branch of learning that has concerned itself with the nature of knowledge in general has traditionally been philosophy. Additionally, philosophy investigates the questions of the relation between knowledge and belief (or ideology), the validity and reliability of knowledge claims pertaining to the external world based on sense perception, the presuppositions required for the production of knowledge, and the use of language in the construction of knowledge claims. Knowing, in the philosophical tradition, has often been reduced to the relationship between the individual subject (the knower) and the object (the known).

The idea that our knowledge is a social construct is of more recent origin. Since the early 1920s, the various traditions of the sociology of knowledge have been concerned with the social forces and processes that affect knowing and knowledge claims. More recently, the sociology of knowledge has lifted the original restrictions pertaining to the examination of the social foundations of scientific knowledge (cf. Stehr 2002). Almost concurrently, there is a strong and growing interest in the effects of knowledge on social relations, particularly as a new productive force in the economic system of modern societies. This perspective, along with the more dubious notion of knowledge management (cf. Prusak 1997; Fuller 2001), has gained prominence both in sociology and in economics (e.g. Machlup 1962; Denison 1962; Drucker 1986; Bell 1973; Lipsey 1992; Stehr 2002; Rodrigues 2002).

But young as they are, the well-established philosophical investigations into the allegedly secure foundations of knowing, or the sociological examinations of the negotiated production of knowledge, have a long tradition compared to the now emerging lines of inquiry into the societal control of new knowledge. The basic question posed in this new field of inquiry and of politics, as I will argue, is: Will what can be shown always be done?

This paper is conceived as part of such a line of inquiry into the reasons for controlling novel scientific knowledge, and the ways of doing so, by major social institutions in modern society. I will first describe and delineate the notion of knowledge politics as a new field of political activity. When it comes to the utilisation of new capacities for action (that is, knowledge), knowledge politics does not have to be restrictive a priori; my focus, however, will be on efforts to anticipate the effects of new knowledge on social relations, and attempts to control its impact. Second, I will delineate some of
the main reasons why knowledge politics gains prominence as a field of political activity in modern societies. I will stress, in particular, changing relations between science and society. In a third section of the paper, the distinction between knowledge and science policies will be introduced. Before concluding the discussion with a brief outlook, I will sketch some pertinent episodes that illustrate knowledge politics in action.

However, this paper can be only an interim report. I plan to discuss what I take may well become one of the most significant and contentious issues for intellectual, legal, public, scientific and political discourse \(^1\) during the century that has just begun: the growing moral, political and economic pressure to regulate or police novel knowledge – or in other words, the emergence of a new field of political activity, namely knowledge politics and policies. \(^2\) Of course, anxieties and concerns about the social consequences of new scientific knowledge and novel technologies are not of recent origin. Nor are elusive promises of the clear blessings of science for humankind, and the mitigation of human suffering that scientific advances entail. But what is now at stake is more than merely the vague feeling that a slowdown or a consolidation in the volume of the fabrication of new knowledge is in order.

Knowledge politics, or governance of knowledge, is about attempts to channel the social role of knowledge; to generate rules and enforce sanctions pertaining to relevant actors and organisations; to affix certain attributes (such as property restrictions) to knowledge; and – likely the most controversial strategy – to restrict the application of new knowledge and technical artifacts; mainly, of course, by efforts located outside the immediate boundaries of the scientific community. The essence of knowledge politics consists of strategic efforts to move the social control of new scientific and technical knowledge, and thereby the future, into the centre of the cultural, economic and political matrix of society.

\(^1\) Dorothy Nelkin (1995, pp. 447-456) has published an informative typology of public controversies in the United States in recent years in which segments of the scientific community were involved.

\(^2\) A report issued by the Rand Corporation (Fukuyama and Wagner 2000, p. 1; also Fukuyama 2002) anticipates in an analogous sense that in the early part “of the 21st century, the technologies emerging from the information and biotechnology revolutions will present unprecedented governance challenges to national and international political systems.” The report deals with the governance of both research and knowledge policies. Harriet Zuckerman (1986, p. 342) has also written about the need to critically examine the use that is made of the knowledge we have.
A pertinent recent example of contemporary knowledge politics is a reference to the Council of Bioethics appointed by the President George W. Bush. The council was asked to consider the moral, biomedical, and human significance of human cloning in order to advise the President and offer policy recommendations. The council’s report was issued in July 2002. It is noteworthy that the report offers two new concepts designed to replace the notion of “reproductive cloning” with “cloning-to-produce-children” and “therapeutic cloning” with “cloning-for-biomedical-research”. The terms according to Leon Kass (2003), the chair of the council, are not only accurate but “allow us to debate the moral questions without euphemistic distortion or Orwellian speech”. The council recommends unanimously that reproductive cloning should be opposed, both morally and legally; that is, a permanent legal ban should be enacted. In the case of therapeutic cloning, or the use of embryonic stem cells for research purposes or medical therapy, the opinions of the council were divided. The majority of the members advised the government that a four-year moratorium should be placed on “cloning for biomedical research”.

2.2.1 Knowledge Politics

Despite what the term and my example may appear to suggest, at least on the surface, knowledge politics is not inherently prohibitive. The regulation of knowledge – in the general sense of attempts to control it, and not merely through statutory enactments and administrative regulations and decisions – also extends to efforts designed to enhance and enlarge the options and opportunities for the use of new knowledge in society. Many segments of civil society want governments to enact measures aimed at satisfying their ideas or demands for the future use of knowledge, be it in the field of health care, education, the environment, or social policies in varied fields within and across nations. As a matter of fact, as long as at least some societies continue to place a strong emphasis on the virtue of individual initiative and decisions

3 Steve Fuller (1988) has earlier employed the concept of “knowledge policy.” However, he uses the concept to advocate a philosophy of science perspective that attempts, in contrast to more traditional reflections on rationality, to construct a normative perspective on how best to institutionalise the production, dissemination, and criticism of knowledge within the institution of the scientific community; for a critique of Fuller’s project of social epistemology or his normative knowledge policy, see Rouse (1991).
based on self-interest, their institutions will encourage, if only passively, the
use of novel scientific knowledge and technical devices (Green 1976, p. 171). 4

However, in the context of this paper I will focus on the control of
knowledge, rather than the extension of methods, strategies and regulations
designed to encourage the deployment of new knowledge in modern society.
Restrictive knowledge politics suggests, for example, that knowledge gener-
ated by molecular genetics may involve “adverse” individual or collective
consequences and that such a politics can be justified on these grounds, as
the presidential commission in the United States has already concluded.

Although one should not underestimate the persistence of regulatory
governance regimes once institutionalised, an analysis of the governance of
knowledge in modern society has to be cognisant of the general practical
incompleteness, fragility, obsolescence – and often, failure – of projects aimed
at governance in modern societies; as well as, more narrowly, the possibility
that rapid deregulation follows on the heels of regulatory efforts (as was the
case in the field of genetic engineering in the early 1980s). The tempo with
which knowledge evolves may be a further reason why specific attempts to
regulate knowledge may become obsolete; regulative politics is simply sur-
passed by the dynamics of knowledge. 5 Similarly, the speed with which new
capacities for action (or knowledge) are generated, and the difficulties, if not
the impossibility, of anticipating exactly what future capacities might be pro-
duced in science, only enhance the many practical difficulties knowledge poli-
tics most definitely entails. 6 And, last but not least, from a comparative per-
spective, as is the case for the execution of politics generally, knowledge poli-
tics will vary across political systems. Knowledge politics will be interwoven
with different cultural, economic and historical traditions, institutional designs
and legal arrangements – for example, concerning the relations between power
and science – and, of course, transnational organisations and movements.

4 Niklas Luhmann ([1991] 1993, p. 173) takes the opposite position, and observes, perhaps
reflecting an “old European” political perspective and experience, that the pressure to act
characterises the political system: “Politics presents itself as a system of societal control.
This alone may dispose it to action rather than inaction. We seldom find mere inaction
entered on the credit side of governmental balance sheets.”

5 A case in point could be the discovery of a highly versatile group of adult stem cells
islated from the bone marrow, which may make much of the discussion of the use of
techniques that rely on embryonic stem cells obsolete (see “Scientists herald a versatile

6 Efforts to chart the future path of the “genetic revolution” are at best guesswork, at worst
reading tea leaves (compare “Genetic revolution: how much, how fast?,” New York
2.2.2 On the Origins of Modern Knowledge Politics

Why are knowledge politics emerging? Why are there growing efforts to exert power over knowledge? Why are we, perhaps in growing numbers, not prepared simply to accept the apparently “natural” progression; to take for granted the relentless, exponential development of scientific knowledge, of technical artifacts and their application, as a key to unlocking the mysteries of the world, as a release from pain and freedom from suffering, as the basis for a better and more just society, as a means to greater prosperity; or to believe that more knowledge represents the master key to an emancipation from all kinds of troubling ills and harsh constraints? The straightforward, or at least traditional, assumption that specialised knowledge ought to command respect in general, and that any increase in knowledge automatically brings with it an increase in benefits to humankind in particular, is becoming porous and vulnerable. The idea that the uselessness of science is a virtue and that the uses that humans “have drawn from science have contributed to their misery” (cf. Chargaff 1975, p. 21) is still only a marginal voice, rarely heard. The optimistic faith, uttered without any qualms and nurtured in a period of unprecedented economic growth in the 1950s and early 1960s, that a constant expansion of “knowledge” might even prompt a displacement of politics and ideology (cf. Brooks 1965; Lane 1966; Bell 1960, 1973) has been thoroughly demystified (e.g. Wilensky 1967; King/Melanson 1972).\(^7\)

If one no longer regards the fabrication and use of additional scientific knowledge as a humanitarian project, “as an unquestioned ultimate good, one is willing to consider its disciplined direction” (cf. Sinsheimer 1978, p. 23). The fear that we know too much and that we are about to assume the role of God (or are about to commence a “self-transformation of the species” [cf. Habermas 2001, p. 42]; also Janich and Weingarten 2002)\(^8\) increasingly replaces the concern that we do not know enough and that we are to a large

7 In knowledge societies, the social role of “ideology” will actually be invigorated, in as much as the demystification of the nature of knowledge and the experience of contending expert advice will encourage, even legitimate, actors’ reliance on their normative perspectives, rather than fostering the “knowledge” that was supposed to displace ideology (cf. King/Melanson 1972, p. 100).

8 Habermas ([1998] 2001, p. 164) opposes human cloning and raises the analogy to slavery, on the grounds that no “person may so dispose over another person, may so control his possibilities for acting, in such a way that the dependent person is deprived of an essential part of his freedom. This condition is violated if one person decides the genetic makeup of another.” The difference between cloning and “standard” human reproduction is, however, difficult to detect in respect to the moral prohibition Habermas wants us to adhere to.
degree poorly informed. Apprehension and alarm replace the rhetoric of hope that, until recently, dominated societal discourse about new developments in science and technology in modern societies (cf. Mulkay 1993, pp. 735-739).

Moreover, the social relations between the scientific communities, scientists as experts, society and the public have changed. For example, scientists no longer almost automatically inspire trust (cf. Miller 1983, pp. 90-93; Cozens/Woodhouse 1995, pp. 540-548). On the contrary, we believe less and less in experts, although we employ them more and more. Yet without some element of trust exhibited by ordinary members of society towards experts, expertise would vanish. Nonetheless, experts today are constantly involved in a remarkable number of controversies. The growing policy field of setting limits to the presence of certain ingredients in foodstuffs, of safety regulations, risk management and hazard control, has often had the unanticipated effect of ruining the reputation of experts. As long as an issue remains a contested matter, especially a publicly contentious matter, the power and influence of experts and counter-experts are limited (see Mazur 1973; Nelkin 1975); once a decision has been made and a question settled, the authority of experts becomes almost uncontested as well. The work required to transform a contested matter into an uncontested issue is linked to the ability of experts to mobilise social and cultural resources in relevant contexts (see Limoges 1993).

9 It is no longer unusual, as I have indicated, to formulate general assertions about the changing reputation and power of experts – about the extent to which the public extends a taken-for-granted measure of trust, and is therefore willing to suspend doubt about the judgments of experts. However, the evolving response of the public, and of different segments of the public, is quite a complex and complicated matter. Response patterns to expert knowledge not only depend on the issue at hand, but are also conditional on a host of psychological, political and ideological considerations, including the volume of knowledge among those who are forced to define their role as that of laypersons. The often-expressed optimism (or for that matter, fear) regarding the efficacy of experts as political advisers is countered and affected by phases of distinct skepticism and disillusionment regarding their role in politics and government in modern society (cp. Jasanoff 1990, pp. 9-12). Also, the power exercised by experts, in light of the growing phenomenon of counter-experts and the fundamental contestability of scientific knowledge claims, is by no means extensive and influential, as important theories of modern society assert, but in actuality quite fragile and limited. Despite the revisable nature of expert knowledge, influential theoretical perspectives tend mainly to emphasise, as Reed (1996, p. 574) well describes it, the constraining role of experts, and therefore to emphasise “the strategic contribution that experts and expertise make to the much more sophisticated and pervasive systems of organisational surveillance and control crystallising in (post) modern societies” (see also Castells 1989; Lash/Urry 1994; Webster 1995).
The emergence of knowledge politics occurs with some delay in response to the exceptional growth and speed with which knowledge and technical capacities are added in modern societies. Appropriating Adolph Lowe’s (1971, p. 563) astute insights, it is a change from social realities in which “things” simply “happened” (at least from the point of view of most people) to a social world in which more and more things are “made” to happen. Advanced society may be described as a knowledge society because of the penetration of all its spheres by scientific and technical knowledge. In knowledge societies, the individual’s capability of doing and being whatever she/he desires is considerably enhanced. The societal changes I have in mind can also be described in the following way: In the case of large and influential social institutions, but also in the case of individuals and small social groups, the weight in the relationship between autonomy and conditionality is shifting. The sum total of conditionality and autonomy is not constant. Both autonomy and conditionality of social action are capable of growing; they may also decline. In knowledge societies, the degree of apprehended autonomy of individuals and small social groups increases, while the extent of conditionality shrinks. In the case of large collectivities such as the state, large corporations, science, the church, etc., the extent to which their conduct is conditioned may decline as well, but their autonomy or ability to impose their will does not increase in proportion. While the limits of what can be done are re-written, the responsibility for the changes that are underway must be shared by larger segments of society.\(^{10}\)

The boundaries of what at one time appeared to be solidly beyond the ability of all of us to change, alter or manage are rapidly moved and penetrated. This applies, for example, to the possibility that we may come to review the validity of the Lamarckian idea that deliberately induced genetic transformations in one individual may in fact be passed to one’s offspring in the future. The result, of course, is that new knowledge and new technical abilities as capacities to act are also perceived as a peril posed to every women, man, and child; not merely as a threat and a burden to privacy, the status quo, the course of life and the understanding of what life is, but also as a danger to the very nature of creation. For as the biologist Robert Sin-sheimer (1976, p. 599) put it, shortly after the discovery of the possibility of genetic engineering by recombinant DNA techniques:

\(^{10}\) I have examined these changes of and consequences for modern societies in greater detail in “The Fragility of Modern Societies” (Stehr 2001).
With the advent of synthetic biology we leave the security of that web of natural evolution that, blindly and strangely, bore us and all of our fellow creatures. With each step we will be increasingly on our own. The invention and introduction of new self-reproducing, living forms may well be irreversible. How do we prevent grievous missteps, inherently unretractable? Can we in truth foresee the consequences, near- and long-term, of our interventions? By our wits mankind has become the master of the extant living world. Will short-sighted ingenuity now spawn new competitors to bedevil us?

The concern that we know too much is no longer – as was the case in the seventies of the last century, for example – that we are amassing a large store of trivial and practically irrelevant knowledge at a high price that promises no useful gains (cf. Lübbecke 1997, p. 14). This fear has been replaced by concerns about the accumulation of novel knowledge that appears to have questionable social consequences. In that sense, at least, current concerns about science represent a return to conflicts that science has experienced in the past. But in contrast to past disputes, when discussions about the societal consequences of science were driven by complaints about its lack of social and economic utility in tackling major social problems of the day, today concern is focussed on a surplus of effects – especially with respect to traditional world views, the established life-worlds and the limits to what can be manipulated in nature and society.

2.2.3 Knowledge Politics and Science Policies

It is necessary from the outset to refer to a dual difference that I will try to sustain as far as possible, though this may be difficult in some instances; namely, the difference between science policy and knowledge policy. My interest focuses on knowledge, not on science policies. Thus, the contested issue of human embryonic cell research, much in the public eye in the last few months, is of course a question that goes to the heart of science policy. Science policy, as conducted by governments, firms and foundations, refers directly to the constitution of scientific knowledge; the individuals who produce such knowledge; the social context within which knowledge is fabricated; and the incentives to create such knowledge, such as tax policies, tar-

11 The origins of science policy as a distinct area of public policy is often traced to the first few years after World War II when, in the United States for example, Vannevar Bush’s (1945) report “Science: The Endless Frontier” served as the touchstone and benchmark for the emergence of organized government science policy (cf. Elzinga/Jamison 1995).
iffs, subsidised R & D and the alleged benefits of science for society, which legitimate various efforts to “manage” science. Science and technology policies are drawn up and implemented using a variety of instruments, some of which I have just listed, in social systems outside the scientific community. The goal, of course, is to gain leverage on the fabrication of scientific knowledge and the development of technologies.

In contrast, the capacities to act or the knowledge generated by research on (embryonic) stem cells extracted from human embryos, which have the potential to grow into any cell or tissue in the human body and therefore might be instrumental, as its proponents suggest, in curing degenerative diseases such as Parkinson’s, Alzheimer’s, heart disease, kidney failure and diabetes, pertains to the emerging field of knowledge politics. Many diseases, as the U.S. National Bioethics Advisory Commission (1999, p. 20) emphasises, such as Parkinson’s disease and juvenile-onset diabetes mellitus, are triggered as a result of the death or dysfunction of just one or a few cell types. A substitution of dysfunctional cells could offer effective treatment and even cures for such illnesses. The promise that research efforts utilising embryonic stem cells are likely to yield considerable therapeutic benefits already indicates that a liberal mix of science and knowledge policy assertions occurs in such disputes. One set of the assertions under dispute refers to science policy matters, such as resource allocation; while others already anticipate new knowledge claims and instrumental abilities that become central to discourse in knowledge policy discussions.

A bill passed by the U.S. House of Representatives in late July 2001 that prohibits human cloning (“reproductive cloning”) and the cloning of embryonic stem cells (“therapeutic cloning”) directly affects research in this field.

12 A report issued by the National Institutes of Health (NIH) in June 2001 praises stem cell research and promises a “dazzling array” of treatments of various diseases that presently defy therapy (see “U.S. study hails stem cells’ promise,” New York Times, June 27, 2001). The report not only praises the almost limitless benefits of stem cell research, but also advocates its more or less unrestricted practice supported by federal funds, without analysing ethical, legal or social issues (see also NIH, “Institute and centers answers to the question: ‘What would you hope to achieve from human pluripotent stem cell research,’” www.nih.gov/news/stemcell/achieve.htm).

13 Lanza et al. (2000, p. 3175), who attempt to make an ethical case for therapeutic cloning, suggest that the term therapeutic cloning, although widely used, is misleading because it “brings to mind images of the replication of a single genome for reproductive purposes. In therapeutic cloning, however, no such replication is involved.” The description Lanza et al. (200, p. 3175) and his colleagues advance refers to therapeutic cloning as a new biomedical technology that “involves the transfer of the nucleus from one of the patient’s cells into an enucleated donor oocyte for the purpose of making medically useful and im-
Nonetheless, it is entirely possible that knowledge policies become indistinguishable from research policies, as the intentions and agendas of the former extend into and intervene directly or indirectly in the production of knowledge in the scientific community. A less tangled example of knowledge policy, in contrast to science policy, would be the curtailment in 1975 by the government of a Harvard-based genetic screening program for XYY chromosome patterns. The genetic work, using known techniques, was controversial because it pursued the idea that there was a significant correlation between deviant behaviour and the presence of the XYY chromosome. Pressure from the Children’s Defense Fund and similar groups brought about a ban enacted by the (then) Reagan administration.

In addition, the agenda building and the nature of specific science and knowledge policies likely depend on common socio-political convictions or trends, such as the resolve either to pursue strongly interventionist science and knowledge policies or to support and strengthen the autonomy of the scientific community and market forces. The discursive, heuristic distinction between science and knowledge policy does not imply that new knowledge is, in the context of societal change, the outcome of an exogenous process. Novel knowledge results from endogenous social processes. It does not fall from the sky or appear by accident on the scene.

A second immediately relevant distinction helpful in delineating the issues at hand refers to the regulation of existing forms of knowledge and the regulation of additional knowledge that still has to be realised. Culture, in a most general sense, constitutes control: Culture dictates and regulates. And it has done so from the beginning. What is new is the tempo with which new knowledge is generated – additional knowledge that needs to be assessed and controlled in some fashion.

2.2.4 Knowledge Politics in Action

I will try to offer some tentative answers to questions about the regulation of knowledge in modern societies, such as the possibilities, foundations, prospects and effectiveness of (modern) knowledge politics in an increasingly globalized world.

munologically compatible cells and tissues.” Both human reproductive cloning (duplicating an entire human organism) and therapeutic cloning currently begin by creating a human embryo.
Is a form of restrictive knowledge politics even imaginable, and will it work? For example, would knowledge permitting an extension of the average human life expectancy not be applied almost instantly after it had been discovered as a capacity for action? Once medical intervention is possible prior to the onset of a disorder, why wait until someone falls ill? But should we not fear, on the other hand, a much improved predictability of individual life expectancy? Or the idea of therapy preceding an illness? Might such predictability of the life span of the individual not eliminate much of the spontaneity of action, or lead to horrible mistakes? Do we want to live in a world in which control of all conquerable genetic defects is possible? In what ways will the state, or other corporate actors, intervene between prospective parents and their ability to decide the genetic makeup of their children? Should the prerogative of individual autonomy prevail in these cases, or should collective prerogatives govern decision-making about how to approach the potential utilisation of new knowledge? The legend of Faust resonates precisely with the ambivalent difference that accompanies the fascination of science’s persistent quest for missing answers and the fear of what such a pursuit of the unknown may engender.

All of these issues become even more interesting and perplexing in light of the observation that we are in fact living in an age of deregulation; or that those who advocate the withdrawal of the state by pushing a neoliberal policy agenda have won the day. At least within the developed world, there appears to be no exception to the strong support for neoliberal policies that promote deregulation efforts, be it by freeing labour markets, by lowering taxes, or by withdrawing from strong welfare-state policies (cf. Cerny 1991).

The politics of regulating new knowledge and novel technical devices is bound to upset the established line of political conflicts, and in many instances may well create “strange political bedfellows”, in the form of novel and quickly changing political coalitions. Central emotionally and politically charged debates in modern society about the authority of science, of medicine or of experts, but also about politics and the control of the body, the desirable relations between nature and society, the meaning of technology

14 In the Observer (“The cancer revolution,” March 9, 2003), Sir Paul Nurse, the head of Cancer Research UK, suggests “that eventually every baby might be presented with a map of its genomes at birth, predicting many aspects of its physical and mental development.”

15 From a neoliberal perspective, David Landes’ (1990: 2) assertion that “in the long run, like love, the market laughs at locksmiths” will be a welcome thesis for all those convinced that restrictions on knowledge as a factor of production are bound to be futile.
and human agency, or the linkages between ethics and knowledge, will not only be symbolically recast and heavily strained; they will be re-invented.

Among the growing number of recent news items that can be shown to illustrate the issue of knowledge policy, I refer at this point to only a few relevant announcements: In September of 2001, the acting head of the ethics committee of the American Society for Reproductive Medicine announced that it is sometimes acceptable for couples to choose the sex of their children by selecting either female or male embryos, discarding the rest. One set of fertility clinics was quick to respond. The chairman of the board of the Center for Human Reproduction indicated that they would offer the procedure immediately. The US Food and Drug Administration indicated in early June of 2001 that it does not want meat or milk from cloned livestock sold to consumers. First it has to be established that the food is “safe” and that the technology does not “harm” the environment or the animals. A study carried out by the National Academy of Sciences is supposed to provide answers to these questions. 16 Also in June, the German Ministry of Consumer Affairs and Agriculture announced that a particular brand of genetically engineered cornseed (Artius) would not be permitted to be used for commercial purposes on German farms. The seed in question is resistant against a particular herbicide. If that herbicide is used, it only destroys other plants and leaves the corn unaffected. Further studies by a state research institute are required. The genetically engineered brand of corn seed would have been the first such seed that would have been permitted to be sold and freely used. 17

In an unambiguous observation about the function of the societal regulation of power, John Kenneth Galbraith (1983, p. 83) offers the following proposition: “The precision and effectiveness of the regulation of the use of condign power are, perhaps, the clearest index of the level of civilization in a community, and they are extensively so regarded in practice.” If this is the case and, as can be asserted, among the growing sources of power in modern society is new or additional knowledge, then the regulation of the use of such knowledge becomes an indicator of the civility of social relations in modern society.

Knowledge politics will be a strongly contested form of regulative politics. But that there will be knowledge politics is a certainty. We should not have any excessive hopes, however, that our ability to anticipate (in any

robust sense) the social impact of the use of novel capacities to act (knowledge) will be very impressive. Similarly, knowledge politics will be enacted even though the ability to forecast the consequences of intervention in systems other than the political system is likely quite limited. (cf. Luhmann [1991] 1993, p. 155). Similarly, knowledge politics will have to contest and reckon with globalisation processes, the loss of sovereignty of the nation-state, and conflicts that are bound to arise between national and transnational policies. 18

2.2.5 Conclusions

The growth of knowledge and technical capacities is not merely prompted by sheer curiosity to penetrate the secrets of nature and society, but also driven by economic and military interests. In deploying novel knowledge and technical artifacts for economic growth and military purposes, the social costs and environmental burdens produced are treated as exogenous and ex post developments. As the term “exogenous costs” signals, perceived burdens and costs are mitigated as far as possible only after the realisation of new knowledge. A growing gap between perceived benefits and burdens will, of course, enhance calls for the proactive regulation of new knowledge and technical capacities. Vanderburg, for example, refers to the existence of a “labyrinth of technology” in modern societies; that is, the extent to which these civilisations are trapped within the dilemma of first creating burdens of various kind as the result of making use of science and technology and then mitigating these costs. The labyrinth of technology calls for the “creation of an approach for the engineering, management, and regulation of modern technology that proactively prevents social and environmental burdens” (Vanderburg 2000, p. xi).

18 The EU commission, promoting biotechnology within its boundaries through its Sixth Framework Research Programme, encourages stem cell research and refers to the “ethical pluralism” in the Union as a barrier against legislation that is too restrictive on such research (see Alexander Kissler, “Gegen deutsches Recht,” Süddeutsche Zeitung, March 10, 2003).
Bibliography

Fukuyama, F.; Wagner, C. S. (2000): Information and Biological Revolutions: Global Governance Challenges – Summary of a Study Group. Santa Monica, California: Rand
Fuller, S. (2001): Knowledge Management Foundations

2.3 Wege zu einer intelligenten Mobilität

Günter Halbritter, Torsten Fleischer

2.3.1 Einleitung

Mit der Einführung der Informations- und Kommunikationstechniken (IuK-Techniken) sind hohe Erwartungen an „intelligente“ Problemlösungen verbunden, die sich auf die ständig steigenden Leistungen der Informationsverarbeitung durch Computersysteme beziehen. In besonderem Maße soll im Bereich des Verkehrs die so genannte Verkehrstelematik, wie die Verbindung der Telekommunikation mit der Informatik im Bereich des Verkehrs häufig genannt wird, ganz neue Möglichkeiten erschließen, um „Intelligenz durch Beton“ zu ersetzen, um ein insbesondere in den USA häufig gebrauchtes Sprachbild zu bemühen. Die neuen Techniken können in der Tat nicht nur durch Verbesserung der Verkehrsinformation zu einem effizienteren Verkehr beitragen, sondern sie gestatten darüber hinaus auch die Attraktivität der öffentlichen Verkehre zu steigern sowie weiterhin ganz neue Mobilitätsdienste eines „kooperativen Individualverkehrs“ anzubieten. Interessant ist hierbei jedoch die Frage, inwieweit sich diese „intelligenten“ Lösungen automatisch, also als quasi evolutionärer Prozess entwickeln, oder ob ihre Realisierung konzeptioneller Gestaltungsbemühungen bedarf.

Mobilität ist ein Grundbedürfnis aller Gesellschaften, in besonderem Maße jedoch moderner Gesellschaften, in denen sie zunehmend mittels technisierter Verkehre wahrgenommen wird, die zwar den Raum der Bewegungsmöglichkeiten ständig erweitert haben, die aber auch mit erheblichen nicht intendierten Folgen verbunden sind (Kap. 2.3.2). Technisierte Verkehre stehen somit in einem Spannungsverhältnis zwischen verschiedenen gesellschaftlichen Bewertungen. Dies machen nicht zuletzt die verschiedenen Einschätzungen zur Rolle von technischen Innovationen im Verkehrsbereich deutlich (Kap. 2.3.3). Ein kurzer historischer Rückblick auf die jüngere automobiltechnische Entwicklung bei der Durchsetzung umweltverträglicherer Fahrzeugkonzepte soll den Erklärungswert dieser Einschätzungen beleuchten. Da bei der Beurteilung technischer Entwicklungen der Effizienzbegriff eine besondere Rolle spielt, wird dieser bezüglich seiner über die technische Effizienz hinausgehenden Aspekte kommentiert (Kap. 2.3.4). Schließlich wird auf die Möglichkeiten der Gestaltung von Innovationen im Hinblick auf eine „intelligente Mobilität“ näher eingegangen (Kap. 2.3.5).
2.3.2 Mobilität mittels „technisierter“ Verkehre – ein Kennzeichen moderner Gesellschaften

- Nutzung motorischer Antriebe, speziell Elektromotoren anstelle früherer Dampfantriebe, in Massenverkehrsmitteln, wie der Eisenbahn,
- Nutzung motorischer Antriebe, speziell Verbrennungsmotoren, in individuellen Verkehrsmitteln, speziell dem individuellen, motorisierten Straßenverkehr und
- Nutzung der neuen IuK-Techniken im Rahmen der genannten Verkehrs-telematik.

Häufig wird im Einsatz von IuK-Techniken im Verkehr, der genannten Verkehrstelematik, die Möglichkeit gesehen, die nichtintendierten Folgen der von den Antriebstechniken bestimmten ersten Entwicklungsphase des technisierten Verkehrs zu überwinden. In der Tat bildet die Verkehrstelematik nicht nur Möglichkeiten der Effizienzverbesserung der organisatorischen Abläufe im Verkehrssystem, sondern darüber hinaus auch Möglichkeiten der Realisierung „intelligenter“ Lösungen, wie der Vernetzung verschiedener Verkehrs träger und der Einrichtung neuer Mobilitätsdienste auf der Basis von Mitfahrge meinschaften. Die bisherige Entwicklung und Einführung der Verkehrstelematik, speziell in Deutschland, zeigt jedoch nur geringe Auswirkungen in

Im Bereich Mobilität stellen sich in Bezug auf die Umsetzung dieses Konzepts vor allem zwei Fragen: Wie ist der Bezug des Konzepts der Nachhaltigkeit zum Grundbedürfnis nach Mobilität in der modernen Gesellschaft? Und: Wie verhalten sich technische Entwicklung, hier speziell technische Innovationen im Verkehrsbereich, und Nachhaltigkeit zueinander?

2.3.3 Gesellschaftliche Einschätzungen technischer Innovationen im Verkehrsbereich

Es besteht ein grundsätzlicher – wenngleich unverbindlicher – Konsens darüber, dass technische Innovationen eine wesentliche Voraussetzung für die Lösung der Probleme darstellen, wie sie sich im Verkehrsbereich angesichts der immer noch wachsenden Mobilitätsansprüche ergeben. So werden

CARB hat darüber hinaus mit sieben bedeutenden US-amerikanischen und japanischen Herstellern Vereinbarungen über die Entwicklung von Fahrzeugen nach dem ZEV-Standard geschlossen. Die ordnungsrechtlichen Vorgaben des CARB waren somit nicht nur eine Voraussetzung für wirkungs-
volle „freiwillige Vereinbarungen“ mit der Industrie, sondern sie werden von erheblicher Bedeutung für die weitere automobiltechnische Entwicklung sein, wie die intensiven Arbeiten zum Einsatz der Brennstoffzellentechnik im Fahrzeugbereich zeigen.

Das kalifornische Beispiel bei der Durchsetzung der „zero emission vehicle“ macht somit auch deutlich, dass weitergehende Innovationen nicht unbedingt die Interessen traditioneller Institutionen widerspiegeln. Als Hemmnis für einen Dialog mit Vertretern „nichtrepräsentativer“ Interessen, die jedoch in jedem Fall das Problembewusstsein größerer Gesellschaftsgruppen vertreten müssen, ist die Dominanz ökonomischer Zielkriterien bei den Vertretern traditioneller Institutionen anzusehen. Ein Großteil dieser Kriterien hat unstrittig seine besondere Bedeutung nicht nur für die ökonomische, sondern auch für die gesellschaftliche Stabilität. Es bleibt jedoch fraglich, ob die im vergangenen Jahrzehnt feststellbare zunehmende Orientierung von unternehmerischen Entscheidungen an vergleichsweise kurzfristigen ökonomischen Zielen nicht sogar kontraproduktiv für interessante technische und

2.3.4 Effizienz – Schlüsselbegriff zur Beurteilung technischer Innovationen

Um die Voraussetzungen und Bedingungen für Innovationen und ihren Bezug zu einer „nachhaltigen Entwicklung“ näher zu analysieren, erweist sich

rungen von bis zu 30 % nach sich ziehen können.
Eine kritische Bewertung dieses Ansatzes kann in den „technikbeding-ten“ Verhaltensänderungen, die erforderlich sind, um die Effizienzpotenziale innovativer Techniken tatsächlich ausschöpfen zu können, Elemente einer Suffizienzstrategie sehen. In der Tat vermengen sich Effizienz- und Suffizienzbedingungen für solche Entwicklungen, die gemäß strenger Effizienzkriterien konzipiert werden und die auch entsprechend angepasste Nutzungsweisen für die Erschließung der Effizienzpotenziale erforderlich machen. Dabei ist jedoch zu betonen, dass die angesprochenen Verhaltensänderungen nicht unbedingt eine Minderung des Nutzerkomforts oder der „Freude am Fahren“ bedeuten müssen. Es kann durch das bewusste Miterleben der Effizienzgewinne sogar ein nicht nur intellektuelles, sondern auch emotionales Erlebnis vermittelt werden, falls die verhaltensbezogenen Effizienzgewinne in einer interessanten Weise aufbereitet und vermittelt werden (die graphische Aufbereitung des Energieflusses in den Anzeigen einiger Fahrzeugen mit Hybridantrieb könnte ein Beispiel hierfür sein). Der mögliche Erlebnisgewinn erfordert jedoch die Kenntnis gewisser technischer Funktionsabläufe, denen Visionen der Fahrzeugindustrie, die einen zunehmend durch Fahrerassistenzsysteme ergänzten und mittels Telematiktechniken allzeit überwachten Betrieb des Fahrzeugs propagieren, entgegenstehen dürften.

