
ÉCOLE NATIONALE
SUPÉRIEURE
D’INFORMATIQUE
ET DE MATHÉMATIQUES
APPLIQUÉES GRENOBLE

KARLSRUHE INSTITUT
FÜR TECHNOLOGIE

MASTER THESIS

Hierarchical Task Network Planning
Using SAT Techniques

Author:
Dominik Pascal SCHREIBER

Supervisors:
Dr. Damien PELLIER,

Dr. Humbert FIORINO

For the degree of
Master of Science in Informatics at Grenoble

Master Informatique, Université Grenoble Alpes
Specialization Graphics, Vision and Robotics

In a double degree with
Informatik M.Sc., Karlsruhe Institut für Technologie

Performed at
MAGMA, Laboratoire d’Informatique de Grenoble

Defended before a jury composed of
James Crowley, President

Damien Pellier
Humbert Fiorino

Marc Métivier
Dominique Vaufreydaz

June 25, 2018

http://www.dominikschreiber.de

iii

Declaration of Authorship
I, Dominik Pascal SCHREIBER, declare that this thesis titled “Hierarchical Task Net-
work Planning Using SAT Techniques” and the work presented in it are my own. I
confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

v

ENSIMAG, KIT

Abstract
Hierarchical Task Network Planning Using SAT Techniques

by Dominik Pascal SCHREIBER

Automated planning is useful for a wide range of general decision-making processes
in the area of Artificial Intelligence. The solving approach of encoding a planning
problem into propositional logic and finding a solution with a SAT solver is a well-
established method. Likewise, a planning model called Hierarchical Task Networks
(HTN) which enhances planning problems with expert knowledge can help to find
structured plans more easily and efficiently. This work focuses on combining these
techniques by using SAT solving techniques to resolve HTN planning problems.

Initially, a previous approach to encode HTN problems in SAT is analyzed, and
various shortcomings are identified from today’s perspective. Then, three original
encodings are proposed: Grammar-Constrained Tasks (GCT) which is inspired by one
of the previous encodings and is the first to feature modern HTN domains and re-
cursive task relationships; Stack Machine Simulation (SMS) which is designed for in-
cremental SAT solving and works reliably on all special cases; and Tree-like Reduction
Exploration (T-REX) which leads to a particularly efficient solving process due to its
short amount of needed iterations and various introduced optimizations. All encod-
ings are implemented to exploit existing HTN grounding routines, and the T-REX
approach features a novel abstract formula notation and an efficient Interpreter ap-
plication tailored to the encoding. In addition, an Anytime plan length optimization
within T-REX is proposed.

Experiments show that SMS dominates GCT and that T-REX dominates SMS.
The proposed T-REX planning framework outperforms a state-of-the-art classical
SAT planner on various domains. Regarding run times, T-REX cannot compete with
state-of-the-art HTN planners yet, but is still an appealing planning approach due
to its robustness, its plan length optimization, and its proving abilities.

By the design, implementation and evaluation of T-REX, the work at hand
demonstrates that HTN planning via SAT solving is a viable option and worthy of
the attention of future research.

HTTP://ENSIMAG.GRENOBLE-INP.FR/
HTTP://KIT.EDU

vi

Résumé

Planification Hierarchical Task Network à l’aide des techniques SAT

La planification automatisée est utile pour un large éventail de processus déci-
sionnels généraux dans le domaine de l’intelligence artificielle. L’approche de ré-
solution consistant à coder un problème de planification en logique proposition-
nelle et à trouver une solution à l’aide d’un solveur SAT est une méthode bien
établie. Parallèlement, un modèle de planification appelé Hierarchical Task Net-
works (HTN) a été developpé pour améliorer la résolution des problèmes de plan-
ification grâce à l’ajout de connaissances particulières. Le travail de ce memoire se
concentre sur la combinaison de ces techniques en utilisant les techniques de résolu-
tion SAT pour résoudre les problèmes de planification HTN.

Dans un premier temps, nous analysons une approche précédente des en-
codages des problèmes HTN dans SAT. Diverses lacunes sont identifiées du point
de vue d’aujourd’hui. Ensuite, trois encodages originaux sont proposés: Grammar-
Constrained Tasks (GCT), qui s’inspire de l’un des encodages précédents et est le pre-
mier à proposer des domaines HTN modernes et des relations de tâches récursives;
Stack Machine Simulation (SMS), qui est conçu pour la résolution SAT incrémentale
et fonctionne de manière fiable; et Tree-like Reduction Exploration (T-REX), qui pro-
pose un processus de résolution particulièrement efficace en raison du nombre ré-
duit d’itérations nécessaires et des diverses optimisations introduites. Tous les en-
codages sont implémentés pour exploiter des problèmes HTN complètement instan-
tiés, et l’approche T-REX comporte une nouvelle formule de notation abstraite et une
application d’interprétation efficace adaptée à l’encodage. De plus, une optimisation
anytime de la longeur du plan dans T-REX est proposée.

Les expériences montrent que SMS domine GCT et que T-REX domine SMS.
Le cadre de planification T-REX proposé surpasse un planificateur SAT classique
de pointe sur divers domaines. En ce qui concerne les durées d’exécution, T-REX
ne peut pas encore rivaliser avec les planificateurs HTN les plus récents, mais
demeure une approche de planification attrayante en raison de sa robustesse, de
l’optimisation de la longueur du plan et de ses capacités à faire ses preuves.

Par la conception, la mise en œuvre et l’évaluation de T-REX, le travail en cours
démontre que la planification HTN via SAT solving est une option viable et digne
de l’attention de recherche future.

vii

Kurzfassung

Hierarchical Task Network Planung unter Verwendung von SAT-Techniken

Automatisiertes Planen hat sich für eine Vielzahl von allgemeinen Entschei-
dungsprozessen im Bereich der Künstlichen Intelligenz bewährt. Eine etablierte
Methode ist dabei, ein Planungsproblem in Aussagenlogik zu kodieren und eine
Lösung mit einem SAT-Solver zu finden. Ebenso kann ein Planungsmodell na-
mens Hierarchical Task Networks (HTN), welches Planungsprobleme mit Experten-
wissen erweitert, dabei helfen, einfacher und effizienter strukturierte Pläne zu
finden. Die vorliegende Arbeit konzentriert sich auf die Kombination dieser Tech-
niken, namentlich auf den Einsatz von SAT-Techniken zur Lösung von HTN-
Planungsproblemen.

Zunächst wird ein ehemaliger Ansatz zur Kodierung von HTN-Problemen in
SAT analysiert, und verschiedene Mängel aus heutiger Sicht werden identifiziert.
Daraufhin werden drei neuartige Kodierungen vorgeschlagen: Grammar-Constrained
Tasks (GCT), die von einer der ehemaligen Kodierungen inspiriert ist und erstmalig
moderne HTN-Domänen und rekursive Subtask-Beziehungen unterstützt; Stack Ma-
chine Simulation (SMS), die für inkrementelles SAT-Solving ausgelegt ist und in allen
Sonderfällen zuverlässig funktioniert; und Tree-like Reduction Exploration (T-REX),
die aufgrund der geringen Anzahl nötiger Iterationen und diversen Optimierungen
zu einem besonders effizienten Lösungsprozess führt. Alle Kodierungen wurden
unter Verwendung bestehender HTN-Grounding-Routinen implementiert, und der
T-REX-Ansatz verwendet eine neuartige abstrakte Formel-Notation und eine auf die
Kodierung zugeschnittene Interpreter-Anwendung. Zusätzlich wird eine Anytime-
Planlängenoptimierung innerhalb von T-REX präsentiert.

Experimente zeigen, dass GCT von SMS dominiert wird und SMS von T-REX
dominiert wird. Das entwickelte T-REX-Framework unterbietet die Laufzeiten
klassischer SAT-Planer auf verschiedenen Domänen. T-REX kann noch nicht
die Laufzeiten eines modernen HTN-Planers erreichen, ist aber aufgrund seiner
Robustheit, seiner Planlängenoptimierung und seiner Beweis-Fähigkeiten dennoch
ein attraktiver Planungsansatz.

Durch die Konzeption, Implementierung und Evaluation von T-REX zeigt die
vorliegende Arbeit, dass HTN-Planung per SAT-Solving eine praktikable Option ist
und die Aufmerksamkeit zukünftiger Forschung verdient.

ix

Acknowledgements

I would like to thank my project advisors, namely Damien Pellier and Humbert
Fiorino, for their continuous and encouraging support.
I would also like to thank Tomáš Balyo for externally supervising the project on the
part of the KIT and specifically for providing helpful tips, IPASIR bindings to vari-
ous SAT solvers and the encoding notation DimSpec, all of which I thankfully used
and built upon.
Additionally, I would like to thank Abdeldjalil Ramoul for very helpful and insight-
ful discussions and for his support regarding the preprocessing code.

xi

Contents

Declaration of Authorship iii

Abstract (English, French, German) v

Acknowledgements ix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Methodology and Results . 2
1.3 Document summary . 3

2 Background and Related Work 5
2.1 Automated Planning . 5

2.1.1 HTN Planning . 5
2.2 SAT Solving . 6

2.2.1 Incremental SAT Solving . 7
2.2.2 Planning via SAT . 7

2.3 SAT Encodings for HTN Planning . 8

3 Model and Problem Statement 9
3.1 System model . 9
3.2 Problem statement . 11
3.3 Restrictions of the model . 13

4 1st Contribution: GCT Encoding 15
4.1 Discussion of previous encodings . 15
4.2 GCT Encoding . 16

4.2.1 Classical Planning clauses . 16
4.2.2 Initial task network clauses . 17
4.2.3 Task reduction clauses . 18

4.3 Analysis and comments . 19

5 2nd Contribution: SMS Encoding 21
5.1 Abstract description . 21
5.2 Realization . 21

5.2.1 Initial state clauses . 22
5.2.2 Goal state clauses . 22
5.2.3 Universal clauses . 22
5.2.4 Transitional clauses . 23
5.2.5 Variants . 24

5.3 Analysis . 24
5.3.1 Termination and correctness . 24
5.3.2 Complexity . 25

5.4 Discussion . 25

xii

6 3rd Contribution: T-REX Encoding and Instantiation 27
6.1 Abstract description . 27
6.2 Clauses . 28

6.2.1 Initial state clauses . 28
6.2.2 Universal clauses . 28
6.2.3 Goal state clauses . 29
6.2.4 Transitional clauses . 29

6.3 Realization . 30
6.3.1 Sparse Element Encoding . 30
6.3.2 Efficient Encoding and Instantiation 30
6.3.3 Encoding optimizations . 31

6.4 Plan optimization . 33
6.5 Analysis . 34

6.5.1 Termination and correctness . 34
6.5.2 Complexity of clauses and variables 34

7 Implementation 35
7.1 HTN-SAT . 35

7.1.1 Abstract description . 35
7.2 T-REX Interpreter . 35

7.2.1 Abstract description . 36
7.2.2 Encoding format . 36
7.2.3 Dependencies . 37

7.3 Experiments . 37
7.3.1 Methodology . 37
7.3.2 Validation . 38
7.3.3 Hardware and software set-up 38
7.3.4 T-REX parameter tuning with ParamILS 38

8 Evaluation 39
8.1 Parameter tuning of T-REX . 39

8.1.1 Considered parameters . 39
8.1.2 Results . 40

8.2 Benchmarks of GCT, SMS, and T-REX 40
8.2.1 Results . 40

8.3 Benchmarks of T-REX vs. Madagascar 42
8.3.1 Results . 42

8.4 Comparing T-REX to conventional HTN planning 45
8.5 T-REX Plan optimization . 46

8.5.1 Results . 46
8.6 Conclusion of Evaluation . 48

9 Conclusion and Outlook 49
9.1 Conclusion . 49
9.2 Outlook . 50

A At-Most-One Encodings 51

B Supplementary Evaluation Graphs 53

Bibliography 57

xiii

List of Figures

3.1 Exemplary hierarchy of a task from the Rover domain 12

5.1 Illustration of transitions between computational steps in the SMS en-
coding . 22

6.1 Illustration of the transitions between computational steps in the T-
REX encoding . 27

7.1 Pipeline of solving a planning problem with the T-REX approach . . . 36

8.1 Experimental comparison of the proposed encodings 41
8.2 Comparison of T-REX with Madagascar configurations 43
8.3 Comparison of T-REX on the Rover domain with and without method

preconditions . 46
8.4 Illustration of the T-REX plan optimization process 47

B.1 Domain-dependent run times of compared encodings 53
B.2 Domain-dependent plan lengths found with compared encodings . . . 54
B.3 Domain-dependent run times of tuned T-REX and Madagascar variants 54
B.4 Domain-dependent plan lengths found with tuned T-REX and Mada-

gascar variants (excluding Incplan-patched variant) 55
B.5 Run times and found plan lengths of two search strategies of T-REX

plan length optimization . 55

xv

List of Tables

8.1 Total run time scores of the proposed encodings 41
8.2 Total plan length scores of the proposed encodings 42
8.3 Amount of solved instances of T-REX vs. Madagascar 43
8.4 Total run time scores of T-REX vs. Madagascar 43
8.5 Total plan length scores of T-REX vs. Madagascar 44

1

Chapter 1

Introduction

In the following, an introduction to the topic at hand is provided, and a general
overview of the structure and content of this report is given.

1.1 Motivation and Background

The topic of automated planning has been of great research interest for a long time,
and by today’s technological advancements it has become more relevant than ever.
The objective of a machine being able to autonomously find a viable sequence of
doable tasks in order to fulfill some given goal is very generic and universal. For this
reason, a broad range of application domains are interested in automated planning,
such as spacecraft control (Fukunaga et al., 1997), autonomous robotics (Raja and
Pugazhenthi, 2012), logistics (García et al., 2013), and many more areas making use
of artificial intelligence and general decision-making processes.

For instance, this great diversity of applications can be seen in the various bench-
mark domains which are commonly used in automated planning. One set of prob-
lems describes a set of rovers which have to gather and report various soil, rock, and
image data which is spread across a virtual map of waypoints. Another problem
set models a robotic barman which needs to mix and serve a set of cocktails to its
customers. Other benckmark domains include stacking blocks in some correct man-
ner, finding flight routes between a set of cities, or planning the logistics of a set of
transporters.

As automated planning is a challenging task which often becomes limited by
the available computational resources, research focuses on rendering the planning
process as efficient as possible. For this reason, a number of techniques, both for
modeling planning problems and for solving the resulting problem statements,
have been successfully introduced in the past decades.

An important planning model which may greatly improve the planning process is
called Hierarchical Task Network (HTN) planning. The central idea in HTN planning
is to make use of expert knowledge about the problem domain at hand, provided
once by human interactors. This expert knowledge, given in the form of a hierarchy
of possible task reductions, is then used by an automated planner to find a concrete
plan for an abstract objective. As HTN planning domains provide much more
structure about the problem than any classical formulation which only contains
primitive actions, the space of possible solutions to search is usually significantly
smaller, rendering the planning process faster and less resource-demanding.

On the side of solving conventionally modeled planning problems, logical methods
have been introduced to automated planning with great success. The paradigm of
SAT solving is based on the principle of rephrasing a problem in propositional logic,

2 Chapter 1. Introduction

and then using well-developed methods to solve this logical formula. In practice,
this is performed by encoding a planning problem into a set of boolean variables
constrained by only using the fundamental logical operators ∧,∨,¬ in some appro-
priate manner. As soon as this is achieved, one of the highly efficient SAT solvers
which have emerged during the last decades (e.g. Eén and Sörensson, 2003; Aude-
mard and Simon, 2009; Biere, 2013) can be used to find a satisfying assignment for
the encoded formula. A decoding process can then transform the solution back to
the original problem, yielding a valid plan.

SAT solving is an appealing approach to automated planning for a number
of reasons. All of the “heavy work” of the planning process is performed by an
external algorithm which is implemented efficiently, and instead of having the need
to develop domain-specific heuristics, a SAT solver uses its own, universal heuristics
based on various properties of the formula. Consequently, any improvement done
in the field of efficient SAT solving may also directly improve a SAT-based planning
process.

Interestingly, while both the HTN modeling of planning problems and the SAT solv-
ing approach have been widely used, few scientific research has been done on com-
bining these techniques, namely on solving HTN planning problems via SAT solv-
ing. The last published effort to find a propositional logic encoding for HTN plan-
ning domains (Mali and Kambhampati, 1998) features classical SAT encoding tech-
niques which have since then become outdated in the domain of classical planning,
as more efficient alternatives have gained popularity. However, by the introduction
of efficient grounding procedures of HTN domains (Ramoul et al., 2017), a viable
foundation has been created for revisiting the topic of HTN-to-SAT encodings.

To exploit the merits of SAT-based planning also for HTN domains, the work at
hand focuses on finding efficient encodings of HTN planning problems in proposi-
tional logic, with their practical applicability in mind.

1.2 Methodology and Results

In the following, the general methodology of the work at hand is explained, and the
central results are provided in a compact manner.

As a point of departure, the first and only published HTN-to-SAT encodings
(Mali and Kambhampati, 1998) have been analyzed. From this point, multiple iter-
ations of the following scientific procedure have been performed: In each iteration,
the central shortcomings of the previous encoding have been identified, and some
promising idea mending these shortcomings has been applied to design a new en-
coding. This encoding has then been implemented and evaluated in an explorative
manner in order to quickly assess the encoding’s potential. When an encoding has
been fully engineered, theoretically analyzed, and proven to work correctly and ef-
ficiently, it concluded an iteration.

In total, three such cycles have been gone through, resulting in the three respec-
tive contributions presented in Chapters 4, 5, and 6. Each of these contributions
dominates its predecessor. The encoding Grammar-Constrained Clauses (GCT) is
the first to introduce modern HTN preprocessing to SAT-based planning and the
first encoding to feature recursive task relationships (Chapter 4). The next encod-
ing Stack Machine Simulation (SMS) is specifically designed for incremental SAT
solving, leading to a more efficient solving process and a more compact encoding

1.3. Document summary 3

representation (Chapter 5). The final contribution, named Tree-like Reduction Ex-
ploration (T-REX), is a carefully engineered enhancement of the idea of SMS and an
overall satisfying solution to the stated problem (Chapter 6).

After this design stage, thorough and reliable experimental evaluations of the
developed approaches have been conducted using problem benchmarks from the
International Planning Competition (IPC)1. The encodings are experimentally com-
pared to one another, confirming the superiority of T-REX over its predecessors. T-
REX is then evaluated in-depth concerning its choice of encoding parameters by us-
ing an automatic parameter tuning framework. The performances of T-REX are also
compared to state-of-the-art classical SAT planning in order to validate the usage of
the proposed HTN-SAT technique over just making use of classical SAT planning.

