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Eidesstattliche Versicherung gemäß § 13 Absatz 2 Ziffer 3 der Promotionsordnung des Karls-
ruher Instituts für Technologie (KIT) für die KIT-Fakultät für Physik:

1. Bei der eingereichten Dissertation zu dem Thema

Vacuum Structure of Models beyond the Standard Model

handelt es sich um meine eigenständig erbrachte Leistung.

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner unzuläs-
sigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus anderen
Werken übernommene Inhalte als solche kenntlich gemacht.

3. Die Arbeit oder Teile davon habe ich bislang nicht an einer Hochschule des In- oder
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Abstract

With the measurement of the Higgs boson in 2012 the last particle of the Standard Model
of particle physics was found. While its predictions are compatible with the measurements
at particle collider experiments, there are many questions which cannot be answered in the
Standard Model. Among these open questions is the stability of the vacuum of the Standard
Model at high energies as well as the generation of the observed matter-antimatter asymmetry
of the universe. To combine these two open questions with the measured constraints from
particle collider experiments, theories beyond the Standard Model are investigated.

In this thesis the 2-Higgs-Doublet Model, in its charge-parity-conserving and -violating re-
alisation, and the Next-to-2-Higgs-Doublet Model are investigated as specific realisations to
extend the Higgs potential of the Standard Model. For both realisations of the 2-Higgs-
Doublet Model the stability of the vacuum at higher energies is calculated. An important
ingredient for the matter-antimatter asymmetry of the universe and other effects in the early
universe is the electroweak phase transition. During this thesis, the C++ code BSMPT has
been developed and published, allowing for the numerical evaluation of the strength of the
electroweak phase transition. Through its modular setup BSMPT can be adapted for other
realisations of physics beyond the Standard Model. This thesis shows the effects of requiring
a strong first-order electroweak phase transition on the parameter space of both models. As
the charge-parity violating 2-Higgs-Doublet Model provides all necessary ingredients to gen-
erate a matter-antimatter asymmetry, it is calculated in this thesis. These calculations are
then combined with experimental constraints from particle collider experiments to show the
effect on the parameter space of the model.

Zusammenfassung

Mit der Messung des Higgs-Bosons im Jahr 2012 wurde das letzte Elementarteilchen des Stan-
dardmodells der Teilchenphysik gefunden. Obwohl dessen Vorhersagen kompatibel mit den
Messungen an Teilchenbeschleuniger-Experimenten sind, gibt es noch viele offene Fragen, die
vom Standardmodell der Teilchenphysik nicht beantwortet werden können. Zu diesen Fragen
gehören unter anderem die Stabilität des Vakuums bei hohen Energien oder die gemessene
Asymmetrie zwischen Materie und Antimaterie im Universum. Um diese beiden Fragen
mit den Ergebnissen von Teilchenbeschleuniger-Experimenten zu kombinieren, werden ver-
schiedene Theorien mit Physik jenseits des Standardmodells der Teilchenphysik untersucht.

In dieser Arbeit werden hierfür das Zwei-Higgs-Dublett Modell, sowohl in seiner ladungs-
und paritätserhaltenden als auch verletzenden Variante, und das Nichtminimale Zwei-Higgs-
Dublett Modell als konkrete Modelle für die Erweiterung des Higgs Potentials des Standard-
modells untersucht. Für beide Varianten des Zwei-Higgs-Dublett Modells wird die Stabilität
des Vakuums bei hohen Energien berechnet. Eine wichtige Komponente für die Asymmetrie
zwischen Materie und Antimaterie im Universum und andere Effekte im frühen Universum
ist der elektroschwache Phasenübergang. Während dieser Arbeit wurde hierfür der C++
Code BSMPT entwickelt und veröffentlicht, welcher die numerische Berechnung der Stärke des
elektroschwachen Phasenübergangs ermöglicht. Durch den modularen Aufbau können neue
Modelle für Physik jenseits des Standardmodells in BSMPT implementiert werden. Diese Arbeit
zeigt den Effekt, den die Forderung eines elektroschwachen Phasenübergangs starker erster
Ordnung auf den möglichen Parameterraum beider Modelle hat. Da das ladungs- und par-
itätsverletzende Zwei-Higgs-Dublett Modell alle notwendigen Bausteine für Entstehung einer
Asymmetrie zwischen Materie und Antimaterie zur Verfügung stellt, wurde diese während
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dieser Arbeit ausgerechnet. Diese Rechnungen werden abschließend mit den Ergebnissen
aktueller Teilchenbeschleuniger-Experimente kombiniert und der Effekt auf den möglichen
Parameterraum des Modells dargestellt.
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CHAPTER 1

Introduction

Since the discovery of the Higgs boson in 2012 [6, 7], the mass of the Higgs boson has been
measured with very good accuracy [8] and its measured couplings to the Standard Model (SM)
particles are very SM-like [9]. Despite the good agreement between the SM and results from
collider experiments, there are still many open questions in physics which it cannot answer,
eg. the one for the nature of Dark Matter (DM) or the measured baryon asymmetry of the
universe (BAU). These questions call for physics beyond the Standard Model (BSM). Many
BSM theories have an extended Higgs sector, each with a more complex potential and vacuum
than the SM. The structure of the vacuum defines the masses of the Higgs bosons of these
extended Higgs sectors and their couplings to other particles. The good understanding of
the vacuum structure is therefore crucial when confronting these models with experimental
constraints. This thesis deals with two aspects of the vacuum structures of extended Higgs
sectors. The first aspect is the stability of the vacuum at high energies. While the vacuum
of the SM is only metastable [10], the inclusion of additional Higgs bosons can yield a stable
vacuum [2, 11–19]. The other aspect is the generation of the measured BAU. Assuming the
universe started in a symmetric phase with an equal amount of matter and antimatter, there
must have been a dynamical mechanism to generate the measured BAU. The experimentally
measured quantity is given by the ratio of the difference between the number of baryons nb
and antibaryons nb, given by the dimensionless quantity [20]

η =
nb − nb

s
= (6.2± 0.4) · 10−10 , (1.1)

where the difference is normalised to the entropy density s of the universe which is propor-
tional to the number of photons in the universe. The order of magnitude of η shows that there
are about six baryons per 1010 photons in the universe. For a dynamical generation of the
baryon asymmetry, Sakharov postulated three necessary criteria [21], namely the departure
from thermal equilibrium, violation of charge conjugation (C) and charge conjugation parity
violation (CP-violation) and baryon number violating processes. If these criteria are fulfilled,
electroweak baryogenesis (EWBG) [22] provides a mechanism to generate a baryon-antibaryon
asymmetry during the electroweak phase transition (EWPT) [23]. While the SM provides a
source of CP-violation with the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM)-
matrix [20], the measured CP-violation is too suppressed to provide successful EWBG [24].



2 1. Introduction

Additionally, the Higgs mass of the SM is too heavy to provide an EWPT of strong first-order
[25–27], necessary for the departure from thermal equilibrium [28].

The goal of this thesis is to investigate different extensions of the SM with respect to vac-
uum stability at high scales, the possibility of a strong first-order electroweak phase tran-
sition (SFOEWPT) and the production of the measured BAU. As the CP-violation in the
CKM-matrix is not enough for successful EWBG, the most straightforward extension of the
SM including additional sources of CP-violation is the 2-Higgs-Doublet Model (2HDM) [29].
While the 2HDM extends the SM by an additional Higgs doublet, the Next-to-2-Higgs-Doublet
Model (N2HDM) extends the 2HDM by an extra Higgs singlet. Both models provide a rich
phenomenology, a stable vacuum at high energies and an SFOEWPT. Combining the addi-
tional CP-violation with the SFOEWPT, the CP-violating 2HDM (C2HDM) can describe a
successful EWBG.

The 2HDM, both the CP-conserving 2HDM (R2HDM) and C2HDM, and the N2HDM are
introduced in Chapter 2.
In Chapter 3 the effects of requiring a stable vacuum at high energies in the R2HDM and
C2HDM are investigated. While part of the results in the R2HDM was already published in
[2], the study has been extended to the C2HDM and new results are presented here.
The calculation of the EWPT requires the extension of the theory to include finite temperature
effects. The basics on how to include them and the calculation of the strength of the EWPT
are described in Chapter 4. Additionally, this chapter describes the general formalism which
is implemented in the C++ code Beyond the Standard Model Phase Transitions (BSMPT)
[4].
While previous studies in the R2HDM and C2HDM completed during this thesis have been
published in [1, 3], Chapter 5 updates the results in the C2HDM with up-to-date constraints
from collider experiments and studies the effects of requiring an SFOEWPT in the C2HDM
and N2HDM.
As the C2HDM can provide an SFOEWPT as well as additional sources of CP-violation [29],
it is a possible candidate for successful EWBG. In Chapter 6 the calculation of the necessary
ingredients to calculate the BAU are presented as well as the comparison of different numerical
approaches on how to calculate these ingredients. Although no parameter point fulfilling the
current experimental constraints provides a successful EWBG, it is shown that EWBG is
possible in the C2HDM without including the experimental constraints.
In Chapter 7 a final conclusion and suggestions on how to extend the provided models to
combine up-to-date experimental constraints with EWBG are given.
For the calculations in Chapter 3 the renormalization group equations (RGEs) of the R2HDM
and C2HDM are necessary, which are presented in Appendix A. Additionally, during the
calculation of the EWPT in Chapter 4 the counterterm potential is introduced to match
the input parameters with the parameters of the theory. The necessary formulae for the
parameters of the counterterm potential in the C2HDM and N2HDM are given in Appendix
B.



CHAPTER 2

Beyond the Standard Model Theories

In this chapter, the SM and all models that are considered in this thesis are introduced. Also,
the notation and conventions used in this work are set. For further details on the models,
additional references will be given.

In the following, a complex number will be described by its real and imaginary part as

x =<x+ i=x . (2.1)

2.1. The Standard Model of Particle Physics

The SM is a gauge theory with a local SU(3)C × SU(2)L ×U(1)Y gauge group [30–32]. The
SU(3)C is the gauge group of quantum chronodynamics (QCD) with massless gluons as the
corresponding gauge bosons. The electroweak gauge group SU(2)L×U(1)Y unifies the weak
and electromagnetic forces. One of the problems of the SM was given by the masses of the
gauge bosons. While the electroweak symmetry required them to be massless, otherwise the
gauge invariance would be violated, they were measured to have a finite mass [33–35]. A
solution to this problem is the Higgs mechanism [36–40], postulated in the 1960s. The Higgs
particle was discovered in 2012 by the ATLAS and CMS collaboration [6, 7] with a mass of
[8]

mh = 125.09± 0.21(stat)± 0.11(syst) GeV . (2.2)

The SM Higgs potential introducing the Higgs mechanism is given by

V = µ2φ†φ+ λ
(
φ†φ
)2

, (2.3)

which is minimised by

〈φ†φ〉 =
v2

2
=
−µ2

2λ
. (2.4)

This minimum can only be a global minimum if the potential is bounded from below, requiring
λ > 0. The necessary condition Eq. (2.4) requires µ2 < 0 such that this is a minimum of
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the potential. The resulting vacuum expectation value (VEV) v spontaneously breaks the
SU(2)L × U(1)Y down to the U(1)em symmetry group of quantum electrodynamics (QED).
Because of this, the Higgs doublet can be written as

φ =
1√
2

 θ1 + iθ2

v + h+ iθ3

 (2.5)

after electroweak symmetry breaking, where the three degrees of freedom θ1,2,3 can be rotated
away by a SU(2)L gauge transformation. In the unitarity gauge they will correspond to the
longitudinal modes of the massive gauge bosons. The Higgs mechanism induces the masses
of the gauge bosons through the mixing term in the kinetic part of the Lagrangian. It reads

LH,kin = (Dµφ)† (Dµφ) (2.6)

with the covariant derivative given by

Dµ = ∂µ − i
g2

2
W a
µσ

a − i
g1

2
Bµ . (2.7)

Here Bµ describes the U(1)Y gauge field and W a
µ , with a = 1, 2, 3, the SU(2)L gauge fields.

σa are the Pauli matrices and generators of the SU(2)L gauge group with the corresponding
gauge couplings g1 and g2. Inserting Eq. (2.5) into Eq. (2.6) yields bilinear terms in Bµ and
W a
µ . After rotating Bµ and W a

µ in the mass basis, with the W and Z boson and the photon
γ as the physical gauge bosons, the bilinear terms yields the masses of the W and Z boson
as

m2
W =

g2
2v

2

4
, m2

Z =
(g2

1 + g2
2)v2

4
. (2.8)

As the U(1)em is not broken, the photon remains massless. Additionally, the resulting inter-
action term between two gauge bosons and one Higgs boson solves another problem which
occurred before the introduction of the Higgs mechanism in the SM. Through the new contri-
butions of the Higgs boson, the scattering amplitude for longitudinal W bosons into a pair of
longitudinal W bosons becomes finite for high energies [41] and therefore perturbative unitar-
ity is restored, if the coupling between the Higgs boson and two gauge bosons is proportional
to the mass of the gauge boson squared.

Similar to the W and Z Boson masses, explicit fermion masses would break the chiral symme-
try of the theory. Through the Higgs mechanism, they can be generated through the Yukawa
interaction Lagrangian

−Lyuk = Q
′
LYdφD

′
R −Q

′
L,aYuε

abφ†bUR + LLYeφER + h.c. (2.9)

with ε12 = −1 = −ε21 and ε11 = ε22 = 0. Here Q′L denotes the SU(2) left-handed quark
doublet, UR and D′R the right-handed up-type and down-type quarks. LL and ER denote the
left-handed SU(2)L lepton doublet and the right-handed leptons. They relate to the quarks

and leptons through the left- and right-handed chiral projectors PL,R =
1∓ γ5

2
. The quarks

and leptons are given through

Q′ =

U

D′

 =

 U

V D

 (2.10)

L =

v

E

 . (2.11)
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Here ′ denotes the flavour basis in the cases where the flavour basis is not equal to the mass
basis. The CKM Matrix, which diagonalises the down-type quarks, is denoted by V [42, 43]1.
The neutrinos are denoted by ν. The multipletts are given by

D =


d

s

b

 , U =


u

c

t

 , (2.12)

E =


e

µ

τ

 , ν =


νe

νµ

ντ

 . (2.13)

2.2. The 2-Higgs-Doublet Model

2.2.1. The Higgs Potential

The 2HDM [46–48] is an extension of the SM by an additional SU(2)L Higgs doublet. The
Higgs Lagrangian is given by

L =
2∑
i=1

(DµΦi)
† (DµΦi)− V2HDM . (2.14)

As in the SM, the covariant derivative is given by

Dµ = ∂µ − i
(g1

2
Y Bµ +

g2

2
~σ ~Wµ

)
. (2.15)

To avoid Flavour Changing Neutral Currents (FCNCs) at tree level, a discrete Z2 symmetry
of the form Φ1 → Φ1,Φ2 → −Φ2 is imposed. The Higgs potential which softly breaks this Z2

symmetry is given by

V2HDM = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 +
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[
λ5

2

(
Φ†1Φ2

)2
−m2

12

(
Φ†1Φ2

)
+ h.c.

]
, (2.16)

where m2
ij are mass parameters and λi are quartic couplings. Due to the hermicity of the

potential m2
11,m

2
22 and λ1 to λ4 have to be real while m2

12 and λ5 can be complex. Although
the Z2-symmetry is imposed the term m2

12 is included which violates this symmetry. As this
term has mass dimension 2 this symmetry is only softly broken. The broken Z2-symmetry
induces FCNCs, which are heavily constrained [49] and can be avoided at tree level, as
described in Sec. 2.2.6.2. As shown later in Sec. 2.2.2 the complex phase of the Z2 breaking
parameter m2

12 introduces CP-violation [29].

After the electroweak symmetry breaking the doublets are given by

Φ1 =
1√
2

 ρ1 + iη1

ζ1 + ω1 + iψ1

 Φ2 =
1√
2

 ρ2 + ωCB + iη2

ζ2 + ω2 + i (ψ2 + ωCP )

 . (2.17)

1While the CP-violation in the CKM Matrix is too suppressed in the SM to provide a successful EWBG [44],
there are other approaches varying the Yukawa coupling simultaneously to achieve EWBG [45].
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Here ρ1,2, η1,2 describe the real fields of the charged components, ζ1,2 are the CP-even com-
ponents of the neutral fields and ψ1,2 are the CP-odd components. The doublet Φ1 has the
same structure as in the SM while the second doublet has an additional CP-odd VEV ωCP
and a charge breaking (CB) VEV ωCB

2. These allow for the global minimum of the potential
to be either CB or CP-violating. It was shown in [50–54] that two different kinds of minima
in the 2HDM cannot co-exist. As the current vacuum has a CP-even structure, the charge
breaking and CP-odd VEV have to be saddle points of the potential at tree level. Math-
ematically two CP-even minima can coexist. To avoid the so-called Panic vacuum [55, 56]
solution, describing the scenario that our minimum is not the global one and therefore not
stable, the allowed parameter space of the theory will be constrained such that our minimum
is the global one. Furthermore, the CB minimum yields non-vanishing photon masses and
is therefore unphysical. In general, it is always possible to absorb the CP-odd VEV in the
parameters λ5 and m2

12 through rewriting the second doublet as

Φ2 =
1√
2

ρ′2 + ωCB exp(−iφω) + iη′2

ζ ′2 + ω̃2 + iψ′2

 exp (iφω) = Φ̃2 exp (iφω) (2.18)

with

ω̃2 exp (iφω) = ω2 + iωCP . (2.19)

By rewriting λ5 and m2
12 in terms of their absolute values and phases the last term of the

potential can be rewritten as

λ5

2

(
Φ†1Φ2

)2
−m2

12Φ†1Φ2 =
|λ5|
2

(
Φ†1Φ̃2

)2
exp (i (φλ5 + 2φω))

− |m2
12|Φ†1Φ̃2 exp

(
i
(
φm2

12
+ φω

))
(2.20)

=
λ̃5

2

(
Φ†1Φ̃2

)2
− m̃2

12Φ†1Φ̃2 , (2.21)

with the redefined

λ̃5 ≡|λ5| exp(i (φλ5 + 2φω) = λ5 exp(2iφω) , (2.22)

m̃2
12 ≡|m2

12| exp
(

i
(
φm2

12
+ φω

))
= m2

12 exp (iφω) . (2.23)

It is therefore possible to absorb the phase of the VEV of the neutral component of the second
doublet into λ5 and m2

12 at tree level. As the potential depends only on the redefined phases
of those parameters, it is therefore possible to set ωCP = 0. Nonetheless the CP-violating
and CB VEVs are kept in the calculation to check for transitions into different vacua and
spontaneous CP-violation induced through higher-order and finite temperature effects. To
discuss the possible changes in the VEVs it is useful to fix the VEVs of the present vacuum
at vanishing temperature with a different notation, namely

(ω1)input = v1 , (2.24)

(ω2)input = v2 . (2.25)

In order to obtain the W and Z Boson masses of the SM, the VEVs are subject to the
constraint

v2
1 + v2

2 = v2 , (2.26)

2While technically Φ1 can have VEVs in these components, they can be rotated away into Φ2 and are neglected
here.



2.2. The 2-Higgs-Doublet Model 7

where v is the VEV of the SM with v ≈ 246.22 GeV [57]. Introducing the mixing angle β
defined as

tanβ =
v2

v1
(2.27)

yields the following relations for v1 and v2

v1 = v sinβ v2 = v cosβ . (2.28)

Overall the Higgs potential, cf. Eq. (2.16), is defined by the following ten Lagrange parameters

{m2
11,m

2
22, λ1, λ2, λ3, λ4,<λ5,=λ5,<m2

12,=m2
12} .

As noted before, the non-vanishing imaginary parts of λ5 and m2
12 yield CP-violation, while

the model is CP-conserving if they vanish. This will be discussed in detail in Sec. 2.2.3.

2.2.2. The Electroweak Minimum

In order to ensure the minimum of the potential today, meaning at vanishing temperature3

to be at

〈Φ1〉 =
1√
2

 0

v1

 , 〈Φ2〉 =
1√
2

 0

v2

 (2.29)

it is necessary that Eq. (2.29) solves the necessary minimum condition

∂V

∂Φ†a

∣∣∣∣
Φ1=〈Φ1〉,Φ2=〈Φ2〉

!
= 0 a ∈ {1, 2} . (2.30)

This yields the tadpole relations

<m2
12v2 −m2

11v1 =
v1

2

(
λ1v

2
1 + (λ3 + λ4 + <λ5) v2

2

)
, (2.31a)

<m2
12v1 −m2

22v2 =
v2

2

(
λ2v

2
2 + (λ3 + λ4 + <λ5) v2

1

)
, (2.31b)

=m2
12v2 =

1

2
v1v

2
2=λ5 . (2.31c)

Assuming that v1, v2 6= 0 it is possible to use Eqs. (2.31a) and (2.31b) to exchange m2
11 and

m2
22 for v1 and v2 as input parameters. Eq. (2.31c) can be used the eliminate =m2

12 as a free
parameter and reduce the number of free parameters by one. The replacement rules are given
by

m2
11 = <m2

12

v2

v1
− λ1

2
v2

1 −
λ3 + λ4 + <λ5

2
v2

2 , (2.32a)

m2
22 = <m2

12

v1

v2
− λ2

2
v2

2 −
λ3 + λ4 + <λ5

2
v2

1 , (2.32b)

=m2
12 = =λ5

v1v2

2
. (2.32c)

Applying these, the model is left with nine independent parameters

{λ1, λ2, λ3, λ4,<λ5,=λ5,<m2
12, tanβ, v} , (2.33)

with only one free complex phase φλ5 = arg (λ5).

