
An Approximate Distance Oracle for
Social Networks

Bachelor Thesis of

Katharina Flügel

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Advisors: Prof. Guy E. Blelloch
Laxman Dhulipala
Yan Gu

9th November 2018

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 9th November 2018

iii

Abstract

Computing shortest paths is a fundamental graph problem with many real-life appli-
cations. Naive methods such as Dijkstra’s algorithm are not fast enough for today’s
graphs with millions of vertices and edges. We present approximate transit node
routing (aTNR), an approximate distance oracle for social networks with a limited
additive error. It is an extension to the transit node routing framework which was
originally developed for road networks. Distances can be computed significantly faster
with aTNR compared to the naive approaches. We can adjust the maximum error for
each graph and even compute exact distances at the cost of a longer preprocessing
time.
The distance between two vertices is computed using a three-hop via the transit
nodes, a small set of central vertices. For each vertex, a set of access nodes is chosen
from the transit nodes via which the three-hop is computed for that vertex.
We evaluate aTNR on multiple different graphs regarding the preprocessing time,
preprocessing size, query time, and approximation error. Smaller graphs are pre-
processed in mere seconds, and even graphs with more than one hundred million
edges can be preprocessed in less than two minutes. Most queries take about 20µs
and cause only a very small approximation error. Our distance oracle is particularly
proficient in terms of space consumption as it requires less than 50 bytes per vertex.
In addition to aTNR, we define the Voronoi search distance oracle, a variation
of aTNR which increases the approximate error in exchange for potentially faster
preprocessing and queries.

Zusammenfassung

Die Berechnung kürzester Wege ist eines der grundlegendsten Graphprobleme. Es ist
Grundbaustein zahlreicher Algorithmen und wird in vielen Anwendungen genutzt.
Viele der heutigen Graphen haben Millionen von Knoten und Kanten. Naive Algo-
rithmen, wie beispielsweise Dijkstras-Algorithmus, sind deshalb oftmals nicht schnell
genug, um die immer größer werdenden Datenmengen zu verarbeiten.
Diese Bachelorarbeit definiert Approximate Transit Node Routing (aTNR), ein approx-
imatives Distanzorakel für soziale Netzwerk-Graphen, das Distanzen zwischen zwei
Knoten mit einem begrenzten, additiven Fehler berechnet. Es ist eine Erweiterung
des Transit-Node-Routing-Frameworks, welches ursprünglich für Straßennetzwerke
entwickelt wurde, und berechnet Distanzen deutlich schneller als naive Algorithmen.
Der maximale Approximationsfehler ist variabel, sodass selbst exakte Distanzen
berechnet werden können.
Kürzeste-Wege-Anfragen werden mit Hilfe eines 3-Hops über eine kleine Menge
zentraler Knoten – sogenannter Transit Nodes – berechnet. Jedem Knoten wird eine
Menge von Access Nodes zugewiesen, die aus den Transit Nodes gewählt werden und
über die alle 3-Hop-Distanzen des entsprechenden Knotens berechnet werden.
Wir analysieren aTNR auf verschiedenen Graphen bezüglich der Vorberechnungszeit,
der Vorberechnungsgröße, der Laufzeit der Anfragen und dem Approximationsfehler.
Kleinere Graphen werden in wenigen Sekunden vorberechnet. Selbst Graphen mit
mehr als 100 Millionen Kanten benötigen weniger als zwei Minuten Vorberech-
nungszeit. Anfragen können in etwa 20µs und mit geringem Approximationsfehler
beantwortet werden. Unser Distanzorakel sticht vor allem durch seinen geringen
Platzverbrauch von weniger als 50 Bytes pro Knoten auf sozialen Netzwerk-Graphen
hervor.
Zusätzlich zu aTNR präsentieren wir Voronoi Search Distanzorakel, eine Variation
von aTNR mit potenziell schnellerer Laufzeit aber größerem Approximationsfehler.

v

Acknowledgements

I wish to thank all my advisors, namely Prof. Guy E. Blelloch, Laxman Dhulipala,
and Yan Gu at Carnegie Mellon University and Prof. Dr. Peter Sanders at Karlsruhe
Institute of Technology, for all their support and advice.
Furthermore, I would like to thank Tobias Maier for providing his growable hash
tables, Yaroslav Akhremtsev for partitioning the graphs used in the evaluation, and
Sascha Witt for support with profiling my implementation.

Part of this work was done during my stay at Carnegie Mellon University (CMU)
in Pittsburgh, PA under the InterACT exchange program. This stay was partially
founded by Baden-Württemberg Stiftung. I want to thank everyone involved with
InterACT and Baden-Württemberg Stiftung for making this possible. Especially,
Margit Rödder for the assistance with all organizational matters, Jae Cho and
Alexandra Balobeshkina at CMU for all organization on the part of CMU, and Prof.
Dr. Alexander Waibel for establishing this exchange program.

vii

Contents

1. Introduction 1
1.1. Related Work . 3

2. Preliminaries 5
2.1. Graph Theory . 5

2.1.1. Graphs . 5
2.1.2. Breadth-First Search (BFS) . 6
2.1.3. Dijkstra’s Algorithm . 6

2.2. Voronoi Diagrams . 7
2.2.1. Graph Voronoi Diagrams . 7

2.3. Distance Oracles . 7
2.4. Transit Node Routing . 8

2.4.1. General Transit Node Framework . 9
2.5. Covering Search . 9

2.5.1. Problem Definition . 10
2.5.2. Conservative Covering Search . 10
2.5.3. Aggressive Covering Search . 10
2.5.4. Stall-on-Demand Covering Search . 10

3. Approximate Transit Node Routing 12
3.1. Preprocessing . 13

3.1.1. Transit Node Selection . 13
Betweenness Centrality . 13
Simple-BC Transit Node Selection 14
Partition-BC Transit Node Selection 14
Farthest-BC Transit Node Selection 14
k-means++-BC Transit Node Selection 14

3.1.2. Distance Table Computation . 15
The Naive Approach . 15
The Overlay-Graph Approach . 15

3.1.3. Access Node Determination . 16
Covering Search . 17
Marked Nodes . 17
Postprocessing to Remove Superfluous Access Nodes 20

3.2. Queries . 20
3.2.1. Global Query . 21
3.2.2. Local Query . 21

Local Query with Limited Distance 21
3.2.3. Combined Query . 22

TNR Combined Query . 22
Exact Combined Query with Limited Local Query 22
Approximate Combined Query . 23

ix

Contents

3.3. Locality Filter . 23
3.3.1. Graph Voronoi Filter . 23

3.4. Complexity and Correctness . 24
3.4.1. Time and Space Complexity . 24

Time Complexity of the Preprocessing 24
Time Complexity of the Queries . 25
Space Complexity . 26

3.4.2. Correctness . 26

4. Voronoi Search Distance Oracle 29
4.1. Preprocessing . 29
4.2. Queries . 30

4.2.1. Combined Query without Locality Filter 30
4.2.2. Combined Query with Neighboring Cells Filter 30

4.3. Complexity and Correctness . 31
4.3.1. Complexity . 31
4.3.2. Correctness . 31

5. Implementation 33
5.1. The Ligra Graph Processing Framework . 33
5.2. Implementation of our Approximate TNR Oracle 33

5.2.1. Data Structures . 34

6. Evaluation 36
6.1. Experimental Setup . 36

6.1.1. Data Sets . 36
6.2. Preprocessing . 37

6.2.1. Transit Node Selection . 37
6.2.2. Distance Table . 39
6.2.3. Access Node Determination . 39

Covering Searches . 40
Postprocessing . 41

6.2.4. Preprocessing Time Overview . 41
6.2.5. Space Consumption . 42

6.3. Queries . 43
6.3.1. Locality Filter . 43
6.3.2. Query Time . 45
6.3.3. Query Error . 46

6.4. Comparison to Other Distance Oracles . 47

7. Conclusion 50
7.1. Future Work . 50

Bibliography 53

Appendix 58
A. Preprocessing Evaluation . 58
B. Query Evaluation . 59

x

1. Introduction

Computing shortest paths is a fundamental graph problem [DSGNP10, AIY13] and a
building block for many graph applications and algorithms [DSGNP10, AIY13, QXSW13].
The shortest path distance between two vertices can, for example, indicate the closeness
between two users of a social network [AIY13, VFD+07]. It can be used in socially-
sensitive search, recommending related users or content to the user of a social network, or
context-aware search, finding related web-pages [AIY13, YBLS08, UCDG08]. Moreover,
measurements like betweenness centrality [Fre77, Bra01] and network diameter are based
on shortest path distances [QXSW13].
Large graphs have become very common within the last decades [QXSW13, DSGNP10].
Using a simple shortest path computation without any preprocessing is now often too slow
[DSGNP10, BFSS07]. Dijkstra’s algorithm [Dij59], for example, is a well-known algorithm
solving the single-source shortest path problem on graphs with non-negative edge weights.
However, computing Dijkstra’s algorithm takes more than a second on large graphs which
is “too slow for many applications” [BFSS07]. Even on unweighted graphs, where a simple
breadth-first search suffices to determine shortest paths, a preprocessing is often necessary
to reach fast enough query times for real-time interactions [AIY13].

In many cases, multiple shortest path queries are computed on the same instance. It
is often possible to spend some time on computing auxiliary data if that speeds up the
queries. This approach is the idea behind distance oracles [TZ05], an algorithmic approach
solving multiple shortest path queries on the same graph in near constant time by reusing
a preprocessing. As shown by Thorup and Zwick [TZ05], constant query time with sub-
quadratic space requirement is assumed to be unreachable on general graphs without
approximation. However, it is often sufficient to compute the distance within a certain
approximation. This can speed up the computation significantly.

Route planning on road networks has been researched very thoroughly. There is a wide
range of fast algorithms solving various problems related to shortest paths on road networks.
Road network graphs share a special set of properties. They have a very low, constant
vertex degree and are usually almost planar [BFM+07]. Furthermore, there is a hierarchy
of the edges in road networks when using the travel time as edge weight. Far away from the
start and end point, shortest paths tend to use only edges high up the hierarchy [BFM+07].
These properties can be used as an advantage when computing shortest paths on road
networks.
In more “complex networks such as social networks, web graphs, biological networks and
computer networks” [AIY13], there has not been as much research on route planning. Since

1

1. Introduction

they generally do not share these properties with road networks, solving distance queries
on these types of graphs “is still a highly challenging problem” [AIY13]. In this thesis, we
generalize transit node routing (TNR) [BFSS07, BFM+07, ALS13], a very fast algorithm
solving the shortest paths problem on road networks, to work on more general graphs such
as the aforementioned social networks and web graphs.

Our Contribution

This thesis presents two different variants of an approximate distance oracle based on
transit node routing. Both modify the transit node routing approach, that was initially
developed for road networks, to work on more complex graphs such as social networks and
web graphs.

Approximate transit node routing (aTNR) approximates the distance between any two
vertices in the graphs with an additive error of at most 4r where r ≥ 0. We extend the
TNR framework to allow approximate distances by introducing marked nodes, which are all
vertices within a distance of r of a transit node. The access nodes are then selected with a
single-source shortest path search from every (unmarked) vertex that is pruned at marked
vertices. By this pruning, we avoid computing a complete single-source shortest path search
for all vertices. The maximum error can be adjusted with the tuning parameter r to the
specific needs of the application. Allowing a greater error leads to faster preprocessing and
query times. We can guarantee that regardless of the value chosen for r, the computed
distance is never shorter than the actual shortest path distance. Furthermore, we evaluate
different heuristics of selecting the transit nodes – the landmarks used to compute a 3-hop
distance – specifically for our distance oracle.

We evaluate our distance oracle on multiple different network graphs with 150 thousand to
100 million edges. Smaller networks are processed in mere seconds and even larger social
networks, with up to one hundred million edges, can be preprocessed in only a few minutes.
Our preprocessing generally requires less space with a maximum of 50 bytes per vertex
on social networks and web graphs. The global query computes most distances correctly
within about a microsecond but cannot guarantee a maximum error. Combined queries,
which guarantee the maximum error of 4r, require about 20µs and have an average error of
less than r. The maximum error is only reached by few outliers. We also tested aTNR on
computer and road network graphs. The computed distances do not exceed the maximum
error, but both the preprocessing and the queries are not as efficient as on social networks,
for which aTNR is designed.

Additionally, we present a Voronoi search distance oracle that does not guarantee an upper
bound for the computed distance. It is a modification of aTNR and is motivated by the
fact that on many inputs aTNR yields on average a much smaller error than the allowed
4r. The single-source shortest path searches computing the access nodes are pruned at the
Voronoi diagram borders which reduces their running time significantly.
Both of our algorithms can be applied to both directed and weighted graphs and are
described as such. Our evaluation, however, considers only undirected and unweighted
graphs due to time constraints.

The remainder of this chapter gives an overview of previous work related to our contribution.
After that, Chapter 2 defines the notation and terminology used in this thesis and gives a
brief overview of the algorithms on which our distance oracle is based. The two contributed
distance oracles are described in Chapter 3 and 4. At first, Chapter 3 defines our main
contribution – approximate transit node routing for social networks. After that, Chapter 4
illustrates the necessary modifications to obtain the Voronoi search distance oracle. An
overview of the implementation details, such as the used tools and considerations about
data structures, is given in Chapter 5. Chapter 6 contains the experimental results of

2

1.1. Related Work

our approach and compares them to existing algorithms. Finally, our contribution is
summarized in Chapter 7 which also gives an outlook on possible future work.