The evaluations yielded that the T-REX approach may well compete with state-
of-the-art classical SAT planning, but it does not achieve run times on par with state-
of-the-art HTN planning yet. Still, T-REX is an appealing planning approach because
of its robustness, its proving abilities and an integrated plan optimization technique.
Overall, the results are highly encouraging for further research into this direction.

1.3 Document summary

In the following, a compact summary of each included chapter is provided.
Chapter 1 introduces the general topic and provides information on the structure

of the work and the report.
In Chapter 2, the thematical background to the work is presented and important

related work is discussed. In particular, a brief overview of classical planning and
HTN planning as well as on the foundations of modern SAT solving and particularly
incremental SAT solving is provided.

Chapter 3 states the formal model and problem statement which is used through-
out the report. Concise formal definitions are provided in order to clearly refer to
the according structures of Hierarchical Task Networks.

In Chapter 4, a previous contribution by Mali and Kambhampati, 1998 is dis-
cussed. The encodings proposed there have a polynomial complexity of variables
and clauses, and they do not support recursive reductions, which proves to be a sig-
nificant restriction. A new encoding named Grammar-Constrained Clauses (GCT)
based on the most applicable of the previous encodings is then proposed, mend-
ing the shortcomings of the previous encodings and thus enabling the use of effi-
cient existing HTN grounding procedures (Ramoul et al., 2017). The GCT encoding
has a lower complexity than the one stated in the original publication, but still is
an asymptotically quite complex encoding and neglects some subtle special cases.
The conclusion of this first contribution is that some significantly different and more
lightweight way of encoding the HTN constraints must be found in order to render
HTN planning via SAT techniques viable.

Building on the previous chapter, an incremental encoding approach is pro-
posed, analyzed and discussed in Chapter 5. The Stack Machine Simulation (SMS)
encoding is based on the idea of maintaining the entire “active hierarchy” at each
computational step within a stack encoded in propositional logic. SMS uses the Dim-
Spec notation (Gocht and Balyo, 2017) for efficient incremental SAT solving, is more
lightweight than the GCT encoding, and works reliably on all considered special
cases. However, its encoding framework renders the approach inflexible towards
optimizations, and its completeness is limited by a parameter (the maximal stack

1See http://icaps-conference.org/index.php/Main/Competitions.

http://icaps-conference.org/index.php/Main/Competitions

4 Chapter 1. Introduction

size which is being encoded). Furthermore, the computation induced by the SMS
encoding takes a high amount of computational steps, in particular more than any
classical planning encoding. Overall, the SMS encoding is a significant improve-
ment over GCT in every aspect, but in total still leaves to be desired regarding its
efficiency and practical usability.

Chapter 6 presents the most efficient and viable option beneath the proposed
encodings: The Tree-like Reduction Exploration (T-REX) encoding can be incremen-
tally extended along the depth of the considered hierarchy instead of the length of
the final plan, and is able to reduce all occurring task reductions in a simultaneous
manner at each computational step. These properties lead to a fast solving process
with very few incremental iterations needed. T-REX is realized by an abstract encod-
ing notation tailored to the problem and interpreted by a separate application which
can instantiate the required clauses just as needed. Additionally, the encoding has
been optimized by a number of techniques which effectively reduce the amount of
required variables and clauses, such as a sparse encoding of variables representing
facts and decompositions. T-REX also features an optional post-processing stage
wherein an initially found plan may be efficiently optimized regarding its length.
A logical structure counting the plan length is introduced which enables restricting
certain plan lengths by iteratively setting assumptions and executing the SAT solver.

Some relevant details about the implementation of the proposed methods are
given in Chapter 7, in particular about the two implemented applications HTN-
SAT (to encode HTN planning problems in SAT and perform planning using a SAT
solver) and the T-REX Interpreter (to interpret a T-REX encoding file and solve it by
directly communicating with a SAT solver). The implementation of the conducted
experiments is described as well.

In Chapter 8, thorough evaluations of the developed methods are presented.
First, the T-REX approach is tuned using the popular automatic tuning framework
ParamILS (Hutter et al., 2009), leading to a certain encoding variant which gener-
ally performs well on the considered problems. Afterwards, all proposed encod-
ing approaches are experimentally evaluated and compared to one another, and the
best found configuration of T-REX is compared to the state-of-the-art classical SAT
planner Madagascar (Rintanen, 2014) which does not make use of any hierarchical
information.

It is seen that SMS clearly outperforms GCT, and that T-REX significantly dom-
inates SMS. Furthermore, T-REX outperforms Madagascar on some of the problem
domains, validating the use of T-REX over classical SAT planning approaches. The
results are discussed while taking into account the most relevant properties of indi-
vidual domains. As a consequence, some domain properties which are well-suited
and some which are ill-suited for the T-REX approach are identified. Comparing the
T-REX results to the state-of-the-art conventional HTN planner GTOHP (Ramoul et
al., 2017), it is clear that GTOHP outperforms T-REX regarding run times, but T-REX
can still be a viable option due to its plan optimization, its robustness towards do-
mains missing preconditions, and its proving abilities. A qualitative demonstration
and exemplary discussion of the plan length optimization of T-REX concludes the
evaluations which overall successfully demonstrate the viability of the developed
methods.

Chapter 9 concludes the report by providing a closing summary and an outlook.
Possible future work mentioned there includes various extensions of the problem
model, specialized preprocessing procedures for T-REX, and further investigations
of alternative SAT solving strategies which may be well-suited to solve the devel-
oped encodings.

5

Chapter 2

Background and Related Work

In the following, some foundations of automated planning and SAT solving in the
context of this work are provided, and related work is discussed.

2.1 Automated Planning

Automated planning is a research branch of Artificial Intelligence. It aims to enable
the autonomous reasoning over some model of the world in order to pursue some
specific goal (Ghallab, Nau, and Traverso, 2004). In its most classical form, which has
been in particular coined by Fikes and Nilsson, 1971 as STRIPS planning, the world
and its changes are modeled as a sequence of states which may be manipulated by
the execution of atomic actions. A sequence of actions which successively transforms
the world from some particular initial state to some goal state is called a plan. Finding
such a plan from a specification of the world states and the possible actions is the
fundamental problem of automated planning.

Domain-independent planning is generally a very complex problem, as the de-
fault STRIPS model is already PSPACE-complete (Bylander, 1994). Conventional
methods for classical automated planning are based on exploring a graph structure
which represents the set of possible states and the actions which correspond to tran-
sitions between states. The GRAPHPLAN approach by (Blum and Furst, 1997) intro-
duced an important technique with the new model of a planning graph, where both
facts and actions are nodes in alternating layers of the graph. Another technique has
been successfully presented in the FF (Fast-Forward) planning system (Hoffmann
and Nebel, 2001), where heuristics are used to intelligently traverse the state-space,
in combination with a relaxed GRAPHPLAN technique. The approach of solving
planning problems with SAT techniques is further discussed in Chapter 2.2.2.

2.1.1 HTN Planning

A common subtype of automated planning is called Hierarchical Task Network
(HTN) planning. It is based on the idea to extend classical planning domains such
that certain domain-specific expert knowledge is provided to the planner in order to
facilitate the planning process.

Today’s modeling of HTN problems features a set of tasks which are succes-
sively decomposed into actions by well-defined reduction rules. For instance, con-
sider some simple example of a robot that should plan how to move a ball from A
to B. Instead of just providing the functioning of primitive actions like grasp, move,
or drop and letting a planner search for “arbitrary” action sequences leading to a
final goal, the HTN model may add information of a task transport_ball which
contains a sequence of the mentioned primitive actions. A planner can use this in-
formation to only search for such valid task reductions, rendering the search space

6 Chapter 2. Background and Related Work

much smaller. A complete model of HTN planning including further examples is
provided in Chapter 3.

The idea to enrich a planning problem with additional knowledge of how certain
tasks are realized ranges back to (Sacerdoti, 1975), where a structure called procedural
net has been proposed. Since then, automated planning using Hierarchical Task Net-
works advanced with a range of proposed planning systems such as Nonline (Tate,
1976), O-Plan (Currie and Tate, 1991) or SIPE (Wilkins, 1984), with UMCP (Erol,
Hendler, and Nau, 1994) being the first proposed solving procedure which has been
proven to be sound and complete. All of these algorithms have the common point
of operating in a state-less manner; they do not maintain a set of facts at each step of
the planning, but instead they search the general space of possible plans in a unified
manner.

The planner SHOP (Nau et al., 1999) and its enhancement SHOP2 (Nau et al.,
2003) are among the most popular HTN planners (Nau et al., 2005) and have been
used as a foundation for the most recent HTN planner GTOHP (Ramoul et al., 2017).
In contrast to previous approaches, SHOP and its enhancements are state-based and
primitive actions are visited exactly in the order which they will have in the final
plan. This leads to an easy identification of the applicability of decompositions at
some given point of the planning process.

Today, HTN planning is used in practice in various application domains such as
web service compositions (Sirin et al., 2004), robot planning (Weser, Off, and Zhang,
2010), and drone coordination (Bevacqua et al., 2015).

2.2 SAT Solving

The propositional logic satisfiability problem, SAT in short, is one of the most fun-
damental NP-complete problems in computer science (Cook, 1971). The problem
statement is as follows: Given a propositional logic formula F, decide whether there
is a satisfying assignment A of boolean values to each of the variables occurring in
F such that A is a model for F, or in short A |= F. In other words, the problem is to
decide whether a given formula is satisfiable and also to provide a satisfying variable
assignment if it exists.

Despite its theoretical origin, the resolution of SAT problems is of great practical
interest. This is due to the fact that a rich variety of problems can be modeled (or en-
coded) in propositional logic and that an assignment for the created formula directly
leads to a solution for the problem at hand by decoding the variables back to their
original meaning.

For instance, some applications of SAT solving include FPGA routing (Wood
and Rutenbar, 1998), software verification (Prasad, Biere, and Gupta, 2005), schedul-
ing problems (Großmann et al., 2012), and automated planning (Kautz and Selman,
1992). Because of the great interest in resolving SAT problems, very efficient SAT
solvers – applications which solve the SAT problem for a formula given as an input
– have been developed (Moskewicz et al., 2001; Eén and Sörensson, 2003; Audemard
and Simon, 2009; Biere, 2013).

Modern SAT solving mainly focuses on the method of Conflict-Driven Clause
Learning (CDCL) (Silva and Sakallah, 1997, Bayardo Jr and Schrag, 1997) which in
itself is a sophisticated enhancement of the previous DPLL method (Davis, Loge-
mann, and Loveland, 1962). The core principle is to intelligently choose a variable
to assign some value to, and to propagate this value through the clauses until either

2.2. SAT Solving 7

a conflict or a non-conflicting assignment to all variables is found. Learned conflicts
are remembered for the further examination of the clause.

In practice, most SAT solvers expect a formula in Conjunctive Normal Form (CNF),
i.e. a formula F of the following form:

F =
c∧

i=1

Ci =
c∧

i=1

li∨
j=1

Lij

Such a formula contains c clauses. Each clause Ci contains some number li of literals.
Each literal Lij is either some atomic variable A or its negated counterpart ¬A. Intu-
itively, an assignment satisfies such a formula F if and only if every clause contains
at least one literal which is true under the assignment.

The DIMACS file specification (“Satisfiability: Suggested Format” 1993) provides
a standardized way to denote a SAT encoding in such a way. Each variable is rep-
resented by a positive integer v; positive literals are represented by this number v
while negated literals are represented by −v. Each line of a DIMACS file specifies
one clause in the form of a space-separated sequence of such literals. Using this no-
tation, applications can easily output the created formula as a file and then call a
SAT solver on this file as an input.

2.2.1 Incremental SAT Solving

A common subtype of SAT solving is called incremental SAT solving. This paradigm
can be exploited for various kinds of problems which are incremental in nature, such
as general SAT-based encodings of planning problems.

An application solving an incremental problem with conventional SAT solving
repeatedly re-encodes the entire problem and uses a new SAT solver process at each
iteration for isolated solving attempts. In contrast, incremental SAT solving enables
the application to re-use one single SAT solver instance over the entire computation
and to only extend the previously computed encoding with new clauses instead of
completely replacing it. In addition, some particular parts of the formula are con-
sidered only for a single solving attempt and dropped afterwards. These clauses are
unit (i.e. they are comprised of single literals) and are called assumptions.

A central advantage of incremental SAT solving is that solvers can remember
properties (in particular, conflicts) of the formula learned from past solving attempts
and thus find a result more quickly (Nabeshima et al., 2006). In addition, the encod-
ing of the problem can become more compact, specifying only the “blueprints of
clauses” that will need to be added.

2.2.2 Planning via SAT

As automated planning is a problem of logical nature, SAT solving has been success-
fully applied to this domain since its initial proposal by (Kautz and Selman, 1992;
Kautz and Selman, 1996). In classical STRIPS-style planning, each fact and each ac-
tion at each step is commonly represented by an atomic variable. The logic of how
actions may be executed and how they transform the world state is encoded with
general clauses, while the initial state and the goal state are added to the formula in
the form of unit clauses (i.e. clauses that contain only a single literal).

As the number of actions needed to comprise a valid plan of some given plan-
ning problem is generally unknown in advance, the planning problem is usually
re-encoded iteratively for a growing amount of considered steps. As a consequence,

8 Chapter 2. Background and Related Work

the solving procedure only terminates when there is a plan. On problems for which
no plan exists, common SAT planners will never identify this general unsatisfiability,
but just indefinitely increase the number of considered steps.

The central advancement in SAT planning during the last years has been a more
efficient action encoding paradigm based on the execution of multiple actions in par-
allel as long as some valid ordering on the actions exists (Rintanen, Heljanko, and
Niemelä, 2004; Rintanen, Heljanko, and Niemelä, 2006). This method, also called
∃-step semantics, reduces both the size of the resulting encodings and the neces-
sary amount of computational steps to reach a plan. One of the most recent, unified
SAT planning approaches implementing these techniques is the planner Madagas-
car (Rintanen, 2014) which uses a non-incremental SAT Solver specifically written
for this purpose. However, incremental SAT solving has been shown to sometimes
speed up the planning procedure of this SAT planner (Gocht and Balyo, 2017).

In order to make SAT planning problems eligible for incremental SAT solving,
Gocht and Balyo, 2017 have introduced a formula notation style named DimSpec1.
In contrast to usual CNF notations in the DIMACS format, a DimSpec file specifies
four different blocks of clauses, which are interpreted by an incremental SAT solving
application as follows:

Initial state specification: These clauses will be added only once at the start of the
computation.

Universal state specification: These clauses specify the “isolated” constraints of the
problem at any given makespan, and are thus instantiated at each new iteration.

Goal state specification: These unit clauses are instantiated at the current makespan
as assumptions before each solving attempt.

Transitional specification: These clauses specify all constraints between variables of
the previous makespan with variables of the current makespan; they are instantiated
at each iteration (except for the first).

In the context of classical planning, the initial state contains the facts which hold
in the beginning, the goal state contains the goal facts, and the universal and tran-
sitional specification together model the workings of action preconditions, effects,
and fact transitions. The DimSpec notation only supports constraints over variables
in neighbored makespans, and the amount of clauses added at each makespan is
constant. These restrictions will become relevant for the incremental encodings pro-
posed in Chapter 5 and 6.

2.3 SAT Encodings for HTN Planning

An encoding approach of HTN planning problems in propositional logic has been
proposed by (Mali and Kambhampati, 1998). In addition, a few practical enhance-
ments to this approach have been suggested (Mali, 1999; Mali, 2000), such as the
introduction of various heuristics and preprocessing procedures which were able to
significantly reduce the size of the resulting formulae.

To my best knowledge, these publications have been the only published ap-
proaches regarding the encoding of HTN planning problems in propositional logic
so far. The work at hand is thus the first to introduce SAT solving to modern HTN
planning.

1See also https://github.com/StephanGocht/Incplan

https://github.com/StephanGocht/Incplan

9

Chapter 3

Model and Problem Statement

3.1 System model

The following definitions are based on the model from (Ghallab, Nau, and Traverso,
2004) as applied by (Ramoul et al., 2017), with some additions and modifications.
Throughout the formal definitions, practical examples from the Rover domain will
be provided.

At first, the syntactical composition of some fundamental objects are defined.

Definition 1 (Constant). A constant is an atomic syntactic expression c.

Definition 2 (Typing system for constants). A type is some subset of the set of all
constants. A constant belongs to at least one type, and it can also have multiple
types.

Common constants of Rover problems include expressions like rover1 or camera3;
they are referring to particular objects of the problem. Types like Rover and Camera
are defined to bundle all objects of the corresponding kind. Types in PDDL domains
can be defined in an polymorphic manner: for instance, Rover and Lander objects
could have a common higher type Machine.

The basic embedding of such typed constants in expressions are defined next:

Definition 3 (Parameter). A parameter is a placeholder variable for any constant of
one or multiple particular types.

Definition 4 (Signature). A signature of some object is a syntactic expression of the
form t(u1, . . . , uk), where t is the name of the object and u1, . . . , uk are parameters,
also called the explicit parameters of the object. Two signatures t1(x1, . . . , xk) and
t2(y1, . . . , yk) are matching iff t1 = t2 and the types of all corresponding pairs of
parameters are equal.

Definition 5 (Grounding, Instance). The grounding of an object is the process of
replacing each of the object’s parameters with a valid constant. The resulting objects
are called instances of the object.

For instance, can_traverse(r, wa, wb) is a signature where r is a parameter of type
Rover and wa and wb are parameters of type Waypoint. A valid instance could be
can_traverse(rover1, waypoint7, waypoint4).

Next, we introduce predicates, facts, and world states:

Definition 6 (Predicate, Fact). A predicate is an element of a special subset S of
signatures united with the set of expressions S := {s | s ∈ S}, whereas s := not(s).
Instances of predicates are called facts.

10 Chapter 3. Model and Problem Statement

Definition 7 (World state). A world state, or state in short, is a consistent set of facts,
i.e. it contains either p or not(p) for any fact p. A fact p holds in a state s iff p ∈ s.

In the following, when denoting a union s1 ∪′ s2 on sets of facts, then the facts
in s2 replace any complementary facts from s1 which would violate the previous
condition of world states. Formally, we introduce the following adjusted operation:
s1 ∪′ s2 := s1 ∪ s2 \ {p : p ∈ s2}

Continuing the previous example, can_traverse(r, wa, wb) is a predicate in the
Rover domain, and can_traverse(rover1, waypoint7, waypoint4) can be one of the facts
obtained by grounding the predicate.