3While the background temperature of the universe strictly speaking is given by T = 2.7 K ≈ 10−13 GeV the
numerical influence can be neglected.
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2.2.3. CP-Violation

One of the great merits of the 2HDM compared to the SM is the possibility to have CP-
violation already at tree level in the potential. For this it is neccesary that at least one of the
four CP invariants I1 to I4 or one of the three CP invariants J1 to J3, given in [48], do not
vanish. In the 2HDM the CP invariants I1 to I4, that check for explicit CP-violation in the
potential, are given by [48]4

I1 = 2i
[((
=m2

12

)2 − (<m2
12

)2)=λ5 + 2=m2
12<λ5<m2

12

]
(λ1 − λ2) , (2.34a)

I2 = 0 , (2.34b)

I3 = 0 , (2.34c)

I4 =
(
m2

22 −m2
11

) [
(λ1 − λ3 − λ4) (λ2 − λ3 − λ4)−

(
<λ2

5 + =λ2
5

)]
×
[((
<m2

12

)2 − (=m2
12

)2)=λ5 − 2=m2
12<λ5<m2

12

]
. (2.34d)

The CP invariants J1 to J3, checking for spontaneous CP-violation in the vacuum, read as

J1 =
1

16
=m2

12 (λ1 − λ2) v1v2 , (2.35a)

J2 =
m2

11 −m2
22

32

(
(λ1 + λ2 − 2λ3 − 2λ4 + 2<λ5)=m2

12 − 2<m2
12=λ5

)
v1v2

+
1

16

(
v2

1 − v2
2

) ((
=m2

12 −<m2
12

)
=λ5 + 2<m2

12=m2
12<λ5

)
, (2.35b)

J3 = 0 . (2.35c)

There are two non-trivial cases5 in which the invariants I1 to I4 and J1 to J3 vanish. The
first case is given by =λ5 = 0 which leads to =m2

12 = 0 through Eq. (2.31c). This is expected
as a potential with only real parameters does not have mixed couplings between CP-even
and CP-odd fields. The other case is given by setting λ1 = λ2 and m2

11 = m2
22 which implies

v1 = v2 through the tadpole equations Eqs. (2.31a) and (2.31b), yielding tanβ = 1. While
this parameter choice yields vanishing CP invariants, the model is still CP-violating through
the couplings of the Higgs bosons with the fermions [58], as the symmetry implying λ1 = λ2

and tanβ = 1 also needs to be imposed on the fermion sector.

For the remainder of this work, the case =λ5 = 0 will be referred to as the R2HDM, while
C2HDM describes the case =λ5 6= 0, and 2HDM if the discussion is independent of the choice
of =λ5.

2.2.4. The Higgs Spectrum of the 2HDM

The Higgs spectrum of the 2HDM is given by a charged Higgs-pair H± and three neutral
Higgs bosons h1,2,3. In the R2HDM two of them are CP-even and one is CP-odd while in the
C2HDM all three neutral Higgs states mix and are CP-violating. The charged scalar sector
is rotated to the mass eigenbasis by

G+

H+

 =

 cosβ sinβ

− sinβ cosβ




1√
2

(ρ1 + iη1)

1√
2

(ρ2 + iη2)

 , (2.36)

4While the parameters m2
11,m

2
22 and =m2

12 can be expressed through Eq. (2.32) the following expressions are
expressed in a more compact form if they are not exchanged.

5These two cases are not the only solution of I1 = I4 = J1 = J2 = 0 but they are the simplest cases in which
the invariants vanish.
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with G+ describing the charged and massless Goldstone boson. At tree level β coincides with
tanβ = v2/v1. The mass of the charged Higgs boson is given by

m2
H± = <m2

12

v2

v1v2
− v2

2
(λ4 + <λ5) . (2.37)

The same rotation matrix rotates the neutral CP-odd scalar sector into the neutral and
massless Goldstone boson G0 and the CP-odd field ζ3, given byG0

ζ3

 =

 cosβ sinβ

− sinβ cosβ

ψ1

ψ2

 . (2.38)

While ζ3 is no mass eigenstate in the C2HDM, in the R2HDM ζ3 describes the massive and
pseudoscalar mass eigenstate A. In order to describe the interaction of the three phyiscal,
massive, neutral and CP-mixing particles it is necessary to diagonalise the mass matrix of the
C2HDM, given by the Hessian matrix of the potential evaluated in the electroweak minimum.
In the basis {ζ1, ζ2, ζ3} the mass matrix is given by

M2
N =


λ1v

2
1 + <m2

12

v2

v1
v1v2 (λ3 + λ4 + <λ5)−<m2

12 −=λ5
vv2

2

v1v2 (λ3 + λ4 + <λ5)−<m2
12 λ2v

2
2 + <m2

12

v1

v2
−=λ5

vv1

2

−=λ5
vv2

2
−=λ5

vv1

2
<m2

12

v2

v1v2
−<λ5

 .

(2.39)

In the R2HDM Eq. (2.39) simplifies to

M2,R2HDM
N =


λ1v

2
1 + <m2

12

v2

v1
v1v2 (λ3 + λ4 + <λ5)−<m2

12 0

v1v2 (λ3 + λ4 + <λ5)−<m2
12 λ2v

2
2 + <m2

12

v1

v2
0

0 0 <m2
12

v2

v1v2
−<λ5v

2

 ,

(2.40)

with the eigenvalues

m2
h =

1

2

[
λ1v

2
1 + λ2v

2
2 + <m2

12

(
v2

v1
+
v1

v2

)]

− 1

2

√(
λ1v2

1 − λ2v2
2 + <m2

12

(
v2

v1
− v1

v2

))2

+ 4
(
v1v2 (λ3 + λ4 + <λ5)−<m2

12

)2
,

(2.41a)

m2
H =

1

2

[
λ1v

2
1 + λ2v

2
2 + <m2

12

(
v2

v1
+
v1

v2

)]

+
1

2

√(
λ1v2

1 − λ2v2
2 + <m2

12

(
v2

v1
− v1

v2

))2

+ 4
(
v1v2 (λ3 + λ4 + <λ5)−<m2

12

)2
,

(2.41b)

m2
A = <m2

12

v2

v1v2
−<λ5v

2 , (2.41c)

where A is a CP-odd particle and h and H are CP-even with m2
h ≤ m2

H .
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In the most general case, Eq. (2.39) cannot be diagonalised analytically. The rotation matrix
R, in its general form, is given by

R =


c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 , (2.42)

with

ci = cosαi , si = sinαi , −π
2
≤ αi <

π

2
, (2.43)

which diagonalizes Eq. (2.39) such as

RM2
NR

T = diag
(
m2
h1 ,m

2
h2 ,m

2
h3

)
(2.44)

with m2
h1 ≤ m2

h2 ≤ m2
h3 . Using this, together with the charged Higgs Mass, cf. Eq. (2.37), the

input parameters {λ1, λ2, λ3, λ4,<λ5,=λ5} can be expressed through the masses and mixing
angles as [59]

λ1 =
1

v2
1

[
m2
h1c

2
1c

2
2 +m2

h2 (c3s1 + c1s2s3)2 +m2
h3 (c1s2c3 − s1s3)2 −<m2

12

v2

v1

]
, (2.45a)

λ2 =
1

v2
2

[
m2
h1s

2
1c

2
2 +m2

h2 (c1c3 − s1s2s3)2 +m2
h3 (s1s2c3 + c1s3)2 −<m2

12

v1

v2

]
, (2.45b)

λ3 =
1

v1v2

[(
m2
h1c

2
2 +m2

h2

(
s2

2s
2
3 − c2

3

)
+m2

h3

(
s2

2c
2
3 − s2

3

))
c1s1 +

(
m2
h3 −m2

h2

) (
c2

1 − s2
1

)
s2c3s3

]
+

1

v2

(
2m2

H± −
<m2

12v
2

v1v2

)
, (2.45c)

λ4 =
1

v2

[
m2
h1s

2
2 +

(
m2
h2s

2
3 +m2

h3c
2
3

)
c2

2 +
<m2

12v
2

v1v2
− 2m2

H±

]
, (2.45d)

<λ5 =
1

v2

[
−m2

h1s
2
2 −

(
m2
h2s

2
3 +m2

h3c
2
3

)
c2

2 +
<m2

12v
2

v1v2

]
, (2.45e)

=λ5 =
2

vv2
c2

[(
−m2

h1 +m2
h2s

2
3 +m2

h3c
2
3

)
c1s2 +

(
m2
h2 −m2

h3

)
s1s3c3

]
. (2.45f)

For the C2HDM a possible set of input parameters can be chosen as

{m2
h1 ,m

2
h2 ,m

2
H± , α1, α2, α3 tanβ, v} (2.46)

where the third mass is given by

m2
h3 =

m2
h1
R13 (R12 tanβ −R11) +m2

h2
R23 (R22 tanβ −R21)

R33 (R31 −R32 tanβ)
. (2.47)

Taking the limit

α2, α3 → 0, α1 → α+
π

2
, h1 → h, h2 → −H,h3 → A (2.48)

yields the R2HDM with the input parameters

{m2
h,m

2
H ,m

2
A,m

2
H± , α, tanβ, v} . (2.49)

In principle, it is a matter of taste which basis is chosen to describe the parameter points,
but choosing the mass basis will be more efficient in the phenomenological investigation of
the model as it is possible to set one of the Higgs boson masses to the measured value of
125.09 GeV.
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2.2.5. Theoretical Constraints

While in principle the input parameters can be chosen freely not all combinations yield
physical valid parameter points. While Eq. (2.31) ensures that Eq. (2.29) is a local minimum
it has to be ensured that the potential has a global minimum such that the physics described
at the present minimum is stable. As the model is described at fixed-order perturbation
theory it is also necessary to ensure that the approximation parameters of the theory are
small enough. As the theoretical constraints yield the same inequalities for the C2HDM and
the R2HDM, the checks in the following subsection applicable for both cases if not otherwise
stated.

2.2.5.1. Boundedness from below and Global Minimum

It was shown that the SM is metastable if there is no new physics until the Planck scale [60–
62]. The minimum of the 2HDM, on the other hand, can be chosen stable if it is the global
minimum. For this, the potential needs to be bounded from below. This is checked in the
strong sense, namely that in all possible field directions the potential has to be strictly positive
for the fields approaching infinity. This leads to the necessary and sufficient conditions [63–65]

0 < λ1 , (2.50a)

0 < λ2 , (2.50b)

−
√
λ1λ2 < λ3 + min(0, λ4 − |λ5|) . (2.50c)

In principle the general form of the doublets, given in Eq. (2.17), cannot only lead to neutral,
CP-conserving extrema with ωCP = ωCB = 0 but also lead to charge or CP-breaking ones. It
was shown in [50–56] that if a CP-even solution exists it will always be the minimum of the
potential and the CB and CP-violating solutions will be saddle points of the potential. Those
papers found that in the C2HDM, while there can be two CP-even minima, the relation

[(<m2
12

v1v2
− <λ5

2

)2

− |λ5|2
4

] [<m2
12

v1v2
− λ4 + <λ5

2
+

√
λ1λ2 − λ3

2

]
≥ 0 (2.51)

enforces our minimum to be the global one. In the R2HDM this relation can be expressed as

m2
12

(
m2

11 −
√
λ1

λ2
m2

22

)(
tanβ − 4

√
λ1

λ2

)
≥ 0 . (2.52)

2.2.5.2. Unitarity Constraints

The requirement of tree-level perturbative unitarity follows directly from the unitarity of the
S-matrix [66]. Usually, this is guaranteed by all eigenvalues of the 2→ 2 scattering matrix to



12 2. Beyond the Standard Model Theories

be less than 8π. The eigenvalues of the full 2→ 2 scattering matrix have been calculated in
[66–68] and are given by

a± =
3

2
(λ1 + λ2)±

√
9

4
(λ1 − λ2)2 + (2λ3 + λ4)2 , (2.53a)

b± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4λ2

4 , (2.53b)

c± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4|λ5|2 , (2.53c)

e1 = λ3 + 2λ4 − 3|λ5| , (2.53d)

e2 = λ3 − |λ5| , (2.53e)

f+ = λ3 + 2λ4 + 3|λ5| , (2.53f)

f− = λ3 + |λ5| , (2.53g)

f1 = λ3 + λ4 , (2.53h)

p1 = λ3 − λ4 . (2.53i)

For the unitarity conditions the following constraints6 are enforced

|a±, b±, c±, e1,2, f±, f1, p1| < 8π . (2.54)

2.2.6. Higgs Couplings to the SM Particles

The couplings between the SM particles and the Higgs bosons play an important role in the
phenomenological discussion. As the experiments provide their signal strengths normalised to
the SM the couplings will be given, whenever possible, normalised to their SM counterparts as
well. While the following couplings are given for the C2HDM, the couplings for the R2HDM
can be derived by applying the limit given in Eq. (2.48).

2.2.6.1. Higgs Couplings to Gauge Bosons

The couplings between Higgs and gauge bosons are given through the interaction term in the
Lagrangian, namely

LG =

2∑
i=1

(DµΦi)
† (DµΦi) . (2.55)

Expressing the neutral fields of the doublets in the mass basis hi, i = 1, 2, 3, the couplings
normalized to the SM coupling are given by

c(hiZµZν) = c(hiW
±
µ W

∓
ν ) =

cC2HDM(hiZµZν)

cSM(hZµZν)
= cosβRi1 + sinβRi2 , (2.56)

with the SM coupling

cSM(hZµZν) =
v

2
gµν

(
g2

1 + g2
2

)
= gµν

2m2
Z

v
(2.57)

and gµν as the metric tensor. The coupling between two Higgs bosons and one Z boson in
the C2HDM is given by

cC2HDM(Zhjhk) = − g

2 cos θW
[(sinβRj1 − cosβRj2)Rk3

− (sinβRk1 − cosβRk2)Rj3]
(
pjµ − pkµ

)
, (2.58)

6While [69] found that the limit can be lower then 8π once including higher-order effects the phenomenological
discussion in this work is based on tree level relations and therefore 8π as an upper limit will be used.
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where pj,kµ are the incoming momenta of the two Higgs bosons. Taking the limit of the
R2HDM, cf. Eq. (2.48), the coupling Eq. (2.58) vanishes unless one Higgs boson is an CP-
even one, with R2

j1 + R2
j2 = 1 and Rj3 = 0, and the other being the CP-odd one with

Rk1 = Rk2 = 0 and Rk3 = 1. In the R2HDM limit Eq. (2.56) vanishes for the pseudoscalar
particle A as RA1 = RA2 = 0. The coupling between a neutral Higgs boson, a charged one
and a W boson is given by

c(hiH
∓W±,µ) =

g2

2
[∓ (sinβRj1 − cosβRj2) + iRj3]

(
piµ − p∓µ

)
, (2.59)

where piµ is the incoming momenta of the neutral Higgs boson and p∓µ of the charged one.

2.2.6.2. Couplings to Fermions and FCNC

As in the SM, the interaction between Higgs bosons and fermions is given by the Yukawa
Lagrangian. Expanding Eq. (2.9) for two Higgs doublets yields

−Ly =
2∑
i=1

Q′LΓiΦiD
′
R −Q′L∆iεΦ

∗
iU
′
R + L′LΠiΦiE

′
R + h.c. , (2.60)

where Γi,∆i and Πi are generic coupling matrices. The antisymmetric tensor ε is given by

ε =

0 −1

1 0

 . (2.61)

Expressing the doublets through their neutral and charged components, Φ0
i and Φ+ respec-

tively, the Yukawa Lagrangian can be cast into the form

−Ly =
2∑
i=1

ULΓiV DRΦ+
i +DLV

†ΓiV DRΦ0
i + UL∆iURΦ0∗

i −DLV
†∆iURΦ−i

+ ELΠiERΦ0
i + νLΠiERΦ+

i + h.c. . (2.62)

The doublets expressed in the mass eigenstates of the C2HDM read

Φ±1 = cβG
± − sβH± , Φ±2 = sβG

± + cβH
± , (2.63)

Φ0
1 =

1√
2

(v1 + ρ1 + iψ1) =
1√
2

(
v1 + (Rj1 − isβRj3)hj + icβG

0
)
, (2.64)

Φ0
2 =

1√
2

(
v2 + (Rj2 + icβRj3)hj + isβG

0
)
. (2.65)

A concern for a general Yukawa Langrangian are FCNCs. Since these are severly constrained
by experimental results [70, 71] additional assumptions on the couplings to fermions are
assumed to avoid FCNCs. Common practice is to assume on of the four Types I, II, Flipped
(FL) and Lepton-Specific (LS) in which the up and down-type quarks and the leptons only
couple to one of the both Higgs doublets. The types are categorized in Tab. 2.1. As only one
doublet couples to up-type , down-type quarks and leptons in these types, it is possible to
express the coupling matrices as

V †ΓiV = diag(yd, ys, yb) , (2.66)

∆2 = diag(yu, yc, yt) , (2.67)

Πi = diag(ye, yµ, yτ ) , (2.68)
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Type up-type quarks couples to down-type quarks couple to charged leptons couple to

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

LS Φ2 Φ2 Φ1

FL Φ2 Φ1 Φ2

Table 2.1.: Couplings of the fermions to the Higgs doublets

Type I Type II FL LS

ce co ce co ce co ce co

up-type quarks
Ri2
sinβ

− Ri3
tanβ

Ri2
sinβ

− Ri3
tanβ

Ri2
sinβ

− Ri3
tanβ

Ri2
sinβ

− Ri3
tanβ

down-type quarks
Ri2
sinβ

Ri3
tanβ

Ri1
cosβ

−Ri3 tanβ
Ri1

cosβ
Ri3 tanβ

Ri2
sinβ

− Ri3
tanβ

leptons
Ri2
sinβ

Ri3
tanβ

Ri1
cosβ

−Ri3 tanβ
Ri2
sinβ

− Ri3
tanβ

Ri1
cosβ

Ri3 tanβ

Table 2.2.: The couplings between two fermions and a neutral Higgs boson hi of the form

LY ⊃ −
mf

v
f (ce(hiff) + iγ5c

o(hiff)) fhi.

where the index i is the index of the Higgs doublet which couples to the corresponding fermion.
The other coupling matrices vanish. The couplings between one neutral Higgs boson and two
fermions, normalized to the SM, are given in Table 2.2. The masses of the fermions are then
given as

mu = yu
v2√

2
, (2.69a)

md = yd
vd√

2
, (2.69b)

ml = yl
vl√
2
, (2.69c)

where vd and vl are the VEVs of the doublets given in Table 2.1.

2.2.6.3. Couplings between three Higgs Bosons

The couplings between three neutral Higgs Bosons in the C2HDM are given by7

c(hihjhk) = ∂hi∂hj∂hkL (2.70)

= − ∂hi∂hj∂hkV2HDM . (2.71)

7Depending on the literature this definition varies as symmetry factors are sometimes included or not. For this
work they are not included.
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As these are rather lengthy expressions they will not be given here explicitly. They can be
found on the webpage [72]. The coupling between a neutral and two charged Higgs boson is
given by

c(hiH
+H−) = − ∂hi∂H+∂H−V2HDM (2.72)

= − v [=λ5Ri3 cosβ sinβ

+Ri1 cosβ
(
λ3 cos2 β − (<λ5 − λ1 + λ4) sin2 β

)
+Ri2 sinβ

(
− (<λ5 − λ2 + λ4) cos2 β + λ3 sinβ

)]
. (2.73)

2.3. The Next-to-Two-Higgs-Doublet Model

2.3.1. The Higgs Potential

Based on the R2HDM a possible extension of the SM is given by adding a real, hypercharge
zero, SU(2)L singlet field ΦS to the R2HDM. This model is refered to as N2HDM [73]. The
potential is given by

VN2HDM = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12

(
Φ†1Φ2 + h.c.

)
+
λ1

2
|Φ1|4 +

λ2

2
|Φ2|2

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +
λ5

2

((
Φ†1Φ2

)2
+ h.c.

)
+

1

2
µ2
SΦ2

S +
λ6

8
Φ4
S +

λ7

2
|Φ1|2Φ2

S +
λ8

2
|Φ2|2Φ2

S , (2.74)

where m2
ij and µ2

S are mass parameters and λi are quartic couplings. Due to the hermicitiy
of the potential all parameters must be real. As in the R2HDM the N2HDM has the Z2

symmetry Φ1 → Φ1,Φ2 → −Φ2 which is softly broken by the m2
12 parameter. The singlet

field Φs is expanded around its VEV

Φs = ζs + ωs . (2.75)

Analogous to the 2HDM it is useful to label the minimum of the singlet field in the present
vaccum at vanishing temperature, namely

(ωs)input = vs . (2.76)

In contrast to the C2HDM, the CP-even components of the two Higgs doublets do not mix
with the CP-odd component but with the singlet field. As the singlet field does not couple to
gauge bosons or fermions and the massive Higgs bosons are a mixture between components
of the doublets and the singlets, the couplings are reduced which influences the production
and decay into SM particles. Because of the reduced couplings, it is possible to have a light
Higgs boson in the spectrum which couples very weakly to the SM particles. In the limit of
a vanishing singlet VEV vs the field ζs is a possible DM candidate [74].

2.3.2. The Electroweak Minimum

Analogous to the R2HDM in Sec. 2.2.2 the electroweak symmetry breaking combined with
the minimum of the singlet requires the present potential at vanishing temperature to be
minimised at

〈Φ1〉 =
1√
2

 0

v1

 , 〈Φ2〉 =
1√
2

 0

v2

 , 〈ΦS〉 = vs . (2.77)
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Requiring Eq. (2.77) to be a minimum of the potential, the equations

∂V

∂Φ†a

∣∣∣∣
Φ1=〈Φ1〉,Φ2=〈Φ2〉,Φs=〈Φs〉

!
= 0 a ∈ {1, 2} , (2.78)

∂V

∂Φs

∣∣∣∣
Φ1=〈Φ1〉,Φ2=〈Φ2〉,Φs=〈Φs〉

!
= 0 (2.79)

have to be satisfied. Simplifying these equations yields the following tadpole conditions

v2m
2
12 −m2

11v1 =
v1

2

(
λ1v

2
1 + λ345v

2
2 + λ7v

2
s

)
, (2.80a)

v1m
2
12 −m2

22v2 =
v2

2

(
λ2v

2
2 + λ345v

2
1 + λ8v

2
s

)
, (2.80b)

−µ2
svs =

vs
2

(
λ7v

2
1 + λ8v

2
2 + λ6v

2
s

)
, (2.80c)

where the notation

λ345 = λ3 + λ4 + λ5 (2.81)

was used. In the following Eq. (2.80) is used to express m2
11,m

2
22, µ

2
s through the other

parameters in the potential.

