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Abstract
Stochastic local search (SLS) is an elementary technique for solving combinational
problems. In the first section of this paper, we introduce an efficient SLS heuristic
solver for Boolean Satisfiability Problem (SAT), in which the decisions only based
on the probability distribution. We experimentally evaluate and analyze the per-
formance of our solver in a combination of different techniques, including simulated
annealing and walkSAT. With formula partitioning, we introduce a parallel ver-
sion of our solver in the second section. The parallelism improves the efficiency of
the solver. Using different random generator in solving the sub-formula can bring
further improvement in performance to our parallel solver.

Zusammenfassung
Stochastische lokale Suche (SLS) stellt eine elementare Technik zur Lösung von kom-
plizierten kombinatorischen Problemen dar. Im ersten Teil dieser Arbeit stellen wir
eine effiziente SLS Heuristik für das Erfüllbarkeitsproblem der Aussagenlogik (SAT)
vor, bei dem die Entscheidungen nur auf der Wahrscheinlichkeitsverteilung basieren.
Die Leistung unseres Algorithmus in einer Kombination verschiedener Techniken,
einschließlich simulierter Abkühlung und walkSAT, wurde auch experimentell be-
wertet und analysiert. Mit Formelpartition wird im zweiten Teil eine parallele Versi-
on unseres Algorithmus eingeführt, die die Effizienz des Solvers verbessert. Flexible
Parametereinstellungen kann eine weitere Verbesserung unseres Algorithmus brin-
gen.
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1 Introduction

1 Introduction

1.1 Problem/Motivation

The propositional satisfiability problem (SAT) is the first proven NP-complete problem
[1]. The problem is to determine whether an assignment of boolean values to variables in a
boolean formula exsits such that the expression evaluates to true. Hard combinational problems
can be resolved with appropriate encoding as a SAT problem. The SAT problem has many
applications in computer science like chip model checking [2], software verification [3] or in
automated planning and scheduling in artificial intelligence [4].
Formula partitioning is one of the promising approaches in DPLL-like solvers [5]. By prioritizing
the variables according to a good formula partitioning, the search gets a relatively balanced
decision tree. But formula partitioning is rarely used in a local search for the SAT problem.
Questions such as how to combine the formula partitioning with local search, whether the local
search can benefit from the partition, and whether the formula partitioning can guide a parallel
local search still remain open.

1.2 Content

The SAT problem, as a well-known NP-complete problem, has drawn remarkable attention and
different local search heuristics have been developed to tackle this problem. In this thesis, we
introduced a stochastic local search on SAT problem using formula partitioning as guidance.
In section 1, we summarized the formal concept and techniques used in this thesis. Section 2
described our method which is a combination of probSAT and walkSAT. Then we discussed
some attempts at improving the algorithm. By experimental evaluation and comparison, some
techniques turned out to be more efficient than the simple probSAT search. In section 3, we
inspected the potential benefit of formula partitioning in a parallel search. Section 4 described
the experiments mentioned in section 2 and section 3 with details and empiric results. Section 5
concluded our work based on the experiments, alongside a discussion of some limitations of our
solver and further work.

1.3 Definitions and Notations

Propositional Satisfiability Problem
A variable with only two possible logical values true or false is a propositional variable,
which will be referred to as variable in this thesis.
A literal is an atomic formula in propositional logic. A literal can either be a positive literal
v as the variable v or a negative literal v̄ as negation of v.
A clause is a disjunction of literals. A formula in conjunctive normal form (CNF) is a con-
junction of clauses. We refer it as CNF-formula or simply as formula in this thesis.
An assignment a: V → {true, false} assigns a truth value to each variable v in the formula.
An assignment satisfies a formula if the truth value of the formula with this assignment evalu-
ates to true. Specifically, an assignment satisfies a clause, if at least one literal in the clause is
assigned with value true.
An assignment a is a satisfying assignment if it satisfies all clauses in the formula. Otherwise,
there are conflicts in some clauses with this assignment, or some clauses are unsatisfied clauses
with this assignment. A satisfiable formula is a formula which can be satisfied by some
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1 Introduction

assignment. The SAT problem is to determine whether a given formula is satisfiable or not.

Here is an example of SAT problem:

F = (v1 ∨ v̄3) ∧ (v2 ∨ v1 ∨ v̄1)
V ars(F ) = {v1, v2, v3}
numV(F ) = |V ars(F )| = 3
Lits(F ) = {v1, v̄1, v2, v3, v̄3}
Cls(F ) = {C1, C2}
numC(F ) = |Cls| = 2
C1 = {v1, v̄3}
C2 = {v2, v3, v̄1}

A(v1) = true, A(v2) = false, A(v3) = true,
A is an assignment satisfying F .

Â(v1) = true, Â(v2) = false, Â(v3) = false,
Â is an assignment with conflict in C2.

Set
A set is a container of unique elements. A set of three objects a, b, c is written as {a, b, c}. The
size of a set is the number of elements in the set.

Local Search
For an instance I of a hard combinational problem P , there is a set of solutions S(I). An
object function (score or cost) Γ is derived from the constraints of the problem to evaluate the
candidate solutions. The goal of the local search is to find the solution with minimum cost (
or the solution with maximal score).
A local search starts with an initial complete solution. According to some heuristic, the local
search makes local changes to its current solution iteratively, hence the name local search.
Starting from an initial solution, the search will evaluate the neighbor solutions which are
reached by applying a local change to the current solution and choose one of the neighbor
solutions with local optimization. The search applies local moves until the optimal solution is
reached, or in some cases, a generally good solution is reached. Local search is widely used in
hard combinational problems such as the traveling salesman problem [6] and the graph coloring
problem [7].

Local Search in SAT Problem
In the boolean satisfiability problem, a local search operates primarily as follows: The search
starts from a randomly generated assignment as the initial solution. If this current assignment
satisfies the formula, the search stops with success. Otherwise, a variable is chosen depending
on some criterion. This selection is called pickVar. By changing the assignment of the selected
variable v, a neighbor assignment Â of our current solution A is reached in next step. The move
is also called flip(A, v). A local search will move in the space of the assignments by flipping
the variables until a satisfying assignment is reached by the search.
The heuristic used for pickVar is based on scores of the variables in the current assignment.
Consider the assignment Â reached by taking a flip of the variable in the current assignment
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1.3 Definitions and Notations

A. The number of clauses satisfied in A, but not in Â is called the breakcount of the local
move from A to Â. Accordingly, the number of clauses which become satisfied because of the
flipping, is the makecount. The number of newly satisfied clauses (makecount) minus the
number of newly unsatisfied clauses (breakcount), which is denoted as diffscore, represents
the local improvement of the corresponding flipping. Apart from this, other aspects such as the
repetition number of each flip or the number of occurrences of the variables can be included
in a selection heuristic. An example is the local solver EagleUp, which prefers flipping of vari-
ables with the highest number of occurrences in the formula to create new unit clauses for unit
propagation. To get local improvement effectively, it is sufficient to only consider variables in
unsatisfied clauses for the flipping selection. This commonly used process is called a focused
local search.

Algorithm 1: Focused Local Search
input : A CNF Formula F
parameter: Timeout
output : a satisfying assignment A

1 A← random generated assignment A
2 while (∃ unsatisfied clause ∧ Timeout does not occur) do
3 c← random selected unsatisfied clause
4 x← pickV ar(A, c)
5 A← flip(A, x)

By choosing the variable with best score in pickVar, the search will get greedy local improve-
ment. The initial intention of the local search is that the optimal global solution can be found
through iterative greedy local improvement. The typical problem of the local search is that
the greedy moves can be trapped in local optimal solutions, which are however not global opti-
mums. To avoid this, some random flips are picked or even a worse solution will be chosen for
the next step (uphill moves). The following techniques are commonly used to prevent local
search from getting stuck in local regions.