In the next step, we begin to model how world states can be transformed.

Definition 8 (Operator). An operator is a 3-tuple o = (sig(o), pre(o), eff(o)), where
sig(o) is the operator’s signature, pre(o) is a set of predicates, the preconditions, and
analogously eff(o) is the set of effects. pre(o) and eff(o) may only contain parameters
which occur in sig(o).

By the restriction on the occurrence of parameters, it is guaranteed that each op-
erator may only have one single instance for each instance of its signature (because
the signature already defines the entire “body” of the operator). The resulting in-
stances are called actions:

Definition 9 (Action). An action a is an instance of an operator o. The corresponding
preconditions pre(a) and effects eff(a) are then sets of facts, and if pre(a) ⊆ s for
some state s, then a is applicable in s, and the application of a is defined as the
resulting state s′ = γ(s, a) := s ∪′ eff(a). On a sequence of actions, the application is
recursively defined as γ(s, 〈〉) = s and γ(s, 〈a1, . . . , ak〉) = γ(γ(s, a1), 〈a2, . . . , ak〉).

One of the operators of the Rover domain is drop(rover, store). Its preconditions
are {store_of(store, rover), full(store)} and its effects are {not(full(store)), empty(store)}.
Intuitively, this operator describes how a given rover may empty its store; if the
given store belongs to the given rover and if the former is filled, then it can be ejected.
Actions of this operator may look like drop(rover1, store1).

The first hierarchical notion of the problem definition is now given in the form
of methods:

Definition 10 (Method). A method is a 3-tuple m = (sig(m), pre(m), subtasks(m)),
where sig(m) is the method’s signature, pre(m) is the set of preconditions that are
required for the application of the method, and subtasks(m) = 〈s1, s2, . . . , sk〉 is an
ordered sequence of signatures which each match either the signature of another
method or of an operator.

In general, a method may contain itself recursively as one of its subtasks. Also
note that the preconditions and subtasks of a method may contain parameters which
do not occur in sig(m), in which case we call these implicit parameters. Note that the
grounding of a method also involves substituting all of its implicit parameters by
constants, so a single method can have multiple instances.

One of the methods of the Rover domain has the signature send_soil_data(rover,
from). Its preconditions are {at_lander(lander, w2) , visible(w1, w2)}. At this point,
it can already be seen that this method contains implicit parameters, namely
the waypoints w1, w2 and the lander object. The subtasks of the method are
〈do_navigate(rover, w1) , communicate_soil_data(rover, lander, from, w1, w2)〉, where the
first subtask is the signature of another method and the second one is the signature
of an operator. Intuitively, the method models how a rover may fulfill the task of

3.2. Problem statement 11

communicating certain data to a lander: It first needs to navigate to some waypoint
from where the lander is visible (which might be a complex task itself) and then
actually communicate the data to the lander.

In analogy to actions being instances of operators, we define reductions as in-
stances of methods:

Definition 11 (Reduction). A reduction r is an instance of a method m. pre(r) is a set
of facts, and if pre(r) ⊆ s for some state s, then r is applicable in s.

A possible reduction of the previous method could be send_soil_data(rover1, way-
point3) with the preconditions {at_lander(lander1, waypoint7), visible(waypoint1, way-
point7)} and the subtasks 〈do_navigate(rover, waypoint1), communicate_soil_data(rover,
lander, waypoint3, waypoint1, waypoint7)〉.

Next, we unite actions and reductions under the important notion of tasks:

Definition 12 (Task). A task t is an instance of a signature σ which matches the
signature of either an operator or a method.
If σ matches the signature of an operator, then t is called primitive and it references
the operator’s action; if σ matches the signature of a method, t is called non-primitive
and it references a set of reductions.

For instance, send_soil_data(rover1, waypoint3) is a task, and as the general signa-
ture references a method, it is non-primitive. Tasks are expressions defining what
needs to be done; they do not directly specify how to do it, but they reference actions
or reductions which provide such information.

All necessary structures are now assembled to define the structure of the problem
at hand:

Definition 13 (HTN domain). An HTN domain is a 3-tuple D = (P, O, M) of pred-
icates P, operators O and methods M. The set of tasks T of D is implied by its
operators and methods.

Definition 14 (HTN problem). An HTN problem is a 5-tuple P = (D, C, s0, g, T0)
where D is the HTN domain the problem belongs to, C is a set of constants, s0 is a
state, the initial state, g is the set of goal facts, and T0 is an ordered sequence of tasks,
called the initial task network.

3.2 Problem statement

In order to define the full problem statement and the notion of a correct plan for such
problems, the actual semantics of Hierarchical Task Networks need to be defined.
Intuitively, with each applied decomposition inside some sequence of tasks, some
non-primitive task is replaced by a new sequence of tasks, its subtasks. Doing such
decompositions in an exhaustive manner should lead to a sequence of actions whose
preconditions and effects are consistent and successively transform the initial state
to some goal state.

Definition 15 (Plan). A plan π of a HTN problem P = (D, C, s0, g, T0) is inductively
defined as follows:

• If T0 = 〈〉 and g ⊆ s0, then the empty action sequence π := 〈〉 is a plan for P .

Otherwise, let T0 := 〈t1, . . . , tk〉 for some k ≥ 1.

12 Chapter 3. Model and Problem Statement

• If t1 is a primitive task referencing an action a which is applicable in s0, and π′

is a plan for the problem P ′ := (D, C, γ(s0, a), g, 〈t2, . . . , tk〉), then π := 〈a〉 ∪π′

is a plan for P .

• If t1 is a non-primitive task referencing a reduction r which is applicable in
s0, and π′ is a plan for the problem P ′ := (D, C, s0, g, 〈subtasks(r), t2, . . . , tk〉),
then π := π′ is a plan for P .

Definition 16 (Solvability). An HTN problem P is solvable if and only if a plan π
for P exists.

Definition 17 (HTN problem statement).
Given a solvable HTN problem P = (D, C, s0, g, T0), find a plan π for P .

We conclude the model by providing some measures of a plan π, namely its length
and its depth. To define a plan’s depth, we introduce the notion of a task hierarchy:

Definition 18 (Task hierarchy). Consider an HTN problem P = (D, C, s0, g, T0). Its
task hierarchy H is defined as a forest with the following properties:

• Each root node represents one of the tasks in T0.

• Each node representing a primitive task is a leaf.

• Each node representing a non-primitive task is an inner node, and it has one
child node for each of its possible subtasks.

Definition 19 (Length and depth of a plan). Consider a plan π of an HTN problem
P with its task hierarchy H. The length of π is defined as |π| (the amount of actions
in the plan). The depth of π is defined as the maximal depth of any task node which
must be reached in H during its computation.

get_soil_data(w0)

navigate(w0)

do_navigate(w1,w0)visit(w1) unvisit(w1)

navigate(w1,w0)

empty_store()

nop()

send_soil_data(w0)

communicate_soil_data(w0,w1)

sample_soil(w0)

FIGURE 3.1: Exemplary hierarchy of a task from the Rover domain

As a complete example, Figure 3.1 illustrates a possible hierarchy of a single ini-
tial task get_soil_data(w0). Non-primitive tasks are represented by boxes with round
corners while primitive tasks are represented by rectangular boxes. Some task sig-
natures have been shortened for the sake of brevity. Under the chosen reductions,
the initial task is decomposed into four subtasks, among them one primitive and
three non-primitive tasks. The non-primitive tasks are then reduced as well, until
only primitive tasks remain. A plan for the initial task get_soil_data(w0) can be re-
trieved from the hierarchy by reading all primitive tasks from left to right, resulting
in the following plan: visit(w1); navigate(w1,w0); unvisit(w1); nop(); sample_soil(w0);
communicate_soil_data(w0,w1).

3.3. Restrictions of the model 13

The found plan has a length of 6 and a depth of 3 (with the action navigate(w1,w0)
requiring the maximum depth).

The action nop() is a special action occurring in various domains; it represents
“no operation”, and as such it does not have any preconditions nor effects. Such an
action can be convenient to model the scenario that some task’s objective is already
fulfilled, so it requires no actual actions to be executed. In this example, the store
of the rover is already empty, so the task to empty its store is reduced to such a nop
action. From the viewpoint of the application, such actions should not contribute to
the plan length; consequently, the plan has a “true length” of 5 after eliminating the
unneeded action.

3.3 Restrictions of the model

The problem statement which has just been introduced allows to model complex
planning problems. Yet, some restrictions have consciously been done compared to
the definition of Hierarchical Task Networks in (Ghallab, Nau, and Traverso, 2004),
as explained in the following.

Definition 17 and its underlying definitions imply a total order on the initial task
network as well as on the subtasks of each non-primitive task. In general, Hierarchi-
cal Task Networks as defined by (Ghallab, Nau, and Traverso, 2004) can be partially
ordered; they may contain a set of ordering constraints between arbitrary subtasks.
This restriction is in accordance with the previous work on HTN domains done by
(Ramoul et al., 2017). In practice, many of the used HTN problem domains implic-
itly assume a total order on the subtasks they define, while others may work with
different subtask orderings as well (however, they do not rely on such re-orderings).

Additionally, to comply with (Ramoul et al., 2017), the model has been restricted
from using general causal constraints between subtasks to merely validating the ap-
plicability of reductions with preconditions. However, all of the encodings proposed
in the following chapters may be extended to support these additional constraints.

15

Chapter 4

1st Contribution: GCT Encoding

In the following, an encoding of HTN planning problems modeled in PDDL into
propositional logic is proposed, based on the Linear Bottom-up forward (LBF) encod-
ing of HTN problems (Mali and Kambhampati, 1998). First, existing encodings and
their issues from today’s point of view are discussed. Then, a new encoding named
Grammar-Constrained Tasks (GCT) encoding is proposed which builds upon LBF, but
takes into account the issues identified before. Finally, some remarks about GCT’s
complexity and its general viability are made.

4.1 Discussion of previous encodings

Mali and Kambhampati, 1998 have proposed a number of encodings of HTN prob-
lems in propositional logic. In order to apply these encodings to HTN domains as
described in PDDL, various issues had to be considered. Also note that no com-
plete, formal specification of the clauses of the encodings by (Mali and Kambham-
pati, 1998) has been available; as a result, the encodings were not fully reproducible
and had to be reconstructed.

A central restriction of the encodings by Mali and Kambhampati, 1998 concern-
ing their expressiveness is that each task is assumed to have some fixed maximum
amount of primitive steps when fully reduced. Under this assumption, it is eas-
ily possible to “allocate” a fixed amount of variables to each initial task in the plan,
knowing exactly the point where a task, and ultimately the entire plan, will certainly
have finished. By contrast, many common HTN problem domains can theoretically
expand indefinitely due to recursive method definitions. As such, it is difficult or
even impossible to decide in advance how many primitive steps a given task will
take depending on which reductions are chosen and which facts hold before.

As another consequence of the non-recursive modelling of tasks, it has not been
necessary to consider the scenario where some task has to be encoded multiple times
at the same time step. But when allowing recursive method definitions, such a sce-
nario may occur and has to be considered for the encoding.

Furthermore, the modeling of constraints in the previous encodings differs from
the PDDL-compliant model provided in Chapter 3: method definitions feature a par-
tially ordered set of subtasks, whereas we just consider a total order on the subtask
sequence. Similarly, before/after/between constraints of subtasks are originally given
pairwise and may specify where the needed precondition of a subtask is coming
from, whereas the modeling used here describes these constraints in a flat manner
as simple sets of facts that must hold before or after certain subtasks, no matter their
origin.

The encoding by Mali and Kambhampati, 1998 which is the most applicable to
today’s state of the art in classical planning and which can be applied most directly

16 Chapter 4. 1st Contribution: GCT Encoding

to the model introduced in Chapter 3 is the Linear Bottom-up Forward (LBF) encoding.
For this reason, this encoding has been examined primarily. The other two encod-
ings are not state-based and they rely on causal relations and precedences between
tasks and actions; the restrictions stated above are much harder to mend for these
encoding types than for LBF. As the tasks cannot be assumed to be unique any more,
some careful “variable indexing” needs to be done in order to define consistent con-
straints between logical variables. Such an indexing is already implied in the LBF
encoding by the explicit enumeration of steps.

All of the encodings by Mali and Kambhampati, 1998 feature a composition of
classical planning and HTN planning, taking into account a number of additional
primitive (task-less) steps at the end of the computation. This has been omitted in the
new encoding as the problem definition at hand exclusively features an initial task
network. However, any HTN domain/problem definition can easily be extended to
feature a number of initial tasks which may be reduced to any primitive action, thus
achieving the same effect.

Lastly, it is worth noting that various improvements to the discussed encodings
have been proposed (Mali, 1999; Mali, 2000), in particular by introducing prepro-
cessing procedures and heuristics which significantly reduced the size of the result-
ing formulae. These enhancements are not further discussed in the work at hand
for various reasons. As the modeling of the problem domains is quite different,
the proposed improvements are only applicable to a very limited extent. In addi-
tion, today’s preprocessing procedures are highly developed (Ramoul et al., 2017)
and can likewise significantly reduce the problem complexity by efficient grounding
algorithms. The encodings proposed here thus already exploit considerable simpli-
fications of the problem at hand.

4.2 GCT Encoding

Applying the LBF encoding idea to the modeling used throughout this report, the
Grammar-Constrained Tasks (GCT) encoding is proposed. As (Mali and Kambham-
pati, 1998) already noted, their general encoding approach is equivalent to supple-
menting a classical planning encoding with HTN-specific constraints which essen-
tially enforce a valid grammar over the sequence of actions. The GCT encoding
realizes such grammatical constraints in the form of defining start and end points of
each reduction of some nonprimitive task, making heavy use of further variables in
addition to the encoding of facts and actions.

In the following, the clauses of GCT are provided and explained, and their rela-
tions to the previous LBF clauses are mentioned where applicable. Atomic variables
are written in a typeface style, and the mathematical notation complies with the
model presented in Chapter 3. In Addition, s denotes some specific step, and n is
the total amount of encoded steps. A denotes the set of all actions, and R(t) denotes
the set of possible reductions of a non-primitive task t. For the sake of simplicity,
primitive tasks are also directly referred to as their corresponding action in some
variable definitions.

4.2.1 Classical Planning clauses

The following clauses are a well-established way of encoding STRIPS-style planning,
similar to the clauses presented in (Ghallab, Nau, and Traverso, 2004).

4.2. GCT Encoding 17

All facts from the specified initial state hold at the beginning:∧
p∈s0

holds(p, 0) ∧
∧

p/∈s0

¬holds(p, 0) (4.1)

In the end, all facts from the goal state have to hold:∧
p∈g

holds(p, n) (4.2)

The preconditions of an action a must hold for it to be executed at some step s, and
the execution of a implies its effects at the step s + 1:

execute(a, s) =⇒
∧

p∈pre(a)

holds(p, s) ∧
∧

p∈pre(a)

¬holds(p, s) (4.3)

execute(a, s) =⇒
∧

p∈eff(a)

holds(p, s + 1) ∧
∧

p∈eff(a)

¬holds(p, s + 1) (4.4)

Exactly one action is executed per step: ∨
a∈A

execute(a, s) (4.5)

∧
a 6=a′
¬execute(a, s) ∨ ¬execute(a′, s) (4.6)

Rule 4.6 may be replaced by any valid set of clauses that ensures that no more than
one of the given atoms can be true. In the implementation, a binary-style encoding
has been used which requires O(n) helper variables and O(n log n) clauses if
the given set of atoms is of size n. More information on the used At-Most-One
encodings is provided in Appendix A.

Facts may only change between two neighbored steps if an action is executed which
has this change as an effect:

(¬holds(p, s) ∧ holds(p, s + 1)) =⇒
∨

p∈eff(a)

execute(a, s) (4.7)

(holds(p, s) ∧ ¬holds(p, s + 1)) =⇒
∨

p̄∈eff(a)

execute(a, s)

4.2.2 Initial task network clauses

Let T0 = 〈t0, . . . , tk〉 the initial task network. The following clauses ensure the or-
dering and sequential execution of initial tasks. The first task begins at the first step;
when an initial task ends, then the next initial task begins at the next step; the last
task ends at the final step.

Corresponding “frame conditions” of the initial task network have not been ex-
plicitly provided in the LBF encoding, but are rather inferred from the textual de-
scription.

taskStarts(t0, 0) (4.8)∧
0≤i<k

taskEnds(ti, s) ⇐⇒ taskStarts(ti+1, s + 1) (4.9)

18 Chapter 4. 1st Contribution: GCT Encoding

taskEnds(tk, n− 1) (4.10)

Clauses 4.11 essentially provide a valid grammar for the start and end points of
tasks. Any start point of a task must precede a corresponding end point and vice
versa. Helper variables and constraints between these, as defined here and in the
following, have not been explicitly specified in the LBF encoding description.

taskStarts(t, s) =⇒
∨

s′≥s

taskEnds(t, s′) (4.11)

taskEnds(t, s) =⇒
∨

s′≤s

taskStarts(t, s′)

4.2.3 Task reduction clauses

The following clauses are added only for non-primitive tasks t. They define helper
variables in order to uniquely refer to some particular task reduction beginning or
ending at some computational step.

taskStarts(t, s) =⇒
∨

r∈R(t)

reductionStarts(t, r, s) (4.12)

taskEnds(t, s) =⇒
∨

r∈R(t)

reductionEnds(t, r, s)

To provide a meaning to the newly defined variables, it is enforced that the first
subtask begins whenever the reduction begins, and the last subtask ends whenever
the reduction ends.

reductionStarts(t, 〈t′, . . . 〉, s) =⇒ taskStarts(t′, s) (4.13)
reductionStarts(t, 〈a, . . . 〉, s) =⇒ execute(a, s)
reductionEnds(t, 〈. . . , t′〉, s) =⇒ taskEnds(t′, s)
reductionEnds(t, 〈. . . , a〉, s) =⇒ execute(a, s)

All subtasks (both primitive (4.14) and non-primitive (4.15)) of any occurring non-
primitive task t need to be completed within the execution of t.
These clauses correspond to the constraints (i) and (ii) of the LBF encoding, in a more
explicitly provided step interval.

reductionStarts(t, 〈. . . , a, . . .〉, s) =⇒
∨

s′≥s

execute(a, s′) (4.14)

reductionEnds(t, 〈. . . , a, . . .〉, s) =⇒
∨

s′≤s

execute(a, s′)

reductionStarts(t, 〈. . . , t′, . . .〉, s) =⇒
∨

s′≥s

taskStarts(t′, s′) (4.15)

reductionEnds(t, 〈. . . , t′, . . .〉, s) =⇒
∨

s′≤s

taskEnds(t′, s′)

The preconditions of any applied reduction need to hold.
The following clauses, together with the classical planning clauses 4.3 and 4.4,

effectively replace the arbitrary causal constraints between actions and tasks as spec-
ified in (v)-(ix), (xi), (xiii), (xiv) of the LBF encoding.