2.3.3. The Higgs Spectrum of the N2HDM

The Higgs spectrum of the N2HDM is given by a charged Higgs pair H±, a pseudoscalar
neutral Higgs boson A and three neutral CP-even Higgs bosons h1, h2, h3. The masses of the
charged and pseudoscalar particle are the same as in the R2HDM and are given by

m2
H± =

m2
12v

2

v1v2
− v2 (λ4 + λ5) , m2

A =
m2

12v
2

v1v2
− λ5v

2 . (2.82)

The neutral CP-even mass matrix in the basis (ζ1, ζ2, ζs) is given by

MN2HDM
N =


λ1v

2
1 +m2

12

v2

v1
v1v2λ345 −m2

12 λ7v1vs

v1v2λ345 −m2
12 λ2v

2
2 +m2

12

v1

v2
λ8v2vs

λ7v1vs λ8v2vs λ6v
2
s

 , (2.83)

which is diagonalised by the rotation matrix R that can be parameterised the same way as
in Eq. (2.42) for the C2HDM, through

R =


c1c2 s1c2 s2

−(c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 −(c1s3 + s1s2c3) c2c3

 , (2.84)

with

ci = cosαi si = sinαi − π

2
≤ αi <

π

2
. (2.85)

The mass matrix Eq. (2.83) is then diagonalised through

RMN2HDM
N RT = diag

(
m2
h1 ,m

2
h2 ,m

2
h3

)
(2.86)
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where the masses are sorted such that mh1 ≤ mh2 ≤ mh3 . The eigenstates are defined by
h1

h2

h3

 = R


ζ1

ζ2

ζs

 . (2.87)

Using Eq. (2.80) to express m2
11,m

2
22 and µ2

S through the other parameters, the potential is
defined through the following parameters of the Lagrangian

{v, tanβ, vs, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8,m
2
12} (2.88)

or through the masses and mixing angles

{v, tanβ, vs,mh1 ,mh2 ,mh3 ,mA,mH± , α1, α2, α3,m
2
12} . (2.89)

In case of vanishing vs Eq. (2.80c) cannot be used anymore to express µ2
s through the other

input parameters and µ2
s has to be given as an input parameter. In the broken case with

vs 6= 0 the parameters of the parameters of the Lagrangian can be expressed through the
masses and mixing angles through the following relations [75]

λ1 =
1

v2
1

[
−m2

12

v2

v1
+

3∑
i=1

m2
hi
R2
i1

]
, (2.90a)

λ2 =
1

v2
2

[
−m2

12

v1

v2
+

3∑
i=1

m2
hi
R2
i2

]
, (2.90b)

λ3 =
1

v1v2

[
−m2

12 +
3∑
i=1

m2
hi
Ri1Ri2 + 2m2

H±

]
, (2.90c)

λ4 =
1

v2

[
m2

12

v2

v1v2
+m2

A − 2m2
H±

]
, (2.90d)

λ5 =
1

v2

[
m2

12

v2

v1v2
−m2

A

]
, (2.90e)

λ6 =
1

v2
s

3∑
i=1

m2
hi
R2
i3 , (2.90f)

λ7 =
1

vsv1

3∑
i=1

m2
hi
Ri1Ri3 , (2.90g)

λ8 =
1

2v2vs

3∑
i=1

m2
hi
Ri2Ri3 , (2.90h)

where Rij are the elements of the rotation matrix R, cf. Eq. (2.84).

In the special case vs = 0 the singlet is a DM candidate [74]. As DM studies are not in the
scope of this work, the case vs 6= 0 will be assumed for the N2HDM.

2.3.4. Theoretical Constraints

As in the 2HDM, cf. Sec. 2.2.5, it has to be ensured that Eq. (2.77) is a global minimum and
that the approximation parameters of the perturbative expansion are small enough.
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2.3.4.1. Unitarity Constraints

To ensure the approximation parameters being small enough, tree-level pertubative unitarity
requires the unitarity of the S-matrix [66]. As in the 2HDM the eigenvalues of the 2 → 2
scattering matrix are required to be less than 8π. They have been calculated in [75] and are
given by ∣∣∣∣12a1,2,3, b±, c±, e1,2, f±, f1, p1, s1, s2

∣∣∣∣ < 8π , (2.91)

with

b± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4λ2

4 , (2.92a)

c± =
1

2
(λ1 + λ2)± 1

2

√
(λ1 − λ2)2 + 4λ2

5 , (2.92b)

e1 = λ3 + 2λ4 − 3λ5 , (2.92c)

e2 = λ3 − λ5 , (2.92d)

f+ = λ3 + 2λ4 + 3λ5 , (2.92e)

f− = λ3 + λ5 , (2.92f)

f1 = λ3 + λ4 , (2.92g)

p1 = λ3 − λ4 , (2.92h)

s1 = λ7 , (2.92i)

s2 = λ8 (2.92j)

and the eigenvalues a1,2,3 that are the real roots of the cubic polynomial

f(x) = x3 + x2 [−6 (λ1 + λ2)− 3λ6]

+ x
[
36λ1λ2 − 16λ2

3 − 16λ3λ4 − 4λ2
4 + 18λ1λ6 + 18λ2λ6 − 4λ2

7 − 4λ2
8

]
+ 4

(
−27λ1λ2λ6 + 12λ2

3λ6 + 12λ3λ4λ6 + 3λ2
4λ6 + 6λ2λ

2
7 − 8λ3λ7λ8

−4λ4λ7λ8 + 6λ1λ
2
8

)
. (2.93)

2.3.4.2. Boundedness from Below

For the potential to be bounded from below in the strong case, requiring the potential to be
strictly positive for the fields to approaching infinity in all possible directions, the allowed
region is specified by two areas in the parameter space [64]. After translating the notation
from [64] to Eq. (2.74) the allowed regions are given by

Ω1 =
{
λ1 > 0, λ2 > 0, λ6 > 0, λ7 +

√
λ1λ6 > 0, λ8 +

√
λ2λ6 > 0, λ3 +D +

√
λ1λ2 > 0,

λ7 + λ8

√
λ1

λ2
≥ 0

}
, (2.94a)

Ω2 =

{
λ1 > 0, λ2 > 0, λ6 > 0,

√
λ2λ6 ≥ λ8 > −

√
λ2λ6,

√
λ1λ6 > λ7 ≥ λ8

√
λ1

λ2
,

λ6 (λ3 +D) > λ7λ8 −
√

(λ1λ6 − λ7)2 (λ2λ6 − λ8)2

}
, (2.94b)

with

D = min(0, λ4 − |λ5|) . (2.95)

The allowed region is given by

Ω = Ω1 ∪ Ω2 . (2.96)
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2.3.4.3. Global Minimum

Due to the addition of the singlet VEV vs it is not possible to derive analytic criteria to decide
if our minimum is the global one as it was possible in the 2HDM. Calculating the necessary
condition for a minimum of Eq. (2.74) with the general ansatz, including the possibility for a
CB or CP-breaking VEV, yields [75]

ω2m
2
12 − ω1m

2
11 =

ω1

2

(
λ1ω

2
1 + λ345ω2 + ω2

CBλ3 + ωCPλ34−5 + ω2
Sλ7

)
, (2.97a)

ω1m
2
12 − ω2m

2
22 =

ω2

2

(
ω2

1λ345 + λ2

(
ω2

2 + ω2
CB + ω2

CP

)
+ λ8ω

2
S

)
, (2.97b)

−ωCBm
2
22 =

ωCB

2

(
λ3ω

2
1 + λ2

(
ω2

2 + ω2
CB + ω2

CP

)
+ λ8ω

2
S

)
, (2.97c)

−ωCPm
2
22 =

ωCP

2

(
λ34−5ω

2
1 + λ2

(
ω2

2 + ω2
CB + ω2

CP

)
+ λ8ω

2
S

)
, (2.97d)

−ωSµ2
S =

ωS
2

(
λ7ω

2
1 + λ8

(
ω2

2 + ω2
CB + ω2

CP

)
+ λ6ω

2
S

)
, (2.97e)

with the additional conditions

0 = ωCB

(
ω1ω2 (λ4 + λ5)− 2m2

12

)
, (2.98a)

0 = ω1ωCBωCP (λ4 − λ5) , (2.98b)

0 = ωCP

(
ω1ω2λ5 −m2

12

)
. (2.98c)

To check if Eq. (2.77) is the global minimum all possible solutions of Eq. (2.97) fulfilling
Eq. (2.98) need to be calculated and the potential evaluated at Eq. (2.77) has to be compared
to the potential of all other stationary points. The necessary formulae for this have been
given in Appendix C of [75].

2.3.5. N2HDM Higgs Couplings to SM Particles

As the singlet does not couple to gauge bosons or fermions, the couplings to the Higgs boson
are determined by the admixture of the doublet components Ri1 and Ri2 to the Higgs mass
eigenstate. The interaction Lagrangian between gauge and Higgs bosons is the same as in the
2HDM, given in Eq. (2.55) and Eq. (2.60). This yields for the couplings between one Higgs
boson and two gauge bosons normalised to the SM

cN2HDM(hiZZ) = cN2HDM(hiW
±W∓) = cosβRi1 + sinβRi2 . (2.99)

The coupling between a CP-even Higgs boson hi, the CP-odd Higgs boson A and the Z boson
as well as the couplings between a CP-even Higgs boson hi, a charged Higgs boson and the
charged W boson, are given by

cN2HDM(hiZA) = −
√
g2

1 + g2
2

2
(piµ − pAµ ) (sinβRi1 − cosβRi2) , (2.100)

cN2HDM(hiW
±H∓) = ± g2

2
(sinβRi1 − cosβRi2)

(
piµ − pA/H

∓
µ

)
. (2.101)

Since the singlet field ΦS does not couple to the fermions, it is possible to introduce the same
four distinct types as in the 2HDM, described in Tab. 2.1, to avoid FCNCs. The couplings
between a CP-even Higgs boson and to fermions in the N2HDM are given in Tab. 2.3. The
coupling of the CP-odd Higgs boson A to two fermions is given in Tab. 2.4.

The couplings between three Higgs bosons are derived from

c(φiφjφk) = −∂φi∂φj∂φkVN2HDM (2.102)

with the Higgs fields

φi,j,k ∈ {H±, A, h1, h2, h3} . (2.103)

The explicit formulae are given in Appendix B of [75].
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Type I Type II FL LS

up-type quarks
Rj2
sinβ

Rj2
sinβ

Rj2
sinβ

Rj2
sinβ

down-type quarks
Rj2
sinβ

Rj1
cosβ

Rj1
cosβ

Rj2
sinβ

Leptons
Rj2
sinβ

Rj1
cosβ

Rj2
sinβ

Rj1
cosβ

Table 2.3.: Couplings between two fermions and a neutral CP-even Higgs boson hj of the

form LY ⊃ −
mf

v
fc(hiff)fhi.

Type I Type II FL LS

up-type quarks −1/ tanβ −1/ tanβ −1/ tanβ −1/ tanβ

down-type quarks 1/ tanβ − tanβ tanβ −1/ tanβ

Leptons 1/ tanβ − tanβ −1/ tanβ tanβ

Table 2.4.: Couplings between two fermions and a neutral CP-odd Higgs boson A of the

form LY ⊃ −i
mf

v
fγ5c(Aff)fA.



CHAPTER 3

The 2HDM at High Scales - How to Solve the Metastability Problem

Depending on the exact value of the top and the Higgs mass, the SM might not have a stable
vacuum, as seen through the change of the parameters while increasing the renormalisation
scale µ [60–62, 76]. The scale µ is introduced as perturbation theory is evaluated at fixed
order. The dependence of a physical observable on µ would drop out if it was possible to sum
over all orders. The dependence of the MS renormalised couplings on the scale µ is given
through the RGEs. These equations can be obtained8 by extracting the divergent parts of
the corresponding loop corrected quantities. New physics beyond the SM is necessary if the
SM is not stable up until the Planck scale [10]. Models with extended Higgs sectors provide a
possibility for a stable vacuum up until the Planck scale, e.g. in the R2HDM studied by [11–
19]. While they either considered an exact Z2 symmetry or assumed that the lightest CP-even
Higgs boson is the SM-like one, we were the first ones to analyze the R2HDM without these
limitations in [2] using the RGEs at one-loop order, given in Appendix A. In this chapter,
the main results from [2] are represented while additionally investigating the CP-violating
phase at higher energies in the C2HDM.

At first in Sec. 3.1 the theoretical and experimental constraints applied for the discussion in
this chapter are described. In Sec. 3.2 only the theoretical constraints and the limits in the
mH± − tanβ plane are applied to the model and the effect of the RGEs is investigated. In
Sec. 3.3 the remaining constraints described in Sec. 3.1 are applied to investigate if the findings
of Sec. 3.2 are still valid including the constraints from collider phenomenology. The impact
of the RGEs for the softly broken Z2 symmetry with the heavier Higgs boson being the SM-
like one is described in Sec. 3.4. While the R2HDM is capable of providing a stable vacuum
up until the Planck scale, it is an interesting question to see the impact of the RGEs on the
CP-violating phase in the C2HDM. This is described in Sec. 3.5. This chapter concludes
with a short remark on the effect of higher-order corrections on the findings of this chapter
in Sec. 3.6.

While the results and methods described in Secs. 3.1 to 3.4 and 3.6 were already published in
[2] the results of Sec. 3.5 are unpublished so far. My contribution to [2] was the implementation
of the RGEs in a C++ code, the numerical evaluation of them for every parameter point in

8As the RGEs are only used as a calculational tool in this thesis, the reader is referred to [77] for a general
introduction.
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input parameter minimal value maximal value

mH± (Type I) 80 GeV 1 TeV

mH± (Type II) 580 GeV 1 TeV

tanβ 0.8 35

α −π
2

π

2

m2
12 0 GeV2 105 GeV2

mA 30 GeV 1 TeV

mh/H 30 GeV 1 TeV

Table 3.1.: The ranges for the input parameters of the R2HDM as used for the scan described
in Sec. 3.1. Here mh/H describes the mass of the non-SM-like CP-even Higgs boson. While all
ranges are of the form minimal value ≤ parameter ≤ maximal value α is of the form minimal
value ≤ α < maximal value. This distinction is made as the case α = π/2 describes the same
parameter point as the case α = −π/2. The same ranges were used in [2].

the data sample and the production of the plots as well as contributing to the discussion on
the interpretation of the plots.

3.1. Allowed Parameter Space and the Calculation of the High
Scale Behaviour

To investigate the phenomenological implications of the high scale behaviour in the R2HDM
a data sample was generated using ScannerS [68, 78]. The R2HDM was implemented and
checked for the theoretical constraints, namely boundedness from below, cf. Eq. (2.50),
positive discriminant, cf. Eq. (2.52), and unitarity constraints, cf. Eq. (2.54). The LHC
Run1 data, LEP and Tevatron Higgs searches were checked using HiggsBounds v4.3.1 [79–
84]9. The decay widths and branching ratios were calculated with HDECAY [85–87]. The cross
sections of the production via gluon fusion and b-quark fusion were obtained from SusHi v1.6.0
[88, 89], at next-to-next-to-leading-order QCD. The SM-like Higgs signal rates were required
to be within a 2×1σ bound of the fitted experimental values given in [9]. The most stringent
constraints in the mH± − tanβ plane are coming through B → sγ measurements [90–94]. In
the type II scenario of the R2HDM this translates into an lower limit of mH± ≥ 580 GeV.
Furthermore, all points are required to be within a 2σ limit of the electroweak precision
data (EWPD) [95]. For the scan, the input parameters were restricted to be in the ranges
given in Tab. 3.1.

The necessary one-loop RGEs and the values of all parameters at the scale of the Z boson
mass, given in Appendix A, were implemented in a C++ program. The Runge-Kutta algo-
rithm, provided through the C++ library Boost [96], was used to solve the RGEs stepwise up
to the Planck scale (1019 GeV). The lowest energy scale Λ was stored as the cut-off scale
at which either the potential was no longer bounded from below, the discriminant became

9At the time of the analysis the Run2 Data was not implemented yet in HiggsBounds. Nonetheless, it has been
verified that the general statement of this chapter is still valid.
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negative or perturbative unitarity was not fulfilled anymore or a Landau pole appeared. A
Landau pole10 is defined through the divergence of one of the couplings.

The sample was then divided in two smaller ones, the light Higgs scenario with 130 GeV ≤
mH ≤ 1 TeV and the heavy Higgs scenario with 30 GeV ≤ mh ≤ 120 GeV, while the mass of
the SM-like Higgs boson is fixed to 125.09 GeV. Through setting the boundaries to 120 and
130 GeV the additional neutral CP-even Higgs boson is not too close to the SM-like one and
an interference between the signals of them does not need to be considered.

3.2. The Light Higgs Scenario at High Scales without Collider
Phenomenology

As a first step, the effects of the running of the couplings with the RGEs on the parameter
space are investigated while only taking theoretical constraints and B → sγ measurements
into account. In the alignment limit the SM-like Higgs boson couples exactly like the SM
Higgs to SM particles. In this limit the additional CP-even Higgs bosons does not couple to
SM particles and, therefore, only contributes to the vacuum stability through its couplings to
the SM-like one. This limit can be classified through the coupling between two gauge bosons
and a CP-even Higgs boson. The couplings, normalised to the SM, cf. Eq. (2.56), in the
R2HDM are given by

cHV V = cos(β − α) , (3.1)

chV V = sin(β − α) (3.2)

and therefore

|chV V | =
√

1− c2
HV V . (3.3)

The alignment limit, is therefore given by the limit cos(β − α) = 0 if the lighter CP-even
Higgs boson h is the SM-like one. Applying the alignment limit yields exact SM-like couplings
between the SM-like Higgs boson and all SM particles. While the other CP-even Higgs boson
does not couple to two gauge bosons in this limit, the couplings to fermions scale with tanβ
and 1/ tanβ w.r.t. the SM depending on the fermion generation and the type, cf. Tab. 2.2.
Therefore, the different types can yield large or small couplings to the fermions. To investigate
this limit, and its natural occurrence, the charged Higgs mass is shown in Figs. 3.1 and 3.2 for
type I and type II respectively as a function of cos(β − α). In the left figure the grey points
show all points surviving all theoretical constraints and B → sγ, while all coloured points
survive up to a cut-off scale of at least 1 TeV and the colour scale shows the value of mH . The
parameter points in this figure and all following with a colour bar are sorted such, that the
colour denotes the maximum value of the parameter described through the colour bar in the
corresponding pixel. The left figure in Fig. 3.1 can be divided in two areas, above and below
mH± ≈ 500 GeV. In the area mH± . 500 GeV all possible values of cos(β − α) are allowed,
but for mH± & 500 GeV there is only a narrow band around cos(β − α) ≈ 0 that guarantees
validity of the model up to a cut-off scale of at least 1 TeV. The colour bar indicates that
heavy masses for the second Higgs boson are close to the mass of the heavy charged Higgs
bosons. In the type II model, on the other hand, shown in the left panel of Fig. 3.2, only a
small band around cos(β − α) ≈ 0 provides parameter points valid up to at least 1 TeV. For
those points, the mass of the heavy CP-even Higgs boson is similar to the mass of the charged

10While a Landau pole is technically defined through the divergence of at least one parameter, numerically it
was defined if either one of the dimensionless couplings fulfilled |λi| ≥ 100 or if the dimension two parameters
fulfilled |m2

ij | ≥ 1010 GeV2. These numbers have been varied to ensure that they exact cut-off does not
influence the result.
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Figure 3.1.: The charged Higgs mass is shown as a function of cos(β − α) in the type I
R2HDM. All quantities are the parameters at the mZ scale. On the left panel the points
that passed the theoretical constraints and B → sγ at the scale mZ are shown in grey. The
remaining points have survived the RGE running up to a scale of 1 TeV. The colour bar
shows the value of mH . On the right panel, the same plot is represented but now the colour
bar shows the cut-off scale Λ. Figures taken from [2].
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Figure 3.2.: Same as Fig. 3.1, but for type II of the R2HDM. Figures also published in [2].

Higgs boson. The difference to the type I scenario is given by the B → sγ constraints, which
force mH± ≥ 580 GeV, and therefore cut off the lower half of the left figure in Fig. 3.1. The
limit of cos(β − α) is, therefore, a natural property of the model if the charged Higgs mass
is high enough. This is again seen on the right side of both figures. Here the colour scale is
determined by the cut-off scale Λ. In type I there are some points with values of cos(β − α)
not close to zero with a high cut-off scale in the low mH± region but in the high mH± region,
as well as in type II, the brightest points are for almost cos(β − α) ≈ 0.

A severe constraint on the parameter space is given by the EWPD. The S, T, U parameters
depend on the mixing between the neutral Higgs bosons but also on the difference between
the mass of the charged and the neutral Higgs bosons. To investigate this at higher scales, it
is useful to rewrite the mass of the charged Higgs boson, cf. Eq. (2.37) as

M2 −m2
H± = − v2

2
(λ4 + λ5) , (3.4)
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with the over all mass scale

M2 = m2
12

v2

v1v2
. (3.5)

The mass of the heavier CP-even neutral Higgs boson, cf. Eq. (2.41b), yields in first order
approximation λiv

2 �M2

m2
H = M2 + f(λi, v1, v2) , (3.6)

where f(λi, v1, v2) is a linear combination of its arguments. In the limit of λiv
2 � M2 the

masses m2
H,A,H± are all approximately given by M2. This limit is called the decoupling limit.

In Fig. 3.3 the mass scale |M | and the combination λ4 + λ5 are shown as a function of the
cut-off scale Λ on the left and right side, respectively, in the type II R2HDM. A steep rise
in |M | is visible in the left panel yielding |M | & 423 GeV for a cut-off Scale Λ above 1 TeV,
yielding that the Z2 symmetric limit is not allowed for a cut-off scale above 1 TeV. These high
values of the mass scale are driven by the constraints on the charged Higgs mass, enforcing
it to be above 580 GeV. Simultaneously, the right plot shows small values of λ4 + λ5 for
high cut-off scales. Inserting this in Eq. (3.4) shows that the charged Higgs mass is almost
exclusively determined by the high mass scale |M | for parameter points with a high cut-off
scale. The limit of vanishing quartic couplings λ1 to λ5 can be explained through their RGEs,
cf. Eq. (A.11). They show that derivatives of the quartic couplings becoming larger for larger
starting values. Running these up to high scales generates large values of the couplings which
are then dismissed by the perturbativity and unitarity constraints. The same conclusion can
be drawn from Fig. 3.4. Here the difference mA − mH± is displayed as a function of the
difference mH − mH± . All points shown fulfil the applied theoretical constraints and the
limits of B → sγ at the scale mZ . Additionally, on the left the coloured points present
those surviving up to a cut-off scale of Λ ≥ 1 TeV while the colour bar indicates the value of
tanβ. Here a clear reduction of the allowed parameter space, down to a maximal difference
of 200 GeV between the masses is visible. In combination with Figs. 3.2 and 3.3 this means
that for a cut-off scale above 1 TeV all masses are very close together and rather heavy.
Combining this with the limit of mH± ≥ 580 GeV no Higgs boson with a mass below 380
GeV is to be expected if the parameter point should also be stable up to high cut-off scales.
Additionally, the colour bar shows that large values of tanβ are centred more around the
origin of the plot, meaning all three masses are almost degenerate. This increased constraint
results from larger coupling to the down-type quarks, forcing the values of λi to be lower at
the mZ scale and, therefore, even smaller mass differences. The right panel of Fig. 3.4 shows
that for cut-off scales above 1 TeV the parameter points concentrate around almost vanishing
mass difference. This corresponds to the decoupling limit.