Stochastic Local Search (SLS)
The stochastic local search will use the probability distribution of the scores of candidate so-
lutions instead of the static decision. For the candidate moves, the probability of being chosen
p(Γ(s)) corresponds to the score Γ(s) of the solution s. In this way, the more advantageous a
move is, the higher is the probability of choosing that move as the next step. This randomiza-
tion can help the search get rid of cycling and decrease the chance of getting misled by specific
heuristics.

Statistical Local Search
Tabu search was proposed by Fred W. Glover in 1986 and formalized in 1989 [8]. To recognize
the loops in suboptimal region, the recent search moves are marked as tabu moves. These tabu
moves will not be touched in the further search to discourage getting stuck in a region. Inspired
by the tabu search, a statistical search will record the whole search trace, in which the number
of times each variable is chosen for flipping are counted. Through the use of the statistical
information, the search will prefer the variables with fewer flippings before. We have exper-
imentally verified that a statistical search can recognize short-term cyclings like tabu search
and permit long-term cyclings [9].
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Simulated Annealing
Simulated Annealing is an approach of local search solver to difficult combinational optimiza-
tion problems proposed by Kirkpatrick, Gelatt, and Vecchi [10]. This approach is inspired by
the metallic process annealing, in which material is shaped by heating and then slowly cooling.
This approach works as a local optimization algorithm guided by a controlling parameter tem-
perature. Higher temperature allows uphill moves with higher probability. The temperature
varies according to the score of the current situation. For a current solution with a nearly
optimal score, the temperature is nearly zero. For an unattractive local extreme with a poor
score, the active search tends to make uphill moves due to high temperature.

walkSAT
The focused random local search strategy walkSAT to solve SAT problem, which is originally
introduced in 1994 [11]. The walkSAT may ignore the greedy flipping and flip a random vari-
able in a chosen unsatisfied clause with probability p . By introducing these “uphill noises”, the
walkSAT combines greedy local search and random walk to get an effective and robust random
solver.

Algorithm 2: PickVar in walkSAT
input : current assignment A, unsatisfied clause c
parameter: probability p
output : a variable x in c to be flipped

1 for v in c do
2 Evaluate v with function Γ(A, v)
3 with probability p: x← v with maximum Γ(A, v)
4 with probability 1− p: x← randomly selected v in c.

The probSAT
The SLS solver probSAT was introduced in 2012 by Adrian Balint and Uwe Schoening [12]. In
a probSAT solver, the score of a candidate flip is solely based on the make- and breakcount.
The paradigm is as follows: Firstly, a completely random assignment is set as the initial as-
signment. Then the algorithm performs local moves by flipping a variable in a random chosen
unsatisfied clause and stops as soon as there exists no unsatisfied clause, which means a satis-
fying assignment is found. The probability p(v) of flipping the variable v in the chosen clause is
proportional to the score of v, which is calculated by the function Γ(v, A) based on breakcount
of v in the current assignment A.1

There are two kinds of score functions in the paper by Adrian Balint:

Γ(v, A) = (cb)−break(v,A) (break-only-exp-function)
Γ(v, A) = (ε+ break(v, A)−cb) (break-only-poly-function)

1As mentioned in the probSAT paper, the influence of makecount is rather weak in selection functions in
experiments.
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1.3 Definitions and Notations

The pseudocode of probSAT is shown below:
Algorithm 3: PickVar in probSAT
input : current assignment A, unsatisfied clause c
output : a variable x in c to be flipped

1 for v in c do
2 Evaluate v with function Γ(A, v)
3 x← randomly selected variable v in c with probability p(v) = Γ(A,v)∑

u∈c
Γ(A,u)

Formula partitioning
To introduce our parallel SAT solver with formula partitioning, we use a hypergraph represen-
tation of the SAT problem.
A hypergraph G = (V,H) is a generalized graph, in which a hyperedge h ∈ H is a non-empty
subset of the vertices set V . For a SAT formula F , its hypergraph representation G(F ) =
(Vars(F), Cls(F)) consists of numV vertices and numC hyperedges. Each vertex corresponds
to a variable in F , and a hyperedge refers to a clause, which connects the variables in this clause.

Here is an example:
F = (v1 ∨ v2 ∨ v̄3)︸ ︷︷ ︸

C1

∧ (v1 ∨ v3 ∨ v̄4)︸ ︷︷ ︸
C2

∧ (v5 ∨ v6 ∨ v̄8)︸ ︷︷ ︸
C3

∧ (v6 ∨ v7 ∨ v̄8)︸ ︷︷ ︸
C4

∧ (v3 ∨ v̄6)︸ ︷︷ ︸
C5

∧ (v4 ∨ v5)︸ ︷︷ ︸
C6

G(F ):

v6

v2 v1

v4

v7

v5

v3

v8

C1

C2

C5

C6

C3

C4

Figure 1: In a hypergraph, a hyperedge is a set of vertices. In this example, the vertices v3 and
v4 are in both hyperedge {v1, v3, v4} and {v1, v2, v3}, so they are connected twice. In
our hypergraph representation, a hyperedge contains the vertices of the corresponding
clauses. In another variant, each literal refers to one vertex and a hyperedge contains
all the literals of the corresponding clause.

Formula partitioning is a promising way to improve the SAT problem solving. Two partitioning
have already been well investigated. One is to divide the variables, which is used in this thesis,
and another one is to separate the clauses. For algorithms with the technique of decision tree
like DPLL [13], the formula partitioning can be used to prioritize decisions. For the local
search, there is scarce research using formula partitioning in local search. Based on hypergraph
represenation, we describe the formula partitioning with the notations of graph partition in this
thesis. For a hypergraph G = (V,H), a two-way partitioning is to seperate the vertices in two
disjoint subsets P0 and P1. Based on the partitioning of vertices, the hyperedges are seperated
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1 Introduction

in three disjoint subsets H0, H1 and I. H0 contains the edeges connecting verticse in P0, H1
are edges in P1. The intersection I are the edges containing vertices in P0 and vertices in P1.
In a good balanced partition, P0 and P1 are relatively of the same size and only few edges are
in the intersection. In our example formula above, a minimum cost balanced partition is P0 =
{v1, v2, v3, v4} and P1 = {v5, v6, v7, v8}. In this partition, H0 = {C1, C2} , H1 = {C4, C5} and
the intersection I = {C5, C6}

1.4 The Competitors

Our heuristic is based on the probSAT paradigm. To evaluate the performance of our algorithm,
we compare our heustic with the original probSAT. Another competitor is yalSAT, which is the
champion in random track category of the SAT competition 2017 [14].

probSAT
The authors of the original paper implemented the probSAT.2 We compare our solver with the
original implemen.3
Two implementation variants are available. In the incremental approach, the breakcounts of
variables are calculated in the initialization phase and only updated in the further search. The
other straightforward approach is to compute scores of the variables in chosen clauses on the fly.
This method is called non-incremental approach in original paper. To get optimal results of the
probSAT solver, we take the non-incremental approach to the 3SAT problems and incremental
method for 5SAT and 7SAT.
The parameters of probSAT in our experiments have been set as suggested in the original paper:

kSAT score Γ cb ε variants
3SAT break-only-poly 2.06 0.9 non-incrementel
5SAT break-only-exp 3.7 - incremental
7SAT break-only-exp 5.4 - incremental

Table 1: Parameter settings for competitor probSAT

yalSAT
We use the third version of yalSAT submitted to the 2017 SAT competition in our experiments.
Armin Biere implements it as a reimplementation of probSAT with extensions.4 The yalSAT
uses a variant of probSAT randomly in the restart of a searchround. In our comparison, we use
the default settings of the yalSAT with specific seeds (see 4.4).