2.3.5 Gestaltung neuer Techniken im Verkehrsbereich

Der große Vorteil des Leitbildes der „nachhaltigen Entwicklung“ liegt in der hohen Akzeptanz dieses Konzepts als gesellschaftliches Leitbild sowohl in den Ländern der hochindustrialisierten als auch der weniger technisierten Welt. Es besitzt die Voraussetzungen, wichtige Perspektiven zu geben, wie

Darstellung seitens Wirtschaft und Politik mit ihrer Konzentration auf das Potenzial der Brennstoffzellentechnik als Antriebstechnik und entsprechend geäußerten optimistischen Einschätzungen nicht Rechnung trägt, belegt die Notwendigkeit einer öffentlichen Diskussion zu den tatsächlichen Möglichkeiten der neuen Techniken im Kontext mit sachgerechten Aufarbeitungen der parallel zu den technischen Innovationen zu entwickelnden Rahmenbedingungen.

Die Hoffnungen auf eine „intelligente Mobilität“ werden sich somit nicht erfüllen, wenn sie sich diese alleine auf die „technische“ Intelligenz der im Verkehrsbereich eingesetzten Computersysteme bezieht. „Intelligente Mobilität“ muss vielmehr auf der Ebene gesellschaftlicher Zielvorstellungen zur Rolle von Mobilität in der Gesellschaft unter Berücksichtigung sozialer und
ökologischer Kriterien konzeptionell entwickelt und dann umgesetzt werden. Computersysteme eröffnen dabei ganz neue Gestaltungsspielräume.

Literatur

Schelsky, H. (1965): Auf der Suche nach der Wirklichkeit, Düsseldorf

Bevor die beiden Projekte im Einzelnen ausgeführt werden, wird zunächst das Instrument Stoffstromanalyse kurz vorgestellt.

* Institut für Technische Chemie – Zentralabteilung technisch bedingte Stoffströme.
** Institut für Technische Chemie – Bereich Wasser und Geotechnologie.
2.4.1 Instrument Stoffstromanalyse

Einführung

Ökopunkte mit ökonomischen Kennwerten ins Verhältnis. Neben ökologischen und ökonomischen Analysen werden bei der Produktlinienanalyse soziale Aspekte mit berücksichtigt. Ähnliche Instrumente mit dem Anspruch einer umfassenderen Analyse werden vom Ökoinstitut (Prosa) und vom Wuppertal Institut für Klima, Umwelt und Energie (Compass) entwickelt.

Durchführung der Stoffstromanalyse

In einem ersten Schritt muss für die Durchführung von Stoffstromanalysen der Untersuchungsraum entsprechend der Intention der Untersuchung festgelegt werden. Im idealen Falle sind alle sich im Untersuchungsraum befindlichen Prozesse zu identifizieren, und es ist zu selektieren, welche Prozesse in der Stoffstromanalyse aufgrund nicht vernachlässigbarer Stoffströme berücksichtigt werden müssen. Hierfür ist ein Verständnis der den einzelnen Prozessen zugrunde liegenden Verfahrenstechnik und der Stoffumwandlungen notwendig.

Die Untersuchungstiefe (Grad der Differenzierung in einzelne Untersuchungsschritte) der Analyse hängt zudem neben der Fragestellung entscheidend von der zur Verfügung stehenden Zeit und der vorhandenen Datenlage ab. In manchen Fällen können aus Zeitgründen die Stoffströme im Untersuchungsraum nur sehr vereinfachend modelliert werden. Es kann für bestimmte Aussagen die Betrachtung eines einzelnen Teilprozesses völlig ausreichen, z.B. wenn zwei Prozesse verglichen werden sollen, die sich nur in diesem Teilprozess unterscheiden. In anderen Fällen, wie bei Lebenszyklusanalysen zu Produkten, kann es notwendig sein, die Betrachtung von Vorprodukten, die dafür notwendigen Rohstoffe, die Nutzung des Produktes und die Entsorgung mit einzuschließen.

Beiden den Daten werden für eine vollständige Bilanzierung spezifische Angaben zu allen wesentlichen Input- und Outputströmen wie z.B. Angaben

Die Vollständigkeit und Güte der Daten haben großen Einfluss auf die Aussagekraft der Stoffstromanalysen. Deshalb ist die Datenqualität zu evaluieren und ihr Einfluss auf die Güte der Aussage abzuschätzen. Dies ist bei der Bewertung der Ergebnisse bei den Stoffstromanalysen zu berücksichtigen.

Bewertung von Stoffströmen

Für eine weitergehende Bewertung, insbesondere die Bewertung der durch die Stoffströme verursachten Umweltauswirkungen, ist eine Wirkungsabschätzung notwendig. Sie basiert auf den derzeit vorhandenen Erkenntnissen über die Auswirkungen von Schadstoffen in der Umwelt. Für die Wirkungsabschätzung müssen geeignete Wirkungskategorien ausgewählt werden. Welche Umweltkategorien für die Bewertung von Bedeutung sind, hängt

2.4.2 **Stoffstromanalysen am Beispiel des Projektes „Schwarzer Rumpf“**

Einführung

Als ein Beispiel für eine vergleichende Stoffstromanalyse sollen im Folgenden die von ITAS durchgeführten Arbeiten im HGF-Strategiefondsprojekt „Schwarzer Rumpf“ vorgestellt werden. Dieses Projekt diente der Entwicklung von Basiswissen, das für die Realisierung eines multifunktional ausgelegten Flugzeugrumpfes, gefertigt aus kohlenstofffaserverstärkten Kunststoffen (CFK-Rumpf), erforderlich ist. Parallel zur vertieften Analyse des neuen Werkstoffes und zur Entwicklung von Technologien für die Fertigung von Großstrukturen aus CFK, einer Aufgabe, der sich drei Institute des Deutschen Zentrums für Luft- und Raumfahrt (DLR) widmen, wurden systemanalytische Arbeiten durchgeführt, die die Chancen dieser Technologien aufzeigen, aber auch Probleme identifizieren sollten, um schon im Entwicklungsprozess Alternativen zu untersuchen und Hinweise auf Verbesserungen geben zu können.

Die Arbeiten von ITAS konzentrierten sich in diesem Zusammenhang auf einen Vergleich der ökologischen Auswirkungen, die einerseits mit der Herstellung eines konventionellen Rumpfes aus Aluminium und andererseits
Vorgehensweise und Probleme bei der Durchführung von Stoffstromanalysen

Die Stoffstromanalysen konzentrierten sich auf den Vergleich der Herstellung eines Flugzeugrumpfes aus Aluminium mit der eines Rumpfes aus CFK. Die Fertigung des Rumpfes eines Verkehrsflugzeuge aus Aluminium ist Stand der Technik, wohingegen ein entsprechender Rumpf aus CFK bisher noch nicht gefertigt wurde. Da CFK andere materialspezifische Eigenschaften als Aluminium aufweist, wird ein Rumpf aus CFK möglicherweise nach einem völlig anderen Bauweisenkonzept konstruiert werden (z.B. mit einem höheren Integrationsgrad). Seitens des DLR wurden im Rahmen des Projektes Berechnungen für ein Rumpfsegment durchgeführt. Da sich diese Berechnungen jedoch nicht auf den gesamten Rumpf übertragen lassen, wurde für den Vergleich die herkömmliche Bauweise eines Aluminiumrumpfes aus Haut, Stringern (Versteifungselementen für das Hautblech) und Spanten (die Haut/Stringer-Elemente tragende Konstruktion) 1:1 auf die eines CFK-Rumpfes übertragen. Bei dieser auf Berechnungen des DLR beruhenden Übertragung wurden auch die entsprechenden Materialeigenschaften, die u.a. eine 27%ige Massenreduktion gegenüber der Aluminium-Rumpfstruktur zur Folge haben, und die derzeit existierenden Fertigungsverfahren für die Herstellung von CFK Bauteilen berücksichtigt. Um den Aufwand für die Stoffstromanalysen im Rahmen der zur Verfügung stehenden Laufzeit des Projektes überschaubar zu halten, beschränkten sich die Analysen auf die wichtigs-
ten strukturgebenden Bauteilgruppen des aus mehreren Sektionen zusammengesetzten Rumpfes.

Identifikation der im Bilanzaum vorhandenen Prozesse

Datenerhebung

Dies alles macht deutlich, warum selbst für den bereits existierenden Rumpf aus Aluminium von den Flugzeugherstellern keine systematische und vollständige Zusammenstellung aller notwendigen und relevanten Fertigungsschritte zur Verfügung gestellt werden konnte.

Aus diesem Grunde musste auf andere Informationsquellen zurückgegriffen werden. Das zur Bilanzierung von Produktionsprozessen vom Institut für Kunststoffprüfung und Kunststoffkunde (IKP) in Stuttgart entwickelte Programm GaBi (Ganzheitliche Bilanzierungssoftware) enthält umfangreiche Input- und Output-Daten für eine Vielzahl industrieller Prozesse, die in ähnlicher Form auch bei der Herstellung eines Flugzeugrumpfes Anwendung finden und daher als Datengrundlage herangezogen werden konnten. Um Know-how und fehlende Daten zu ergänzen, wurde beispielsweise für die Herstellung der Aluminiumlegierungen und -halbzeuge für den Referenzrumpf auf umfangreiche Studien, unter anderem der EAA (European Aluminium Association), zurückgegriffen.

Von entscheidender Bedeutung für die vorliegende Studie ist ein Datensatz zur Herstellung von Karbonfasern. Die wenigen in der Literatur aufgeführten sowie die in Fachkreisen diskutierten Werte differieren so stark, dass ein aus ausreichend gesicherten Daten bestehender und zudem vollständiger Datensatz, der den chemischen Umwandlungen in den Prozessen Rechnung trägt, mit diesen Angaben nicht aufgestellt werden konnte. In Zusammenar-
beit mit der Fa. Tenax Fibers, Wuppertal, einem Produzenten von Karbonfasern und Zulieferer der Flugzeugindustrie, konnte ein verbesserter Datensatz für die Herstellung von Karbonfasern erstellt werden.

Durchführung von Rechnungen und Auswertung der Ergebnisse

Mit Hilfe der Bilanzierungssoftware GaBi wurden die einzelnen Prozessschritte zu einer Prozesskette verknüpft, an deren Ende als Output die Aluminium- bzw. CFK-Rumpfstruktur steht. Sind alle in der Rumpfstruktur enthaltenen Materialien nach Art und Menge bekannt, so erfolgt in GaBi automatisch eine Skalierung aller vorgelagerten Prozessschritte. Als Ergebnis liefert GaBi für jeden einzelnen Prozess, für ausgewählte Gruppen von Prozessschritten sowie insgesamt für die Herstellung des Rumpfes alle Inputströme (Rohmaterialien, Hilfsstoffe, etc.) sowie alle Outputströme (Produkte, Abfälle, Emissionen, etc.).

Bewertung der Ergebnisse

Ergebnis, dass die Fertigung der Rumpfstruktur einen nennenswerten Beitrag zum gesamten Energieverbrauch liefert, dass das Fräsen von Aluminiumbauteilen mit hohen Abfällen verbunden ist und sich hier der verstärkte Einsatz der Aluminiumgusstechnologie anbietet und dass ein Großteil der Erzaufbereitungsrückstände auf den Einsatz von Titan zurückzuführen ist.

In Bezug auf Wartung und Reparatur, ein weiterer Aspekt, der im Rahmen der Studie untersucht wurde, lassen sich keine eindeutigen Vorteile oder Nachteile des jeweiligen Materials identifizieren. Allerdings ist wichtig, dass schon bei der Konstruktion auf Wartungsfreundlichkeit geachtet wird.

Ausblick

Zusammenfassend lässt sich sagen, dass die Arbeiten ohne Unterstützung der bei der Herstellung, Nutzung und Entsorgung beteiligten Unternehmen nicht in diesem Umfang hätten durchgeführt werden können. Allerdings war die Unterstützung recht unterschiedlich. Während einige Unternehmen die gewünschten Informationen nicht nur bereitstellten, sondern auch aktiv bei der Behebung von Problemen mitwirkten, mussten vom Projektteam auch teilweise widersprüchliche oder unvollständige Angaben entwirrt und ergänzt werden, um zu belastbaren, aussagekräftigen Ergebnissen zu kommen.

Eine wesentliche Erkenntnis bei diesem Projekt war auch, dass die Zusammenarbeit von Technikern und Systemanalytikern derzeit noch mit Schwierigkeiten verbunden ist: Es bestand ein begrenzter Informationsaustausch. Zudem bestehen zu vielen Fragestellungen unterschiedliche Sichtweisen. Es wurde festgestellt, dass das Interesse an systemanalytischen Arbeiten (Bereich Umweltauswirkungen neuer Technologien) noch begrenzt ist. Aus diesen Gründen verläuft die Integration ökologischer Bewertungen
und Empfehlungen in die laufende Entwicklung neuer Technologien noch nicht optimal.

2.4.3 Stoffstromanalysen am Beispiel des Projektes „Mitverbrennung von Abfällen in Zementwerken“

Einführung

Der Einsatz von Abfällen beschränkt sich nicht nur auf die Verwendung als Energieträger. Abfälle werden darüber hinaus sowohl als Ersatzrohstoffe verwendet als auch beim Mahlen von Zementklinker als Zumahlstoff zugesetzt. Abbildung 1 zeigt die verschiedenen Klassen von Einsatzstoffen, die für die Zementherstellung verwendet werden.

Alle Einsatzstoffe enthalten Spurenelemente. Mit Ausnahme des bei der Zementherstellung emittierten Anteils, der für die meisten Elemente sehr gering ist, gelangen diese Spurenelemente in den Zement. Derzeit sind die Auswirkungen der Spurenelementeinträge auf Produktqualität und Umwelt nicht bekannt. Insbesondere die Rolle der Abfälle ist in diesem Zusammenhang noch ungeklärt und Gegenstand z. T. kontroverser Diskussionen. Vor diesem Hintergrund besteht auch Klärungsbedarf hinsichtlich der Frage, ob es sich bei dem Einsatz von Abfällen in den Zementwerken um eine ord-
nungsgemäße und schadlose Verwertung im Sinne des Kreislaufwirtschafts- und Abfallgesetzes handelt.

Abbildung 1: Übersicht über die verschiedenen Klassen an Einsatzstoffen, die für die Herstellung von Klinker und Zement verwendet werden

Ziel und Vorgehen

Zur Untersuchung der stoffstromanalytischen Fragestellungen konnte auf keine Spurenelementbilanzierungen aus Messprogrammen in Zementwerken
Praxisfelder der Technikfolgenabschätzung

Aus diesen Gründen wurden im Rahmen der Vorhabens Stoffstromanalysen in Form von Modellrechnungen durchgeführt. Dabei kann davon ausgegangen werden, dass durch die Modellrechnungen die Auswirkungen des Einsatzes von Sekundärbrennstoffen auf den Spurenelementgehalt des Zements besser wiedergegeben werden können.

Um den Einfluss von Unsicherheiten und Schwankungsbreiten in den Angaben zu den Spurenelementgehalten der Eingangsstoffe auf die Konzentrationswerte im Zement sowie auf den Beitrag einzelner Eintragspfade abschätzen zu können, wurden für beide Rechenansätze Sensitivitätsrechnungen durchgeführt.

Repräsentativität der Daten

Um die Modellrechnungen zur Abschätzung der Spurenelementgehalte von Zement durchführen zu können, musste eine Datenbasis zu Art und Menge der Einsatzstoffe sowie zu deren Spurenelementgehalten erstellt werden. Es wurde eine umfangreiche Datensammlung durchgeführt, aus der Mittelwerte sowie Bandbreiten der Spurenelementgehalte der unterschiedlichen Einsatzstoffe sowie für Klinker und Zement abgeleitet wurden. Im Zusammenhang mit der Datensammlung stellten sich folgende Probleme:

Während Datensammlungen zu Gesteinen, die als Rohmehlbestandteile in die Zementerstellung eingehen, mit einem hohen Probenumfang von bis zu 2500 Einzelproben zur Verfügung stehen, ist der Zugriff auf Daten für Rohmehl, das in Deutschland in Anlagen zur Klinkererzeugung eingesetzt wird, sehr viel eingeschränkter. Zudem gilt für beide Datenbestände, dass die Daten nur in aggregierter Form zur Verfügung stehen, ein Zugang zu den Einzeldaten bzw. repräsentative Daten zu Spurenelementgehalten einschließlich ihrer Bandbreite und Verteilung besteht nicht.

Probleme bei der Bewertung der Ergebnisse

Vorgehensweise und Probleme bei der Durchführung von Stoffstromanalysen

...dass derzeit aus mineralogischer Sicht nur eine grobe Abschätzung des Spurenelementaustrags möglich ist und sich eine belastbare Prognose gegenwärtig nicht abgeben lässt (siehe auch die Kurzvorstellung des Projektes in Kap. 3.2.2).

Des Weiteren ist es zur Bewertung der Auswirkungen der Verwendung von sekundären Einsatzstoffen bei der Zementherstellung nicht ausreichend, die Zementindustrie für sich alleinstehend zu betrachten. Vielmehr müssen zur Erfassung der miteinander verknüpften Stoffströme auch die Verflechtungen zwischen verschiedenen Industriezweigen berücksichtigt werden. Im Sinne einer stoffstromorientierten und nachhaltigen Abfallwirtschaft sind die gesamten Stoffströme zu betrachten und zu optimieren.

Eine Bewertung des Einsatzes sekundärer Einsatzstoffe lässt sich weiterhin nicht allein auf die Betrachtung der Veränderung der Spurenelementgehalte von Zement und Beton beschränken. Eine Bewertung sollte vielmehr auch Aspekte wie die Einsparung von Ressourcen beispielsweise durch die Verwendung von sekundären Roh- und Brennstoffen statt von primären Materialien berücksichtigen. Regelbrennstoffe wie Steinkohle bzw. primäre Rohstoffe wie Eisenerz werden oftmals aus dem Ausland importiert und haben lange Transportwege hinter sich. Neben der Einsparung des Energieverbrauchs für den Transport der Importe leistet die Abfallmitverbrennung...
Praxisfelder der Technikfolgenabschätzung
darüber hinaus einen Beitrag zum Klimaschutz durch eine Reduzierung von CO₂-Emissionen. Eine Bewertung dieses Aspekts gestaltet sich als schwie-
rig. Grund hierfür ist zum einen die oben dargestellte Verflechtung der Indus-
triezweige und deren Stoffströme und zum anderen die Frage, wie die Einsparung von Ressourcen im Vergleich zu einer erhöhten Spurenelement-
konzentration im Zement einzuordnen ist.

Des Weiteren bringt die Verwendung von spurenelementreichen Abfällen wie beispielsweise Flugaschen und Rostaschen bei der Zementherstel-
lung eine diffuse Verteilung der Spurenelemente dieser Stoffe mit sich. Es
stellt sich in diesem Zusammenhang die Frage, ob eine diffuse Verteilung
von Spurenelementen im Zement und damit in der Umwelt sinnvoll ist oder
ob nicht vielmehr nach einer Ankonzentrierung von Spurenelementen in
Aschen eine nachfolgende Entziehung der „Konzentrate“ aus dem Stoffstrom
durch Deponierung zu favorisieren ist. Die Frage nach einer Bewertung der
diffusen Verteilung versus Ankonzentrierung ist bislang nicht gelöst.

2.4.4 Zusammenfassung und Ausblick

Anhand der vorgestellten Projekte konnte beispielhaft gezeigt werden, wie
die unterschiedlichen Fragestellungen die Vorgehensweisen und Rechenan-
sätze in den Stoffstromanalysen beeinflussen. Im Projekt „Schwarzer Rumpf“
war die Stoffstromanalyse in Form einer Prozesskettenanalyse durchge-
führt, mit deren Hilfe die kumulierten stofflichen und energetischen Aufwen-
dungen, die anfallenden Abfälle und Emissionen bei der Herstellung von
Bauteilen aus verschiedenen Werkstoffen dargestellt werden konnten. Auf
diese Weise konnten der mit der Herstellung der Bauteile verbundene stoffli-
che Ressourcenverbrauch, der Primärenergieeinsatz und die wesentlichen
Luftemissionen bei der Herstellung der Bauteile bestimmt und miteinander
verglichen werden.

Im Projekt „Mitverbrennung“ wurde die Abschätzung mittlerer Spurenele-
mentgehalte von Zement nicht anhand von Analysen einzelner Prozesse
throughgeführt, sondern mit Hilfe einer Modellierung. Dazu wurden neben den
den von den Autoren zusammengestellten Daten zu Spurenelementkonzentra-
tionen in den Einsatzstoffen u. a. die Produktionsstatistik der einzelnen Zement-
arten in einem bestimmten Jahr und die Statistik zu den Mengen der einge-
setzten Einsatzstoffe in dem entsprechenden Jahr verwendet. Um die Band-
breite der Schadstoffgehalte von Produkten abschätzen zu können, mussten
des Weiteren Szenarienrechnungen zu den Stoffströmen in Einzelanlagen
durchgeführt werden. Die Untersuchungen zeigten, dass mit Hilfe dieser Vorgehensweisen und Rechenansätze die Schadstoffgehalte und deren Schwankungsbreiten im Zement plausibel erklärt werden konnten.

2.5 Technikentwicklung, Technikgestaltung und „Geschlecht“

Bettina-Johanna Krings

2.5.1 Einleitung

Der folgende Artikel verfolgt die Intention, die Verknüpfung von Technikentwicklung und Geschlecht darzustellen. Zunächst wird in einem ersten...

2.5.2 Zur Relevanz der Kategorie „Geschlecht“

Die nordamerikanischen Ureinwohner benutzten als Metapher für die Menschheit das Bild eines Vogels mit weit ausgespannten Flügeln. Der rechte Flügel stand für die Männer, der linke Flügel für die Frauen. Verkümmerte ein Flügel, so lag es für die Ureinwohner auf der Hand, dass der Vogel „Menschheit“ seinen erhabenen Flug nicht mehr fortsetzen konnte. Trotz oder gerade wegen des arbeitsteilig organisierten Verhältnisses von Männern und Frauen wurde die Anerkennung der zwei Geschlechter als ein kulturelles Grundprinzip verstanden, dessen gleichberechtigte Integration für das Allgemeinwohl von umfassender Bedeutung war.

Wie viel komplizierter mutet hingegen die „moderne“ Diskussion über die Anerkennung der Geschlechter an. Diese Diskussion ist von der historischen Entwicklung des Geschlechterverhältnisses in westlichen industrialisierten Gesellschaften geprägt und kann als die Reaktion auf einen langen historischen Prozess betrachtet werden, der die Frauen und deren kulturelle

Die Frauen- und Genderforschung hat seit ihrem Bestehen eine beeindruckende Fülle von empirischem Material zusammengetragen, das die unterschiedlichen Ebenen der Theorieentwicklung bereichert hat. Die Fragen
Praxisfelder der Technikfolgenabschätzung

nach den Mechanismen der Geschlechterungleichheit werden je nach gesellschaflichen Bereichen sehr differenziert betrachtet und sie versuchen, die Vielfalt von Formen und Intensitätsgraden geschlechtlicher Differenzierung und Ungleichheit zu spiegeln. Im Rahmen der Technikentwicklung trifft diese Beobachtung ebenfalls zu. Im Folgenden werden die Inhalte dieser Diskussion am Beispiel der IuK exemplifiziert, wobei der Schwerpunkt nicht auf der Ebene der Theoriebildung liegt, sondern in der Darstellung einiger Themenfelder, die sich hier ausgebildet haben.

2.5.3 IuK aus der Perspektive der Gender- und Frauenforschung

Ähnlich wie in der techniksoziologischen Debatte, werden auch in der Frauen- und Genderforschung zwei Ebenen der Technik unterschieden, ... „sowohl das, was jeweils unter Technik zu verstehen ist, als auch die sozialen Räume, in denen Erfahrungen mit ihr gemacht werden“ (vgl. Knapp 1989, S. 227). Die neue Qualität der IuK besteht – auf der Ebene des technischen Artefaktes – aus der Immateriälität elektronischer Datenverarbeitungsprozesse sowie der Vielfalt ihrer Einsatmöglickehen: so ist es keine Technologie mit eindeutiger Funktions- und Zweckbestimmung, sondern ihre Kombination aus Informationstechniken aus Hardware mit den verschiedens-

Im Hinblick auf die sozialen Räume, die diese Technologie eröffnet hat, haben unterschiedliche Studien festgestellt, dass sich sehr stark die „Affinität von Männlichkeit und Technik-Know-how reproduziert hat“ (vgl. Erb 1996, S. 28). Die beiden norwegischen Forscherinnen Håpnes und Rasmussen haben beispielsweise die Anfänge der „Computerkultur“, d. h. die Umgangsformen, sozialen Strukturen und Arbeitsstile im Norwegian Institute of Technology untersucht und festgestellt, dass „... the values and interests of the freaks with their machine-fascination and -fixation, their work hours and their working style, dominate the subject ...“ (vgl. Håpnes/Rasmussen in: Erb 1996, S. 29).

Eine wichtige Analyseebene der Frauen- und Genderforschung ist die Untersuchung eben dieser Ausgrenzungsmechanismen, der „doing-gender-Prozesse“, d. h. die Beantwortung der Frage, wie sich geschlechtsspezifische Muster zum Nachteil der Frauen immer wieder aufs Neue reproduzieren.

Ausbildung und Beruf

Der Studiengang Informatik war am Beginn seiner Entwicklung Ende der 1960er Jahre völlig unbelastet von überkommenen, „männlich geprägten“

höherem Maße extrinsische Motive, also Anstöße von außen oder Gratifikationserwartungen für die Studienwahl entscheidend zu sein scheinen“ (vgl. Walter 1999, S. 142).

Die Beantwortung der Frage nach den Chancen und Möglichkeiten von Frauen, im Rahmen von Technikentwicklungen zu partizipieren, mündet konsequenterweise in die Frage, inwieweit geschlechtsstypische Konstruktionen mittels der Technik reproduzieren und auf weiteres manifestieren. Die IuK bieten hier ein Feld an, an dem diese Frage weitreichend beantwortet werden kann.

IuK als soziales Konstrukt

Durch die modernen wissensbasierten Computer- oder so genannte Expertensysteme dringt seit einigen Jahren der technische Einsatz deutlich in den Planungsbereich unseres Handelns vor. Diese Systeme sollen nicht ein-

Wie stark die IuK-Technologien männliche Lebenskontexte repräsentieren, wird in der folgenden Studie deutlich, in der mit Hilfe eines kulturtheoretischen Ansatzes die Bedeutung der Konnotation Technik mit Männlichkeit für heranwachsende Mädchen und Jungen untersucht wurde. Hier konnte festgestellt werden, dass der Vergeschlechtlichung von Technik und technischen Artefakten eine nicht unerhebliche Bedeutung bei der Strukturierung der Welt und der eigenen Identität zukommt. Diese Beobachtung wurde am Beispiel des Computers untersucht. Der Computer stand hierbei als Interpre-
Technikentwicklung, Technikgestaltung und „Geschlecht“

Vor allem im Hinblick auf den Raum des Internets hat die Frauen- und Genderforschung explizit Ansätze der Geschlechterforschung (im Gegensatz zu Frauenbelangen) entwickelt, in denen sie Flexibilität, Visionen und Nuancenreichtum im Umgang mit Geschlechterinszenierung betont und immer häufiger Theoriebildungen ablehnt, die Menschen von vornherein auf ihre Geschlechterrollen festlegt. Dennoch ist auch in diesem Feld die Beteiligung von männlicher Seite an diesen Themen ausgeblieben, was hinsichtlich des Netzes eindeutig zu beklagen ist (vgl. Döring 2000, S. 183; Winker 2002).

Die Themen, die in diesem Zusammenhang bearbeitet werden, sind beispielsweise geschlechtergerechte Nutzung von Computernetzwerken (vgl. Fittkau/Maaß 1995), neue Formen der Nutzung des Netzes (vgl. Haraway 1995; Spender 1996), Pornografie im Netz (vgl. Barak/Fischer 1997; Spen-

2.5.4 Fazit

Literatur

3 Ergebnisse aus den Projekten

3.1 Forschungsbereich Nachhaltige Entwicklung

3.1.1 Global zukunftsfähige Entwicklung – Perspektiven für Deutschland

Projektteam: Armin Grunwald (Projektleiter), Volker Brandl, Reinhard Coenen (Koordinator), Torsten Fleischer, Maren Heincke, Juliane Jörissen, Sigrid Klein-Vielhauer, Jürgen Kopfmüller, Eckhard Lessmann, Christine Rösch, Gerhard Sardemann, Volkhard Schulz, Volker Stelzer

• das Forschungszentrum Karlsruhe (FZK) durch das Institut für Technikfolgenabschätzung und Systemanalyse (ITAS) (Federführung);
• das Deutsche Zentrum für Luft- und Raumfahrt (DLR) durch das Institut für Verkehrsforschung und die Abteilung für Technikbewertung und Systemanalyse des Instituts für Technische Thermodynamik;
• das Forschungszentrum Jülich (FZJ) durch die Programmgruppen Mensch-Umwelt-Technik (MUT) und Systemforschung und Technologische Entwicklung (STE);
• die Fraunhofer-Institute für Autonome Intelligente Systeme (AIS) und Rechnerarchitektur und Softwaretechnik (FIRST) (vormals Forschungszentrum Informationstechnik, GMD).

Das vorliegende Kapitel beinhaltet die zusammenfassende Darstellung der Ergebnisse dieses Projektes, mit dem Schwerpunkt auf den ITAS-Beiträgen. Sie spannen den Bogen von der konzeptionellen Grundlagenarbeit (Was heißt Nachhaltigkeit?) über die Operationalisierung durch Indikatoren- und Analysemodelle (Wie kann Nachhaltigkeit gemessen werden?) und die Diagnose (wo liegen die wesentlichen Nachhaltigkeitsprobleme in Deutschland?) bis hin zu politisch-gesellschaftlichen Handlungsstrategien (Wie kann mehr Nachhaltigkeit erreicht werden?).

Das integrative Konzept nachhaltiger Entwicklung

1. **Sicherung der menschlichen Existenz**: Schutz der menschlichen Gesundheit; Gewährleistung der Grundversorgung; Selbstständige Existenzsicherung; Gerechte Verteilung der Umweltnutzungsmöglichkeiten; Ausgleich extremer Einkommens- und Vermögensunterschiede.
(2) *Erhaltung des gesellschaftlichen Produktivpotenzials:* Nachhaltige Nutzung erneuerbarer Ressourcen; Nachhaltige Nutzung nicht-erneuerbarer Ressourcen; Nachhaltige Nutzung der Umwelt als Senke; Vermeidung unvertretbarer technischer Risiken; Nachhaltige Entwicklung des Sach-, Human- und Wissenskapitals.

(3) *Bewahrung der Entwicklungs- und Handlungsmöglichkeiten:* Chancengleichheit im Hinblick auf Bildung, Beruf, Information; Partizipation an gesellschaftlichen Entscheidungsprozessen; Erhaltung des kulturellen Erbes und der kulturellen Vielfalt; Erhaltung der kulturellen Funktion der Natur; Erhaltung der „sozialen Ressourcen“.