4.3. Analysis and comments 19

reductionStarts(t, r, s) =⇒
∧

p∈pre(r)

holds(p, s) ∧
∧

p∈pre(r)

¬holds(p, s) (4.16)

Again, an additional set of variables is introduced. These denote that a task t̂ (prim-
itive or non-primitive) at step s′ is part of some reduction of task t at step s. They
are required in order to reference the subtask relationship between two tasks in an
unambiguous manner in the following subtask ordering constraints.

reductionStarts(t, 〈. . . , t̂, . . .〉, s) =⇒
∨

s′≥s

subtaskStarts(t, s, t̂, s′) (4.17)

subtaskStarts(t, s, t′, s′) =⇒ taskStarts(t′, s′)
subtaskStarts(t, s, a, s′) =⇒ execute(a, s′)

reductionEnds(t, 〈. . . , t̂, . . .〉, s) =⇒
∨

s′≤s

subtaskEnds(t, s, t̂, s′) (4.18)

subtaskEnds(t, s, t′, s′) =⇒ taskEnds(t′, s′)
subtaskEnds(t, s, a, s′) =⇒ execute(a, s′)

Now, the following clauses can (to a certain extent) enforce that the subtasks of any
given task are totally ordered, in contrast to the arbitrary ordering constraints pro-
vided in (iii), (iv), (x), (xii) of the LBF encoding.

Assume that r = 〈t′1, . . . , t′k〉 and 1 ≤ i < k.

reductionStarts(t, r, s) ∧ subtaskEnds(t, s, t′i, s′)
=⇒ subtaskStarts(t, s, t′i+1, s′ + 1) (4.19)

reductionStarts(t, r, s) ∧ subtaskStarts(t, s, t′i+1, s′ + 1)
=⇒ subtaskEnds(t, s, t′i, s′) (4.20)

At this point, if one would just use variables taskStarts(t′, s′) instead of the more
explicit subtaskStarts(t, s, t′, s′), then the clauses may lead to unresolvable con-
flicts. This is because some task t′ may then in fact not belong to the reduction of
task t at step s, but still impose restrictions on some actual subtask of t. This prob-
lem is avoided by having introduced explicit variables for the subtask relationship
between tasks.

4.3 Analysis and comments

In the following, a brief analysis on the complexity of the GCT encoding is pro-
vided. Hereby, T, F, and A correspond to the respective amount of tasks, facts, and
actions. r := max

{
|R(t)|

∣∣ t ∈ T
}

is the maximal amount of reductions per task and
e := max

{
|subtasks(r)|

∣∣ r ∈ R
}

is the maximal amount of subtasks per task reduc-
tion. In all complexity analyses provided in this document, the maximum amount
of preconditions and effects per action and reduction is assumed to be some small
constant and thus negligible for asymptotic measures.

The GCT encoding featuresO(S · T) variables for the start and end of tasks,O(S ·
T · r) variables for the start and end of task reductions, and O(S2 · T2) variables for
modeling the subtask relationship between tasks. In addition, O(S · F) variables
for the encoding of facts, O(S · A) variables for the execution of actions and O(S ·
A log A) helper variables for At-Most-One constraints are needed. This leads to a

20 Chapter 4. 1st Contribution: GCT Encoding

total variable complexity of O
(
S2T2 + S(Tr + A log A + F)

)
, which in practice is

clearly dominated by the term S2T2.
Similarly, the clause complexity of the GCT encoding is asymptotically domi-

nated by rules 4.19, 4.20 which cause a total of O(S2 · T2 · r · e) clauses. The clause
sizes can be linear either in the amount of tasks, of reductions per task, or of steps.

In comparison, the original LBF encoding by (Mali and Kambhampati, 1998)
featured a variable complexity of O(S2 · TA · r2 · e) and a clause complexity of
O(S3 · TA · r2 · e). The T2 factor in GCT’s complexity is fundamentally caused by
the admission of recursive task definitions, while the r2 factor in the complexity
of LBF may originate from the arbitrary constraints that can be specified between
reductions. However, the LBF encoding has a clause complexity which is cubic, not
quadratic, in the number of encoded steps.

While the GCT encoding specifies a considerable number of constraints on the ex-
ecution of primitive actions, not all HTN constraints are necessarily fully obeyed.
Slight interleavings of tasks may occur when recursive tasks are contained in the
problem; for instance, the subtask specifications (4.14, 4.15) allow for a subtask to
start during the reduction of its parent task, but to end at some arbitrary later point,
provided that the same task re-occurs at a deeper level of the hierarchy and ends
during the parent task’s reduction. Also note that 4.9 causes the encoding to be re-
stricted to problems where each of the initial tasks is unique, i.e. it does not re-occur
as another initial task or as some subtask.

In general, a less ambiguous way of referencing the subtasks of some specific
task is needed in order to make the encoding fully compliant to the problem
statement in all special cases.

To conclude, the GCT encoding is an extension of a naïve primitive action-based
encoding, introducing a polynomial amount of additional clauses and variables in
order to satisfy the HTN constraints. In practice, this additional encoding layer is a
high price to pay, considering that HTN constraints are supposed to simplify the task
of finding a plan, instead of rendering the problem harder than before. As a result,
today’s state-of-the-art encodings of classical planning (not making use of any HTN
information) are presumably significantly faster than the HTN-based encoding at
hand (what will be confirmed in Chapter 8).

In addition, the encoding as proposed has a “one-time use” – it is encoded for
one specific maximum plan length, and if a SAT solver finds the encoding to be
unsatisfiable, then an entire new encoding considering a higher amount of steps has
to be created, and the SAT solver has to restart the entire solving process.

In the following chapters, new encodings improving on these shortcomings will
be proposed.

21

Chapter 5

2nd Contribution: SMS Encoding

The GCT encoding proposed in the last chapters has various shortcomings restrict-
ing its practical use. Most significantly, it has a polynomial complexity of variables
and clauses, rendering it inefficient both for the encoding process and for the solving
stage, and a complete re-encoding has to be performed for each additional compu-
tational step considered.

To improve on the encoding, an initial idea has been to adjust the encoding in
order to make it eligible for incremental SAT solving. This way, an abstract encoding
is created only once and is then handed to the solver without any given limit on the
maximal number of computational steps to consider. The solver can instantiate the
clauses as needed and will remember conflicts learned from previous solving steps,
significantly reducing the necessary run time.

However, to achieve an incremental formulation of GCT, a number of challenges
need to be considered. Specifically aiming at a DimSpec-compliant encoding (see
Chapter 2.2.2), it is necessary to reformulate all the clauses such that each clause only
contains variables from the computational steps i and i + 1, for some clause-specific
i, and that for each time step, all of the encoded clauses follow a single, general
“construction scheme”. In the following, such an encoding is presented, eventually
turning out to differ significantly from the initial GCT encoding.

5.1 Abstract description

The encoding described in the following has been named Stack Machine Simulation
(SMS) encoding. Essentially, the encoding simulates a stack of tasks which is trans-
formed between computational steps, always checking the task on top of the stack
and either pushing the subtasks of one of its reductions if it is non-primitive, or ex-
ecuting the corresponding action if it is primitive. This central idea is illustrated in
Fig. 5.1, using the previous example from Fig. 3.1. Such transitions are performed
repeatedly until the stack is empty. Using a stack memory, it is possible to transfer
the entire currently considered task hierarchy from one step to the next, eliminating
the necessity of clauses which link two computational steps that are further apart.

With this general procedure, the initial tasks and their subtasks will be sequen-
tially processed and broken down into subtasks until all tasks are removed and only
bottom remains.

5.2 Realization

The following clauses specify the default variant of the SMS encoding. For these def-
initions, σ denotes the stack size, a parameter of the encoding. The encoding is given
in a DimSpec-compliant format, separated into four specifications whose clauses

22 Chapter 5. 2nd Contribution: SMS Encoding

get_soil_data(w0)

get_image_data(w7)

get_rock_data(w3)

bottom

navigate(w0)

empty_store()

send_soil_data(w0)

sample_soil(w0)

get_image_data(w7)

get_rock_data(w3)

bottom

 push(4)

send_soil_data(w0)

sample_soil(w0)

get_image_data(w7)

get_rock_data(w3)

bottom

 pop() send_soil_data(w0)

get_image_data(w7)

get_rock_data(w3)

bottom

Execute action

FIGURE 5.1: Illustration of the two central transitions between com-
putational steps in the SMS encoding; pushing the subtasks of a non-

primitive task (left) and executing an action (right)

will be instantiated accordingly during the solving attempt (see Chapter 2.2.2). In
the transitional clauses, an atom at the following step is denoted as atom’.

5.2.1 Initial state clauses

All facts specified in the initial state must hold:∧
p∈s0

holds(p) ∧
∧

p∈s0

¬holds(p) (5.1)

The initial stack contains the initial tasks and a bottom symbol afterwards. Again,
let T0 = 〈t0, . . . , tk−1〉 the initial task network:∧

0≤i<k

stackAt(i, ti) (5.2)

stackAt(k, bottom) (5.3)

5.2.2 Goal state clauses

The stack must be empty in the end:

stackAt(0, bottom) (5.4)

All facts from the goal state must hold:∧
p∈g

holds(p) (5.5)

5.2.3 Universal clauses

The execution of an action implies its preconditions to hold:

execute(a) =⇒
∧

p∈pre(a)

holds(p) ∧
∧

¬p∈pre(a)

¬holds(p) (5.6)

At each step, all the push(k) and pop() operations are mutually exclusive.

AtMostOne
{
{push(k) | 0 ≤ k < maxPushes} ∪ {pop()}

}
(5.7)

5.2. Realization 23

If no pop() operation is done, then no action is executed, enforced by a “virtual”
action which does not have any preconditions or effects.

¬pop() =⇒ execute(noAction) (5.8)

If a primitive task corresponding to some action a is on top of the stack, then a is
executed (and only this action); additionally, a pop operation is done.

stackAt(0, a) =⇒ execute(a) ∧ pop() (5.9)
execute(a) =⇒ stackAt(0, a)

If a non-primitive task t is on top of the stack, then one of its possible reductions
must be applied.

stackAt(0, t) =⇒
∨

r∈D(t)

reduction(r) (5.10)

If a non-primitive task on top of the stack is reduced by some specific reduction
r = 〈t1, . . . , tk〉, then a push by the amount of subtasks in the reduction is performed,
and all of its preconditions must hold.

stackAt(0, t) ∧ reduction(r) =⇒
(
push(k− 1)

∧
∧

p∈pre(r)

holds(p) ∧
∧

p∈pre(r)

¬holds(p)
)

(5.11)

5.2.4 Transitional clauses

The execution of an action implies its effects to hold in the next step.

execute(a) =⇒
∧

p∈eff(a)

holds′(p) ∧
∧

p∈eff(a)

¬holds′(p) (5.12)

Frame axioms: Facts only change if a supporting action is executed.

(¬holds(p) ∧ holds′(p)) =⇒
∨

p∈eff(a)

execute(a) (5.13)

(holds(p) ∧ ¬holds′(p)) =⇒
∨

p̄∈eff(a)

execute(a)

Stack movement: The stack content moves accordingly to the performed operation
at a given step. ∧

0<s<σ−k

push(k) ∧ stackAt(s, t) =⇒ stackAt′(s + k, t) (5.14)

∧
s>0

pop() ∧ stackAt(s, t) =⇒ stackAt′(s− 1, t)

A non-primitive task and a chosen reduction together define the corresponding sub-
tasks as the new stack content at the positions which are freed by the occurring push.

stackAt(0, t) ∧ reduction(〈t′0, . . . , t′k−1〉) =⇒
k−1∧
i=0

stackAt′(i, t′i) (5.15)

24 Chapter 5. 2nd Contribution: SMS Encoding

5.2.5 Variants

The most straight-forward variant of the SMS encoding, named SMS-ut (unary
tasks), conventionally encodes tasks as the content of the stack, as just described.

Another variant SMS-ur (unary reductions) does not encode tasks, but instead
reductions as the content of the stack. This leads to transitional clauses of a differing
kind, and the set of variables deciding the chosen reduction are no more necessary.

In a third variant SMS-bt (binary tasks), the stack content is encoded not with
one variable for each possible task at each position, but instead with one variable
for each binary digit of a number which represents the task at that position. This
reduces the total variable requirement for the stack content at each cell from O(T)
to O(log T) per computational step, but complicates some transitional clauses.

5.3 Analysis

In the following section, the termination and the correctness of a SAT solving pro-
cedure using the SMS Encoding are argumented. Proofs are given in the form of
sketches, meant to provide an intuition on why the general design of the encoding
satisfies the corresponding properties.

5.3.1 Termination and correctness

Theorem 1 (Termination and correctness of the SMS encoding). Consider a solvable
HTN problem P = (D, C, s0, g, T0). Using the task-based, unary-style SMS encoding
with a sufficiently large stack size, an incremental SAT solving procedure terminates
after at most N computational steps, and a valid plan can be extracted from the
found satisfying assignment. Hereby, N is equal to the length of the found plan plus
the amount of applied reductions during the calculation.

Sketch of proof. As P is solvable, some plan π of length n ≥ 0 exists. The idea is to
show that each computational step of the SMS encoding essentially performs one
inductive step as provided in Definition 15.

• If n = 0, then the initial state and goal state specifications of SMS enforce
that all initial tasks are on the stack, that the stack is empty, and that both the
initial state and the goal state hold. This formula is satisfiable if and only if the
sequence of initial tasks is empty and if g ⊆ s0. So the encoding leads to some
satisfying assignment if and only if π := 〈〉 is a valid plan for P .

• If n > 0, then the plan π is defined inductively by one “atomic” reduction step
and a subsequent plan for the remaining problem. The following two cases are
possible:

If the top of the stack contains some primitive task t, then (by definition of
the transitional clauses) one computational step will execute the action (thus
enforcing its preconditions to hold at this step and its effects to hold at the next
step) and remove the task from the stack, before proceeding to perform the
remaining calculation.

If instead some non-primitive task t is on top of the stack, then some reduc-
tion is chosen, its preconditions are enforced to hold, and all corresponding
subtasks are pushed onto the stack, removing t itself.

5.4. Discussion 25

In both cases, the behaviour of the simulated stack machine is identical to the
inductive definition of a plan. Consequently, the encoding leads to some satis-
fying assignment if and only if the computation of a valid plan has finished.

To conclude, the simulated stack machine executes a sequence of actions which is
conform to the definition of a plan.

After a successful computation, this plan can then be extracted in the form of the
satisfying assignment which has been found for the action execution variables.

The upper limit on the amount of needed steps directly follows: At each step,
either a reduction is applied or an action is executed (and appended to the plan),
leading to a total amount of steps equal to the number of applied reductions plus
the plan length.

5.3.2 Complexity

In the following, the asymptotic complexity of clauses and variables of the encoding
is discussed. The task-based, unary-style SMS encoding variant is chosen for this
purpose. Assume that after n computational steps, a plan π of length |π| ≤ n is
found.

The amount of variables is dominated by the encoding of the stack itself: If a
stack of size σ has been encoded, then O(n · σ · T) variables are used to encode the
stack. Additionally, the action executions contributeO(n · A) variables and the state
encoding makes up forO(n · F) variables. Last but not least,O(n · r) variables repre-
senting the chosen reduction of the current task are needed for r := max

{
|R(t)|

∣∣ t ∈
T
}

, and for AMO constraints over actions, O(n · log A) helper variables are used.
This leads to a total of O

(
n · (σT + A + F + r)

)
variables. Note that with some

σ ∈ O(n), this measure implies a quadratic term n2T.
Regarding the amount of clauses, the classical planning clauses include O(n ·

A) clauses for preconditions and effects of actions, and O(n · F) clauses for frame
axioms. To uniquely specify the content of the stack at each computational step,
O(n · σ · T · e) transitional clauses (for each push(k), 0 < k ≤ e, and for pop()) are
needed, where e := max

{
|subtasks(r)|

∣∣ r ∈ R
}

. O(n · A) clauses link the stack
operations with the execution of actions. As e is usually a small constant, a pairwise
AMO constraint over them is added according to rule 5.7 by introducing O(n · e2)
clauses. For the actual transitions, each task which can be on top of the stack causes
O(r) clauses; consequently, O(n · T · r) clauses are needed. In total, O

(
n · (A + F +

σTe + e2 + Tr)
)

clauses are added. Again assuming σ ∈ O(n), the dominating factor
becomes n2Te.

5.4 Discussion

In the following, some advantages and disadvantages of the proposed encoding are
discussed.

The SMS encoding explicitly stores the entire hierarchy in the step-dependent
stack content. For this reason, recursive subtask relations or some task occuring
multiple times in a successive manner do not pose a problem. The resulting calcula-
tion is perfectly stable with respect to such particular properties of a problem.

By design, the encoding is DimSpec-compliant. As a consequence, the encoding
can benefit from generic incremental SAT solving procedures where the formulae are
automatically instantiated for each additional step and no full re-encoding is needed
for each further step considered.

26 Chapter 5. 2nd Contribution: SMS Encoding

The completeness of the SMS calculation depends on the maximum considered
stack size. However, as the DimSpec format inserts the same amount of variables
and clauses at each additional step, this parameter has to be known a priori in or-
der to create the encoding. A safe upper-bound on the stack size is the maximum
number of computational steps being considered: Every pushed task will need to be
removed later such that the stack is empty in the end, so there is no valid calculation
with n computational steps and a maximal stack size higher than n.

In general, the maximal amount of computational steps is desired to be left un-
bounded; a solver should continue until a solution is found or until the computa-
tional resources are exhausted. As a consequence, providing the maximum stack
size as a hyper-parameter to the encoding is somewhat unsatisfactory and limits the
computation’s completeness. Alternatively, the DimSpec format must either be re-
placed or generalized to some specification which allows the addition of variables
and clauses in an adaptive manner.