3.3. The Light Higgs Scenario at High Scales including Collider
Phenomenology

As already seen in Sec. 3.2 the type II is driven into the decoupling and alignment limit for
high cut-off scales, even without further experimental constraints. While the type I case still
allows for points outside those limits in Sec. 3.2, it is necessary to check if this is still true
if the experimental constraints, described in Sec. 3.1, are applied. For this, the left panel of
Fig. 3.5 shows the charged Higgs mass again as a function of cos(β−α) while the right panel
shows the mass difference mA−mH± as a function of the difference mH −mH± . Both figures
have the cut-off scale encoded as the colour bar. Comparing the left figure of Fig. 3.5 with
the right figure of Fig. 3.1 shows that the additional collider constraint does not change the
conclusions made for the higher cut-off scales. The different density for the parameter points
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Figure 3.3.: On the left (right) panel |M | (λ4 +λ5) at the scale mZ is presented as a function
of the cut-off scale Λ in the type II R2HDM. The points have passed both the theoretical
constraints and B → sγ at the scale mZ and have also survived the RGE running up to the
cut-off scale shown on the x-axis. Figures also published in [2].
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Figure 3.4.: The mass difference mA −mH± as a function of mH −mH± at the scale mZ

in the type II R2HDM. On the left, parameter points passing the theoretical constraints and
B → sγ at the scale mZ are presented in grey. The remaining coloured points yield a cut-off
scale above 1 TeV with the colour bar showing the value of tanβ. On the right panel, the
colour bar indicates the cut-off scale Λ. Figures also published in [2].
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Figure 3.5.: On the left panel the charged Higgs mass is shown as a function of cos(β − α)
in the type I R2HDM taking into account the experimental constraints. On the right, the
mass difference mA −mH± is shown as a function of mH −mH± . In both panels, the cut-off
scales is shown as the colour code. The parameters shown on the horizontal and vertical axis
are the values at the mZ scale. Figures also published in [2].

up to a certain cut-off scale Λ is an artefact of the scan. As too few points for the scan used in
Fig. 3.1 survived the collider constraints, a new sample with the same limits was generated.
Through the inclusion of additional constraints the density of allowed parameter points varies
as the scan searches as long as it takes to generate a given number of parameter points. As in
the type II case, the right figure shows that higher cut-off scales prefer a much smaller mass
difference compared to low scales. Although the tendency is not as strictly vanishing as in
type II the mass differences are nonetheless reduced to around 150 GeV instead of 600 GeV
at low scales.

While the difference between the mass of the neutral and the charged Higgs boson shrinks for
higher values of the cut-off scale, the allowed region of the overall mass scale |M | is shown in
Fig. 3.6. Here small values of |M | can achieve much higher cut-off scales than in the type II
scenario, as seen in Fig. 3.3, even with additional experimental constraints. In type I values
of |M | below 100 GeV are only excluded for cut-off scales Λ & 107 GeV. This yields that the
Z2, meaning M = 0, cannot provider points being stable up until the Planck scale. Due to
this the type I R2HDM is not driven into the decoupling limit like the type II model.

3.4. The Heavy Higgs Scenario

The difference in the phenomenology between type I and II increases drastically if the heavy
Higgs scenario, defined by mh < mH = 125.09 GeV, is considered. In this scenario, the masses
of the additional Higgs boson cannot be degenerate in type II as the CP-even Higgs bosons
are light while the charged Higgs boson is still required to be above 580 GeV. To investigate
the implications of the RGE running in this scenario the mass of the charged Higgs boson is
shown as a function of the cut-off scale Λ in Fig. 3.7. On the left panel the effects on type
I are shown with the colour bar depicting the mass of the pseudoscalar Higgs boson. This
figure can be divided into two areas. One area is defined through the mass of the charged
Higgs boson is near or below the SM-like boson mass. In this case the necessary degeneracy
for the EWPD can be achieved between the light CP-even and the charged Higgs boson,
therefore, yielding no strong constraints on the mass of the pseudoscalar Higgs boson. The
second region with the mass of the charge Higgs boson being above the CP-even neutral ones
which constraints the pseudoscalar Higgs boson to be close to the charged one to fulfil EWPD.
Furthermore, Fig. 3.7 shows that for charged Higgs boson masses below 200 GeV it is still
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Figure 3.6.: The overall mass scale M at the mZ scale as a function of the cut-off scale Λ
for type I. These points fulfil all experimental and theoretical bounds described in Sec. 3.1.
Figure also published in [2].

possible to obtain cut-off scales as high as the Planck scale. This is once more shown on the
left panel of Fig. 3.8. For most of the parameter points with a degenerate pseudoscalar and
charged Higgs boson their mass is above the CP-even neutral ones. On the other hand, if the
charged and the lightest CP-even Higgs boson are degenerate in most cases the pseudoscalar
Higgs boson is heavier. There is a small area in which the non-degenerate mass is below the
degenerates one and the parameter points on the diagonal in the lower right corner show a
degeneracy between the lightest CP-even and the pseudoscalar Higgs boson. For large cut-off
scales, the preferred parameter region is given if the pseudoscalar and charged Higgs are not
more than 100 GeV apart, which overall yields small quartic couplings. On the right panel
of Fig. 3.7 the situation is shown for type II. As the lower limit on the charged Higgs mass
through B → sγ results in heavy charged Higgs bosons the charged and either of the two CP-
even Higgs bosons cannot be degenerate. Therefore, the charged and the pseudoscalar Higgs
bosons have to be degenerate to fulfil the constraints from the EWPD. For all parameter
points shown in the right panel of Fig. 3.7 the difference between the two masses is between
−15 and 10 GeV, as shown in the right panel of Fig. 3.8. Through the large mass splitting
between the light CP-even Higgs boson and the pseudoscalar and charged Higgs boson the
quartic couplings of these parameter points are large. Through the large values already at
the mZ scale the parameters grow to larger values through the running of the RGEs and at
least one of the constraints fails at a low cut-off scale. This results in all parameter points
yielding a cut-off scale below 150 GeV.

3.5. The CP-violating phase of the CP-violating 2HDM at High
Scales

While the previous work was done in the limit of the R2HDM it is an interesting question
to ask whether the CP-violating phase in the C2HDM correlates with the cut-off scale. For
this a parameter scan with the same criteria as in Sec. 3.1 was performed while additionally
enforcing the ACME [97]11 results on the electric dipole moments (EDMs) for the C2HDM.
As the type I model has still a larger allowed parameter space than the type II model the
scan was performed in this scenario. As the RGEs of λ1 to λ4 and m2

11,m
2
22 and the real

part of λ5, cf. Eqs. (A.10), (A.12a) and (A.12b) do not change compared to the R2HDM the

11The discussion in this section does not change if the improved constraints on the electron EDMs [98] are taken
into account.
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Figure 3.7.: The mass of the charged Higgs mH± at the mZ scale as a function of the cut-off
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Higgs scenario for type I on the left and type II on the right. The colour code shows the
cut-off scale Λ. Figures also published in [2].
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Figure 3.9.: The absolute value (phase) of λ5 = |λ5| exp(iθ5) at the mZ scale as a function
of the cut-off scale Λ on the left (right) in the type I C2HDM with mh1 = 125.09 GeV.

discussion from the R2HDM can be applied to the corresponding parameters in the C2HDM.
The additional degree of freedom, compared to the R2HDM, is given through the phase of
λ5. For this, Fig. 3.9 shows λ5 as a function of the cut-off scale Λ. The left panel of Fig. 3.9
shows the absolute value of λ5 which vanishes for high cut-off scales, as only the absolute
value of λ5 enters in the perturbative unitarity and boundedness from below constraints, cf.
Eqs. (2.50) and (2.54). Therefore, the results of λ5 in the R2HDM, cf. Secs. 3.3 and 3.4,
can be translated to the absolute value of λ5 in the C2HDM. The right panel of Fig. 3.9,
on the other hand, shows the complex phase of λ5, where all values are possible up to the
Planck scale. While the phases of λ5 and m2

12 are coupled through the minimum condition,
cf. Eq. (2.31c), at the mZ scale, this relation does not have to be satisfied at higher scales
any longer. The left (right) side of Fig. 3.10 shows the absolute value (phase) of m2

12 at
the mZ scale as a function of the cut-off scale. As in the R2HDM, an overall mass scale M
can be defined through the charged Higgs boson mass, cf. Eq. (2.37), and vanishing quartic
couplings. In the C2HDM the mass scale is therefore defined as

M2 = <m2
12

v2

v1v2
. (3.7)

In the C2HDM this scale M is directly proportional to the real part of m2
12. As the absolute

values of the quartic couplings become small for high cut-off scales the masses of the Higgs
bosons are, therefore, defined through the real part of m2

12 and, therefore, yielding the same
behaviour as shown in previous sections for the R2HDM. As the imaginary part of m2

12

is related through the minimums condition to the imaginary part of λ5 at the mZ scale, cf.
Eq. (2.31c), all parameter points with a large cut-off scale not only have a vanishing imaginary
part of λ5 but also a vanishing imaginary part of m2

12. Combining these two conditions yields
that for parameter points with large cut-off scale the mass scale is given by the absolute value
of m2

12 with vanishing phases, as seen in Fig. 3.10. Furthermore, Eqs. (A.10e) and (A.12c)
show that the RGEs of =λ5 and =m2

12 are made up of parts directly proportional to =λ5 and
=m2

12. Therefore, the CP-conserving limit of the R2HDM is a fixed point of the RGEs as
both parameters do not change w.r.t. the renormalisation scale if they start at zero. This
means that the R2HDM cannot evolve into the C2HDM through RGE running.
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) at the mZ scale as a
function of the cut-off scale Λ on the left (right) in the type I C2HDM with mh1 = 125.09 GeV.

3.6. Including Higher-Order Effects

While this chapter discussed the influence of one-loop RGEs on the phenomenology, it has
been shown [17, 99, 100] that the two-loop RGEs can have a substantial impact on a single
parameter point. To check if the two-loop RGEs change the result of this chapter they have
been calculated with SARAH [101–105]. Using the two-loop RGEs requires one-loop matching
of the MS parameters on the input parameters. The necessary one-loop expressions for the
masses of the quarks and gauge bosons are given in [106, 107] while those for the scalar
masses are given in [108]. For the quartic couplings, the matching relations are given in
[4]. Additionally, one-loop expressions for the unitarity constraints [17, 109] were taken into
account. It has been shown that one-loop corrections to quartic couplings can be large for
a single parameter point [110, 111]. As the focus of the work in this chapter was not the
evolution of a single parameter point but the tendency of the whole sample, the calculation
of the cut-off scale for every parameter point was redone. As an example the right panel of
Fig. 3.5 is shown again in Fig. 3.11 using two-loop RGEs, one-loop matching and one-loop
unitarity constraints. The comparison of these two figures shows that there are no significant
changes and, therefore, the overall picture does not change. This is not surprising as the high
cut-off limit already enforced the parameter space to very small quartic couplings which then
would usually lead to small corrections in the RGEs.

3.7. Conclusion

The investigation in this chapter has shown that both the R2HDM and C2HDM can provide
a stable vacuum up until the Planck scale. Additionally, the requirement of a stable vacuum
at a scale higher than 1 TeV already requires the alignment limit in type II. For higher cut-off
scales type I and II both require a nearly degenerate mass spectrum, as the quartic couplings
are required to be small. Through the small quartic couplings, the degenerate masses are
defined through a common mass scale, given by M , which is directly proportional to the
softly Z2 breaking parameter m2

12. Therefore, the Z2 symmetric model cannot provide a
stable vacuum up until the Planck scale. The new insight gained from this study, shown in
Sec. 3.4, is that the type I scenario of the R2HDM can provide a stable vacuum up until the
Planck scale even if the SM-like Higgs boson is the heavier of the two CP-even Higgs boson.
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Figure 3.11.: Using two-loop RGEs, one-loop matching and one-loop unitarity constraints
to recreate the right panel of Fig. 3.5. Figures also published in [2].

While these results have been published in [2], Sec. 3.5 presents new and unpublished insights
on the values of the CP-violating phase of the C2HDM for higher cut-off scales. While the
phase of λ5 is not affected by this, the allowed region of the phase of m2

12 is reduced as the
overall mass scale in the C2HDM is dependent on the real part of m2

12. To ensure that the
results of [2] are still valid at higher orders, Sec. 3.6 repeats the investigation with two-loop
RGEs with no significant difference in the overall result of the work.



CHAPTER 4

The Electroweak Phase Transition

In recent years the EWPT has received increased interest. One of the reasons is the possibility
to provide gravitational waves thate are possibly detectable in the next years [112–120].
Another reason is the possibility to explain the BAU through EWBG [23, 45, 120–155] as
described in more detail in Chapter 6. This requires a SFOEWPT [154, 155] such that the
necessary Sakharov conditions [21] are fulfilled.

The concept of the EWPT is visualised by Fig. 4.1, which shows the Higgs potential as a
function of the expectation value v of the Higgs field at fixed temperature12. Here the dotted
line shows the electroweak potential at very high temperatures (T � Tc) with the symmetric
minimum (v = 0 GeV) being the only minimum of the potential. Once the universe has cooled
down to lower temperatures, yet above the critical temperature, a second, this time local,
minimum develops, as shown by the dashed line. When the temperature has cooled down
to the critical temperature Tc this second minimum becomes degenerate with the symmetric
one. The value of the VEV v at this temperature is called the critical VEV vc. Once the
temperature falls below Tc the broken minimum (v 6= 0) becomes the global one and the
vacuum state transitions from the symmetric phase into the broken phase. This procedure
is called EWPT. The decide wether or not the EWPT is of strong first-oder the baryon
warshout condition [28, 156]

ξc =
vc
Tc
≥ 1 , (4.1)

is applied. If Eq. (4.1) is fulfilled the phase transition is an SFOEWPT. While the symmetric
and critical phase coexist at the critical temperature, for temperatures slightly below the
fields in the symmetric phase transitions into the broken minimum. During this transition,
the broken vacuum expands through nucleation of bubbles in spacetime. At the front of the
bubbles, EWBG can occur and the collisions of these bubbles produce gravitational waves.
It has been shown in [25–27] that the EWPT in the SM is not of strong first-order if the the
mass of the Higgs boson is above 70 GeV. Therefore, physics beyond the SM is necessary to
achieve an SFOEWPT.

12While Fig. 4.1 shows the dependence on one Higgs expectation value, the picture can also be applied to theories
with an extended Higgs sector.
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Figure 4.1.: The electroweak potential V at different temperatures as a function of the
expectation value v of the Higgs field at fixed temperatures.

In this chapter, the necessary ingredients for the calculation of the EWPT are described.
Short introductions in finite temperature field theory and the effective potential approach
are given in Secs. 4.1 and 4.2. They are described using the operator approach in [157,
158] with a more detailed introduction into the effective potential can be found in [77]. An
alternative approach using the closed time formalism for the finite temperature field theory
is given in [159]. While Sec. 4.2 describes the concept of the effective potential at finite
temperature, a general framework for models with extended Higgs sectors is given in Sec. 4.3.
In Sec. 4.3 the analytically not solvable integral J± is defined. Section 4.4 describes a fast
and numerically stable interpolation of J±. In addition to the effective potential at finite
temperatures, Sec. 4.5 introduces the a renormalisation scheme through the counterterm
potential which can be used to fix the masses and mixing angles of the theory at vanishing
temperature at next-to-leading-order (NLO) to the leading-order (LO) inputs. This chapter
concludes with a short description of how the C++ code BSMPT [4] calculates the strength of
the EWPT in Sec. 4.6 and additional applications of BSMPT in Sec. 4.7.

4.1. Finite Temperature Field Theory

In the thermal bath of the early universe annihilation of particles is present and the particle
number is not conserved. To describe a system with particle interactions in a thermal bath,
the partition function of the grand canonical ensemble is necessary. It is given by

Z(β) = Trρ(β) = Tr exp (−β(H − µ)) , (4.2)

where β is the inverse temperature in natural units (kB = 1), µ is the chemical potential,
ρ the density matrix, H the Hamiltonian of the system and TrA describes the trace of the
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matrix A. To describe observable quantities in a statistical ensemble the thermal average of
the corresponding operator is needed. The thermal average of an operator O is given by

〈O〉β =
Tr[ρ(β)O]

Z(β)
. (4.3)

For two operators O1 and O2 at times t1 and t2 the cyclicity of the trace leads to the Kubo-
Martin-Schwinger equation [160, 161]

〈O1(t1)O2(t2)〉β =
1

Z(β)
Tr[ρ(β)O1(t1)O(t2)]

=
1

Z(β)
Tr[exp(−βH + βµ)O1(t1) exp(βH) exp(−βH)O(t2)]

=
1

Z(β)
Tr[O1(t1 + iβ) exp(−βH + βµ)O2(t2)]

=
1

Z(β)
Tr[O1(t1 + iβ)ρ(β)O2(t2)]

= 〈O2(t2)O1(t1 + iβ)〉β . (4.4)

From the second to the third line it was used that the chemical potential is not an operator
but a scalar and, therefore, can be commutated with the operators. The imaginary time
formalism with t = iτ provides a method to fulfil Eq. (4.4) and allows to define the partition
function for a given thermodynamical system. This is achieved by a Wick rotation, changing
from the Minkowski space to Euclidian space. Furthermore, the imaginary time formalism
allows for the description through the path integral formalism, cf. [159]. Equation (4.4)
requires the time τ to be periodic with the inverse temperature, reducing the Euclidean space
R4 down to the periodic space R3 × S1. For the calculation of the higher-order effects of the
underlying theory, it is necessary to describe the n point Greens functions in the thermal
bath. In the operator approach they can be written as

Gβ(x1, . . . , xn) = 〈TCφ(x1) . . . φ(xn)〉 (4.5)

with the path order operator TC . Assuming that it is possible to formulate a parametrisation
for the path C the Greens function can be rewritten as

Gβ(x− y) = G+
β (x− y)ΘC(x0 − y0) + G−β (x− y)ΘC(y0 − x0) , (4.6)

where ΘC is the Heaviside step function along the path for the complex time t. Expressing
the fields φ through the eigenbasis H |n〉 = En |n〉 with ~x = ~y = 0, the Greens function for
the positive modes can be expressed as

G+
β = 〈φ(x0, 0)φ(y0, 0)〉β

∝
∑
i,j

|〈j|φ(0)|i〉|2 exp
(
−iEi

(
x0 − y0

))
exp

(
iEj

(
x0 − y0 + iβ

))
. (4.7)

The requirement of convergence for the Greens function forces

β + =(x0 − y0) ≥ 0 , (4.8)

while an analogous calculation for G−β yields

β −=(x0 − y0) ≥ 0 . (4.9)
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Combining both constraints yields

−β ≤ =(x0 − y0) ≤ β . (4.10)

Choosing the Matsubara integration contour [159] t → −iτ and using the periodicity of the
Greens function yields

Gβ (τ) = ± Gβ(τ + β) , (4.11)

where +(−) corresponds to bosonic (fermionic) fields. The periodicity in τ reduces the Fourier
transformation of the Greens function to a discrete sum, given by

Gβ(τ) =
1

β

∑
n

exp(−iωnτ)Gβ(ωn) , (4.12)

Gβ(ωn) =
1

2

β∫
−β

exp(iωnτ)Gβ(τ) dτ , (4.13)

with ωn = πn/β. Using Eq. (4.11) the two-point Greens function vanishes for an odd number
of bosons and an even number of fermions. Therefore, the frequencies can be split in the
so-called Matsubara frequencies

ωn =


2nπ

β
bosons

(2n+ 1)π

β
fermions

. (4.14)

With this, the Greens function in momentum space is given by

Gβ(~k, ωn) =
1

ω2
n + ~k2 +m2

. (4.15)

The periodicity of the Greens functions directly translates into a periodicity of the fields.
Combining this with a Wick rotation the field space of the particles reduces from R4 to
R3 × S1. In a real scalar field theory, therefore, the propagators at vanishing temperature
have to be replaced by

D(ωn,~k) =
1

ω2
n + ~k2 +m2

, (4.16a)

pE = (p0, ~p)→ (ωn, ~p) , (4.16b)∫
d4kE
(2π)4

→ 1

β

∑
n

∫
d3k

(2π)3
, (4.16c)

in Euclidean space to describe the potential at finite temperature.