Wesentliche Nachhaltigkeitsprobleme in Deutschland

Zur Beschreibung und Beurteilung der Nachhaltigkeitssituation in Deutschland wurde ein Satz von rund 120, den 25 Nachhaltigkeitsregeln zugeordneten Indikatoren für die *gesamtgesellschaftliche Ebene* zusammengestellt. Dieser wurde ergänzt um etwa die gleiche Anzahl von Indikatoren, die aktivitätsfeldspezifische Sachverhalte erfassen. Aus Gründen der analytischen Praktikabilität und der besseren Kommunizierbarkeit mit Politik und Öffentlichkeit wurde diese Liste in einer zweiten Stufe auf rund 40 Kernindikatoren
Die Nachhaltigkeitssituation in den Aktivitätsfeldern

Wohnen und Bauen: Trotz einer insgesamt guten Wohnversorgung der Bevölkerung gibt es nach wie vor stark benachteiligte Personengruppen (vor allem Alleinerziehende, Familien mit mehreren Kindern, Ausländer und
Tabelle 1: Zentrale Nachhaltigkeitsdefizite und die sie abbildenden Indikatoren

<table>
<thead>
<tr>
<th>Nachhaltigkeitsdefizit</th>
<th>Ausgewählte Indikatoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesundheitsbeeinträchtigungen</td>
<td>– Luftschadstoffbelastung durch Feinstaubemissionen/-immisionen und bodennahes Ozon</td>
</tr>
<tr>
<td></td>
<td>– Anteil der Personen, die unter Lärmbelästigung leiden</td>
</tr>
<tr>
<td>Armut</td>
<td>– Armutsquote</td>
</tr>
<tr>
<td>Drastische globale Einkommensunterschiede</td>
<td>– Globale Relation zwischen oberstem und unterstem Einkommens-Quintil</td>
</tr>
<tr>
<td>Arbeitslosigkeit</td>
<td>– Langzeitarbeitslosen-Quote</td>
</tr>
<tr>
<td>Bildungseffizite</td>
<td>– Anteil der Schulabgänger ohne Hauptschulabschluss</td>
</tr>
<tr>
<td>Mangelnde Chancengleichheit</td>
<td>– Zusammenhang zwischen der Leseleistung von Schülern und ihrem sozio-ökonomischen Hintergrund</td>
</tr>
<tr>
<td>Kriminalität</td>
<td>– Straftaten pro 100.000 Einwohner</td>
</tr>
<tr>
<td>Flächenverbrauch</td>
<td>– Zunahme der Siedlungs- und Verkehrsfläche pro Tag</td>
</tr>
<tr>
<td>Rückgang der Biodiversität</td>
<td>– Anteile gefährdeter Arten bei Säugetieren, Fischen, Vögeln und Gefäßpflanzen</td>
</tr>
<tr>
<td>Belastung der Waldböden</td>
<td>– Versauerungs- und eutrophierungsrelevante Luftschadstoffemissionen (SO₂, NOₓ, NH₃)</td>
</tr>
<tr>
<td>Abbau nicht-erneuerbarer Ressourcen</td>
<td>– Verbrauch nicht-erneuerbarer Energieressourcen</td>
</tr>
<tr>
<td>Klimawandel</td>
<td>– CO₂-Emissionen</td>
</tr>
<tr>
<td>Ungleich globale Verteilung der Umweltnutzungsmöglichkeiten</td>
<td>– CO₂-Emissionen pro Kopf im internationalen Vergleich</td>
</tr>
<tr>
<td>Gewässerverschmutzung</td>
<td>– Anteil der Fließgewässer mit mindestens chemischer Güteklasse II</td>
</tr>
<tr>
<td>Staatsverschuldung</td>
<td>– Defizit-Quote der öffentlichen Haushalte</td>
</tr>
<tr>
<td>Mangelnde Wahrnehmung globaler Verantwortung</td>
<td>– Umfang der Agrarexport-Subventionen in der EU</td>
</tr>
<tr>
<td></td>
<td>– Öffentliche Mittel für Entwicklungszusammenarbeit in Prozent des Bruttoinlandsproduktes</td>
</tr>
</tbody>
</table>

Ergebnisse aus den Projekten

Die zukünftige Entwicklung

Ausgangspunkt der Betrachtung der zukünftigen Entwicklung Deutschlands in Bezug auf Nachhaltigkeit ist (a), dass verschiedene zukünftige Entwicklungen denkbar sind, die sich als mehr oder weniger nachhaltig herausstellen können, und dass es (b) nicht nur einen Weg zu einer nachhaltigeren Entwicklung in Deutschland gibt, sondern dass auch hier mehrere Optionen denkbar sind. Es wurden drei explorative Szenarien erarbeitet, die sich durch
unterschiedliche Annahmen über die zukünftige Entwicklung wesentlicher gesellschaftlicher Parameter unterscheiden:

Im **Szenario Dominanter Markt** wird von einem anhaltenden, sich noch verstärkenden Prozess der wirtschaftlichen Globalisierung mit dem Markt als dominantem Steuerungsmechanismus ausgegangen. Im Sinne einer angebotsorientierten Wirtschaftspolitik erfolgt eine Entlastung der Unternehmen bei Steuern und Sozialabgaben, um deren internationale Wettbewerbsfähigkeit zu gewährleisten. Umweltschutz spielt eine geringe Rolle und beschränkt sich auf no-regret-Maßnahmen, die durch technischen Fortschritt möglich werden. Gesellschaftlich verstärkt sich der Trend zur Individualisierung von Lebensstilen; Leistungs- und Eigennutzorientierung sind vorherrschende Wertvorstellungen.

Im **Szenario Modernisierung** wird ebenfalls davon ausgegangen, dass der Prozess der wirtschaftlichen Globalisierung fortschreitet, aber eine Politik verfolgt wird mit dem Ziel, die Chancen der Globalisierung zu nutzen und deren mögliche negative Effekte abzumildern und den ökologischen Modernisierungsprozess fortzusetzen. Die Szenariophilosophie kann ökonomisch als eine pragmatische, den sozialen Ausgleich im Blick habende Wirtschaftspolitik beschrieben werden, umweltpolitisch als eine inkrementelle, auf technische Effizienzverbesserungen setzende Politik. Wesentliche Veränderungen bei individuellen Lebensstilen und gesellschaftlichen Wertvorstellungen werden nicht unterstellt.

Das **Szenario Regionalisierung und Gemeinwohlorientierung** bildet eine Entwicklung ab, bei der sich Wertvorstellungen in der Gesellschaft deutlich in Richtung auf Gemeinwohlorientierung, Solidarität, Übernahme von Verantwortung für die Umwelt und Rückbesinnung auf lokale und regionale ökonomische Strukturen verändern. Es wird angenommen, dass die Mehrheit der Bevölkerung bereit ist, einschneidende politische Maßnahmen zum Schutz der Umwelt und zur sozialen Vorsorge mit zu tragen. Ökonomisch entspricht die Szenariophilosophie einer nachfrageorientierten Politik, die das Verschuldungsproblem im Auge behaltend, versucht, die erkannten Probleme durch direktes staatliches Handeln einzudämmen. Die Alterssicherung wird vom Faktor Arbeit abgekoppelt und auf eine breitere Basis gestellt. Im gesellschaftlichen Bewusstsein erfährt soziale Arbeit eine Aufwertung und wird durch den Staat honoriert; im Umweltbereich werden einschneidende Maßnahmen zum Klimaschutz und zur Eindämmung des Flächenverbrauchs ergriffen.

Diese Szenarien wurden, so weit möglich, in das umweltökonomische Simulationsmodell PANTA RHEI der Gesellschaft für Wirtschaftliche Struk-
Forschungsbereich Nachhaltige Entwicklung

...turfforschung (GWS) implementiert. Dabei wurden die Indikatoren Arbeitslosigkeit, Staatsverschuldung, CO₂-Emissionen, Verbrauch nicht erneuerbarer Energieträger und Flächenverbrauch erfasst, um die zeitliche Entwicklung der damit verbundenen Nachhaltigkeitsprobleme bis 2020 simulieren zu können. Die wesentlichen Ergebnisse sind:

Mit dem Szenario **Regionalisierung und Gemeinwohlorientierung** ist eine erhebliche Wachstumsschwäche verbunden. Die Einkommensverteilung wird zwar gerechter, was allerdings aufgrund der deutlich geringeren Wirtschaftsleistung gegenüber den anderen Szenarien nicht bedeutet, dass die Haushalte über mehr Einkommen verfügen. Das Problem der Arbeitslosigkeit wird gelöst, da durch mehr Teilzeitarbeit und die Subventionierung ge-
Ergebnisse aus den Projekten

Auch aus den Szenarioergebnissen wurden Indikatorenwerte für die einzelnen Aktivitätsfelder errechnet und die Veränderung der inneren Struktur der Aktivitätsfelder untersucht. Diese Ergebnisse flossen insbesondere in die Maßnahmendiskussion in den Aktivitätsfeldern ein. Es zeigte sich, dass die Trends in den vertieft behandelten Aktivitätsfeldern mit den oben dargestellten Gesamtentwicklungen für die einzelnen Szenarien weitgehend übereinstimmen.

Handlungsstrategien für nachhaltige Entwicklung

Die als Maßnahmenbündel Dominanter Markt/Modernisierung bezeichneten instrumentellen Optionen gehen von einer dominanten Rolle des Marktes aus Steuerungsmechanismen aus; die Maßnahmenbündel Modernisierung/Regionalisierung und Gemeinwohlorientierung basieren dagegen auf der Annahme einer aktiven deutlich höheren Lenkungsfunktion des Staates.

Diese unterschiedlichen Annahmen zur politisch-gesellschaftlichen Grundausrichtung wirken sich auf die Instrumentierung der alternativen Maß-
nahmenbündel aus. Die Bündel Dominanter Markt/Modernisierung sind gekennzeichnet durch möglichst wenige direkte staatliche Eingriffe, Maßnahmen einer eher angebotsorientierten Wirtschaftspolitik (Kostenentlastungen von Unternehmen) und im Umweltbereich durch Maßnahmen mit einer geringen Eingriffstiefe, vor allem in Form von „No- or low-Regret“-Maßnahmen. Beim anderen Bündel stehen direkte staatliche Eingriffe mit höherer Eingriffstiefe (Steuern, Abgaben, Subventionen, gezielte Re-/Regulierung) im Vordergrund. Die wirtschaftspolitischen Maßnahmen sind eher nachfrageorientiert. Die gegenwärtigen Maßnahmenbündel werden darüber hinaus durch für beide Bündel identische Maßnahmen ergänzt, die szenariounabhängig als prinzipiell politisch durchsetzbar erachtet werden.

Wichtig erscheint es aber auf jeden Fall, jetzt Maßnahmen einzuleiten, um den politischen Willen zu einer nachhaltigkeitsfördernden Politik zu demonstrieren und den gesellschaftlichen Akteuren deutliche Signale über für sie relevante zukünftige politisch-wirtschaftliche Rahmenbedingungen zu geben.

der Interdependenzen sollten auch Instrumentenkombinationen, wie sie die verschiedenen Maßnahmenbündel vorsehen, evaluiert werden.

Generell sind eine begleitende Evaluierung und ein Monitoring von Nachhaltigkeitsstrategien unverzichtbar, um diese vor dem Hintergrund sich verändernder politisch-gesellschaftlicher Rahmenbedingungen und möglicher neuer wissenschaftlicher Erkenntnisse flexibel anpassen zu können.

Zur Rolle von Technik für nachhaltige Entwicklung

Aus der Untersuchung der Schlüsseltechnologien lassen sich folgende verallgemeinernde Schlussfolgerungen ziehen:

(1) Technik kann Potenziale zur Erfüllung von Nachhaltigkeitszielen eröffnen, deren Realisierung jedoch nicht von selbst eintritt. Es bedarf teils
komplexer Gestaltungsbemühungen, um die Potenziale in Realität zu überführen.

(2) Nachhaltigkeitsgewinne durch technischen Fortschritt können durch so genannte Rebound- oder Bumerang-Effekte kompensiert oder sogar überkompensiert werden. Technische Innovationen und die Veränderungen gesellschaftlicher Verhaltensweisen müssen gemeinsam betrachtet und Rückkopplungen analysiert werden.

(3) Das Zielkriterium „Nachhaltigkeit“ kann nicht dergestalt operationalisiert werden, dass es in das Lastenheft für eine Technikentwicklung wie ein technisches oder ökonomisches Leistungsmerkmal aufgenommen werden kann. Technische Produkte oder Systeme sind nicht per se entweder nachhaltig oder nicht nachhaltig.

Querschnittsthemen nachhaltiger Entwicklung

Viele Themen nachhaltiger Entwicklung betreffen mehrere Aktivitätsfelder und Technikbereiche. Im integrativen Konzept ziehen sich viele der Nachhaltigkeitsregeln durch viele oder gar alle gesellschaftlichen Bereiche hindurch. Diese Zusammenhänge wurden exemplarisch in den Feldern Flächennutzung und Bodenschutz, Chancengleichheit sowie Wissensmanagement für nachhaltige Entwicklung untersucht.

Chancengleichheit: In Bezug auf Chancengleichheit bestehen in Deutschland erhebliche Defizite. Im Bereich Bildung sind fehlende Bildungsabschlüsse und eine erhebliche Abhängigkeit der Bildungschancen von der sozioökonomischen und familiären Situation der Schüler bzw. ihrer Familien zu nennen. Von beträchtlichen Einschränkungen ist auch die Chancenlage von Frauen im Spannungsfeld von Beruf, Familie und Arbeitswelt betroffen. Erhebliche Chancengleichheitsdefizite hinsichtlich der Situation von Ausländern liegen im Bereich Bildung, Beruf und gesellschaftlicher Anerkennung. Auch in den Aktivitätsfeldern bestehen Chancengleichheitsprobleme. So ist im Aktivitätsfeld Ernährung und Landwirtschaft vor allem die sozioökonomische Situation eines beträchtlichen Teils der in der Landwirtschaft Tätigen zu klären. Im Aktivitätsfeld Mobilität und Verkehr ist eine gendergerechte Verkehrsgestaltung in wesentlichen Hinsichten nicht gegeben.
Für das Aktivitätsfeld „Wohnen und Bauen“ schließlich zeigten sich massive Defizite der Entwicklung städtischer Strukturen, besonders im Hinblick auf strukturell defizitär entwickelte Stadtviertel, die vor allem den Chancenarmen und Chancenlosen (Armen, Alten, Ausländern und Arbeitslosen) als Refugium dienen und die Chancengleichheit kontinuierlich reproduzieren. Für viele dieser Chancengleichheitsdefizite werden Lösungsansätze gesellschaftlich diskutiert, die ebenfalls vielfältige Verknüpfungen zu Nachhaltigkeitsaspekten aufweisen.

Perspektiven

Nachhaltige Entwicklung lässt sich nicht abschließend definieren, sondern beinhaltet einen – normativ orientierten – ständigen Such- und Lernprozess, in dem das Verständnis der Nachhaltigkeit, Prioritätssetzungen und Abwägungen sowie Maßnahmen einer dauernden Weiterentwicklung unterzogen werden. In diesem Prozess nehmen die vorgestellten Projektergebnisse einen Platz ein, der insbesondere die Diskussion über die Fortschreibung der Nachhaltigkeitsstrategie der Bundesregierung betreffen sollte. Unabhängig davon ist bereits erkenntbar, dass die hier vorgestellten Arbeiten eine große Rolle in der weiteren wissenschaftlichen Arbeit an der Herausforderung nach-

Armin Grunwald

Literatur

3.1.2 Sustainable Urban Tourism – Promoting Partnerships for New Forms of Governance

Project team: Krassimira Paskaleva-Shapira (project leader), Reinhard Coenen, Tobias Woll

Research impetus

Between 2001 and 2002, ITAS continued to pursue its objectives as Coordinator of the international research and policy initiative “Sustainable Urban Tourism: Involving local Agents and Partnerships for New Forms of Governance” (SUT-Governance) of the European Union’s “Fifth Framework Programme”, Key Action 4 “City of Tomorrow and Cultural Heritage”, “Energy, Environment and Sustainable Development” Programme. The principal aim of the project is to work with public-private partnerships and urban governments in Europe to develop, validate, and deploy a general framework for urban sustainable tourism partnerships that is applicable to a variety of urban municipal contexts by drawing on detailed field work in four European countries: Germany, Austria, Greece and Bulgaria. The main outcomes of this collaborative effort include (1) *A Set of European “Best Practice” Partnerships for Sustainable Urban Tourism* and (2) *Unified Framework Model for Effective Partnerships of Sustainable Urban Tourism (SUT Partnerships)*.

Study advancement

Research during the period endured two main phases.

Phase one aimed the (1) Identification of framework conditions, agents and factors influencing participatory decision-making and practice for sustainable tourism involving partnership collaboration, (2) Preliminary framework model of effective partnerships for sustainable tourism, and (3) Identification and engagement of eight “best practice” multi-stakeholder initiatives for sustainable urban tourism in the case study cities of Heidelberg (Germany), Thessaloniki (Greece), Gratz (Austria), and Veliko Turnovo (Bulgaria).

Parallel research in the study countries involved (a) Literature review, (b) Review of framework factors and country context information needs, (c) Country information collection, (d) Study context framework development, (e) Country context assessment, (f) Inventory and analysis of existing partnership cases for sustainable (urban) tourism, (g) Identification and analysis...
of pilot partnership cases, (h) Summary of indicative factors of public-private partnership effectiveness and success, and (j) “Best practice” case study facilitation.

In the course of the study, advance was made in several research and policy areas: (1) Assessment of contemporary literature in science and policy of “sustainable urban tourism”, “governance” and “effective and successful multi-stakeholder partnerships” from the perspectives of the project needs; (2) Evaluation of key European, international and national policies and initiatives guiding the process of partnership formation for sustainable tourism on multiple spatial and institutional levels; (3) Assessment of underlying tourism trends in Germany, Austria, Greece and Bulgaria; (4) Identification of policy, regulatory, and institutional frameworks for sustainable tourism and the promotion of urban partnerships in these countries; (4) Identification of the types of partnerships being formed for sustainable urban tourism considering (a) the urban context, and (b) the types of tourist-related-activities; (5) Identification of the main agents involved in participatory urban governance for sustainable tourism and the role of the local (urban) governments in catalysing public-private partnerships; and (6) Analysis of the stakeholders’ perceptions on the factors of success (and failure) of partnerships for sustainable tourism in European urban environments.

Phase two, building on the preceding results, involved four main objectives designed to lead to the elaboration of the final Unified Framework Model of SUT Partnerships: (1) To conduct and report eight detailed sustainable tourism partnership cases in four European cities that offer a mix of underlying developmental conditions and opportunities for success; (2) To elaborate a set of partnership insights and initial best practice reports in support of the final SUT Partnership Framework Model; and (3) To develop a framework model, informed by assessments of literature, cross-case analysis of available written cases in secondary sources, and the partnership case studies, followed by a (4) Further validation and refinement through a concept mapping group sessions, and documentation in project deliverables.

Central to the research efforts during this period were the “Best Practice” Partnerships for Sustainable Urban Tourism involving two detailed case studies in each of the four collaborating cities mentioned earlier. The partnerships were selected with view of (a) their relevance to a better understanding of sustainable tourism, multi-stakeholder participation, and urban governance, and (b) the identification of the driving actors and factors and key indicators of SUT partnership success. Four main criteria for a Best Practice
SUT Partnership were established by the project framework (i) Tourism, (ii) Partnership, (iii) Sustainability, (iv) Impact.

Cross-analysis of the cases allowed the team to (1) Identify the factors that may have influenced decision-making practices; (2) Determine how Local Agenda 21 principles have been adapted and used for urban tourism development; (3) Identify the mechanisms of establishment, function, coordination, implementation and feedbacks of multi-sector partnerships in urban tourism; (4) Assess the role of urban authorities in catalysing and facilitating such partnerships, including the effectiveness of current and emerging participatory approaches of urban governance of tourism, and the differential impacts, benefits and costs of participatory decision-making at the local urban level; (5) Identify and collate a set of best practices of urban governance of sustainable tourism, and design a framework of effective stakeholder participation in urban decision-making for sustainable tourism development; (6) Explore policy implications, including the feasibility of the participatory approach of tourism development which might make tourism development strategies more effective in reinforcing sustainable urban development.

To complement and verify the research results, alongside this information on how each study partnership was designed, implemented, and maintained and on the institutional arrangements involved, the stakeholders’ perceptions of partnerships’ success were also examined using the Concept Mapping Technique: During a one-day facilitated group session for each city case, project stakeholders (government representatives, funding agents, NGOs and others involved in the project) were invited to participate in a series of brainstorming, rating, sorting, and group decision exercises to extract stakeholder’s perceptions about the attributes important for project success and the specific lessons learned from their tourist activities.

As a result, the Unified Framework Model of Effective Partnerships for Sustainable Urban Tourism was elaborated which will be employed in the next final stage of the SUT-GOVERNANCE project “Benchmarking tool on sustainable urban tourism partnerships” to be administered in 120 cities across Europe.

Theoretical and policy trust

During the first study phase, a range of processes and developments were observed in contemporary European policy, theory, and practices in sustain-

Despite the strong policy trust and the wide recognition of the long-term benefits of pursuing governance and sustainability of tourism in Europe, however, real life initiatives by national and local governments in endorsing broad-based strategies in the area have been rare. Though multi-stakeholder partnerships have already been established on the local level, these have had little impact on innovating policies towards participatory governance for sustainable tourism. To improve tourism practices in light of sustainability, participation, and in the context of integrated urban development in particular, government must assume a greater role in policy development and implementation on various levels. Promoting the City’s and other stakeholders’ motivation and willingness to share goals, costs and benefits in collaborative tourism actions is equally important.

Yet, successful examples of partnerships for sustainable urban tourism exist across the continent and there is an apparent need to disseminate this practice so others can learn and embrace to improve practice. The detailed case studies reinforced the project’s original conceptual model emphasising the importance of the integration of the partnership process, activity and its results with the influences on the long-term sustainability of the host community where the processes of partnership establishment, maintenance and implementation becomes an essential component of local multi-stakeholder decision-making and urban governance. Based on this concept, the study was able to assert that it is possible to define a set of attributes and key components, which embrace the interrelated nature of the different factors influenc-
ing the success of partnerships for sustainable urban tourism. This holistic theme is what brings together the examined cases, which otherwise represent a wide spectrum of forms and types of tourism partnerships, establishment mechanisms, functions, objectives, co-ordination, implementation, and feedback arrangements.

Regardless their uniqueness, however, as the study reveals, tourism partnerships between the public and private sectors can exist in two main forms: (1) where the public sector dominates as initiator or resource provider or (2) where the different private or non-government stakeholders unite to recruit the local authorities to support their interests and initiatives. The study also shows the multi-faceted nature of the “partnership-content” in regard to sustainable urban tourism: Some partnerships aim sustainable long-term tourism marketing, others aim sustainable management of tourism businesses, or sustainable long-term tourism development, urban renewal, regional integration, etc. It also became apparent that public and private actors enter co-operative arrangements towards sustainable tourism for a variety of reasons, some of which are broadly based on the general local conditions, while others are relevant to the specific demands of the local development. In most cases, however, the partnerships emerge as intent of the local (urban) administrations to seek collaborative opportunities with other stakeholders and the private sector in particular, to promote policy and development areas in urban tourism using formal public-private partnership arrangements. In many cases too, partnerships originate as a result of the willingness of the local communities to overcome pressing economic difficulties where tourism is seen as a means of increasing the overall community prosperity.

Despite the fact that each partnership case generally remains unique, based on the local specific conditions, the case study work allowed to formulate a set of key factors of partnership success supported by a comprehensive set of indicators, the leading of which include: (1) Framework conditions (adequate funding and public support, favourable tourism development and capacity, adequate urban infrastructure, commitment to integrated sustainability and local governance); (2) The partnership and the cooperation process (effective division of roles, contractual agreements, planning, transparency, efficient management); (3) The partnership activity and its resolution (fruitful target area, assessment arrangements, outreach activities); (4) Implications for sustainability (sustainability background, potentials for eco-business, preservation/improvement of physical environment, job creation for social inclusion, self-organisation, networking, and new forms of governance).
Notwithstanding the diversity, ultimate to the success of the SUT partnerships, however, appears the strong commitment and trust between the participating agents and institutions as well as the transparency and clarity of the partnership arrangements and agreements during the life of the cooperation. Hence, the role of the urban authorities in catalysing and facilitating these partnerships generally becomes central to their success. In terms of public participation in the activities, both, adaptation and use of Local Agenda 21 principles for urban tourism are particularly essential. Finally, despite the fact that the study cases represent different stages and scopes of integrating the multidimensional perspectives of stakeholder participation and sustainability, the latter being generally only in the early stages of tourism development in most countries, efforts under way along these lines are clearly evident and on the rise. Moreover, it can be concluded that while “development SUT partnerships” achieve sustainability targets by sustained stock enhancement, the “marketing SUT partnerships” achieve sustainability goals by sustaining the partnership process providing for long-term community benefits.

Conclusion – Reinforcing partnerships towards sustainability

Overall, two key messages evolve from the “SUT-Governance” research to date: First, that multi-stakeholder partnerships are effective means of promoting sustainable urban tourism and governance, i.e. the ways and actions where individuals and institutions, public and private, steer, plan and manage the common affairs of the city to foster democracy and the overall community prosperity, and second, that the success of the partnership depends on the efficacy of the partnership process, the tourism activity and its implementation as well as the resolutions for a long-term and far reaching community sustainability. Ultimately, multi-stakeholder partnerships can indeed boost urban sustainable development but they rarely can substitute the missing prerequisites. Therefore, businesses and policy groups must work together for promoting the culture and practice of collaboration, which in return will lead to new and more winning endeavours in the area.

Krassimira Paskaleva-Shapira
3.1.3 Innovationsstrategien für neue Techniken und Dienste zur Erreichung einer „nachhaltigen Entwicklung“ im Verkehr

Projekteam: Günter Halbritter (Projektleiter), Torsten Fleischer, Christel Kapsch

Die Themenstellung des Vorhabens knüpft an die Erfahrungen von Fallstudienauverwertungen der Vorgängerstudie „Verkehr in Ballungsräumen – mögliche Beiträge von Telematiktechniken und -diensten für einen effizien-
Forschungsbereich Nachhaltige Entwicklung

Die Arbeit gliedert sich in drei Schritte:

(1) **Monitoring** verkehrspolitischer Aktivitäten in Ländern mit einschlägigen erfolgreichen verkehrspolitischen Konzepten zwecks Identifizierung relevanter Initiativen und Projekte im Bereich innovativer Techniken und Dienste im Ballungsraumverkehr, sowie des Standes der Einführung dieser Techniken und Dienste.

(2) **Vertiefe Analyse der identifizierten Länderbeispiele** mit Untersuchung der Realisierungsbedingungen und der verkehrlichen Wirksamkeit der innovativen Techniken und Dienste in den betrachteten Ländern sowie der Folgen in Bezug auf die Anforderungen einer „nachhaltigen Entwicklung“ im Verkehr. Für den Fall, dass die vorgesehenen Ziele nicht erreicht wurden, sind die relevanten Hemmnisse zu identifizieren.
Abbildung 1: Strukturschema zur Technikgestaltung

(3) Analyse der Umsetzungsmöglichkeiten der gewonnenen Erfahrungen für repräsentative deutsche Bedingungen und Entwicklung strategischer Optionen zur Förderung von Innovationsprozessen.

Die Ergebnisse sollen zur Verbesserung der Entscheidungsgrundlagen für die Forschungs-, Verkehrs-, und Umweltpolitik beitragen und für Verbände und innovationsorientierte Industrieannehmen neue Entwicklungsmöglichkeiten und Tendenzen aufzeigen.

Günter Halbritter
Literatur

3.2 Forschungsbereich Effizientes Ressourcenmanagement

3.2.1 Analyse der Umweltauswirkungen bei der Herstellung, dem Einsatz und der Entsorgung von CFK- und Aluminiumrumpfkomponenten

Projektteam: Matthias Achternbosch (Projektleiter), Klaus-Rainer Bräutigam, Christel Kupsch, Bernd Reßler, Gerhard Sardemann

Zur Aufstellung von Stoff- und Energiebilanzen wurden die Produktionsprozesse von der Rohstofferzeugung über die Halbzeugproduktion bis zur Bauteilfertigung und Rumpfendmontage weitestgehend identifiziert und analysiert. Für die Herstellung von Carbonfasern konnte in Zusammenarbeit mit Herstellern ein aktualisierter und vollständiger Datensatz erstellt werden.

Die Arbeiten kamen zu dem Ergebnis, dass CFK gegenüber Aluminium in Bezug auf ökologische Aspekte weder Vor- noch Nachteile aufweist. Die
Modellrechnungen zeigen, dass die Herstellung der CFK-Rumpfstruktur in etwa die gleiche Menge an Primärenergie verbraucht, wie die Herstellung der entsprechenden Aluminiumstrukturen (s. Abb. 1). Es zeigt sich, dass die Fertigungsschritte der Rumpfstrukturen aus den Halbzeugmaterialien einen nicht zu vernachlässigenden Beitrag am energetischen und stofflichen Ressourcenverbrauch ausmachen.

Abbildung 1: Primärenergieverbrauch verbunden mit der Herstellung einer Aluminium- bzw. CFK-Rumpfstruktur

verbrauch verbunden. Ein höherer Integrationsgrad der Bauteile könnte hier zu deutlichen Einsparungen führen.

Die genannten neuen Technologien machen eine Gewichtseinsparung von 10 bis 20 % für den Rumpf aus Aluminium möglich.

Eine Gewichtsreduzierung der Rumpfstruktur von 27 % bei Verwendung von CFK bedeutet allerdings keine entsprechende Reduktion des Startge-wichts bzw. Treibstoffverbrauchs des betrachteten Flugzeuges, in dem hier betrachteten Fall reduzieren sich Startgewicht und Treibstoffverbrauch nach

Untersucht wurden auch die Vor- und Nachteile des Einsatzes von CFK in Bezug auf Wartung und Reparatur. Eine abschließende Bewertung ist allerdings hier nicht möglich, denn der Aufwand für die Reparatur hängt in entscheidendem Maße vom Einsatzort und der Schadensgröße des Bauteils ab: Kleine Schäden bei herkömmlichen Aluminiumstrukturen und monolithischen CFK-Strukturen lassen sich häufig schnell und mit geringem Kostenaufwand (Material und Arbeitszeit) reparieren; Schäden an Sandwichbauteilen sind i. a. aufwendiger zu beheben. Nach Aussagen der Lufthansa sind Reparaturen größerer Schäden bei CFK-Bauteilen – auch in Sandwichbauweise – teilweise kostengünstiger, weil sie in der Werkstatt selbst behoben werden können, größere Metallarbeiten jedoch häufig an externe Betriebe vergeben werden müssen.

Ausschlaggebend für den erfolgreichen Einsatz eines Bauteils im Hinblick auf seine Schadensanfälligkeit ist sein Design, insbesondere die Auswahl des geeigneten Werkstoffs. Dies gilt für Bauteile aus Aluminium, aus Faserverbundwerkstoffen oder auch aus Kombinationen unterschiedlicher...
Werkstoffe. Beim Design des Bauteils (Werkstoffwahl und Struktur) muss auf den Einsatzort (im Hinblick auf die Schadensanfälligkeit) und die Reparaturfreundlichkeit geachtet werden.

Wie bereits erwähnt, wird die größte Massenreduktion erreicht, wenn bei der Herstellung des Flugzeugrumpfes aus Carbonfaserverbundmaterial ein möglichst hoher Integrationsgrad erreicht wird. Dies hat für die Wartung bzw. für die Reparatur Konsequenzen, denn die Austauschbarkeit von Bauteilen im herkömmlichen Sinn existiert damit in geringerem Umfang und die Zugänglichkeit wird erschwert. Je höher der Integrationsgrad, desto komplexer und aufwändiger dürfte sich die Reparatur gestalten.

3.2.2 Untersuchung des Einflusses der Mitverbrennung von Abfällen in Zementwerken auf die Schwermetallbelastung des Produkts im Hinblick auf die Zulässigkeit der Abfallverwertung

Projektteam: Matthias Achternbosch (Projektleiter), Klaus-Rainer Bräutigam, Nicola Hartlieb, Christel Kupsch (ITAS); Ulf Richers (ITC-ZTS); Peter Stemmermann (ITC-WGT)

Aufgabenstellung

Dieses im Auftrag des Umweltbundesamtes durchgeführte Vorhaben (Förderkennzeichen 200 33 335) wurde in Zusammenarbeit mit dem ITC-ZTS und dem ITC-WGT durchgeführt und im März 2003 abgeschlossen.

Stoffstromanalysen

Abbildung 1: Anteil einzelner Eintragspfade am Gesamtgehalt von Antimon im Portlandzement

Abbildung 1: Anteil einzelner Eintragspfade am Gesamtgehalt von Antimon im Portlandzement

- Sekundäre Rohstoffe
- Sekundäre Brennstoffe
- Regelbrennstoffe
- Zuschlagstoffe
- Primäre Rohstoffe
- Mittelwert:
 - 5 ppm (Literatur)
 - 5 ppm (ITAS)

Antimon
Fasst man alle Ergebnisse zusammen, so zeigt sich, dass der Abfalleinsatz insbesondere für die Spurenelemente Cadmium, Antimon und Zink zu einer Erhöhung des Spurenelementgehalts von Zement führt. Für Kobalt, Blei und Kupfer ist ebenfalls eine Zunahme des Spurenelementgehalts im Zement durch den Einsatz sekundärer Einsatzstoffe nachweisbar, die Zunahme ist

Mineralogische Bewertung

Aus den obigen Ergebnissen folgt, dass zur Beurteilung einer potenziellen Umweltgefährdung durch Spurenelemente aus Zementstein die Verwertungsphase entscheidend ist. Ob hier verstärkt Spurenelemente freigesetzt werden, kann nach dem derzeitigen Kenntnisstand nicht eindeutig beantwortet werden. Zudem sind die Einflussfaktoren (reaktive Oberflächen, pH-Wert
3.2.3 Energie aus biogenen Rest- und Abfallstoffen

Projektteam: Ludwig Leible (Projektleiter), Andreas Arlt, Beate Fürnß, Stefan Kälber, Gunnar Kappler, Stephan Lange, Eberhard Nieke

Einleitung und Zielsetzung

Mit Blick auf das potenziell nutzbare Aufkommen besteht die Erwartungshaltung, dass eine effiziente energetische Nutzung der biogenen Rest- und Abfallstoffe wesentlich zum Ziel beitragen könnte, den Anteil der erneuerbaren Energieträger an der Energieversorgung zu erhöhen. Hierdurch würde mittel- und längerfristig eine nachhaltige Entwicklung sowohl in der Energiebereitstellung als auch bei der Abfallverwertung merklich unterstützt.

Nachfolgend werden einige zusammenfassende Ergebnisse aus dem vorläufigen Abschlussbericht dargestellt (vgl. Leible et al. 2002a); weitergehend-
Ergebnisse aus der Studie sind teilweise bereits veröffentlicht (vgl. Leible et al. 2002b; Leible et al. 2002c).

Ergebnisse

Aufkommen an biogenen Reststoffen und Abfällen

Das angeführte Aufkommen an biogenen Rest- und Abfallstoffen entspricht einem jährlichen Pro-Kopf-Aufkommen von 0,9 Mg oTS bzw. einem Heizwert von rund 450 Liter Heizöl und könnte rund 9% unseres Primärenergiebedarfs decken. Werden, wie oben ausgeführt, weitere biogene Rest- und Abfallstoffe mit einem Aufkommen von ca. 5 bis 15 Mio. Mg oTS berücksichtigt, könnte dieser relative Anteil auf über 11% erhöht werden. Mit dieser Perspektive ist das angeführte Potenzial an biogenen Rest- und Abfallstoffen für eine energetische Nutzung keinesfalls als gering einzustufen.