Another issue arises from the necessary amount of computational steps as
proven in Theorem 1. Naïve classical SAT planning procedures take exactly n steps
to find a plan of length n, whereas SMS takes n + n′ steps where n′ is the amount
of applied reductions. In fact, n′ can be of significant size. For instance, consider
that the hierarchy forms a balanced binary tree (where, as described in Definition
18, each leaf is an action of the plan and each inner node is a reduction to apply).
Assuming n to be a power of two for the sake of simplicity, this leads to n′ = n− 1
reductions, implying that solving the SMS encoding takes 2n− 1 steps.

There are even worse cases: If some tasks are reduced to a single subtask, then the
amount of inner nodes in the tree is not bound by the amount of leaves any more.
The worst case in such cases is only limited by the amount of applicable reductions
that can be chained to a long sequence of subtask relations without forming a loop
in state-space.

To sum up this issue, the amount of needed computational steps is quite large
and may render the explorable space of possible variable assignments very big.

The SMS encoding presented in this chapter demonstrates that HTN planning with
incremental SAT solving is possible in a well-structured and comparably lightweight
manner. The central shortcomings of the SMS encoding, namely its inflexible, pa-
rameterized stack encoding and the large amount of necessary computational steps,
are both dealt with in the following chapter by proposing the T-REX encoding.

27

Chapter 6

3rd Contribution: T-REX Encoding
and Instantiation

The SMS encoding presented in the last chapter has been found to work reliably. Yet,
it requires a problem-dependent parameter and it does not handle bigger problems
well, one of the reasons being the large number of computational steps needed to
solve the problem. In the following, a new encoding approach is presented which
entirely avoids these restrictions.

6.1 Abstract description

As a point of departure, consider a sequence of reductions and actions just as they
occur as the stack content of the SMS encoding at any computational step. In the
SMS encoding, only the first element of this sequence is removed from the sequence
and processed in an isolated manner, leading to a long linear chain of small changes
to the stack’s content.

The main idea of the following encoding is to replace the stack structure with a
general array of elements, and to process all of the stored elements in one single com-
putational step. As illustrated in Fig. 6.1, all non-primitive tasks which are present
at some computational step are reduced in a simultaneous manner while preserving
the order of all tasks in the array and while also enforcing the consistency of facts
with respect to the occurring preconditions and effects. This implies that it does not
suffice any more to maintain a single set of facts for each computational step; instead,
all respectively relevant facts need to be encoded at each position of the array, at each
step, and their truth values need to be propagated between successive layers. The
encoding now effectively grows along the depth of the hierarchy until all elements in
the array are primitive actions, implying a finished plan.

get_soil_data(w0)

blank

blank

navigate(w0)

empty_store()

send_soil_data(w0)

sample_soil(w0)

do_navigate(w1,w0)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

blank

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

navigate(w1,w0)

blank

Initial tasks,
initial and goal state Finished plan

FIGURE 6.1: Illustration of the transitions between computational
steps in the T-REX encoding

28 Chapter 6. 3rd Contribution: T-REX Encoding and Instantiation

The described approach has been called T-REX, short for Tree-like Reduction
Exploration, as the encoding results in a tree structure of reductions which is being
explored in a breadth-first manner, up to an iteratively growing depth. Using this
technique, a planner can find a plan after a number of computational steps corre-
sponding to the minimal depth of the hierarchy for which a plan exists. Just like the
arms of the prehistoric Tyrannosaurus Rex in relation to its total size, this depth to
explore is very short for most of the considered problems. This property leads to a
fast solving process, just like a T-REX was allegedly able to run very fast1.

6.2 Clauses

In the following, the clauses of the default T-REX encoding are provided. Note that
the encoding does not directly feature non-primitive tasks, but their possible reduc-
tions instead. This is because the amount of subtasks of a given reduction is always
fixed whereas the number of children of a given non-primitive task may vary. The
propagation of elements can be implemented much more easily in the former case.

6.2.1 Initial state clauses

The initial facts hold at position 0:∧
p∈s0

holds(p, 0) ∧
∧

p/∈s0

¬holds(p, 0) (6.1)

At each position i at the initial layer, any reduction of the i-th initial task ti is possible.

k−1∧
i=0

∨
r∈R(ti)

element(r, i) (6.2)

The last position k at the initial layer contains a blank element:

element(blank, k) (6.3)

At the last position k at the initial layer, all goal facts hold:∧
p∈g

holds(p, k) (6.4)

6.2.2 Universal clauses

The presence of an action at some position i implies its preconditions at position i
and its effects at position i + 1:

element(a, i) =⇒
∧

p∈pre(a)

holds(p, i) ∧
∧

p∈pre(a)

¬holds(p, i) (6.5)

element(a, i) =⇒
∧

p∈eff(a)

holds(p, i + 1) ∧
∧

p∈eff(a)

¬holds(p, i + 1)

1The actual running speed of the Tyrannosaurus Rex is a somewhat controversial topic in research,
with more recent publications suggesting quite moderate peak values of around 8 ms−1 (Sellers and
Manning, 2007).

6.2. Clauses 29

A reduction at some position i implies its preconditions at that position:

element(r, i) =⇒
∧

p∈pre(r)

holds(p, i) ∧
∧

p∈pre(r)

¬holds(p, i) (6.6)

Each action is primitive, and each task reduction is non-primitive (effectively elimi-
nating the possibility of an action and a task reduction to co-occur):

element(a, i) =⇒ primitive(i) (6.7)
element(r, i) =⇒ ¬primitive(i)

If a fact changes, then either this position does not contain any action yet or it con-
tains any action which supports this fact change.

¬holds(p, i) ∧ holds(p, i + 1) =⇒ ¬primitive(i) ∨
∨

p∈eff(a)

element(a, i) (6.8)

holds(p, i) ∧ ¬holds(p, i + 1) =⇒ ¬primitive(i) ∨
∨

p̄∈eff(a)

element(a, i)

At each position, all possibly occurring actions are mutually exclusive. (Note that
this also includes the blank action variable.)

AtMostOne
{
element(a, i) | a ∈ A

}
(6.9)

6.2.3 Goal state clauses

For the full formula to be satisfiable, all positions of the last (i.e. the current) hierar-
chical layer l must be primitive. ∧

0≤i<kl

primitive(i) (6.10)

6.2.4 Transitional clauses

In the following, if a variable atom is instantiated at some layer l − 1, then the vari-
able atom’ corresponds to that variable at layer l. In addition, for any position i at
some layer l − 1, the successor position i′ at layer l is the new position at that layer
to which the elements are shifted depending on the applied reductions at previous
positions.

A fact p holds at some position i if and only if it also holds at the successor
position i′ at the next hierarchical layer.

holds(p, i) ⇐⇒ holds′(p, i′) (6.11)

If an action occurs at some position i, then it will also occur at the successor position
i′ at the next hierarchical layer.

element(a, i) =⇒ element′(a, i′) (6.12)

In the following, the expression e(i) is equal to the maximum length of an expan-
sion that any of the potential elements at position i at layer l − 1 may induce. It is
evaluated while instantiating the clauses.

30 Chapter 6. 3rd Contribution: T-REX Encoding and Instantiation

If an action occurs at some position i, then all further child positions i′ + j at the
next layer will contain a blank element. For 0 < j < e(i), we have:

element(a, i) =⇒ element′(blank, i′ + j) (6.13)

If a task reduction occurs at some position i, then it creates any of its possible sub-
tasks at the next layer. Let subtasks(r) = 〈t0, . . . , tk−1〉:

element(r, i) =⇒
k−1∧
c=0

∨
r′∈R(tc)

element′(r′, i′ + c) (6.14)

Any positions at the next layer which would stay undefined by the task’s expansion
are filled with blanksymbols. For k ≤ j < e(i), we have:

element(r, i) =⇒ element′(blank, i′ + j) (6.15)

6.3 Realization

The following section describes in more detail how the approach has been realized
in practice and which optimizations have been done in order to allow for an efficient
encoding and solving process.

6.3.1 Sparse Element Encoding

Encoding each of the problem’s reductions and actions at each position at each con-
sidered depth leads to a high number of variables (comparable to the stack of SMS)
and clauses. Instead, only the elements which are actually possible at the given po-
sition and depth will be encoded. The occurrence of an element is decided during
the instantiation process as follows:

At the initial layer 0, exactly the possible initial task reductions are possible at
their corresponding position, followed by a single blank action. Inductively, given
the possible elements at some position p at layer l which gets mapped to the posi-
tions {p′, . . . , p′ + k} at layer l + 1, the successors of these possible elements will be
possible at layer l + 1, beginning at position p′. Finally, if an element has no suc-
cessors at one or multiple child positions regarding the previous rules, then a blank
element will be possible there.

Note that in this definition, the successors of actions are defined as the element
itself at offset zero, and no further elements.

Using this reduced set of possible elements, no variables encoding the respective
impossible elements are needed and the domain of variables as well as the amount
of clauses can be reduced significantly. The index of an array’s last position where
some element may occur corresponds to the total array size to encode.

6.3.2 Efficient Encoding and Instantiation

When using the SMS encoding, the maximal stack size has to be provided as a hyper-
parameter, because for each additional makespan to consider, exactly the same set
of clauses has to be instantiated. For the T-REX approach, a more specialized encod-
ing strategy has been developed to ensure an efficient and complete solving process
without any required parameters. Essentially, an encoding similar to the DimSpec

6.3. Realization 31

Data: T-REX abstract encoding file
Result: Satisfying variable assignment, if a solution exists; ⊥, else
Process abstract encoding;
Build data structures of element successors and possible fact changes;
nextLayer← CalculateFirstLayer();
foreach p← 0 to nextLayer.ArraySize()−1 do

Add universal clauses at (nextLayer, position p);
end
result← UNSAT;
while result 6= SAT do

prevLayer← nextLayer;
nextLayer← prevLayer.CalculateNextLayer();
foreach p← 0 to prevLayer.ArraySize()−1 do

Add transitional clauses from (prevLayer, position p)
to (nextLayer, position prevLayer.NextPosition(p));

end
foreach p← 0 to nextLayer.ArraySize()−1 do

Add universal clauses at (nextLayer, position p);
Assert goal literal at (nextLayer, position p);

end
result← SatSolve();

end
Output satisfying variable assignment.

Algorithm 1: T-REX Instantiation procedure

format is produced, but the specified clauses are instantiated along two dimensions,
namely the hierarchical depth and the cells of the array at that depth.

Algorithm 1 provides an abstract view on the instantiation procedure. After pro-
cessing the abstract encoding file, all general data structures which are necessary
are computed, such as the possible successors (or children) of each reduction and
the facts that may be potentially changed by each reduction. Thereupon, an initial
layer of the hierarchy is computed from the initial state specification of the encoding.
A layer object hereby encapsulates various data structures determining which ele-
ments and facts may occur at which positions, which positions are preceding which
positions at the next layer, and which elements get mapped to which boolean vari-
ables in the resulting formula. A while loop is then executed as long as the problem
is unsolved, always calculating the succeeding layer of the layer before, adding all
needed clauses, and calling the SAT Solver.

More details about the developed T-REX Interpreter which performs the just-in-
time creation of such clauses and the communication with a SAT solver are provided
in Chapter 7.2 (Implementation).

6.3.3 Encoding optimizations

In the following, some considered optimizations of the implemented encoding are
explained.

Sparse Fact Encoding

Just like the sparse encoding strategy for reductions and actions, the amount of
encoded facts can be reduced as well. Using information of which facts might be
changed by which reductions, the following strategy can be employed:

32 Chapter 6. 3rd Contribution: T-REX Encoding and Instantiation

• At each depth, all facts are encoded at the first and at the last position.

• At each depth, a fact p is encoded at position i if an action with p as an effect
may occur at position i− 1, or if a reduction possibly leading to a change of p
may occur at position i− 1.

Frame axioms (Rule 6.8) for a fact p are adjusted to not necessarily link neigh-
bored positions, but only the positions which contain a variable for p. For precon-
ditions of actions and reductions, the following rule is used: When a fact is not en-
coded at some position i, then the fact variable at the highest possible position j < i
is used instead. This is valid because the fact cannot change inbetween the interval
(j, i] by definition of the sparse fact encoding rule. Essentially, constraints involving
facts will “jump” over positions where the fact is known to remain unchanged.

Variable reusage

When a fact is encoded at position i at layer l − 1 and also encoded at the successor
position i′ at layer l, then the same boolean variable can be used for holds(p, i) and
holds′(p, i′); the fact does not need to be explicitly re-encoded as a new variable.
This eliminates the need for fact propagation clauses (Rule 6.11).

The same technique may be applied to actions: If an action occurs at some spot,
then it will be propagated without ever vanishing, so the same action variable may
be reused for all succeeding layers. However, there is a subtle issue with this rep-
resentation: An action variable might in fact need to be re-encoded in the case that
the same action has already been possible at a predecessor position at some previous
layer, because the different sets of frame axioms might be conflicting otherwise.

At-Most-One constraints

When using one boolean variable for each possible element, multiple elements may
be present at the same position and depth. To enforce a correct realization of the
problem’s hierarchical structure, At-Most-One constraints over actions are added.
No At-Most-One constraints over reductions are needed because any co-occurring
set of reductions at the same spot will inevitably lead to a conflict if their expansions
differ regarding their final primitive actions.

To further optimize At-Most-One constraints, a threshold parameter has been
introduced which decides on the kind of encoding to be done (see Appendix A) de-
pending on the specific amount of actions at some position. Additional variations
and modifications considered in the evaluation include encoding At-Most-One con-
straints over all elements (instead of only constraining actions) or encoding only a
single, successively accumulating set of At-Most-One constraints for each propagat-
ing position of the hierarchy when action variables are being reused.

Successor clauses

As the successors of composite elements (Rules 6.14, 6.15) and the propagation of
primitive elements (Rules 6.12, 6.13) have been specified, the sufficient conditions for
elements at the next position are fully defined. It may also help the solving process
to add the necessary conditions for an element to be at a certain position at the next
layer. Any action at the next layer either has already been at the corresponding
parent position at the previous layer before, or it has been created by expanding an
appropriate reduction at the parent position. Likewise, any reduction at the next
layer must have been created by some appropriate reduction before.

6.4. Plan optimization 33

6.4 Plan optimization

The T-REX approach as presented finds a solution to the planning problem at hand
at the most shallow possible hierarchical depth. However, it does not guarantee
any upper bound on the plan length besides the maximum array size at the final
layer. As neither the encoding nor the SAT solver differentiate between solutions of
varying plan length, a short plan is not inherently more probable than a longer plan.
To overcome this drawback, the paradigm of incremental SAT solving can be further
exploited to reduce the plan length after identifying an initial plan.

The general procedure of the plan optimization is as follows: When the SAT
solver reports satisfiability for the first time, a plan is found. Afterwards, the goal
literals which have previously only been assumed (for a single solving attempt) are
added permanently, for all following solving attempts. Then, new clauses are added:

The variable planLengthGeq(k, i) (“the plan length at position i is greater or
equals k”) represents that the amount of all “proper” actions up to position i at the
final hierarchical layer make up a partial plan of length k or longer. In particular,
blankand nop actions (without any preconditions and effects) are not counted.

The plan length is at least zero at position zero, and the minimal plan length will
never decrease, but at least stay the same when advancing to the next position at the
final layer:

planLengthGeq(0, 0) (6.16)
planLengthGeq(k, i) =⇒ planLengthGeq(k, i + 1) (6.17)

If a proper action is at position i at the final layer, then the minimal plan length will
increase by one at position i + 1:

planLengthGeq(k, i) ∧ ¬element(nop, i) ∧ ¬element(blank, i) (6.18)
=⇒ planLengthGeq(k + 1, i + 1)

Above clauses together ensure the following: If some found plan has a length
of k∗ on an array of size A, the variable planLengthGeq(k∗, A) will be true. Conse-
quently, to restrict the plan to be shorter than k∗, the following literal is assumed:

¬planLengthGeq(k∗, A) (6.19)

A plan of length smaller than k∗ can now be searched by assuming such a literal
and performing another solving attempt. This technique is combined with a gen-
eral search method (e.g., a bisection search or a linear search) in order to iteratively
improve the lower and upper bounds on possible plan lengths at the final layer of
the considered hierarchy, until the computation is canceled or until the plan is fully
optimized, i.e. the lower and upper bounds on the plan length collide.

Note that the globally optimal solution to the problem is not necessarily found
this way. There may still be a plan of shorter length at some deeper layer because
additional nop and blank actions may arise at that point, decreasing the effective
plan length despite a larger array size. When accounting for these special actions,
the reduction expansions are comparable to shortening production rules of a formal
grammar, leading to the assumption that it is indeed a very hard problem to find the
globally shortest plan under this HTN model.

The described procedure is an Anytime algorithm which may be interrupted af-
ter an arbitrary amount of time, reporting the shortest plan found as the final result.

34 Chapter 6. 3rd Contribution: T-REX Encoding and Instantiation

The complexity of variables and clauses is quadratic in the size of the final hier-
archical layer. An experimental demonstration of the proposed plan optimization
featuring different search procedures is provided in Chapter 8.5 (Evaluation).

6.5 Analysis

In the following, some theoretical properties of the T-REX approach are discussed.

6.5.1 Termination and correctness

Theorem 2 (Termination and correctness of the T-REX encoding). Consider a solv-
able HTN problem P = (D, C, s0, g, T0). Using the T-REX encoding, an incremental
SAT solving procedure terminates after at most δ computational steps, and a valid
plan can be extracted from the found satisfying assignment. Hereby, δ is equal to the
minimal depth of any existing plan for P .

Idea of proof. It can be shown inductively that a T-REX solving procedure perfectly
simulates a breadth-first search of the problem’s task hierarchy (Def. 18). The re-
maining argument is simple: If a plan is found within T-REX, then it is a valid part
of the problem’s hierarchy, implying that the plan is in fact a solution to the problem
at hand. If δ is the minimum depth of which a plan to the problem exists, then the
procedure will find a plan after δ computational steps.

6.5.2 Complexity of clauses and variables

To assess the complexity of the T-REX encoding, asymptotic measures over the num-
ber of variables and clauses are provided.

Consider a problem for which after k hierarchical layers, each layer i with an ar-
ray size of si, a plan π of length |π| ≤ sk is found. Using the sparse fact encoding,
each fact has then been encoded as a variable at most sk times. Each action a ∈ A
is encoded at most C := ∑k

i=1 si times (once for each position at each layer). Simi-
larly, each task reduction r ∈ R has been encoded at most C times. Adding at most
C · log(A) helper variables for At-Most-One constraints and exactly C primitivity
variables leads to a variable complexity of O

(
sk · F + C(R + A)

)
.