2https://github.com/adrianopolus/probSAT
3Using same parameter settings our implementation gets similar performance to the original code
4https://baldur.iti.kit.edu/sat-competition-2017/solvers/random/
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2 Our local Solver

2 Our local Solver

Our algorithm is a typical focused SLS algorithm, which solves the SAT problem with the basic
schema:

Algorithm 4: Our Local Search
input : A CNF Formula F
parameter: Timeout
output : a satisfying assignment A

1 A← initAssign(F )
2 while (∃ unsatisfied clause ∧ Timeout does not occur) do
3 c← pickCla(A)
4 x← pickV ar(A, c)
5 A← flip(A, x)

In the following, we will describe the steps used in our local search.

2.1 initAssign(F)

In our algorithm, there are three variants to initialize assignment. RandomInit is the random
initiation also used in the original probSAT. The other two alternatives are BiasInit and Bias-
RandomInit, which take the number of literal occurrences into consideration. With the method
BiasInit we assign true to a variable if the number of occurrences of its positive literal is larger
than that of its negative literal. Otherwise, a variable is initialized with false. Bias-RandomInit
combines the two methods above by generating the assignment bias randomly based on the oc-
currences of literals. In experiment 1 (see 4.8.1) we compare these three alternatives based on
the probSAT algorithm. Our local search uses RandomInit for 3SAT problems and BiasInit for
the other problems.

2.2 pickCla(A)

The number of true values in each clause c, numT (c), are counted in Initilization phase and
maintained in further search. During the local flipping, these numbers will be updated for
clauses containing the flipping variable (see 2.5). Unsatisfied clauses will be stored in a set UN-
SAT. Compared to numT, UNSAT is updated “lazily”. After flipping, if numT of one clause
is decreased to zero, the clause will be added to UNSAT. To select an unsatisfied clause in
pickCla(A), one needs to select a clause from UNSAT and check if it is still unsatisfied with its
numT being zero. Otherwise, if the chosen clause c with numT (c) as zero, it will be removed
from UNSAT set. This step pickCla(A) will be repeated until one unsatisfied clause is found.

7



2 Our local Solver

2.3 pickVar(A,c)

Inspired by probSAT and walkSAT, our pickVar combines the random walk and stochastic
selection. The selection procedure in probSAT is a random heuristic. Judging from the exper-
iments, even if the search is very close to a satisfying assignment, and the probability of the
critical flipping is exceptionally high, it is still possible that the stochastic search make uphill
moves and leave the region of the global minimum. To prevent this, we pick greedy flips with
zero breakcounts with a certain probability p. With probability (1− p), we choose the variable
to be flipped using the probSAT heuristic.

Algorithm 5: Our pickVar
input : current assignment A, unsatisfied clause c
parameter: probability p
output : a variable x in c to be flipped

1 greedyVs ← ∅
2 for all v in c do
3 if (break(A,v)= 0 ) then
4 greedyVs = greedyVs + {v}

5 with probability p: x← randomly selected variable v ∈ greedyVs
6 with probability (1− p): x← randomly selected variable v in c with probability

Γ(A,v)∑
u∈c

Γ(A,u)

We analyze the following variants for pickVar experimentally (see experiment in 4.8.2).

Variant 1: Walk

Instead of using a constant probability p to choose between a greedy literal without clause
break and the random literal using probSAT selection directly, we use a statistic list S to
record how many times each variable is chosen for flipping. To avoid cycling, the variable vi

with a high value of S[i] is used for flipping with low probability. After selecting a greedy
literal and a variable using the probSAT stochastic distribution, we make the choice randomly
according to the statistic values of these two variables.

Algorithm 6: Walk
input : current assignment A, unsatisfied clause c
parameter: probability p
output : a variable x in c for flipping

1 greedyVs ← ∅
2 for all v in c do
3 if (break(A,v)= 0) then
4 greedyVs = greedVs + {v}

5 greedyV ← randomly selected variable v ∈ greedyVs
6 randomV ← randomly selected variable v in c with probability Γ(A,v)∑

u∈c
Γ(A,u)

7 with probability p = α× s(greedyV )
s(greedyV )+s(randomV ) : x← randomV

8 with probability 1− p: x← greedyV

8



2.4 pickVar(A,c) with simulated annealing

Varinat 2: GreedyBreak

Getting a random literal using stochastic process consumes the most runtime in the search.
In this variant GreedyBreak, we search for greedy literals with small statistic values. A literal
is treated as a permitted greedy literal if its breakcount is zero and its statistic value is under a
certain threshold. If one permitted greedy literal exists, we choose it for flipping. If multiple
permitted greedy literals exist, we choose one randomly for flipping. Otherweise, we pick a
literal using probSAT heuristic.
To set the threshold based on the search history, we compare two functions in our experiment.
In the first approach Average, the threshold is set to α× numF

numV
. Here the numF represents the

number of flips. In another approach Random-Flip, we select a value r randomly in [0, numF ].
For each greedy literal, we check if its statistic value is smaller than α× r.

Algorithm 7: GreedyBreak
input : current assignment A, unsatisfied clause c
parameter: probability p
output : a variable x in c for flipping

1 greedyVs ← ∅
2 for all v in c do
3 if (break(A,v)= 0 ∧ Permit(v)) then
4 greedyVs = greedyVs + {v}

5 if (greedyVs is not empty) then
6 x ← selected variable v in greedyVs randomly
7 else
8 x ← randomly selected variable v in c with probability Γ(A,v)∑

u∈c
Γ(A,u)

9

2.4 pickVar(A,c) with simulated annealing

Simulated annealing is a technique, whose combination with walkSAT is extensively studied.
Besides the dynamic noises introduced above, we use simulated annealing to improve our three
suggestions of pickVar. That is, we define the parameter α as a function of two parameters
tolerence τ , cb and the quality function of current assignment q(A) instead of using a static
parameter in the whole process:

α = τ × (cb)−q(A)

To define the quality function q(A), we have two variants: Global and Local.
Global:
In the process of search, the number of unsatisfied clauses is stored in unsatN . In the variant
Global, we use this number to define the quality of the current solution:

qglobal(A) = unsatN(A)

Local: As suggested by the name, in the Local variant, we measure the quality of the current
assignment focused on the chosen clause c. The quality q(A, c) is equal to the number of greedy
literals in current clause:

qlocal(A) = |{v|v ∈ c ∧ break(v) = 0}|

9



2 Our local Solver

2.5 Data structures

In this section, the data structure of our SAT solver is introduced.
Occurrences
In the process of initialization, the numbers of positive and negative occurrences of one variable
will be compared. In our implementation, we use a list to count and record these numbers of
occurrences. This list of size 2×numC is denoted as occurrences list OL. For the variable with
index i, OL[2i] is the number of occurrences of literal vi; OL[2i+1] is for its negative occurrences.

Literals
Only small changes are made in each step of local search. In our situation, only the clauses
including the flipping variables are involved in the flipping step. To find the involved clauses
of one variable, two 2D array posL and negL are created to record the clauses of positive nad
negative literals. For variable vi, posL[i] records the indices of clauses containing the positive
literal vi. The ones with negative literal v̄i are in negL[i]. We flip variable vi by updating the
numT of clauses with indices in posL[i] and negL[i].

LookUp
The most time used in the search is the repeated evaluation of the polynomial or exponential
decay function Γ. We calculate the Γ(x) with x from 0 to 0.5 × numC and keep the values
in a table lookUp. In our implementation, we use this table to get the values instead of the
reputation of time-consuming (exponential) operation.