Stromgestehungskosten

Maßgeblich für die ökonomische Bewertung der energetischen Nutzung von biogenen Reststoffen und Abfällen ist, zu welchen Kosten Wärme und Strom bereitgestellt werden können. In Abbildung 1 ist zusammenfassend darge-

Abbildung 1: Stromgestehungskosten bei biogenen Reststoffen und Abfällen

Ergebnisse aus den Projekten

CO2-Minderung und CO2-Minderungskosten

Die CO2-Minderungskosten ergeben sich aus der erzielten CO2-Minderung auf der einen Seite und den Mehrkosten gegenüber der fossilen Referenz auf der anderen Seite. Mit ihrer Hilfe kann dargestellt werden, wie teuer
die jeweilige Technologie bei der Verfolgung einer CO₂-Minderungsstrategie
ist. In Abbildung 2 sind die Bereiche der CO₂-Minderungskosten der
verschiedenen betrachteten Technologien im Überblick aufgezeigt. Zur verglei-
chenden Bewertung dieser Ergebnisse wurden CO₂-Minderungskosten aus
einer Studie für das BMWi herangezogen (= Referenzbereich). Diese Studie
für das BMWi belegt, dass sich für alternative Technologien zur Strom-
und Wärmeerzeugung oder Wärmeeinsparung bei einem CO₂-Minderungsziel
von 25 % oder gar von 40 % mittlere CO₂-Minderungskosten zwischen 50
und 100 €/Mg CO₂-Äq. ergeben. Verglichen mit diesem Referenzbereich
stellen sich die erzielbaren CO₂-Minderungskosten bei der Bio- und Klärgas-
nutzung oder bei der Verbrennung und Vergasung von biogenen Reststoffen
und Abfällen als sehr interessant dar. Beispielsweise lassen sich mit der rei-
nen Gülle-Vergärung CO₂-Minderungskosten zwischen 30 € (Großanlage)

Abbildung 2: CO₂-Minderungskosten bei der energetischen Nutzung bioge-
nener Reststoffe und Abfälle

<table>
<thead>
<tr>
<th>Technologie</th>
<th>CO₂-Minderungskosten (€/Mg CO₂-Äq.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gülle-Vergärung</td>
<td>12-136 kWel</td>
</tr>
<tr>
<td>Gülle-Co-Vergärung</td>
<td>22-294 kWel</td>
</tr>
<tr>
<td>KS-Stabilisierung</td>
<td>0,115-2,0 MWel</td>
</tr>
<tr>
<td>Co-Vergärung</td>
<td>0,441 MWel</td>
</tr>
<tr>
<td>Heizkraftwerk</td>
<td>1,5 MWel</td>
</tr>
<tr>
<td>Kraftwerk</td>
<td>20 MWel</td>
</tr>
<tr>
<td>Festbett</td>
<td>38-460 kWel</td>
</tr>
<tr>
<td>Wirbelschicht</td>
<td>2,8-4,1 MWel</td>
</tr>
<tr>
<td>Co-Verbrennung</td>
<td>10 % von 500 MWel</td>
</tr>
<tr>
<td>Heizkraftwerk</td>
<td>5,7-13,4 MWel</td>
</tr>
<tr>
<td>Wirbelschicht</td>
<td>19,5-63 MWel</td>
</tr>
</tbody>
</table>

1) Perspektive 2020 für die untersuchten Vergasungstechnologien
und 130 € (Kleinanlage) pro Mg CO$_2$-Äq. realisieren. Werden zusätzlich Co-Substrate eingesetzt und die hierdurch erzielbaren Erlöse mit einbezogen, reduzieren sich diese Kosten auf ca. -20 € (Großanlage) bzw. 55 € (Kleinanlage) pro Mg CO$_2$-Äq. Bei der Verbrennung sind die CO$_2$-Minderungskosten der kleinen Heizkraftwerke besonders günstig. Dies liegt an der unterstellten guten Wärmennutzung und der sich daraus ergebenden Substitution von Wärme, die ansonsten mit fossilen Energieträgern erzeugt würde. Praktisch realisieren lassen sich solche Anlagen, die möglichst ganzjährig Wärme an Wohn- und Gewerbegebiete abgeben können, jedoch nicht an jedem Standort. Sie sind vielmehr als günstige Fallbeispiele zu bezeichnen.

Ausblick

Ludwig Leible
Literatur

3.3 Forschungsbereich Neue Technologien und Informationsgesellschaft

3.3.1 Elektronische Medien und Verwaltungshandeln – Rationalisierung und Demokratisierung

Projektteam: Gotthard Bechmann (Projektleiter), Silke Beck, unter Mitarbeit von Martin Bechmann und Matthias Werner

eGovernment als Leitbild der Verwaltungsreform (Potenzialanalyse)

Zum Stand der Umsetzung von eGovernment (Ergebnisse der empirischen Analysen)

Der empirische Teil des Projektes widmet sich der Umsetzung von eGov-Initiativen auf kommunaler Ebene. Die Untersuchungen konzentrieren sich auf den Aufbau des „Digitalen Rathauses“, das eine der neuen Schnittstellen zwischen Verwaltung und Bürgern darstellt. Für die empirische Bestandsaufnahme wurden eine Sekundäranalyse der Begleitforschung (wie beispielsweise von Media@komm, DIFU, Bertelsmann Stiftung, um einige der wichtigsten zu nennen), Fallstudien und repräsentative Telefonumfragen in den Städten Mannheim und Karlsruhe durchgeführt.

Sowohl unsere Sekundäranalyse als auch die beiden Fallstudien Karlsruhe und Mannheim demonstrieren, dass sich eGov-Initiativen heute in erster Linie durch eine beträchtliche Kluft zwischen Visionen auf der einen und ihrer Realisierung auf der anderen Seite kennzeichnen lassen.

noch stärker die Belange der Verwaltung selbst im Mittelpunkt standen, orientieren sich diese heute weitaus mehr an den Bedürfnissen der „Adressaten“.

Das Digitale Rathaus aus der Perspektive der Kommunen
(Angebotseite)

Kommunale Online-Angebote aus der Sicht der Bürger (Nachfrageseite)

Sicherlich ist diesbezüglich der bislang vergleichsweise geringe Nutzwert der elektronischen Angebote von Bedeutung. Aus unseren beiden Umfragen geht auch hervor, dass Bürger offenbar das persönliche Gespräch mit dem Sachbearbeiter gegenüber den Online-Transaktionen bevorzugen. Für viele Bürger stellt sich heute immer noch die Frage, ob es sich überhaupt

Gotthard Bechmann
3.3.2 Towards Intelligent and Sustainable European Cities:
The Sustainability Agenda

Krassimira Paskaleva-Shapira

"The new metaphor is of the city as an organism (...) incorporating notions of balance and interdependence (...). The idea of sustainability is now dominant in discussion of the future of cities and urban living"

(Greenhalgh et al 1997)

"Computer networks become fundamental to urban life as street systems”

(Mitchell 1999)

In spring of 2002, ITAS commenced a new one-year research and technology development Roadmap Project ‘INTELCITY’ supported by the European Union’s ‘Information Societies Technology’ (IST) Programme (Fifth Framework Programme). This European wide initiative aims to explore new opportunities for the sustainable development of cities through the intelligent use of Information and Computer Technologies (ICTs) by integrating the knowledge of experts in sustainable urban development (SUD) and ICTs to deliver a Roadmap that relates the range of potential ICT development options to planning and urban re/development processes. The partnership is led by the University of Salford, UK and includes: The Technical Research Centre of Finland (VTT); Institute for Technology Assessment and System Analysis (ITAS) and Institute of Ecological and Regional Development (IOER), Germany; The French Scientific and Technical Building Center (CSTB); Free University of Amsterdam (ESI), The Netherlands; University of Florence (TaeD UNIFI) and the Polytechnic of Turin, Italy; Napier University and the University of the West of England, UK. As one of the three key partners, ITAS played a lead role in the first phase of the initiative: Workpackage 1 “ICTs in Sustainable Urban Planning and Design” while remaining key to the currently on-going development of the final Roadmap “Towards Intelligent Sustainable Cities”.

A central objective of the initial phase was to develop visions and scenarios, identify the research challenges and predict a range of potential user needs (application pull) as well as the new ICTs (technology push) for new e-working processes in the planning and management of sustainable cities. Key to the effort was the definition of the INTELCITY overriding challenges in regard to sustainable urban development of Europe’s future.
In recent years, it has been widely recognized that one of the overwhelming challenges facing policy-makers in the 21st Century is how to reconcile the ecological, economic and social needs of urban populations in ways, which are sustainable. Cities are the most significant consumers of ecosystem resources and services. Therefore making urban development more sustainable is crucial to improving the lives not just of those who live in them but also of the rest of the planet impacted upon by their activities. Defining the principles and practice of Sustainable Urban Development as well as the adequate policy actions in terms of the four main pillars of sustainable development: Environmental, Economic, Social and Institutional becomes critical to identifying the main research opportunities and challenges of the INTELCITY project where SUD is defined as “a complex system of legal, economic and other incentive systems, methodologies and tools, data and information resources by which society provides the necessary and appropriate support for efforts by individuals and cities to implement sustainability” (Paskaleva-Shapira et al. 2002).

Summary of Actions for Sustainable Urban Development

European cities differ in their cultural, environmental, economic and social conditions, however, they all face common challenges when confronting sustainable development. These include provision of a good quality environment, wise use of resources, maintaining infrastructure and built heritage, avoiding or reducing social exclusion, whilst fostering economic competitiveness and employment opportunities necessary to a good quality of life. The main actions that are being pursued by the European cities in response to these challenges include:

1. **Develop goals and visions** for sustainable urban development and living for the short, medium and long-term that can easily be understood by ordinary citizens and provide tangible or visible results.

2. **Seek to increase economic and social viability** by maximizing inward investment and local employment through education programmes and community building. Seek to buy goods and services locally.

3. **Seek an agreed systemic conceptual SUD framework** for policy and practice that will integrate across sectors, scales, and actors to implement a cohesive system of planned actions that will secure consistent political support over a long-timeframe.
(4) Seek social sustainability by integrating activities with existing social situations and structures.

(5) Minimize damage to the environment: air, water, land, energy, plants and animals. Control pollution, repair existing or provide new habitat and green space.

(6) Use fewer resources – don’t develop unless it’s necessary and where it is feasible, seek to rehabilitate, reuse and recycle. Minimize land take and seek low energy, low water, waste free and otherwise resource efficient planning, and design and transport solutions.

(7) Consider the long-term implications of development. Place buildings, landscape and infrastructure proposals in the continuum of history in terms of the local cultural heritage, landscape, and value of place of residents. Seek to extend system life through long durability, ease of maintenance and repair and through flexibility and adaptability.

(8) Seek effective urban management to ensure safe and efficient use of city systems, transport and utilities through effective information systems control and optimisation, including adequate civil defense and public safety measures.

(9) Develop city legal, regulatory and economic incentive structures to support the integration of all urban activity and avoid interference with the achievement of sustainability goals, whilst still meeting their original objectives.

(10) Ensure effective public participation in the planning, re/development and city management processes, both in terms of planning, design and implementation. Seek forms of governance that build public confidence in the each of these processes.

(11) Promote collaborative efforts in 'knowledge transfer' of best practice and innovative approaches within the city and at the city-to-city level, e.g. inspired ideas, innovative technologies, practical solutions, policies, programmes, skills, and local and city governance.

How we evaluate progress towards sustainability has to address most of these issues and is currently hampered by the absence of effective multi-criteria assessment tools that can provide an over-arching sustainability analysis that embraces all four 'pillars'.
Main Policy Thrust

The traditional 'environmental' or 'ecological systems' view of sustainable development has implied constraints to growth, and 'trade-offs' between growth and protection of the environment. This underlies a number of the actions above. There is now a wider recognition of potential 'win-win' scenarios. To achieve both, a prosperous and sustainable 'knowledge economy' – via accelerated technology development, business innovation, a more service orientated economy – will indeed require structural and social changes. In other words, effectively exploiting innovative applications of Information Communication Technologies (ICTs) holds out the promise of enhancing quality of life and human development without increases in resource use or environmental, social or economic degradation. This is the new ‘e-topian’ vision that underlies the main policy thrusts emerging in the European Unions’ new ‘Sixth Framework Programme for Research and Technology Developement’.

Drivers for Change

The new vision for the intelligent or ‘e-topian’ city will have to counter the tendency of ill-informed communications and technologically naïve decision-making to disorganize the city – resulting in the ‘city of bits’. Therefore, we need to avoid fractured social and economic systems that may accelerate physical disintegration. Research is required to explore a number of drivers for change that can support a process of reorganization that is intelligence-driven, which serves to:

1) Replace the ‘creative destruction’, environmental degradation, economic speculation and socially disintegrating qualities of such systems, with well-informed communications and technologies – ICTs and ways of working required to conserve resources, protect the environment and build the capacity for integrated decision-making.

2) Use the capacity of this decision-making system to improve the environment, enhance competitiveness and strengthen the cohesiveness (safety and security) of the economic and social structures underlying cities.
(3) Draw upon the ‘intelligence’ of this ‘new’ organizational structure to:
- Substantially dematerialise the city;
- Spatially reconfigure the city and modify development time horizons in line with such requirements;
- Regenerate and renew cities (districts, neighbourhoods, estates and buildings) in the interests of making urban development sustainable;
- Co-ordinate the infrastructure (waste, energy, transport and mobility systems) needed to bring about environmental improvements, enhance competitiveness and strengthen the cohesive qualities of cities;
- Take decisions that are ecologically sound, equitable and which allow all stakeholders to participate in matters concerning the future of cities;
- Govern urban re/development through inclusive decision making;
- Take steps to ensure communities are not divided by access to ICTs; avoiding society becoming segregated along the lines of information rich and technology poor communities;
- Evolve settlement patterns that allow communities equal access to ICTs and which in turn enrich, rather than impoverish society;
- Build upon the SUD prototypes already in existence – (televillages, new towns, eco-parks, eco-neighbourhoods, rehabilitation schemes and green buildings – by using the integrated decision making capacities of ICTs to make settlements of this type more widespread;
- Extend SUD beyond metropolitan centres and out to cities elsewhere in the provinces;
- Use the resulting regionalisation to intensify urban development while protecting the environment;
- Intensify urban development and produce cities with the levels of bio-diversity and cultural heritage required to make them sustainable in environmental, economic and social terms.

Intelligent cities containing these characteristics should become sustainable through an integrated process of urban re/development by virtue of the self-organising environmental, economic and social structures they give rise to.

Research Directions

Research strategies towards the intelligent use of ICTs to reorganise the city for more Sustainable living and working could seek to:
• Develop existing experiments in SUD that integrate living and working spaces in tele-serviced settlements;
• Provide integrated information infrastructures to support the development of tele-serviced settlements;
• Use information to efficiently manage the hyper-mobility and fluidity of the underlying transformation;
• Explore how intelligent cities of this type are able to enter into partnerships and use these strategic alliances to govern the use of ICTs;
• Investigate forms of governance that can manage the tendency for ‘creative-destruction’, ‘disorganisation’ and ‘splintering’ of cities to create an integrated living and working environment within communities.

Competing scenarios for the underlying transformation include informational cities, tele-serviced settlements and self-organising ‘e-topian’ spaces. The INTELCITY overall objective is to investigate scenarios for the application of ICTs to improve resource conservation, environmental protection, governance, economic competitiveness, social cohesion, and community prosperity (well-being); and to assess and weight these so that the planning, design and management of European cities actually deliver more Sustainable Urban Development.

Based on the definition of the SUD and ICT research challenges in the European context while taking into a consideration the end-user perspectives from the INTELCITY Regional Platforms, a final ‘Roadmap towards Intelligent Sustainable Cities’ is to be developed in 2003 which will contain an indicative list and rationale for innovative RTD projects that link ICT and SUD expectations, and will confirm the key research players and their future roles and responsibilities for future RTD programmers in this domain. INTELCITY progress and results can be monitored at the project web site: http://www.scri.salford.ac.uk/intelcity/.

References

3.3.3 Wandel der Arbeits- und Lebensbedingungen im Multimediabereich aus der Genderperspektive

Projektteam: Bettina-Johanna Krings (Projektleiterin), Brigitte Hoffmann

Fragestellung des Projektes

möglichkeiten, die eine weitgehende Aufhebung orts- und zeitgebundener Arbeitsstrukturen für die Zukunft in Aussicht stellten. Insbesondere durch die Dezentralisierung von Angestelltentätigkeiten sollten sich zunehmend ortsunabhängige neue Arbeitsformen herausbilden, die der strikten Trennung von Beruf und Privatsphäre ein Ende setzten. Visionen, die vor allem für Frauen im Hinblick auf die Vereinbarkeitsproblematik von Beruf und familiären Verpflichtungen als eine vielversprechende Perspektive galt. Ob und in welcher Form sich diese Erwartungen realisiert haben, wurde als die übergeordnete Fragestellung des Projektes formuliert.

In der *theoretischen* Erarbeitung des Projektes wurde die Modernisierung der Arbeitsstrukturen als eine Entwicklung diskutiert, die die Erwerbsarbeit und die Lebenswelt in eine Wechselwirkung stellt. Diese ganzheitliche Betrachtung steht in der Tradition der Frauenforschung, die schon Ende der 1970er Jahre die Grenzziehung zwischen Arbeitssphäre (öffentlich) und Lebenswelt (privat) kritisierte und als ein Charakteristikum der männlichen Erwerbsbiographie beschrieb. Der Kernpunkt der Kritik zielte hierbei auf die sozio-kulturelle Abwertung der privaten gegenüber der öffentlichen Sphäre, die es den Frauen als Vertreterinnen der privaten Sphäre kaum ermöglichte, eine unabhängige soziale Partizipation in die gesellschaftlichen Abläufe zu erlangen.

Diese geschlechtsspezifische Trennung wurde zwar einerseits durch die starke Zunahme von Frauen auf dem Arbeitsmarkt und andererseits durch die Reorganisation der Arbeits(zeit)strukturen in den letzten Jahrzehnten abgemildert. Die zentrale Frage, inwieweit die Erwerbsarbeit als strukturelle Kategorie die Lebenswelt dominiert, hat jedoch wenig an Aktualität eingebüßt. Durch die Veränderungen der beruflichen Anforderungen wurden diese mehr und mehr als Teil sowohl der individuellen Alltagsführung als auch der biographischen Gestaltung betrachtet. Die Bewältigung der Erwerbsarbeit bezog sich aus dieser Perspektive besonders auf die subjektive Ebene der Lebensführung, d.h. sowohl auf die Werte und Vorstellungen der eigenen Arbeits- und Lebensgestaltung als auch auf deren praktische Umsetzung. Die leitenden theoretischen Annahmen der Untersuchung verknüpften aus diesen Gründen die Alltagsgestaltung konsequent mit den Berufsstrukturen und prüften, inwieweit neue Berufskonturen die Möglichkeiten der individuellen Lebensplanung erweitern oder aber beschränken. Hierbei wurde deutlich, dass diese Fragestellung besonders für Frauen eine hohe Relevanz beinhaltet.
Der Untersuchungsrahmen

Die oben beschriebenen theoretischen Annahmen wurden mit Hilfe qualitativer Untersuchungsansätze überprüft. Im Sommer 2001 wurden 20 offene Interviews mit Frauen und Männern im Raum Stuttgart durchgeführt. Die Auswahl der Interviewpartner und -partnerinnen bezog sich hierbei auf die so genannte Multimediabranche, eine Branche, die sich durch eine hohe Technisierung im Arbeitskontext sowie durch eine hohe Qualifizierung der Beschäftigten auszeichnet.

Folgende Arbeitsthesen leiteten die Befragung:

1) Im Multimediabereich als relativ „junger“ Branche kann von einer gewissen Offenheit der Arbeits- und Lebensbedingungen gesprochen werden, d. h. als Folge der organisatorischen Modernisierung können hier für beide Geschlechter weitreichende Veränderungen der persönlichen Lebensgestaltung entstehen.

2) Die Einstellung der beschäftigten Frauen in der Multimediabranche kann in der Regel als „modern“ charakterisiert werden, d. h. hohe Berufsorientierung, hohe Leistungsbereitschaft sowie die Überzeugung, dass Beruf, Kinder und Partnerschaft vereinbar sind.

Mit Hilfe eines Themenkatalogs wurden die Interviews in einem Auswertungsverfahren verglichen, ausgewertet und kategorisiert. Schon sehr früh zeichneten sich Arbeits- und Lebensmodelle ab, die die o. g. Thesen bestätigten und diversifizierten. Die These, dass die Bewältigung des Arbeitsalltages
Ergebnisse aus den Projekten in zunehmendem Maße die Integration der Lebenswelt erforderlich macht, scheint sich jedoch langfristig zu bestätigen.

Insgesamt hat die Auswertung der Fallstudien zu folgenden Beobachtungen geführt:

- Trotz des hohen Frauenanteils im Untersuchungsfeld kann keine Flexibilisierung der Arbeitsstrukturen in zeitlicher und räumlicher Hinsicht beobachtet werden. Im Gegenteil können diese eher als feststehende, wenig bewegliche Größen im Rahmen der Allgemeinen Lebensführung eingeschätzt werden.

- Die Wertorientierung der Interviewpartnerinnen kann als „modem“ eingestuft werden, d.h. die berufliche Tätigkeit ist einerseits identitätsstiftend für die biographische Gestaltung und andererseits gilt die Erwerbstätigkeit als wichtige Voraussetzung für die ökonomische Unabhängigkeit. Im Rahmen der Erwerbstätigkeit ist die Leistungsbereitschaft hoch und die Lebensbereiche Familie und Partnerschaft werden dem zeitlichen Rhythmus des Berufs unterstellt.

Fazit

Zusammenfassend können auf der Basis der Ergebnisse der Studie folgende weiterführende Forschungsthemen formuliert werden:

bedeutsame Auswirkungen auf langfristige gesellschaftliche Veränderungen.

Bettina-Johanna Krings
3.3.4 Online-Buchhandel

Projektteam: Ulrich Riehm (Projektleiter), Carsten Orwat, Bernd Wingert

Mittlerweile ist der Online-Buchhandel ein etablierter, weiterer Vertriebsweg im Buchhandel und ein weiteres, wenn auch moderates Wachstum ist zu erwarten. Betrachtet man heute den Buchhandel „revisited“, so können die Ergebnisse des Projektes größtenteils bestätigt werden, die in der Schließpublikation zu sieben Hypothesen zusammengefasst wurden:

These 1: Der Medienwandel erreicht den vertreibenden Buchhandel und beschleunigt den Struktur- und Funktionswandel der Branche

In der Vergangenheit haben neue Medien, wie beispielsweise Video, Hörbücher, CD-ROM oder Software, das Sortiment des Buchhandels eher ergänzt. Mit dem Internet und der Digitalisierung des Buchhandels sind allerdings andere, durchgreifendere Veränderungen des Buchhandels verbunden: das Medium des Handels und die gehandelten Medien verändern sich. Als neues Handelsmedium entstand der Online-Buchhandel und sein Kernprodukt, das gedruckte Buch, wird durch „Books on Demand“, elektronische Bücher, Hypertexte, „Content-Verwertung“ etc. herausgefordert, wenn nicht sogar von den Rändern her aufgelöst. Nicht zuletzt die dadurch ausgelöste „Titelflut“ verändert die Rollenverteilung für logistische, katalogisierende, selektierende und bewertende Aufgaben im Buchhandel, bei der der klassische Buchhandel eher an Bedeutung verlieren wird und neue sowie etablierte Verlage, Bibliotheken oder „Cybermediäre“ sich in diesem Feld positionie-
ren werden. Allerdings erschwert das komplexe Zusammenspiel technischer, rechtlicher, ökonomischer und kultureller Faktoren die Möglichkeit, Zeitpunkt und Intensität der Auswirkungen des Strukturwandels durch das neue Handelsmedium und die neuen Handelsprodukte für die Zukunft zu bestimmen.

These 2: Der reine Online-Buchhandel wird den stationären Buchhandel nicht wirklich bedrohen

These 3: Das Internet eröffnet neue Märkte und neue Vermarktungsformen für den Handel mit (gebrauchten) Büchern

können (zum Vergleich: im Jahr 2002 liegt der Online-Handel mit neuen Büchern bei 4,5 %).

These 4: *Der Zwischenbuchhandel hat seine Position – entgegen der These der Disintermediation – durch das Internet stärken können*

Aufgrund der verbesserten Kommunikations- und Transaktionsmöglichkeiten des Internets könnte man zunächst annehmen, dass Produzenten und Konsumenten in direkte Handelsbeziehungen treten und Handelsstufen dabei überspringen (Disintermediation). Statt dessen hat die Studie ergeben, dass insbesondere der Groß- und Zwischenbuchhandel (die Barsortimente) vom Online-Buchhandel profitieren und ihre dominierende Position ausbauen konnten. Sie sind einerseits Hauptlieferanten und Logistikdienstleister für die reinen Online-Buchhändler, andererseits stellen sie für den stationären Buchhandel die Internetplattformen als Beteiligungsmodelle zur Verfügung. Sogar in dem noch jungen Markt der digitalen Bücher haben sich spezialisierte Groß- und Einzelhändler etabliert, nicht aber der Direktvertrieb vom Autor zum Endkonsumenten.

These 5: *Die Systemrationalität der Distributionskette bricht sich an der Handlungs rationalität der Akteure*

These 6: *Virtualisierung und Vernetzung sind mehr oder weniger Kennzeichen der neuen Buchhandelsformen*

These 7: *Die Abschaffung der Buchpreisbindung ist für die Branche eine größere Herausforderung als der Online-Buchhandel*

Ganz in der Absicht, dass in der Studie Analysierte und Dargestellte umzu setzen, wurde die Studie als gedruckte „Book-on-Demand“-Fassung und als „E-Book“ publiziert (vgl. Riehm et al. 2001). Das dem Autor bei elektronischen Publikationsformen mehr Lasten, insbesondere die der adäquaten Präparierung der Textdateien für digitale Formate, auferlegt werden, konnte bei diesen Vorhaben nachvollzogen werden. Auf der anderen Seite haben sich die Publikationsformen als besonders kostengünstig, schnell in der Herstel-
lung, sowie jederzeit abrufbar durch den Kunden erwiesen, und die Preissetzung konnte differenziert für die einzelnen Ausgaben durch die Autoren vorgenommen werden.

Carsten Orwat

Ausgewählte Veröffentlichungen

Endbericht

Weitere Veröffentlichungen

3.3.5 Neue Medien und Kultur – das Beispiel Internet

Gerhard Banse

Gegenstand des Netzerwerks ist die Erforschung jener Veränderungen im Verhältnis von Sozialität (Bildung individueller und kollektiver Identitäten sowie Formen der Vergemeinschaftung) und Kulturalität (kulturelle Praktiken und Güter als Bedeutungsmuster des gesellschaftlichen Lebens), die sich in Verbindung mit der Entwicklung und der Nutzung des Internets (als technisches Informations- und Kommunikationsmedium) ergeben. Die jeweiligen Möglichkeiten einer Gesellschaft zur Erarbeitung, Verteilung, Speicherung, Nutzung und Überprüfung von Informationen und Wissen bilden einen wich-

Die in zwei Richtungen interpretierbare Frage nach „Kultur und Internet“ – nämlich sowohl in Richtung der kulturellen Rahmenbedingungen und Prozesse, die das Internet geprägt haben und prägen, als auch in Richtung neuer kultureller Formen netzbasierter Kommunikation, die in besonderer Weise vom Internet geprägt sind – stellt ein durchgängiges Erkenntnisinteresse dar.

Dabei kann es nicht um die ganze Palette dieser Veränderungen gehen, sondern es erfolgt eine doppelte Fokussierung, zum einen eine disziplinäre Eingrenzung, zum anderen eine Begrenzung des Untersuchungsfeldes auf repräsentative Bereiche. Bedingt durch die disziplinäre Zusammensetzung der gegenwärtigen Netzknoten ergeben sich bislang folgende Untersuchungs- und Erkenntnisperspektiven:

- philosophisch und kulturwissenschaftlich,
- psychologisch und sozialwissenschaftlich,
- kommunikationswissenschaftlich,
- informationstechnisch.

Thematisch fokussiert das Netzwerk auf folgende vier Themenbereiche, die sich gut für ein multidisziplinäres und multinationales Herangehen anbieten:

- „Reality and virtuality: changing media and structures of communication and questions of identity, community and authenticity“: Dabei geht es

In diesen Themenbereichen kann auf vielfältige Vorarbeiten und einschlägige Erfahrungen zurückgegriffen werden.

Das Internationale Netzwerk „CULTMEDIA“ versteht sich als ein Forschungsnetzwerk unterschiedlicher nationaler, bi- und multinationaler Projekte mit etwa zwei gemeinsamen Workshops pro Jahr sowie themenzentrier-

Angestrebt wird eine Finanzierung im Rahmen des COST (European Cooperation in the Field of Scientific and Technical Research Programms) oder der ESF (European Science Foundation). Teilaspekte sind Gegenstand von nationalen, bilateralen oder EU-Projekten.

Gegenwärtig gibt es folgende inhaltliche Aktivitäten:

- Gestaltung eines thematischen Hefts der Zeitschrift „Teorie vědy, časopis pro teorii vědy, techniky a komunikace/ Theory of science, Journal for theory of science, technology & communication“, Prag, zu „Neue Medien und Kultur“ (Erscheinungstermin: September 2003);
- Vorbereitung eines Symposium an der Universität Potsdam zum Thema „Kultur und/oder/als Technik – zur fragwürdigen Medialität des Internet (Termin: 19./20. September 2003);

Literatur

3.3.6 EU-Projects “MAB” and “Tigers” about ICT-Developments in EU and Candidate Countries

Arnd Weber

ITAS is involved in two related EU projects. One is about “Monitoring and Benchmarking” (MAB) of the so-called “eEurope+ 2003 Action Plan” in the EU Candidate Countries. The other project is “Tigers” which addresses causes for success or failure of ICT-related economic developments in the present EU member states, with the ultimate objective of drawing conclusions regarding policies for the Candidate Countries. The importance of these policies cannot be underestimated, as we are talking about the accession of 13 countries with about 170 million inhabitants (Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Slovenia, Cyprus, Malta, Romania, Bulgaria, and Turkey).

Both projects took place within the framework of the European Science and Technology Observatory (ESTO). They are sponsored by the ICT unit of the Institute for Prospective Technological Studies (IPTS) in Seville, Spain, which is part of the European Union's Joint Research Centre.

Project MAB

The MAB project ran from early 2002 to early 2003. It was sponsored by IPTS, led by ITAS, with TNO from the Netherlands as partner. Background of the MAB project are the European Union’s “eEurope 2002 Action Plan” and the “eEurope+ 2003 Action Plan” containing plans for similar actions in the Candidate Countries.

The “eEurope 2002 Action Plan” was designed to contribute to the European Union’s objective “to become the most competitive and dynamic knowledge-based economy in the world capable of sustainable economic growth with more and better jobs and greater social cohesion”, as agreed at the European Council in 2000 (“Lisbon Summit”). The plan aims at bringing Europe closer to meeting these objectives and contains, for instance, actions for making Internet use cheaper, for educating people how to use the Internet and for encouraging citizens to use it at school, at home and at the workplace.

The “eEurope+ 2003 Action Plan” contains a number of modifications for adapting the eEurope 2002 Action Plan to the situation of the Candidate Countries, for example, actions on telecom liberalisation and on the implementation of EU regulations.
The objectives of the MAB project were basically (1) to analyse the quality of data gathering and benchmarking activities in the current EU-countries, and (2) to address the problems of gathering such data in the Candidate Countries. The methods used were essentially to analyse documents and to conduct expert interviews.

The benchmarking efforts which took place in the “EU-15” countries led to the gathering of data in fields such as Internet access, use of computers at school, and government on-line services. In order to rapidly and regularly obtain comparative results, the European Commission had subcontracted data gathering activities to consultancy companies. The analysis revealed that there are some issues with the current data gathering activities which should be addressed in the future.

The first area of findings concerns the methodology of the data gathering. Some general methodological conclusions are: Indicators should be defined in detail. For example, it should be clear what Internet access via “cable modem” exactly is, whether it can be assumed to provide a minimum bandwidth, etc. Another finding is that interviewers should be trained, in order to explain questions if needed. Such a training should be done consistently in all countries. Furthermore, all survey methods should be made available so that the interested public would be in a position to judge the results. The latter would, for example, allow to understand how in the e-government statistics a differentiation is made between a “two-way interaction”, a “transaction” and a “delivery”.

Other methodological conclusions apply to data collection in the Candidate Countries. Expert interviews led to the conclusion that certain other issues will need to be taken into account, such as how foreigners and emigrants are to be counted in order to create a representative sample. In addition, it was found that it will not be possible to easily conduct representative surveys using telephone interviews, as are common in West European countries, since large shares of the population do not have a fixed line phone.

Furthermore, any data gathering effort should be done in close cooperation with experts in the field. The Commission is already “moving” their data gathering efforts into such directions, for example by intensifying co-operation with the National Statistical Institutes and by working on a refined list of indicators.

It was concluded in the MAB project that while it makes sense for public reports to provide only key results, the complete methodological information, definitions, questionnaires etc. should be made available to interested citizens and experts, for example as links on the WWW. The provision of such
methodological information will hopefully also explain any apparent contradiction to the results of other surveys.

The second area of findings concerns the benefits of the current benchmarking exercise. Interviewed experts in the Candidate Countries expressed concern about the lack of competitiveness of their countries and about emerging social problems. They pointed to the need for political support, for example, for ICT production. This suggests that indicators which measure progress towards achieving the Lisbon objectives – competitiveness, social cohesion, and sustainability – would be useful. Taking these aspects into account would be welcomed as a substantial improvement of eEurope benchmarking.

Project Tigers

The Tigers project is also an ESTO project sponsored by IPTS. The project was led by MERIT, the Maastricht Economic Research Institute on Innovation and Technology (The Netherlands). Other partners are the Austrian Research Centers, Atlantis Consulting (Greece) and the Circa Group (Ireland). The project started in August 2002 and will be completed in 2003.