4.2. Effective Potential at Finite Temperature

It was shown in [162] that radiative corrections can have a large influence on the symme-
try breaking patterns of the underlying theory and that broken symmetries can be restored
through radiative corrections. Therefore, it is important to include such corrections. They
are included through the effective potential which describes the theory as a zeroth-order ex-
pansion in external momenta of the effective action. As no closed-form exists it is necessary
to calculate the corrections order by order. In this work, the corrections are calculated at
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one-loop order. For a detailed review on how to derive the following relations the reader is
referred to [28, 77, 159]. According to [77], the effective potential at NLO is given by

V
(1)
eff =

1

2

∫
d4kE
(2π)4

log Det
[
−D−1(ω,~k)

]
. (4.17)

Applying the replacement rules for finite temperature, cf. Eq. (4.16), the effective potential
is replaced by

V
(1)
eff →

1

2β

∑
n

∫
d3k

(2π)3
log Det

[
−D−1

(
ωn,~k

)]
. (4.18)

This can be split in a temperature independent and temperature-dependent part as

V
(1)
eff =

∫
d3k

(2π)3

ωk
2

+

∫
d3k

(2π)3

log (1− exp (−βωk))
β

(4.19)

with

ω2
k = m2 + ~k2 . (4.20)

The temperature independent part is known as the Coleman-Weinberg contribution V CW. As
it is UV divergent it must be renormalised. In the MS scheme the temperature independent
part for a scalar particle is then given by

V CW =
m4

64π2

(
log

(
m2

µ2

)
− 3

2

)
(4.21)

where µ is the MS renormalisation scale. The temperature-dependent part can be rewritten
as

VT =

∫
d3k

(2π)3

log (1− exp (−βωk))
β

=
1

2π2

1

β4
J−
(
m2β2

)
(4.22)

with

J−(x2) =

∞∫
0

dkk2 log
[
1− exp

(
−
√
k2 + x2

)]
. (4.23)

To investigate the details of the correction to the potential, the calculation is applied to the
φ4 theory with the Lagrangian

L =
1

2
(∂µφ)2 −

(
µ2φ2 + λφ4

)
, (4.24)

where the field φ fluctuates around its VEV 〈φ〉 = ω. The VEV v at vanishing temperature
denotes the minimum of the scalar potential in Eq. (4.24). This yields the minimum condition

0 = 2v
(
2λv2 + µ2

)
. (4.25)

The mass term of the field φ is then given by

m2(ω) = 12λω2 + 2µ2 . (4.26)
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By replacing λ and µ2 through Eq. (4.25), the mass for a general ω can be rewritten as

m2(ω) =
1

2
m2(ω = v)

(
3ω2

v2
− 1

)
. (4.27)

Applying the high temperature expansion of J−(m2β2) [163], defined through m2/T 2 � 1,
the temperature dependent potential at the VEV ω of φ is then given by

V T(ω) = T 4

[
−π

2

90
+
m2(ω)

24T 2
− m3(ω)

12πT 3
+O

(
m4/T 4

)]
. (4.28)

The NLO correction to the temperature-dependent potential is given through m3 and there-
fore of order λ3/2, meaning the corrections of order λ3/2 have to be taken into account. These
so-called Debye corrections [164] are needed to cure the divergences emerging from the Mat-
subara zero modes (n = 0) of the bosons. While the zero mode of the fermions is given
by

ω0 = (2× 0 + 1)π = π (4.29)

the zero mode of the bosons

ω0 = 2× 0π = 0 (4.30)

vanishes and therefore the effective potential diverges as

Veff ∝ log(−D−1)
~p→0−−−→∞ . (4.31)

The Debye corrections can be obtained as next-to-leading-order corrections to the thermal
loops which can be expressed as a correction to the self-energies in the infrared limit. For
the calculation, the hard thermal loop (HTL) approximation [159], in which loop momenta
and masses are assumed to be small compared to the temperature scale, is applied. In [164]
it was shown that this limit is a good approximation as for large ratios of m/T the Debye
corrections are negligible. In the φ4 theory the correction Π to the self-energy in the effective
potential is given by

Π(1) = 12λT
∑
n

∫
d3k

(2π)3

1

ω2
n + ω2

k

= 12λT

∫
d3k

(2π)3

1

2ωk

d

dωk

∑
n

log(ω2
n + ω2

k)

= 12λ

[∫
d3k

(2π)3

1

2ωk
+

∫
d3k

(2π)3

1

ωk (exp(βωk)− 1)

]
(4.32)

with ω2
k = m2 + ~k2. Applying the HTL with m/T � 1 yields

Π(1) = λT 2 . (4.33)

4.3. Effective Potential at Finite Temperature for General Mod-
els

For the models introduced in Chapter 2 it is necessary to expand this formalism. For this,
the general framework of [165] is used and the Lagrangian needs to be decomposed into

−LS = LiΦi +
1

2
LijΦiΦj +

1

3!
LijkΦiΦjΦk +

1

4!
LijklΦiΦjΦkΦl , (4.34)

−LF =
1

2
Y IJkΨIΨJΦk + c.c. , (4.35)

LG =
1

4
GabijAaµA

µ
bΦiΦj , (4.36)
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where Φi are the nHiggs real scalar fields which make up the scalar multiplets (e.g. eight
real scalar fields in the 2HDM) with i = 1, . . . , nHiggs. The fermion mulitplets are expressed
through the Weyl spinors ΨI with I = 1, . . . , nfermion. The gauge bosons are given by the
four-vectors Aaµ where the group index a runs from 1 to ngauge. L

i, Lij , Lijk and Lijkl are the

parameters of the Higgs potential, Y IJk the interactions between two fermions and one scalar
particle and Gabij the interactions between two gauge bosons and two scalar particles. After
symmetry breaking the scalar fields can be expanded around their VEVs as

Φi = ωi + φi . (4.37)

This yields

−LS = Λ + Λi(S)φi +
1

2
Λij(S)φiφj +

1

3!
Λijk(S)φiφjφk +

1

4!
Λijkl(S) φiφjφkφl , (4.38)

−LF =
1

2
M IJΨIΨJ +

1

2
Y IJkΨIΨJφk , (4.39)

LG =
1

2
Λab(G)AaµA

µ
b +

1

2
Λabi(G)AaµA

µ
b φi +

1

4
Λabij(G)AaµA

µ
b φiφj . (4.40)

The tensors are given by

Λ = V (0) = Liωi +
1

2
Lijωiωj +

1

3!
Lijkωiωjωk +

1

4!
Lijklωiωjωkωl , (4.41a)

Λi(S) = Li + Lijωj +
1

2
Lijkωjωk +

1

6
Lijklωjωkωl , (4.41b)

Λij(S) = Lij + Lijkωk +
1

2
Lijklωkωl , (4.41c)

Λijk(S) = Lijk + Lijklωl , (4.41d)

Λijkl(S) = Lijkl , (4.41e)

Λab(G) =
1

2
Gabijωiωj , (4.41f)

Λabi(G) = Gabijωj , (4.41g)

Λabij(G) = Gabij , (4.41h)

ΛIJ(F ) = M∗ILMJ
L = Y ∗ILkY Jm

L ωkωm , (4.41i)

M IJ = Y IJkωk . (4.41j)

The Coleman-Weinberg potential is then given by

V CW =
1

64π2

∑
X=S,G,F

(−1)2sX (1 + 2sX)Tr

[(
Λxy(X)

)2
(

log

(
1

µ2
Λxy(X)

)
− kX

)]
, (4.42)

where

sX =


0 scalars
1

2
fermion

1 gauge boson

(4.43)

describes the spin of the field X. The indices xy relate to the corresponding indices ij, ab or
IJ for X = S,G or F . The MS scheme sets the value of kX as

kX =


5

6
gauge boson

3

2
scalar and fermions

. (4.44)
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Following the recipe of Sec. 4.1 the thermal corrections were calculated and published in
[4] for a theory described by Eqs. (4.34) to (4.36). The temperature-dependent part of the
potential is then given by

V T =
∑

X=S,G,F

(−1)2sX (1 + 2sX)
T 4

2π2
J±

(
Λxy(X)/T

2
)

(4.45)

with

J±

(
Λxy(X)/T

2
)

= Tr

 ∞∫
0

dkk2 log
[
1± exp

(
−
√
k2 + Λxy(X)/T

2
)] , (4.46)

where J− is for bosons and J+ for fermions.

As in the previous section for the φ4 theory, the Debye corrections have to be included to
cancel the divergences through the Matsubara zero modes of the bosons. In the notation of
Eqs. (4.34) to (4.36) they read as

Πij
(S) =

T 2

24

[
(−1)2sS (1 + 2sS)

nHiggs∑
k=1

Lijkk + (−1)2sG(1 + 2sG)

ngauge∑
a=1

Gaaij

−(−1)2sF (1 + 2sF )
1

2

nfermion∑
I,J=1

(
Y ∗IJjY i

IJ + Y ∗IJiY j
IJ

) , (4.47)

Πab
(G) = T 2 2

3

(
ñH
8

+ 5

)
1

ñH

nHiggs∑
m=1

Gaammδab , (4.48)

where only the longitudinal modes of the gauge bosons receive the Debye corrections and ñH
is the number of scalar fields with a non-vanishing coupling to gauge bosons. It is important
to note that Eq. (4.48) applies only for theories with no additional fermions or gauge bosons
compared to the SM. As this is the case for the 2HDM and N2HDM this poses no problem
for this work.

To include the Debye corrections in the effective potential the Arnold-Espinosa method [166]
yields the replacement

V T(ω, T )→V T(ω, T ) + VDebye(ω, T ) , (4.49)

VDebye(ω, T ) = − T

12π

[nHiggs∑
i=1

((
m2
i

)3/2 − (m2
i

)3/2)
+

ngauge∑
a=1

((
m2
a

)3/2 − (m2
a

)3/2)]
. (4.50)

Here m2
i and m2

a are the eigenvalues of Λij(S) and Λab(G), while m2
i and m2

a are the eigenvalues

of the temperature corrected mass matrices Λij(S) + Πij
(S) and Λab(G) + Πab

(G).

Another possible approach to include the Debye corrections is given by the Parwani method
[167] where the replacements

Λij(S) → Λij(S) + Πij
(S) , (4.51)

Λab(G) → Λab(G) + Πab
(G) (4.52)

are inserted in Eq. (4.42) and Eq. (4.45). As this partially includes two-loop corrections to
the potential through m4 terms, the calculations later in this work are done in the Arnold-
Espinosa method.
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4.4. Numerical Treatment of J±

During the evaluation of the thermal potential, cf. Eq. (4.45), the integrals

J±(x2) =

∞∫
0

dkk2 log
[
1± exp

(
−
√
k2 + x2

)]
(4.53)

need to be calculated numerically. As this is very time consuming it is not suitable for a
numerical evaluation over a large amount of parameter points in a phenomenological study.
In [163] the function was therefore expanded in regions of small and large x2 = m2/T 2. For
small x2 the expansion is given by

J+,s(x
2, n) = − 7π4

360
+
π2

24
x2 +

1

32
x4
(
log x2 − c+

)
− π2x2

n∑
l=2

(
− x2

4π2

)l
(2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)

(
22l−1 − 1

)
, (4.54)

J−,s(x
2, n) = − π4

45
+
π2

12
x2 − π

6

(
x2
)3/2 − 1

32
x4
(
log x2 − c−

)
+ π2x2

n∑
l=2

(
− x2

4π2

)l
(2l − 3)!!ζ(2l − 1)

(2l)!!(l + 1)
(4.55)

with

c+ =
3

2
+ 2 log π − 2γE , c− = c+ + 2 log 4 . (4.56)

Here γE denotes the Euler-Mascheroni constant, (x)!! the double factorial and ζ(x) the Rie-
mann ζ−function. For large x2 the expansion is given by

J±,l(x
2, n) = − exp

(
−(x2)1/2

)(π
2

(
x2
)3/2)1/2

n∑
l=0

1

2ll!

Γ(5/2 + l)

Γ(5/2− l)(x2)−l/2 . (4.57)

To ensure a smooth transition from the expansion of small values of x2 to the large ones, the
expansions and their derivatives are enforced to be continuous. For this, a small shift in the
absolute values of the functions is introduced. The integrals can then be approximated by

J+(x2) =

{
−J±,l(x2, 3) x2 ≥ x2

+

−(J+,s(x
2, 4) + δ+) x2 < x2

+

, (4.58)

J−(x2) =

{
J±,l(x

2, 3) x2 ≥ x2
−

J−,s(x
2, 3) + δ− x2 < x2

−
, (4.59)

with

x2
+ = 2.2161 , δ+ = −0.015603 , (4.60)

x2
− = 9.4692 , δ− = 0.0063109 . (4.61)

To check for the impact of the introduced finite shift δ± the function J±, cf. Eq. (4.53), has
been evaluated at several values of x2 and compared to the corresponding series expansion,
cf. Eqs. (4.58) and (4.59). For J− the relative difference between the expansion and the
numerical evaluation does not exceed 1% while J+ has a maximal deviation of ∼ 1.3% around
the transition point.
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4.5. Renormalisation

The radiative corrections included in the Coleman-Weinberg potential in the MS scheme
change the masses and mixing angles of the theory compared to their tree-level values. For
phenomenological studies, it would be more convenient to work in an on-shell renormalisation
scheme, where corrections to the masses are absorbed into additional contributions. In this
case the relations between the tree-level masses are the same as the input masses and the
tree-level relations between the masses and the parameters of the potential can be used to
calculated the parameters of the tree-level potential. In the effective potential approach,
such a scheme can be realised by adding finite counterterm contributions on top of the MS
renormalised Coleman-Weinberg potential. This is achieved by replacing every parameter
p(0) of the tree-level potential V (0) with the renormalised parameter p and its counterterm
δp. The counterterm potential is then given by

V CT =

np∑
i=1

∂V (0)

∂pi
δpi +

nv∑
k=1

δTk (φk + ωk) . (4.62)

Here np is the number of potential parameters and δTk denote the counterterms of the tadpoles
Tk obtained from the minimum conditions of the potential, cf. Eq. (2.31) for the 2HDM and
Eq. (2.80) for the N2HDM, and vanish at tree-level. As the tadpoles that are calculated w.r.t.
fields without a VEV do not contribute later on for the minimisation they can be dropped
and only the nv ≤ nHiggs field directions with a VEV remain.

Imposing the masses and mixing angles being the same at LO and NLO yields the following
renormalisation conditions

0 = ∂φi
(
V CW + V CT

)∣∣
φk=〈φk〉(T=0)

, (4.63)

0 = ∂φi∂φj
(
V CW + V CT

)∣∣
φk=〈φk〉(T=0)

, (4.64)

where φk = 〈φk〉 (T = 0) is the electroweak minimum of the tree-level potential with i, j, k =
1 . . . nHiggs. To solve Eqs. (4.63) and (4.64) the derivatives of the Coleman-Weinberg poten-
tial are necessary which have been derived in [165]. While the renormalisation conditions
guarantee that the tree-level minimum still is a local minimum at NLO, it has to be checked
numerically if the tree-level minimum is the global minimum at NLO.

The counterterms for the 2HDM and N2HDM are given in Eq. (B.5) respectively Eq. (B.7).

4.6. Calculation of ξc

To decide if a concrete parameter point provides an SFOEWPT it is necessary to calculate
the quantity ξc = vc/Tc and therefore both the critical temperature Tc and the critical VEV
vc. Therefore it is necessary to minimise the potential

V (ω, T ) = V (0)(ω) + V CW(ω) + V CT(ω) + V T(ω, T ) , (4.65)

with the tree-level potential V (0), cf. Eq. (4.41a), Coleman-Weinberg potential V CW, cf.
Eq. (4.42), counterterm potential, cf. Eq. (4.62) and the thermal corrections V T, cf. Eq. (4.49).
During the numerical minimisation of Eq. (4.65) VEV configurations resulting in negative
mass squares appear, yielding a complex potential. As the masses, namely the eigenvalues of
the Hessian matrix of the potential, are positive in the global minimum, it suffices to minimise
the real part of the potential [168]. For this purpose the models were implemented in the C++
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code BSMPT [4]. BSMPT minimises the effective potential at a fixed temperature and calculates
the electroweak VEV

ω(T ) =

√∑
i

ωi(T )2δi . (4.66)

Here ωi(T ) is the VEV of the Higgs field i at fixed temperature T and δi is 1 if the cor-
responding field couples to SU(2) gauge bosons and 0 otherwise. To calculate the critical
temperature the following procedure is then applied:

• Calculate ω(T = 0 GeV) and check if the found minimum is the same as the tree-level
minimum13.

• Calculate ω(T = 300 GeV) and check if it vanishes. As shown in Fig. 4.1 the VEV
can only decrease with rising temperature. Therefore, the VEV is limited by the upper
bound ω(T ) ≤ v ≈ 246 GeV. For temperatures above v the EWPT cannot be of strong
first-oder, as ω/T ≤ v/T < 1. To allow for numerical errors the upper limit is chosen
to be 300 GeV.

• Apply a bisection procedure with the end points Ts = 0 GeV and Te = 300 GeV. If

ω

(
Ts + Te

2

)
vanishes set Te =

Ts + Te
2

otherwise Ts =
Ts + Te

2
. This is repeated until

a precision of Te − Ts ≤ 10−2 GeV is achieved. The critical temperature is then set to
Tc = Ts and the critical VEV as vc = ω(Tc).

4.7. Additional Applications of BSMPT

The name giving purpose of BSMPT [4], Beyond the SM Phase Transition, is the calculation
of the strength of the EWPT, cf. Sec. 4.6. The program can be downloaded from https://

github.com/phbasler/BSMPT. BSMPT provides the implementation of the R2HDM, C2HDM
and N2HDM. The input file is given through a tabulator separated text file which has the type,
cf. Tab. 2.1, and the tree-level parameters of the potential, eg. Eq. (2.33) for the C2HDM.
Exemplary input files for all models are provided with the program for all implemented
models. Different aspects of the calculation are provided over multiple executables. The
output file generated by each executable contains the values of the input file, the numerical
values of the parameter of the counterterm potential, cf. Sec. 4.5, as well as the result of the
executable. The program provides the following executables

• BSMPT calculates the strength of the EWPT. For this, the critical temperature Tc, all
components of the VEV at the EWPT, the electroweak VEV and the strength of the
EWPT are attached as new columns.

• VEVEVO calculates the electroweak minimum at fixed temperatures between a given
temperature range for given step size. This can be used to investigate the evolution of
the electroweak VEV of a fixed parameter point with temperature.

• TripleHiggsCouplingsNLO calculates the coupling between all possible combinations
between three Higgs bosons, cf. Eq. (2.70), at vanishing temperature. The resulting
output file contains the contribution to the trilinear Higgs couplings from the tree-level,
counterterm and Coleman-Weinberg potential.

• NLOVEV calculates the electroweak minimum at NLO today and attaches all components
of the NLO electroweak VEV as columns. This can be used to check if the electroweak
minimum is stable at NLO.

13Through the counterterm potential defined in Sec. 4.5 the tree-level minimum is a local minimum at NLO,
but it has still to be ensured that it is the global minimum.

https://github.com/phbasler/BSMPT
https://github.com/phbasler/BSMPT
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• Test checks if the implementation of a new model was successful. For this, all particle
masses are calculated and the fermion and gauge boson masses are compared to their
implemented values and the Higgs boson masses are compared to their NLO values.

• CalcCT calculates only the parameters of the counterterm potential.

Additional models can be implemented with the general framework for the theory given in
Eqs. (4.34) to (4.36). A detailed explanation of how to implement them is given in the
manual [4].



CHAPTER 5

Impact of the Electroweak Phase Transition on Phenomenology

In this chapter, the impact of constraining the phenomenology of the C2HDM and N2HDM
through EWPT is investigated. At first, the criteria applied to the parameter space are
described. Afterwards, a direct comparison between the models is used to show the influence
of the EWPT and to discuss possible discovery signals. These investigations in the C2HDM
have been published in [3], while [5] provides an update on the C2HDM together with the
investigation in the N2HDM. As [5] is not finalised yet, the figures in [5] may differ from
those shown in this chapter.

5.1. The Allowed Parameter Space

To scan the parameter space of the C2HDM and N2HDM both models have been imple-
mented in ScannerS [68, 78], with their theoretical constraints, cf. Secs. 2.2.5 and 2.3.4.
The results from LHC Run2, LEP and Tevatron Higgs searches were checked with Higgs-

Bounds v5.5.0 [79–84]. ScannerS generates the masses and mixing matrix elements with a
randomised uniform distribution. The decay widths and branching ratios were calculated
with C2HDM_HDECAY [85, 87, 169] for the C2HDM and N2HDECAY [75, 85, 87] for the N2HDM
respectively and checked against the experimental limits through HiggsSignals v.2.3.0 [170–
172]. Additionally, the B → sγ measurements [90–94] were taken into account. For the
C2HDM the EDM of the electron was taken into account with the upper limits provided by
the ACME collaboration [98]. As the main contribution from the fermions to the EWPT is
given by the top coupling, the difference between type I and type II in the calculation of
the EWPT has a subleading effect. As the two types greatly differ in the allowed parameter
space, the allowed region for successful SFOEWPT differs accordingly [1, 3]. As the EDM
and B → sγ constraints are more stringent in type II than in type I the latter has been chosen
for the comparison between the N2HDM and C2HDM. The used ranges for the parameter
scans are given in Tab. 5.1. Instead of denoting the 3 neutral mass eigenstates with mh1 ,mh2

and mh3 , cf. Secs. 2.2.4 and 2.3.3, they were relabeld mh,mH↓ and mH↑ where mh is the
SM-like Higgs boson and H↓ and H↑ are ordered such that mH↓ ≤ mH↑ . The SM parameters
are given in Appendix A.

The reduction in the number of parameter points applying these constrains is shown in
Tab. 5.2. While the samples are generated with a randomised uniform distribution and
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C2HDM N2HDM

mh [GeV] 125.09 125.09

mH↓ [GeV] 30 . . . 1500 30 . . . 1500

mH↑ [GeV] 30 . . . 1500 30 . . . 1500

mH± [GeV] 150 . . . 1500 150 . . . 1500

mA [GeV] - 30 . . . 1500

tanβ 0.8 . . . 20 0.8 . . . 20

<m2
12 [GeV2] 10−3 . . . 5× 105 10−3 . . . 5× 105

vs [GeV] - 1 . . . 3000

Table 5.1.: Input parameter for both scans described in Sec. 5.1. In the N2HDM m2
12 is real

and, therefore, m2
12 = <m2

12.

Applied constraint C2HDM N2HDM

Total number of parameter
points

233163 271743

NLO vacuum stability 97.32% 83.64%

NLO vacuum stability + NLO
perturbative unitarity

91.03% 80.32%

SFOEWPT + NLO vacuum
stability + NLO perturbative
unitarity

0.013% 0.353%

Table 5.2.: Reduction of the number of parameter points before and after applying NLO
vacuum stability, NLO pertubative unitarity and SFOEWPT.

roughly the same number of parameter points, more points are not longer valid once NLO
vacuum stability is considered in the N2HDM than in the C2HDM. This is due to the
additional pseudoscalar Higgs boson providing an additional term proportional to m4

A logm2
A

in the Coleman-Weinberg potential, cf. Eq. (4.21), yielding possible large corrections to the
NLO potential. These large corrections also explains the parameter points which are no longer
valid after applying the approximated NLO unitariy constraints. While the N2HDM has a
higher loss than the C2HDM at vanishing temperature through the additional Higgs boson,
it increases the viable parameter space for EWPT as the pseudoscalar Higgs boson does not
contribute to the electroweak VEV but influences the effective potential.