Solution
A solution in our implementation consists of a boolean assignment and three other structures
to record information about the current assignment. The solution is set up after assignment
initialization and updated during each flipping:

Name Structure Size Meaning
assignment list numV boolean assignment to variables
numT list numC number of true values in each clause
numUnsat natural number - number of unsatisfied clauses
UNSAT set - indices of unsatisfied clauses

Table 2: Structures in a solution

2.6 Our swpSAT solver

According to the comparison of performances of different variants, we konfigure our final SAT
solver as follows: For 3SAT problems, we choose randINIT for initilizataion and the Average
without simulated annealing as pickVar heuristic. For 5SAT and 7SAT problems, we use the
biasINIT and Average-Local (see experiment in 4.8.4). Our local solver is a statistic search
with a combination of walkSAT and probSAT, hence the name swpSAT .

10



3 Our Parallel Algorithm

3 Our Parallel Algorithm

3.1 1st Approach: The pure portfolio approach

Section 2 introduces our local solver swpSAT. In experiments, which pseudo-random genera-
tor in use to make random values affects the performance. In the pure portfolio version of
our algorithm, the agents run the swpSAT with different random generation policies. After a
satisfying assignment is found by an agent, the search will stop. This approach improved the
performance compared to our sequential local search (see experiment 5 in 4.8.5).

Algorithm 8: Pure portfolio approach
input : A CNF Formula F
parameter: Timeout, number of Processors np

output : a satisfying assignment A
1 sat← false
2 A← initAssign(F )
3 for each Processori do
4 Ai ← A
5 swpSAT(F) // This search will be interrupted if sat is set to true.
6 sat← true
7 A← Ai

This pure portfolio approach can try different search pathes in parallel. But the threads do not
split the whole task. In the following part, we will introduce some partitioning-based techniques.
With a good formula partitioning, the search can assign independent jobs to threads.

3.2 2nd Approach: Solver with formula partitioning

With the information of the formula partitioning, the first idea to speed up the search is to
parallelize flippings in both partitioning sets. It is possible because the clauses in different
partitions do not share variables. The schema of this approach is as follows: The slave thread
t0 execute the swpSAT with clauses in H0. The slave thread t1 deals with H1 in parallel with t0.
Then the assignments of the corresponding partitioning sets are written in the shared memory.
Then the master thread uses the assignment in shared memory as the initial assignment and
makes flips in the intersection I. Handling with conflicts in the intersection will lead to some
flips in both partitioning set. As a result, it may introduce conflicts in H0 and H1. Then the
both processes will start again to handle conflicts in partitioning sets individually. This process
will repeat itself until no conflicts exists.

11



3 Our Parallel Algorithm

P0 P1I

Partitiong

swpSAT (t0, P0)

swpSAT (t1, P1)

I

1

1

2

2

P0 P1 I

Order

Parallel Solver

Figure 2: Solver with formula partitioning

We did experiments with benchmark COMBINE to test the performance of this approach. It
shows a worse performance compared to the original swpSAT especially in terms of the number
of solved problems. It can only solve trivial small problems. According to our observation
in the implementation, one possible explanation is that its sequential version is precisely our
swpSAT solver with prioritization of unsatisfied clauses. Instead of choosing an unsatisfied
clause in the whole formula, this approach solves first P0 and then P1 (or inversely) and at
last the Intersection I. Still Worse, because of the order of solving the clauses in search, the
flippings done in slave threads are easily destroyed in solving the intersection part. These
repeated flippings of some variables make the search stuck in one cycling.

3.3 3nd Approach: Solver with combination of sub-assignments

In this approach, the slave threads take intersection into consideration. First, each slave thread
finds a satisfying sub-assignment for both the corresponding partitioning set and the intersection
part. Here two slave threads may have some different assignments to variables in the boundary
of the partitioning sets. Then the master thread deals with these differences and combine these
two sub-assignment such that we can get a satisfying assignment or an assignment with only
a few conflicts. Then the slave threads will adjust this assignment by make flips in their own
part (including the intersection part).
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3.4 4th Approach: Initialization with a guide of formula partitioning

P0 P1I

Partitiong

swpSAT (t0, P0 + I)

swpSAT (t1, P1 + I)

Parallel Solver

combine(F )

If one variable is assigned with different values in different sub-solutions, there are several cases
which need to be considered separately:

1. This variable is not critical for at least one sub-assignment, so we can assign it to the
value in the other sub-assignment.

2. If the variable in consideration is critical in both sub-assignment, there are some different
policies. The simple one is to assign the variable randomly. We call this policy randomCom-
bine. Another one is to assign the variable to the value suggested by its charging thread. In
other words, we combine the assignment according to the partitioning. This policy will not
break any clauses in partitioning sets. The slave thread will deal with conflicts in intersection
individually in the next round. This policy is referred as partitionCombine.

In experiments, we compare these two policies. Neither policy can bring a better performance
compared with our swpSAT solver. The partitionCombine process suffers from repeated flips
and may not terminate. The possible reason is that the slave threads tend to make the variables
in other partitioning set the critical ones. Because flippings of these varibales will not break
any clauses in the corresponding partitioning set of the threads.

3.4 4th Approach: Initialization with a guide of formula partitioning

After the analysis of the failures in the two approaches above, we came up with this approach,
in which the formula partitioning information is only used to get an initial solution, and the
further search in the whole problem is the same as our pure portfolio approach. A local search
from this initial solution with only a few conflicts in the intersections can reduce the search
space and prevent long-term cycling in the search. The statistic information shared among the
agents encourages the further search to flip non-critical variables in clauses.
In experiments (see details in 4.8.6 and 4.8.7), this approach shows a good performance.
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4 Evaluation

4 Evaluation

4.1 DIMACS standard format

All the benchmark formulas used in experiments are encoded in the DIMACS standard format
[15]. This format is the standard format of benchmarks used in SAT competitions. A DIMACS
file contains the description of an instance using three types of lines:

1. Comment line: Comment lines give information about the formula for human readers,
like the author of the file or the seed used in problem generation. A comment line starts with
a lower-case character c and will be ignored by DIMACS parser:

c this is an example of the comment line

2. Problem line: The problem line appears exactly once in each DIMACS format file. The
problem line is signified by a lower-case character p. For a formula with numV variables and
numC clauses ,the problem line in its DIMACS file is:

p cnf numV numC

3. Clause descriptor: A clause {v1, v2, · · · , vn} in the formula is described in a clause de-
scriptor ended with 0:

v1 v2 · · · vn 0

Here is the DIMACS format of the formula F = (v1 ∨ v̄3) ∧ (v2 ∨ v3 ∨ v̄1):

c simple F.cnf
p cnf 3 2
1 -3 0
2 3 -1 0

4.2 Benchmarks

The benchmark instances used in our experiments are the 180 instances (UNIF) in random
benchmark categories in SAT competition 2017 [15]. In a UNIF problem file, all the clause
have the same length.
To generate an instance with n variables and m clauses, the uniform generation will work
in the following way: to construct one clause, k literals are randomly chosen from the 2n
possible literals. If the generated clause contains multiple copies of the same variables, it will
be abandoned. The process generates clauses until m permitted clauses are gathered.
A UNIF file name contains some basic information of the problem. The suffix k denotes the
length of clauses. The r indicates the clause-to-variable ratio. The c and v are the number of
clauses and variables respectively, while s is the seed used in the generation process. Without
flitering, at least 60 ( 33% ) problems form our 180 benchmark collections are unsatisfiable.
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4.3 Used plots and tables

4.3 Used plots and tables

The results of the following experiments are shown in comparison tables and illusatrated in
cactus plots.

Comparison Table
A comparison table shows the results of different algorithms. The first column contains the
clause length k. The UNIF benchmark has 3 different sizes: 3SAT, 5SAT, and 7SAT. For a
kSAT instance, each clause contains k variables. The fields of a comparison table in the follow-
ing columns correspond to a PAR-2 runtime for the whole kSAT set [15]. Because the UNIF
benchmark problems contain a part of unsatisfied problems, we assign penalized time only to
problems which can not be solved by any solvers in our whole experiments. The number of
solved problems are shown below the runtime. The best results in comparison are in bold.
See Table 7 for an example.