The objectives of the Tigers project are to analyse West-European cases of successful and less successful ICT-related developments, with the ultimate goal of using this knowledge when creating policies for the Candidate Countries. ITAS is responsible for the analysis of the development of the semiconductor production firms in the Dresden region. The project partners analyse ICT-related developments in Austria, Flanders, and Greece. Also the “Celtic Tiger” of IT development in Ireland was investigated, and gave the name to the project.

Projects results are planned to be published in 2003. Below, only results from the Dresden study are reported.

The Dresden study takes the European Council’s objectives as agreed at the Lisbon summit as a starting point: “The Union has today set itself a new strategic goal for the next decade: to become the most competitive and dynamic knowledge-based economy in the world capable of sustainable economic growth with more and better jobs and greater social cohesion”. It was decided that it would make sense to investigate a development in Eastern Germany, which in a sense is a transition economy, yet already part of the EU. As opposed to analysing a large part of it, it was felt that it would make sense to investigate a relatively small cluster in which IT-related develop-
ments play a special role, i.e. the Dresden cluster of semiconductor production, in order to see whether it gets closer to meeting the Lisbon objectives. The methods used were to review the most important studies, and to conduct expert interviews in Dresden.

The study analysed early roots of industrial development in Saxony, as they are important to understand how such a regional cluster can develop. Saxony was the most industrialised area in Germany before World War II. The Dresden region manufactures such items as watches, computing machines, high-volt transformers, crystal detectors and high aperture lenses. An important factor is the Dresden Technical University which has its origins in 1828. During GDR times, aircraft, cameras and computers were produced, and even whole computer centres with software, air-conditioning etc. sold. Dresden was the GDR’s largest research centre, for example, piloting semiconductor production, such as for Europe’s first Megabit memory chip in 1988.

In the course of the re-unification of Germany, employment shrank to about 65% of its GDR-level. After an initial boom, growth rates later reached the relatively low West-German levels. Therefore it made sense to analyse a so-called “beacon” of development. Major beacons are the car production factories in Eisenach and Mosel (close to Zwickau), and the semiconductor production in Dresden.

For the latter, the decision by Siemens, made in 1993, to invest into a semiconductor plant was essential. In December 1995, AMD announced its decision to build a semiconductor “fab” in Dresden and decided against Ireland. The fabs were subsidised with public funds. These subsidies cover only a fraction of the total investment costs of about € 6.5 billion (by 2002). The decisions by Siemens and AMD to invest and keep investing cannot be explained with public funding alone, as other locations offered financial subsidies on a similar scale. Rather the human factor was essential. AMD, for example, was impressed by the skills of the German engineers, and the precision the operators were used to in their work.

In 1999, Siemens in Dresden produced the world’s first 256-Mbit-DRAM-chip. After floating of Siemens Halbleiter in the year 2000, it was named Infineon Technologies. With support from the German Ministry of Education and Research (BMBF), a technology for wafers of the size of 300 mm was developed by Infineon, Motorola and Wacker. The world’s first 300 mm product was produced in 2001, a 64-Mbit-DRAM chip. Infineon was awarded the “Fab of the Year” prize of the year 2000 for the 300 mm fab.
AMD decided to use a technology for copper interconnects to build a very fast microprocessor. One of the problems of using copper is that it is poison to transistors. With the first GHz-rated Athlon microprocessor produced in 2000 using the new technology, the AMD made a profit of about $1 billion. The fab was awarded the “Fab of the Year” prize for the year 2001.

With the decision of AMD to invest in Dresden, other players saw that Dresden is developing into a global centre of development. In May 2002, AMD, Infineon and DuPont Photomasks founded AMTC, the Advanced Mask Technology Center, as a global research centre. For about 30 international equipment producers, the major investments made it economic to open permanent offices themselves. Also new producers started business such as DAS who design processes for the environmentally safe disposal of poisonous wastes. The decision by Wacker Siltronic to produce silicon crystals for 300 mm wafers in near-by Freiberg has been another important step. Some other important new companies in the field are Systemonic, producing chips for wireless data communication and KSW, producing labels for transponders.

About 10,000 semiconductor-related jobs were created in the region, more than initially expected. The government subsidies of about €1.2 billion will probably be much smaller than the expected social insurance and tax payments, which will be about €5.9 billion, by 2010.

Both AMD and Infineon made losses during the year 2002, due to the downturn of the global semiconductor market. Economic sustainability will largely depend on whether these investors are able to make substantial profits in the future, just like they made in past boom times. Due to the large “sunk” costs, during downturns, investors have to continue production even at revenues below average costs. Therefore, the timing, size and duration of the next boom will be essential. It is estimated that the largest market growth will be in Asia.

For policies regarding the Candidate Countries the following conclusions have been drawn in the Dresden report:

1. **Forecast activities:** An analysis would be beneficial which forecasts the economic, social and environmental effects of government policies.

2. **Controlling activities:** Such activities should take place in order to later check whether the objectives are met.
(3) **Support of industries in competitive areas:** The Dresden experience points out that special efforts are needed to sustain the field of a region’s comparative expertise.

(4) **Support of companies with local ties rather than of “enlarged workbenches”:** Several experts pointed out that “enlarged workbenches”, as they have been emerging in the Candidate Countries, do not only tend to require only a relatively low level of skills, it was also emphasised that in the case of a crisis, disinvestments may happen quickly. Therefore, companies with strong local roots, embedded both in local co-operation and in global markets would be needed, to provide lasting employment.

(5) **Support of education:** A solid educational system is certainly needed to support a region’s comparative expertise.

The Dresden report and the other “Tigers” reports will be published during the year 2003.

References

Tigers project: http://tigers.infonomics.nl

3.3.7 FISTERA – A Thematic Network on Foresight on Information Society Technologies in the European Research Area

Project team: Michael Rader (project leader), Knud Böhle

On FISTERA

Since September 2002, ITAS has participated in the project „Foresight on Information Society Technologies in the European Research Area“ (FISTERA). The project is organised as a thematic network as the result of a competitive action under the European FP5 IST programme (IST-2001-37627). It is coordinated by the Institute for Prospective Technological Studies of the European Commission, Directorate General Joint Research Centre. The project is scheduled to run for a total of three years and currently involves a network of 17 member institutions.

The project’s aim is to bring together on a systematic and extended basis, actors and insights in national foresight exercises on IST in the enlarged Europe. Thus, its membership includes several members from the “enlargement” countries and there are plans to extend membership, particularly in this direction, as the project progresses.

There are three main objectives:

(1) Compare results of national foresight exercises;
(2) Provide a new forum for consensus building on future visions for IST;
(3) Contribute to constructing the European Research Area through benchmarking and community building, by providing a dynamic pan-European platform on foresight on ISTs.

For these aims, work consists of a total of 5 „packages“, with one of the six main partners in FISTERA having responsibility for the package:

WP1 – Review and Analysis of National Foresight Exercise Outcomes (ITAS)
WP2 – Aggregate pan-European Technology Trajectories (TILAB, Venice, Italy)
WP3 – European IST Actor Space Mapping (ARCs/r, Seibersdorf, Austria)
WP4 – IST Futures Forum (PREST, The Victoria University of Manchester, UK)
WP5 – Results Dissemination and Interaction with the IST community (IPTS, Seville, Spain)

The project administrator is GOPA-Cartermill of Brussels in Belgium.

The fifth work package puts stronger than usual focus on dissemination activities: annual “road show” activities are foreseen to disseminate and discuss the results successively as these are produced by the project. The client, the Directorate General Information Society of the European Commission, expects important impulses from the project for the preparation of the seventh Framework Programme.

Results from the Review and Analysis of National Foresight Projects

The first phase of work package 1 consisted of a review and analysis of selected national foresight exercises focusing on insights and outcomes with respect to just a single area of technology, namely Information Society Technologies (IST). The work package is the responsibility of Karlsruhe Research Centre, Institute for Technology Assessment and Systems Analysis (ITAS). ITAS wrote a total of eight case studies on national foresight projects and also produced a synthesis report, principally on the Information Society Technology (IST) related aspects of these cases.

The major criteria for the selection of the Foresight cases were a) to cover a broad spectrum of different exercises and b) to concentrate on recently completed foresight exercises. As a result, national foresight exercises from Austria, the Czech Republic, France, Germany, Hungary, Spain, Sweden, and the United Kingdom were chosen. In this phase, regional foresight studies, studies conducted within industry, and studies from outside the EU25+ were deliberately omitted. A major benefit of the exercise was the aggregation of information on IST-Foresight derived from the studies chosen, its systematisation and its availability as a public source of information.

The selected findings of the present analysis summarised here concern (1) aspects of foresight in general, (2) challenges facing IST-foresight, and (3) lessons for European level IST-Foresight.

(1) With the exception of Sweden, the national government commissioned the foresight study in each country. The range of methods varied from panel discussions and brain-storming to quite sophisticated multi-method exercises. As general trend, electronic means of communication are increasingly used to involve more people and to broaden participation dur-
ing the exercise proper and afterwards. We also observe a trend that societal problems are more present in the minds of all foresight makers than in previous times. Characteristic constraints include a lack of time for the entire exercise or for certain of its elements, for information exchange between panels, and for adequate integration of different results. In addition essential Foresight ingredients like analyses of strengths, weaknesses, opportunities and threats (SWOT), construction of future visions, and the development of alternative options are often lacking or not present in the final report. The influence of the prescribed time horizon (between 5 and 30 years) on statements given still remains very unclear. Obviously the danger of just reproducing “Zeitgeist” statements is real, e.g. the special importance given to “electronic commerce” during the e-economy boom. Possibly due to doubts with respect to the long-term reliability of foresight statements, most studies underline the benefits of foresight in social terms, such as creating networks and raising awareness of the future.

(2) Information and Communication Technologies (ICT) were treated as a separate area in all but one of the studies. IST played a role in many panels devoted to areas of technology other than information and communication technologies. In some studies they assumed the role of “underpinning” or key technologies. The major caveats for IST foresight to be taken into account are:

- Findings on IST tend to be scattered across the reports on each foresight study rather than concentrated in one place requiring a special effort to integrate the results of different panels etc.
- Major shortcomings of existing foresight studies concern the technology itself. It is obviously not a simple task for stakeholders to envisage applications for a technology about which little is known other than that it will be important.
- Research at the cutting edge of IST was seldom addressed due to the very application-oriented nature of most foresight studies, implying that special effort is needed to keep application orientation without losing sight of cutting edge research.
- Due to the very dynamic nature of IST, it is very difficult for participants in foresight exercises to avoid falling victim to “Zeitgeist”. As a result, the recommendations and findings are oriented mainly towards short-term policies. Zeitgeist and the problem of “time-hori-
zon” have to be methodologically controlled in rapidly changing fields, and thus pose a methodological challenge to foresight.

- Another problem of most studies is their failure to truly investigate alternative developments or the possibility of unexpected events (“wild cards”), such as unexpected technological breakthroughs, disrupters or technology related catastrophes.
- National visions concerning IST are underdeveloped in about half of the studies, due to their concern with “catching up” or “keeping touch” with global competition. More information is required on the setting, context and actual work of the foresight studies to provide greater insight into the role of IST in national visions for the future.

(3) From the review of IST-Foresight within national foresight exercises suggestions have been derived for foresight efforts requiring European cooperation to be successful.

- The European dimension is most clearly present in SWOT analyses as part of the national foresight exercises, although usually not very systematically. A task of EU level foresight could be a EU-level SWOT analysis. This dimension has already been recognized by FISTERA in its aim to map areas of particular scientific expertise and potential areas for collaboration.
- An option for European level foresight is a uniform exercise trying to identify “critical” technologies across all or several countries. This would include assessments of the relative positions of each country and Europe at a global scale for individual technologies or applications.
- Another task for European foresight studies could be to explore applications of “cutting edge” technologies envisaged by various actors within predetermined time-frames.
- A very helpful feature of the Swedish study was the “technology hindsight” study, which can contribute to improving the techniques used for forecasting technologies important in the future. Its subject were mainly technologies which had so far failed to fulfil their early promise, but it would also be useful to extend the approach to such technologies whose success had not been predicted, the most recent examples being the Internet and GSM mobile telephony.

Michael Rader
References

The FISTERA project web site containing publicly available reports and presentations is at URL, http://fistera.jrc.es

The first project report containing the eight case studies and a synthesis of findings on IST in national-level foresight is: Rader, M.; Boehle, K.; Hoffmann, B.; Orwat, C.; Riehm, U. 2003

3.4 Forschungsbereich Theorie und Methodik

3.4.1 Technology Assessment – Between Method and Impact (TAMI)

Project team: Armin Grunwald (project leader), Michael Decker, Leonhard Hennen

Technology Assessment (TA) in Europe has evolved significantly in recent years by experimenting in and developing new methods of assessing scientific and technological innovations beyond the “classical” expert-oriented approaches. The new methodological variety has created a debate as to the merits and disadvantages of each method, which is still far from being conclusive. At the same time, there is a significant change in the manner by which policy is made in the area of S&T. Partly as a result of recent social debates on the consequences of scientific discoveries and partly as a result of the need to modernise S&T-policy structures, there is considerable discussion on the way science and policy intermingle in the public arena (e.g. the issue of “science governance”). Part of this debate refers to scientific advice in policy-making and ways in which this relationship can improve and become more comprehensive.

It is in this context that TAMI aspires to function and provide concrete contributions to the debate. TAMI involves a group of leading TA experts from major European institutes (see below) who analyse core-issues in European TA; issues that revolve around the methodology of TA and its impact on society in general and policy making in particular. TAMI tackles its objectives from two perspectives. Firstly, the view of TA-Institutions is taken. They try to optimise their TA-project-designs in order to reach the impact they want to reach. The second perspective is the other way round and asks which impact can be achieved by technology assessment at all? In concrete two working groups have been established dealing with the following topics:

(a) Improving TA-project-design: Identifying criteria to enable comparison, classification and evaluation of TA methods in order to develop TA-project designs reaching the impacts they aim for.

(b) Impact assessment of TA: Identifying criteria to measure policy impact; classifying different levels of impact; classifying different political contexts.
Improving TA-project design

It is one aim of the TAMI project to raise a discussion between the actors of all kinds of TA. Therefore institutions directly connected with the parliament are as well involved as University institutions dealing with TA, Institutions focussing on concrete TA designs take part as well as institutions realizing methodological different TA projects. This makes it necessary to define – in an acceptable way for all participants – what the TAMI consortium means, when it talks about Technology Assessment. The ongoing discussion revolves around the following definition.

Technology Assessment (TA) is a scientific and communicative process with the aim to contribute to the public and political opinion forming on science and technology related societal aspects.

This definition refers to both science and communication. The latter covers so called dialogue methods within the TA project (e.g. consensus conference) as well as the communication with the outside world (e.g. newsletter, website, etc.).

From Method to impact: A complex relationship

TAMI not only needs a common definition on Technology Assessment, but it should be able to base its discussions on a common framework in order to understand the relationships between method and impacts. The following structure was developed backwards starting with the fact that impact can only be reached by concrete TA-projects, in fact by the implementation or realisation of a project design.

The project design depends firstly from an appreciation of the current situation, a necessary step in order to set realistic and correct goals. Based on this situation appreciation and goal setting, the project will be designed in choosing the adequate methods. At this stage, one has to justify that the choice of methods has the highest potential to reach the defined goals. Moreover, more general criteria concerning good practices in TA must be taken into account like reaching scientific reliability, argumentative quality and social fairness. These generally agreed quality criteria should be supplemented by so called impact stimulating criteria which can be summarised as “stimulation of communication”. Finally, the project design should contain procedures enabling the TA-practitioneers to keep track to the society and scientific situation. The following scheme describes this procedure:
Impact assessment of TA

Definition of Impact

The term “impact” refers to the expectation which on a general level is held by both TA-practitioners and clients (policy makers) as well as observers of policy consulting: TA has to *make a difference* in terms of the quality of decision making processes by adding comprehensive and non-biased knowledge to this process. The implicit expectation is that decision making with TA leads to “better” (more rational, informed or legitimate) decisions than would have otherwise been achieved *without* TA. This is however based on an ideal concept of rational decision making (which to some extend ignores the reality of politics) and the impact of TA in this sense is hardly measurable. Nevertheless this concept is behind all discussions on impact since it is indeed connected with the traditional mission of TA.

For the sake of evaluation of TA-procedures there are good reasons to avoid the specific term “impact” and apply more open concepts such as “success” or “resonance”. “Success” as a highly subjective concept depends on the perspective of the observer. A TA procedure that may have been successful with regard to “customer satisfaction” (results being appreciated by the client, i.e. policy maker) may nevertheless have had “no impact” in terms
of influencing the content or outcome of the policy making process. Another way to avoid the normative connotations of “impact” is to apply a more generic and neutral concept like “resonance”. “Resonance” does not refer to “making a difference” in the above sense but it is more generic as it includes a scope of observable possible “effects” ranging from e.g. “Report or TA-process being mentioned in a debate, or the media” to more direct results such as “change in the political agenda” or “initiation of new legislation”.

For the purposes of the TAMI project which is not dedicated to gathering data and/or empirically exploring the connection between method and impact, but rather to furthering the discussion between TA practitioners and clients on the relationship between methods applied and impacts achieved, it was decided to use the term “impact” in a more general sense; by not relating it uniquely to the specific mission of TA as “improving decision making in terms of rationality or legitimacy”, impact is defined as a broader concept describing the effects of TA in policy making and public debates. These effects might range from raising awareness for a particular issue/problem to changing legislation. This concept of impact has been clarified by working out a typology which is made up of three dimensions of impacts which can be related to three dimensions of the issues that TA is dealing with.

Typology of Impacts

The “Impact-Group” has started to develop a typology of impacts, in which it roughly discerns three dimensions of impact that TA or policy consulting in general could have: impact in the dimension of knowledge used in policy making or public debate, impact in the sense of changing opinions/attitudes of actors involved in policy making and the debate, and impact in the sense of initialising actions taken by policy makers or other actors.

These dimensions of impact can be related to three dimensions of the issue that TA-projects usually deal with and TA is expected to generate knowledge about. TA has to deliver information on the technological and scientific aspects of the issue that is at stake (e.g. features of technology, results/problems of scientific risk assessment, economic costs, eco-balances etc). A description of the problem/issue at stake would be incomprehensible without describing the societal aspects: TA has to deliver knowledge about relevant actors (their interests, values etc.) and possible social conflicts that can evolve around the technology under consideration.

On the grounds of a proper description of the scientific and technological aspects in connection with a description of the social environment (debate,
actors), TA has to analyse the policy aspects of the problem, meaning it has to consider the restrictions and opportunities of policy making and has to develop policy options, i.e. explore politically viable ways for problem solving (legislation, R&D funding, action plans) and again evaluate options with regard to possible side-effects (e.g. social conflicts) they might have.

The TAMI Consortium:

TAMI is an EU-project (No STPA-2001-00004) within the STRATA-Programme (Strategic Analysis of Specific Political Issues)
Project Coordination: Europäische Akademie GmbH. ITAS is member of the coordination group of TAMI and has been invited to collaborate in both working groups

Participating Institutions:
Centre for Technology Assessment at the Swiss Science and Technology Council (TA-Swiss), Switzerland
Centre of Technology Assessment in Baden-Württemberg (CTA), Germany
Centre of Science, Technology, Society Studies at the Institute of Philosophy, Academy of Sciences of the Czech Republic (STS Centre), Czech Republic
Committee on Industry, External Trade, Research and Energy, European Parliament (EP), Belgium
Consejo Superior de Investigaciones Científicas (CSIC), Spain
Danish Board of Technology (DBT), Denmark
Europäische Akademie GmbH (EA), Germany
Flemish Institute for Science and Technology Assessment (viWTA), Belgium
Institute for Technology Assessment and System Analysis (ITAS), Germany
Office of Technology Assessment at the German Parliament (TAB), Germany
Parliamentary Office of Science and Technology (POST), UK
Rathenau Institute, The Netherlands
Warsaw School of Economics – Institute of Modern Civilisation (SHG), Poland

Michael Decker
3.4.2 Konzeptionelle Fragen der Technikfolgenabschätzung

Armin Grunwald

Technikfolgenabschätzung und Wirtschaft

Herausforderung auch für Technik-, Forschungs- und Wissenschaftspolitik darstellen. Der Beratungsbedarf von gesellschaftlichen Entscheidungsträgern über Technik in Wirtschaft und Politik steigt genauso an wie das Interesse in Öffentlichkeit und Medien. Dementsprechend ist die Nachfrage politischer Instanzen nach Technikfolgenabschätzung und verwandten Formen der Beratung ungebrochen.

Einführung in die Technikfolgenabschätzung

Trotz der jahrzehntelangen Geschichte der TA war eine einführende Gesamtdarstellung der Technikfolgenabschätzung bislang nicht verfügbar. Die vorhandene Literatur besteht zu einem großen Teil entweder aus umfangreichen, teils mehrbändigen Handbüchern oder aus verstreuten Beiträgen in Sammelbänden und Konferenzberichten. Diese Darstellungen sind einerseits oft schwer zugänglich, nur in begrenzten Auflagen gedruckt oder gar nicht mehr aufzufinden. Andererseits, und dies wiegt noch schwerer, sind diese Beiträge in der Regel für die Diskussion innerhalb der Technikfolgenabschätzung geschrieben; d.h., sie sind häufig genug für Außenstehende schwer verständlich, ausgesprochen heterogen, sie stehen teilweise in Widerspruch zueinander, sind redundant und in der Vielfalt verwirrend.

Ein Bedarf nach einer kompakten und verständlichen Darstellung der Technikfolgenabschätzung scheint dagegen durchaus vorhanden zu sein. Denn Technikfolgenabschätzung kommt in vielfältiger Weise mit ganz ver-
Ergebnisse aus den Projekten

Veröffentlichungen

3.4.3 Expertenkommunikation im Konfliktfeld der nuklearen Entsorgung

Projektteam: Fritz Gloede (Projektleiter), Peter Hocke-Bergler, Martin Stolle

Bislang vorliegende Ergebnisse aus den Bevölkerungsumfragen und der Medienanalyse werden im Folgenden dargestellt. Die Darstellung hat das
Ziel, in evaluierender Perspektive die Medien- und PR-Effekte des Expertenhandelns durch den AkEnd und die Einstellungen und Bewertungen der Bevölkerung zu verdeutlichen, die das Problem der Suche und Erstellung eines Endlagers für radioaktive Abfälle in Deutschland begleiten.

Ergebnisse der repräsentativen Bevölkerungsumfragen 2001 und 2002

Der Fragebogen für die face-to-face-Interviews der repräsentativen Bevölkerungsbefragung 2001 gliedert sich in drei größere Themenbereiche. Der erste Themenbereich des Fragebogens bezieht sich auf das Technikinteresse und die Technikbeurteilung der Befragten, die Umweltfolgen von Technik, Meinungen zur Kernenergie, Kenntnis des Atomausstiegs der Bundesregierung und dessen Bewertung sowie die Bedeutung neuer Technologien für die wirtschaftliche Entwicklung in Deutschland.

Der zweite Themenbereich konzentriert sich auf die Bereitschaft und die Einstellungen zur politischen Partizipation. Es finden sich Fragen dazu, inwieweit die Bevölkerung Vertrauen in verschiedene Institutionen setzt, zur Bewertung politischer Partizipation im allgemeinen, zu Genehmigungsverfahren technischer Großprojekte und verschiedene Bedingungen politischer Partizipation in diesem Zusammenhang. Schließlich geht es noch um die Beteiligung der Bevölkerung bei der Errichtung eines Endlagers für radioaktive Abfälle.

Der dritte Themenbereich beinhaltet spezielle Fragen zur Lagerung von radioaktiven Abfällen und zur Nutzung der Kernenergie. Ausgangspunkt ist die Glaubwürdigkeit verschiedener Institutionen sowie deren Informationen zur Nutzung der Kernenergie. Weiterhin thematisiert der Fragebogen verschiedene Entsorgungsalternativen radioaktiver Abfälle, ein nationales und ein internationales Lagerkonzept, die Kriterien der Endlagerung und die Folgen eines Endlagers für radioaktive Abfälle, die Beurteilung vorhandener End-
lager wie Schacht Konrad oder Gorleben und die Rolle der Gemeinden hin-
sichtlich der möglichen Einrichtung eines Endlagers für radioaktive Abfälle.

Der Fragebogen der zweiten repräsentativen Bevölkerungsumfrage 2002
ist inhaltlich sehr stark an den Themen der ersten Befragung orientiert, damit
statistische Vergleiche zwischen den beiden Untersuchungszeitpunkten durch-
führt werden können. Weitgehend ist die eben beschriebene inhaltliche Glie-
derung des Fragebogens bestehen geblieben. Neu hinzugekommen sind die
den Themenbereiche Lebensstile (nach Gluchowski) sowie die objektive
und subjektive Wahrnehmung der jeweiligen Region, in der die Befragten
wohnen.

Ergebnisse zur Endlagerung radioaktiver Abfälle

Welcher Weg der Entsorgung radioaktiver Abfälle wird von den Befragten in
welchem Zeithorizont bevorzugt? Eine Mehrheit der Befragten von 66,9 %
geht davon aus, dass ein Endlager für radioaktive Abfälle innerhalb der
nächsten zehn Jahre zur Verfügung stehen wird, während weitere 22,9 %
davon ausgehen, dass dies erst innerhalb der nächsten 30 Jahre der Fall sein
wird. Dass die Endlagerung radioaktiver Abfälle erst durch zukünftige Gene-
rationen erfolgen wird, die vermutlich über bessere Technologien verfügen
werden, vermuten 10,2 % der Befragten.

Eine deutliche Mehrheit von 80,6 % der Befragten würde ein Endlager
für radioaktive Abfälle, das in der Region entstünde, nicht akzeptieren. Die-
eses Phänomen wird in der Literatur zitiert und als NIMBY-Syndrom (not-
in-my-backyard) beschrieben. Ähnliches gilt für ein gemeinsames Endlager
radioaktiver Abfälle der Europäischen Gemeinschaft, das in Deutschland an-
gesiedelt sein könnte. Von den Befürwortern dieses Lösungsvorschlags (n =
1,232) sind 38,1 % der Befragten dafür, dass das Endlager in Deutschland
realisiert werden würde, 41,7 % dagegen und 20,2 % der Befragten unent-
schieden.

Geht es um die Frage, ob ein zentrales oder mehrere dezentrale Endlager
eingerichtet werden sollten, dann sprechen sich 45,5 % der Befragten für ein
zentrales Endlager aus. 33,7 % bevorzugen mehrere kleine Endlager und ein
Fünftel der Befragten hat dazu keine dezidierte Meinung.

Die Ergebnisse der Korrelationsanalyse zeigen einen deutlichen Wider-
 sprung. Kenntnisse und Einstellungen zur Technik sind zwar für die Einstel-
lungen zur Nutzung der Kernenergie ausschlaggebend, jedoch nicht für die
Beurteilung des Entsorgungsproblems von radioaktiven Abfällen.
Weiterhin zeigt die Korrelationsanalyse, dass die Einstellungen zur Nutzung der Kernenergie einen negativen Koeffizienten mit der Dringlichkeit des Entsorgungsproblems aufweisen. Dies bedeutet, dass eine positive Einstellung zur Nutzung der Kernenergie eher mit einer nicht dringlichen Bewertung des Entsorgungsproblems einhergeht bzw. eine negative Einstellung zur Nutzung der Kernenergie mit einer sehr dringlichen Bewertung des Entsorgungsproblems radioaktiver Abfälle.

Ergebnisse der multivariaten Analysen

Ein wesentliches Ergebnis ist, dass die Beurteilung der beiden Endlager (Gorleben und Konrad) in Regressionsmodellen nur recht schlecht erklärt werden können, soweit die Skalen zu den Folgen der Endlagerung, des Technikverständnisses, die Dringlichkeit des Entsorgungsproblems und die Güte der Information über das Entsorgungsproblem als unabhängige Variablen verwendet werden.

Werden stattdessen die letzten drei unabhängigen Variablen durch die Bewertung der Bedeutung der Atomtechnologie für die wirtschaftliche Entwicklung, die Informationen zur Kernenergie durch die Forschungszentren und durch die radioaktive Strahlung als Umweltfolge von Technik ersetzt, so verbessern sich die Regressionsmodelle wesentlich in ihrer Erklärungskraft.

Dieses Ergebnis deutet darauf hin, dass das Entsorgungsproblem radioaktiver Abfälle in Deutschland von der Bevölkerung nicht als eigenständige Thematik wahrgenommen wird. Hohe bivariate Korrelations- bzw. Regressionskoeffizienten zwischen der Einstellung zur Nutzung der Kernenergie und der Beurteilung der Endlager unterstreichen diese Interpretation. Das Thema
Forschungsbereich Theorie und Methodik 199

des Entsorgungsproblems radioaktiver Abfälle kann somit immer nur als ein Teilthema der Nutzung der Kernenergie interpretiert werden.

Weiterhin konnte gezeigt werden, dass für Kernenergiebefürworter die Bedeutung der Atomtechnologie für die wirtschaftliche Entwicklung eine zentrale Rolle spielt, neben einer positiven Technikeinstellung und den konkreten Folgen der Endlagerung radioaktiver Abfälle. Im Gegensatz dazu stehen die Ergebnisse der Regressionsanalyse für die Kernenergiegegner. Es werden offensichtlich ganz besonders die radioaktive Strahlung als Umweltfolge von Technik und die diffusen Folgen der Endlagerung von radioaktiven Abfällen wahrgenommen.

Ergebnisse der empirischen Medienanalyse

Die insgesamt relativ überschaubare Zahl von Berichten mit AkEnd-Nennung hing auch mit der nicht sehr dichten Medienberichterstattung über

In der Berichterstattung der Massenmedien sind Experten im Vergleich zu Regierungsorganisationen nur ein Akteur mit tendenziell geringer Bedeutung. Dies zeigten die Inhaltsanalysen ebenso. Überraschend war dies insoweit nicht, als Fragen der Nuklearpolitik in den Massenmedien meist dem politischen Ressort zugeschlagen werden und diesem gleichzeitig im Vergleich zu anderen Rubriken (wie Wissenschaftsseiten) meist relativ viel Platz eingeräumt wird. Als wirtschaftliche Frage wurde das Endlager-Problem ebenfalls so gut wie nie dargestellt. Dies zeigte sich sowohl an der Berichterstattung der Wirtschaftszeitungen als auch an den Akteuren, die die jeweilige Berichterstattung dominierten.

Evaluation mit positivem Ergebnis

Die Evaluation der Arbeit des AkEnd durch ITAS ist überwiegend positiv. An einzelnen Schlüsselstellen kommen wir jedoch zu ambivalenten Ergebnissen. Positiv festzuhalten ist, dass der AkEnd zentrale Ziele erreicht hat. Er legte sowohl ein Set von geowissenschaftlichen wie auch ein Set von sozialwissenschaftlichen Kriterien für die Eignung eines Endlagerstandortes vor. Darüber hinaus unterbreitete er einen Verfahrensvorschlag für eine Suche und Auswahl eines Endlagers für radioaktive Abfälle in Deutschland.

Martin Stolle und Peter Hocke-Bergler
Verfügbare Literatur zum Projekt

Gloede, F.; Grunwald, A. (o. J./2000): Evaluationskonzept (Los 4). Teilbericht 1, Ms. (Institut für Technikfolgenabschätzung und Systemanalyse im Forschungszentrum Karlsruhe)

ITAS (o. J.): Projektantrag zu Los 4 bei der „Fachlichen Unterstützung des BMU-Arbeitskreises „Beteiligungsverfahren bei der Standortauswahl für die Endlagerung radioaktiver Abfälle““, Karlsruhe (Institut für Technikfolgenabschätzung und Systemanalyse im Forschungszentrum Karlsruhe)

3.4.4 ITAS-Aktivitäten in Ländern Mittel- und Osteuropas

Gerhard Banse

(a) Forschungen zu theoretischen und methodischen Aspekten von Technikfolgen-Abschätzung und Umweltforschung unter Einschluss ethischer Zusammenhänge;

(b) den Wissenstransfer im Bereich der Ausbildung (bezogen sowohl auf die von Natur-, Technik- und Wirtschaftswissenschaftlern als auch auf die von Sozial- und Geisteswissenschaftlern).

Realisiert wird das methodisch vielfältig:

- Initiierung und Durchführung gemeinsamer (kurz- wie langfristiger) Aktivitäten (Projekte);
- Konzipierung und Durchführung von sowie Teilnahme an wissenschaftlichen Veranstaltungen;
• Durchführung von Lehrveranstaltungen (TA, Wissenschafts- und Technikphilosophie/-ethik, sozialwissenschaftliche Umweltfragen);
• Organisierung/Realisierung von Übersetzungen (ins Deutsche, Polnische, Russische, Tschechische, Slowakische);
• Durchführung von Gastwissenschaftleraufenthalten;
• Abschluss von Kooperationsvereinbarungen;
• (Gemeinsame) Betreuung von Doktoranden.

An Ergebnissen genannt seien lediglich:
• Projekt „Vergleich von Innovationsstrategien“ (Deutschland, Russland, Armenien);
• Gemeinsame Konzipierung/Organisierung von vier wissenschaftlichen Veranstaltungen (St. Petersburg, Budapest; Banská BYstrica, Katowice);
• Teilnahme an etwa 20 wissenschaftlichen Veranstaltungen mit Vorträgen und/oder Sektionsleitungen (u. a. in Bratislava, Budapest, Ekaterinenburg, Moskau, St. Petersburg, Wisła);
• Durchführung von ca. 100 Stunden Lehrveranstaltungen oder Vorträgen (u. a. in Banská BYstrica, Katowice, Moskau, Prag, Tychy, Warschau);
• etwa 30 Beiträge in Publikationen der Partnereinrichtungen in deutscher, polnischer, russischer und slowakischer Sprache; zahlreiche Beiträge ausländischer Kollegen in deutschen Publikationen (u. a. „TA-Datenbank-Nachrichten“, „Konferenz-Protokollbände“, „Konstruieren zwischen Kunst und Wissenschaft“);
• sechs Gastwissenschaftler-Aufenthalte (fünf am ITAS, einer am Institut für Philosophie der Akademie der Wissenschaften der Tschechischen Republik, Prag);
• Abschluss von vier Kooperationsvereinbarungen.