5.2. Effects on the masses of the non-SM-like Higgs Bosons

Figure 5.1 shows the charged Higgs mass mH± as a function of tanβ, C2HDM on the left and
N2HDM on the right. For Fig. 5.1 and all following figures the parameter points surviving all
constraints in Sec. 5.1 are shown in black. Additionally, for all points it has been checked if
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their NLO VEVs are the same as at LO, calculated with BSMPT [4]. To have a first check of the
perturbative unitarity at NLO the constraints Eqs. (2.54) and (2.91) have been tested after
replacing the quartic tree-level couplings λi with their NLO shifted values, defined through
λi → λi + δλi. Here δλi are the parameters of the counterterm potential defined through
the renormalisation scheme described in Sec. 4.5 and calculated through the formulae in
Appendix B. The λi on the right-hand side are obtained through the tree-level relations
from the masses and mixing angles, cf. Eqs. (2.45) and (2.90). Parameter points providing
additionally a stable NLO vacuum and successful perturbative unitarity at NLO compared
to the black points are shown in grey. All parameter points shown with the given colour
scale provide an SFOEWPT. While it seems like the N2HDM is more restricted for higher
values of tanβ this is an artefact of the scan procedure. The scan is set up in such a way that
a fixed number of valid parameter points are generated. As the N2HDM spectrum has an
additional Higgs boson as compared to the C2HDM there are more valid parameter points in
the N2HDM for each pixel in the mH±−tanβ plane. The few points for tanβ & 12 show that
points in this area are still possible, just not as likely as parameter points with tanβ . 12.
While most of the points in the C2HDM providing an SFOEWPT have a charged Higgs mass
of at least mH± ∼ 450 GeV three points with mH± ≤ 175 GeV were found. These are also the
ones with an inverted hierarchy, meaning that the SM-like Higgs boson mh is not the lightest
one but the heaviest. For those points the masses are closely together, the biggest difference
is mh − mH↓ ≈ 30 GeV, and, therefore, no decays into lighter Higgs bosons are possible.
For the other points, a large charged Higgs mass of 450 to 650 GeV comes along with neutral
masses above the SM-like Higgs boson mass. In the N2HDM the allowed region for parameter
points providing an SFOEWPT is much larger than in the C2HDM, which results from the
extra degree of freedom in the Higgs particle spectrum. This is highlighted in Fig. 5.2.
The black parameter points fulfil the constraints described in Sec. 5.1, while the grey points
additionally provide a NLO stable vacuum and approximated NLO perturbative unitarity.
The coloured point show all parameter points providing an SFOEWPT. On the left side, the
difference mH↑ −mH± is shown as a function of mH↓ −mH± in the C2HDM which can be
divided into three regions. The left and upper areas are defined by mH↓ < mH↑ ≈ mH± and
mH↓ ≈ mH± < mH↑ , respectively, which provided a possible parameter region for SFOEWPT,
cf. Figure 5 in [3]. Through updates of the exclusion limits in HiggsBounds and HiggsSignals

the outer regions of these areas are largely excluded and, therefore, the possible parameter
region for SFOEWPT is reduced. The third region is the diagonal in the lower right where
mH↓ ≈ mH↑ with both possibilities for the charged Higgs mass below and above the other
masses. For the bulk of the parameter points providing an SFOEWPT the charged Higgs
mass is above the others. Combining this with the mass scale of the charged Higgs mass
in Fig. 5.1 yields a medium spectrum which would be mostly excluded through B → sγ
constraints in the type II scenario. In the N2HDM the situation is more relaxed. Because
of the enlarged Higgs spectrum the mass distribution is not as restricted in the N2HDM in
the C2HDM. In order to describe the mass distribution the relative difference between the
masses of two Higgs bosons X and Y is introduced as

∆mX ,mY =
mX −mY

mX +mY
. (5.1)

This is shown in the right side of Fig. 5.2. Here the coloured points are the ones providing
an SFOEWPT while the colour code indicates the difference between the additional pseu-
doscalar Higgs boson A and the charged Higgs boson. Contrary to the C2HDM there are
parameter points with a large spread between mH↓ ,mH↑ and mH± while the charged Higgs
is approximately degenerate with the pseudoscalar Higgs boson, shown by the purple (dark)
points. For most of the parameter points with low masses of the charged Higgs boson with
mH± . 300 GeV, the neutral CP-even Higgs bosons are also low while the pseudoscalar Higgs
boson is heavy, which strengthens the EWPT while not contributing to the electroweak VEV.
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Figure 5.1.: The charged Higgs boson mass as a function of tanβ, on the left for the type I
C2HDM and on the right the type I N2HDM with the colour indicating the strength of the
EWPT. The black show the parameter points surviving the constraints described in Sec. 5.1,
while the grey points additionally provide a NLO stable vacuum and approximated NLO
perturbative unitarity.

For the other parameter points with a low mass of the charged Higgs boson mH± . 400 GeV,
the charged Higgs boson is degenerate with the pseudoscalar Higgs boson either H↓ or H↑
has a large singlet contribution and, therefore, does not contribute to the electroweak VEV
but to the strength of the EWPT.

5.3. Impact on the SM-like Higgs Boson Trilinear Self-Coupling

While the couplings between the SM-like Higgs boson with two fermions or two gauge bosons
are measured to be close to the SM values, the trilinear self-coupling between three SM-like
Higgs bosons is only loosely constraint [173–175]. To get a comparison with the SM value
Fig. 5.3 shows the NLO trilinear self-coupling of the SM-like Higgs boson λNLO

hhh as a function
of the LO value, both calculated with BSMPT [4] and normalised to the SM value. The used
reference SM values at LO and NLO are given by [176]

λLO,SM
hhh = − 3m2

h

v
, (5.2)

λNLO,SM
hhh = − 3π2

v

[
1− 1

π2

m4
t

m2
hv

2

]
, (5.3)

where the NLO value has been calculated with only taking the dominant top quark contribu-
tions into account14. The N2HDM, on the right of Fig. 5.3, provides a larger band of possible
trilinear self-couplings than the C2HDM, on the left of Fig. 5.3. On the other hand, the grey
area, showing parameter points additionally yielding a NLO stable vacuum and surviving the
approximative NLO perturbative unitarity constraints compared to the black points, yield
similar maximal values. The excluded parameter points, shown in black, in the N2HDM with
large NLO corrections to their trilinear self-coupling are mostly excluded because the vacuum
is not stable at NLO. Due to large masses and missing cancellations between the individual
contributions of the terms proportional to m4 logm2 in the Coleman-Weinberg potential, cf.
Eq. (4.42), these parameter points have large corrections to the trilinear self-coupling but
simultaneously leads to too large corrections to the NLO vacuum so that the vacuum is not

14Compared to [176] Eq. (5.3) has a different sign. This is due to the matching to the convention in Sec. 2.2.6.3.
Additionally, Nc = 3 has already been used to simplify the relation.
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Figure 5.2.: The difference between the additional Higgs bosons for both models. On the
left the difference mH↑ −mH± is shown as a function of mH↓ −mH± in the C2HDM with the
colour bar showing the strength of the EWPT. The dashed line shows the degeneracy limit
with either mH↓ = mH± or mH↑ = mH± . On the right the relative difference, cf. Eq. (5.1),
in the N2HDM between mH↑ and mH± is shown as a function of the relative difference mH↓

and mH± . The colour bar denotes the relative difference mA and mH± for all points with an
SFOEWPT.
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Figure 5.3.: The triple Higgs coupling between three SM-like Higgs bosons at NLO as a
function of the LO value, each normalised to the corresponding SM value. On the left shown
for the C2HDM while the right shows the result for the N2HDM. The colour code indicates
the strength of the EWPT.
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stable anymore. Additionally, due to the large corrections through the Coleman-Weinberg
potential, the counterterm parameters, cf. Eq. (B.7), are large and therefore the perturbative
unitarity constraints, cf. Eq. (2.91), approximated at NLO by replacing λ→ λ+ δλ are not
fulfilled. Due to the singlet-admixture in the N2HDM, it is still possible to have vanishing
self-couplings while the limits on the coupling between the SM-like Higgs boson and two gauge
bosons disfavour such parameter configurations in the C2HDM. Having one less Higgs boson
than the N2HDM, the trilinear self-coupling for parameter points fulfilling all constraints in
Sec. 5.1 in the C2HDM is much more constrained around the SM-like value. Only looking
at the parameter points providing an SFOEWPT the allowed coupling modifications of the
trilinear coupling of the SM-like Higgs boson of the C2HDM and N2HDM, respectively, with
respect to the SM trilinear Higgs couplings, both at NLO, reduce to

λNLO,C2HDM
hhh /λNLO,SM

hhh ∈ [−2.08,−1.02] ∪ [1.02, 1.90] , (5.4)

λNLO,N2HDM
hhh /λNLO,SM

hhh ∈ [−2.33,−1.15] ∪ [1.00, 2.26] . (5.5)

Therefore, the absolute value of the trilinear self-coupling has to be at least the SM value
but still around this value. Future linear colliders will be able to measure this coupling with
enough precision to either confirm or exclude its finite value [177, 178]. Measuring an value
for the trilinear coupling at the edge of the allowed range in the N2HDM, cf. Eq. (5.5), could
be used to exclude an SFOEWPT for the C2HDM, but still allow it in the N2HDM, therefore
providing a possibility to distinguish the two models.

5.4. Impact on Di-Higgs Boson Production

The production of two Higgs bosons yields insight on the trilinear self-coupling between three
SM-like Higgs bosons [179, 180]. Due to this, there has been an increased effort to measure
this process, cf. [180] for a recent overview. While the di-Higgs production cross section
at the LHC with a center of mass energy of

√
s = 14 TeV amounts to approximately 33 fb

at NLO with full top-mass effects [181–183], the cross section can be increased for a Higgs
self-coupling that differs from the SM value [184]. This is due to the trilinear self-coupling of
the SM Higgs boson only entering in one of the contributions to the SM Higgs pair production
which interfere destructively. In models with additional Higgs bosons, the cross section can
also be increased due to the on-shell production of a heavier Higgs boson decaying into two
SM-like ones. For the lighter Higgs boson H↓ the on-shell production with following decay
into two SM-like Higgs bosons is shown in Fig. 5.4 as a function of its mass, on the left for
the C2HDM and the N2HDM on the right. For masses mH↓ ≤ 2mh the decay H↓ → hh is
kinemetically forbidden and, therefore, no parameter points with mH↓ . 250 GeV are shown.
While both models yield a maximal signal strength of a few pb, approximately a factor 100
higher than the SM Higgs pair production cross section, the models lead to different results
if only parameter points with an SFOEWPT are considered. In this case the N2HDM can
still have parameter points with a cross section value of 1.66 pb while the C2HDM di-Higgs
production cross section is decreased to 0.10 pb, still a factor ∼ 3 larger than the SM Higgs
pair production cross section value. Therefore, for parameter points with an SFOEWPT the
di-Higgs production cross section provides an possibility to distinguish between the C2HDM
and N2HDM if a signal above 1 pb is measured.

5.5. Conclusion

While the allowed parameter regions of the C2HDM and N2HDM differ only marginally for
parameter points surviving theoretical and experimental constraints, the difference between
the models is significant once an SFOEWPT is required. This is driven, on the one hand,
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Figure 5.4.: The cross section in pb for the production of the second neutral Higgs boson
H↓ decaying into two SM-like Higgs bosons as a function of the mass mH↓ . On the left shown
for the C2HDM while the right shows the result for the N2HDM with the colour indicating
the strength of the EWPT.

by the additional Higgs boson which can strengthen the EWPT and, on the other hand, by
the possibility of the N2HDM pseudoscalar Higgs boson in the N2HDM being degenerate
with the charged Higgs boson yielding an increased mass range for the H↓ and H↑. This
impacts the Higgs self-coupling as its absolute value is O(10%) larger in the N2HDM than
in the C2HDM. The production of two SM-like Higgs bosons is not only modified through
the trilinear self-coupling, but also through the on-shell decay of a heavier Higgs boson into
two SM-like ones. This provides interesting signals to distinguish between the N2HDM and
C2HDM as both models provide a production cross section value higher than the SM-like
Higgs pair production, but the maximum cross section value for parameter points with an
SFOEWPT in the N2HDM is one order of magnitude higher than in the C2HDM.





CHAPTER 6

Electroweak Baryogenesis in the C2HDM

The Sakharov conditions [21] provide the necessary requirements to achieve EWBG [23, 45,
120–155]. The first two are given by baryon number violation, which can be achieved through
sphaleron processes [185–187], and C and CP-violation. The third condition requires the
particles to be out of thermal equilibrium, which can be translated into the baryon washout
condition [28, 156]

ξc =
vc
Tc
≥ 1 , (6.1)

where Tc denotes the critical temperature and vc the VEV of the broken minimum at the
critical temperature. It was shown in [25–27, 188–191] that the washout condition is not
fulfilled in the SM if the mass of the SM Higgs boson is above 70 GeV. On the other hand, a
simple extension of the SM with one additional singlet field [192, 193] can fulfil the washout
condition.

While providing an SFOEWPT is a necessary condition for EWBG, it is not guaranteed to
achieve the measured BAU. This asymmetry is given by the baryon to photon ratio [20]

η =
nb − nb

s
= (6.2± 0.4) · 10−10 , (6.2)

where nb is the number of baryons, nb the number of antibaryons and s the entropy density
of the Universe.

In this chapter, the basics of the calculation of the EWBG are given as well as numerical
results of some parameter points described in Chapter 5. The necessary calculations in this
chapter follow [140, 142]. A different and detailed approach can be found in [139]15.

6.1. Basic Description of the EWBG

Triggered through the EWPT bubbles, containing the broken phase 〈φ〉 6= 0, expand in the
plasma, surrounded by the symmetric phase with 〈φ〉 = 0. Through the different couplings of
left- and right-handed fermions to the Higgs fields, induced by CP-violation, a semiclassical

15A new approach where the CP-violation is in the dark sector is given in [152]
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Figure 6.1.: Schematic overview of the necessary steps for EWBG. The CP-violation ��CP
generates a different semiclassical force for the left- and right-handed fermions, qL and qR
respectively. Through this, an excess of left-handed fermions is generated in front of the
bubble wall with thickness LW and velocity vW in the symmetric phase with the vanishing
VEV 〈φ〉 = 0. The excess is converted into baryons B through sphalerons, shown as Sp in
the schematic. After diffusing into the bubble the conversion of the baryons into left-handed
quarks is suppressed as the vacuum is in a broken state, with 〈φ〉 6= 0 and, therefore, the
sphaleron rate is suppressed, shown with ��Sp.

force is induced which acts differently on left-handed and right-handed fermions. This is
sketched in Fig. 6.1 where the left-handed fermions are reflected in front of the bubble wall
while the right-handed ones pass through the bubble wall. This induces a non-equilibrium
and a left-handed quark excess in front of the bubble. The necessary B-violation [126, 127,
140] is given through sphalerons processes which convert the left-handed quarks to baryons
and back. As the bubble expands the baryons diffuse through the bubble wall. Inside the
bubble, in the broken phase, the conversion between baryons and left-handed quarks does not
continue as the sphaleron decay rate is strongly suppressed.

6.2. Numerical Input

In the following, several approximations will be introduced. To test the numerical uncertain-
ties introduced by these approximations in the C2HDM the parameter point given in Tab. 6.1
is used. A detailed scan of the parameter space of the C2HDM has shown only quantitative
changes of those points, not qualitative ones. Therefore, the parameter point in Tab. 6.1 has
been chosen as its η value, the BAU, yields the closest result to Eq. (6.2) from all parameter
points given in the scan, even though it would be ruled out by current collider constraints.
The parameter points shown in Chapter 5 yield a value for η three orders of magnitude below
the observed value.

6.3. The Transport Equations

The BAU is given by [122, 147]

ηB =
405Γws

4π2vW g∗T

∞∫
0

dzµBL
(z) exp

(
−45Γws

4vW
z

)
, (6.3)
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BM

Type 2

mH1 [GeV] 125.09

mH2 [GeV] 543.45

mH3 [GeV] 545.96

mH± [GeV] 160.35

tanβ 0.89

λ1 4.353002

λ2 5.684883

BM

λ3 -4.019509

λ4 4.255520

λ5 −4.647570− i 0.638572

<m2
12 [GeV2] 6868.28

arg(m2
12)/π -0.302553

ωc/Tc 4.377520

ωc [GeV] 246.436000

Tc [GeV] 56.295800

Table 6.1.: Benchmark point used to check the numerical effects of different approximations
throughout this chapter. Additionally to the masses and the input parameters, cf. Eq. (2.33),
the critical temperature Tc, the electroweak VEV ωc and the strength of the EWPT ωc/Tc is
given.

where g∗ = 106.75 is the effective number of degrees of freedom in the plasma [122, 147], vW
the velocity of the wall and Γws is the weak sphaleron rate, given by [131, 194, 195]

Γws = 10−6T . (6.4)

The calculation of the chemical potential of the left-handed quark-excess µBL
requires the

knowledge of the chemical potentials of all contributing particles in front of the bubble wall.
For this, the transport equations derived in this section are used to calculate the chemical
potential of the contributing particles. To derive the transport equations, fluctuations around
the chemical and kinetic equilibrium are allowed in the distribution functions and inserted into
the Boltzmann equations. For the collision terms in the Boltzmann equations, it is necessary
to investigative the interaction of the particles with the bubble wall. In the Wentzel-Kramers-
Brillouin (WKB) method [145] it is possible to describe the diffusion from particles in the
symmetric phase through the wall. This method is only valid if the wall thickness is larger then
the mean free path of the particles passing through the wall, given by the inverse temperature.
The WKB method describes the interactions in a first-order gradient description of the bubble
wall. Through the CP-violating couplings between the fermions and the Higgs field different
forces on the left- and right-handed quarks are induced. This generates a left-handed quark
excess in front of the bubble wall which is then translated into a baryon asymmetry through
the sphaleron decay. The WKB method was applied for different models in [121–125, 146,
196]. As shown in [126–129, 140] the more general Kadanoff-Baym equations yield the same
result as the WKB expansion if the proper treatment of the canonical momentum is applied
and subleading terms are dropped.

Once the bubble has grown large enough the wall can be approximated by a planar profile,
otherwise additional effects due to the curvature of the bubble wall have to been taken into
account. The wall is assumed to expand with a constant velocity vW . As the wall is assumed
to be flat the calculation is performed in the rest frame of the wall in which the problem can
be reduced to an effective 1+1 dimensional problem. The perpendicular distance z to the
wall is defined such that the symmetric phase is at z = +∞ and the broken phase at z = −∞.
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Figure 6.2.: profile of a kink-shaped function defined through Eq. (6.5).

The profile of the VEVs as a function of the distance z and the wall thickness LW can be
approximated through a kink-shaped function

f(z) =
f0

2

(
1− tanh

z

LW

)
, (6.5)

shown in Fig. 6.2. As the VEVs change with the kink-profile depending on the coordinate z
so do the particle masses as functions of the VEVs. The CP-violation in the Yukawa coupling
induces a complex mass of the top quark. The massM of the top quark can then be expressed
as

M = m(z) exp (iθ(z)) , (6.6)

where m(z) is the absolute value of the mass and θ(z) is the CP-violating phase, both de-
pending on the distance to the wall z. In the C2HDM M is given by (with the unphysical
VEV ωCB = 0)

MC2HDM =
yt√

2
(ω2 − iωCP) , (6.7)

=
yt√

2

√
ω2

2 + ω2
CP exp (i arg (ω2 − iωCP)) , (6.8)

where yt is the Yukawa coupling between two top quarks and the second Higgs doublet, cf.
Eq. (2.60), and ωi are the VEVs of the SU(2) doublets, cf Eq. (2.17). This defines the
CP-violating phase in the broken phase as

θbrk = − arg(ω2 + iωCP) , (6.9)

where ωi are the VEVs in the broken phase at the EWPT with the critical VEV ωc and the
critical temperature Tc. The profile of the VEVs ωi and the phase θ are then parameterised
through a kink profile, cf. Fig. 6.2, in terms of the wall thickness LW as [142]

ωi(z) =
ωi
2

(
1− tanh

z

LW

)
, (6.10)

θ(z) =
1

1 + tan2 βT

[
θbrk −

θbrk − θsym

2

(
1 + tanh

z

LW

)]
, (6.11)

with

1 + tan2 βT = 1 +
ω2

2 + ω2
CP

ω2
1

=
ω2
c

ω2
1

. (6.12)
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Here the relation between the electroweak VEV ωc and its components

ω2
c = ω2

1 + ω2
2 + ω2

CP (6.13)

is used.

Due to the large coupling between the top quark and the Higgs particle, it is common practice
[142, 153] to ignore the masses of the other fermions and consider the top quark as the only
massive Dirac fermion16. Without flavour mixing of the fermions, the dispersion relation
to first order in the gradient expansion for a fermion with complex mass m exp(iθ) and
momentum p in a varying background Higgs field is given by [128, 129, 140]

E =E0 ∓ s
(∂zθ(z))m(z)2

2E0(z)E0z(z)
, (6.14)

where

E0(z) =
√
p2
x + p2

y + p2
z +m(z)2 , (6.15)

E0z(z) =
√
p2
z +m(z)2 (6.16)

describe the energies of the quasi-particles states in front of the bubble wall. s describes the
spin of the top quark and the upper (lower) sign is for particles (antiparticles). The group
velocity of the WKB wave-packet is then given by

vg =
pz

E0(z)

(
1± s

2
(∂zθ(z))

m2(z)

E0(z)2E0z(z)

)
. (6.17)

Applying the WKB Ansatz to the canocial equations of motions yields the semiclassical force

Fz =− ∂zm
2(z)

2E0(z)
± s∂z

(
m2(z)∂zθ(z)

)
2E0(z)E0z(z)

∓ s(∂zθ(z))m
2(z)∂z

(
m2(z)

)
4E0(z)3E0z(z)

. (6.18)

While the first part of Eq. (6.18) is defined by the change of the mass, as expected in a
classical force, the second and third part are proportional to the spin and the change in the
phase and therefore semiclassical and generates the difference in the force on particles and
antiparticles.