Cactus Plot
A cactus plot shows the performance of different algorithms. The y-axis shows the time in
second used to solve the benchmark problems. The x-axis represents the number of solved
problems by a certain time. Each algorithm corresponds to a curve in a unique color. A point
(u, v) on a curve means by v seconds the corresponding algorithm has solved u problems.
See Figure 3 for an example.

4.4 Random Seeds used in Experiments

To make our experiments results reproducible and robust, we repeat our tests with three specific
seeds. We produce the seeds as follows: First, we use the sum of characters of the name of the
solver to seed the pseudo-random generator in C++. Then we use this reinitialized generator
to produce three random values, which are later used as seeds in our experiments.

solver name seed 1 seed 2 seed 3
probSAT probsat 1988822874 338954226 858910419
yalSAT yalsat 1851831967 280788293 1956345180
our local/parallel solver local 1962042455 1112841915 566263966

Table 3: Seeds in our solvers and competitors

4.5 Soft- and Hardware

The single-thread experiments were run on computers that equipped with two Intel Xeon E5-
2683 v4 processors (2.1 GHz 2x16-cores + 2x16-HT cores) and 512GB RAM. The machine
ran the 64-bit version of Ubuntu 14.04.5 LTS. The multi-thread experiments were run on a
computer that had two Intel Xeon E5-2650 v2 processors (16 cores + 16 HT cores) with 128GB
RAM. The machine ran the 64-bit version of Ubuntu Devel.
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4 Evaluation

4.6 Parameter Settings in Experiment

The TimeOut is set to 5 Minutes in our experiments. For the probSAT selection heuristic,
our local search uses the values for cb and ε suggested in the probSAT paper. The parameter
α (or the tolerence τ in variants with simulated annealing) is configured with the help of the
algorithm parameter optimization tool SMAC [16] (sequential model-based algorithm configu-
ration). SMAC ran our algorithms on LARGE problems in the UNIF category in SAT 2012
(75% of the instances training instances, 25% as test instances) with values ∈ [0, 10], step equal
to 0.5 and randomly generated seeds5.

k Walk Walk-Local Walk-Global Average Average-Local Average-Global
3 1 1 10 1 2 0.5
5 0.5 1 1 1 2 2
7 1 0.5 2 1 2 0.5
k RF RF-Local RF-Global swpSAT α/τ SA
3 1 0.5 0.5 Average 1 −
5 0.5 2 9.5 Average 2 Local
7 0.5 1 0.5 Average 2 Local

Table 4: Settings of α or τ in solvers

4.7 COMBINE Benchmark Generation

To combine the formula partitioning and SAT local solver, we tried to get a relatively balanced
partitioning with small intersection for the hypergraphgraph representation of benchmark SAT
problems. We tried to get formula partitioning in problems of UNIF benchmark using some
partitioning algorithms (KaHypar and hmetis). Due to the uniform random generation of this
benchmark, these problems do not possess a real-world-like structure. Even with a high im-
balance like 0.3 and high tolerance of intersection size (50% of edge sizes), the partitioning
algorithms take more time than our SAT solver for more than half of the UNIF benchmarks.
To investigate the local search on graphs with proper partitioning, we generate our benchmark
COMBINE using the UNIF benchmark instances. As suggested by the name COMBINE, we
combine two UNIF benchmark instances in one SAT problem and make an intersection for the
new generated problem. To create a satisfiable formula, we build the intersection based on
a pair of randomly chosen satisfying assignments of the two UNIF problems. To get satisfy-
ing assignments of UNIF benchmarks, we run different solvers in SAT competitions including
CSCCSAT, DCCASAT, score2SAT, probSAT, and yalSAT. We do not use our local search to
collect satisfying assignments. Otherwise, it is possible that after solving the two partitioning
sets individually using our local solver, the assignment is the same as or similar to the one used
for the intersection generation.
We combine the UNIF problems in consideration of real-world uses. We combine 4 pairs of
instances in 3SAT, 5SAT problems and 7SAT problems. Besides that, we consider five combina-
tions between 3SAT and 5SAT instances and three combinations of 5SAT and 7SAT instances.
We combine problems in similar vertex size, which corresponds to balanced partitioning in the
structure. We also combine one massive problem with a small instance. For the intersection
generation part, we generate clauses with three vertices in different partitioning sets.

5Because of high time consume in parameter optimation, we solely compare τ as a natural number form one
to ten.
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4.7 COMBINE Benchmark Generation

We first choose vertices of two partition sets for intersection generation randomly. Here we
also consider the balanced intersection and imbalanced intersection. In a balanced intersection,
same proportion of vertices in both partitioning sets are chosen to generate the intersection.
In an imbalanced intersection, the portions are not of the same size. To control the size of the
intersection, we also count the number of the clauses in an intersection, if the propotions of the
intersection clauses reaches a specified limit, the generation of intersection is stopped.
In a COMBINE file name f1.cnf-f2.cnf-x-y-z.cnf, x and y are the proportions of vertices in the
two partitioning set respectively, whereas z is the proportion of the clauses of the intersection
in the whole problem.

Problem Intersection
k3-r3.94.cnf-k3-r4.04.cnf-0.1-0.1-0.1.cnf 1.04%
k3-r3.96.cnf-k3-r4.06.cnf-0.1-0.1-0.2.cnf 1.00%
k3-r3.98.cnf-k3-r4.0.cnf-0.1-0.1-0.4.cnf 1.03%
k7-r55.0.cnf-k7-r56.0.cnf-0.1-0.2-0.2.cnf 15.53%
k7-r55.0.cnf-k7-r56.0.cnf-0.1-0.4-0.1.cnf 6.84%
k7-r55.0.cnf-k7-r56.0.cnf-0.2-0.2-0.2.cnf 12.04%
k7-r55.0.cnf-k7-r56.0.cnf-0.2-0.4-0.1.cnf 7.53%
k7-r55.0.cnf-k7-r56.0.cnf-0.4-0.1-0.4.cnf 6.38%
k7-r55.0.cnf-k7-r56.0.cnf-0.4-0.2-0.1.cnf 7.35%
k7-r55.0.cnf-k7-r56.0.cnf-0.4-0.4-0.2.cnf 6.11%
k7-r57.0.cnf-k7-r60.0.cnf-0.1-0.1-0.2.cnf 16.67%
k7-r57.0.cnf-k7-r60.0.cnf-0.1-0.1-0.4.cnf 25.21%
k7-r57.0.cnf-k7-r60.0.cnf-0.1-0.2-0.2.cnf 14.77%
k7-r57.0.cnf-k7-r60.0.cnf-0.1-0.4-0.1.cnf 6.46%
k7-r57.0.cnf-k7-r60.0.cnf-0.2-0.1-0.2.cnf 13.92%
k7-r57.0.cnf-k7-r60.0.cnf-0.2-0.2-0.4.cnf 11.40%
k7-r57.0.cnf-k7-r60.0.cnf-0.2-0.4-0.2.cnf 7.08%
k7-r57.0.cnf-k7-r60.0.cnf-0.4-0.1-0.4.cnf 5.88%
k7-r57.0.cnf-k7-r60.0.cnf-0.4-0.2-0.4.cnf 6.86%
k7-r57.0.cnf-k7-r60.0.cnf-0.4-0.4-0.4.cnf 5.81%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.1-0.1.cnf 9.09%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.1-0.2.cnf 16.67%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.1-0.4.cnf 25.07%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.2-0.1.cnf 9.09%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.2-0.4.cnf 14.68%
k7-r58.0.cnf-k7-r62.0.cnf-0.1-0.4-0.4.cnf 6.36%
k7-r58.0.cnf-k7-r62.0.cnf-0.2-0.1-0.1.cnf 9.09%
k7-r58.0.cnf-k7-r62.0.cnf-0.2-0.1-0.2.cnf 13.96%
k7-r58.0.cnf-k7-r62.0.cnf-0.2-0.2-0.2.cnf 11.58%
k7-r58.0.cnf-k7-r62.0.cnf-0.2-0.4-0.2.cnf 6.97%
k7-r58.0.cnf-k7-r62.0.cnf-0.4-0.1-0.4.cnf 5.98%
k7-r58.0.cnf-k7-r62.0.cnf-0.4-0.4-0.4.cnf 5.60%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.1-0.1-0.4.cnf 1.30%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.1-0.2-0.2.cnf 2.52%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.1-0.4-0.2.cnf 4.88%