Im Berichtszeitraum konzentrierte sich die Vorbereitung gemeinsamer Projekte hauptsächlich auf zwei Aktivitäten:
• Etablierung eines Forschungs-Netzwerkes zur Rahmenthematik „Neue Medien und Kultur – das Beispiel Internet“ (mit „Netzknoten“ in Deutschland, Polen, Ungarn, der Slowakischen und der Tschechischen Republik, der Schweiz und der Russischen Föderation);¹
• Projekte zur Rahmenthematik „Rationalität in der Angewandten Ethik“ (in Zusammenarbeit mit Partnereinrichtungen in Polen und in der Slowakischen Republik).

¹ Vgl. dazu den Bericht in diesem Jahrbuch, S. 230f.
Dabei geht es um

- die Klärung begrifflich-konzeptioneller Grundlagen;
- den Wissens- und Erfahrungstransfer in Forschung und Lehre;
- die Implementation von Angewandter Ethik in den Studiengang „Praktische Ethik“ (in der Slowakei);
- die Herstellung von Kontakten zu Vertretern der Praxis (in Wirtschaft, Politik, Wissenschaft und Verwaltung);
- den Wissenschaftleraustausch zum Zwecke des Wissenstransfers;

In Deutschland gibt es dafür vielfältige Formen. Neben dem Philosophiestudium sind es vor allem das fächerübergreifende Studium (etwa an den Technischen Universitäten in Aachen, Cottbus und Darmstadt) sowie das Studium generale oder fundamentale.

Seit dem Jahr 1999 gibt es an der Matej-Bel-Universität Banská Bystrica, Slowakische Republik, das Studium der Ethik, das speziell für die Ausbildung in Richtung Angewandte Ethik eingerichtet wurde. Dabei werden am damit beauftragten Lehrstuhl für Ethik und Ästhetik auch Doktoranden zur Promotion geführt, die sich auf einzelne Bereiche der Angewandten Ethik spezialisieren. Trotz der Bemühungen des Lehrstuhls, eigene Fachliteratur zu erarbeiten bzw. herauszugeben, ist die Zahl dieser Quellen für die Studierenden/Promovierenden immer noch sehr niedrig. Es existiert auch ein Defizit an Sekundärliteratur, und die Beschaffung dieser Literatur ist in der Slowakei sehr schwierig. Für die weitere Entwicklung der Lehre (wie der Forschung) des Faches Angewandte Ethik in der Slowakischen Republik ist deshalb die Erweiterung und Entfaltung der wissenschaftlichen Diskussion unbedingt

In der Slowakischen Republik fehlen Arbeiten (eigenständige bzw. Übersetzungen) zu grundlegenden Problemen der Angewandten Ethik und der Berufsethiken (bzw. sind derzeit in Bibliotheken nicht verfügbar). Hinzu kommt, dass auch die Akzeptanz dieses Wissenschaftsbereichs in der wissenschaftlichen Gemeinschaft – im Unterschied etwa zu Deutschland – (noch) nicht sehr hoch ist. Das Projekt soll dazu beitragen, diese Situation zu ändern.

Vor diesem Hintergrund soll das Anfang 2003 begonnene Projekt dazu beitragen, die Wissenschafts- und Wirtschaftsethik in den Studiengang Praktische Ethik in der Slowakischen Republik zu implementieren und dauerhaft zu etablieren (Erarbeitung von Studienprogrammen und Lehrmaterialien; Verallgemeinerung erster Erfahrungen).

Das Projekt umfasst eine „Forschungs-“ und eine „Implementierungs“-phase. Im Zentrum der Projektarbeit im Jahr 2003 wird vor allem die Forschungskomponente stehen. Sie bezieht sich vor allem auf

- die Untersuchung der aktuellen Entwicklungstendenzen, Fragen, Beantwortungsrichtungen bzw. Antworten, die sich die jeweilige Bereichsethik stellt;
- die Herausarbeitung übergreifender Fragestellungen (etwa Verantwortungsthematik, Rationalität, Risiko-/Ungewissheitsproblematik; Adressaten);
Dazu sind folgende Arbeitsschritte geplant:

- Literaturrecherchen in Deutschland und in der Slowakischen Republik, erste Verallgemeinerungen auf nationaler Ebene;
- Vergleich der auf nationaler Ebene gewonnenen Ergebnisse, Schlussfolgerungen für detaillierte Recherchen;
- detaillierte vergleichende Analyse der auf nationaler Ebene gewonnenen Ergebnisse auf der Grundlage eines Vergleichsrasters (z.B. konzeptio nell-theoretische Begründung, Ausdifferenzierung, Schwerpunktsetzung, Entwicklungstendenzen, Akteure, Praxisbezug, Bedeutung für Studien gänge u.ä.).

Diese Forschungen werden die Hauptgrundlage für die Erarbeitung eines eigenständigen, begründeten Curriculums einer Lehre der Angewandten Ethik in der Slowakischen Republik und seiner Implementierung sein.
3.5 Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag

3.5.1 E-Commerce

Projektteam: Ulrich Riehm (Projektleiter), Carsten Orwat, Thomas Petermann, Christoph Revermann, Constanze Scherz, Bernd Wingert

Stand des E-Commerce

Für den Business-to-Business-Sektor (B2B) des E-Commerce liegen Daten der amtlichen Wirtschaftsstatistik der Vereinigten Staaten für das Jahr 2001 vor. Danach lag der E-Commerce-Anteil in der Fertigungsindustrie bei 18,3 % und im Großhandel bei 10,0 %. Der B2B-Anteil am gesamten E-Commerce betrug 93,3 %. Das Internet stellte dabei nicht die dominierende technische Kommunikationsinfrastruktur für den elektronischen Handel dar, denn z.B. im Großhandel der USA wurden 86 % des E-Commerce über die schon länger etablierten Anwendungen des „Electronic Data Interchange“ (EDI) und nicht über das Internet abgewickelt.

Aus Unternehmensbefragungen kennt man den Anteil der Unternehmen in Deutschland und den USA, die über das Internet einkaufen und verkaufen und das ungefähre Ausmaß, in dem dies geschieht. Deutschland schneidet dabei, auch im Vergleich mit anderen Ländern, relativ gut ab, wenn auch das Volumen dieser Verkäufe relativ gering ist. 49 % der im Jahr 2001 befragten Unternehmen nutzten das Internet für die Beschaffung (50 % in den USA);
deutlich weniger, nämlich 20 %, nutzten das Internet als Verkaufskanal (18 % in den USA). Es sind allerdings nur 21 % der Unternehmen, die mehr als 5 % ihrer Verbrauchs-, Wartungs- und Reparaturmaterialien über das Internet beschaffen, und nur 8 %, die mehr als 5 % ihres Verkaufs über das Internet abwickeln (Tab. 1).

Tabelle 1: E-Commerce im Jahr 2001 in Deutschland und den USA

<table>
<thead>
<tr>
<th>Deutschland</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteile der Betriebe, die im Internet selbst Bestellungen vornehmen</td>
<td>49 %</td>
</tr>
<tr>
<td>Anteil der Betriebe, die mindestens 5 % ihrer Wartungs-Reparatur- und Verbrauchsmaterialien elektronisch bestellen</td>
<td>21 %</td>
</tr>
<tr>
<td>Anteile der Betriebe, die im Internet selbst verkaufen</td>
<td>20 %</td>
</tr>
<tr>
<td>Anteile der Betriebe, die mindestens 5 % ihrer Verkäufe mit Geschäftskunden über das Internet abwickeln</td>
<td>8 %</td>
</tr>
<tr>
<td>Anteil des B2C-E-Commerce am gesamten Einzelhandel (2002)</td>
<td>1,6 %</td>
</tr>
</tbody>
</table>

Quelle: U.S. Department of Commerce, Empirica, Hauptverband des deutschen Einzelhandels

Das Volumen des E-Commerce, der mit Endkonsumenten über das Internet abgewickelt wurde (Business-to-Consumer- oder B2C-Sektor), lag in Deutschland im Jahr 2002 nach unterschiedlichen Erhebungen und Abschätzungen zwischen 4,5 und 8,5 Mrd. Euro. Von der deutschen Bevölkerung zwischen 14 und 64 Jahren im Jahr 2002 nutzten 46 % das Internet in der einen oder anderen Weise, 30 % hatten im Internet schon einmal eingekauft, 6 % gaben an, dass sie dies „schon häufiger“ getan hatten. Die drei am häufigsten online gekauften Produktkategorien unter allen Online-Kauftransaktionen (im 4. Quartal 2001) waren Bücher und Zeitschriften mit 28,2 %, Bekleidung und Schuhe mit 11,4 % und CDs und bespielte Tonträger mit 10,2 %. Nach dem Wert der Käufe liegen allerdings mit 21,8 % (für das Jahr 2002) der Touristikbereich (Reisen, Flug- und Fahrscheine, Hotelbuchungen) an der Spitze, gefolgt von Bekleidung und Schuhen (14,3 %) und Computer und Computerzubehör (12,6 %).

Der Anteil des B2C-E-Commerce am gesamten Einzelhandel lag nach Schätzung des Hauptverbands des Deutschen Einzelhandels im Jahr 2002 bei
1,6 %. Für das Jahr 2003 wird ein Anstieg auf 2,1 % erwartet. Auch hier hält Deutschland im Vergleich mit den USA eine führende Position. Für die USA wird der Anteil des B2C-E-Commerce im Jahr 2002 mit 1,3 % angegeben.

Erhebliche Unterschiede zwischen den Branchen – die Politik mischt mit

Handel mit Medienprodukten – mit und ohne Preisbindung

Medienprodukte, hier Bücher, Tonträger (CDs etc.) und Bildtonträger (Video, DVD etc.), sind in der Wertschätzung der Online-Kunden besonders hoch angesiedelt und werden besonders häufig über das Internet gekauft. Die Tabelle 2 zeigt die wesentlichen Daten für das Jahr 2002.

Tabelle 2: Handel mit Büchern, Tonträgern und Bildtonträgern im Jahr 2002 in Deutschland

<table>
<thead>
<tr>
<th></th>
<th>Bücher</th>
<th>Tonträger</th>
<th>Bildtonträger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branchenumsatz insgesamt in Mio. Euro</td>
<td>9.224</td>
<td>2.110</td>
<td>1.041</td>
</tr>
<tr>
<td>davon Online-Umsatz in Mio. Euro</td>
<td>438</td>
<td>141</td>
<td>132</td>
</tr>
<tr>
<td>Anteil des Online-Verkaufs am gesamten Umsatz</td>
<td>4,5 %</td>
<td>6,7 %</td>
<td>12,7 %</td>
</tr>
</tbody>
</table>

Quelle: Börsenverein des Deutschen Buchhandels, Bundesverband der phonographischen Wirtschaft, Bundesverband Audiovisuelle Medien
Obwohl der Buchhandel gemeinhin als „Forerunner“ des E-Commerce gilt, dies, wie oben gezeigt wurde, auch in Bezug auf die Häufigkeit von Online-Verkaufstransaktionen mit Büchern stimmt, zeigt eine Branchenbetrachtung, dass für die Videobranche der E-Commerce mit einem Online-Anteil von 12,7 % eine viel größere Bedeutung hat als für die Buchbranche, in der der Online-Anteil „nur“ 4,5 % beträgt.

Strom per Mausklick?

Erst seit 1998 ist es für Privathaushalte und Geschäftskunden möglich, einen Stromlieferanten frei zu wählen. In der Folge dieser Deregulierung der Strombranche hat sich auch der elektronische Handel mit Strom entwickelt, allerdings für die großen Stromanbieter und Unternehmenskunden in einem ganz anderen Ausmaß als für die Privatkunden. Gerade für die Abdeckung unvorhergesehener Über- und Unterkapazitäten bei den Stromproduzenten und Großabnehmern ist der elektronische Handel über die neuen Strombörsen oder andere elektronische Marktplätze ein schnelles und effizientes Handelsmedium, das immer intensiver genutzt wird. Gleichwohl bestehen, insbesondere aus der Sicht der mittleren und kleinen Anbieter, noch Liberalisierungsdefizite, z.B. was transparentere Marktinformationen, den Zugang zu
den Verteilnetzen sowie die mangelnde Standardisierung der Übertragungs- und Abrechnungsprotokolle angethan.

Im Endkundenbereich ist die „Wechselbereitschaft“ bisher nicht sehr ausgeprägt. Auch ist eine vollständige elektronische Bestellung „per Mausklick“ derzeit nicht möglich, da die alten Anbieter auf einer schriftlichen und persönlich unterschriebenen Kündigung bestehen. Doch selbst wenn dieses Hindernis aus der Welt geschafft wäre, sollte man sich vor allzu hohen Erwartungen, was den Anteil des (elektronischen) Handels mit Strom durch Endkunden betrifft, hüten. Die Motivation, um den Strompreis zu handeln, ist nicht sehr ausgeprägt. Der Kunde wägt offensichtlich den Komfort der auf Dauer gestellten verlässlichen Versorgung mit dem Aufwand ab, die Strompreise zu überprüfen und einen Wechsel des Anbieters vorzunehmen. Die Bilanz dieses Kalküls führte bisher offensichtlich überwiegend dazu, beim bisherigen Stromanbieter zu bleiben.

Arzneimittel über das Internet?

Auch der Arzneimittelhandel in Deutschland unterliegt einer Fülle von Regulierungen. So gibt es für den Verkauf von Arzneimittel an den Endkunden einheitlich festgelegte Preise – also keine Preiskonkurrenz. Der Versandhandel mit Arzneimitteln ist in Deutschland generell verboten. Da der Internethandel eine Form des Versandhandels darstellt, ist dieser ebenfalls untersagt. E-Commerce mit Arzneimitteln findet also auf Grundlage der derzeitigen politischen Regulierung im Verhältnis zum Endkunden nicht statt, während z.B. die Bestellungen der Apotheken beim pharmazeutischen Großhandel schon lange und unabhängig vom Internet weitgehend elektronisch erfolgen.

Gegen eine Zulassung des Online-Handels mit verschreibungspflichtigen Arzneimitteln wird angeführt, dass dieser zu einer Verminderung der Versorgungssicherheit und des Verbraucherschutzes führen könnte. Ob solche negativen Folgen eintreten, hängt aber wesentlich von der Ausgestaltung der rechtlichen Rahmenbedingungen für den Versandhandel mit Arzneimitteln ab. Es liegen mittlerweile durchaus Vorschläge auf dem Tisch, bei deren Umsetzung das hohe Versorgungsniveau und der Verbraucher- und Gesundheitschutz gewährleistet blieben. Nach einer Modellrechnung für das TAB müssten bei einem sehr hoch angenommenen Online-Anteil von 26 % am gesamten Arzneimittelhandel 3.000 Apotheken (das sind 14 % aller derzeitigen Apotheken) aus wirtschaftlichen Gründen schließen. Die Folgen für die Versorgungssicherheit und die Apothekendichte wären danach eher relativ begrenzt. Das Einsparpotenzial in Bezug auf die Arzneimittelkosten belief sich nach der gleichen Modellrechnung, je nach Modellvariante, auf 1,3 bis 6,5 %.

Differenziertes Problemlösungspotenzial des E-Commerce

Bei hochwertigen Gütern, die relativ selten gekauft werden, wie Autos, Möbel, Versicherungen, Reisen etc., steht das Interesse an der Rationalisierung der Bestellabwicklung wegen des deutlich höheren Bestellwerts weni-
E-Commerce dient hier eher der kundenindividuellen Konfiguration des Produktes (Farbe, Ausstattungsdetails), dem Nachweis der Verfügbarkeit eines Produktes oder der Aushandlung von Konditionen.

Forschungs- und politischer Handlungsbedarf

Auf internationaler Ebene besteht u.a. ein politischer Handlungsbedarf im Hinblick auf den globalen Dienstleistungshandel (WTO, GATS), die Steuer- und Zollpolitik, den Datenschutz sowie den Urheberrechtsschutz. Im Hinblick auf Steuern, um beispielhaft auf dieses Thema hinzuweisen, werden automatisch und online ablaufende Besteuerungsverfahren gesucht, um eine akzeptable, wirksame Besteuerung von digitalen Gütern auf virtuellen Märkten mit vertretbarem administrativen Aufwand zu erreichen. Längerfristig würde eine fehlende Regulierung der Besteuerung des elektronischen Warenstausuchs die Privilegierung des E-Commerce gegenüber der traditionellen Wirtschaft zementieren.
Der durch E-Commerce ausgelöste und beförderte Strukturwandel verläuft je nach Wirtschaftsbereich ganz unterschiedlich, ist insgesamt aber eher moderat einzuschätzen. E-Commerce bleibt dennoch auf der Agenda von Wirtschaft, Wissenschaft, Gesellschaft und Politik, auch wenn die Euphorie der späten 1990er Jahre verflogen ist.

Carsten Orwat

Ausgewählte Veröffentlichungen

Endbericht

TAB-Hintergrundpapiere im Rahmen des TA-Projektes „E-Commerce“

Weitere Veröffentlichungen

3.5.2 Bioenergieträger und Entwicklungsländer

Projekteam: Rolf Meyer (Projektleiter), Jan Börner

Nutzung von Bioenergieträgern

Schließlich sind einer Erhöhung der Pflanzenölproduktion durch den Mangel an geeigneten Flächen Grenzen gesetzt. Ökologisch vertretbar ist nur

Umsetzungsrestriktionen

In der Vergangenheit traten technische Hemmnisse vor allem dann auf, wenn versucht wurde, Technologien ohne Rücksicht auf klimatische Bedingungen, Produktionstechniken oder mangelnde Infrastruktur in Entwicklungsländern einzuführen. Nicht technische Hemmnisse hingegen sind viel-

Handlungsmöglichkeiten

Ob der CDM, wie von vielen Entwicklungsländern gefordert, zu positiven Entwicklungen in den Gastgeberländern führt, hängt von seiner institutionellen Ausgestaltung ab. Letztere ist bis heute Gegenstand der politischen Verhandlungen, und obwohl schon heute CDM-Pilotprojekte durchgeführt werden, sind noch viele Fragen (z.B. die Vertragsgestaltung, Monitoring und Sanktionsmaßnahmen sowie die Art der zugelassenen Projekte) zu klären.

Im TAB-Bericht werden abschließend verschiedene Handlungsfelder diskutiert und dazu jeweils eine Reihe von Handlungsoptionen vorgestellt: Dazu gehören ein nein Handlungsmöglichkeiten auf nationaler Ebene wie umwelt-
und klimapolitische, entwicklungspolitische sowie forschungs- und technologiepolitische Handlungsmöglichkeiten. Zum anderen sind Handlungsmöglichkeiten auf internationaler Ebene zu nennen, wie die Ausgestaltung des CDM und die Unterstützung der Energiepolitik der Entwicklungsländer.

Rolf Meyer
3.5.3 Umweltschutz, Ressourcenschonung, Arbeitsplätze
Leonhard Hennen

Beschäftigungseffekte – Weder „Killer“ noch „Knüller“

Mit solchen und anderen methodischen Problemen sind auch Studien behaftet, die sich mit der Untersuchung möglicher (zukünftiger) Beschäftigungseffekte verschiedener umweltpolitisch prominent diskutierter Maßnahmen – z.B. Ökosteuern oder verschiedene Maßnahmen zum Klimaschutz – auf Quantität und Qualität von Arbeitsplätzen befassen. In den letzten Jahren ist eine Vielzahl solcher Studien entstanden, die auch für die politische Diskussion um die so genannte „doppelte Dividende“ von Bedeutung waren.
Ergebnisse aus den Projekten

Kussion um die so genannte „doppelte Dividende“ von Bedeutung waren. Folgende – angesichts bestehender methodischer Probleme vorsichtige – generelle Schlussfolgerungen zu den Beschäftigungseffekten von Umweltpolitik lassen sich aus den Ergebnissen dieser Studien ziehen:

Die meisten auf ökonomischen Modellen basierenden Studien zu den quantitativen Effekten zeigen in der Regel gering positive Beschäftigungseffekte bzw. eine beschäftigungspolitisch neutrale Wirkung von Umweltpolitik. Insofern erscheint der mögliche Beitrag von Umweltschutz zur Lösung der aktuellen Krise des Arbeitsmarktes eher bescheiden.

Umwelttechnik zeitigt insgesamt ökonomische Wirkungen, die denen des technischen Wandels im Allgemeinen vergleichbar sind. Auch bei anderen Zukunftstechnologien stehen neu geschaffenen Arbeitsplätzen in den innovativen Branchen Verdrängungseffekte in anderen Bereichen gegenüber.

Hinsichtlich der Qualität von Arbeitsplätzen bzw. der erforderlichen Qualifikationen wirken umwelttechnische Innovationen entsprechend dem allgemeinen Trend am Arbeitsmarkt. D.h. die Nachfrage nach qualifizierten und hochqualifizierten Arbeitskräften nimmt zu, während die Nachfrage nach gering qualifizierten Arbeitskräften eher sinkt. Insbesondere der integrierte Umweltschutz wirkt deutlich in Richtung einer Nachfrage nach höheren Qualifikationen und trägt damit zur Verbesserung der Qualität der Arbeitsplätze.

Modell und Realität

Die Berechnung von Beschäftigungseffekten umweltpolitischer Maßnahmen kann nur auf der Basis ökonomischer Modellierung der wirtschaftlichen Realität und zukünftiger wirtschaftlicher Entwicklungstendenzen erfolgen. Gegen die in der politischen Debatte gängige Instrumentalisierung entsprechender Berechnungen als Beweis für beschäftigungspolitisch positive oder negative Effekte des Umweltschutzes muss festgehalten werden: Ökonometrische Modellrechnungen sind keine Vorhersagen der wirtschaftlichen Entwicklung und können die komplexe ökonomische Wirklichkeit grundsätzlich nicht exakt abbilden.

Ergebnisse ökonometrischer Modellrechnungen sollten somit nicht als Beweismittel pro oder kontra den Angeklagten „Umweltschutz“, sondern zurückhaltend als informationelle Unterstützung politischer Entscheidungsfindung verstanden und genutzt werden.

Nachhaltige Entwicklung und Arbeit

Ein Desiderat bleibt bisher die Abschätzung von beschäftigungspolitischen Effekten umfassender, integrierter Nachhaltigkeitsstrategien. Aufgrund der in der Regel recht weitgehenden Ziele und auch komplexen Maßnahmenbündel, die hier auf ihre Arbeitsmarkteffekte zu untersuchen wären, scheinen jedoch ökonometrische Modelle an ihre Grenzen zu stoßen.

Umweltschutz und berufliche Bildung

Es ist deutlich, dass durch umweltpolitische Vorgaben teils erhebliche Veränderungen der bestehenden beruflichen Tätigkeitsfelder ausgelöst werden. Es ist zu erwarten, dass sich diese Tendenz – ausgelöst durch neue technische Entwicklungen, die Veränderung von Märkten, aber auch durch erweiterte Anforderungen des Umweltschutzes – verstärken wird.

Das System der Berufsausbildung hat bisher auf die Anforderungen des Umweltschutzes recht flexibel reagiert. Umweltschutz ist als Querschnittsqualifikation mittlerweile fest verankert. In bestehende Ausbildungs- und Stu-
Ergebnisse aus den Projekten

Wenig verallgemeinerbare Erkenntnisse und auch keine verlässlichen Daten liegen dazu vor, wie sich im Umweltschutz speziell qualifizierte Personen auf dem Arbeitsmarkt durchsetzen. Weitgehend auf plausible Annahmen und trial and error-Ansätze angewiesen bleibt damit auch der Versuch einer gezielten Verbesserung von Beschäftigungschancen durch Qualifikationsmaßnahmen im Umweltschutz.

Die weitere Entwicklung einer beschäftigungsorientierten Umweltpolitik wird sich im Rahmen des nicht nur umweltpolitisch zentralen Leitbildes der Nachhaltigen Entwicklung vollziehen müssen. Dabei steht eine Reihe von Fragen zur Klärung an, z. B.:

- Wie sind Strategien nachhaltiger Entwicklung unter beschäftigungspolitischem Gesichtspunkt mit dem generellen Trends der wirtschaftlichen Entwicklung und des Arbeitsmarktes vermittelbar?
- Wie können die für das System der Berufsbildung unter dem Gesichtspunkt nachhaltiger Entwicklung in Zukunft relevanten Qualifikationsanforderungen identifiziert werden?
- Wie kann sich das Berufsbildungssystem auf die Herausforderungen nachhaltiger Entwicklung einstellen?

Es wird darauf ankommen, die Umweltpolitik nicht auf dem Altar der Arbeitsmarktte ne zu opfern, sondern vielmehr darauf, einen Pfad einzuschlagen, der Synergien soweit vorhanden nutzt und berechtigte kurzfristige Beschäftigungsziele mit langfristigen Nachhaltigkeitszielen in Einklang bringt.
3.5.4 Tourismus in Großschutzgebieten

Projektteam: Christoph Revermann (Projektleiter), Thomas Petermann

Charakteristika von Großschutzgebieten im Vergleich

Zur Kategorie der so genannten Großschutzgebiete werden die Nationalparks, die Biosphärenreservate sowie die Naturparke gezählt. Gemeinsam ist ihnen, dass nur mit den unterschiedlichen Schutzzielen konforme touristische Nutzungen möglich sind. Die drei Typen von Großschutzgebieten weisen aber in wesentlichen Dimensionen Unterschiede auf:

Die mehr als 90 Naturparke stellen für die Erholung geeignete regional bedeutsame Kulturlandschaften dar, deren Erhalt häufig großflächig mit lenkenden Eingriffen und Nutzungen verbunden ist. Naturparke sind offen für regionalen Tourismus in zahlreichen Varianten.

Tourismus in Großschutzgebieten

Konflikte um Nutzungsinteressen

Kooperation als integrative Strategie

Gesetze und Verordnungen geben den jeweiligen Nationalparkverwaltungen grundsätzlich genügend Instrumente an die Hand, ggf. lenkend und regulierend einzuziehen. So gesehen, ist Tourismus (z. B.) in Nationalparks in erster Linie eine Frage der Qualität des Besuchermanagements. Besucherlenkung wird deshalb in allen größeren Schutzgebieten in der einen oder anderen Form praktiziert.

Insofern besteht demnach nicht nur der Auftrag, der Bevölkerung ein Erleben der Natur so weit wie möglich zugänglich zu machen, sondern es ist auch eine umfassende „Präsentation“ der Region durch „Regionalvermarktung“ oder „Regionalmarketing“ anzustreben. Ziel ist eine Verbesserung der Lebensqualität nach innen, die Verbesserung des Image nach außen sowie eine Erhöhung der Standortqualitäten. Dabei werden im Idealfall die Sekto-
Ergebnisse aus den Projekten

Großschutzgebiete als regionaler Faktor

Der Tourismus für sich genommen kann potenziell und tatsächlich Ursache für zahlreiche Impulse in Regionen mit Großschutzgebieten in ökonomischer, ökologischer und sozialer Hinsicht sein.

Die positiven Folgen („regionaler Nutzen“) ergeben sich u. a. durch Steuereinnahmen, die Schaffung einer Infrastruktur und von Arbeitsplätzen. Der Tourismus als Wirtschaftsfaktor kann große Beiträge zur Wertschöpfung in einer Region liefern, die vor allem durch die Ausgaben der Besucher und Urlauber zustande kommen. Regionexterne Fördermittel können die regionale Standortqualität erheblich verbessern und die Attraktivität der Region steigern. Von wesentlicher Bedeutung sind auch die Aspekte Erhalt von Kulturlandschaften und Stabilisierung von Ökosystemen.

Trotz der zahlreichen Impulse für die Region, die der Tourismus im Zusammenspiel mit Großschutzgebieten bewirken kann, sollte seine Bedeutung für die regionale Wirtschaftsentwicklung (ebenso wie die der Großschutzgebiete) letztlich realistisch eingeschätzt werden. Beispielsweise dürften die positiven Effekte in strukturschwachen Regionen mit wenig entwickelter touristischer Infrastruktur geringer ausfallen als in agrar-touristischen Gebieten mit diversifiziertem Tourismusangebot.

Nachhaltigkeit und Regionalentwicklung

Großschutzgebiete lassen sich in das Konzept der nachhaltigen Regionalentwicklung stimmig integrieren. Sie unterstreichen und verstärken nochmals die ökologische Dimension nachhaltiger Regionalentwicklung. Daneben werden Schutz und Entwicklung der Kulturlandschaft als konstituierende Elemente integriert. Die spezifische Attraktivität liegt darüber hinaus auch darin begründet, dass Schutzkonzepte durch Integration in Regionalentwicklung grundsätzlich besser durchsetzbar sind, und bei Vergrößerung oder Ver-

Großschutzgebiete als Modellregionen

Thomas Petermann
3.5.5 Neue Medien und Kultur

Projektteam: Herbert Paschen (Projektleiter), Gerhard Banse, Christopher Coenen, Bernd Wingert

Konzeption und Ablauf des Projektes

Um der Breite und Komplexität des Untersuchungsauftrags Rechnung zu tragen, hat das TAB dem Projekt ein zweistufiges Konzept zugrunde gelegt. Danach sollten in einer ersten Phase (Vorstudie) theoretisch-begriffliche Grundlagen erörtert, Entwicklungen bei der Mediennutzung untersucht, Me-

Im Zentrum des Berichts stehen die Kapitel IV, V und VI; sie beruhen im Wesentlichen auf den Ergebnissen so genannter „Basisanalysen“, die von externen Gutachtern zu folgenden Themen durchgeführt wurden:

- Wandel der Kulturverständnisse und Kulturkonzepte (Christopher Coenen, Berlin)
- Neue Medien und Medienmärkte (Booz·Allen & Hamilton, Düsseldorf)
- Neue Produktions-, Vermittlungs- und Rezeptionsformen in ausgewählten Kulturbereichen (Prognos AG, Basel)

Wandel der Kulturkonzepte und die neuere Medientwicklung

Entwicklungslinien wissenschaftlicher Kulturkonzepte

Zu den hervorstechenden Merkmalen der jüngeren Wandlungsprozesse sozialwissenschaftlicher Kulturkonzepte gehören eine fast allgemeine Ausweitung des Kulturbegriffs, die neuerliche kulturtheoretische Aufwertung des Individuums, von Gruppen sowie der Gattung (im Vergleich z.B. zu Nation und Volk) und schließlich der Bedeutungszuwachs neuer (oder als neu wahrgenommener) kultureller Gemeinschaften, Gruppen und Szenen für das Kulturverständnis.

Im Zuge des Prozesses der Überwindung des Kolonialismus und vor dem Hintergrund des wachsenden Interesses an den kulturellen Differenzen innerhalb der „zivilisierten“ Gesellschaften erlangten ethnologische Kulturbegriffe eine zentrale Bedeutung für das sozialwissenschaftliche Kulturverständnis insgesamt (und darüber hinaus für das Alltagsverständnis von „Kultur“). Diese eher deskriptiv als normativ angelegten und relativ weiten Kulturbegriffe waren und sind noch für nationale wie internationale kulturpolitische Diskussionen von zentraler Bedeutung. Sie wurden in den letzten Jahren aber
auch immer häufiger zu Gegenständen einer Kritik, in der Kulturen prinzipiell als unabgeschlossen und Individuen immer als Träger mehrerer kultureller Identitäten gelten. Grenzüberschreitungen, Zwischenräume und Hybridisierungen gewinnen dadurch an kulturtheoretischer Bedeutung; Medienentwicklung, transationale kulturelle Zusammenhänge, interkultureller Austausch und Migration werden zu noch wichtigeren Themen der Forschung.

Debatten über Kultur- und Medienentwicklung

In den neueren Debatten zu den Wechselwirkungen zwischen Kultur- und Medienentwicklung wird den Medien zumeist eine herausragende und zudem immer noch wachsende kulturelle Bedeutung beigemessen. Uneinigkeit besteht u. a. darüber, ob Kulturentwicklung tendenziell in Medienentwicklung aufgeht (oder schon aufgegangen ist), ob also demnach auch Kulturtheorie inzwischen überwiegend (oder sogar ausschließlich) als Medienkulturtheorie betrieben werden sollte. Im Zusammenhang dieses Projektes sind jene theoretischen Ansätze von besonderem Interesse, in denen einerseits der herausragenden Bedeutung von Medien für Kultur Rechnung getragen wird, andererseits aber darauf verzichtet wird, kulturelle Evolution gänzlich in der Medienentwicklung aufgehen zu lassen. Auf zwei Ansätze dieser Art (Schmidt, S. J.; Castells, M.) sei hier hingewiesen.

Die gegenwärtige Konjunktur des Kulturbegriffes in Wissenschaften und Politik ist für Schmidt nicht eine Modeerscheinung, sondern ein „Indiz für eine bedeutsame gesellschaftliche Entwicklung“, eine „Entwicklung von der Dominanz von Materialitäten hin zu einer Dominanz von Wissen“, die wiederum durch die Entwicklung von Informations- und Kommunikationstechnologien maßgeblich beeinflusst wird. Er favorisiert daher eine Konzeption von Kultur, „die sich nicht auf Phänomene kapriziert, sondern auf Programme zur gesellschaftlich relevanten Produktion und Interpretation von Phänomenen“. Kultur ist für ihn das Programm zur Thematisierung, Bewertung und normativen Einschätzung grundlegenden gesellschaftlicher Dichotomien. Der Ansatz von Castells versucht hingegen, schon in den Massenmedien angelegte Entwicklungen fortzuschreiben (u. a. die Diversifizierung und Globalisierung der Inhalte und die kulturelle Segmentierung des Publikums) und mit Entwicklungen zu kombinieren, die mit den Neuen Medien und zumal dem Internet auftreten, insbesondere in Form von Netzwerken computerunterstützter Kommunikation, die als „neue symbolische Umwelt“ entscheidend werden (was er „the culture of real virtuality“ nennt).