1.1. Related Work
Much work has been done on computing shortest paths and their length in graphs. Starting
from Dijkstra’s algorithm [Dij59], which solves the complete single-source shortest path
problem on all graphs with non-negative edge weights, we today reached many more
specialized algorithms that yield much faster query times by speeding the queries up with
preprocessed data. These algorithms are often limited to a specific class of graphs and take
advantage of their specific properties.
This thesis modifies a speedup technique designed initially for road networks to an approxi-
mate distance oracle for social networks. We therefore give a brief overview of both speedup
techniques in road networks, and social and communication networks. Furthermore, a short
summary of distance oracles is given.

Shortest Distances in Road Networks

Speedup techniques on road networks have been researched very thoroughly. Delling et al.
[DSSW09] and Bast et al. [BDG+16] present a good overview of the different techniques.
An experimental evaluation of multiple shortest path and distance queries on road networks
is presented by [WXD+12].
Contraction hierarchies (CH) [GSSD08, GSSV12] are a fast and simple technique to find
shortest paths in road networks. It is based on successively contracting the vertices “and
adding shortcut edges [. . .] to preserve [the] shortest path distances between the remaining
nodes” [GSSV12]. The query is based on a bidirectional version of Dijkstra’s algorithm
and has a very small search space of “only a few hundred nodes” [GSSV12].
Transit node routing (TNR) [BFSS07, BFM+07] is a framework for solving shortest path
queries. A small set of important transit nodes is selected via which all long-distance
connections are routed. TNR is covered in more detail in Section 2.4. An implementation
of TNR with CH is described by [ALS13] and yields even faster query times with only
about twice the preprocessing time of CH.
Another speedup technique is hub labeling [CHKZ03, GPPR04]. Every vertex is assigned a
label consisting of a set of hubs and their distance such that the shortest path is covered by
the intersection of the labels of the start and target vertex. In general, the labels can be very
large. However, Abraham et al. [ADGW11] reached good results on road networks using
the upward CH search spaces. Their queries are significantly faster than the previously
mentioned CH-TNR [ALS13] and consume less space than some TNR implementations
[ADGW11]. Still, it has a “much higher space consumption” [ALS13] than CH-TNR. Hub
labeling has been extended to hierarchical hub labeling [ADGW12] which yields good results
on even more graph classes than just road networks.
Furthermore, variations of the classical shortest path problem have been studied. This
includes, for example, route planning for electric vehicles [EFS11, BDPW13, BDG+15], in
public transit networks [DKP12], or on graphs with dynamic edges weights that are changed
to adjust the travel time to the current traffic conditions [BGSV13, BDPW16, Str17].

Shortest Distances in Social Networks and Web Graphs

Most of the previously mentioned approaches make use of the special properties of road
networks, such as a low vertex degree and a natural edge hierarchy. In general, social
networks and web graphs do not possess these characteristics. We now give a short overview
of different approaches to compute shortest paths on these types of graphs.
Potamias et al. state that “exact algorithms do not scale to huge graphs encountered

3

1. Introduction

on the web, social networks, and other applications”[PBCG09]. They therefore introduce
an approximate approach based on landmark-based distance indexing. It uses different
heuristics to select landmarks because they prove that selecting optimal landmarks is
NP-hard.
A sketch-based distance oracle is given by [DSGNP10]. It computes a “sketch of the neigh-
borhood structure” [DSGNP10] for every vertex in the preprocessing phase and estimates
the distance between two vertices using their sketches. This yields a simple algorithm that
is scalable to web graphs and works on both undirected and directed graphs.
A modification of this sketch-based approach is introduced by [GBSW10]. It focuses on
graphs with short path lengths and stores complete path sketches. They observe that
this applies to “most real-world graph data (apart from road networks)” [GBSW10]. In
total, they reach “several orders of magnitude speedup over traditional path computations”
[GBSW10] with average errors of less than one percent.
Tretyakov et al. [TACGB+11] improve the previous landmark based approaches on undi-
rected graphs by storing a shortest path tree for every landmark. Furthermore, they also
improve the landmark selection itself, increasing the number of shortest paths covered by the
landmarks. They achieve higher accuracy with query times “within a few milliseconds [. . .]
and a space consumption comparable to previous state of the art methods” [TACGB+11].
Additionally, their approach supports dynamic updates of the graph such as edge insertions
and deletions.
Highway-Centric Labeling [JRXL12] is another approach to compute both exact and approx-
imate distances on large sparse graphs. It is a variation of 2-hop labeling schemes, such as
hub labeling [CHKZ03, GPPR04], but uses a tree structured highway to connect the source
and target vertex and compute their distance. According to [JRXL12], Highway-Centric
Labeling can outperform state-of-the-art algorithms in both space consumption and query
time.
Akiba et al. [AIY13] also introduce an exact algorithm based on 2-hop labeling. Their
algorithm conducts a breadth-first search (BFS) from every vertex but prunes these searches
with the already selected labels. This is very similar to our distance oracle, which is also
based on computing pruned BFS from most vertices. However, the decision of when to
prune such a search is different from our approach. Additionally, they compute multiple
BFS simultaneously using bitwise operations. This yields an efficient and scalable algorithm
with query times of about ten microseconds. It can handle both directed and weighted
graphs, but results are only presented for undirected and unweighted graphs.

Distance Oracles and Spanners

Approximate distance oracles were initially introduced by Thorup and Zwick [TZ05]. There
has since been a lot of research on them and the related spanners. We now present a short
overview of relevant works on distance oracles and spanners. A definition of both distance
oracles and spanners is given in Section 2.3.
On general graphs, Thorup and Zwick [TZ05] define a distance oracle with preprocessing
time O(kmn1/k), space O(kn1+1/k) and query time O(k) with a stretch of 2k − 1 for
any integer k ≥ 1. For fixed k, this results in a constant query time. An O(n2 logn)
algorithm with a data structure of size O(kn1+1/k) and query times of O(k) for k > 2
and O(logn) for k = 2 is presented by [BK06]. Baswana and Sen show in [BS06] that
approximate distance oracles for unweighted graphs can be constructed in expected O(n2)
time. Additionally, they present the “first expected linear-time algorithm for computing an
optimal size (2, 1)-spanner of an unweighted graph” [BS06]. Pǎtraşcu and Roditty [PR10]
further improve the space-approximation trade-off and give a distance oracle for unweighted
graphs with O(n5/3) space complexity, a stretch of two, and an expected preprocessing
time of O(m · n2/3).

4

2. Preliminaries

This chapter defines the notation used in the following chapters and provides the foundations
on which our results are based. Section 2.1 gives a short overview of the basic concepts of
graph theory. After that, Section 2.2 defines Voronoi diagrams, their extension to Graph
Voronoi diagrams, and how to compute them. A more formal definition of distance oracles
is given in Section 2.3 extending the short overview given in Section 1.1. Section 2.4
summarizes the original transit node routing algorithm for road-networks, the foundation
of our approximate distance oracles. Finally, Section 2.5 describes three covering search
algorithms used as building blocks in our algorithm.

2.1. Graph Theory
This section introduces the basic notations and definitions of graph theory used in this
thesis. Furthermore, Section 2.1.2 and 2.1.3 describe two well-known graph algorithms
used heavily in our distance oracle – breadth-first search and Dijkstra’s algorithm. More
details can be found, for example, in the books by Cormen et al. [CLRS09], Mehlhorn and
Sanders [MS08], or Korte and Vygen [KV18].

2.1.1. Graphs

A graph G = (V,E) consists of n vertices and m edges. In general, we describe our
algorithms for directed graphs with non-negative edge weight w(e) ∈ R+

0 , e ∈ E. Our
implementation, however, only supports undirected and unweighted graphs. We therefore
sometimes differentiate between these different types. The reverse graph Gr = (V,Er) is
created by reversing the direction of all edges in the directed graph G = (V,E). We define
a unique vertex ID from {i ∈ N0 | 0 ≤ i ≤ n− 1} for every vertex and use it synonymous
with the vertices v ∈ V . This allows us, for example, to use a vertex as an array index
simplifying the notation for many algorithms.

“A path p = 〈v1, v2, . . . , vk〉, vi ∈ V is a sequence of [vertices] connected by the edges” [MS08,
page 50]. We say p contains a vertex v or it goes via vertex v if v ∈ {v1, . . . , vk}. The length
or weight of a path p is defined as the sum w(p) =

∑k−1
i=1 w(vi, vi+1) of its edge weights.

For unweighted graphs, this is simply the number of edges.
The path p∗ from v1 to vk is called the shortest-path from v1 to vk if there is no other path
connecting v1 and vk with a shorter distance than w(p∗), that is

∀ v1-vk-paths p : w(p∗) ≤ w(p).

5

2. Preliminaries

There can be multiple shortest paths between two vertices v and w. The distance δ(v, w)
of two vertices v, w ∈ V is defined as the weight of the shortest path p∗ from v to w, i.e.,
δ(v, w) = w(p∗). For every vertex v ∈ V δ(v, v) = w(〈v〉) = 0 applies.
We use v w to denote the shortest path p∗ from v to w. However, v w is not
well-defined since there can be multiple shortest paths between v and w. We therefore use
this notation only if it is irrelevant, which exact shortest path is chosen.

A subpath p[vi,vj] of the path p is defined as p[vi,vj] = 〈vi, vi+1, . . . , vj〉 with 0 ≤ i ≤ j ≤ k.
Two paths p1 = 〈v1, . . . , vk〉, vi ∈ V and p2 = 〈w1, . . . , wl〉, wi ∈ V in the graph G = (V,E)
can be concatenated to a path p3 = p1; p2 = 〈v1, . . . , vk, w1, . . . , wl〉. Every subpath of a
shortest path is itself a shortest path [CLRS09, page 645].
A vertex w is reachable from v ∈ V if there is a path connecting v to w. Otherwise, w is
unreachable and the distance is defined as δ(v, w) =∞ by convention. For many problems,
such as computing shortest paths, it is sufficient to consider only reachable vertices [KV18,
page 26]. We therefore consider only the largest strongly connected component of a graph.

2.1.2. Breadth-First Search (BFS)

Breadth-first search (BFS) is a simple graph-traversal algorithm used as a building block or
base in many more complex algorithms [CLRS09, page 594]. It can be used to compute the
shortest path distance in unweighted graphs and has a running time of O(n+m). A proof
of the complexity and correctness can be found, for example, in [CLRS09, page 594-602].

The BFS traverses the vertices in a graph G = (V,E) starting at the source s ∈ V . Vertices
are processed in so-called levels, sets of vertices all with the same unweighted distance from
s. The initial level contains only s itself. A level is processed by visiting every vertex and
adding its unvisited out-neighbors to the next level. This is continued until all vertices
reachable from the source are visited.
Additionally, it defines a so-called search tree T = (VT , ET) consisting of all visited vertices
and the edges (p[v], v) traversed by the search when visiting a vertex v from its parent p[v].

2.1.3. Dijkstra’s Algorithm

Dijkstra’s algorithm [Dij59] is one of the best-known algorithms to solve the single-source
shortest path problem. It computes the correct shortest distance d(v) = δ(s, v) from a
given source s ∈ V to all other vertices v ∈ V . Using a Fibonacci-Heap [FT87], Dijkstra’s
algorithm has a running time of O(n logn + m) which is optimal for non-negative edge
weights [KV18, page 162]. For different sets of edge weights even faster running times can
be achieved.
We give a short overview of the algorithm in the following. A more detailed description
including proofs for its correctness and complexity can, for example, be found in [CLRS09,
page 658-662], [KV18, page 161], or [MS08, page 196-199].

Dijkstra’s algorithm manages two sets of vertices: visited and queued. A queued vertex
u is visited by relaxing all its outgoing edges (u, v). An edge (u, v) is relaxed, by testing
whether the shortest s-v-path can be improved using the shortest path to u and the edge
(u, v). Initially, all vertices are unvisited, and the source s is the only queued vertex with a
distance of 0. In every step, the algorithm selects the queued vertex with minimal distance
and visits it. This is repeated until all vertices reachable from s are visited.
As in Section 2.1.2, a search tree T can be defined containing the shortest paths computed
by the algorithm.

6

2.2. Voronoi Diagrams

2.2. Voronoi Diagrams
Voronoi diagrams were originally defined for points in R2 and the Euclidean distance

d(x, y) =

√√√√(n∑
i=1

(xi − yi)2

)
, x, y ∈ Rn.

We give a short definition of Voronoi diagrams in accordance with [BCKO08, page 148-149].
A Voronoi diagram is defined by a set C = {c1, c2, . . . , ck} ⊆ P of k distinct Voronoi centers
in a plane P ⊆ R2. The Voronoi Assignment Model assigns every point p in the plane to
its closest Voronoi center V (p) = ci with d(p, ci) < d(p, cj), ∀cj ∈ C, j 6= i.

This assignment divides the plane into k Voronoi cells V(ci) = {p ∈ P | V (p) = ci}, one
for every center point ci ∈ C. The cell V(ci) contains all points p for which ci is the closest
center point. The Voronoi diagram V or(C) is the partition of the plane P into the Voronoi
cells V(ci), ci ∈ C.

2.2.1. Graph Voronoi Diagrams
Graph Voronoi diagrams [Meh88, Erw00] are an extension of the Voronoi diagram to
a graph G = (V,E). The Voronoi centers of a Graph Voronoi diagram are a set C =
{c1, c2, . . . , ck} ⊆ V of k vertices [Erw00]. As for the original Voronoi diagram, the
Voronoi Assignment Model assigns for every vertex v ∈ V the closest Voronoi center
V (v) = ci. Instead of the Euclidean distance, Graph Voronoi diagrams are based on
the shortest path distance. The Voronoi cell of a Voronoi center ci is the set of vertices
V(ci) = {v ∈ V | V (v) = ci} whose assigned center is ci. Additionally, isolated vertices
that are not reachable from any of the Voronoi centers must be taken into account. An
additional set U = {v ∈ V | V (v) = ⊥} is defined containing all those unreachable vertices
[Erw00].