Table 5: COMBINE problems with big intersection (numCI
numC

> 1%)6
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Problem Intersection
k3-r3.92.cnf-k3-r3.88.cnf-0.2-0.1-0.4.cnfP 0.38%
k3-r3.92.cnf-k3-r3.88.cnf-0.2-0.4-0.1.cnf 0.13%
k3-r3.94.cnf-k3-r4.04.cnf-0.1-0.2-0.1.cnf 0.36%
k3-r3.94.cnf-k3-r4.04.cnf-0.1-0.4-0.4.cnf 0.11%
k3-r3.94.cnf-k3-r4.04.cnf-0.2-0.1-0.2.cnf 0.37%
k3-r3.94.cnf-k3-r4.04.cnf-0.2-0.2-0.1.cnf 0.27%
k3-r3.94.cnf-k3-r4.04.cnf-0.4-0.2-0.4.cnf 0.11%
k3-r3.94.cnf-k3-r4.04.cnf-0.4-0.4-0.4.cnf 0.09%
k3-r3.96.cnf-k3-r4.06.cnf-0.1-0.2-0.2.cnf 0.37%
k3-r3.96.cnf-k3-r4.06.cnf-0.1-0.4-0.1.cnf 0.11%
k3-r3.96.cnf-k3-r4.06.cnf-0.2-0.1-0.2.cnf 0.35%
k3-r3.96.cnf-k3-r4.06.cnf-0.2-0.2-0.2.cnf 0.27%
k3-r3.96.cnf-k3-r4.06.cnf-0.2-0.4-0.2.cnf 0.13%
k3-r3.96.cnf-k3-r4.06.cnf-0.4-0.1-0.2.cnf 0.10%
k3-r3.96.cnf-k3-r4.06.cnf-0.8-0.8-0.05.cnf 0.06%
k3-r3.98.cnf-k3-r4.0.cnf-0.1-0.2-0.1.cnf 0.38%
k3-r4.267-v11000.cnf-k5-r16.2.cnf-0.8-0.8-0.05.cnf 0.52%
k3-r4.267-v11200.cnf-k5-r16.8.cnf-0.8-0.8-0.05.cnf 0.49%
k3-r4.267-v11600.cnf-k5-r17.0.cnf-0.8-0.8-0.05.cnf 0.52%
k3-r4.267-v7400.cnf-k5-r17.2.cnf-0.8-0.8-0.05.cnf 0.34%
k3-r4.267-v9600.cnf-k5-r17.4.cnf-0.8-0.8-0.05.cnf 0.42%
k5-r21.117-v200.cnf-k5-r16.0.cnf-0.1-0.1-0.2.cnf 0.04%
k5-r21.117-v200.cnf-k5-r16.0.cnf-0.2-0.1-0.2.cnf 0.09%
k5-r21.117-v200.cnf-k5-r16.0.cnf-0.4-0.1-0.4.cnf 0.17%
k5-r21.117-v220.cnf-k5-r17.6.cnf-0.8-0.8-0.05.cnf 0.01%
k5-r21.117-v280.cnf-k5-r16.4.cnf-0.1-0.1-0.4.cnf 0.06%
k5-r21.117-v280.cnf-k5-r16.4.cnf-0.2-0.1-0.1.cnf 0.12%
k5-r21.117-v280.cnf-k5-r16.4.cnf-0.4-0.1-0.1.cnf 0.23%
k5-r21.117-v290.cnf-k5-r16.6.cnf-0.1-0.1-0.2.cnf 0.06%
k5-r21.117-v290.cnf-k5-r16.6.cnf-0.2-0.1-0.4.cnf 0.12%
k5-r21.117-v290.cnf-k5-r16.6.cnf-0.4-0.1-0.1.cnf 0.24%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.2-0.1-0.4.cnf 0.21%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.2-0.2-0.4.cnf 0.41%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.2-0.4-0.2.cnf 0.80%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.4-0.1-0.4.cnf 0.04%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.4-0.2-0.4.cnf 0.09%
k7-r59.0.cnf-k7-r87.79-v90.cnf-0.4-0.4-0.2.cnf 0.18%
k7-r87.79-v102.cnf-k5-r17.8.cnf-0.8-0.8-0.05.cnf 0.00%
k7-r87.79-v106.cnf-k5-r18.0.cnf-0.8-0.8-0.05.cnf 0.01%
k7-r87.79-v110.cnf-k5-r18.2.cnf-0.8-0.8-0.05.cnf 0.01%

Table 6: COMBINE problems with small intersection (numCI
numC

< 1%)

6numCI: number of clauses in intersection
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4.8 Experiments

4.8.1 Experiment 1: initAssign(F)

Experiment 1 compares three strategies of initialization in our solver. The original probSAT
algorithm builds a complete assignment randomly in the initialization phase.

The BiasInit assigns boolean values to variables based on occurrences of their literals. It
assigns true to variables whose positive literal occurs more than its negative literal. The num-
ber of unsatisfied clauses in the bias initialized assignment of a kSAT problem is limited to
numC

2k . Our hyperthesis in the assignment initialization is that an initial solution with good
quality can speed up the search generally.

In a combination of these two variants, the Bias-RandomInit, the boolean value is assigned
to variables bias randomly based on literals occurrences. The probability of assigning true to
variable vi is posOccurences[i]

posOccurences[i]+negOccurences[i] .

In a local search algorithm, it is common practise to replace the current solution with a new
initial solution after a certain number of tries. However, in our implementation, the current
assignment will be changed by locally flipping of variables after the initialization. In the fol-
lowing table, we compare three variants with the original probSAT algorithms. Based on the
results of this experiments, we determined the way of initialization in our heuristic solver.

k RandomInit BiasInit Bias-RandomInit
3 9221.9 9157.76 9078.27

55 54 55
5 7143.9 4351.09 4582.54

82 87 87
7 6238.51 5421.9 6310.7

60 60 60

Table 7: For 3SAT problems, different initializations get similar performances. According to
the PAR2-score of the benchmark sets, the two bias initiliazations show improvement
of about 40% percentage reduction in runtime for 5SAT problems. the BiasInit shows
its efficiency in 7SAT problems.