Abbildung 1: Debatten zur Medienentwicklung 1: Kontinuitätsthese

<table>
<thead>
<tr>
<th>Beginn der Moderne</th>
<th>Ausbreitung der Rundfunkmedien</th>
<th>Heute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emanzipation von ursprünglichen Gemeinschaften und „der Natur“</td>
<td>Positive Bewertung von Modernisierungsprozessen</td>
<td>Fortsetzung eines Trends, der die gesamte Medien- geschichte durchzieht</td>
</tr>
<tr>
<td>Wachsende, umfassende Entfremdung des Menschen</td>
<td>Gemeinschaftsverlust, Krise der Moral</td>
<td>Fortsetzung eines modernen Trends</td>
</tr>
<tr>
<td>Zusammenrücken der Individuen, verstärkter kultureller Austausch</td>
<td>Standardisierte, weltweite Einheitskultur</td>
<td>Fortsetzung eines Trends, der mit den Rundfunkmedien einsetzt</td>
</tr>
</tbody>
</table>
Abbildung 2: Debatten zur Medienentwicklung 2: Diskontinuitätsthese

Diskontinuitätsthese

<table>
<thead>
<tr>
<th>Beginn der Moderne</th>
<th>Ausbreitung der Rundfunkmedien</th>
<th>Heute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überwindung von Nationalismus und Eurozentrierung</td>
<td>Gefährdung moderner Errungenschaften (z.B. Demokratie, Wissenschaftskultur)</td>
<td></td>
</tr>
<tr>
<td>Interaktive und kreative Potenziale der neuen Medien</td>
<td>Gefahren durch soziale und kulturelle Fragmentierung und zunehmende Individualisierung</td>
<td></td>
</tr>
</tbody>
</table>

D1 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruch mit historisch weit zurück reichenden westlichen Traditionen</td>
</tr>
</tbody>
</table>

D2 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruch mit Traditionen der durch Buchdruck und Wissenschaft geprägten Moderne</td>
</tr>
</tbody>
</table>

D3 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruch mit den Traditionen des Massenmedien-Systems</td>
</tr>
</tbody>
</table>

Die Fülle der Debattenbeiträge lässt sich daher hinsichtlich der jeweiligen mediengeschichtlichen Ansätze und normativen Ausrichtungen ordnen. Als übergreifende, eine Vielzahl von Beiträgen prägende Thesen können dann z.B. eine Kontinuitätsthese sowie eine Diskontinuitätsthese ausgemacht werden: In der ersten erscheinen die aktuellen Veränderungen als Fortsetzung von schon in früheren Etappen angelegten Prozessen der Medien- und Kulturrentwicklung, in der zweiten als Bruch mit solchen Prozessen. In beiden Thesen können drei interne Varianten unterschieden werden: Bei der Kontinuitätsthese werden die aktuellen kulturellen Auswirkungen der derzeitigen Medienentwicklung entweder als Fortsetzung eines Trends aufgefasst, der die gesamte Mediengeschichte durchzieht (K1), oder als Fortsetzung eines modernen Trends (K2) oder schließlich als Fortsetzung eines Trends, der erst mit den Rundfunk-Medien einsetzt (K3). In Bezug auf die Diskontinuitätsthese lassen sich ebenfalls drei Ausprägungen unterscheiden: Hier wird die aktuelle Medienentwicklung entweder als ein Bruch mit historisch weit zurück reichenden Traditionen der „westlichen“ Kultur, als ein Bruch
mit Traditionen der durch Buchdruck und Wissenschaft geprägten Moderne oder schließlich als ein Bruch mit den historisch jüngeren Traditionen des Massenmediensystems begriffen.

Die Varianten der beiden Thesen können in den jeweiligen Positionen mit gegensätzlichen Wertungen verbunden werden, woraus sich in Bezug auf die Debatten zu dieser Thematik weitere Möglichkeiten der Unterteilung ergeben. Dabei werden allerdings nur die Extreme gekennzeichnet, was aber zumindest eine grobe Orientierung ermöglichen sollte. Dies sei für K1 bis K3 hier noch ausgeführt: So kann sich These K1 z.B. sowohl mit der Vorstellung eines Prozesses der Emanzipation von ursprünglichen Gemeinschaften und „der Natur“ verbinden als auch mit der Sorge über eine ständig wachsende, umfassende Entfremdung „des Menschen“. In Bezug auf die These K2 stehen sich positive Bewertungen von Modernisierungsprozessen und Warnungen vor Gemeinschaftsverlust und einer Krise der Moral gegenüber. Die These K3 schließlich kann sowohl verbunden werden mit den Hoffnungen auf ein Zusammenrücken der Individuen und einem verstärkten kulturellen Austausch als auch mit dem unerfreulichen Bild einer standardisierten, weltweiten Einheitskultur.

Bernd Wingert

Literatur

3.6 Dissertationsprojekte

3.6.1 Die Entwicklung von Systemforschung und Politikberatung in der Bundesrepublik Deutschland – Die „Studiengruppe für Systemforschung“, Heidelberg

Andrea Brinckmann

Am Beispiel der Heidelberger Studiengruppe für Systemforschung (SfS) werden in einem Dissertationsprojekt, das seit Juni 2000 am ITAS bearbeitet wird, aus historischer Perspektive Entwicklungsfaktoren und -bedingungen wissenschaftlich gestützter Politikberatung untersucht.

sierung von Abläufen in Kanzleramt, Patentamt, Bundestagsverwaltung und Presse- und Informationsamt steht die Studiengruppe für Systemforschung im Mittelpunkt der Genese wissenschaftlicher Politikberatung mittels Systemanalyse.

Die Studiengruppe erhielt wesentliche Impulse aus den Vereinigten Staaten: in Bezug auf Theorie und Praxis der Systemforschung, auf das dort ausgeprägte enge Wechselverhältnis zwischen Forschung und Staat zur Entwicklung neuer Technologien bzw. neuer Disziplinen, wie z.B. Forschung über Forschung und neue interdisziplinär organisierte Forschungsinstitute. Deshalb wird ein größerer, nicht auf Deutschland beschränkter Bezugsrahmen gesteckt, der folgende Entwicklungen skizziert:

- die Bedingungen für einen allgemeinen Funktions- und Normenwandel der Wissenschaft seit dem II. Weltkrieg,
- die Entwicklung der Systemforschung als wissenschaftliche Forschungsrichtung.

Externer Betreuer: Prof. Dr. Troitzsch, Universität Hamburg, Institut für Sozial- und Wirtschaftsgeschichte

ITAS-Betreuer: Prof. Dr. Gerhard Banse

Beginn der Bearbeitung: 01.02.2002
3.6.2 Soziale und kulturelle Strukturen neuer Berufsfelder in der Informationsgesellschaft – Informatikfachkräfte und gesellschaftlicher Wandel der Arbeit

Martin Bechmann

Als theoretisches Bindeglied zwischen gesellschaftlichem Strukturwandel und individueller Praxis wird auf das Bourdieusche Konzept des Habitus sowie auf die Lebenswelt- und Lebensstilsoziologie zurückgegriffen.

Um die lebensweltliche Bedeutung von IuK-Technologien in der Berufswelt empirisch zu untersuchen, wird zunächst die Entwicklung der IT-Berufe in der Bundesrepublik umrissen. Erst vor diesem Hintergrund ist eine Interpretation der spezifischen Umgangsweisen und Bedeutungszuschreibungen möglich.

Parallel dazu wird die Entwicklung computerrelevanter Topoi, die in Verbindung mit dem Einsatz des Computers im wissenschaftlichen Feld, im wirtschaftlichen Feld und im alltäglichen Umgang entstanden, skizziert. Dazu gehören Themen wie künstliche Intelligenz und Menschenbild, Infor-
mationsfreiheit, der „Open-Source“-Gedanke einerseits, neue Arbeitsformen und die neue Rolle des Wissens in der Arbeitswelt andererseits.

Zum Abschluss der ersten Arbeitsphase werden untersuchungsleitende Hypothesen zum Zusammenspiel zwischen sozialer Differenzierung, Informations- und Kommunikationstechnologien und entstehenden Lebensstil und Habituselementen aufgestellt.

In der zweiten Phase werden dann vor dem Hintergrund dieses Konzeptes des sozialen Feldes der Informatikfachkräfte bestimmte Teilräume des Feldes ausgewählt, und mittels Interviews die spezifischen Umgangsweisen mit und Einstellungen zur Kommunikations- und Informationstechnologie und spezifischen Arbeitsweisen der Informationsgesellschaft untersucht. Indem hier die subjektiven Dispositionen, also der Habitus, untersucht wird, soll dargestellt werden, auf welche konkreten Weisen Computertechnik auf Lebensstile Einfluss hat und inwieweit dies eine Zäsur oder Kontinuität bestehender Vergesellschaftungsformen darstellt.

Externer Betreuer: Prof. Dr. Jost Halfmann, TU Dresden, Institut für Soziologie
ITAS-Betreuer: Dipl.-Soz. Gotthard Bechmann
Beginn der Bearbeitung: 01.02.2002
3.6.3 Neue politische Praktiken in der Informationsgesellschaft?
Zum Wandel des Umgangs mit Wissen in informatisierten Verwaltungen
Matthias Werner

Vor diesen Hintergründen, die in theoretischer Hinsicht durch die Diskursfelder „Verwaltungsreform“ und „Staatsmodernisierung“ markiert werden, widmet sich das Dissertationsprojekt den Auswirkungen der Informatisierung auf Prozesse der kommunalen Policy-Formulierung und Policy-Implementierung. Im Zentrum steht dabei der Einsatz von Geographischen Informationssystemen (GIS) zur Unterstützung dieser wenig strukturierten Prozesse. Die Konzentration auf solche IT-Anwendungen als Untersuchungsgegenstand bietet sich insbesondere deshalb an, weil den GIS Eigenschaften zugesprochen werden, die diese geeignet erscheinen lassen, zur Durchsetzung neuer Arbeitsweisen in informatisierten Verwaltungen beitragen zu können. Stichwortartig können genannt werden: zentrale Bedeutung von Geodaten für die kommunale Planung, Fähigkeit zur Integration verschiedener Datenbestände, Möglichkeit zur integrierten Nutzung in verschiedenen Verwaltungseinheiten (wie auch über Verwaltungsgrenzen hinweg), Nutzung der Systeme in kooperativer Vorgangsbearbeitung, Öffnungsmöglichkeit des Sys-
tems nach Außen über das Internet, weite und weiter zunehmende Verbreitung in den Kommunen.

Externer Betreuer: Prof. Dr. Frank Nullmeier, Universität Bremen, Zentrum für Sozialpolitik
ITAS-Betreuer: Dipl.-Soz. Gotthard Bechmann
Beginn der Bearbeitung: 15.03.2002
3.6.4 Die Kluft zwischen Wissen und Handeln – Politisch-administrative Hemmnisse und institutionelle Defizite bei der Umsetzung einer nachhaltigen Entwicklung im Handlungsfeld Bauen und Wohnen

Tobias Woll

Externe Betreuer: Prof. Dr. Dr. h. c. Bernd Hamm, Universität Trier, Lehrstuhl für Siedlungs-, Umwelt- und Planungssoziologie; Prof. Dr. Heiner Monheim, Universität Trier, Lehrstuhl für Angewandte Geographie – Raumentwicklung und Landesplanung

ITAS-Betreuerin: Dipl.-Ing. Juliane Jörissen

Beginn der Bearbeitung: 01.07.2001
3.6.5 Analyse des Ernährungssystems im Hinblick auf Nachhaltigkeit am Beispiel tierischer Lebensmittel

Axel Wotitz

Den Ausgangspunkt für die hier bearbeitete Promotion wird gebildet einerseits von einem das gesamte Ernährungssystem umfassenden Betrachtungsansatz sowie andererseits von der Wahl einer Ernährungsweise, die der Gesundheit der Bevölkerung nach wissenschaftlichem Kenntnisstand zuträglich wäre. Darüber hinaus wird ein Vergleich zweier unterschiedlicher Wirtschaftsverfahren (konventionell vs. ökologisch) unter systemorientiertem Blickwinkel angestrebt. Dieser Ansatz verspricht neue Erkenntnisse für die Nachhaltigkeitsforschung im Bedürfnisfeld der Ernährung.

Dabei soll der Frage nachgegangen werden, welche Auswirkungen eine drastische Reduktion, entsprechend den o. g. Ernährungsempfehlungen, des Verzehrs tierischer Lebensmittel auf die unterschiedlichen Dimensionen der Nachhaltigkeit haben könnte.

Die Untersuchung lässt aufgrund der gewählten Fragestellung neuartige Forschungsergebnisse erwarten, da der bisher in der Literatur verfolgte Ansatz, sich entweder auf Teilbereiche der Ernährungskette oder aber sich auf eine eingeschränkte Betrachtung einzelner Dimensionen der Nachhaltigkeit zu begrenzen, unter gleichzeitiger Festlegung auf eine in der Nachhaltigkeitsdiskussion bedeutende Lebensmittelgruppe verlassen wird.

Die Thematik gliedert sich nicht lediglich in den aktuellen Nachhaltigkeitsdiskurs ein, sondern sie zeichnet sich darüber hinaus durch hohe Aktualität und eine große gesellschaftspolitische Relevanz aus.

Externer Betreuer: Prof. Dr. A. Heissenhuber, Technische Universität München, Lehrstuhl für Wirtschaftslehre des Landbaues
ITAS-Betreuer: Dr. Christine Rösch
Beginn der Bearbeitung: 01.05.2001

Ethik im Wasserbau; bedarf es einer solchen und wo liegen die Ansatzpunkte? Wasserbau, vom und für den Menschen vollzogen, verändert großflächig natürliche und kultürliche Landschaft und nimmt somit stark Einfluss

Externer Betreuer: PD Dr. habil. Maring, Universität Karlsruhe, Institut für Philosophie
ITAS-Betreuer: Prof. Dr. Gerhard Banse
Beginn der Bearbeitung: 01.04.2002

Im Rahmen der Dissertation werden die in der Praxis eingesetzten Prozessketten zur Bereitstellung von Klärschlamm, Bio- und Grünabfall inklusiv der erforderlichen Logistikaufgaben unter technischen, ökonomischen und energetischen Gesichtspunkten (Energieverbrauch und korrespondierende CO₂-Emissionen) analysiert, miteinander verglichen und bewertet, wobei folgende zentrale Fragen untersucht werden:

1. Aus welchen Einzelkomponenten setzen sich die Prozessketten (anlagentechnische und logistische Komponenten) zur Bereitstellung der betrachteten biogenen Abfälle (Klärschlamm, Bioabfall, Grünabfall) zu Ersatz-
brennstoffen zusammen und welche Technologien stehen hierfür am Markt zur Verfügung?

(2) Welche Kosten sind mit der Bereitstellung der biogenen Abfälle inkl. der erforderlichen Logistik für den Betreiber bzw. den Abfallbesitzer verbunden?

(3) Welchen Energiebedarf verursacht die Bereitstellung inkl. der logistischen Komponenten und welche Technologien bzw. Prozesskettenkonzepte können dazu beitragen, den Energieverbrauch zu minimieren? Welche Energiebilanz lässt sich somit für den einzelnen biogenen Ersatzbrennstoff aufstellen?

(4) Welcher Anteil des nationalen Energiebedarfs (PEV und Strom) lässt sich durch die energetische Nutzung von Klärschlamm, Bioabfall und Grünabfall decken und welcher Beitrag kann dadurch zu den CO₂-Reduktionszielen geleistet werden?

(5) Welche Schlussfolgerungen hinsichtlich Forschungs- und Entwicklungsbedarf, staatlicher Bezuschussung und möglicher Synergieeffekte (z.B. gemeinsame Aufbereitung mehrerer Abfälle, vgl. Co-Vergärung) lassen sich ziehen?

Die Ergebnisse zeigen, dass die eingesetzten Technologien dem Stand der Technik entsprechen (Ausnahme: Trocknung und Co-Vergärung von Bioabfall). Im Vergleich zu alternativen Entsorgungswegen ergeben sich vergleichbare Kosten für die Aufbereitung und die energetische Verwertung der Abfälle. Die Aufbereitungskosten liegen in folgenden Bereichen: Grünabfall 100 bis 170 €/Mg TM, Klärschlamm 150 bis 380 €/Mg TM und Bioabfall 400 bis 800 €/Mg TM. Die Bereitstellung erfolgt bei allen drei Abfallarten mit einer positiven Energiebilanz: Grünabfall ca. 3,0 MWh Primärenergie (PE)/Mg TM (10,8 MJ PE/kg TM), Klärschlamm ca. 2,0 MWh PE/Mg TM (7,2 MJ PE/kg TM), Bioabfall ca. 1,3 MWh PE/Mg TM (4,7 MJ PE/kg TM). Bei vollständiger energetischer Verwertung der drei Abfälle könnten ca. 1,1 % des nationalen Stromverbrauchs gedeckt und mindestens 4,0 Mio. Mg CO₂/a (25 % des Reduktionsziels der Abfallwirtschaft) vermieden werden. Da die Aufbereitung ca. 50 % des Energiepotenzials der Abfälle verbraucht, sollte die Bereitstellung energetisch optimiert werden. Dies kann durch die Kopplung von Trocknung und energetischer Verwertung, den breiten Einsatz der Solar- und Windenergie, die Verbesserung der Entwässerung und die Nutzung von schienengebundenen Logistiklösungen erfolgen, wie gezeigt wurde. Die Entwicklung und die Markteinführung dieser energiesparenden Technologien ist
zu fördern bzw. bei der Planung und Konzeptionierung von Anlagen zu be-
rücksichtigen. Potenzielle negative Auswirkungen der energetischen Nutzung (Emissionen) sind zu minimieren.

Externer Betreuer: Prof. Helmut Seifert, Institut für Technische Chemie – Thermische Abfallbehandlung (ITC-TAB), Forschungszentrum Karlsruhe in der Helmholtzgesellschaft GmbH, und Universität Stuttgart, Institut für Verfahrenstechnik und Dampfkesselwesen, Fakultät für Maschinenbau

Koreferent: Prof. Dr. Armin Grunwald

ITAS-Betreuer: Dr. Ludwig Leible

Beginn der Bearbeitung: 01.03.1999

Das Ziel der Arbeit ist die Bewertung und Einordnung dieser potenziellen zukünftigen Technologie innerhalb des sich in den nächsten Jahren ändernden Energiemarkts. Dazu werden Kenngrößen aus den drei Dimensionen Technik, Ökonomie und Ökologie herangezogen, um eine möglichst vollständige Erfassung und Bewertung der Technologie zu erreichen. In diesem Fall werden der Gesamtwirkungsgrad, die spezifischen Produktionskosten, die CO₂-Minderung gegenüber einer fossilen Referenz und die Ökotoxizität von Zwischen- und Endprodukten als Kenngrößen verwendet.

Zur Bestimmung der Kenngrößenwerte ist eine Analyse der vorhandenen Methoden in den einzelnen Dimensionen erforderlich. Die für diese Arbeit relevanten Methoden werden dargestellt, an die Problemstellung angepasst und auf ihre Eignung hin untersucht. Im Mittelpunkt der methodischen Entwicklung steht der Umgang mit den technologischen und wirtschaftlichen Unsicherheiten einer zukünftigen Technologie. Dazu wird u. a. die Anwen-
Dissertationsprojekte

Dung von Lernkurven auf verschiedene Technologien untersucht. Die Erkenntnisse gehen in die Entwicklung eigener Lernkurven ein, die die möglichen Entwicklungsländer zu untersuchenden Technologie in Abhängigkeit von verschiedenen Faktoren widerspiegeln sollen.

Die Ergebnisse der „Systemanalyse zur Gaserzeugung aus Stroh und Waldrestholz bei vorgeschalteter Pyrolyse“ stellen eine erste Einordnung und Bewertung der zu untersuchenden Technologie dar. Im Laufe der technologischen Entwicklung müssen die Ergebnisse fortlaufend verifiziert und angepasst werden. Darüber hinaus ist es sinnvoll bei darauf folgenden Berechnungen neben den oben erwähnten Dimensionen weitere Aspekte der Technikfolgenabschätzung in die Analyse mit aufzunehmen.

Externer Betreuer: Prof. Reimert, Universität Karlsruhe, Engler-Bunte-Institut
ITAS-Betreuung: Dr. Ludwig Leible
Beginn der Bearbeitung: 15.04.2002
4 Daten und Fakten

4.1 Publikationen

4.1.1 Buchpublikationen

Banse, G.; Kiepas, A. (Hg.): Rationalität heute – Vorstellungen, Wandlungen, Herausforderungen. Münster: LIT 2002 (Technikphilosophie, Bd. 9)

Coenen, R. (Hg.): Integrative Forschung zum globalen Wandel – Herausforderungen und Probleme. Frankfurt am Main u. a.: Campus 2001 (Gesellschaft – Technik – Umwelt)

Grunwald, A. (Hg.): Technikgestaltung für eine nachhaltige Entwicklung. Von der Konzeption zur Umsetzung. Berlin: edition sigma 2002 (Global zukunftsfähige Entwicklung – Perspektiven für Deutschland, Bd. 4)

4.1.2 Zeitschriftenbeiträge

Banse, G.: Informationstechnische Sicherheit im Spiegel der aktuellen Risikodiskussion. VEDA, TECHNIKA, SPOLECNOST, X(XXXII)2-3, S. 75-91

Banse, G.; Bechmann, G.: Risiko – Semantik und Topoi transdisziplinärer Risikoforschung. VEDA, TECHNIKA, SPOLECNOST, X(XXIII)2-3, S. 5-56

Bechmann, G.: Risk and the Post-Modern Society. VEDA, TECHNIKA, SPOLECNOST, X(XXIII)2-3, S. 107-129

Petermann, Th.: Technikkontroversen und Risikokommunikation. TAB-Brief Nr. 20, (2001)20, S. 5-7

Revermann, Ch.: Wie viel Strahlung verträgt der Mensch? – Gesundheitliche Aspekte der Mobilfunktechnologie. TAB-Brief Nr. 23, 2002, S. 16-20

Rösch, Ch.: Nachhaltige Nutzung von Biomasse als Energieträger. TA-Datenbank-Nachrichten, 10(2001)1, S. 27-34

Seht, H. von: Lokaler Klimaschutz – was haben Kommunen davon? EILDIENST, (2001)3, S. 31-33

Seht, H. von: Socio-Economic Impacts of local Environmental Policies. An Analysis for the Field of Climate Protection. Local Environment, 7(2002)1, pp. 23-34

4.1.3 Buchbeiträge

Nitsch, J.; Rösch, Ch.: Perspektiven für die Nutzung regenerativer Energien. In: Grunwald, A.; Coenen, R.; Nitsch, J.; Sydow, A.; Wiedemann, P. (Hg.): Forschungswerkstatt Nachhal-

4.1.4 Forschungsberichte

Böhle, K.: Integration of Electronic Payment Systems into B2C Internet-Commerce – Problems and Perspectives –. Seville: European Communities 2002 (Electronic Payment Systems Observatory (ePSO), No. 8, EUR 20277 EN)

Böhle, K.: The Potential of Server-based Internet Payment Systems – An attempt to assess the future of Internet payments. Seville: European Communities 2001 (Electronic Payment Systems Observatory (ePSO), No. 3, EUR 19935 EN)

4.1.5 Beiträge zu Konferenzbänden

Grunwald, A.: The Relevance of Ethical Reflection for Technology Assessment: The Case of the Internet. In: Institut für Technikfolgenabschätzung und Systemanalyse; VDI/VDE-
Technologiezentrum Informationstechnik (Hg.): Innovations for an e-Society. Challenges for Technology Assessment. Teltow: VDI/VDE 2001, S. 1-8

Wingert, B.; Skrabe, K.: Design und Psychologie von eBooks – Moderatorenhandbuch für die AG 2 der 22. MMK 2002 in Münster

4.1.6 Vorträge (bislang nicht schriftlich publiziert)

Beck, S.: Assessments in a corporate Culture: The German Experience. Lecture on the workshop „Localizing and Globalizing: Knowledge Cultures of Environment and Develop-

Beck, S.: The cultural Climate of Climate: The Role of political Culture in the German Response to Climate Change. Lecture on the 42nd annual Conference of the International Studies Association (ISA), Chicago, IL, USA, February 20-24, 2001

Halbritter, G.; Fleischer, T.; Kupsch, Chr.: European and US Experiences with intelligent Transport Systems in metropolitan Areas with Respect to a more efficient and environmentally Sounder Transport System. Lecture: 8th World Congress on intelligent Transport Systems, Sydney, Australia, October 1, 2001

Stehr, N.: Modern Societies as Knowledge Societies. Lecture: Plenary Address, World Congress of Sociology, Brisbane, Australia, July 9, 2002

Stehr, N.: The Authority of Complexity: Scientific Knowledge and public Policies. Lecture: Department of Sociology, University of Alberta, Edmonton, Alberta, Canada, November 18, 2002

Stehr, N.: The social Role of Knowledge. Lecture: International Conference on Social Science and Social Policy in the 21st Century (in celebration of the 50th Anniversary of the International Social Science Council, Vienna, Austria, December 9, 2002

4.1.7 TA-Datenbank-Nachrichten/Zeitschrift „Technikfolgenabschätzung – Theorie und Praxis“

Heft 1/2001 (10. Jahrgang, März 2001)

Das Schwerpunktthema befasste sich mit „Health Technology Assessment“ und wurde von Dr. Matthias Perleth, Medizinische Hochschule Hannover zusammengestellt. In seiner Einführung in den Schwerpunkt hebt Perleth hervor, dass als „bemerkenswertes Fakt festzuhalten ist, das sich HTA als einziger feldspezifischer Bereich (also beispielsweise im Gegensatz zum Umweltbereich) selbstständig und weitgehend unabhängig (man könnte auch sagen: isoliert) von TA in den letzten 25 Jahren entwickelt hat“. Der Schwerpunkt beleuchtet das Verhältnis der „ungleichen Zwillinge“ TA und HTA. Die

Beiträge aus ITAS/Tab:
Hennen, L.: TA in Biomedicine and Healthcare – from clinical evaluation to policy consulting
Sauter, A.: Xenotransplantation – eine Studie des TAB

Heft 2/2001 (10. Jahrgang, Juni 2001)

Beiträge aus ITAS:
Grunwald, A.: Einführung in den Schwerpunkt

Die Rolle der regenerativen Energien als Schlüsseltechnologie für eine nachhaltige Energieversorgung wurde am 22. November 2000 in München auf

Beiträge aus ITAS:
Fleischer, T.: Technische Herausforderungen durch neue Strukturen in der Elektrizitätsversorgung
Kopfmüller, J.: Nachhaltige Entwicklung im Energiebereich
Rösch, Ch.: Nachhaltige Energieversorgung mit regenerativen Energien. Einführung in den Schwerpunkt
Rösch, Ch.: Nachhaltige Nutzung von Biomasse als Energieträger

Der Schwerpunkt dieses Heftes ist dem Thema „E-Commerce-Politik“ gewidmet. In einer Einführung in den Schwerpunkt wird zunächst der E-Commerce-Begriff kritisch diskutiert und eine Übersicht über den Stand und aktuelle Entwicklungen im elektronischen Handel gegeben. Sodann werden die folgenden Fragen behandelt, mit denen sich auch die weiteren Beiträge zu dem Schwerpunkt befassen: Was sind die Gründe für eine E-Commerce-Politik, was sind deren Inhalte, wie könnte diese Politik durchgeführt werden, zu welchem Zeitpunkt sollte sie einsetzen und welche Akteure sind daran zu beteiligen? Die Beiträge sind im Einzelnen von einer sehr breit zusammengesetzten Autorengruppe verfasst: vertreten sind die Universität St. Gallen, Schweiz; die OECD; die Europäische Kommission; die Technology Transactions Group, San Francisco (USA); das Bundesministerium für Wirtschaft und
Technologie, Berlin; die TA-Akademie Baden-Württemberg; DaimlerChrysler AG, Stuttgart; GBD-e – Global Business Dialogue on e-Commerce Group; das Rheinisch-Westfälische Institut für Wirtschaftsforschung, Essen.

Beiträge aus ITAS:

Beiträge aus ITAS:

Achternbosch, M.; Bräutigam, K.-R.: Einführung in den Schwerpunkt
Reßler, B.; Achternbosch, M.; Bräutigam, K.-R.; Kupsch, Ch.; Sardemann, G.: Stoffstromanalysen zum Einsatz von carbonfaserverstärkten Kunststoffen im Flugzeugbau

des Schwerpunktes war es, die Inhalte der Genderforschung im Hinblick auf Technikentwicklung sowie Technikbewertung darzustellen. Der erste Teil der Beiträge beinhaltet theoretisch-konzeptionelle Ansätze der Genderforschung, die Beiträge des zweiten Teils beziehen sich auf ein konkretes Technologiefeld: Reproduktive Technologien, Verkehrstechnologien und Informationstechnik. Im abschließenden Beitrag werden die Ergebnisse eines Forschungsprojektes vorgestellt, das die Erstellung eines Maßnahmenkatalogs zur Erhöhung des Frauenanteils in technischen Berufen zum Ziel hatte.

Beiträge aus ITAS:

Krings, B.-J.: Einführung in den Schwerpunkt

Krings, B.-J.: Homo Technicus – Wissenschafts- und Technikentwicklung aus Sicht der Feministischen Theorie

Beiträge aus ITAS:

Bechmann, M.; Werner, M.: Digitales Rathaus zwischen Angebot und Bürgernutzung

4.2 Wissenschaftliche Veranstaltungen

Zu den Aufgaben eines Forschungsinstituts gehört die Initiierung, Durchführung und Aufarbeitung wissenschaftlicher Konferenzen und Workshops. An dieser Stelle werden die vom ITAS – oder unter Beteiligung vom ITAS – durchgeführten wissenschaftlichen Veranstaltungen, die projektübergreifende Themen behandeln, genannt und kurz beschrieben.

Symposium „Integrative Modellierung zum Globalen Wandel“
Bad Honnef, 25. Januar 2001

Die auf dem Symposium gehaltenen Vorträge und Diskussionsbeiträge sind in der Schriftenreihe der Europäischen Akademie Bad Neuenahr-Ahrweiler beim Springer Verlag publiziert (Gethmann, C.F.; Lingner, S. (Hg.):
Integrative Modellierung zum Globalen Wandel. Berlin u.a.: Springer Verlag, 2002 (Wissenschaftsethik und Technikfolgenbeurteilung, Band 17).

Workshop „Setting Concepts in Motion: Sustainable Development and R&D-Policies“
Bonn, 1.-2. Februar 2001

1. Austausch der unterschiedlichen Ansätze im Rahmen der europäischen Staaten;
2. Bildung eines Netzwerkes, das im weiteren zeitlichen Verlauf weitergeführt werden soll;

Innerhalb der europäischen Länder gibt es inzwischen eine Vielzahl von Konzepten und Ansätzen einer nachhaltigen Forschungs- und Technologiepolitik, die zum einen sehr unterschiedlich in den Politikprozess integriert sind und zum anderen zu sehr unterschiedlichen Resultaten geführt haben. Die Erfahrungen in den Ländern haben jedoch gezeigt, dass für eine nachhaltige
F&E-Politik die Entwicklung von Nachhaltigkeit als Querschnittsaufgabe erforderlich ist, d. h. das Konzept der nachhaltigen Entwicklung sollte als Orientierung für alle politischen Ressort gelten.

Die große Resonanz der Veranstaltung kann durchaus als Auftakt eines inhaltlichen Netzwerkes innerhalb der einzelnen Länder gedeutet werden, die sich dem Ziel einer nachhaltigen Forschungspolitik verpflichten.

Forschungskolloquium „Staatsmodernisierung und E-Government”
Speyer, 5. Juli 2001

Zentrales Thema der Veranstaltung war die Frage nach den technischen, ethischen, gesellschaftlichen und politischen Dimensionen und Herausforderungen durch E-Governance. Die Vorträge befassten sich u. a. mit den folgenden Themenschwerpunkten und Thesen:

- E-Government und die Umsetzung informationstechnischen Fortschritts, wobei die These vertreten wurde, dass die Umsetzung technischen Fortschritts nicht nur Technik, sondern auch Lebens- und Handlungsformen und gesellschaftliche Erwartungen umfasst. Demonstriert wurde dies am Beispiel des Automobils.
- E-Democracy, d. h. Formen der Demokratisierung der Verwaltung, wobei die These vertreten wurde, dass nicht nur Wahlen, Plebiszite und Umfragen, sondern auch Möglichkeiten der Information, der politischen Kom-
Das Verhältnis von Rationalisierung und Demokratisierung, wobei die These vertreten wurde, dass die beiden normativen Prinzipien der Rationalisierung und Demokratisierung hinter dem Leitbild „E-Government“ stehen (und aus historischer Perspektive an sich nichts Neues darstellen). Die Prozesse der Rationalisierung und Demokratisierung führen zu mehr Entscheidungen und damit auch zur Steigerung von Komplexität, was zu einem Scheitern des intendierten Reformzwecks führt durch steigende Knappeit an Zeit. Daraus erwächst die Erfordernis einer Reformulierung der Prinzipien Rationalisierung und Demokratisierung.

Rationalität heute – Vorstellungen, Wandlungen, Herausforderungen
Ustron, Polen, 24.-25. September 2001

dass ein Mensch, der gezwungen ist, gegen seine inneren Werte zu entschei-
den, nicht rational entscheiden wird. Demnach spielen die Werte der Kultur, Tradition und Weltanschauung eine nachhaltige Rolle bei der Anwendung ethischer Rationalität auf wirtschaftliche Entscheidungen. Das abschließende Plenarreferat befasste sich mit der Frage „Wozu Rationalität?“, bei dem es nach den im Verlauf der Tagung vorgestellten Varianten von Rationalität und Rationalitätsvorstellungen, ihren Wandlungen und Herausforderungen darum ging, sich auf die wesentlichen, gemeinsamen Charakteristika zu be-
sinnen.

Die Beiträge zur Konferenz sind als Band 9 in der Reihe „Technikphilos-
ophie“ im Lit Verlag Münster erschienen (siehe Kap. 4.1.1 Buchpublikatio-
nen: Banse/Kiepas 2002).