Together they define the Voronoi diagram V or(C), a partition {V(c1),V(c2), . . . ,V(ck), U}
of the graph G. In general, Graph Voronoi diagrams are not well-defined. That is, a vertex
v might have multiple closest center points of whom only one is arbitrarily assigned as
Voronoi center V (v) of v. For directed graphs, we need to differentiate between the inward
Voronoi diagram, based on the shortest paths leading towards the Voronoi centers, and the
outward Voronoi diagram, based on the paths leading away from the Voronoi centers.

For two Voronoi cells V(ci) and V(cj), a set of Voronoi bridges Eij is defined containing all
edges connecting a vertex in V(ci) with a vertex in V(cj). Two Voronoi cells V(ci), V(cj)
are called direct neighbors if Eij 6= ∅. The Voronoi diagram including the Voronoi bridges
is called extended Voronoi diagram.
The Graph Voronoi diagram can be stored in O(n) space. The extended Voronoi diagram
may consume up to O(n+m) space [Erw00].

A Graph Voronoi diagram can be computed with a multi-source shortest path search using
the Voronoi centers C as sources [Meh88, Erw00]. The initial source c ∈ C is passed along
the shortest paths found by the algorithm and is assigned as Voronoi center V (v) of the
vertices v ∈ V on the path, just like setting the parent in the standard version of Dijkstra’s
algorithm. Using a multi-source version of Dijkstra’s algorithm for weighted graphs and a
multi-source BFS for unweighted graphs, the Graph Voronoi diagram can be computed in
O((n+m+ (n− k)log(n− k)) or O(n+m) respectively.

2.3. Distance Oracles
The all-pairs shortest path problem is a well-known problem to compute the distance
δ(v, w) between all pairs of vertices v, w ∈ V in a graph G = (V,E). However, in many

7

2. Preliminaries

applications, not all of those distances are indeed needed. We only want to be able to
retrieve the distance between some vertices quickly [TZ05].

A distance oracle solves this problem by running a preprocessing on the graph and storing
results from this preprocessing in a data structure to speed up subsequent queries. A query
efficiently computes the distance between any two vertices [TZ05], [PR10]. These queries
are very fast, often in constant time, which is why they are called oracle [TZ05]. In general,
there is a trade-off between the preprocessing time, the necessary space, the query time,
and the approximation of a distance oracle.

A trivial example of a distance oracle would be to compute all-pairs shortest path in
O(n2 logn+nm) time, store the complete distance table in O(n2) space and answer queries
in O(1) by looking up the stored distance [TZ05]. However, computing all-pairs shortest
path might take too much computation time or storing O(n2) data might be too much.
Usually, we aim for sub-quadratic space complexity. This is, however, assumed to be
unreachable for general graphs while guaranteeing exact results and constant query times
[TZ05, PR10]. Therefore, many distance oracles guaranty only some approximation of the
actual shortest path distance.

We differentiate between the multiplicative and additive error of a distance oracle. Let
δ̂(s, t) be the distance from s to t computed by the distance oracle. A distance oracle has a
multiplicative error of α ≥ 1 and an additive error of β ≥ 0 if

∀s, t ∈ V : δ(s, t) ≤ δ̂(s, t) ≤ α · δ(s, t) + β.

If α = 1 then there is no multiplicative error, likewise there is no additive error for β = 0.
The additive error α is also called the stretch of the distance oracle. We define an (α, β)
approximate distance oracle as a distance oracle with a multiplicative error of α and an
additive error of β for every pair s, t ∈ V of vertices.

An area closely related to distance oracles is spanners [TZ05, PR10]. An (α, β)-spanner of
a graph G is a subgraph H of G such that for every distance δH(s, t) in H

δG(s, t) ≤ δH(s, t) ≤ α · δG(s, t) + β

applies. The distance δG(s, t) is the corresponding distance in the original graph G to the
distance δH(s, t) in H. A distance oracle with the multiplicative error α and the additive
error β, capable of also returning the shortest s-t-path for the computed distance δ̂(s, t),
must contain an (α, β)-spanner [TZ05].

2.4. Transit Node Routing
Transit node routing [BFSS07, BFM+07] is an algorithmic approach to solve shortest
path queries. It was originally developed for road networks and utilizes their special
characteristics, namely a low vertex degree and some sort of edge hierarchy. Most queries
can be answered by transit node routing with only a few table lookups. This yields query
times of 2.5µs, an improvement of over two orders of magnitude over the best previous
results [BFSS07, ALS13].

Transit node routing is based on the intuition that when driving to a faraway location,
there is a small set of traffic junctions of which at least one is passed if the distance is “large
enough”. These traffic junctions are called transit nodes, a subset T ⊆ V of the vertices.
For every vertex v ∈ V , the transit nodes passed first on long-distance shortest-paths are
called access nodes. The set A(v) ⊆ T of access nodes is even smaller. On the US road
network, a graph with 24 million vertices, [BFSS07] reports about 10 000 transit nodes
and ten access nodes per vertex.

8

2.5. Covering Search

In general, transit node routing can be interpreted as a framework defining the basic
structure of the algorithm while still leaving many design decisions up to the implementation.
There are multiple different implementations [BFSS07, ALS13] of this general framework,
most of which are tailored particularly to road networks. In the following, we define the
general transit node framework. Chapter 3 defines our specific implementation of the
transit node framework, resulting in an approximate algorithm for more general graphs,
specifically social network graphs.

2.4.1. General Transit Node Framework
The transit node routing framework consists of six steps that need to be implemented and
can be roughly grouped into a preprocessing, a locality filter, and the queries.

The preprocessing is computed once per instance before running the queries. During the
preprocessing, a set T of transit nodes is selected with the intuition that all long shortest
paths should go via at least one transit node. For every vertex v ∈ V , the preprocessing
selects a set A(v) of access nodes and computes the distance dA(v, a) = δ(v, a), a ∈ A(v).
For directed graphs, forward Af (v) and backward Ab(v) access nodes are chosen. Forward
access nodes are selected as the first transit node occurring on long-distance shortest paths
starting at v. Correspondingly, backward access nodes occur last on such paths ending at
v. In undirected graphs both sets are identical. Depending on the implementation, one
could also select the access nodes first and set the transit nodes to the union of all access
nodes T =

⋃
v∈V A(v). Additionally, a distance table dT : T 2 → R+

0 storing the all-to-all
distances between all transit nodes is computed.

The locality filter L : V 2 → {true, false} is used during the queries to determine whether
an s-t-query is global in the sense that the shortest s-t-path contains a transit node.
Usually, the locality filter needs some precomputed data to make this decision which is
computed during the preprocessing phase. Global queries are much faster than local queries.
Therefore, we aim to maximize the percentage of global queries. However, computing a
query with a global query algorithm might result in an incorrect distance if the shortest path
does not contain a transit node. A good locality filter is conservative – meaning it always
answers L(s, t) = true if the global query is incorrect – but still answers L(s, t) = false
for most global queries.

A transit node query consists of two different approaches: a global and a local query. It
uses the locality filter to decide which query to use. The global query computes the correct
distance from s to t, s, t ∈ V if a shortest s-t-path passes a transit node. The distance is
computed by combining the precomputed data to the shortest path distance. For each pair
as ∈ Af (s) and at ∈ Ab(t), it computes the distance dA(s, as) + dT (as, at) + dA(at, t) and
returns the minimum. All necessary distances have been precomputed by the preprocessing;
thus the global query consists merely of a small number of table lookups. Actual shortest
paths – instead of only the distances – can be reconstructed using multiple distance queries
along the shortest path (see [BFM+07, Section 3.6]).

The local query is a fall-back method used for those queries where the global query would
give incorrect results. It should compute the correct distance for every pair for vertices but
is usually much slower than the global query.

2.5. Covering Search
The preprocessing to our distance oracle is strongly based on the covering searches defined
in [SS07, Section 2]. This section mostly gives a summary of Section 2 in [SS07] adjusted
to our notation. At first, Section 2.5.1 states the problem which is then solved by different
covering searches. After that, Section 2.5.2 to Section 2.5.4 describe three of the four
covering searches defined in [SS07].

9

2. Preliminaries

2.5.1. Problem Definition

Consider a single-source shortest path search from a source s ∈ V using Dijkstra’s algorithm
(see Section 2.1.3). Let T be the shortest path tree with root s containing the shortest
paths from s to all other vertices v ∈ V visited so far. A set V ′ ⊆ V of vertices is defined
as capable of covering the shortest path search. The vertex v ∈ V is covered by the vertex
set V ′ if the shortest path from s to v contains at least one vertex in V ′. A covering node
is a vertex c ∈ V ′ visited by the search whose parent p(c) is not covered. Thus, c is the
first vertex in V ′ on its shortest path and also all shortest paths in the sub-tree of T with
root c. It therefore covers all vertices it that sub-tree. The set of covering nodes is defined
as CG(V ′, s).

The objective is to determine such a set of covering nodes CG(V ′, s), preferably while
keeping the search space small and selecting no more covering nodes than necessary. Three
different approaches to solve this problem are given in the following.

We additionally define the distance dC(v), v ∈ V computed during the covering search.
Since all described covering searches are based on single-source shortest path algorithms,
the distance dC(v) is computed correctly if the search is not truncated on the shortest
s-v-path. [SS07]

2.5.2. Conservative Covering Search

The conservative approach is the most basic approach described in [SS07, Section 2]. It
stops the search only when all vertices in the queue are covered. While this is easy to
implement and yields correct distances, the search might get very large. If there is just a
single long uncovered path, the search is continued for the complete length of that path
even though all other branches of the shortest path tree have long been covered. This can
cause the search to visit much more vertices than necessary. [SS07]

2.5.3. Aggressive Covering Search

The aggressive approach [SS07] truncates the search at the vertices in V ′. This stops the
search from visiting already covered vertices. The aggressive covering search is stopped
when all queued vertices are covered, just like the conservative search.

However, the aggressive approach causes two other problems. First of all, computed paths
are not guaranteed to be correct shortest paths, that is the computed distances might
be larger than the actual shortest path distance. This is caused by the search detouring
“around” covering nodes and visiting vertices that are technically covered, but unvisited
since the search was stopped at the covering node. It can lead to an even bigger search
space and incorrect distances. Furthermore, the aggressive approach might add more
covering nodes than necessary. These superfluous covering nodes only cover vertices already
covered by other transit nodes. [SS07]

2.5.4. Stall-on-Demand Covering Search

To solve the problems caused by the conservative and aggressive approaches, [SS07] intro-
duces the Stall-on-Demand approach. “It is an extension of the aggressive variant” [SS07]
preventing the search from traveling “around” covering nodes. To guarantee correctness
the search sometimes needs to continue after a covering node was found. However, the
search is unable to correctly decide in advance which edges, leaving covered vertices, need
to be expanded. Therefore, the decision is postponed until it is both necessary and can be
made correctly.

10

2.5. Covering Search

To manage this postponed decision-making, the search algorithm is extended as described
in the following. The search is separated into a main search – the standard search from
the source s – and a second BFS called multiple times at different points during the main
search. We call this second search the stalling-BFS.

The main search is a variant of the aggressive approach. It starts from the source and
is initially pruned when reaching a vertex c ∈ V ′. However, if the main search continues
around c and reaches it again via another path, c is “woken up”, and a stalling-BFS from c
is computed. It is stopped when all queued vertices are covered. The stalling-BFS from
c considers only vertices already visited by the main search. Such a vertex w is inserted
into the stalling-BFS queue if the path found by the main search is suboptimal. This is
definitely true if the path via c to w yields a shorter distance. The stalling-BFS marks all
vertices it visited as stalled. Stalled vertices prune the main search and are never selected
as covering nodes. [SS07]

11

3. Approximate Transit Node Routing

The approximate transit node routing (aTNR) is an implementation of the transit node
routing framework which is described in the previous Section 2.4. Unlike the previously
mentioned TNR implementations [BFM+07, ALS13], it is not specifically designed for
road networks. It works particularly well for graphs with a small set of central vertices
which cover many of the long-distance shortest paths, for example, social networks and
web graphs. Furthermore, we add the option to approximate the computed distances to
achieve a faster computation time. Point-to-point queries can be approximated with an
additive error of β = 4r where r ∈ N0 is a tuning parameter. This means that for every
computed s-t-distance δ̂(s, t) it applies that

δ(s, t) ≤ δ̂(s, t) ≤ δ(s, t) + 4r.

Thus, our distance oracle is a (1, 4r)-distance oracle as defined in Section 2.3. Section 6
describes this parameter r in more detail and explains what causes the approximation.

Just like the distance oracles described in Section 2.3, our algorithm consists of two phases.
The preprocessing phase is computed once per instance and generates data that is then
used to speed up the query phase. Computing the preprocessing takes more work than a
naive query and becomes only worthwhile when multiple queries are computed on the same
instance. Our preprocessing consists of three main components: selecting a set of transit
nodes, computing the distance between all the transit nodes and selecting a small set of
access nodes for every vertex. These access nodes are chosen from the previously selected
transit nodes. Additionally, the distance between a vertex and its access nodes is stored.