Regarding the needed clauses for finding the mentioned plan, O(∑k−1
i=1 si · (R +

A) · e) clauses for reductions and the introduction of new blank symbols are needed,
for e := max

{
|subtasks(d)|

∣∣ d ∈ R
}

. Preconditions and effects add up to
O(C(R + A)) clauses. The definition of the primitiveness variables is included by
this complexity measure as well. O(C · F) clauses for frame axioms and at most
C · A log(A) clauses for binary-style At-Most-One constraints are needed. This leads
to a total of O

(
∑k−1

i=1 si · (R + A) · e + C(R + A log(A) + F)
)

clauses.
Note that these complexity measures assume that at each position and at each

layer, all actions and all methods occur, which is highly unlikely in practice.
Nonetheless, there is no obviously quadratic term in the complexity of clauses and
variables, in contrast to the previously presented SMS encoding. Intuitively, this
is because instead of encoding a full “matrix” of k · sk positions, only the actually
needed tree of size ∑k

i=1 si is encoded. For instance, consider a problem with 2 initial
tasks where each position will always expand to a sequence of 2 new positions. With
a hierarchy of depth k where eventually some plan of length l = 2k is found, a more
naïve encoding could yield k · l positions to encode, whereas the tree-like encoding
only takes ∑k

i=1 2i < 2 · l positions.

35

Chapter 7

Implementation

In the following, technical details about the realization of the presented encoding
and solving techniques are provided. All software developed over the course of this
work will be made available on https://gitlab.com/domschrei/htn-sat.

7.1 HTN-SAT

The Java application HTN-SAT has been developed in order to encode HTN plan-
ning problems in propositional logic, to launch an external SAT solving process on
the encoding, and to decode the result and output it as a human-readable sequence
of primitive actions.

7.1.1 Abstract description

HTN-SAT uses the framework PDDL4j with an extension developed by Ramoul et
al., 2017 which includes an effective grounding procedure as a part of the preprocess-
ing. After receiving a completely grounded HTN planning problem from the pre-
processing, HTN-SAT continues to create further simplified data structures which
are needed for the various featured HTN-to-SAT encodings. Subsequently, a SAT
encoding of the desired type, specified by a command-line argument, is produced.
The resulting set of clauses is then output into a file (whose structure depends on
the chosen encoding type) and an according solver executable is launched on this
file. Such solver applications include compiled standalone SAT solvers (for the non-
incremental GCT encoding), the Incplan application by Gocht and Balyo, 2017 linked
with an incremental SAT solver (for the SMS encodings), and the T-REX Interpreter
application (for the T-REX encoding). Being notified at the end of the computation,
HTN-SAT continues to parse the found assignment and decodes the assigned vari-
ables back into the original problem domain. Finally, the found plan is output to a
solution file.

In the case of non-incremental solving (which is only the case for the GCT encod-
ing), the process of encoding, writing and SAT Solver execution is repeated until the
solver has found a solution or the computation is canceled.

7.2 T-REX Interpreter

The T-REX Interpreter is an application written in C++ which expects an abstract
T-REX encoding file as an input, performs an incremental instantiation and solving
process by directly communicating with a SAT solver library, and outputs the found
satisfying assignment. Optionally, the application can subsequently launch a plan
length optimization procedure which is interruptible at any time.

https://gitlab.com/domschrei/htn-sat

36 Chapter 7. Implementation

HTN-SAT (Java)

PDDL4j

Parsing,
Instantiation,
Simplification

T-REX Interpreter (C++)

- - -
- - -- - -

- - -

- - -
- - -

Input:
PDDL domain
and problem
description

SAT
Encoding

Abstract
SAT encoding

Parsing,
Creation of
helper data
structures

Calculation
of properties
at next depth

Clause
creation

Solving
attempt

Output of
assigned
variables

UNSAT

SATDecoding

- - -
- - -

Output:
Plan

SAT solver
library

IPASIR

Plan length
optimization

IPASIR

FIGURE 7.1: The general pipeline of solving a planning problem with
the T-REX approach

7.2.1 Abstract description

Figure 7.1 illustrates the abstract pipeline of a full execution of the T-REX Interpreter
within the scope of HTN-SAT. Initially, the T-REX encoding is read and converted
into appropriate data structures. It is worth noting that the parsed abstract clauses
are not stored in the form of pure clauses, but rather in specialized data structures
which directly hold information on the properties of the encoded elements and facts.

With these data structures, an initial layer of the hierarchy is computed, only
containing the initial tasks and facts. All necessary clauses describing this layer are
then instantiated and transferred to a SAT solver over the IPASIR (see Chapter 7.2.3).
When the SAT solver found the formula to be unsatisfiable, the subsequent hierar-
chical layer is computed by applying the transitional properties of the problem to
the data of the previous layer. This process of computing a hierarchical layer, instan-
tiating the necessary clauses, and executing a SAT Solver is repeated until success
(or until the computation is cancelled).

Optionally, the computation continues with a plan length optimization, repeat-
edly assuming literals and calling the SAT solver until the optimal plan on the final
layer is found or until the computation is canceled. In the latter case, the decoding
and the output of the best found plan is still performed before terminating.

7.2.2 Encoding format

The abstract encoding notation used for the T-REX approach is an extension of Dim-
Spec (Gocht and Balyo, 2017) implying an instantiation of the included clauses along
two directions: along the makespan, which is the hierarchical depth, and along the
positions of each layer. Like DimSpec, it contains four blocks i, u, g, and t with an
identical meaning. Additionally, the following literal annotations are introduced:

The annotated literal lit@i denotes that the literal lit holds at position i at the
depth which is currently instantiated. This is used for the initial state.

lit@A denotes that lit holds at all positions at the current depth. This is used for
the goal assumption of all positions being primitive.

lit+k denotes that lit holds at position i + k, if i is the instantiated position in
the context of the literal. This is mainly used for the specification of the reduction
expansions.

7.3. Experiments 37

The variable domains have been fixed in order to allow for an uncomplicated and
efficient implementation: variables {1, . . . , A} represent the actions, variables {A +
1, . . . , A + R} represent the reductions, variable A + R + 1 denotes the isPrimitive

predicate, and variables {A + R + 2, . . . , A + R + F + 1} represent the facts of the
problem. Information on the quantities A, R, F and on any improper nop actions are
provided by header lines at the encoding’s beginning.

Only the clauses which actually define the problem need to be provided as a part
of the encoding; other clauses such as frame axioms, At-Most-One constraints or the
propagation of facts and actions along the layers can be inferred and will be added to
the incremental formula automatically without the need to explicitly specify them.

7.2.3 Dependencies

The T-REX Interpreter uses the IPASIR (Balyo et al., 2016) which facilitates the com-
munication with a SAT solver. On a technical level, the C++ application is linked
with a pre-compiled library of the desired SAT solver. Such a library provides
a slim interface of C methods such as ipasir_add (to add a literal to a clause),
ipasir_assume (to assume some literal) or ipasir_solve (to initiate a solving at-
tempt). As the interface itself is agnostic to the used solver, any solver for which
IPASIR bindings exist can be linked with the T-REX Interpreter. Therefore, various
popular SAT solvers such as MiniSAT (Eén and Sörensson, 2003), PicoSAT (Biere,
2008), Glucose (Audemard and Simon, 2009) and Lingeling (Biere, 2013) have all
been successfully linked and used with the T-REX Interpreter with minimal effort.
Changing the SAT solver used by T-REX just requires re-building the application
with the environment variable IPASIRSOLVER set accordingly.

For efficiently storing and querying the possible elements at every position at
each layer of the hierarchy, the dynamic_bitset implementation of the boost li-
braries has been used. Additional boost modules have been used for the parsing
of command-line arguments.

7.3 Experiments

In the following, the general approach of performing the performance evaluations is
described. For reproducibility, the implemented evaluation methods will be made
available on https://gitlab.com/domschrei/htn-sat.

7.3.1 Methodology

All evaluations have been performed by first creating a textfile which contains all
configurations to evaluate, one for each line. Each configuration contains the prob-
lem instance (domain and problem file), the executable to solve the problem (such
as HTN-SAT or Madagascar), and additional program arguments. When the config-
uration file is created, a bash script randomizes the ordering of the lines. This leads
to a sequence of configurations to be tested which is properly randomized in order
to reduce any skews in the results caused by external circumstances.

The configuration file is read by a script which then executes one configuration
one after the other, using GNU parallel (Tange, 2011). A script named timeout1 can-
cels any computation which does not terminate after the specified amount of time
or which takes more memory than allowed. In every case, all relevant information

1https://github.com/pshved/timeout

https://gitlab.com/domschrei/htn-sat
https://github.com/pshved/timeout

38 Chapter 7. Implementation

about the program execution is logged into separate directories, also including meta
information like memory usage, CPU temperature and MD5 checksums of used bi-
naries.

After the entire configuration file has been processed, various relevant results
such as the total run times of the different configurations can be assembled by the
usage of additional scripts. The data has then been visualized by Python scripts
using Pyplot and aggregated into illustrative tables.

7.3.2 Validation

In order to guarantee that all results used for the evaluation are based on correct
calculations, the VAL validation tool (Howey, Long, and Fox, 2004) has been used. In
an automatic manner, all found solutions of an evaluation can be examined by VAL
and any errors in the plan will be reported. As VAL is restricted to the validation
of classical planning problems, the plan is only validated in the sense that the set of
facts is consistent at each step and correctly transforms the initial state to some goal
state. The definition of a plan as given in Def. 15 is stronger and also incorporates
abiding to the HTN-specific constraints of the problem.

7.3.3 Hardware and software set-up

The T-REX parameter tuning and the comparison of T-REX with Madagascar have
been done on a server with 24 cores of Intel Xeon CPU E5-2630 clocked at 2.30 GHz
and with 264 GB of RAM, running Ubuntu 14.04 with the Linux kernel 3.13.0-142-
generic.

All other evaluations have been conducted on a notebook with an Intel i7-7500U
dual-core CPU clocked at 2.70 GHz and with 16 GB of RAM, running GNU/Linux
Debian 9 with the Linux kernel 4.16.0-1-amd64.

All experiments have been done in a head-less, non-graphical terminal session.
The server has been accessed via SSH.

For all experiments, Glucose (Audemard and Simon, 2009) has been used as the
primary SAT solver, as it generally performed well on preliminary tests compared
to the other solvers.

7.3.4 T-REX parameter tuning with ParamILS

For the parameter tuning of T-REX, the default configuration of ParamILS v2.3.5
has been used (Hutter et al., 2009), namely the FocusedILS approach with default
parameters. No general computational bounds were provided, and the cutoff time
per instance was set to 3 minutes. The total run time average has been chosen as the
quality metric for individual configurations.

39

Chapter 8

Evaluation

In the following, the original encoding approaches proposed in the previous chap-
ters are experimentally evaluated and compared to other state-of-the-art methods.

8.1 Parameter tuning of T-REX

Various encoding optimizations have been developed for the T-REX encoding. In
order to validate these and to find a configuration which performs well on a broad
range of common problem domains, an automated parameter tuning has been con-
ducted. The used tuning framework ParamILS (Hutter et al., 2009) has previously
successfully been used by a wide range of applications, in particular for SAT solving
(Hutter et al., 2007) and automated planning (Alhossaini and Beck, 2012).

8.1.1 Considered parameters

The following set of parameters for the T-REX encoding has been considered:
init_layer_amo (a): At the initial layer, add At-Most-One constraints over each

set of possible task reductions.
full_amo (A): At all non-initial layers, add At-Most-One constraints over all oc-

curring elements, also over reductions.
binary_amo_threshold (b): Sets the minimal amount of elements for At-Most-

One constraints in order to use a binary At-Most-One encoding instead of the pair-
wise variant (see Appendix A).

cumulative_amo (c): If action variables are reused, also reuse the set of At-Most-
One helper variables from the previous depth and position, leading to a single cu-
mulative set of At-Most-One constraints for each “final” position.

full_prim_elem_encoding (e): Do not reuse action variables.
full_fact_encoding (f): Do not use the strategy of sparse fact encoding and

variable reusage.
encode_predecessors (p): Encode the possible origins of each element regard-

ing its previous layer.

As an initial configuration of T-REX, the encoding T-REX-b4 has been used. The
value 4 for the threshold b has been chosen as it strongly enforces compact, non-
quadratic constraints, leading to good run times in previous explorative experi-
ments.

The parameter tuning has been conducted using 139 problems from seven prob-
lem domains which originate from the International Planning Competition (IPC).

40 Chapter 8. Evaluation

8.1.2 Results

After running ParamILS for 100 000 seconds (around 27 3
4 hours), the configuration

T-REX-p-b8192 has been found as a stable candidate over multiple iterations for the
best configuration regarding the average run times. This encoding configuration has
been evaluated on all considered problem instances and lead to an average run time
of 34.05 seconds, which is only slightly better than the next best found configuration
T-REX-pa-b512 with an average run time of 34.65 over all considered instances.

The high threshold values which have been found imply that the fast propaga-
tion properties and the absence of any additional variables in the pairwise At-Most-
One style outweigh the disadvantage of requiring a quadratic amount of clauses.
Note that 8192 has been the highest value of b that has been considered during the
tuning process. An even higher value, or a complete omission of binary-encoded
At-Most-One constraints, might have further influence on the run times.

The optimizations regarding the sparse encoding of elements and facts have been
confirmed to positively contribute to the approach’s performance. Likewise, the ad-
dition of redundant clauses specifying the possible predecessors of each element (p)
has been found to consistently help the solver to find an answer more quickly. How-
ever, note that the results of the tuning cannot be used to argument with certainty
that this configuration is indeed the globally optimal configuration on the consid-
ered instances.

The resulting speedup of the found configuration over the initially considered
“naïve” version of T-REX is shown during the following evaluations.

8.2 Benchmarks of GCT, SMS, and T-REX

In the following, the different encodings proposed over the course of this work are
experimentally compared to one another. Namely, the competitors are the GCT en-
coding (Chapter 4), three variants of the SMS encoding (Chapter 5), and both the
most naïve (-ef-b4) and the tuned (-p-b8192) configurations of the T-REX approach
(Chapter 6) without any plan optimization. The three featured SMS variants are
described in Chapter 5.2.5.

The evaluation has been focused on a selection of problem domains which in-
clude some very simple instances but become considerably harder when proceed-
ing to the more complex instances. The domains Blocksworld and Elevator lead to
a modest amount of tasks and actions to be encoded while Rover and Depots are
more voluminous domains in that regard. 80 problem instances from these four do-
mains have been considered. Runs have been cut off as soon as they reached a total
execution time of five minutes or an effective RAM usage of 12 GB.

8.2.1 Results

A compact overview over the results is given in Fig. 8.1, where the amount of solved
instances of an encoding is displayed with respect to the admitted time limit per in-
stance. GCT, as the overall weakest encoding, resolved 12 out of 80 instances within
a time limit of 5 minutes per instance. The SMS variants performed considerably bet-
ter and are quite similar concerning their overall performance; the reduction-based
variant SMS-ur solved 23 instances whereas the other two variants both solved 27
instances. Finally, both T-REX configurations significantly outperform the previous
encodings, whereas T-REX-ef-b4 solved 70 and T-REX-p-b8192 solved 74 out of 80
instances, all within very reasonable execution times.

8.2. Benchmarks of GCT, SMS, and T-REX 41

0 8 16 24 32 40 48 56 64 72
Number of solved instances

0

50

100

150

200

250

300

Ti
m

e
lim

it
/ s

Comparison of solved instances
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

FIGURE 8.1: Comparison of the proposed encodings, with instances
from the domains Blocksworld, Depots, Elevator, and Rover

Domain GCT SMS-bt SMS-ur SMS-ut T-REX-ef-b4 T-REX-p-b8192
Blocksworld 0.10 2.61 1.80 2.20 17.52 19.73
Depots 0.03 1.24 1.07 0.77 18.92 19.48
Elevator 1.02 2.62 1.28 2.19 7.43 13.94
Rover 0.24 2.21 1.59 1.60 15.20 19.89
Total 1.38 8.68 5.73 6.76 59.07 73.04

TABLE 8.1: Total run time scores of the proposed encodings

Table 8.1 provides a more detailed insight on the encodings’ performances. For
each considered instance, a score value of 1 is attributed to the fastest competitor
with a run time t∗, and each other competitor with a run time t is attributed a score
value of t∗/t, or zero if no solution has been found. These score values are summed
up for each domain and competitor, leading to the displayed results.

When comparing the scores of the SMS encodings, it is remarkable that SMS-bt
is the best variant regarding the overall score, although SMS-ut seems to perform
better judging from Fig. 8.1. This is because the scores values weight each instance
equally, and SMS-bt outperformed SMS-ut over most of the easier instances; how-
ever, for more complex problems, SMS-ut performed significantly better. SMS-ur
performed slightly worse than the other SMS variants on Blocksworld and Elevator,
but was competitive in the more complex domains.

The tuned T-REX variant leads to an improvement of 23.6% of the total score over
the naïve variant on the four domains. In particular, large problem instances are
solved significantly better with the tuned variant, as it found solutions to multiple
problems which have not been solved by the naïve variant.

Table 8.2 shows the scores for the found plan lengths of each competitor on each
domain. By design of the encoding, GCT always found the shortest plan beneath
all competitors if it found any solution at all. The plan length differences between
the SMS variants are small, and the worse scores for SMS-ur are due to the smaller
number of instances it solved. Interestingly, at an average plan length of around 23

42 Chapter 8. Evaluation

Domain GCT SMS-bt SMS-ur SMS-ut T-REX-ef-b4 T-REX-p-b8192
Blocksworld 3.00 11.00 10.00 11.00 19.32 19.09
Depots 1.00 5.61 4.68 6.88 19.02 19.47
Elevator 5.00 6.00 4.00 5.00 11.80 13.88
Rover 3.00 3.50 3.50 3.47 16.29 18.78
Total 12.00 26.11 22.18 26.35 66.42 71.23

TABLE 8.2: Total plan length scores of the proposed encodings

actions over all SMS encodings, the incremental SAT solving procedure took an av-
erage of 62 iterations to find these plans. This demonstrates the disadvantage of SMS
requiring significantly more iterations than the found plan length. In comparison,
the T-REX approach only required an average of 4.8 iterations and never more than
11 iterations, confirming that the minimal plan depth is indeed very small for most
of the considered problems and that this benefits the T-REX procedure. However,
T-REX may sometimes find a plan which is significantly longer than the minimal
plan under the given constraints. This drawback is the reason why an additional
plan optimization stage has been developed for T-REX.