In the rest frame of the wall, the particle distributions fi are described through a set of
Boltzmann equations. These depend only on the distance to the wall z, the momentum per-

pendicular to the Wall pz and the absolute momentum p =
√
p2
x + p2

y + p2
z. The distributions

obey the Boltzmann equations

(vg∂z + Fz∂pz) fi =Ci[f ] , (6.19)

where Ci[f ] describe the collision terms. Allowing for small fluctuations around the chemical
and kinetic equilibrium the distribution functions are given by

fi = [exp (β (γw (Ei + vW pz)− µi))± 1]−1 + δfi(z, p, pz) , (6.20)

where i denotes the particle species, β = 1/T describes the inverse temperature and γw =

1/
√

1− v2
W the Lorentz boost factor of the wall. The +(−) refers to fermions (bosons) given

by the particle species, µi(z) describes the chemical potential as a departure from chemical
equilibrium and δfi the perturbation around the kinetic equilibrium in response to the force

16If additional fermions are considered massive possible mixing terms have to been taken into account [149].
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on the particle. The deviation of the kinetic equilibrium does not contribute to the particle
density. It is necessary to expand the perturbations around the chemical equilibrium to the
second-order as the CP-even and CP-odd components are equal at first order [197]. The
perturbations are therefore expanded in

µi =µi,1e + µi,2o + µi,2e , δfi = δfi,1e + δfi,2o + δfi,2e , (6.21)

where i denotes the particle species, 1 or 2 the order of the expansion and e(o) is for the
CP-even (CP-odd) component. In order to calculate the baryon asymmetry, the excess in left-
handed quarks and leptons is necessary. Therefore, the expansion is inserted into Eq. (6.20).
Calculating the difference in the force between particles and antiparticles, cf. Eq. (6.18), only
the difference between the CP-odd part remains in the Boltzmann equations, cf.Eq. (6.19),
given as

µi,2 = µi,2o − µi,2o . (6.22)

Here µ denotes the chemical potential of the particle species i and µ of the corresponding
antiparticle.

To decide which interactions have to be considered and which can be neglected a short
discussion on the timescales of the process is useful [155]. To contribute to the generation
of the BAU the corresponding particle density to a given process must diffuse before the
wall catches up. Assuming an effective diffusion constant D the diffusion length ddiff for
a given time t is given by ddiff =

√
Dt. During the same time interval, the wall passes

the distance dW = vW t. Requiring that the diffusion happens before the wall catches up

yields the requirement that the time scale of the diffusion is below τdiff =
D

v2
W

. Therefore, all

processes with a timescale below τdiff must be included while processes with a higher time scale
effectively decouple from the systems. Typical diffusion constants of the order of D ≈ 50/T
and wall velocities of vW ≈ 0.1 yield a diffusion time scale of the order of τdiff ∈ O

(
104T−1

)
.

Therefore, all processes with a decay width Γ & 10−4T have to be included. For the C2HDMl
the interaction rates corresponding to the W boson scattering ΓW , the top Yukawa interaction
Γy, the strong sphalerons Γss, the top helicity flips Γm and the Higgs boson interactions Γh
are taken into account. After the qL-excess is in thermal equilibrium in the first part of the
two-step approach chosen for this calculation [153], the weak sphalerons convert it to baryons
with the decay rate Γws in the second step.

Truncating the Boltzmann equations in zeroth and first-order of pz/E0 [140] introduces the
plasma velocities

ui ≡
〈
pz
E0
δfi

〉
, (6.23)

where 〈X〉 describes the thermal average of X. Inserting Eqs. (6.17), (6.18), (6.20) and (6.21)
into the Boltzmann equations, cf. Eq. (6.19), yields [142] eight coupled ordinary differential
equations (ODEs) in the chemical potentials of the left-handed SU(2) doublet top µt,2, left-
handed SU(2) doublet bottom µb,2, left-handed SU(2) singlet top µtc,2, as well as the potential
of the Higgs boson µh,2 and their corresponding plasma velocities. Analogous to the chemical
potential, cf. Eq. (6.22), the transport equations only depend on the difference of the CP-odd
components of the plasma velocity between the particles ui,2o and their antiparticles ui,2o,
namely

ui,2 = ui,2o − ui,2o . (6.24)
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The collsion terms weighted with pz/E0 can be expressed through the total interaction rates
[140] of the top quark Γtot

t , bottom quark Γtot
b and the Higgs boson Γtot

h . The transport
equations are then given by [142]

0 = 3vWK1,t (∂zµt,2) + 3vWK2,t

(
∂zm

2
t

)
µt,2 + 3 (∂zut,2)

− 3Γy (µt,2 + µtc,2 + µh,2)− 6Γm (µt,2 + µtc,2)− 3ΓW (µt,2 − µb,2)

− 3Γss [(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1− 9K1,t)µtc,2] , (6.25a)

0 = 3vWK1,b (∂zµb,2) + 3 (∂zub,2)− 3Γy (µb,2 + µtc,2 + µh,2)− 3ΓW (µb,2 − µt,2)

− 3Γss [(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1− 9K1,t)µtc,2] , (6.25b)

0 = 3vWK1,t (∂zµtc,2) + 3vWK2,t

(
∂zm

2
t

)
µtc,2 + 3 (∂zutc,2)

− 3Γy (µt,2 + µb,2 + 2µtc,2 + 2µh,2)− 6Γm (µt,2 + µtc,2)

− 3Γss [(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1− 9K1,t)µtc,2] , (6.25c)

0 = 4vWK1,h (∂zµh,2) + 4 (∂zuh,2)− 3Γy (µt,2 + µb,2 + 2µtc,2 + 2µh,2)− 4Γhµh,2 , (6.25d)

St = − 3K4,t (∂zµt,2) + 3vW K̃5,t (∂zut,2) + 3vW K̃6,t

(
∂zm

2
t

)
ut,2 + 3Γtot

t ut,2 , (6.25e)

0 = − 3K4,b (∂zµb,2) + 3vW K̃5,b (∂zub,2) + 3Γtot
b ub,2 , (6.25f)

St = − 3K4,t (∂zµtc,2) + 3vW K̃5,t (∂utc,2) + 3vW K̃6,t

(
∂zm

2
t

)
utc,2 + 3Γtot

t utc,2 , (6.25g)

0 = − 4K4,h (∂zµh,2) + 4vW K̃5,h (∂zuh,2) + 4Γtot
h uh,2 , (6.25h)

with the source term of the top quark17 [142]

St = − vWK8,t∂z
(
m2
t∂zθ

)
+ vWK9,t (∂zθ)m

2
t

(
∂zm

2
t

)
. (6.26)

The Ki denote thermal averages and are defined as [140, 196]

K1,i = −
〈
p2
z

E0
∂2
Efi,0

〉
, (6.27a)

K2,i =

〈
∂2
Efi,0
2E0

〉
, (6.27b)

K4,i =

〈
p2
z

E2
0

∂Efi,0

〉
, (6.27c)

K̃5,i =

[
p2
z

E0
∂Efi,0

]
, (6.27d)

K̃6,i =

[
E2

0 − p2
z

2E3
0

∂Efi,0

]
, (6.27e)

K8,i =

〈 |pz|∂Efi,0
2E2

0E0z

〉
, (6.27f)

K9,i =

〈 |pz|
4E3

0E0z

(
∂Efi,0
E0

− ∂2
Efi,0

)〉
, (6.27g)

where the brackets define the normalisation

〈X〉 =

∫
d3pX(p)∫

d3p∂Ef0+(m = 0)
, (6.28)

[X] =

∫
d3pX(p)∫

d3pfi,0,vW
=

∫
d3pX(p)∫

d3pfi,0|vW =0
(6.29)

17Due to the smallness of the bottom mass with m2
b/m

2
t ≈ 10−3 the source term of the bottom quark can be

neglected [142].



60 6. Electroweak Baryogenesis in the C2HDM

and the different expansions of the distribution function fi, cf. Eq. (6.20)

fi,0 = fi|µi=0,δfi=0,vW =0 , (6.30)

f0+ = fi|i=fermion,µi=0,δfi=0,vW =0 , (6.31)

fi,0,vw = fi,0 + vW pz∂E0fi,0 . (6.32)

Here the first two expansions describe the distribution function in chemical equilibrium and
the third is the Taylor serios of the distribution in chemical equilibrium for small wall veloc-
ities.

To solve Eq. (6.25) it is necessary to know the boundary conditions for the chemical potentials
and the plasma velocities. A different approach is to rewrite Eq. (6.25) into four second order
differential equations. For this the derivatives of Eqs. (6.25e) to (6.25h) w.r.t. z are solved
for the first derivative of the plasma velocities. As the WKB ansatz is only a first-order
expansion consistency requires to drop terms which would also appear at higher orders. For
this terms of the kind ∂zKi, ∂

3
zθ and ∂nzm

2
t with n ≥ 2 must be dropped. This yields

∂zut,2 =
∂zSt + 3K4,t∂

2
zµt,2

3
(
Γtot
t +K6,tvW∂zm2

t

) , (6.33a)

∂zutc,2 =
∂zSt + 3K4,t∂

2
zµtc,2

3
(
Γtot
t +K6,tvW∂zm2

t

) , (6.33b)

∂zub,2 =
K4,b

Γtot
b

∂2
zµb,2 , (6.33c)

∂zuh,2 =
K4,h

Γtot
h

∂2
zµh,2 , (6.33d)

with

∂zSt = vWK9,t

(
m2
t∂

2
zθ + ∂zθ∂zm

2
t

)
∂zm

2
t − 2vWK8,t∂zm

2
t∂

2
zθ . (6.34)

Inserting this into Eqs. (6.25a) to (6.25d) yields four second order differential equations in
the chemical potentials. The boundary conditions in the symmetric phase force the chemical
potentials and all its derivatives to vanish.

Another merit of the second-order differential equations is the possibility to relate the total
interaction rates Γtot

t,b,h with the diffusion constants of the corresponding particles. They are
given as [122]

Dt =
K4,t

K1,tΓtot
t

, (6.35)

Db =
K4,b

K1,bΓ
tot
b

, (6.36)

Dh =
K4,h

K1,tΓtot
h

. (6.37)

Solving the transport equations, cf. Eq. (6.25), yields the chemical potentials µi of each
particle species. Assuming local baryon number conservation the chemical potential of the
left-handed quarks is then given by

µBL
=

1

2
(1 + 4K1,t)µt,2 +

1

2
(1 + 4K1,b)µb,2 − 2K1,tµtc,2 . (6.38)
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6.4. The Calculation of the Wall Width

The semiclassical force, cf. Eq. (6.18), depends on the change of the mass, and therefore of
the change of the VEVs, and the phase w.r.t. the distance to the wall. These are given by
the kink profiles in Eqs. (6.10) and (6.11). In addition to the values in the symmetric and
broken phase, the kink profile is also dependent on the wall thickness LW , which is defined
as [142]

LW ≡
√
ω2
c

8Vb
, (6.39)

where ωc is the electroweak VEV of the broken minimum ~ωb and Vb is the height of the
potential barrier. To calculate the barrier it is necessary to calculate the path through the
potential from the broken minimum to the symmetric minimum ~ωs. As this is rather time-
consuming the following approximation is used

• Define the direct line

~ω(t) = ~ωs + t~n , (6.40)

~n = ~ωb − ~ωs , (6.41)

with t ∈ [0, 1].

• Define N + 1 equidistant steps ti =
i

N
with i = 0, . . . , N .

• For a given ti calculate the point ~ωl(ti). In the plane spanned by the point vector ~ωl(ti)
and the normal vector ~n minimise the potential on the given plane with the minimum
at ~ωp(ti) and the value of the potential Vi = V (~ωp(ti), Tc).

• Once all Vi are calculated the function Vm(t) is interpolated through the grid points
(ti|Vi). Since the broken and the symmetric minimum are degenerate at Tc the potential
values are equal and therefore Vm(0) = Vm(1) = V (~ωs, Tc) = V (~ωb, Tc).

• Calculate the maximimum Vmax of Vm(t) for t ∈ [0, 1].

• The potential barrier is then defined as

Vb = Vmax − V (~ωb, Tc) . (6.42)

Fig. 6.3 shows the squared distance between the components of ~ωp(ti) and the base point
~ωl(ti) normalised to the squared maximum value of all ~ωl(ti) and ~ωp(ti) in the corresponding
component for the parameter point given in Tab. 6.1, defined by

∆ω2
j = |ωp,j − ωl,j |2/n2

j , (6.43)

n2
j = max

t∈[0,1]

(
ω2
p,j , ω

2
l,j

)
(6.44)

for j = 1, 2,CP,CB. The charge breaking component is not shown as it is always zero and
all deviations in the distance are numerical fluctuations. While the CP-even VEVs ω1 and
ω2 do not deviate from the straight line in the tunnel path the CP-odd VEV ωCP deviates
notably from the path. To compare both tunnel paths the wall thickness, cf. Eq. (6.39), is
calculated for both paths for the parameter point given in Tab. 6.1. For a straight line the
potential barrier yields

V line
b = 2.626 · 107 GeV4 (6.45)
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Figure 6.3.: The deviation from the straight line path where ~ωl are the points along the
direct line from ~ωs to ~ωb while ~ωp are the minima in the planes as described in Sec. 6.4.
The normalisation n2

j is defined as the maximum value of all points ~ω2
l,j and ~ω2

p,j for the
corresponding component, cf. Eqs. (6.43) and (6.44).

while the bent path calculated with the approach listed above yields

Vb = 2.106 · 107 GeV4 . (6.46)

This correpsonds to the wall thickness, cf. Eq. (6.39)

Lline
W = 0.01700 GeV−1 , (6.47)

for the straight line and

LW = 0.01898 GeV−1 (6.48)

for the benth path. The relative difference of Lline
W to the wall width calculated with the bent

path is given by approximately 10%. Changing the number of steps N + 1 in the above-
described method to calculate the wall thickness from N = 10 to N = 50, on the other hand,
does not change the wall thickness beyond numerical fluctuations.

6.5. The CP-violating phase of the symmetric phase

For a non-vanishing result of the transport equations it is necessary for the source term
Eq. (6.26) to be finite. For this, it is necessary for the derivative of the CP-violating phase
θ, defined in Eq. (6.11), to be uniquely defined. While the phase in the broken phase is
uniquely defined through the finite VEVs it is not defined in the symmetric phase as the VEVs
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vanish there. It is still possible to define it shortly before before the symmetric minimum as
this recaptures the path from the broken phase to the symmetric phase. Analogous to the
calculation of the wall thickness the effective potential will be minimised in the plane with
the point vector18 ~p = ~ωs + 10−2 (~ωb − ~ωs) and the normal vector ~ωb − ~ωs. The CP-violating
phase of this minimum will be taken as the phase of the symmetric minimum. The minimum
in front of the bubble wall for the chosen numerical input, cf. Tab. 6.1, is

ωCB = 0 GeV , ω1 = 2.7667 GeV , ω2 = 6.0127 GeV , ωCP = 1.1392 GeV . (6.49)

The phase between ωCP and ω2 is

θsym = − 0.345π . (6.50)

6.6. Numerical Evaluation of the functions K1 to K9

While solving the transport equations Eq. (6.25) the functions K1 to K9, cf. Eq. (6.27)
have to be evaluated at different distances z from the wall. As the integrals in the functions
Ki do not have an analytical solution, they need to be integrated numerically. As this can
be rather time consuming, an equidistant two dimensional grid in the (m2, T ) plane with
m2 ∈ [0, (200)2] GeV2 and T ∈ [10, 250] GeV has been generated for all numerators of K1 to
K9. The grid is then interpolated using the bicubic interpolation method implemented in GSL

[198] The normalisation given in Eq. (6.28) can be calculated analytically. It is given by∫
d3p∂Ef0+(m = 0) . (6.51)

Using

E|m=0 =
√
p2 +m2|m=0 = p (6.52)

the norm can be simplified to∫
d3p∂Ef0+(m = 0) =

∫
d3p∂E

1

exp
(
E
T

)
+ 1

= 4π

∞∫
0

dEE2∂E
1

exp
(
E
T

)
+ 1

= − 4π

∞∫
0

dE
1

T

E2 exp
(
E
T

)(
1 + exp

(
E
T

))2
= − 2

3
π3T 2 . (6.53)

For the normalisation of [X], cf. Eq. (6.29), it is possible to reduce it to a function of one
parameter ∫

d3pfi,0 = 4π

∫
d|p| |p|2

exp

(√
m2

T 2 + |p|2
T 2

)
± 1

,

= 4πT 3

∞∫
0

dx
x2

exp

(√
m2

T 2 + x2

)
± 1

= T 3N2

(
m2

T 2

)
, (6.54)

18Choosing a smaller number then 10−2 yields an absolute value of the VEVs which vanishes except for numerical
fluctuations. Due to this, the phase cannot be defined uniquely in that case.
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with

N2(y) = 4π

∞∫
0

dx
x2

exp
(√

y + x2
)
± 1

. (6.55)

Using the same range for m2 and T as in the numerators of Ki, the function N2(y) has been
evaluated at N2(i), i = 0, 1, 2, . . . , 400 and interpolated with the cubic_b_spline algorithm
of Boost [96].

6.7. Calculating the Baryon Asymmetry

With the diffusion constants [122, 130]

Dt = Db =
6

T
, (6.56)

Dh =
20

T
. (6.57)

and the widths [131, 194, 195]

Γss = 4.9 · 10−4T , (6.58a)

Γy = 4.2 · 10−3T , (6.58b)

Γm =
m2
t (z, T )

63T
, (6.58c)

Γh =
m2
W (z, T )

50T
, (6.58d)

ΓW = Γtot
h , (6.58e)

the Runge-Kutta algorithm, implemented in Boost, can be used to solve the transport equa-
tions, cf. Eq. (6.25), numerically at a fixed distance z from the wall. With the chemical
potential known, the BAU ηB is given by [122, 147]

ηB =
405Γws

4π2vW g∗T

∞∫
0

dzµBL
(z) exp

(
−45Γws

4vW
z

)
, (6.59)

where g∗ = 106.75 is the effective number of degrees of freedom in the plasma [122, 147], and
Γws is the weak sphaleron rate, given by [131, 194, 195]

Γws = 10−6T . (6.60)

As the integral in Eq. (6.59) is evaluated numerically, it has to be estimated which numerical
upper limit can be used to estimate infinity. For this, the impact of the damping factor on
the integrand has to be checked. For this, the damping factor can be rewritten as

exp

(
−45Γws

4vW
z

)
= exp

(
−45× 10−6

4

LWT

vW

z

LW

)
. (6.61)

Using the thick wall approach, namely LWT > 1, and assuming typical, non-relativistic, wall
velocities of O(0.1) the damping factor is above 0.99 for distances z/LW . 90. Therefore,
in the region close to the wall Eq. (6.59) is determined by the chemical potential µBL

. To
estimate where the cutoff for the chemical potential µBL

can be set it is useful to investigate
the source term, cf. Eq. (6.26), as the system reaches equilibrium if the source term vanishes,
which vanishes if the top mass and its derivative vanishes. This is achieved if the VEVs vanish.
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Figure 6.4.: The chemical potential µBL
shown as a function of the distance z to the wall

for the numerical input given in Tab. 6.1 for vW = 0.1.

As the VEVs away from the wall are described through the kink profile, cf. Eq. (6.10), for
distances z ≥ 4LW the VEVs are below ωi(z ≥ 4LW ) . 10−4ωi, i = 1, 2,CP,CB and ωi is
the VEV in the broken minimum. This is in the area of numerical fluctuations and, therefore,
the source term can be assumed to vanish for distances of z ≥ 4LW . Therefore, the boundary
condition µBL

(z = 4LW ) = 0 has be used to solve the transport equations, cf. Eq. (6.25). It
has been tested with different limits that the choice of 4LW does not change the final result
beyond numerical fluctuations compared to choosing 3LW or 5LW .

To speed up the integration over the chemical potential µBL
it is evaluated at 101 equidis-

tant points between z = 0 and z = 4LW . The given data points were multiplied with

exp

(
−45Γws

4vW
z

)
to achieve a grid for the integrand in Eq. (6.59). This grid was interpolated

with the cubic_b_spline algorithm of Boost. This spline is then integrated with the QAGS

algorithm implemented in GSL. For the parameter point given in Tab. 6.1 the interpolation
points for µBL

are shown in Fig. 6.4. For the figure vW = 0.1 is assumed. As inserted as a
boundary condition the chemical potential vanishes for z = 4LW , but there are no contribu-
tions for the area under the shown curve for z ≥ 2LW which confirms the findings that the
choice of 4LW or 5LW for the boundary condition does not influence the final result.

While the shown result is positive, negative values of µBL
can appear. In this case, the

definition of matter and antimatter can be swapped such that the correct sign is restored.

While almost all parameters in Eq. (6.59) are derived quantities, the wall velocity vW is still
a free input19. To investigate the effect of the wall velocity vW on ηB, cf. Eq. (6.59), ηB
is shown as a function of vW in Fig. 6.5. Using the redefinition of matter and antimatter
Fig. 6.5 shows the absolute value of the BAU in the top panel. The lower panel shows the
relative difference of |ηB| to its mean value |ηB| of those parameter points in the upper figure
of Fig. 6.5. It is given by

|ηB| = 1.024552× 10−10 . (6.62)

It shows that varying the wall velocity can change the BAU by roughly 4%. As mentioned
in Sec. 6.3 there are two methods to solve the transport equations, cf. Eq. (6.25). The first

19While there are first attempts to derive the wall velocity at the EWPT through other quantities [199], the
given approach does not work for models with several scalar fields. Therefore, the wall velocity is treated as
a free input for this analysis.
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Figure 6.5.: The absolute value |ηB| of the BAU shown as a function of the bubble wall
velocity vW in the top panel. The lower panel shows the normalised difference between the
absolute value |ηB| and the mean value of |ηB| as a function of the wall velocity.

method is the replacement of the plasma velocities with Eq. (6.33) while the second one is to
assume they vanish far away from the wall [148]. For the parameter point in Tab. 6.1 both
methods are shown in Fig. 6.6. As can also be seen in Fig. 6.5 the first method, called the
differential method in Fig. 6.6, depends only weakly on the wall velocity vW . On the other
hand, solving the transport equations with u(z = ∞) = 0 yields a stronger dependence on
the wall velocity. For small wall velocities both methods yield the same order of magnitude
but for velocities vW ≥ 0.3 the latter method starts to grow exponentially. This exponential
growth indicates a numerical instability in the scheme, caused by the breakdown of some
approximations which only hold for small wall velocities. The difference in both methods
is due to the dropped terms in the derivation of Eq. (6.33). As some of these terms are
dependent on the wall velocity, the difference between the two methods also depends on the
wall velocity. For a wall velocity of vW = 0.1 the parameter point in Tab. 6.1 yields similar
BAUs calculated with the differential approach, ηd

B, and setting u(z =∞) = 0, ηuB, namely

ηd
B = 1.001500× 10−10 , (6.63)

ηuB = 1.256120× 10−10 (6.64)

which is of the same order of magnitude as the experimental constraint, cf. Eq. (6.2).