An s-t-query can then be computed with the TNR global query defined in Section 2.4. The
distance is computed as the shortest three-hop-distance s as at t where as is an
access node of s and at an access node of t. Additionally, a local query is defined as a
fall-back method for shortest paths not passing the access nodes of s and t. To identify
those s-t-queries for which the global query would be incorrect, we use a heuristic locality
filter. This locality filter is then combined with the global and local query to the actual
query algorithm.

The remainder of this chapter describes the complete aTNR algorithm in detail. At first,
the preprocessing is described in Section 3.1. After that, Section 3.2 gives an overview of
the different query algorithms answering point-to-point queries. Section 3.3 defines the
locality filter that determines which query algorithm to use. Finally, Section 3.4 proves the
correctness of our algorithm and evaluates its time and space complexity.

12

3.1. Preprocessing

3.1. Preprocessing
Our distance oracle algorithm consists of three main parts: the preprocessing, the locality
filter and the queries. The preprocessing, which is the focus of this chapter, is only
computed once for multiple queries on the same graph. During the query phase, the data
precomputed by the preprocessing is used to speed up the queries.

Our preprocessing selects a set T ⊆ V of transit nodes and precomputes the distance
dT (t1, t2) between every pair t1, t2 ∈ T of transit nodes. Furthermore, it selects a small
number of access nodes A(v) ⊆ T for every vertex v ∈ V from the transit nodes T .
Together with the access nodes, it also calculates the distance dA(v, a) between v and its
access nodes a ∈ A(v). We aim to cover all long-distance shortest paths from or to v with
those access nodes.

The preprocessing offers essentially the following functionality: First, listing all access nodes
A(v) of a vertex v and their precomputed distance dA(v, a) from v. Second, retrieving the
distance dT (t1, t2) between any two transit nodes t1, t2 ∈ T .
Apart from this, any precomputations necessary for the locality filter are also completed
during the preprocessing phase. They are, however, described in Section 3.3 together with
the other parts of the locality filter.

This chapter describes the necessary steps to compute a preprocessing for our distance
oracle. Firstly, Section 3.1.1 describes different algorithms to select a set of transit nodes.
Secondly, we give two algorithms to compute the transit node distance table in Section 3.1.2.
Finally, Section 3.1.3 focuses on choosing the access nodes and computing their distance.

3.1.1. Transit Node Selection

The global query algorithm of the TNR framework computes the distance between two
vertices as the length of the shortest path via their access nodes. Intuitively, the global
query from s to t is correct if the shortest path contains at least one of the access nodes of
both s and t. We try to select the transit nodes, i.e., the possible access nodes, so that
they cover many shortest paths, and especially the long-distance shortest paths. A shortest
path is covered by the transit node set if it contains at least one transit node. This is
equivalent to the definition of covered paths in Section 2.5.

The number of transit nodes k ∈ N is a tuning parameter that has an impact on both
computation time and required memory. In general, choosing k ∈ O(

√
n) keeps, for example,

the size of the distance table linear. We therefore select k = d
√
n e throughout this work.

The correctness of the queries does not depend on the chosen transit nodes. However, a
good set of transit nodes speeds up both the preprocessing and the average query times.
It reduces the required time to select the access nodes and the number of local queries
that are necessary. Furthermore, the global query is faster if the average number of access
nodes is small. If the transit nodes cover more shortest paths per transit node, fewer access
nodes are necessary to cover the same number of shortest paths.

We implemented several algorithms heuristically selecting such a set of transit nodes. All
of them are based on betweenness centrality (BC), a measurement of vertex centrality.
We first give a quick definition of betweenness centrality and then describe our different
selection algorithms. An evaluation and comparison of the selection algorithms can be
found in Section 6.2.1.

Betweenness Centrality

Betweenness centrality [Fre77] is a measurement for the centrality of a vertex in a graph
based on the number of shortest paths containing it. The number of shortest paths from s

13

3. Approximate Transit Node Routing

to t is denoted by σst with σss = 1. For a vertex v ∈ V , the number of shortest s-t-paths
containing v is defined as σst(v). Then the betweenness centrality of a vertex v is defined
as

BC(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

[Bra01]. This means the betweenness centrality of a vertex is the percentage of shortest
paths containing v, compared to the total number of shortest paths in G, excluding
the paths starting or ending at v. To compute the betweenness centrality, we use the
implementation of Brandes’ algorithm [Bra01] in the Ligra framework [SB13].

Simple-BC Transit Node Selection

The Simple-BC selection algorithm is based solely on betweenness centrality. It selects the
k vertices with the highest betweenness centrality as transit nodes. While this algorithm is
very simple (hence the name), it can result in transit nodes in very close proximity to each
other. These transit nodes might all cover very similar sets of shortest paths. In that case,
many of the transit nodes are superfluous because they do not cover any path that is not
already covered by another transit node. Choosing better-distributed vertices with smaller
betweenness centrality could result in more covered shortest paths.

Partition-BC Transit Node Selection

To increase the spread of the transit nodes in the graph, the Partition-BC algorithm uses a
partition of the graph. It receives a balanced partition of the graph into k similar sized
components. In each component, the vertex with the highest betweenness centrality is
chosen as a transit node.

Farthest-BC Transit Node Selection

The Farthest-BC algorithm puts an even greater emphasis on the distance between transit
nodes. The transit nodes are chosen consecutively starting with the highest betweenness
centrality node. Each subsequent step determines a set of vertices with the maximum
distance from the transit nodes chosen so far, using a multi-source BFS. From this set of
vertices, the one with the highest betweenness centrality is chosen as the next transit node.
These steps are repeated until k transit nodes are selected.

k-means++-BC Transit Node Selection

The k-means algorithm is “one of the most popular and simple clustering algorithms”
[Jai10]. It computes a cluster of a set X ⊂ Rd by minimizing the “squared error between
the empirical mean of a cluster and the points in the cluster” [Jai10]. While the k-means
algorithm is simple and fast, there are no guarantees for its accuracy [AV07].

K-means++ was initially developed by Arthur and Vassilvitskii [AV07] to improve the
k-means algorithm by selecting better initial cluster centers. Instead of selecting the centers
uniformly at random, they weight them such that data points with a higher distance to
the current centers are favored. Defining D(x) as the shortest distance between the data
point x ∈ X and the closest center already chosen, they use the probability

D(x′)2∑
x∈X D(x)2

to select a new center point. The first center is selected uniformly at random from X . All
further center points are selected with the aforementioned probability until k centers are
chosen.

14

3.1. Preprocessing

We use a modified version of the k-means++ algorithm to select k transit nodes from the
vertex set V . In addition to the distance D(x), our version also considers the betweenness
centrality of a vertex. To reflect the potentially high differences of the betweenness centrality
and the squared distance, we normalize both to values between 0 and 1. We select x as a
new transit node with the probability

1
2 ·
(

BC(x′)∑
x∈V BC(x) + D(x′)2∑

x∈V D(x)2

)
.

3.1.2. Distance Table Computation

To compute the global queries, TNR requires a distance table containing the shortest
path distances dT (t1, t2) = δ(t1, t1) between all transit nodes t1, t2 ∈ T . There are several
approaches to computing this distance table; we describe two of them in the following.

The Naive Approach

The naive approach computes a single-source shortest-path search from every transit node
until it reached all other transit nodes. An example of such a search is Dijkstra’s algorithm
which is described in Section 2.1.3. For unweighted graphs, a BFS is also sufficient (see
Section 2.1.2). Since all the searches are independent of one another, they can be computed
in parallel which makes this approach well parallelizable.

Lemma 3.1. The distance table computed by the naive approach is correct.

The correctness of Lemma 3.1 follows directly from the correctness of the single-source
shortest-path algorithm used.

However, if the k searches have to visit a large proportion of the graph until all other
transit nodes have been found, the naive approach can be rather slow.

The Overlay-Graph Approach

Another approach is to compute a so-called overlay graph GT consisting only of the transit
nodes and weighted edges connecting the transit nodes. The distance table can then be
computed with an all-to-all shortest path algorithm on the overlay graph. This graph
can be smaller than the original graph G which can result in a significant speed-up of the
shortest path searches.

The overlay graph is defined as GT = (T , ET) with ET ⊆ T × T . It consists of all transit
nodes connected by weighted edges. The weight w(e) of an edge e = (t1, t2) corresponds to
the distance w(e) = δ(t1, t2) in the original graph G.
Intuitively, the neighbors of a transit node t ∈ T in GT should be all transit nodes that are
passed first on a shortest path from t to any other transit node. Based on this intuition, a
covering search as defined in Section 2.5 is used to determine which transit nodes should be
connected by an edge. A covering search with V ′ = T \ {t} is conducted from every transit
node t ∈ T . The covering nodes CG(T \ {t}, t) are the neighbors of t in the overlay graph
GT . The edge weight is defined through the distance computed by the covering search,
that is w(t, t′) = dC(t′) for every t′ ∈ CG(T \ {t}, t).

Lemma 3.2. The overlay graph GT preserves the distance between all transit nodes. That
is, the distance δ(t1, t2) in G is equivalent to the distance δGT (t1, t2) in GT for all t1, t2 ∈ T .

15

3. Approximate Transit Node Routing

Proof. The edges in GT correspond to paths in G thus all for distances applies δ(t1, t2) ≤
δGT (t1, t2). We therefore only need to prove δGT (t1, t2) ≤ δ(t1, t2).

For two arbitrary transit nodes t1, t2 ∈ T consider the shortest t1-t2-path p = t1 t2 in
G that contains the maximum number of transit nodes on any shortest t1-t2-path. Let
t′i ∈ T , i ∈ [1, k] be all transit nodes on the path p that is p = t′1 t′2 · · · t′k with
t1 = t′1 and t2 = t′k.
According to Bellman’s principle of optimality, the paths pi = t′i t′i+1, i ∈ [1, k − 1] are
shortest paths. Furthermore, there exists no shortest t′i-t′i+1-path containing a transit node
other than t′i and t′i+1 as that would increase the number of transit nodes on p.
Thus, the covering search from ti cannot be truncated before visiting ti+1, meaning ti+1 is
set as covering node and the distance dC(ti+1) is correct. Therefore, the edge ei = (ti, ti+1)
is added to the overlay graph with the correct distance w(ei) = dC(ti, ti+1) = δ(ti, ti+1).
This means that there is a path p′ = 〈t′1, t′2, . . . , t′k〉 in GT with weight

wGT (p′) =
k−1∑
i=1

wGT (t′i, t′i+1) =
k−1∑
i=1

δ(t′i, t′i+1) =
k−1∑
i=1

w(pi) = w(p).

It follows that δGT (t1, t2) ≤ wGT (p′) = δ(t1, t2).

The distance table can then be computed with an all-to-all shortest path algorithm on the
overlay graph GT . Some examples of such algorithms are the Floyd–Warshall algorithm
[Flo62, War62] which takes O(n3) asymptotic time and Johnson’s algorithm [Joh77] which
runs in O(n2 logn + nm). For graphs with non-negative weights, it is sufficient to use
Dijkstra’s algorithms once from every source which has the same asymptotic running
time as Johnson’s algorithm. However, Johnson’s algorithm conducts a preprocessing for
negative weights, which is not necessary in our case. We therefore use Dijkstra’s algorithm
once from every vertex in GT to compute the actual distances between all transit nodes.
Since GT can be smaller than the original graph G, this can be faster than computing k
single-source shortest path-searches.

Lemma 3.3. The distance table computed by the overlay-graph approach is correct.

This follows directly from Lemma 3.2 and the correctness of the all-to-all shortest path
algorithm.

The overlay-graph approach is also well parallelizable. Both phases consist of k independent
searches from the k transit nodes that can be computed in parallel. Adding edges in
parallel to the overlay graph might cause synchronization problems depending on the
graph data structure used. This can be solved by first computing all searches and storing
the edges separately and then sequentially combining them to the graph. In the second
phase, each line in the distance table is accessed by exactly one Dijkstra search. Thus, no
synchronization is necessary.

3.1.3. Access Node Determination

This section deals with selecting the access nodes of every vertex and computing the
distance to them. The access nodes are chosen from the set of transit nodes selected in
Section 3.1.1. The global query computes distances as shortest paths via an access node of
the source and the target. Because of this, the access nodes should cover most shortest
paths leaving a vertex. A shortest path is covered by a set of access nodes if it contains at
least one of them. The locality filter should be able to recognize shortest paths that are
not covered by an access node so an alternative query algorithm can be chosen.

16

3.1. Preprocessing

As defined in Section 2.4, we use A(v) ⊆ T to denote the set of access nodes of a vertex
v ∈ V . Furthermore, dA(v, a) is the computed distance from a vertex v to its access node
a ∈ A(v). For directed graphs, we differentiate between the forward access nodes Af (v)
used for paths starting at v and the backward access nodes Ab(v) used for paths ending
at v. For simplicity, this section generally describes the algorithms only for undirected
graphs. Computing the forward access nodes in a directed graph can be directly transferred
from the undirected version. The backward access nodes are selected by conducting the
algorithms on the reversed graph. If the undirected algorithm cannot be easily transferred
to directed graphs, an additional variant for directed graphs is given.

For a transit node t ∈ T , all shortest paths leaving t contain t. Therefore, t itself is
chosen as its only access node, that is ∀t ∈ T : A(t) = {t} and dA(t, t) = 0. For all other
vertices v ∈ V , a covering search – as defined in Section 2.5 – with source v is computed to
determine the set of access nodes A(v).