Symposium „Allgemeine Technologie – Vergangenheit und Gegenwart“
Berlin, 12. Oktober 2001

Internationaler Kongress „Innovations for an e-Society. Challenges for Technology Assessment“

In den Plenarsektionen wurden die zentralen Konzepte und Entwicklungen diskutiert, während die Parallelsessionen der vertiefenden Behandlung von thematischen Feldern gewidmet waren. Die folgenden Themen waren Gegenstand der Sektionssitzungen:

• e-Commerce,
• Neue Medien und Kultur,
• Electronic Governance,
• Elektronische Dienstleistungen im Gesundheitswesen,
• „e-work oder contract social?“ – Möglichkeiten nachhaltiger Arbeitsmodelle,
• Verletzlichkeit der e-Society, Datenschutz und IT-Sicherheit,
• Neue Ansätze der Technikfolgenabschätzung und -vorausschau.

Vor diesem Hintergrund sollte der Kongress ein Forum für Innovations- und Technik-Analysen (ITA) bieten, die diese aktuellen Herausforderungen wissenschaftlich erfassen und diskutieren. Die auf dem Kongress vorgestellten Analysen zeigten technologische und gesellschaftliche Potenziale und wirtschaftliche Chancen, aber auch mögliche Fehlentwicklungen auf. Vier Zielbereiche wurden mit dieser Konferenz verbunden:

• Auslotung der potenziellen Folgen und Implikationen der Informations- und Kommunikationstechnologien in ihrer politischen, ökonomischen, sozialen, kulturellen und ökologischen Ausprägung;
• Analyse der institutionellen Voraussetzungen und Rahmenbedingungen, die für eine zukünftige „e-Society“ erforderlich oder wünschenswert sind;
- Aufzeigen von Gestaltungsmöglichkeiten innerhalb von Szenarien der weiteren technologischen Entwicklung und Diskussion von Handlungs- und Entscheidungsoptionen;
- Aufzeigen von Rahmenbedingungen für Innovationen, die Nachhaltigkeit und Akzeptabilität gleichermaßen verpflichtet sind.

Workshop „Nachhaltige Entwicklung und Globaler Wandel – Bestandsaufnahme, Bewertung und Handlungsbedarf“
Bonn, 6.-7. Juni 2002

Die Global Change-Forschung befasst sich bislang vorwiegend mit den Ursachen und Wirkungen globaler Umweltveränderungen. Eine konkretere Orientierung an einem mehrdimensional bzw. integrativ verstandenen Nachhaltigkeitsleitbild würde eine vergleichbar intensive Betrachtung auch nicht-

Workshop: Instrumente zur Umsetzung einer nachhaltigen Entwicklung im Bereich „Wohnen und Bauen“
Karlsruhe, 19. Juni 2002

Als unverzichtbar wurde eine Flankierung des vorwiegend ordnungsrechtlich geprägten Instrumentariums der Raumplanung durch ökonomische Anreizinstrumente betrachtet, die darauf zielen, flächenkonsumierende und versiegelungsintensive Bodennutzungsformen zu verteuern und damit wirtschaftlich unattraktiv zu machen. Zentrale Bedeutung wurde in diesem Zusammenhang einer umfassenden Reform des kommunalen Finanzsystems zugeordnet. Die Mehrheit der anwesenden Experten plädierte für eine Umwandlung der bisherigen Grundsteuer in eine kombinierte Bodenwert- und Bodenflächensteuer, die, um den gewünschten bodenpolitischen Lenkungseffekt zu entfalten, nicht aufkommensneutral ausgestaltet werden sollte. Neben der Umstrukturierung der Kommunalfinanzen wurde eine Modifizierung der Wohnungsbau- und Wohneigentumsförderung als dringend notwendig ange-
sehen. Die Wohnungsbauförderung sollte, wie dies in einigen Bundesländern schon praktiziert wird, an flächensparende, bodenschonende und baubezogene ökologische Kriterien gebunden werden. Um eine qualitative Aufwertung der vorhandenen Bausubstanz und Attraktivitätssteigerung der Städte als Wohnstandort, insbesondere auch für Familien mit Kindern, zu erreichen, wurde eine Aufstockung der Städtebauförderung sowie eine Fortführung der laufenden Programme „Stadttumbau Ost“, „Stadttumbau West“ und „Soziale Stadt“ gefordert. Im Hinblick auf die Wohneigentumsförderung sprachen sich die Teilnehmer entweder für eine völlige Streichung oder für eine Um-
schichtung der Fördermittel vom Neubau in den Bestand aus. Weitgehende
Einigkeit bestand auch darüber, dass die Entfernungspauschale als eine kontr
raproduktiv wirkende Subvention abgeschafft werden sollte.

Das von vielen, u. a. vom Rat von Sachverständigen für Umweltfragen favorisierte Instrument der handelbaren Flächenausweisungsrechte wurde von der Expertenrunde unter den Aspekten Effizienz, Vollzugsseignung und Akzeptanz mit großer Skepsis beurteilt. Abgesehen davon, dass viele Ausgestaltungsfragen wie z. B. der Modus der Erstverteilung, die Mengensteuerung im Zeitverlauf sowie die nutzungsspezifische und regionale Ausdifferenzierung der Märkte bisher nicht gelöst seien, wurde eine Aushöhlung der kommunalen Selbstverwaltungshoheit und eine Benachteiligung kleiner finanzschwäch
er Kommunen befürchtet. Ein Teilnehmer bezeichnete die dabei vorgese
hene Möglichkeit zum Verkauf von Eigenentwicklungsrechten als „Organ
spende zu Lebzeiten“, mit der die betreffende Gemeinde jeden Anspruch auf künftige Entwicklung freiwillig aufgebe.

Die Ergebnisse des Workshops, der sich insgesamt durch eine sehr kon
struktive und kollegiale Atmosphäre auszeichnete, sind in den Abschlussbe
richt zum HGF-Projekt „Global zukunftsfähige Entwicklung – Perspektiven für Deutschland“ eingeflossen (Coenen, R.; Grunwald, A. (Hg.): Nachhaltigkeitsprobleme in Deutschland – Analyse und Lösungsstrategien“, edition sigma, 2003; siehe auch Kap. 3.1.1).

Workshop „Technikgestaltung zwischen Wunsch und Wirklichkeit – Interdisziplinäre Annäherungen“
Darmstadt, 24.-25. Oktober 2002

Der Begriff der Technikgestaltung drückt die Erwartung aus, dass wir nicht einer Eigendynamik der Technik oder einer „blinden Evolution“ ausgeliefert sind, sondern dass wir Technik nach Maßgabe von Zielen und Werten aktiv
und bewusst gestalten können. Seit den neunziger Jahren wird verstärkt da-
nach gefragt, ob und inwieweit Technik und die entsprechende Forschung an
gesellschaftlichen Bedürfnissen und Zielen ausgerichtet werden können. Zur-
zeit besteht die Anforderung vor allem darin, Technik im Hinblick auf mehr
Nachhaltigkeit zu gestalten bzw. dafür die Voraussetzungen zu schaffen.

Wie politik- und sozialwissenschaftliche Forschung gezeigt haben, stel-
len sich jedoch ganz erhebliche Probleme: hinsichtlich der Verfügbarkeit des
notwendigen Wissens, hinsichtlich einer einvernehmlichen Bewertungsbasis
und hinsichtlich der praktischen Umsetzung. Ein „Gestaltungsoptimismus“
ist nicht angebracht. Der entgegengesetzte „Gestaltungs pessimismus“ hat
aber seine Grenze darin, dass in der Praxis Gestaltungsprozesse stattfinden:
in den technischen Labors, in der Gesetzgebung, in den Vorstandsetagen der
Industrie oder auch beim Kauf technischer Geräte.

In dieser Situation bestand das Ziel der Tagung darin, die Möglichkeiten
von Technikgestaltung in einer interdisziplinären Perspektive zu beleuchten.
Schon der Begriff der Technikgestaltung selbst ist in sich nicht klar definiert.
Ingenieure verstehen etwas anderes darunter als Politiker, Manager etwas
anderes als Sozialwissenschaftler. Durch das Zusammenbringen von ver-
schiedenen Disziplinen, die jeweils verschiedene Aspekte der Technikgestal-
tung bearbeiten, sollten auf dem Workshop gegenseitige Lerneffekte ermög-
lieht und die Bedingungen für interdisziplinäre Kooperation verbessert wer-
den. Darüber hinaus sollte das Ergebnis ein besseres Verständnis dessen sein,
was Technikgestaltung bedeuten kann, wie Technikgestaltung historisch
einzuordnen ist, ob und wie gesellschaftliche Technikgestaltung erfolgen kann
und auf welche Weise und unter welchen Bedingungen eine Technikgestal-
tung für mehr Nachhaltigkeit möglich ist.

Veranstalter der Tagung war der damalige Inhaber der SEL-Stiftungspro-
fessur für interdisziplinäre Studien an der TU Darmstadt, Prof. Dr. Armin
Grunwald, ITAS, in Zusammenarbeit mit dem Zentrum für Interdisziplinäre
Technikforschung an der TU Darmstadt (ZIT).
4.3 Kolloquium

Prof. Dr. Viktor Danilov-Danilian, Präsident der Internationalen Unabhängigen Universität für Ökologie und Politologie (IUUÖP) Moskau: Neue Ethik und Nachhaltige Entwicklung (25.07.2001)

Dr. Hauke Fürstenwerth, Leverkusen: Technikentwicklung im Spannungsfeld von Wunschdenken und Realität (22.10.2001)

Prof. Dr. Hans J. Kleinsteuber, Universität Hamburg: Die Digitalisierung der Medien und ihre Folgen (19.11.2001)

Prof. Dr. Peter Baccini, ETH Zürich: Das Bauwerk als Bergwerk: Metaphern, Methoden und Modelle (10.12.2001)

Dr. Dr. Mathias Gutmann, Universität Marburg: Technik als Handlungsform – das Problem der Gestaltung und die Rolle der Reflexion (18.03.2002)

Prof. Sheila Jasanoff, Wissenschaftskolleg zu Berlin: The Accountability of Science: Institutional Perspectives (13.05.2002)

Prof. Dr. Armin Gruwald, Forschungszentrum Karlsruhe/ITAS: Nachhaltigkeit und Technik – die Rolle der Technikfolgenabschätzung (17.06.2002)

Dr. Martin Scheringer, ETH Zürich: Anforderungen an eine nachhaltige Chemie (15.07.2002)

Prof. Dr. Imre Hronszky, Technische Universität Budapest: Lay participation and cooperative learning in Technology Assessment (16.09.2002)

Prof. Dr. Uwe Schneidewind, Universität Oldenburg: Die institutionelle Dimension der Nachhaltigkeit (11.11.2002)

Prof. Dr. Nico Stehr, Universität Wien (Gastwissenschaftler im ITAS von März 2002 bis März 2004): Wissenspolitik als neue Herausforderung für Gesellschaft und Wissenschaft (29.11.2002)

Prof. Dr. Wolfgang Hoffmann-Riem, Richter am Bundesverfassungsgericht Karlsruhe: Die Rolle des Rechts für die Technikgestaltung (09.12.2002)
4.4 Lehrveranstaltungen

Banse, Gerhard: Einführung in die Methodologie der Wissenschaften. Matej Bel-Universität Banská Bystrica (Slowakische Republik), SS 2002
Banse, Gerhard: Wissenschaftstheorie der Ingenieurwissenschaften. Brandenburgische Technische Universität Cottbus, SS 2002
Grunwald, Armin: Kolloquium zu aktuellen Perspektiven der Wissenschafts- und Technikgestaltung im Rahmen der SEL-Stiftungsprofessur, TU Darmstadt, SS 2002
Stehr, Nico: Die moderne Gesellschaft als Wissensgesellschaft. Universität Wien, Fakultät für Human- und Sozialwissenschaften, SS 2001
4.5 Gastwissenschaftler

Prof. Dr. Lech Wojciech Zacher, Leon Kórzinski Academy of Entrepreneurship and Management, Warschau, Polen, war vom 08.01.2001 bis zum 07.02.2001 Gastwissenschaftler am ITAS. Arbeitsgebiete: Stand der Debatte zur Technikfolgenabschätzung in Polen, Überlegungen zur Institutionalisierung von Technikfolgenabschätzung in der Lehre auf dem Gebiet der Management-Ausbildung.

Prof. Dr. Imre Hronszky, Leiter des Lehrstuhls für Innovationsforschung und Technikgeschichte der Technischen und Ökonomischen Universität Budapest, Ungarn, war vom 21.08.2002 bis zum 24.09.2002 Gastwissenschaftler am ITAS.

Prof. Dr. Andrzej Kiepas, Leiter des Lehrstuhls Philosophische Probleme heutiger Zivilisation am Institut für Philosophie und Direktor der Schlesischen Universität Katowice, Polen, war vom 06.01.2003 bis zum 03.02.2003 Gastwissenschaftler am ITAS. Arbeitsgebiete: Technikphilosophie in Verbindung mit der Philosophischen Anthropologie, insbesondere der Wissenschafts- und Technikethik.

Prof. Dr. Frank Fischer, Rutgers University for Political Science, Newark, USA, war vom 20.01.2003 bis zum 31.08.2003 Gastwissenschaftler am ITAS. Arbeitsgebiete: Bürgerbeteiligung an „Grüner Politik“, Diskursive Politik und deliberative Praktiken, Die Rolle von Bürgern und Experten in der Umweltpolitik, Post-positivistische Politikanalyse: die Integration empirischer und normativer Diskurse.
4.6 Mitgliedschaften, Ehrungen und Preise

Gerhard Banse
Honorarprofessor an der Brandenburgischen Technischen Universität Cottbus
Gastprofessor der Geisteswissenschaftlichen Fakultät der Matej Bel-Universität Banská Bystrica, Slowakische Republik
Mitglied der Leibniz-Sozietät, Berlin
Mitglied der Bereichsvertretung „Technik und Bildung“ des Vereins Deutscher Ingenieure (VDI), Düsseldorf
Mitglied des Kollegiums der Europäischen Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen Bad Neuenahr-Ahrweiler GmbH
Mitglied des Redaktionsbeirats der Zeitschrift „Teorie vedy“ (Theorie der Wissenschaft), Prag, Tschechische Republik

Gotthard Bechmann
Mitglied des Vorstandes der „Internationalen Akademie für Nachhaltige Entwicklungen und Technologien“ an der Technischen Universität Karlsruhe
Mitglied im Beirat des deutsch-russischen Kollegs der Technischen Universität Karlsruhe
Mitherausgeber des Jahrbuchs „Technik und Gesellschaft“, Campus Verlag, New York/Frankfurt am Main
Gutachter bei der VW-Stiftung und der Zeitschrift für Soziologie

Dietrich Brune
Mitglied im Umweltausschuss des European Centre of Enterprises with Public Participation and of Enterprises of General Economic Interest (CEEP), Brüssel
Mitglied im Advisory Forum on the Soil Thematic Strategy, European Commission, Directorate-General Environment
Mitglied in der Arbeitsgemeinschaft Material- und Energieflussrechnung beim Statistischen Bundesamt, Wiesbaden

Reinhard Coenen
Executive Secretary, International Association for Technological Assessment and Forecasting Institutions (IATAFI)
Editor der Zeitschrift „Research Policy“
Armin Grunwald
SEL ALCATEL Stiftungsprofessor an der Technischen Universität Darmstadt 2002
Sprecher des Programms „Nachhaltige Entwicklung und Technik“ der Helmholtz-Gemeinschaft und Mitglied des Lenkungsausschusses „Erde und Umwelt“ der HGF
Mitglied im Wissenschaftlichen Beirat des Bereichs Systemforschung des Forschungszentrums Seibersdorf, Österreich
Mitherausgeber der GAIA
Mitglied im Wissenschaftlichen Beirat der Zeitschrift „Systems Analysis Modelling Simulation“
Mitglied im Wissenschaftlichen Beirat der Zeitschrift „POIESIS & PRAXIS. International Journal of Science Ethics and Technology Assessment“
Mitglied im Herausgebergremium der Zeitschrift „DEVELOPMENT & PERSPECTIVES. An interdisciplinary journal for futurist studies and technology assessment“
Mitglied des Kollegiums der Europäischen Akademie zur Erforschung von Folgen wissenschaftlich-technischer Entwicklungen, Bad Neuenahr-Ahrweiler GmbH

Günter Halbritter
Mitglied im Umweltbeirat der Evangelischen Landeskirche Baden
Mitglied in der Jury „I2 – Intelligente Infrastruktur“ des österreichischen Bundesministeriums für Verkehr, Innovation und Technologie (bmivit)

Jürgen Kopfmüller
Mitglied des Vorstands der Vereinigung Ökologische Ökonomie (VÖÖ)

Michael Rader
Mitglied des Exekutivkomitees des European Science and Technology Observatory (ESTO)

Nico Stehr
Paul-Lazarsfeld Professur an der Universität Wien
5 Das Institut

5.1 Aufgaben und Ziele

Diese Art der wissenschaftlichen Behandlung komplexer und gesellschaftlich oft kontrovers diskutierter Fragestellungen wird als „problemorientierte Forschung“ bezeichnet, die in der Regel interdisziplinäre Kooperation erfordert und auf die Erarbeitung von Handlungs- und Orientierungswis-

5.2 Forschungsprogramm

5.2.1 Forschungsbereich Nachhaltige Entwicklung

Mit dem Leitbild wird das Ziel verbunden, Verbesserungen der ökonomischen und sozialen Lebensbedingungen mit der langfristigen Sicherung der natürlichen Lebensgrundlagen in Einklang zu bringen. Daraus leitet sich für das ITAS ein Forschungsansatz ab, bei dem die ökologische, ökonomi-
sche, soziale und institutionelle Dimension von Nachhaltigkeit integriert zu betrachten sind. Mit seinen Arbeiten in diesem Forschungsbereich möchte das ITAS zur wissenschaftlichen Debatte über das Leitbild beitragen sowie Orientierungs- und Handlungswissen für die gesellschaftlichen Akteure erarbeiten, die bei der Realisierung einer nachhaltigen Entwicklung in Deutschland mitwirken müssen. Dabei wird die globale Perspektive einbezogen, da Deutschland aufgrund seiner wirtschaftlichen und technologischen Leistungsfähigkeit Verantwortung und Möglichkeiten hat, zu einer weltweit nachhaltigen Entwicklung beizutragen.

Zentrale konzeptionelle Ansätze für die Arbeiten des ITAS in diesem Forschungsbereich sind die Technikvorausschau und -folgenabschätzung, Diskursanalysen und -verfahren sowie die Input-Output-Analyse zur Erfassung gesellschaftlicher Aktivitäten und ihrer nachhaltigkeitsrelevanten Folgen. Inhaltlich konzentrieren sich die Arbeiten auf die Operationalisierung des Leitbilds und auf Analysen zu seiner Umsetzung in verschiedenen gesellschaftlichen Aktivitätsfeldern. Hierbei werden insbesondere die möglichen Potenziale untersucht, die technologische Innovationen in Kombination mit sozioökonomischen und institutionellen Innovationen zur Erreichung einer nachhaltigen Entwicklung bieten. Auf dieser Basis werden Handlungsoptionen für verschiedene Aktivitätsfelder entwickelt und im Hinblick auf ihre Folgen und Realisierungsbedingungen analysiert und bewertet.

Im Berichtszeitraum wurden in diesem Forschungsbereich folgende Projekte bearbeitet:
- Global zukunftsfähige Entwicklung – Perspektiven für Deutschland,
- Sustainable Urban Tourism,
- Wege zu einer intelligenten Mobilität.

5.2.2 Forschungsbereich Effiziente Ressourcennutzung

Gegenstand des Forschungsbereichs ist die effiziente Ressourcennutzung unter Berücksichtigung ökologischer und sozialer Voraussetzungen und Folgen. Es geht darum, die Umweltbelastungen und den Ressourcenverbrauch auf ein Maß zurückzuführen, das die Kapazitäten der Umweltmedien nicht überfordert und eine ausreichende Ressourcenverfügbarkeit für zukünftige Generationen gewährleistet. Die besondere Aufmerksamkeit richtet sich dabei auf veränderte Verfahren der Stoffgewinnung und -umwandlung und auf den Einsatz alternativer Stoffe.

Die Untersuchungen zur effizienten Ressourcennutzung stützen sich auf den bewertenden Vergleich alternativer Stoff- und Ressourceneinsätze, wobei die Diskussion der zu erreichenden Ziele und ihrer zugrunde liegenden Normen und Leitbilder erforderlich werden kann. Hierzu müssen insbesondere systemübergreifende Analyse- und Bewertungsmethoden angewandt und weiter entwickelt werden.

Im Berichtszeitraum wurden in diesem Forschungsbereich folgende Projekte bearbeitet:

- Mitverbrennung von Sekundärbrennstoffen in Zementwerken,
- Analyse der Umweltauswirkungen bei der Herstellung, dem Einsatz und der Entsorgung von CFK-Rumpfkomponenten,
- Energetische Nutzung biogener Abfälle/nachwachsender Rohstoffe.

5.2.3 Forschungsbereich Informationsgesellschaft und Neue Technologien

Die zunehmende Abhängigkeit aller gesellschaftlichen Bereiche von den Informations- und Kommunikationstechnologien (IuK) trägt wesentlich zur Transformation der entwickelten Industriegesellschaften bei. Dies führt nicht nur zu einer breiten gesellschaftlichen Diskussion über die Funktion von

Im Berichtszeitraum wurden in diesem Forschungsbereich folgende Projekte bearbeitet:

- Online-Buchhandel,
- Neue Medien und Kultur,
- Elektronische Medien und Verwaltungshandeln,
- E-Commerce.

5.2.4 Forschungsbereich Konzepte, Methoden und Funktionen problemorientierter Forschung

Die Arbeiten des ITAS richten sich zunächst auf die Bestimmung der Rolle der Ethik im Kontext wissenschaftlicher Politikberatung, auf die konzeptionelle Weiterentwicklung der TA- und Risikoforschung, auf die „Nachhaltigkeit“ als einen normativen Rahmen für Umweltforschung, auf die Rolle von Innovationsnetzwerken in der Modernisierung und auf die Funktion partizipativer Prozesse bei der Technikfolgenabschätzung.

Im Berichtszeitraum wurden in diesem Forschungsbereich folgende Projekte bearbeitet:

• Evaluation der Auswirkungen von Beteiligungsverfahren bei der Suche nach einem radioaktiven Endlagerstandort,
• TA-Monitoring,
• Technology Assessment between Method and Impact (TAMI).

5.3 Arbeitsweise und wissenschaftliches Umfeld

Neben der Technikfolgenabschätzung, die auf eine problemorientierte Erforschung und Bewertung der Chancen und Risiken neuer Technologien auf systemanalytischer Grundlage und auf die Herausarbeitung alternativer Handlungs- und Gestaltungsoptionen zielt, spielen für das ITAS auch andere Ansätze und Verfahren eine wichtige Rolle. Dazu gehören vor allem die Begleitforschung, die Diskursanalyse, die Risikoanalyse und die Stoffstromanalyse sowie die praktische Ethik.

Das ITAS führt sowohl grundfinanzierte Forschungsarbeiten in eigener thematischer Verantwortung, eingebunden in die Programme der Helmholtz-Gemeinschaft, als auch Drittmittelforschung durch. Die Grundfinanzierung erlaubt die Durchführung langfristiger Projekte, um komplexe Problemstellungen zu bearbeiten, beispielsweise im Bereich der Vorsorgeforschung. Ein
Teil der Arbeiten des ITAS ist in Programme öffentlicher Forschungsförderung (z. B. im Rahmen der EU) eingebunden.

Die Ergebnisse der Arbeiten des ITAS wenden sich an Politik, Wissenschaft und Wirtschaft, an die im Einzelfall betroffenen gesellschaftlichen Gruppen und an die interessierte allgemeine Öffentlichkeit. Sie sollen die Informationsgrundlage für Entscheidungsträger in Politik und Gesellschaft verbessern und zum gesellschaftlichen Diskurs beitragen.

Das ITAS ist eingebunden in das Forschungsprogramm des Forschungszentrums Karlsruhe und kooperiert mit anderen Forschungszentren der Hermann von Helmholtz-Gemeinschaft (HGF) sowie mit weiteren wissenschaftlichen Einrichtungen im In- und Ausland. Mit Industrieunternehmen und Verbändern wird fallweise und projektbezogen kooperiert.

Zu Universitäten bestehen vielfältige Kooperationsverbindungen in Forschung und Lehre. Der Institutsleiter hat den Lehrstuhl für Technikfolgenabschätzung und Systemanalyse an der Fakultät für Angewandte Wissenschaften der Universität Freiburg inne. Mitarbeiterinnen und Mitarbeiter des ITAS nehmen Lehraufträge an Universitäten und Fachhochschulen wahr (Kap. 4.4). Durch die Betreuung von Doktorarbeiten beteiligt sich das ITAS an der Ausbildung wissenschaftlichen Nachwuchses (Kap. 3.6).

Das ITAS beteiligt sich aktiv an internationalen Netzwerken, wie z. B. dem European Parliamentary Technology Assessment (EPTA), der International Association for Technology Assessment and Forecasting Institutions (IATAFI) und dem European Science and Technology Observatory (ESTO). Die fachliche Diskussion wird durch den Austausch von Gastwissenschaftlern gefördert (Kap. 4.5).

Das ITAS ist Herausgeber der vierteljährlich erscheinenden Zeitschrift zur Technikfolgenabschätzung „Technikfolgenabschätzung – Theorie und Praxis“ (vormals TA-Datenbank-Nachrichten; vgl. Kap. 4.1.7). Die Zeit-

5.4 Mitarbeiterliste – ITAS

<table>
<thead>
<tr>
<th>Name, Vorname</th>
<th>Funktionsbezeichnung</th>
<th>Akademischer Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achternbosch, Matthias</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Chemiker</td>
</tr>
<tr>
<td>Arlt, Andreas</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Chemieingenieur</td>
</tr>
<tr>
<td>(bis 30.11.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banse, Gerhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Professor, Dr. phil.</td>
</tr>
<tr>
<td>Bechmann, Gotthard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Rechtsreferendar</td>
</tr>
<tr>
<td>Bechmann, Martin</td>
<td>Doktorand</td>
<td>Dipl.-Soziologie</td>
</tr>
<tr>
<td>(seit 15.02.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beck, Silke</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr. rer. soc.</td>
</tr>
<tr>
<td>Berg, Ingrid von</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dipl.-Übersetzerin</td>
</tr>
<tr>
<td>Böhle, Knud</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Soziologe, M.A.</td>
</tr>
<tr>
<td>Bräutigam, Klaus-Rainer</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Physiker</td>
</tr>
<tr>
<td>Brandl, Volker</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Physiker</td>
</tr>
<tr>
<td>Brinckmann, Andrea</td>
<td>Doktorandin</td>
<td>M.A.</td>
</tr>
<tr>
<td>Brune, Dietrich</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Physiker</td>
</tr>
<tr>
<td>Coenen, Reinhard</td>
<td>Stellvertretender Institutsleiter</td>
<td>Dipl.-Volkswirt</td>
</tr>
<tr>
<td>Decker, Michael</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Physiker</td>
</tr>
<tr>
<td>(seit 01.01.2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiedeler, Ulrich</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Physiker</td>
</tr>
<tr>
<td>(seit 01.01.2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleischer, Torsten</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Physiker</td>
</tr>
<tr>
<td>Frederichs, Günther</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Mathematiker</td>
</tr>
<tr>
<td>(bis 31.12.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fürnß, Beate</td>
<td>Programmiererin</td>
<td>Math.-techn. Assistentin</td>
</tr>
<tr>
<td>Gloede, Fritz</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Soziologe</td>
</tr>
<tr>
<td>Grunwald, Armin</td>
<td>Institutsleiter</td>
<td>Professor, Dr. rer. nat</td>
</tr>
<tr>
<td>Halbritter, Günter</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Professor, Dr.</td>
</tr>
<tr>
<td>Hartlieb, Nicola</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr. rer. nat</td>
</tr>
<tr>
<td>(seit 01.09.2001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mitarbeiterliste – ITAS

<table>
<thead>
<tr>
<th>Name, Vorname</th>
<th>Funktionsbezeichnung</th>
<th>Akademischer Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heincke, Maren</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr. sc. (agr.), Dipl.-Ing. (agr.)</td>
</tr>
<tr>
<td>(bis 16.02.2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hocke-Bergler, Peter</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr. des.</td>
</tr>
<tr>
<td>(seit 01.01.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoffmann, Brigitte</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dipl.-Soziologin</td>
</tr>
<tr>
<td>(seit 08.04.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jürissen, Juliane</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dipl.-Ingenieurin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kälber, Stefan</td>
<td>Wissenschaftlicher Mitarbeiter (Nachwuchswissenschaftler)</td>
<td>Dipl.-Ingenieur</td>
</tr>
<tr>
<td>(seit 01.03.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaufmann, Gabriele</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td>Klein-Vielhauer, Sigrid</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dipl.-Volkswirt</td>
</tr>
<tr>
<td>Kopfmüller, Jürgen</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Volkswirt</td>
</tr>
<tr>
<td>Krings, Bettina-Johanna</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Politikwissenschaftlerin M.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kriz, Pavel</td>
<td>Doktorand</td>
<td>M.A.</td>
</tr>
<tr>
<td>(seit 01.10.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kullmann, Margareta</td>
<td>Sekretärin/Sachbearbeiterin</td>
<td></td>
</tr>
<tr>
<td>Kupsch, Christel</td>
<td>Programmiererin</td>
<td></td>
</tr>
<tr>
<td>Laier, Waltraud</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td>Lange, Stephan</td>
<td>Doktorand</td>
<td>Dipl.-Ingenieur</td>
</tr>
<tr>
<td>(seit 15.04.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leible, Ludwig</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Ingenieur (agr.)</td>
</tr>
<tr>
<td>Leßmann, Eckhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Physiker</td>
</tr>
<tr>
<td>Mäule, Monika</td>
<td>Programmiererin</td>
<td></td>
</tr>
<tr>
<td>Neu-Thoss, Charlotte</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td>Nieke, Eberhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Wirtschaftsingenieur</td>
</tr>
<tr>
<td>Orwat, Carsten</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Volkswirt</td>
</tr>
<tr>
<td>Parodi, Oliver</td>
<td>Doktorand</td>
<td>Dipl.-Ingenieur</td>
</tr>
<tr>
<td>(seit 01.04.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Berufsbildung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Paskaleva-Shapira, Krassimira</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr., Regional Science</td>
</tr>
<tr>
<td>Petermann, Gabriele</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td>(seit 16.07.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propfes, Peter</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr. Ingenieur</td>
</tr>
<tr>
<td>(seit 01.01.2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rader, Michael</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr. phil./Soziologe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reißler, Bernd</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Biologe</td>
</tr>
<tr>
<td>(bis 31.12.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riehm, Ulrich</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Soziologe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rösch, Christine</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr., Dipl.-Agrarbiologin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sardemann, Gerhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Meteorologe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>von Seht, Hauke</td>
<td>Doktorand</td>
<td>Dipl.-Physiker</td>
</tr>
<tr>
<td>(bis 30.06.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulz, Volkhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Physiker</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmidt-Leis, Bettina</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stehr, Nico</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Professor Dr.</td>
</tr>
<tr>
<td>(seit 08.06.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stelzer, Volker</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Geograph</td>
</tr>
<tr>
<td>(seit 01.02.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stolle, Martin</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Soziologe</td>
</tr>
<tr>
<td>(bis 30.06.2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Störtzer, Maria-Luise</td>
<td>Hausmeisterin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weber, Arnd</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Volkswirt</td>
</tr>
<tr>
<td>(seit 01.01.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Werner, Matthias</td>
<td>Doktorand</td>
<td>M.A. Politologie</td>
</tr>
<tr>
<td>(seit 15.03.2002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wingert, Bernd</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Psychologe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woitowitz, Axxl</td>
<td>Doktorand</td>
<td>Dipl.-oec.troph.</td>
</tr>
<tr>
<td>(seit 01.05.2001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woll, Tobias</td>
<td>Doktorand</td>
<td>M.A. Politologie, Soziologie</td>
</tr>
<tr>
<td>(seit 01.07.2001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.5 Mitarbeiterliste – TAB

<table>
<thead>
<tr>
<th>Name, Vorname</th>
<th>Funktionsbezeichnung</th>
<th>Akademischer Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coenen, Christopher (seit 15.03.2002)</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dipl.-Politologe</td>
</tr>
<tr>
<td>Goelsdorf, Brigitta-Ulrike (seit 01.01.2001)</td>
<td>Sekretärin/Sachbearbeiterin</td>
<td></td>
</tr>
<tr>
<td>Grünewald, Reinhard (seit 01.10.2000)</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Physiker</td>
</tr>
<tr>
<td>Grunwald, Armin</td>
<td>Leiter des TAB (seit 01.01.2002)</td>
<td>Professor, Dr. rer. nat</td>
</tr>
<tr>
<td>Hennen, Leonhard</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Soziologe</td>
</tr>
<tr>
<td>Meyer, Rolf</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Ingenieur (agr.)</td>
</tr>
<tr>
<td>Oertel, Dagmar</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dr., Dipl.-Chemikerin</td>
</tr>
<tr>
<td>Paschen, Herbert</td>
<td>Leiter des TAB (bis Ende 2001)</td>
<td>Professor, Dr. rer. pol., Dipl.-Volkswirt</td>
</tr>
<tr>
<td>Petermann, Thomas</td>
<td>Stellvertretender Leiter des TAB</td>
<td>Dr. phil., Politikwissenschaften</td>
</tr>
<tr>
<td>Rastätter, Gaby</td>
<td>Sekretärin</td>
<td></td>
</tr>
<tr>
<td>Revermann, Christoph</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr. rer. nat., Dipl.-Biologe</td>
</tr>
<tr>
<td>Sauter, Arnold</td>
<td>Wissenschaftlicher Mitarbeiter</td>
<td>Dr., Dipl.-Biologe</td>
</tr>
<tr>
<td>Scherz, Constanze</td>
<td>Wissenschaftliche Mitarbeiterin</td>
<td>Dipl.-Soziologin</td>
</tr>
<tr>
<td></td>
<td>(seit 15.03.2002)</td>
<td></td>
</tr>
</tbody>
</table>