Full visualizations of the domain-dependent execution times and plan lengths of
each encoding are provided in Fig. B.1 and B.2 in the Appendix.

8.3 Benchmarks of T-REX vs. Madagascar

In the following, the tuned T-REX variant is experimentally compared to the state-
of-the-art SAT planner Madagascar (Rintanen, 2014) operating on classical planning,
so without any HTN information. The hypothesis to support is that the proposed
approach is sometimes able to outperform state-of-the-art classical SAT planning,
generally validating the use of HTN-based planning over classical planning when
employing SAT techniques.

In total, 180 instances from nine IPC domains have been prepared both with
and without HTN-related information. Again, a cutoff time of five minutes and a
maximum RAM usage of 12 GB have been specified.

The competitors are T-REX-p-b8192, the three default variants of Madagascar (M,
Mp, and MpC) with differing heuristics and makespan scheduling, and additionally a
modification of Madagascar (MpC_Incplan) where the internal SAT solver has been
replaced by Incplan, a generic incremental SAT solving procedure making use of the
DimSpec format (Balyo et al., 2016), which has been shown to sometimes outperform
the default Madagascar versions. Each of the default Madagascar versions been used
with their default parametrization, and the Incplan modification has been executed
with the parametrization used in the according publication (--icaps2017 flag).

8.3.1 Results

Figure 8.2 visualizes the run time dependent amount of solved instances for each of
the competitors. It can be seen that T-REX was able to solve a number of instances
comparable to the Madagascar configurations under the given time and memory
constraints. T-REX solved a total of 149 instances each in under two minutes while
MpC was able to solve 145 instances in total.

Table 8.4 shows the run time scores for each of the competitors, weighting each
instance equally. T-REX achieves a significantly lower total score, which is partly due
to the overhead of comparably heavyweight HTN preprocessing routines and of the

8.3. Benchmarks of T-REX vs. Madagascar 43

0 20 40 60 80 100 120 140
Number of solved instances

0

50

100

150

200

250

300

Ti
m

e
lim

it
/ s

Madagascar vs. T-REX
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

FIGURE 8.2: Comparison of T-REX with various Madagascar config-
urations, using 180 instances from nine domains

Domain M Mp MpC MpC_I T-REX
Barman 0 0 4 0 20
Blocksworld 10 11 15 13 20
Childsnack 19 9 8 16 20
Depots 20 20 20 20 20
Elevator 20 20 20 13 14
Gripper 20 20 20 6 6
Rover 20 20 20 18 20
Satellite 15 18 18 8 14
Zenotravel 17 20 20 16 15
Total 141 138 145 110 149

TABLE 8.3: Amount of solved instances per competitor and domain

Domain M Mp MpC MpC_I T-REX
Barman 0.00 0.00 0.17 0.00 20.00
Blocksworld 5.11 5.00 9.82 4.76 14.24
Childsnack 8.44 7.75 6.99 5.58 10.62
Depots 13.10 18.93 19.20 14.53 1.66
Elevator 15.94 19.61 17.78 4.46 0.86
Gripper 8.88 19.42 18.84 1.75 0.30
Rover 18.35 18.98 19.55 15.59 5.16
Satellite 9.49 17.83 16.89 3.18 2.83
Zenotravel 12.19 19.83 19.11 11.18 0.75
Total 91.50 127.35 128.34 61.03 56.42

TABLE 8.4: Total run time scores on each of the nine domains

44 Chapter 8. Evaluation

Domain M Mp MpC T-REX
Barman 0.00 0.00 2.29 20.00
Blocksworld 9.76 7.32 8.86 19.27
Childsnack 16.70 8.84 7.88 15.75
Depots 12.22 16.32 16.38 19.79
Elevator 18.04 18.99 18.81 13.91
Gripper 18.04 20.00 20.00 6.00
Rover 6.03 19.79 19.99 8.89
Satellite 9.99 17.32 17.80 10.41
Zenotravel 11.75 18.61 18.60 6.46
Total 102.53 127.19 130.60 120.47

TABLE 8.5: Total plan length scores on each of the nine domains

T-REX pipeline leading to much higher runtimes for easy problems if compared to
the straight-forward preprocessing and solving routines of Madagascar.

In order to explain the large differences between the considered domains, three
different groups among them can be identified as follows:

• Few action parallelization and/or easy hierarchy models. There are some in-
stances which are problematic for Madagascar, namely problems which are
hardly parallelizable regarding ∃-step semantics. By design, the domains Bar-
man and Blocksworld do not allow any parallel actions, stripping Madagas-
car of its strongest advantage over T-REX. Using the hierarchical informa-
tion, T-REX easily solved each Barman instance (from the benchmarks used
by Ramoul et al., 2017) while the Madagascar configurations only solved few
instances. The domain Childsnack is modeled with an extremely simple hier-
archy, taking a fixed makespan of 1 for T-REX to solve each instance. Mada-
gascar does not have this information, leading to a very large search space.

• Problematic hierarchy models. T-REX performed comparably poor at the in-
stances of Elevator, Gripper, and Zenotravel, which have one evident com-
mon point: some HTN methods are modeled resembling a loop without an
explicit break condition. For instance, the Elevator domain contains a method
check_floor which may be reduced either to some sequence of tasks followed
by a recursive call of check_floor itself, or to a single nop. The planner it-
self has to decide when to exit this loop. T-REX has difficulties handling this
kind of hierarchical structure: while the procedure quickly finds a satisfying
assignment at the final makespan, it takes large amounts of time to prove the
unsatisfiability of non-final makespans.

• Hard domains with reasonable hierarchy models. The remaining domains,
namely Depots, Rover, and Satellite, have well-designed HTN models; how-
ever, the instances have a comparably high complexity (regarding the amount
of tasks and actions after grounding). The Madagascar variants outperform
T-REX on these domains, possibly due to the latter’s computational overhead
and due to the domains being well parallelizable by ∃-step semantics.

It can be concluded that, in comparison with previous SAT planning approaches,
T-REX is especially strong on single-agent planning domains where the problem se-
mantics does not allow for the parallel execution of actions and where no unfavor-
able loop-like structures are featured in the HTN model.

Regarding the produced plan lengths (Table 8.5), T-REX proved to create over-
all competitive plans. Evidently, the plan lengths highly depend on the domain as

8.4. Comparing T-REX to conventional HTN planning 45

well: For instance, the HTN model for Childsnack enforces plans that are quite long
compared to the minimum possible plan when not considering the HTN constraints.
In contrast, the HTN model for Gripper always leads to the shortest possible plan
(but T-REX only solved few instances from this domain). T-REX found compara-
bly long plans in the Rover, Satellite and Zenotravel domains whereas it found the
generally shortest plans in the Depots domain and plans of average length on the
remaining domains. As a conclusion, T-REX is competitive regarding the produced
plan lengths as well, even moreso if the plan optimization technique is employed
(see Chapter 8.5).

Note that, for the considered set of problem instances and with Glucose as a SAT
solver backend, the Incplan-patched variant of Madagascar with default parameters
was not able to outperform the original variants.

More detailed visualizations of the execution times and plan lengths are pro-
vided in Fig. B.3 and B.4 in the Appendix.

8.4 Comparing T-REX to conventional HTN planning

In the following, T-REX is compared to GTOHP (Ramoul et al., 2017), a state-of-the-
art HTN planner which operates on the same problem inputs and uses the same
preprocessing routines.

Regarding run times, T-REX is currently not able to outperform GTOHP. On
identical problem instances (instances 01-20 each from Barman, Childsnack, Rover,
and Satellite), GTOHP solved each instance in well under a minute and almost all
instances in the matter of a few seconds. In contrast, T-REX takes multiple minutes
for some more difficult problems on comparable hardware. One of the reasons for
this performance difference is the high computational overhead of the implemented
SAT-based approach. Specifically, the problem has to be transformed into efficient
data structures, encoded into SAT, written into a formula, solved by the interpreter
application, and decoded back to a result, whereas GTOHP directly operates on the
results of the initial preprocessing. In addition, the exploration of the solution space
is done in a much more guided manner by GTOHP, greedily applying reductions in
a depth-first manner. T-REX still needs to enumerate and process all possible task
reductions that may occur at some depth of the hierarchy.

The advantages of T-REX over GTOHP include the plan length optimization of
T-REX, leading to shorter plans the more resources are invested. T-REX may also
be used to prove certain properties of an HTN problem, such as the minimal hier-
archical depth for which there exists any solution, or tight plan length bounds for a
certain layer of the problem’s hierarchy.

Additionally, T-REX is a robust approach which operates reasonably well on do-
mains which are missing method preconditions. As shown in Fig. 8.3, the tuned
T-REX variant has been tested on the Rover domain both with the usual HTN model
and with all method preconditions stripped from the model. As can be seen, T-REX
finds plans surprisingly well without any method preconditions, only being slightly
slower than on the original domain. In contrast, GTOHP greedily chooses some ap-
plicable method at each point of the computation, enters an infinite loop in this case
and does not find any solutions on the modified domain.

46 Chapter 8. Evaluation

3 6 9 12 15 18
Problem size

0

10

20

30

40

50

60

70

Ru
nt

im
e

/ s

Total execution times ("Rover" domain)
T-REX-p-b8192 (no method precond.)
T-REX-p-b8192

FIGURE 8.3: Comparison of T-REX on the Rover domain with and
without method preconditions

8.5 T-REX Plan optimization

In the following, a qualitative demonstration of the plan length optimization stage
of T-REX is provided and discussed on some exemplary instances.

A total of 15 exemplary instances from the three domains Barman, Childsnack,
and Rover have been chosen, representing the full range of complexities for each
domain. These domains represent the most relevant optimization scenarios: Child-
snack is not optimizable at all, as it features a trivial hierarchy and will always di-
rectly lead to a solution of fixed length. Plans from the Barman domain are optimiz-
able by a slight margin, and Rover plans are highly optimizable.

Two search strategies have been considered: The first strategy is a linear search
over the possible plan lengths, beginning with the found plan length and then de-
scending until an unsatisfiable plan length is reached. The step size is at least one,
but the actual plan length found as the previous result is considered as well for the
new plan length to test. The second strategy is a bisection search over the possible
plan lengths, beginning with 1 and the initial plan length as the lower and upper
bounds and then always testing the plan length corresponding to the mean of the
two bounds.

Each run has been cut off after five minutes, reporting the shortest found plan.

8.5.1 Results

Both strategies terminated regularly for 14 out of the 15 considered instances, i.e.
both strategies found a fully optimized plan for almost all considered instances
within the time limit. Overall, the linear strategy was slightly faster to find the final
plans than the bisection search. The results per instance are visualized in Fig B.5 in
the Appendix.

In Figure 8.4, some illustrative examples of the results are provided. The pro-
gression of the plan length is illustrated by triangles showing each SAT solver result
at some time for some forbidden plan length, and corresponding dashed lines indi-
cate the best upper and lower bounds on the possible plan length which have been
found so far.

At the Barman instance, it can be seen that both the linearly descending and the
bisection search terminate reasonably fast with a fully optimized plan. Generally, it

8.5. T-REX Plan optimization 47

0 1 2 3 4 5 6
Runtime / s

0

50

100

150

200

Pl
an

 le
ng

th

Barman 20, linear search

SAT result
Upper bound
UNSAT result
Lower bound

0 2 4 6 8 10
Runtime / s

0

50

100

150

200

Pl
an

 le
ng

th

Barman 20, bisection search

SAT result
Upper bound
UNSAT result
Lower bound

0 1 2 3 4 5
Runtime / s

0

20

40

60

80

100

120

Pl
an

 le
ng

th

Childsnack 20, linear search
SAT result
Upper bound
UNSAT result
Lower bound

0 1 2 3 4 5
Runtime / s

0

20

40

60

80

100

120

Pl
an

 le
ng

th

Childsnack 20, bisection search
SAT result
Upper bound
UNSAT result
Lower bound

0 1 2 3 4 5 6 7 8 9
Runtime / s

0

50

100

150

200

Pl
an

 le
ng

th

Rover 16, linear search

SAT result
Upper bound
UNSAT result
Lower bound

0 1 2 3 4 5 6 7 8
Runtime / s

0

50

100

150

200

Pl
an

 le
ng

th

Rover 16, bisection search

SAT result
Upper bound
UNSAT result
Lower bound

0 40 80 120 160 200 240 280
Runtime / s

0

100

200

300

400

500

600

Pl
an

 le
ng

th

Rover 20, linear search

SAT result
Upper bound
UNSAT result
Lower bound

0 3 6 9 12 15 18 21 24 27
Runtime / s

0

100

200

300

400

500

600

Pl
an

 le
ng

th

Rover 20, bisection search
SAT result
Upper bound
UNSAT result
Lower bound

FIGURE 8.4: Illustration of the T-REX plan optimization process, with
instances each of Barman, Childsnack and Rover, using a linear de-

scent (left) and a bisection search (right)

48 Chapter 8. Evaluation

is easy to see that the bisection search alternates between satisfying and unsatisfying
SAT results whereas the linear search leads to exactly one unsatisfying result which
concludes the computation.

The Childsnack domain has no potential for optimization under the chosen HTN
model, and both search approaches were able to find this property virtually instantly
(after finding the initial plan) on all considered instances.

Figure 8.4 also shows two instances from the Rover domain. Instance 16 has been
quickly optimized by both strategies, and it demonstrates well the large margin by
which a plan may be optimized (from 202 to 121 actions in this case).

For instance 20, none of the considered optimization strategies terminated. After
finding an initial plan with 651 actions, the bisection search was not able to answer
the very first test whether there is a plan of length shorter than (651+ 1)/2 = 326. As
a consequence, this run terminated with the initial plan as the shortest found plan.
In contrast, the linear search was able to find a couple of modest optimizations, with
the shortest found plan at the cutoff time containing 515 actions.

The demonstrated examples illustrate that both search strategies can be em-
ployed in order to optimize the plan length of the T-REX approach. The linearly
descending approach tends to lead to a more immediate payoff, and no resources are
wasted by unnecessarily proving some unsatisfiability. The bisection search needs
much less SAT solver calls, but the performed plan length tests are comparably hard
to answer, leading to a more significant computational investment until some high
quality plan is found. Overall, because of its fast payoff and slightly faster run times,
the linear search tends to be more favorable compared to the binary search strategy
on the considered problem instances.

8.6 Conclusion of Evaluation

By the evaluations presented in this chapter, the three proposed HTN-to-SAT encod-
ings have been experimentally compared to one another as well as to state-of-the-art
competition.

The incremental SMS encoding significantly outperforms the GCT encoding,
which itself is based on the last published HTN-to-SAT encoding effort. Further-
more, the T-REX encoding and instantiation approach significantly outperforms
SMS, and successfully competes with state-of-the-art classical SAT planning. The
practical performances of both T-REX and Madagascar are highly dependent on the
problem domain and, in the case of T-REX, on the modeling of HTN information.

T-REX has been demonstrated to be a practically useful approach due to its high
efficiency, its additional optimizations, and its integrated plan optimization tech-
niques. Currently, it does not achieve the run times of the conventional HTN plan-
ner GTOHP. Yet, an argument for the viability of T-REX can be made due to its plan
optimization, its theoretical proving abilities, and a high robustness towards missing
preconditions.

In total, the evaluations have yielded encouraging results for SAT planning on
HTN domains, and they demonstrate that the contributions of this work successfully
redefine the state-of-the-art in this field by a significant margin.

49

Chapter 9

Conclusion and Outlook

In this chapter, a conclusion on the presented work is provided and an outlook on
potential future work is given.

9.1 Conclusion

The presented work has focused on solving Hierarchical Task Network planning
problems using SAT solving techniques.

A number of previously proposed HTN-to-SAT encoding approaches have been
discussed regarding their viability from today’s point of view. An initial new en-
coding Grammar-Constrained Tasks (GCT) has been proposed, mending the central
shortcomings of the previous encodings and being able to exploit modern HTN pre-
processing.

In order to avoid the high complexity and the generally slow solving process of
GCT encodings, a second original encoding called Stack-Machine Simulation (SMS)
has been specifically designed for incremental SAT solving. It works reliably in all
considered special cases.

However, as the SMS encoding still takes too many computational steps to find
a solution, a technique has been developed to significantly reduce the amount of re-
quired computational steps, resulting in a third original encoding named Tree-like
Reduction Exploration (T-REX). A specialized interpreter application has been de-
veloped to take abstract encoding files tailored to the problem and to instantiate all
necessary clauses just as needed. Various encoding optimizations have been pro-
posed in order to reduce the amount of variables and clauses and to speed up the
solving procedure. Additionally, a plan length optimization stage within T-REX has
been presented to reduce the plan length in an Anytime manner after an initial solu-
tion has been found.

Thorough evaluations have been conducted. A T-REX encoding variant which
works particularly well in practice has been identified using the ParamILS tool,
also validating the usefulness of the employed encoding optimizations. In a direct
run time comparison featuring popular problem domains, SMS significantly outper-
formed GCT, and T-REX significantly outperformed SMS. Afterwards, T-REX has
been compared to the state-of-the-art classical SAT planner Madagascar. The per-
formance differences of the competitors have been discussed while taking into ac-
count the individual properties of each domain. T-REX outperformed Madagascar
on some domains, which validates the use of the proposed SAT-based HTN tech-
nique over classical SAT planning.

T-REX did not achieve run times on par with the state-of-the-art HTN planner
GTOHP, but can still be a viable alternative which offers an efficient optimization of
the plan length as well as the ability to prove certain problem properties. Addition-
ally, T-REX has been shown to solve problems robustly even when preconditions

50 Chapter 9. Conclusion and Outlook

of methods are partly or fully missing and to reliably find solutions in such cases,
whereas GTOHP does not.

To conclude, the contributions of this work are three original SAT encodings for HTN
planning problems, each setting a new baseline for state-of-the-art SAT planning on
HTN domains, and their practical implementation and evaluation.

By the theoretical design and the efficient implementation of the T-REX encoding
and instantiation approach, it is shown that HTN planning via SAT solving is a vi-
able option if engineered carefully. Based on the evaluation results, I suspect that it
is generally difficult to achieve run times of conventional HTN planners with a SAT-
based approach. However, numerous merits of the developed SAT-based technique
have been identified, and the topic is definitely worthy of the attention of future
research efforts — maybe to eventually outperform conventional HTN planning in
some cases.

9.2 Outlook

In the following, an outlook towards possible future work is provided.