Section 3.1.3 describes in more detail how the covering searches are used to select the
access nodes. After that, Section 6 introduces marked nodes, an extension of the transit
nodes made to speed up the computation at the price of approximation. Finally, Section 9
gives an algorithm to remove superfluous access nodes.

Covering Search

To determine the access nodes of all vertices v ∈ V a covering search from every v ∈ V \ T
with V ′ = T is conducted. The resulting covering nodes CG(T , v) are selected as the
access nodes A(v) with the distance dA(av) = dC(av), av ∈ A(v) computed by the covering
search. All three covering search approaches introduced in Section 2.5 can be used for our
preprocessing and result in a correct distance oracle as proven in Section 3.4.2. Algorithm 3.1
describes the general access node determination.
The shortest paths that are not covered by the access nodes are traversed completely. This
allows a straightforward implementation of the locality filter based on the search spaces.
Section 3.3 describes this locality filter in detail.

Algorithm 3.1: Access Node Determination with Generic Covering Search
1 V ′ ← T
2 foreach v ∈ V \ V ′ do
3 (CG(V ′, v), dC)← CoveringSearch(v, V ′)
4 A(v)← CG(V ′, v)
5 foreach av ∈ A(v) do
6 dA(av)← dC(av)

Marked Nodes

We extend the transit nodes to their surrounding nodes within a certain marking radius r.
The marked nodes M are all vertices within this radius and are used as subsidiary transit
nodes. By definition, the transit nodes are a subset of the marked nodes T ⊆M. In the
covering search, the marked nodes are treated as transit nodes meaning they cover the
search, that is V ′ =M. This speeds up the access node determination and is what causes
the approximation in our algorithm.

We define the marked nodes as

M = {m ∈ V | ∃tm ∈ T : δ(m, tm) ≤ r and δ(tm,m) ≤ r}.

That is, for every marked node there is at least one transit node tm whose forward and
backward distance from m is at most the marking radius r. For each marked node m ∈M,

17

3. Approximate Transit Node Routing

this closest transit node tm is selected as the access node of m, that is A(m) = Af (m) =
Ab(m) = {tm}. The access node distances are set to the distances dA(m, tm) = δ(m, tm)
and dA(tm,m) = δ(tm,m). By definition, dA(m, tm) ≤ r and dA(tm,m) ≤ r apply. Ties
between multiple closest transit nodes with the same distance are broken arbitrarily. Note
how transit nodes are still selected as their only access node with distance 0.

Computing the Marked Nodes

For undirected graphs, the marked nodes are selected using a multi-source shortest-path
search. This search starts from the transit nodes and is truncated after distance r. All
vertices visited before the search is stopped are marked and assigned to the transit node
from which they were visited first. The distance between a marked node and its transit
node can also be obtained directly from the search.

For directed graphs, the computation is slightly more complicated as we need to make sure
both the forward and the backward distance does not exceed the radius r. We describe
an algorithm determining the marked nodes in directed graphs in the following. However,
since our implementation of the distance oracle only handles undirected graphs, we did not
use this algorithm in practice.

The forward distances δ(tm,m) from a transit node tm ∈ T to a vertex m ∈ V are computed
with a single-source shortest path search from tm stopped after distance r. The backward
distances δ(m, tm) are calculated using the same algorithm on the reverse graph.
It is not sufficient to intersect the vertices visited by the forward and the backward search
because this does not ensure that every marked vertex is marked by the same transit node
in both directions. After the forward search we therefore store every potential marked node
m with δ(tm,m) ≤ r at the corresponding transit node tm. Then, the backward search
checks whether these potential marked nodes are still within the marking radius, that is
δ(m, tm) ≤ r. If this applies, they are marked, and tm is assigned as their access node with
the distances dA(tm,m) = δ(tm,m) and dA(m, tm) = δ(m, tm). If there are multiple such
transit nodes, it is sufficient to choose only one of them as access node, for example, the
closest transit node.

Using the Marked Nodes in the Covering Search

In the covering search which determines the access nodes of a vertex v ∈ V , the marked
nodes are treated as transit nodes. Thus, we set V ′ = M instead of V ′ = T . The only
access node of a marked node is the transit node it is assigned to. It is therefore not
necessary to compute a covering search from the marked nodes. For all other nodes v ∈ V ,
a covering search is conducted and produces a set CG(M, v) ⊆M of covering nodes. We
only want to set transit nodes as access nodes and therefore set the access nodes of the
covering nodes as access nodes of v, that is

A(v) =
⋃

c∈CG(M,v)
A(c).

The distance dA(v, a) of such an access node a ∈ A(v) is computed as the sum

dA(v, a) = dC(c) + dA(c, a),

18

3.1. Preprocessing

where c ∈ CG(M, v) is the covering node through which a was added. If an access node
is added multiple times from different covering nodes, the minimum distance is kept.
Algorithm 3.2 describes the access node determination with marked nodes in pseudocode.

Algorithm 3.2: Access Node Determination with Marked NodesM
1 V ′ ←M
2 foreach v ∈ V \ V ′ do
3 A(v)← ∅
4 dA ←∞
5 (CG(V ′, v), dC)← CoveringSearch(v, V ′)
6 foreach c ∈ CG(V ′, v) do
7 A(v)← A(v) ∪ A(c)
8 foreach c ∈ A(c) do
9 dA(av)←min(dA(av), dC(c) + dA(c, a))

Lemma 3.4. Let v ∈ V be a vertex, m ∈M a marked node and a ∈ A(m) an access node
of m. If m is the first marked node on all shortest v-m-paths, then a is an access node of
v with distance

dA(v, a) ≤ δ(v,m) + r.

Proof. By definition, there is no v-m-path containing any marked node other than m.
Thus, the covering search is not truncated before visiting m. As a result, m is a covering
node, that is m ∈ CG(M, v), and its distance dC(m) = δ(v,m) is computed correctly.

Therefore,
A(v) =

⋃
c∈CG(M,v)

A(c) ⊇ A(m) ⊇ {a}

applies, meaning a is set as access node of m. Furthermore,

dA(v, a) ≤ dC(m) + dA(m, a) ≤ δ(v,m) + r

applies for the computed distance.

The marked nodes speed up the access node determination for two reasons. First of all,
they reduce the number of necessary covering searches. Selecting the marked nodes is in
general much faster than computing a covering search for all of them. Furthermore, the
marked nodes are assigned only a single access node. This speeds up the global query
whose running time depends mostly on the number of access nodes.
Secondly, the covering searches for unmarked nodes are accelerated because the number of
vertices covering the search is increased. This allows the covering search to stop earlier.

However, the marked nodes also introduce an approximation to our distance oracle. Since
the covering search from s is already pruned at marked nodes, it is possible that some
shortest paths are only covered by a marked node m but not by an actual transit node.
The global query, however, considers only paths passing directly through access nodes of s.
The closest access node a of the start s has a distance of at most r from m. When forced
to pass a, the shortest path is in the worst case prolonged by 2r. The same situation can
arise at the target t causing another error of 2r. In total, an additive error of up to β = 4r
can occur.

A schematic illustration of this worst case can be found in Figure 3.1. The transit nodes
are T = {T1, T2} which mark the verticesM = {as, at}. If the distance between the transit

19

3. Approximate Transit Node Routing

and the marked nodes were any larger than r, as and at would not be marked. The access
nodes of s and t are A(s) = {T1} and A(t) = {T2}.
The actual shortest s-t-path is p∗ = 〈s, as, at, t〉 with length δ(s, t) = w(p) = w1 + w2 + w3.
It is represented by a dotted line in Figure 3.1. The shortest path does contain a marked
node, and the query is therefore classified as global. However, the shortest path p′ via
the access nodes of s and t is p′ = 〈s, as, T1, as, at, T2, at, t〉. This path has a length of
w(p′) = w1 + 2r + w2 + 2r + w3 = δ(s, t) + 4r and is represented by a dashed line.
The distance computed by the TNR global query is the length of p′. Thus, the global
distance has a maximum additive error of 4r. Section 3.4 gives a formal proof that this
additive error is never exceeded.

s tas at

T1 T2

r r
w1 w2 w3

Figure 3.1.: The actual shortest s-t-path p∗ (dotted line) and the shortest s-t-path p′ via
the access nodes T1 and T2 of s and t (dashed line).

In other words, while the marked nodes accelerate the preprocessing, they also introduce
an additive error. This causes a trade-off between preprocessing time and accuracy: The
larger the marking radius r, the faster the preprocessing, but the more inaccurate the
queries. Therefore, one should carefully choose the correct marking radius.

Postprocessing to Remove Superfluous Access Nodes

As already mentioned, the preprocessing might add access nodes that are not actually
necessary. Since we aim for a small number of access nodes, we try to find and remove these
superfluous access nodes. This reduces both the space required to store the preprocessing
and the running time of the global query.

An access node a ∈ A(v) of a vertex v ∈ V is superfluous if it can be “replaced” by
another access node b ∈ A(v) in the sense that the distance dA(v, a) can be computed as
dA(v, b) + dT (b, a). We therefore check if

dA(v, a) ≥ min
b∈A(v),b 6=a

dA(v, b) + dT (b, a)

applies. If it does, a is removed from the access nodes A(v). This is repeated for all access
nodes a ∈ A(v) of a vertex v and for all vertices v ∈ V with more than one access node.
It is important to make sure that access nodes cannot prune each other such that both are
removed. We ensure this by processing the access nodes in A(v) sequentially and updating
the access node set after every step. The access nodes A(v) of different vertices v ∈ V are
independent of each other and thus can be post-processed in parallel.

3.2. Queries
This section defines the point-to-point queries used to retrieve actual distances from the
preprocessed data. Every query algorithm discussed in this section takes two vertices s
and t and computes a distance δ̂(s, t). Ideally, this distance is within the allowed additive
error β = 4r, that is

∀s, t ∈ V : δ(s, t) ≤ δ̂(s, t) ≤ δ(s, t) + 4r.

20

3.2. Queries

At first, the global and the local query are described in Section 3.2.1 and 3.2.2. After that,
Section 3.2.3 combines them with the locality filter to the actual query algorithms called
the combined queries. As already mentioned, the intention of this combination is to use
the global query whenever possible while answering all queries correctly.

3.2.1. Global Query

The global query in our distance oracle is the same as in the original transit node routing
(see Section 2.4.1). To answer an s-t-query, the global query computes the global distance

δ̂g(s, t) = min
as∈Af (s), at∈Ab(t)

dA(s, as) + dT (as, at) + dA(at, t).

However, even if s and t are correctly classified as global, the global distance is only a
(1, 4r)-approximation of the actual distance. This is due to the approximation introduced
in Section 3.1.3 and is proven in Lemma 3.6.

3.2.2. Local Query

The local query is used as a fallback method if the global query gives a wrong result.
Because of this, it has to compute a correct (approximate) distance. We define δ̂l(s, t) as
the local distance from s to t computed by the local query. In general, any query algorithm
resulting in a correct distance can be used as local query. For example, the original transit
node routing uses a multi-level approach for the local query with multiple levels of transit
nodes [BFM+07]. Usually, the local query is much slower than the global query. This
applies especially for long distances. Transit node routing is therefore the most useful if
the vast majority of queries is global and can be recognized as such. To decide when to use
the local query, Section 3.3 defines a locality filter.

Our Approximate TNR distance oracle uses a bidirectional shortest path search as local
query algorithm. For weighted graphs, we use a bidirectional version of Dijkstra’s algo-
rithm, for unweighted a bidirectional BFS. A bidirectional shortest path search starts two
unidirectional searches simultaneously from s and t. They are alternated until the search
spaces meet. Bidirectional approaches generally reduce the search space compared to a
unidirectional approach and therefore speed up the query [MS08, page 209-210].

Lemma 3.5. The bidirectional version of Dijkstra’s algorithm and BFS are correct, that
is they compute the correct distance δ(s, t) for every s, t ∈ V .

An explicit description of these bidirectional algorithms and a proof of Lemma 3.5 can, for
example, be found in [MS08, page 209-210].

Local Query with Limited Distance

Furthermore, variations of the local search can be created by using additional stop-criteria.
We define a local query with limited distance that is stopped when visiting a certain distance.
The local query might not find an s-t-path even though such a path exists. It computes
the correct distance to all vertices visited before it is truncated, but there is no guarantee
on the distance to unvisited vertices. The distance at which the search is truncated can be
either constant for all queries or be chosen dynamically for each query.

21

3. Approximate Transit Node Routing

3.2.3. Combined Query
Transit node routing combines the global and local query with the locality filter to one
combined query algorithm. It takes the advantages of both the global and the local query
and uses them to compensate for the other’s disadvantages. This yields a query algorithm
that is faster than the local query while still computing (approximately) correct distances.
We use δ̂c(s, t) to denote the combined distance returned by the combined query. In the
following, we describe three different variants of the combined query.

TNR Combined Query

The combined query in the original transit node routing [BFSS07, BFM+07] uses the
locality filter to decide which query to use and then runs the global or the local query
accordingly. If the locality filter classifies the query as global, the global query always
returns a correct result as proven in Section 3.4. Otherwise, the global query might be
incorrect and the local query, which is always correct, is used as fallback. The global query
is given in pseudocode by Algorithm 3.3.