Applying the calculation to the parameter points used in Chapter 5 yields no point providing
a BAU explaining the measured value of Eq. (6.2). While the parameter space of the C2HDM
is constrained by many experimental signatures, the strongest constraint is given through the
ACME experiment with their limits on the EDM [98], limiting the amount of allowed CP-
violation in the Yukawa couplings. Additionally, previously known parameter regions with a
successful EWBG, cf. [141, 142], either have a light spectrum for all Higgs masses, including
the charged Higgs boson, which is excluded by now through several constraints, or are ruled
out by the recent EDM constraints.

6.8. Conclusion

This chapter has given a basic introduction into the calculation of the BAU and all its
necessary components in the C2HDM. For all necessary components, the given method was
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Figure 6.6.: The absolute value |ηB| of the BAU shown as a function of the bubble wall
velocity vW . The grey points (dots) show the result if Eq. (6.33) is applied while the green
points (triangle) show the result for solving Eq. (6.25) with the assumption u(z =∞) = 0.

applied to the parameter point given in Tab. 6.1 and the influence of different approaches
for the calculation of the wall thickness was discussed. The discussion on the tunnel path,
cf. Sec. 6.4, has shown the necessity to include the CP-odd VEV ωCP as a free parameter
for determining the tunnel path as the CP-even VEVs do not differ from the straight line
contrary to the CP-odd one. This results in a non-negligible difference in the wall thickness.
To solve the transport equations, cf. Sec. 6.3, a numerical method for the fast calculation
of the K−functions was given in Sec. 6.6. While no parameter point fulfilling all constraints
set in Chapter 5 provides a strong enough BAU to satisfy Eq. (6.2), the parameter point in
Tab. 6.1 shows that the model is capable of successful EWBG.





CHAPTER 7

Final Conclusion and Outlook

In this thesis, the behaviour of the vacuum structure of several extensions of the SM either
at high scale or at high temperatures has been investigated. For this a short introduction
in the SM and the chosen extensions, the R2HDM, C2HDM and N2HDM have been given
in Chapter 2. As the vacuum of the SM becomes metastable at high scales, Chapter 3
describes how the R2HDM and C2HDM provide possibilities to provide a stable vacuum and
investigates the possible regions of parameter space. The result is that the SM-like Higgs
boson in these models behaves more and more SM-like the higher the cut-off scale is set,
while other features of the models, e.g. the CP-mixing between the other two Higgs bosons
in the C2HDM, is barely limited for high cut-off scales.

To investigate the behaviour of the vacuum structure of the C2HDM and the N2HDM in the
early universe, Chapter 4 provides the theoretical basis to include finite temperature effects
at one-loop order in the effective potential. The general formalism described therein was also
used to develop the C++ Code BSMPT which allows for studies of finite temperature effects in a
specific extension of the SM by only providing the tree-level potential of the extension. With
the formalism described therein the strength of the EWPT, for given parameter points, can
be calculated. This is a crucial component in the calculation of the BAU through EWBG and
the peak frequency of gravitational waves produced through bubble collision at the EWPT.

In Chapter 5 these calculations were confronted with up-to-date theoretical and experimental
constraints in the C2HDM and N2HDM. While the neutral Higgs boson with a CP-even
admixture provide a similar spectrum, the result differs if an SFOEWPT is required. Though
both models provide parameter points compatible with up-to-date collider constraints and
an SFOEWPT, the viable parameter space is much more constrained in the C2HDM than
in the N2HDM. The determination of the coupling between three SM-like Higgs boson will
provide critical insight for the viable parameter space of EWPT in both models. While the
N2HDM still allows parameter points with a vanishing trilinear Higgs coupling, requiring an
SFOEWPT requires the trilinear couplings to be at least as large as the SM value in both
models. Yet the SFOEWPT also constrains the coupling from above, as the models allow
larger couplings without it. In total the SFOEWPT requires the absolute value of the trilinear
coupling to be at least as big as the SM expectation value but not larger than a factor of ∼ 2.3
compared to it. Therefore, once there are experimental constraints from future colliders, this
coupling can be used as an indicator whether or not SFOEWPT is possible in the given



70 7. Final Conclusion and Outlook

model. Not only the coupling between three SM-like Higgs bosons is of interest, but also the
resonant production of two SM-like Higgs boson yields the possibility to distinguish between
the models, once SFOEWPT is required as the N2HDM provides signals about a 100 times
larger than the SM while the C2HDM yields similar results to the SM.

Providing an SFOEWPT is only one of the necessary condition to generate the BAU. For
this, Chapter 6 provides the necessary ingredients for EWBG in the C2HDM. While the used
transport equations to calculate the chemical potential of the left-handed quark excess in
front of the bubble wall were already known in literature, this thesis looked into two different
possibilities to solve them, both yielding similar results. The calculation of the tunnel path of
the particles through the bubble wall is usually assumed to be a straight line. In this thesis
it was shown that the inclusion of a CP-odd VEV leads to a deviation of the tunnel path
from the straight line, yielding a difference in the wall width of about to 10% compared to
the approximation of the tunnel path through a straight line. A numerically efficient way
to calculate the tunnel path was given in this thesis. To evaluate the numerical effects the
necessary calculations have been implemented in an in-house version of BSMPT, which will be
released shortly. Through the modular setup in BSMPT, it is possible to implement different
approaches to calculate the EWBG. This could be used to compare the different approaches in
specific beyond the Standard Model realisations which, so far, has not been done in literature.
The numerical evaluation has shown that the C2HDM can provide parameter points with a
successful EWBG but due to the improved experimental constrains in flavour physics, the
exclusion limits on charged Higgs decays and the updated limits on the EDM of the electron
the calculated EWBG is not compatible anymore with up-to-date experimental constraints.

As shown in Chapter 5 the EWPT can be stronger in the N2HDM than in the C2HDM which
benefits the EWBG. The next step for a model combining EWBG with up-to-date constrains
would be therefore a combination of the C2HDM and the N2HDM by allowing the softly
Z2-breaking parameter m2

12 and λ5 in the N2HDM to be become complex. The formalism
provided in this thesis, along with the C++ code BSMPT, can be used to investigate the EWPT
of such models, while small adjustments to the transport equations have to be done by hand.
The hope is therefore that the setup provided by this thesis enables the combination of EWBG
with up-to-date collider constraints with minimal effort for future studies.



APPENDIX A

RGEs for the 2HDM

In this appendix the one-loop RGEs used in [2] and Chapter 3 for the 2HDM, cf. Eq. (2.16),
are given. The one-loop RGEs for the gauge, quartic and Yukawa couplings are taken from
[48] while the one-loop RGEs for the quadratic terms m2

ij are taken from [200]. Everything has
been cross-checked with SARAH [101–105]. For an easier notation the change of the parameter
x w.r.t. the renormalisation scale µ is defined as

βx = 16π2 ∂x

∂ lnµ
. (A.1)

The RGEs for the U(1)Y , SU(2)L and SU(3) gauge couplings (g1, g2 and gs) are given as

βg1 = 7g3
1 , (A.2)

βg2 = − 3g3
2 , (A.3)

βgs = − 7g3
s . (A.4)

To avoid FCNCs Chapter 3 investigated the type I and II scenario of the 2HDM, cf. Tab. 2.1.
For type I the RGEs for the Yukawa couplings are given by

βYu = auYu + T22Yu −
3

2

(
YdY

†
d − YuY †u

)
Yu , (A.5a)

βYd = adYd + T22Yd +
3

2

(
YdY

†
d − YuY †u

)
Yd , (A.5b)

βYe = aeYe + T22Ye +
3

2
YeY

†
e Ye . (A.5c)

For type II the RGEs for the Yukawa couplings change to

βYu = auYu + T22Yu +
1

2

(
YdY

†
d + 3YuY

†
u

)
Yu , (A.6a)

βYd = adYd + T11Yd +
1

2

(
YuY

†
u + 3YdY

†
d

)
Yd , (A.6b)

βYe = aeYe + T11Ye +
3

2
YeY

†
e Ye , (A.6c)
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where the parameters in these two cases are defined as

T11 =

{
0 type I

3Y †d Yd + Y †e Ye type II
, (A.7a)

T22 =

{
3Y †uYu + 3†dYd + Y †e Ye type I

3Y †uYu type II
, (A.7b)

and

ad = −8g2
s −

9

4
g2

2 −
5

12
g2

1 , (A.8a)

au = − 8g2
s −

9

4
g2

2 −
17

12
g2

1 , (A.8b)

ae = − 9

4
g2

2 −
15

4
g2

1 . (A.8c)

For the RGEs of the quartic and quadratic parameters of the potential, cf. Eq. (2.16), it is
useful to define the anomalous dimensions as

γ1 =
9

4
g2

2 +
3

4
g2

1 − T11 , (A.9a)

γ2 =
9

4
g2

2 +
3

4
g2

1 − T22 . (A.9b)

With this, in type I the RGEs for the quartic parameters are

βλ1 = 12λ2
1 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2|λ5|2 +

9

4
g4

2 +
3

2
g2

2g
2
1 +

3

4
g4

1 − 4γ1λ1 , (A.10a)

βλ2 = 12λ2
2 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2|λ5|2 +

9

4
g4

2 +
3

2
g2

2g
2
1 +

3

4
g4

1 − 4γ2λ2

− 12Tr
[
Y †d YdY

†
d Yd + Y †uYuY

†
uYu

]
− 4Tr

[
Y †e YeY

†
e Ye

]
, (A.10b)

βλ3 = (λ1 + λ2) (6λ3 + 2λ4) + 4λ2
3 + 2λ2

4 + 2|λ5|2

+
9

4
g4

2 −
3

2
g2

2g
2
1 +

3

4
g4

1 − 2 (γ1 + γ2)λ3 , (A.10c)

βλ4 = 2 (λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 8|λ5|2 − 2 (γ1 + γ2)λ4 + 3g2

2g
2
1 , (A.10d)

βλ5 = 2 (λ1 + λ2 + 4λ3 + 6λ4)λ5 − 2 (γ1 + γ2)λ5 . (A.10e)

In type II the RGEs are given by

βλ1 = 12λ2
1 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2|λ5|2 +

9

4
g4

2 +
3

2
g2

2g
2
1 +

3

4
g4

1 − 4γ1λ1

− 12Tr
[
Y †d YdY

†
d Yd

]
− 4Tr

[
Y †e YeY

†
e Ye

]
, (A.11a)

βλ2 = 12λ2
2 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2|λ5|2 +

9

4
g4

2 +
3

2
g2

2g
2
1 +

3

4
g4

1 − 4γ2λ2

− 12Tr
[
Y †uYuY

†
uYu

]
, (A.11b)

βλ3 = (λ1 + λ2) (6λ3 + 2λ4) + 4λ2
3 + 2λ2

4 + 2|λ5|2

+
9

4
g4

2 −
3

2
g2

2g
2
1 +

3

4
g4

1 − 2 (γ1 + γ2)λ3 − 12Tr
[
Y †d YdY

†
uYu

]
, (A.11c)

βλ4 = 2 (λ1 + λ2)λ4 + 8λ3λ4 + 4λ2
4 + 8|λ5|2 − 2 (γ1 + γ2)λ4 + 3g2

2g
2
1

+ 12Tr
[
Y †d YdY

†
uYu

]
, (A.11d)

βλ5 = 2 (λ1 + λ2 + 4λ3 + 6λ4)λ5 − 2 (γ1 + γ2)λ5 . (A.11e)
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The RGEs of the quadratic parameters are given by

βm2
11

= 6λ1m
2
11 + (4λ3 + 2λ4)m2

22 − 2γ1m
2
11 , (A.12a)

βm2
22

= (4λ3 + 2λ4)m2
11 + 6λ2m

2
22 − 2γ2m

2
22 , (A.12b)

βm2
12

= (2λ3 + 4λ4)m2
12 + 6λ5

(
m2

12

)∗ − (γ1 + γ2)m2
12 , (A.12c)

where
(
m2

12

)∗
denotes the complex conjugate of m2

12.

It is important to note that the RGE for the imaginary part of λ5, cf. Eqs. (A.10e) and (A.11e),
is proportional to =(λ5) at the input scale. Therefore, if λ5 is real at the input scale, it will
be real at all scales. Furthermore, the RGE of the imaginary part of m2

12, cf. Eq. (A.12c),
can be simplified to

β=m2
12

= (2λ3 + 4λ4 − γ1 − γ2)=m2
12 + 6

(
<m2

12=λ5 −=m2
12<λ5

)
. (A.13)

Therefore, if m2
12 and λ5 are real at the input scale, they both will stay real at all scales.

For the numerical values at the input scale, the following relations were used

gs =
√

4παs , (A.14a)

g2 =
2mW

v
, (A.14b)

g1 = 2

√
m2
Z −m2

W

v
, (A.14c)

Yu =

√
2

v2


mu 0 0

0 mc 0

0 0 mt

 , (A.14d)

Yd =

√
2

vd
VCKM


md 0 0

0 ms 0

0 0 mb

V †CKM , (A.14e)

Ye =

√
2

ve


me 0 0

0 mµ 0

0 0 mτ

 , (A.14f)

VCKM = 13×3 , (A.14g)

where αs = g2
s/(4π) is the strong coupling constant. The VEVs in type I are given by

ve = vd = v2 , (A.15)

and in type II

ve = vd = v1 . (A.16)
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The fermion masses are chosen as [201–204]

mu = 0.1 GeV , (A.17a)

mc = 1.51 GeV , (A.17b)

mt = 172.5 GeV , (A.17c)

md = 0.1 GeV , (A.17d)

ms = 0.1 GeV , (A.17e)

mb = 4.92 GeV , (A.17f)

me = 0.51099892810−3 GeV , (A.17g)

mµ = 0.1056583715 GeV , (A.17h)

mτ = 1.77682 GeV . (A.17i)

The numerical value of the VEV is given by [20]

GF = 1.1663787 · 10−5 GeV−2 , (A.18a)

v =
1√√
2GF

≈ 246.22 GeV , (A.18b)

and the strong coupling is [20]

αs = 0.119 . (A.19)

The W and Z boson masses are given by [201, 202]

mW = 80.385 GeV , (A.20)

mZ = 91.1876 GeV . (A.21)

The input scale was chosen to be the Z-boson mass mZ .



APPENDIX B

Counterterm potential for the C2HDM and N2HDM

As described in Chapter 4 the parameters of the counterterm potential are derived by the
equations

∂φi
(
V CW + V CT

)∣∣
φk=〈φk〉(T=0)

=0 , (B.1a)

∂φi∂φj
(
V CW + V CT

)∣∣
φk=〈φk〉(T=0)

=0 , (B.1b)

where φk = 〈φk〉 (T = 0) is the electroweak minimum of the tree-level potential with i, j, k =
1 . . . nHiggs at vanishing temperature. These relations enforce that the minimum of the tree-
level potential is still a local minimum at NLO with the same masses and mixing angles. The
necessary derivatives of the Coleman-Weinberg potential are given in [165]. For the remainder
of this chapter, the following abbreviation is used

NCW
φi

=∂φiV
CW , (B.2)

HCW
φi,φj

=∂φi∂φjV
CW . (B.3)

The solution of Eq. (B.1) is given in Appendix B.1 for the C2HDM and for the N2HDM
in Appendix B.2. Evaluating the derivatives of the Coleman-Weinberg potential leads to
infrared divergences for the Goldstone bosons in the Landau gauge [143, 163, 165, 205–207].
To cure these divergences Appendix B.3 introduces modifications to the derivatives in [165]
resulting in finite results.

B.1. The counterterm potential of the C2HDM

Applying Eq. (4.62) to the C2HDM, cf. Eq. (2.16), the counterterm potential reads

V CT =δm2
11Φ†1Φ1 + δm2

22Φ†2Φ2 − 2δ<(m2
12)<

(
Φ†1Φ2

)
+ 2δ=

(
m2

12

)
=
(

Φ†1Φ2

)
+
δλ1

2

(
Φ†1Φ1

)2
+
δλ2

2

(
Φ†2Φ2

)2
+ δλ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ δλ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+ δ<λ5<

((
Φ†1Φ2

)2
)
− δ=λ5=

((
Φ†1Φ2

)2
)

+ δT1 (ζ1 + ω1) + δT2 (ζ2 + ω2) + δTCP (ψ2 + ωCP) + δTCB (ρ2 + ωCB) . (B.4)
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Here ωi, i = 1, 2,CP,CB are the VEVs of the real fields ζ1, ζ2, ψ2, ρ2 of the doublets, cf.
Eq. (2.17). Solving Eq. (B.1) yields the one-dimensional space of solutions for the countert-
erms of the parameters of V CT, given by

δm2
11 =

1

2

[
HCW
ζ1,ζ1 + 2HCW

ρ1,ρ1 +
v2

v1

(
HCW
ζ1,ζ2 −HCW

η1,η2

)
− 5HCW

ρ1,ρ1

]
+ v2

2t , (B.5a)

δm2
22 =

1

2

[
HCW
ζ2,ζ2 − 3HCW
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δλ4 =t , (B.5g)
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(
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−HCW
ρ1,ρ1
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+ t , (B.5h)

δ=(λ5) =− 2
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2

HCW
ζ1,ψ1

, (B.5i)

δ=(m2
12) =−HCW

ζ1,ψ2
− 2

v1

v2
HCW
ζ1,ψ1

, (B.5j)

δT1 =HCW
η1,η2v2 +HCW

ρ1,ρ1v1 −NCW
ζ1 , (B.5k)

δT2 =HCW
η1,η2v1 +HCW

η2,η2v2 −NCW
ζ2 , (B.5l)

δTCP =
v2

1

v2
2

HCW
ζ1,ψ1

+HCW
ζ1,ψ2

−NCW
ψ2

, (B.5m)

δTCB =−NCW
ρ2 , (B.5n)

where t ∈ R describes the free parameter in the one-dimensional space of solutions.

Inserting the electroweak minimum, cf. Eq. (2.29), yields that Eq. (B.4) is independent of
t, therefore, t is set to zero. The counterterms of the tadpole parameter δT do not have
a counterpart in the tree-level potential. Therefore, if no symmetry is broken at one-loop,
vanishing one-loop Tadpoles as a check of the implementation of the equations. In the limit of
CP-conservation, cf. Eq. (2.48), the mixed second-order derivatives of the Coleman-Weinberg
potential w.r.t. one CP-even and one CP-odd field vanishes. Therefore, the counterterms
δ=(λ5) and δ=(m2

12) vanish and no CP-violation is introduced through one-loop effects if the
potential is CP-conserving at tree level.
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B.2. The counterterm potential of the N2HDM

Applying Eq. (4.62) to the N2HDM, the counterterm potential reads

V CT =δm2
11Φ†1Φ1 + δm2

22Φ†2Φ2 − δm2
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(
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2
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(
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2
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(
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2
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(
Φ†1Φ1

)
Φ2
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2

(
Φ†2Φ2

)
Φ2
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+ δT1(ζ1 + ω1) + δT2(ζ2 + ω2) + δTCP(ψ2 + ωCP)

+ δTCB(ρ2 + ωCB) + δTS(ζS + ωS) . (B.6)

Here ωi, i = 1, 2,CP,CB, S are the VEVs of the real fields ζ1, ζ2, ψ2, ρ2, ζS of the doublets, cf.
Eqs. (2.17) and (2.75).

Solving Eq. (B.1) yields the two-dimensional space of solutions for the counterterms of the
parameters of V CT, given by
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δTCB = −NCW
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where tH , tS ∈ R describe the free parameters in the two-dimensional space of solutions. As
tH equals the free parameter t in the counterterms for the C2HDM, cf. Eq. (B.5), the same
argumentation can be used to set tH = 0 as Eq. (B.6) is independent of tH after inserting
the electroweak minimum, cf. Eq. (2.77). The counterterms of the tadpole parameter δT
do not have a counterpart in the tree-level potential. Therefore, if no symmetry is broken
at one-loop, vanishing one-loop Tadpoles as a check of the implementation of the equations.
As δTS is given by the free parameter tS it can be set to zero as it is not needed to solve
Eq. (B.1).

B.3. Modifications to the Derivatives of the Coleman-Weinberg
potential

The calculation of the second and third derivative, used in the calculation of the trilinear self
couplings, of the Coleman-Weinberg potential [165] includes the evaluation of the function

f
(1)
ab =

m2
a log

(
m2

a
µ2

)
−m2

b log
(
m2

b
µ2

)
m2
a −m2

b

, (B.8)
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2
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a −m2
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)
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m2

c
µ2

)
(
m2
a −m2

b

)
(m2

a −m2
c)
(
m2
b −m2

c

) . (B.9)

If at least two masses are degenerate and vanish, these functions would diverge. This diver-
gence is known in the literature [165, 206, 207]. However, these divergences can be understood
as an artefact of the vanishing momenta approximation in the Coleman-Weinberg potential
and do not appear if these calculations are performed including all momentum dependent
parts [165, 207, 208]. Taking the limit of vanishing momenta of the diagrammatic approach
in [209, 210], the second and third derivatives yield finite result. To recreate those results
the limits of degenerate masses of Eqs. (B.8) and (B.9) are taken and the diverging parts are
omitted. Evaluating Eq. (B.8) in the limit of two degenerate masses yields

f (1)
aa = lim

m2
b→m2

a

f
(1)
ab = 1 + log

(
m2
a

µ2

)
. (B.10)

Dropping the divergent part for the limit m2
a → 0 then yields

lim
m2

a→0
f (1)
aa = 1 . (B.11)

Taking the limits of degenerate masses in Eq. (B.9) yields
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f (1)
aaa = lim
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a

f (1)
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1

2m2
a

. (B.13)

Taking the limits of vanishing masses and dropping the divergent parts results in the final
parts

lim
m2

a→0
f (1)
aac =

log
(
m2

c
µ2

)
− 1

m2
c

, (B.14)

lim
m2

a→0
f (1)
aaa = 0 . (B.15)

The limits Eqs. (B.11), (B.14) and (B.15) are implemented in BSMPT [4] to evaluate the second
and third derivatives of the Coleman-Weinberg potential.
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[207] J. Elias-Miró, J. R. Espinosa, and T. Konstandin. “Taming infrared divergences in the
effective potential”. In: Journal of High Energy Physics 2014.8 (2014). doi: 10.1007/
jhep08(2014)034.

[208] J.A. Casas, J.R. Espinosa, M. Quirós, and A. Riotto.“The lightest Higgs boson mass in
the Minimal Supersymmetric Standard Model”. In: Nuclear Physics B 436.1-2 (1995),
pp. 3–29. doi: 10.1016/0550-3213(94)00508-c.

[209] Marcel Krause, Robin Lorenz, Margarete Mühlleitner, Rui Santos, and Hanna Ziesche.
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