19



4 Evaluation

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60

ti
m

e
 (

s)

number of solved instances

3SAT

RandomInit
BiasInit

Bias-RandomInit

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60  70  80  90

ti
m

e
 (

s)

number of solved instances

5SAT

RandomInit
BiasInit

Bias-RandomInit

 0

 50

 100

 150

 200

 250

 300

 0  10  20  30  40  50  60

ti
m

e
 (

s)

number of solved instances

7SAT

RandomInit
BiasInit

Bias-RandomInit

Figure 3: Three suggestions have very similar performance for 3SAT problems. In our solver,
we use RandomInit for 3SAT because of its simplicity. Two bias suggestions show
advantages especially for huge 5SAT instances. For 7SAT problems, the two ran-
dom initialization are similar in performance, while the bias initialization shows its
efficiency.
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4.8.2 Experiment 2: pickVar(F)

To pick a variable for flipping, the probSAT needs to measure the scores of the literals in the
chosen clause and then model the probability distribution of the scores. This stochastic process
is very time-consuming. However, in the first phase of the search, picking greedy flippings can
lead the search quickly to an optimal solution. In our examples in the Table 8, the probability
to ignore the greedy literal is 30% for the 3SAT example and more than 50% for 5SAT and
7SAT. As a result, even if the search can reach the final satisfying assignment by making a few
“right” moves, the probability of the probSAT algorithm making “wrong” moves is still rather
high.

k Breakcount Probability
3 {0, 1, 1} {70%, 15%, 15%}
5 {0, 1, 1, 1, 1} {48%, 13%, 13%, 13%, 13%}
7 {0, 1, 1, 1, 1, 1, 1} {47%, 9%, 9%, 9%, 9%}

Table 8: Three clause examples in 3SAT , 5SAT and 7SAT problem with a greedy literal and
other literals with breakcount 1. With the Γ function and the recommended parameters
in the original probSAT paper, the probabilities of literals for flipping are schown in
the 3rd column.

To make the selection more greedily, we use a random walk to choose policy between greedy
flipping and the probSAT heuristic. In our algorithm, we refer the literals with no clause
breaking as a greedy literal whereas in original walkSAT greedy literal means the one with
smallest breakcount. To avoid cycling in one region, we record the statistic information in the
process. If the flips of chosen greedy literal have been repeated many times, the selection will
prefer another variable with a small breakcount, which has been flipped only a few times.

k probSAT Walk Average Random-Flip
3 9221.9 (55) 7430.12 (57) 6161.11(61) 8362.42 (55)
5 7143.9 (82) 4433.05 (87) 3308.16(89) 4052.47(87)
7 6238.51(60) 6358.76(60) 6525.597(59) 5800.46(60)

Table 9: In the comparison with probSAT, our three variants of pickVar are faster and solve
more instances in 3SAT and 5SAT. For 3SAT, our suggestions have better perfor-
mances. The Walk and Average can solve more problems. The best one is the Aver-
age, which solves 10% more problems. The Average also shows advantages for 5SAT
problems, which can solve 8% more problems than the probSAT using only 46% time.
For 7SAT, there are no noticeable differences in results.
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Figure 4: Our suggestions are faster than the probSAT algorithm in 3SAT problems. The
Averrage shows an improvement except for a few trivial small instances. For 5SAT
problems, the improvement through our suggestions are obvious. They can efficiently
solve more problems. For 7SAT problems, the Walk and Average have generally
worse inperformance. The Random-Flip can solve the same number of problems as
the original probSAT and has shown littel improvement in performance within 125
seconds.22



4.8 Experiments

4.8.3 Experiment 3: Simulated Annealing

To use the technique simulated annealing, we need to define the quality of the current solution.
One traditional way is to use the number of conflicts. In addition, we propose to use the number
of greedy literals in the chosen clause. Our hyperthesis behind this idea is that if the current
solution is close to a satisfying assignment without conflicts, it is likely to break a clause by
a flipping. And in such cases, there should be only a few greedy literals in the chosen clause.
We refer this quality as local quality because it is more specific about the chosen clause, rather
than about the assignment.

The paramters α is defined as α = τ × (c)−q. Here the paramter c is in [2, · · · , 6]. The
noise value α is proportional to the probability of a random walk. If the quality of the current
solution is bad, the search will have a big noise, and thus the search will prefer random literals
for flippings. The search can take advantage of random algorithm and avoid getting stuck in
one region. That will speed up the search in the first phase. When the search is close to a
satisfying assignment, the search will make small improvements with greedy steps.

In our implementation, we set up a lookup table for the exponential values of the parame-
ter cb to avoid the repeated calculations of Γ function. To reuse these exponential values in
variants with the simulated annealing, we set the paramter c to the value of cb.

k Average Average-Local Average-Global RF RF-Local RF-Global
3 5.43% 2.43% 5.43% 9.98% 10.01% 3.13%
5 4.07% 0.35% 0.00% 9.18% 9.17% 0.33%
7 2.28% 0.03% 0.00% 4.30% 4.14% 0.05%

Table 10: To confirm that the simulated annealing with the parameters in our experiments
changes the behavior of the search, we count the number of greedy flips and the
number of random flips for the whole problem set. Through our observation, using
the parameters we choose, the fraction of greedy flips in total flips are changed. This
table shows the values for two variants Average and Random-Flip.

In the following, we show the results of our three variants Walk, Average and Random-Flip with
simulated annealing and compare these two definitions of quality.

Based on the results, we modify our variants where performance improvement exists with
simulated annealing. In experiment 4 in 4.8.4, we list the performances of these modified vari-
ants.
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Walk with Simulated Annealing

k Walk Walk-Local Walk-Global
3 7430.12(57) 8346.76(56) 9023.96(56)
5 4433.05(87) 3330.61(89) 3117.45(89)
7 6358.76(60) 5409.67(61) 6566.06(59)
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Figure 5: For 3SAT, the two combination with simulated annealing show worse performance
than the original Walk. The combinations have shown their efficiency in solving huge
5SAT problems. The Local shows its advantages for 7SAT problems.
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Average with Simulated Annealing

k Average Average-Local Average-Global
3 6161.11(61) 9254.18(53) 9870.25(53)
5 3308.16(89) 2793.32(89) 2939.74(89)
7 6525.59(59) 3829.95(65) 5738.2(61)
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Figure 6: The original Average can solve 15% more problems in 3SAT. For 5SAT, there are
not noticable differences in aspect of number of solved problems or the runtime. For
7SAT problems, the Local version can solve 6 more huge problems than the original
Average within less runtime.
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Random-Flip with Simulated Annealing

k Random-Flip Random-Flip-Local Random-Flip-Global
3 8362.42(55) 8409.8(55) 7308.01(58)
5 4052.47(87) 4132.07(87) 4003.06(88)
7 5800.46(60) 6792.23(59) 4903.61(60)
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Figure 7: The performances of these three algorithms are quiet similar for 3SAT and 5SAT
problems. For 7SAT set, the Local get worst performance while the variant Global
has shown advantages in solving huge problems.
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4.8.4 Experiment 4: 2017-UNIF Comparision (local)

In Table 14, we compare our variants with probSAT and yalSAT. Generally, our variants get
advantages with respect to runtime and the number of solved problems. According to the
comparison of performances of these three variants, we configure our final SAT solver swpSAT
as follows: For 3SAT problems, we choose randINIT for initilizataion and the Average without
simulated annealing as pickVar heuristic. For 5SAT and 7SAT problems, we use the biasINIT
and Average-Local.
We count in the search the total number of flips for a problem set. There are no noticeable
differences in the average number of flips per second7. It confirms that the improvement we get
with our variants is mostly from the advantages of our algorithms instead of the implementation.

k probSAT yalSAT Walk Average/swpSAT Random-Flip
3 9221.9 17062.35 7430.12 6161.11 7308.01

55 41 57 61 58
5 7143.9 5676.63 3330.61 2939.74 4003.06

82 85 89 89 88
7 6238.51 10063.4 5409.67 3829.95 4903.61

60 54 61 65 60

Table 11: Comparison in UNIF

k probSAT Walk Average/swpSAT Random-Flip
3 954426 946662 1012761 988477
5 389453 443172 414765 423364
7 248025 237387 248028 221107

Table 12: Average flips per second
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Figure 8: swpSAT gets best performance in UNIF compared with probSAT and yalSAT

7Here we consider the solved instances without runtime penalization.
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Figure 9: Our variants can get better performances for 3SAT and 5SAT problems in the whole
process. For 7SAT poroblems, our variants can solve more problems than the original
probSAT.
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4.8.5 Experiment 5: The pure portfolio approach

Our parallel implementation uses OpenMP to support shared memory multiprocessing. In the
C++ implementation of our local solver, we use the function rand() in the standard library to
generate pseudo-random integers. This function is not thread-safe. To implement a determinis-
tic parallel implementation, we use rand() for in the first thread and use the thread-safe random
engine in C++ for random value generation in other threads. Based on our experiments, the
sequential implementation with the simple rand() function has the best performance for the
whole set. But there is no single random generator that is advantageous for all the problems.