Algorithm 3.3: TNR Combined Query
1 if L(s, t) then
2 return localQuery(s,t)
3 else
4 return globalQuery(s,t)

Exact Combined Query with Limited Local Query

The locality filter is not perfect and might decide to use a local query even though the
global query would also yield an approximately correct distance. For the correctness, it
suffices to ensure that the global distance is not larger than δ(s, t)+4r. The exact combined
query with limited local query is based on this idea and truncates the local query at the
distance δ̂g(s, t) − 4r. At first, the global distance δ̂g(s, t) is computed. After that, the
locality filter decides whether a local query is necessary. If it is necessary, such a limited
local query is conducted. The local distance is returned if the limited local query does
find an s-t-path, that is δ̂l(s, t) < δ̂g(s, t)− 4r. Otherwise, the previously computed global
distance δ̂g(s, t) is returned. In total,

δ̂c(s, t) =
{
δ̂l(s, t) if L(s, t) = true and δ̂l(s, t) < δ̂g(s, t)− 4r
δ̂g(s, t) otherwise

applies. Algorithm 3.4 describes the exact combined query with limited local query in
pseudocode.

Algorithm 3.4: Exact Combined Query
1 δ̂g(s, t)← globalQuery(s, t)
2 if L(s, t) then
3 limit← δ̂g(s, t)− 4r
4 δ̂l(s, t)← localQuery(s, t, limit)
5 if δ̂l(s, t) < limit then
6 return δ̂l(s, t)
7 else
8 return δ̂g(s, t)
9 else

10 return δ̂g(s, t)

22

3.3. Locality Filter

Approximate Combined Query

Additionally, we define an approximate combined query where the local query might be
truncated even though the global query is not necessarily correct. As in the previously
defined query, a global query is conducted for all queries followed by a local query if the
locality filter classifies the query as local. If the local query does not find an s-t-path,
the global distance is returned. Contrary to the exact combined query, the approximate
combined query might truncate the local query even earlier than at δ̂g(s, t)− 4r. To do
so, we introduce an additional parameter called the local query limit ∈ R+

0 . The local
query is then truncated at the distance min(δ̂g(s, t)− 4r, limit). The pseudocode of the
approximate combined query is given in Algorithm 3.5.

Algorithm 3.5: Approximate Combined Query
1 δ̂g(s, t)← globalQuery(s, t)
2 if L(s, t) then
3 limit←min(δ̂g(s, t)− 4r, limit)
4 δ̂l(s, t)← localQuery(s, t, limit)
5 if δ̂l(s, t) < limit then
6 return δ̂l(s, t)
7 else
8 return δ̂g(s, t)
9 else

10 return δ̂g(s, t)

3.3. Locality Filter

A locality filter L : V 2 → {true, false}, as defined in Section 2.4.1, is a heuristic to decide
whether the distance between two vertices s, t ∈ V is best computed with a local or a global
query. If L(s, t) = false the query from s to t is regarded as global. It is correspondingly
regarded as local if L(s, t) = true. The locality filter should be conservative, that is it
should only answer global if the global distance δ̂g(s, t) is correct. However, it should still
classify queries as global as often as possible since the global query is much faster than
the local query. A global distance δ̂g(s, t) is regarded as correct if it is within the allowed
(1, 4r)-approximation. Intuitively, this should be the case if the shortest s-t-path contains
any marked nodes. Section 3.4 proves that this intuition applies.

3.3.1. Graph Voronoi Filter

Our distance oracle uses a locality filter based on the Search Space Based Locality Filter
given by [ALS13]. The transit node routing in [ALS13] is based on contraction hierarchies
[GSSD08, GSSV12], a speedup-technique for shortest path queries in road networks. The
Search Space Based Locality Filter considers the search spaces of a contraction hierarchy
query from s to t before reaching the transit nodes. If they are disjoint, the shortest path
must contain a transit node. It is therefore save to set L(s, t) = false. In return, if the
search spaces intersect, there might be a shortest path not containing a transit node, so
the locality filter is set to L(s, t) = true.
The search space is compressed to reduce the required space and speed up the locality
filter. Adding more vertices to the search space does not change the correctness of the
locality filter. As a result, the search spaces can be approximated by the visited Graph
Voronoi cells with the transit nodes as Voronoi centers. This Search Space Based Locality
Filter with compressed search spaces is called Graph Voronoi Filter [ALS13].

23

3. Approximate Transit Node Routing

Our algorithm basically uses the same approach. Since it is not based on contraction
hierarchies, the search spaces of the covering searches are used instead of contraction
hierarchy queries.
To precompute the data necessary for our Graph Voronoi Filter, we first compute the
Voronoi diagram using the transit nodes as Voronoi centers. The search spaces of the
covering searches are a by-product of the preprocessing. They can be easily transformed
into their approximation by looking up the Voronoi cell of each visited vertex. Hence,
there is not much overhead caused by computing the approximated search spaces. As in
the original Graph Voronoi Filter, we exclude transit nodes from our search spaces. We
additionally exclude marked nodes which are an extension of our transit nodes.
Queries from or to transit and marked nodes are always global. We therefore store an
empty search space for those vertices.

To answer whether a query is local, that is, L(s, t) = true, the locality filter only needs
to intersect the approximated search spaces. If the search spaces are disjoint, the global
query is correct as shown in Section 3.4. Otherwise, the global query might be incorrect,
and a local query should be used. Formally, the locality filter can be defined as

L(s, t) =
{

false if S(s) ∩ S(t) = ∅
true else

where S(v), v ∈ V is the (approximated) search space of v.

On directed graphs, there is a difference between the inward and the outward Voronoi
diagram. Since the Graph Voronoi Filter uses the Voronoi diagram only to compress the
search space, it is not too important which one of them is chosen. It is, however, important
that the same diagram is used for both the forward and the backward covering search
space to allow intersecting them.

3.4. Complexity and Correctness
3.4.1. Time and Space Complexity

This section gives a brief overview of the time and space complexity of aTNR. In general,
the experimental time and space are much better than the worst-case considered here.

Time Complexity of the Preprocessing

The time complexity TP rep of the preprocessing consists of the complexity of the individual
preprocessing steps:

TPrep = TTransitNodes + TDistanceTable + TAccessNodes.

The following paragraphs consider all three steps separately.
We use TSSSP to denote the complexity of a single-source shortest path search. On weighted
graphs, this is TSSSP = O(n logn+m) using Dijkstra’s algorithm. On unweighted graphs,
this can be improved to TSSSP = O(n + m) using a BFS. Note that the multi-source
versions of both searches are asymptotically not slower than single source version, thus
TMSSP ⊆ TSSSP.
In general, we cannot give a theoretical bound on the number of vertices visited by a
covering search. They thus have the same worst-case complexity as a simple single-source
shortest path search. In practice, however, the search space is often much smaller which is
utilized by our distance oracle.

We assume the betweenness centrality and partition to be already precomputed and,
thus, neglect their computation time in TTransitNodes. Finding the top k vertices with

24

3.4. Complexity and Correctness

maximum betweenness centrality takes O(n log k) time with a minimum priority queue
storing the best vertices found so far. Thus, for the Simple-BC transit node selection
TTransitNodes = O(n log k) applies. The vertex with maximum betweenness centrality in each
component of the partition can be determined by iterating all vertices in the component
once. This yields a complexity of TTransitNodes = O(n) for the Partition-BC transit node
selection. Both the Farthest-BC and the k-Means++-BC transit node selection have to
compute the distance between the already selected transit nodes and all other vertices in
each of the k steps. This takes TMSSP time each step and dominates the running time of
the transit node selection. In total, this yields a running time of TTransitNodes = k · TMSSP.

Using the naive approach, the distance table can be computed in TDistanceTable = k · TSSSP.
The overlay-graph approach yields the same complexity as the all-pairs shortest path search
on the overlay graph is dominated by the k covering searches necessary to compute the
overlay graph.

Computing the access nodes is broken down into three steps: selecting the marked nodes,
computing the access nodes of all other (unmarked) nodes, and removing superfluous access
nodes in the postprocessing. Thus, complexity is defined as the sum

TAccessNodes = TMarked + TUnmarked + TPost.

The marked nodes are computed with one or two multi-source searches thus TMarked = TMSSP
applies. To determine the access nodes of the unmarked nodes, a covering search is computed
from every unmarked node. This has a worst-case complexity of TUnmarked = n · TSSSP.
Every vertex v has at most |A(v)| ≤ k access nodes. The postprocessing tests for each
of the access nodes if they can be reached via any of the other access nodes. This takes
O(|A(v)|2) ⊆ O(n) time per vertex and TPost = O(n2) time in total. Collectively, computing
the access nodes has a complexity of

TAccessNodes = TMSSP + n · TSSSP +O(n2) = n · TSSSP.

The access node determination also dominates the total preprocessing time of

TPrep ≤ k · TMSSP + k · TSSSP + n · TSSSP = n · TSSSP.

The precomputations for the locality filter only need to additionally compute a Voronoi
diagram which takes TMSSP time. This obviously does not affect the complexity of the
preprocessing.

Time Complexity of the Queries

The global query needs to check all distance combinations using the access nodes of s and
t. This takes O(|A(s)| · |A(t)|) time. The maximum number of potential access nodes is k
resulting in a theoretical worst-case time of O(k2) = O(n). However, the average number
of access nodes in practice is much smaller than k, resulting in much faster global queries.
In the worst case, the local query has to search the whole graph, resulting in a complexity
of TSSSP . The locality filter intersects the visited Voronoi cells of s and t. Since there are
only k Voronoi cells, this has a complexity of O(k) but is a lot faster if s and t did not
visit all cells. Among these three complexities, the local query dominates the other two.
Thus, the combined query, which is a combination of the global query, the local query, and
the locality filter, has a worst-case complexity of O(TSSSP).

25

3. Approximate Transit Node Routing

Space Complexity

To compute the global query, the distance oracle needs to store the distance table together
with the access nodes of each vertex and the corresponding distances. The distance table
has a space complexity of O(k2) = O(n). Every vertex has at most k access nodes thus all
access nodes can be stored in O(n · k) space. Furthermore, the locality filter needs to store
the visited Voronoi cells for all vertices resulting in an additional O(n · k) space. Therefore,
storing the preprocessed data has a worst-case complexity of O(n · k). However, in practice,
both the average access nodes and the average visited Voronoi cells are generally much less
than k.

3.4.2. Correctness

In this section, we prove that the distances computed by our distance oracle are correct.
As already mentioned, we regard a computed distance δ̂(s, t) as correct if it is a (1, 4r)-
approximation, that is

δ(s, t) ≤ δ̂(s, t) ≤ δ(s, t) + 4r.

All distances computed by our distance oracle are based on an actual path in the graph
and are thus never shorter than the shortest path distance.

First, we consider the correctness of the global query and the locality filter in Lemma 3.6
and 3.7. Secondly, we observe the correctness of the three combined queries defined in
Section 3.2.3. Theorem 3.8 and 3.9 prove the correctness of the first two combined queries.
The third, approximate combined query cannot guarantee an upper bounded error.

Lemma 3.6. If a shortest s-t-path for s, t ∈ V contains a marked node, the global distance
is a (1, 4r)-approximation.

Proof. Let p be the shortest s-t-path containing the maximum number of marked nodes. Let
ms ∈M be the first marked node on p, andmt ∈M the last, that is p = s ms mt t.
Thus, for the distance from s to t applies

δ(s, t) = w(p) = δ(s,ms) + δ(ms,mt) + δ(mt, t).

Since p contains the maximum number of marked nodes, ms must be the first marked node
on all shortest s-ms-paths and mt the last on all shortest mt-t-paths. Let as ∈ A(ms) be
the transit node associated with ms and at ∈ A(mt) the one associated with mt. According
to Lemma 3.4, the distance oracle sets as as forward access node of s and at as backward
access node of t and with the distance

dA(s, as) ≤ δ(s,ms) + r and dA(at, t) ≤ δ(mt, t) + r.

If as was removed by the postprocessing, another access node a′s ∈ A(s) of s exists
with dA(s, a′s) + dT (a′s, as) ≤ dA(s, as). The same applies for at. Thus, the following
considerations are not invalidated by the postprocessing.

According to Lemma 3.1 and 3.3, the distance dT (as, at) = δ(as, at) is correctly computed.
By definition of the marked nodes, δ(as,ms) ≤ r and δ(mt, at) ≤ r applies. Using the
triangle inequality, the distance dT (as, at) can be bounded as follows:

dT (as, at) = δ(as, at)
≤ δ(as,ms) + δ(ms, at) (triangle inequality)
≤ δ(as,ms) + δ(ms,mt) + δ(mt, at) (triangle inequality)
≤ δ(ms,mt) + 2r

26

3.4. Complexity and Correctness

In total,

δ̂g(s, t) = dA(s, as) + dT (as, at) + dA(at, t)
≤ δ(s,ms) + r + δ(ms,mt) + 2r + δ(mt, t) + r

≤ δ(s,ms) + δ(ms,mt) + δ(mt, t) + 4r
= w(p) + 4r
= δ(s, t) + 4r

applies for the global distance which proves δ̂g(s, t) ≤ δ(s, t) + 4r. Since δ(s, t) ≤ δ̂g(s, t)
applies for all computed distances, this proves Lemma 3.6.

Lemma 3.7. The locality filter is conservative, that is if no shortest s-t-path for s, t ∈ V
contains a marked node, the locality filter returns L(s, t) = true.

Proof. Let s, t ∈ V be two vertices such that no shortest s-t-path contains a marked node
m ∈M. Consider the covering search from s with V ′ =M. Since there is no marked node
on any shortest s-t-path, the covering search cannot be covered before visiting t. A covering
search from t obviously visits t itself meaning both searches visit at least the Voronoi cell
containing t. The Graph Voronoi filter L defined in Section 3.3.1 returns L(s, t) = true if
the approximated search spaces of the forward covering search from s and the backward
covering search from t visit the same Voronoi cell. Therefore, the locality filter answers
L(s, t) = true and is thus conservative.