Specialized preprocessing

In order to optimize the process prior to the actual solving stage, an alternative pre-
processing may be developed which is specialized to the T-REX approach. This can
potentially lead to an overall more lightweight preprocessing and may allow to in-
terleave the encoding process with the grounding procedure, further optimizing the
total run time.

Extension of the model

The current T-REX approach features a total order on all tasks and subtasks, and
it does not support between and after constraints for a method’s expansion defini-
tion. By extending the preprocessing procedures and the T-REX approach by such
additional constraints, the approach may become more versatile and more efficient.
Likewise, introducing a T-REX variant which operates on a partial ordering of sub-
tasks would make the approach more viable for further practical use cases. For such
a scenario, further research can be done regarding the introduction of ∃-step seman-
tics (Rintanen, Heljanko, and Niemelä, 2004) for multiple tasks and/or actions to
co-occur at the same positions in an encoding based on T-REX.

Investigation of alternative SAT techniques

For further research, specialized SAT solver configurations may be investigated
which are particularly well-fit to solve the formula structure as created by T-REX.
In order to guide the solver to find solutions as fast as possible, specialized heuris-
tics may be employed, and further SAT techniques such as randomized SAT solving
can be explored to intelligently decide on the set of reductions to apply. In addition,
alternative makespan scheduling strategies may be investigated instead of the cur-
rent one-by-one increase of the makespan of T-REX. A significant speedup may be
realized by combining an advanced makespan scheduling strategy with the execu-
tion of multiple SAT solver instances in parallel.

51

Appendix A

At-Most-One Encodings

Given a set V := {v1, . . . , vn} of variables, a common objective is to find a set of
clauses which enforce that at most one of the variables is true.

The naïve method of achieving this is to add a simple NAND constraint for each
possible pair of variables:

∀i 6= j : ¬vi ∨ ¬vj

Evidently, this leads to 1
2 n(n− 1) ∈ O(n2) clauses, so the amount of needed clauses

may become huge for large n. However, this pairwise At-Most-One style does not
require any additional variables, and the mutual exclusion property will be prop-
agated instantly by any CDCL-based SAT solver: if some vi is set to true, then all
other variables in V instantly become false by unit propagation.

A second well-known method considered here is an approach based on the
binary representation of i for any vi. By adding log(n) helper variables B :=
{b1, . . . , blog(n)}, one for each binary digit of n, the following clauses can be intro-
duced:

∀i : ∀k ∈ {1, . . . , log(n)} : vi =⇒ lk,

where lk = bk if the k-th bit of i is one, and lk = ¬bk if the k-th bit of i is zero. As
each bk always represents either a one or a zero, there can never be multiple numbers
represented by the bits B. Consequently, at most one of the vi may be true.

This encoding only needsO(n log n) clauses, and thus scales better for large n re-
garding the encoding size. However, it introduces additional variables to the prob-
lem and it does not propagate quite as directly as the pairwise method.

53

Appendix B

Supplementary Evaluation Graphs

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

Ru
nt

im
e

/ s

Run times ("Blocksworld" domain)

GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

Ru
nt

im
e

/ s

Run times ("Depots" domain)
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

2 4 6 8 10 12 14
Problem size

0

50

100

150

200

250

Ru
nt

im
e

/ s

Run times ("Elevator" domain)
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

10

20

30

40

50

60

70

80

Ru
nt

im
e

/ s

Run times ("Rover" domain)
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

FIGURE B.1: Domain-dependent run times of compared encodings,
with the instances ordered by the performance of T-REX-p-b8192

54 Appendix B. Supplementary Evaluation Graphs

3 6 9 12 15 18
Problem size

0

10

20

30

40

50

60

70

80
Pl

an
 le

ng
th

Plan lengths ("Blocksworld" domain)

GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

10

20

30

40

50

60

70

80

Pl
an

 le
ng

th

Plan lengths ("Depots" domain)

GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

2 4 6 8 10 12 14
Problem size

0

10

20

30

40

Pl
an

 le
ng

th

Plan lengths ("Elevator" domain)
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

100

200

300

400

500

600

Pl
an

 le
ng

th

Plan lengths ("Rover" domain)
GCT
SMS-bt
SMS-ut
SMS-ur
T-REX-ef-b4
T-REX-p-b8192

FIGURE B.2: Domain-dependent plan lengths found with compared
encodings, again ordered by the performance of T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

25

50

75

100

125

150

Ru
nt

im
e

/ s

Run times ("Barman" domain)

M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

Ru
nt

im
e

/ s

Run times ("Blocksworld" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

300

Ru
nt

im
e

/ s

Run times ("Childsnack" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

20

40

60

80

Ru
nt

im
e

/ s

Run times ("Depots" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

20

40

60

80

100

120

Ru
nt

im
e

/ s

Run times ("Elevator" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

Ru
nt

im
e

/ s

Run times ("Gripper" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

20

40

60

Ru
nt

im
e

/ s

Run times ("Rover" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

Ru
nt

im
e

/ s

Run times ("Satellite" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

Ru
nt

im
e

/ s

Run times ("Zenotravel" domain)
M
Mp
MpC
MpC_Incplan
T-REX-p-b8192

FIGURE B.3: Domain-dependent run times of tuned T-REX and
Madagascar variants

Appendix B. Supplementary Evaluation Graphs 55

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

300

Pl
an

 le
ng

th

Plan lengths ("Barman" domain)

M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

250

Pl
an

 le
ng

th

Plan lengths ("Blocksworld" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

25

50

75

100

125

150

Pl
an

 le
ng

th

Plan lengths ("Childsnack" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

50

100

150

200

Pl
an

 le
ng

th

Plan lengths ("Depots" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

20

40

60
Pl

an
 le

ng
th

Plan lengths ("Elevator" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

25

50

75

100

125

Pl
an

 le
ng

th

Plan lengths ("Gripper" domain)

M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

500

1000

1500

Pl
an

 le
ng

th

Plan lengths ("Rover" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

200

400

600

Pl
an

 le
ng

th

Plan lengths ("Satellite" domain)
M
Mp
MpC
T-REX-p-b8192

3 6 9 12 15 18
Problem size

0

100

200

300

400

Pl
an

 le
ng

th

Plan lengths ("Zenotravel" domain)
M
Mp
MpC
T-REX-p-b8192

FIGURE B.4: Domain-dependent plan lengths found with tuned T-
REX and Madagascar variants (excluding Incplan-patched variant)

1 2 3 4 5
Problem size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Ru
nt

im
e

/ s

Run times ("Barman" domain)
T-REX-linear
T-REX-bisection

1 2 3 4 5
Problem size

0

1

2

3

4

5

6

Ru
nt

im
e

/ s

Run times ("Childsnack" domain)
T-REX-linear
T-REX-bisection

1 2 3 4
Problem size

0

25

50

75

100

125

150

Ru
nt

im
e

/ s

Run times ("Rover" domain)
T-REX-linear
T-REX-bisection

1 2 3 4 5
Problem size

0

50

100

150

200

Pl
an

 le
ng

th

Plan lengths ("Barman" domain)

T-REX-linear
T-REX-bisection

1 2 3 4 5
Problem size

0

20

40

60

80

100

120

Pl
an

 le
ng

th

Plan lengths ("Childsnack" domain)
T-REX-linear
T-REX-bisection

1 2 3 4 5
Problem size

0

100

200

300

400

500

600

Pl
an

 le
ng

th

Plan lengths ("Rover" domain)
T-REX-linear
T-REX-bisection

FIGURE B.5: Run times and found plan lengths of two search strate-
gies of T-REX plan length optimization, on five problem instances per

domain (instances 4, 8, 12, 16, 20 each, ordered by plan length)

57

Bibliography

Alhossaini, Maher and J.Christopher Beck (2012). “Macro Learning in Planning as
Parameter Configuration”. In: Advances in Artificial Intelligence. Vol. 7310. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 13–24.

Audemard, Gilles and Laurent Simon (2009). “Predicting Learnt Clauses Quality in
Modern SAT Solvers.” In: IJCAI. Vol. 9, pp. 399–404.

Balyo, Tomáš et al. (2016). “SAT race 2015”. In: Artificial Intelligence 241, pp. 45–65.
Bayardo Jr, Roberto J and Robert Schrag (1997). “Using CSP look-back techniques to

solve real-world SAT instances”. In: Aaai/iaai, pp. 203–208.
Bevacqua, Giuseppe et al. (2015). “Mixed-Initiative Planning and Execution for Mul-

tiple Drones in Search and Rescue Missions.” In: ICAPS, pp. 315–323.
Biere, Armin (2008). “PicoSAT essentials”. In: Journal on Satisfiability, Boolean Model-

ing and Computation 4, pp. 75–97.
— (2013). “Lingeling, Plingeling and Treengeling entering the SAT competition

2013”. In: Proceedings of SAT competition 51.
Blum, Avrim L and Merrick L Furst (1997). “Fast planning through planning graph

analysis”. In: Artificial intelligence 90.1-2, pp. 281–300.
Bylander, Tom (1994). “The computational complexity of propositional STRIPS plan-

ning”. In: Artificial Intelligence 69.1-2, pp. 165–204.
Cook, Stephen A (1971). “The complexity of theorem-proving procedures”. In: Pro-

ceedings of the third annual ACM symposium on Theory of computing. ACM, pp. 151–
158.

Currie, Ken and Austin Tate (1991). “O-Plan: the open planning architecture”. In:
Artificial intelligence 52.1, pp. 49–86.

Davis, Martin, George Logemann, and Donald Loveland (1962). “A machine pro-
gram for theorem-proving”. In: Communications of the ACM 5.7, pp. 394–397.

Eén, Niklas and Niklas Sörensson (2003). “An extensible SAT-solver”. In: Interna-
tional conference on theory and applications of satisfiability testing. Springer, pp. 502–
518.

Erol, Kutluhan, James A Hendler, and Dana S Nau (1994). “UMCP: A Sound and
Complete Procedure for Hierarchical Task-network Planning.” In: AIPS. Vol. 94,
pp. 249–254.

Fikes, Richard E and Nils J Nilsson (1971). “STRIPS: A new approach to the ap-
plication of theorem proving to problem solving”. In: Artificial intelligence 2.3-4,
pp. 189–208.

Fukunaga, Alex et al. (1997). “ASPEN: A framework for automated planning and
scheduling of spacecraft control and operations”. In: Proc. International Sympo-
sium on AI, Robotics and Automation in Space.

García, Javier et al. (2013). “Combining linear programming and automated plan-
ning to solve intermodal transportation problems”. In: European Journal of Opera-
tional Research 227.1, pp. 216–226.

Ghallab, Malik, Dana Nau, and Paolo Traverso (2004). Automated Planning: theory and
practice. Elsevier.

58 Bibliography

Gocht, Stephan and Tomáš Balyo (2017). “Accelerating SAT Based Planning with
Incremental SAT Solving”. In: Proceedings of the Twenty-Seventh International Con-
ference on Automated Planning and Scheduling (ICAPS 2017), pp. 135–139.

Großmann, Peter et al. (2012). “Solving periodic event scheduling problems with
SAT”. In: International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems. Springer, pp. 166–175.

Hoffmann, Jörg and Bernhard Nebel (2001). “The FF planning system: Fast plan gen-
eration through heuristic search”. In: Journal of Artificial Intelligence Research 14,
pp. 253–302.

Howey, Richard, Derek Long, and Maria Fox (2004). “VAL: Automatic plan valida-
tion, continuous effects and mixed initiative planning using PDDL”. In: Tools with
Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference on. IEEE,
pp. 294–301.

Hutter, Frank et al. (2007). “Boosting Verification by Automatic Tuning of Decision
Procedures”. In: Formal Methods in Computer Aided Design, 2007. FMCAD ’07,
pp. 27 –34. DOI: 10.1109/FAMCAD.2007.9.

Hutter, Frank et al. (2009). “ParamILS: An Automatic Algorithm Configuration
Framework”. In: Journal of Artificial Intelligence Research 36, pp. 267–306.

Kautz, Henry and Bart Selman (1996). “Pushing the envelope: Planning, proposi-
tional logic, and stochastic search”. In: Proceedings of the National Conference on
Artificial Intelligence, pp. 1194–1201.

Kautz, Henry A, Bart Selman, et al. (1992). “Planning as Satisfiability.” In: ECAI.
Vol. 92. Citeseer, pp. 359–363.

Mali, Amol Dattatraya (1999). “Hierarchical task network planning as satisfiability”.
In: European Conference on Planning. Springer, pp. 122–134.

— (2000). “Enhancing HTN Planning as Satisfability.” In: Artificial Intelligence and
Soft Computing, pp. 325–333.

Mali, Amol Dattatraya and Subbarao Kambhampati (1998). “Encoding HTN Plan-
ning in Propositional Logic.” In: AIPS, pp. 190–198.

Moskewicz, Matthew W et al. (2001). “Chaff: Engineering an efficient SAT solver”.
In: Proceedings of the 38th annual Design Automation Conference. ACM, pp. 530–535.

Nabeshima, Hidetomo et al. (2006). “Lemma Reusing for SAT based Planning and
Scheduling.” In: ICAPS, pp. 103–113.

Nau, Dana et al. (1999). “SHOP: Simple hierarchical ordered planner”. In: Proceedings
of the 16th international joint conference on Artificial intelligence-Volume 2. Morgan
Kaufmann Publishers Inc., pp. 968–973.

Nau, Dana et al. (2005). “Applications of SHOP and SHOP2”. In: IEEE Intelligent
Systems 20.2, pp. 34–41.

Nau, Dana S et al. (2003). “SHOP2: An HTN planning system”. In: Journal of artificial
intelligence research 20, pp. 379–404.

Prasad, Mukul R, Armin Biere, and Aarti Gupta (2005). “A survey of recent advances
in SAT-based formal verification”. In: International Journal on Software Tools for
Technology Transfer 7.2, pp. 156–173.

Raja, Purushothaman and Sivagurunathan Pugazhenthi (2012). “Optimal path plan-
ning of mobile robots: A review”. In: International Journal of Physical Sciences 7.9,
pp. 1314–1320.

Ramoul, Abdeldjalil et al. (2017). “Grounding of HTN Planning Domain”. In: Inter-
national Journal on Artificial Intelligence Tools 26.05, p. 1760021.

Rintanen, Jussi (2014). “Madagascar: Scalable planning with SAT”. In: Proceedings of
the 8th International Planning Competition (IPC-2014) 21.

https://doi.org/10.1109/FAMCAD.2007.9

Bibliography 59

Rintanen, Jussi, Keijo Heljanko, and Ilkka Niemelä (2004). “Parallel encodings of
classical planning as satisfiability”. In: European Workshop on Logics in Artificial
Intelligence. Springer, pp. 307–319.

— (2006). “Planning as satisfiability: parallel plans and algorithms for plan search”.
In: Artificial Intelligence 170.12-13, pp. 1031–1080.

Sacerdoti, Earl D (1975). A structure for plans and behavior. Tech. rep. SRI INTERNA-
TIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER.

“Satisfiability: Suggested Format” (1993). In: DIMACS Challenge. DIMACS.
Sellers, William Irvin and Phillip Lars Manning (2007). “Estimating dinosaur max-

imum running speeds using evolutionary robotics”. In: Proceedings of the Royal
Society of London B: Biological Sciences 274.1626, pp. 2711–2716.

Silva, João P Marques and Karem A Sakallah (1997). “GRASP—a new search algo-
rithm for satisfiability”. In: Proceedings of the 1996 IEEE/ACM international confer-
ence on Computer-aided design. IEEE Computer Society, pp. 220–227.

Sirin, Evren et al. (2004). “HTN planning for web service composition using
SHOP2”. In: Web Semantics: Science, Services and Agents on the World Wide Web
1.4, pp. 377–396.

Tange, O. (2011). “GNU Parallel - The Command-Line Power Tool”. In: ;login: The
USENIX Magazine 36.1, pp. 42–47. DOI: http://dx.doi.org/10.5281/zenodo.
16303. URL: http://www.gnu.org/s/parallel.

Tate, Austin (1976). Project planning using a hierarchic non-linear planner. Department
of Artificial Intelligence, University of Edinburgh.

Weser, Martin, Dominik Off, and Jianwei Zhang (2010). “HTN robot planning in
partially observable dynamic environments”. In: Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, pp. 1505–1510.

Wilkins, David E (1984). “Domain-independent planning Representation and plan
generation”. In: Artificial Intelligence 22.3, pp. 269–301.

Wood, R Glenn and Rob A Rutenbar (1998). “FPGA routing and routability estima-
tion via Boolean satisfiability”. In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 6.2, pp. 222–231.

https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
https://doi.org/http://dx.doi.org/10.5281/zenodo.16303
http://www.gnu.org/s/parallel

	Declaration of Authorship
	Abstract (English, French, German)
	Acknowledgements
	Introduction
	Motivation and Background
	Methodology and Results
	Document summary

	Background and Related Work
	Automated Planning
	HTN Planning

	SAT Solving
	Incremental SAT Solving
	Planning via SAT

	SAT Encodings for HTN Planning

	Model and Problem Statement
	System model
	Problem statement
	Restrictions of the model

	1st Contribution: GCT Encoding
	Discussion of previous encodings
	GCT Encoding
	Classical Planning clauses
	Initial task network clauses
	Task reduction clauses

	Analysis and comments

	2nd Contribution: SMS Encoding
	Abstract description
	Realization
	Initial state clauses
	Goal state clauses
	Universal clauses
	Transitional clauses
	Variants

	Analysis
	Termination and correctness
	Complexity

	Discussion

	3rd Contribution: T-REX Encoding and Instantiation
	Abstract description
	Clauses
	Initial state clauses
	Universal clauses
	Goal state clauses
	Transitional clauses

	Realization
	Sparse Element Encoding
	Efficient Encoding and Instantiation
	Encoding optimizations

	Plan optimization
	Analysis
	Termination and correctness
	Complexity of clauses and variables

	Implementation
	HTN-SAT
	Abstract description

	T-REX Interpreter
	Abstract description
	Encoding format
	Dependencies

	Experiments
	Methodology
	Validation
	Hardware and software set-up
	T-REX parameter tuning with ParamILS

	Evaluation
	Parameter tuning of T-REX
	Considered parameters
	Results

	Benchmarks of GCT, SMS, and T-REX
	Results

	Benchmarks of T-REX vs. Madagascar
	Results

	Comparing T-REX to conventional HTN planning
	T-REX Plan optimization
	Results

	Conclusion of Evaluation

	Conclusion and Outlook
	Conclusion
	Outlook

	At-Most-One Encodings
	Supplementary Evaluation Graphs
	Bibliography