This approach takes advantage of the differences of random generator in performance. The
threads execute the swpSAT with different random engines in parallel. If one thread find a
satisfying assignment, the whole parallel search will be stopped.

rand() minstd_rand mt19937
mt19937_64 ranlux24_base ranlux48_base
ranlux24 ranlux48 knuth_b
default_random_engine minstd_rand0 -

Table 13: Pseudo-random number generators in use. In our pure portfolio approach, we run
11 threads. Each thread uses a random generator for generation of all boolean and
integer values in the whole search process.

k swpSAT pure portfolio Speedup Efficiency
3 12971.3 7426.9 1.75 0.16

59 69
5 8339.98 5185.75 1.61 0.14

89 94
7 13406.26 2853.81 4.70 0.43

66 83

Table 14: Our pure portfolio approach can solve more problems compared to our local swp-
Solver. The ratio of the sequential execution time to the parallel execution time is
shown in the column Speedup. According to the speedup values, our pure portfolio
parallel approach accelerates the process. Another metric to measure the perfor-
mance of a parallel algorithm, namely efficiency, is defined as the ratio of speedup to
the number of threads. The best speedup and efficiency values we got are the ones
in the 7SAT problem set.
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Figure 10: The pure portfolio approach can get better performances and efficiencies in whole
problem set. Expecially for 7SAT problems, the parallel solver can solve 30% more
problems in the same amount of execution time.
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4.8.6 Experiment 6: Initialization with a guide of formula partitioning

A file of COMBINE benchmark contains a combination of two UNIF problems and a relatively
small intersection between them. So according to the number of vertices in two partitioning
sets, the solver can easily divide the clauses into H0, H1, and intersection I. This experiment
simulated a situation, in which the SAT problem is from some real-world application and a
proper partitioning is available.
In this experiment, we solve the COMBINE benchmark with the 4th parallel approach (see
3.4).
In the initialization phase, two slave threads solve the partitioning sets in parallel and then use
the assignment without conflicts in both partitioning sets as the initial solution. This approach
is called FineInit in the following. The pseudocode of the approach is shown below:

Algorithm 9: FineInit
input : A CNF Formula F
parameter: Timeout
output : a satisfying assignment A

1 sat← false
2 A← initAssign(F )
3 foreach (Processort for t ∈ {0, 1}) do
4 At ← A
5 // If a satisfying sub-assignment is found, it will be written in the
6 // assignment A in shared memory.
7 swpSAT(Pi)
8 while (!sat ∧ !Timeout) do
9 At ← A

10 swpSAT(F )
11 sat← true

problems swpSAT FineInit Speedup Efficiency
3− 3(big) 1861.73 501.78 3.71 1.86
3− 3(small) 7955.19 1734.79 4.59 2.30
3− 5 - - - -
5− 5 2748.13 621.47 4.42 2.21
5− 7 - - - -
7− 7 3276.39 376.06 8.71 4.36
BIG 2794.15 902.69 3.10 1.55
SMALL 15579.71 3099.02 5.03 2.52
COMBINE 18373.86 4001.71 4.59 2.30

Table 15: We compare our local swpSolver and our 4th approach of the parallel solver, which is
referred as FineInit in this table. This approach gets a super-linear speedup thanks
to the guide of formula partition information.
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Figure 11: The green curve represents the half of execution times with swpSolver. With a
comparison of the swpSAT-half curve and the FineInit curve, the efficiency of our
FineInit solver with two threads are shown in figures. Our FineInit solver gets a
super-linear efficiency for problems even with relative big intersections.
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4.8.7 Experiment 7:2017-UNIF Comparison (parallel)

Our final parallel solver uses FineInit as initialization. Then the pure portfolio approach tries
different search paths. The pseudocode is shown below.

Algorithm 10: Our parallel solver
input : A CNF Formula F , number of Processors np

parameter: Timeout
output : a satisfying assignment A

1 sat0 ← false
2 sat1 ← false
3 sat← false
4 A← initAssign(F )
5 foreach (Processort for t ∈ {1, .., np}) do
6 At ← A
7 i← t%2
8 //The search swpSAT(Pi) will be interrupted if sati is set to true.
9 // If a satisfying sub-assignment is found, it will be written in the

10 // assignment A in shared memory.
11 swpSAT(Pi)
12 swpSAT(P1−i)
13 while (!sat ∧ !Timeout) do
14 At ← A
15 swpSAT(F )
16 sat← true

A UNIF problem is generated uniform randomly. It is hard to get a relatively balanced par-
titioning with a small intersection. In this experiment, we test our final parallel solver on the
UNIF benchmark with one certain partitioning. We separate the vertices according their indices
in two partition sets. All vertices vi with i < numV

2 belong to P0. The rest vertices belong to P1.

Random number generator used in solvers for comparison are seeded from system time.

k swpSolver swp-4 Speedup Efficiency swp-11 Speedup Efficiency
3 4990.53 3350.36 1.49 0.37 2376.26 2.10 0.19

19 21 24
5 3109.75 2535.86 1.23 0.31 1115.99 2.79 0.25

29 30 33
7 4974.01 3874.51 1.28 0.32 1076.26 4.62 0.42

21 22 27

Table 16: With the increment of the number of threads, our solver can solve more problems.
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Figure 12: For 3SAT and 5SAT problems, the more threads the solver spawns, the more prob-
lems are solved. The time used for solving small and medium problems are quite
similar. For 7SAT problems, our parallel solver shows advantages in terms of both
the number of solved problems and the runtime.
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5 Conclusion

Local search is a universally applicable approach to solve random SAT problems. We presented
a stochastic local search algorithm with the incorporation of walkSAT and probSAT.

In section 2 we discussed the basic scheme of our sequential algorithm. We oprimized the
assignment initialization. As shown in our experiments, our initialization, which is based on
the occurrence of literals in formula, is advantageous with respect to both the number of solved
problems and the execution time of the search. To get the advantage of the greedy algorithm
and the stochastic process, we introduced a data structure called statistic list to guide the deci-
sion between these two processes in step pickVar. Here we proposed some variants to combine
greedy choice and statistic heuristic. Generally, our local searches get better performance than
the probSAT algorithm.

Based on the performance of these variants in differnt categories of UNIF problems, we got our
swpSAT solver, which combined the advantages of the local searches.

In section 3, we parallelized our swpSAT solver with different approaches, in which the agents
run the search with different random generators. Then we discussed different combinations
of formula partitioning with our parallel solver. After trying several approaches with failures,
we found that the approcah FineInit which used formula partitioning to guide the assignment
initialization is able to reduce the time expense. Furthermore, it solved more problems. Our
experiments verified the hyperthesis that the formula partitioning information can guide the
local search and improve the efficiency in the parallel search.

5.1 Further work

While this thesis has demonstrated the potential of parallel searches for the SAT problem,
many opportunities of other investigation directions remain. This section presents some of
these directions.

Using different search strategies
In our parallel algorithm, we use the stochastic algorithm swpSolver as the subroutine. In
further research, the agents can use different search strategy. It is meaningful to investigate
the cooperation of different local searches.

Using different cooperation strategies
In this thesis, the cooperation is limited to sub-assignment combination. Some other directions
like generic population-based metaheuristic are definitely worth further research.

Using different random generation in local search
Our parallel solver explored different search paths by using different random generation strate-
gies in different agents. An interesting topic is the cooperation of these generation strategies
in one sequential search.
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