From Lemma 3.6 and 3.7 follows directly that the global query is a correct (1, 4r)-
approximation if the locality filter returns L(s, t) = false.

We now consider the correctness of all three combined queries defined in Section 3.2.3.

Theorem 3.8. The TNR combined query always computes a correct (1, 4r)-approximation.

Proof. The combined distance δ̂c(s, t) is defined as

δ̂c(s, t) =
{
δ̂l(s, t) if L(s, t) = true
δ̂g(s, t) if L(s, t) = false

in Section 3.2.3.

We just showed with Lemma 3.6 and 3.7 that the global distance δ̂g(s, t) is always a correct
approximation if L(s, t) = false. Furthermore, the local query without stop criterion
always computes the correct distance according to Lemma 3.5. Thus, the distance δ̂c(s, t)
computed by the TNR combined query is always a correct (1, 4r)-approximation.

Theorem 3.9. The exact combined query with limited local query always computes a
correct (1, 4r)-approximation.

Proof. The combined distance δ̂c(s, t) is defined as

δ̂c(s, t) =
{
δ̂l(s, t) if L(s, t) = true and δ̂l(s, t) < δ̂g(s, t)− 4r
δ̂g(s, t) otherwise

in Section 3.2.3.

27

3. Approximate Transit Node Routing

Obviously, the local query computes the correct distances before it is truncated. Since it is
truncated at distance δ̂g(s, t)− 4r, the local distance δ̂l(s, t) is correct if δ(s, t) = δ̂l(s, t) <
δ̂g(s, t)− 4r. This proves the correctness of the first case.
The second case occurs only if L(s, t) = false or δ(s, t) ≥ δ̂g(s, t) − 4r. As shown by
Lemma 3.6 and 3.7, the global distance δ̂g(s, t) is a correct approximation if L(s, t) =
false. Furthermore, δ(s, t) ≥ δ̂g(s, t) − 4r directly implies δ̂g(s, t) ≤ δ(s, t) + 4r. Since
δ(s, t) ≤ δ̂g(s, t) applies for all s, t ∈ V , the global distance is a correct approximation.
The combined distance is therefore in both cases a correct (1, 4r)-approximation.

The approximate combined query is not necessarily a correct (1, 4r)-approximation. If
limit < δ̂g(s, t) − 4r applies, the previous estimation δ̂g(s, t) ≤ δ(s, t) + 4r does not
necessarily apply.

In conclusion, all preprocessing variants of our approximate transit node routing distance
oracle yield correct results with an additive error of 4r if they are combined with either
the TNR combined query or the exact combined query with limited local query. The
approximate combined query cannot give such a guaranteed maximum error.
We wish to note that the correctness is independent of the selected transit nodes. Selecting
good transit nodes can affect computation time, memory usage and the experimental error
but not the guaranteed approximation.

28

4. Voronoi Search Distance Oracle

On most graphs, the global query computes the correct distance for a large proportion
of queries. We can, however, not guarantee its correctness and use combined queries to
guarantee a maximum error of 4r. These combined queries are significantly slower than the
global query. We furthermore achieve preprocessing times only about as fast as existing
exact approaches on social networks and web graphs and significantly slower on other types
of networks. It therefore seems worthwhile to investigate increasing the error for faster
preprocessing and query times.

In the following, we introduce our Voronoi search distance oracle. It is strongly based on
Graph Voronoi diagrams (see Section 2.2.1) and is a variant of the previously described
aTNR approach (see Chapter 3). Selecting the transit nodes and computing the distance
table is done as described in Section 3.1. The access node determination is based on the
Graph Voronoi diagram using the transit nodes as Voronoi centers. Intuitively, the closest
transit node should cover many shortest paths. When adding more nearby transit nodes,
for example the centers of some neighboring cells, most long-distance shortest paths should
be covered.
Instead of computing costly covering searches, the Voronoi search distance oracle selects
access nodes with a small, bounded local search. The Voronoi centers of cells visited during
this search are selected as access nodes. Additionally, the local query is truncated after a
certain, relatively small number of visited vertices. This speeds up both the preprocessing
and the queries, but it cannot guarantee a maximum error anymore.

In the following, the Voronoi search preprocessing is described in Section 4.1. After that,
Section 4.2 defines the query algorithms used to approximate the shortest path distances.
Finally, Section 4.3 considers the complexity guarantees of the Voronoi search distance
oracle and its correctness. In general, we only describe the differences to aTNR which is
defined in Chapter 3.

4.1. Preprocessing
This section describes in detail how the Voronoi search distance oracle precomputes the
access nodes. As already mentioned, selecting the transit nodes and computing their
distance is done exactly as in the original aTNR algorithm.

The access node determination is based on the Graph Voronoi diagram of the transit nodes.
For every vertex, the distance to its assigned Voronoi center is stored. As in Chapter 3,
the transit nodes are assigned as their own access nodes.

29

4. Voronoi Search Distance Oracle

Instead of the covering searches, a so-called Voronoi search is computed from every vertex
v ∈ V \T to determine its access nodes. The Voronoi search is a single-source shortest path
search from the source v and is truncated at the Voronoi cell borders. To identify these
borders, the search checks every visited vertex for its Voronoi cell V (w). If V (v) 6= V (w),
the search must have crossed a Voronoi cell border. When a border is crossed, the center
V (w) of the visited neighboring cell is added as access node of v. The distance to such
an access node V (w) can be easily computed as dA(v,V (w)) = δ(v, w) + δ(w,V (w)). The
Voronoi search computes the distance δ(v, w) and the distance δ(w,V (w)) is precomputed
during the Voronoi diagram computation. Once A vertices are visited, the Voronoi search
is stopped. The tuning parameter A influences both the preprocessing speed and the
number of access nodes. For directed graphs, a forward and a backward Voronoi search are
conducted using the inward and outward Voronoi diagram respectively.
Since there are no covering searches and therefore no covering vertices in the Voronoi search
distance oracle, marked nodes are of no use in this algorithm. However, it is still possible
that superfluous access nodes are added. We therefore reuse the postprocessing described
in Section 9 to remove these superfluous access nodes.

4.2. Queries

This section discusses the query algorithm used with the Voronoi search distance oracle.
The same global query as described in Section 2.4 and Section 3.2.1 is used. The local query
is a bidirectional search as described in Section 3.2.2. However, we use an additional stop
criterion which truncates the bidirectional search after B visited vertices. The parameter B
needs to be small enough, so the local query is not too slow. Additionally, it has to be
large enough to correctly determine the distance of very local queries for which the error
of the global query is “too large”. We developed two different combined queries for the
Voronoi search oracle described in Section 4.2.1 and Section 4.2.2.

4.2.1. Combined Query without Locality Filter

The most basic combined query does not use a locality filter at all. Instead, it always
computes a local query which is truncated after B visited vertices. If the local query did
not find a path, the query is regarded as global and answered by the global query. This
has the advantage of being very straightforward and easy to implement. However, always
computing a local search is something transit node routing originally wanted to avoid and
it can significantly affect the query time depending on how B is chosen.

4.2.2. Combined Query with Neighboring Cells Filter

Another approach is to use a locality filter based on the Voronoi cells of s and t. If the
locality filter classifies a query as local, a limited local query is conducted. The local query
is again stopped after B visited vertices. If the local query did not find a path, the global
distance is returned. This is equivalent to the combined query without a locality filter
previously defined in Section 4.2.1. Otherwise, only the global query is computed. This
speeds up the query since the local query is not executed for all queries.

Obviously, the locality filter does not improve the approximation quality and can even
increase the error. We now define two different locality filters. Both are based on the
Voronoi diagram which is always computed during the preprocessing. As in Section 3.3, it
is important to use only one of the Voronoi diagrams in directed graphs.

30

4.3. Complexity and Correctness

The Same Cell Locality Filter

The same cell locality filter simply checks whether the two vertices s and t are in the
same Voronoi cell. This can be tested by looking up the Voronoi cells of each vertex and
comparing them. Thus, this locality filter is very fast. However, it can result in many
queries wrongfully classified as global.

The Neighboring Cells Locality Filter

Furthermore, we define a neighboring cells locality filter. It classifies two vertices s and t as
local if they are in the same or neighboring Voronoi cells. Since it classifies more vertex
pairs as local, this locality filter potentially reduces the average error while increasing the
average query time. It can be further generalized using the x-hop neighborhood of Voronoi
cells. That is, s and t are considered to be local if they are separated by x or less Voronoi
cells.
Additionally to the Voronoi diagram, we need to store which Voronoi cells are adjacent to
check whether two vertices are in neighboring cells which is basically a lighter version of
the extended Voronoi diagram (see Section 2.2).

4.3. Complexity and Correctness
4.3.1. Complexity

This section gives a short overview of the time and space complexity of the Voronoi search
distance oracle compared to the original algorithm which is examined in Section 3.4.1.
The transit node selection and the distance table computation are reused from Chapter 3.
Thus, the times TTransitNodes and TDistanceTable are equivalent to Section 3.4.1. The time to
determine the access nodes is described by TAccessNodeDetermination = n · TVS + TPost where
TVS is the running time of a single Voronoi search.

A Voronoi search is stopped after visiting A vertices. Let ∆max be the maximum vertex
degree in the graph, then the Voronoi search observes at most A ·∆max edges and thus has
a complexity of TVS = O(A log A + A ·∆max) on general graphs and TVS = O(A + A ·∆max)
on unweighted graphs.
Let V∆max ≤ k be the maximum number of direct neighbors in the Voronoi diagram.
Since only the centers of the neighboring Voronoi cells are selected as access nodes, their
number is bounded by O(V∆max). Thus, the postprocessing time can be improved to
TPost = O(n · V 2

∆max
) and the space complexity of the preprocessing can be improved to

O(n · V∆max).

Furthermore, the complexity of the global query is improved to O(V 2
∆max

). Similar to the
Voronoi search, the local query is truncated after B visited vertices. This yields a running
time of O(B log B+B ·∆max) or O(B+B ·∆max) on unweighted graphs. The same cell locality
filter is just a table-lookup and thus constant. The neighboring cells locality filter needs
to check at most all neighboring cells which takes O(V∆max) time. In total, the combined
query has a time complexity of O(V 2

∆max
+ B log B + B ·∆max) or O(V 2

∆max
+ B + B ·∆max)

on unweighted graphs.

4.3.2. Correctness

All distances computed by the Voronoi search distance oracle are based on an actual path in
the graph. Thus, the exact shortest path distance δ(s, t) is a lower bound of all computed
distances δ̂(s, t). As already mentioned in the introduction to this chapter, the Voronoi
search distance oracle cannot guarantee a maximum error of the computed distances. We
demonstrate this in the following using a specifically defined graph as an example. For

31

4. Voronoi Search Distance Oracle

the sake of simplicity, we consider an undirected graph. It can be transferred to directed
graphs by replacing all undirected edges with two directed edges with the same weight.

We define a graph G[0,k], k ∈ N0 consisting of k building block graphs Gi, i ∈ [0, k]. One
of these building block graphs Gi is illustrated in Figure 4.1. It has two vertices vi and
Ti, where Ti is a transit node. They are connected by the edge ei = {vi, Ti} with weight
w(ei) = w ∈ R+

0 . To motivate Ti being a transit node, one could imagine Ti as the center
of a star graph. That is, there are many degree-one vertices connected only to Ti. All their
shortest paths must contain Ti and, thus, Ti is on many shortest paths.

Multiple of these building block graphs can be combined to create the graph G[0,k]
by connecting the vertices vi and vi+1, 0 ≤ i < k with the unit-weight edge ei,i+1 =
{vi, vi+1}, w(ei,i+1) = 1. The Voronoi cells of the graph G[0,k] correspond exactly to the
building blocks G0 to Gk. Figure 4.1 shows an example of such a graph G[0,4].

T0

v0

T1

v1

T2

v2

T3

v3

T4

v4

Ti

vi

G[0,4]Gi

Figure 4.1.: Left: A single building block graph Gi with its two vertices Ti and vi.
Right: G[0,4] created by connecting 5 building blocks via the vertices vi.

Since all edge weights are non-negative, the shortest v0-vk-path is always the path p[0,k] =
〈v0, v1, . . . , vk−1, vk〉 consisting of all vi. It contains k+ 1 vertices in k+ 1 different Voronoi
cells and has the distance

δ(v0, vk) = w(p[0,k]) =
k−1∑
i=0

w(ei,i+1) =
k−1∑
i=0

1 = k.

Let p′[0,k] be the shortest v0-vk-path that contains a transit node, that is p′[0,k] = v0 Tj
vk, j ∈ [0, k] such that w(p′[0,k]) is minimal. Obviously, w(p′[0,k]) ≥ w(p[0,k]) + 2w = k + 2w
because the path has to at least make the detour 〈vj , Tj , vj〉 with distance 2w.

We can unrestrictedly increase the edge weight w ∈ R+
0 . Thus, the minimum error 2w of

any v0-vk-path via a transit node is unbounded. Furthermore, the number of blocks k ∈ N0
composing the graph G[0,k] is not limited. Increasing k directly affects the shortest path
distance, the number of vertices on the shortest path, and the number of Voronoi cells
visited by the shortest path. Therefore, none of these metrics can be effectively used to
detect local paths. In total, this means that our Voronoi search distance oracle cannot
guarantee a maximum error and no locality filter based purely on the considered metrics
could give such a guarantee.

32

5. Implementation

We implemented the approximate transit node routing in C++ using the Ligra graph
framework [SB13, SDB15]. This chapter gives a short overview of the implementation.
At first, Section 5.1 describes the features of Ligra. The following Section 5.2 covers the
interesting aspects of our distance oracle implementation.

5.1. The Ligra Graph Processing Framework
Ligra [SB13, SDB15] is a “lightweight graph processing framework [specialized] for shared-
memory parallel/multicore machines” by Shun and Blelloch [SB13]. It offers “a vertexSubset
data structure used for representing a subset of the vertices” [SDB15] and two mapping
functions – edgeMap and vertexMap. edgeMap is used to map over all outgoing edges
and vertexMap is used to map over all vertices of a given subset of vertices. The Ligra
framework automatically decides between a sparse and a dense implementation of the
edgeMap depending “on the number of vertices and outgoing edges in the vertexSubset”
[SDB15]. Processing the edges or vertices in parallel is encapsulated in these functions.
A “programmer must [only] ensure the parallel correctness of the functions passed to
edgeMap and vertexMap” [SDB15]. Ligra makes the implementation of graph traversal
algorithms – such as breadth-first search – easy, efficient, and scalable [SB13].

5.2. Implementation of our Approximate TNR Oracle
Our implementation handles only unweighted and undirected graphs. This restriction allows
us to take full advantage of Ligra’s edgeMap as all single- and multi-source shortest path
searches can be implemented with a BFS instead of Dijkstra’s algorithm. Undirected graphs
furthermore avoid the need to differentiate between forward and backward definitions and
simplifies selecting the marked nodes.

We assume a pre-existing balanced partition of the graph into k components and a pre-
computed betweenness centrality. Consequently, we do not consider their computation in
the running time of our preprocessing. In our experiments, we approximate the betweenness
centrality from n

5
8 randomly selected source vertices using the implementation of Brandes’

algorithm [Bra01] provided by the Ligra framework [SB13]. All graphs are pre-partitioned
into k components using the fastsocial configuration of KaHIP [MSS15]. The partitioning
is done separately and is not part of our implementation.

33

5. Implementation

Processing Order in the Conservative Covering Search

The conservative covering search is BFS-based since our implementation only considers
unweighted graphs. This means that the vertices are processed in levels. If a vertex is
reachable via both a covered and an uncovered vertex, it should always be visited from the
covered vertex to maximize the number of covered vertices in each level. We ensure this by
splitting the current level into two sets, a set of covered and a set of uncovered vertices.
The covered set is always processed first, allowing it to cover the maximum amount of
vertices in the next level. Once the uncovered set is empty, the search is completely covered
and thus stopped.

5.2.1. Data Structures

We now briefly describe the data structures used in our implementation.

The Distance Table

The distance table can be regarded as a k× k matrix. For undirected graphs, this matrix is
symmetric. It is therefore sufficient to store only the lower triangular matrix. Furthermore,
the distance from every vertex t ∈ T to itself is always δ(t, t) = 0. Thus, it is not necessary
to store the main diagonal of the matrix. This saves about 50 % of the memory required
for the distance table. For improved efficiency, we store the distance table in a single,
one-dimensional array instead of a two-dimensional array.

Access Nodes and Locality Filter

Both the access nodes and the approximated search spaces are stored in a data structure
similar to an adjacency array. This structure is also used by [ALS13], and we reuse their
notation in the following. An array A stores all access nodes a ∈ A(v) of all vertices v ∈ V
and their distance dA(v, a). It is grouped by the vertices v and sorted by the access nodes
a. The access nodes and distances are stored alternatingly in A. A second array IA stores
for each vertex v ∈ V the index of A at which the access nodes A(v) start. We use a
sentinel value IA[n] to store the length of A. The locality filter is correspondingly stored in
the array S and IS . However, S contains only the visited Voronoi cells and no distances.
To determine whether an s-t-query is local, we use a simple merge operation similar to
the one in merge sort. It searches for a Voronoi cell visited by both s and t by iterating
simultaneously through their visited cells always increasing the lower index.

The Covering Searches

During the covering searches, we need to store the visited vertices and their distance. In
general, the covering searches can visit all n vertices. However, in many cases, the search
space is much smaller. We implemented two different versions of such a data structure.
The first variant consists of an array of size n. This array is reused for consecutive covering
searches to avoid unnecessary overhead caused by reallocating the array for each search.
In-between two searches the array needs to be cleared. To avoid clearing many unmodified
cells when only a small fraction of the vertices was visited, we keep a stack of modified cells
and clear only those cells. The entire array is cleared if more vertices are visited than a
specified limit. We currently use

√
n as limit. However, parameter tuning this limit might

improve the performance further.
The second variant of the data structure uses growable hash tables to avoid using much
more memory than actually necessary. They are initialized with a rather small size; if more
vertices are visited, the hash table size is increased. Furthermore, reallocating such a small
growable hash table is usually faster than clearing or reallocating an array of size n. In our

34

5.2. Implementation of our Approximate TNR Oracle

implementation, we use the growable hash table by Maier et al. [MSD16].
However, the space required by the arrays was not prohibitive in our experiments. Further-
more, the array outperformed the hash table by about a factor of three in the covering
search running time. We therefore use arrays for the covering searches in all our experiments.
The hash table based data structure is still provided and can be useful once the memory
requirement of the arrays becomes prohibitive.

35

6. Evaluation

This chapter contains the experimental analysis and evaluation of our approximate TNR
algorithm previously described in Chapter 3. First, Section 6.1 describes our methodology.
After that, Section 6.2 analyzes the preprocessing followed by the evaluation of the queries
in Section 6.3. Finally, Section 6.4 compares our algorithm to other approaches.

6.1. Experimental Setup
All experiments were conducted on a 64-core machine with four AMD Opteron 6278
processors clocked at 2.4GHz. It has 16 KB L1d, 64 KB L1i, 2 MB L2 cache and 6 MB
L3 cache. Our C++ code was compiled with version 5.3.0 of the g++ compiler and -o2
optimization using CilkPlus [Lei10] for parallelization.
The remainder of this section introduces the graphs we use as input data including a short
description and an overview of their key properties.

6.1.1. Data Sets

We use real-world network graphs provided by the Stanford Large Network Dataset (SNAP)
Collection [LK14]. The road network of California is used as a comparison to the original
transit node routing which was developed for road networks. All graphs are interpreted as
undirected and unweighted. We consider only the largest connected component of each
graph to avoid edge cases like unreachable vertices. Our set of inputs overlaps significantly
with [AIY13] to which we compare our results directly in Section 6.4. We provide a short
description of each graph in the following paragraphs. Table 6.1 gives an overview of their
properties.

Gnutella. Gnutella is a peer-to-peer file sharing network. This graph depicts the network
between different Gnutella hosts. It was obtained by [RFI02] on August 31, 2002 [LK14,
LKF07].

Epinions. Epinions is a customer review website whose users can form trust relationships.
This graph represents these trust relationships [LK14]. It was obtained by Richardson et
al. [RAD03] and is provided by [LK14].

Slashdot. Slashdot is a news website focused on technology news and user moderated
content. Users can add each other as friends or foes [LK14]. We use the network graph of
these relationships observed in February 2009 [LLDM09].

36

6.2. Preprocessing

Name Type n m Diameter

Gnutella Computer 63 K 148 K 11
Epinions Social 79 K 405 K 14
Slashdot Social 82 K 504 K 11

NotreDame Web 326 K 1.1 M 46
CA Road 2.0 M 2.8 M 849

Wiki-Talk Social 2.4 M 4.7 M 9
Skitter Computer 1.7 M 11 M 25
Pokec Social 1.6 M 22 M 11
Orkut Social 3.0 M 117 M 9

Table 6.1.: Overview of the input graphs used in our experiments. The graphs are classified
into different network types according to [LK14, AIY13] and sorted by m.

NotreDame. The NotreDame network contains the web pages of the University of Notre
Dame connected by hyper-links between the pages [LK14]. It was obtained in 1999 by
Albert et al. [AJB99].

CA. This is a graph of the road network of the state of California obtained on by [LLDM09]
and provided by [LK14].

Wiki-Talk. The Wiki-Talk network was obtained in January 2008 and depicts registered
Wikipedia users connected if they communicated via their individual talk page [LK14,
LHK10b, LHK10a].

Skitter. The Skitter network is an internet topology graph obtained from traceroutes in
2005 [LK14, AIY13] by Leskovec et al. [LKF05].

Pokec. Pokec is a popular Slovak social network. The Pokec graph represents the friend-
ships between Pokec users. We use the version created by Takac and Zabovsky [TZ12] in
December 2011.

Orkut. The Orkut graph shows the friendships between users in the free online social
network Orkut and is provided by [MMG+07, LK14, YL15].

6.2. Preprocessing
This section analyzes the aTNR preprocessing as described in Section 3.1. At first,
Section 6.2.1 compares the transit node selection algorithms and determines the best set
of transit nodes for each graph. Secondly, Section 6.2.2 evaluates the running time of the
distance table computation. Thirdly, Section 6.2.3 analyzes the access node determination
by comparing the three different variants and examining the postprocessing. After that,
Section 6.2.4 summarizes the preprocessing time. Finally, the size of the preprocessed data
is analyzed in Section 6.2.5.

6.2.1. Transit Node Selection

This section evaluates different sets of transit nodes. Good transit nodes result in fewer
access nodes and faster preprocessing times. We compare the four transit node selection
algorithms introduced in Section 3.1.1. For the four smaller graphs, we additionally analyze
randomly selected transit nodes.

In this section, the preprocessing variant based on the conservative covering search is
used exclusively. A comparison of the different covering search variants can be found in

37

6. Evaluation

Running Time Access Nodes/Vertex
TNS AND Marked w/o Post. w/ Post.

Gnutella

simple 0.6 ms 10.9 s 9.8% 191.8 81.2
partition 0.5 ms 10.8 s 8.9% 202.4 98.6
farthest 0.7 s 12.7 s 1.0% 244.5 244.3
k-Means 1.0 s 12.0 s 2.1% 223.6 215.5
random 0.4 ms 13.1 s 2.3% 226.6 214.9

Epinions

simple 1.0 ms 2.5 s 36.5% 3.1 1.7
partition 3.9 ms 2.5 s 33.7% 3.6 1.9
farthest 0.7 s 21.5 s 4.8% 165.6 160.5
k-Means 1.2 s 20.7 s 2.6% 150.6 138.7
random 0.6 ms 22.3 s 2.4% 161.1 151.0

Slashdot

simple 0.9 ms 3.9 s 38.5% 4.7 2.5
partition 0.5 ms 4.8 s 35.6% 6.0 2.9
farthest 0.8 s 34.0 s 3.8% 245.1 244.2
k-Means 1.3 s 31.0 s 2.3% 213.5 205.5
random 1.2 ms 31.7 s 2.9% 209.2 195.2

NotreDame

simple 2.4 ms 49.4 s 39.9% 4.1 1.6
partition 2.2 ms 44.4 s 38.8% 4.3 1.7
farthest 4.0 s 272.8 s 3.6% 116.7 80.0
k-Means 8.1 s 217.2 s 1.2% 81.3 77.6
random 1.3 ms 238.6 s 1.1% 103.9 96.3

CA

simple 13.3 ms 5963.27 s 0.2% 16.6 9.2
partition 12.0 ms 1017.97 s 0.3% 12.0 9.4
farthest 111.8 s ≈ 15000 s 0.2% ≈ 950
k-Means 169.0 s ≈ 15000 s 0.3% ≈ 800

Wiki-Talk

simple 15.2 ms 41.9 s 76.6% 1.2 1.1
partition 15.5 ms 32.4 s 72.2% 1.1 1.1
farthest 36.4 s ≈ 16000 s 4.3% ≈ 900
k-Means 106.1 s ≈ 11000 s 0.2% ≈ 300

Skitter

simple 9.2 ms 8399.57 s 38.4% 32.8 4.9
partition 10.9 ms 9602.85 s 37.4% 31.8 5.5
farthest 31.8 s ≈ 17000 s 1.6% ≈ 1200
k-Means 69.9 s ≈ 15000 s 1.0% ≈ 850

Pokec
r = 2

simple 11.3 ms 443.75 s 86.0% 1.5 1.3
partition 10.2 ms 601.81 s 84.0% 1.6 1.4
farthest 44.1 s ≈ 30000 s 25.9% ≈ 800
k-Means 79.5 s ≈ 22000 s 45.7% ≈ 550

Orkut

simple 17.9 ms 202.60 s 97.3% 1.1 1.1
partition 35.7 ms 362.92 s 97.0% 1.2 1.1
farthest 114.3 s ≈ 32000 s 43.9% ≈ 1300
k-Means 209.3 s ≈ 20000 s 80.6% ≈ 300

Table 6.2.: Transit Node Selection (TNS) algorithms compared regarding their running
time, the running time of the access node determination (AND), the percentage
of marked nodes and the resulting access nodes per vertex before (w/o Post.)
and after the postprocessing (w/ Post.).

38

6.2. Preprocessing

Section 6.2.3. If the access node determination takes longer than ten thousand seconds, it
is terminated. In those cases, an approximation (denoted by ≈) of the running time and
the resulting access nodes is given based on a sample from one thousand random vertices.
In general, a marking radius of r = 1 is used. The preprocessing of both Pokec and Orkut
takes significantly longer than the ten thousand seconds limit – independent of the transit
nodes. We therefore set r = 2 for those graphs.

Table 6.2 gives a complete overview of the results. For each graph, the best transit nodes
are highlighted. The Simple-BC and Partition-BC transit nodes yield the best results on all
graphs. They mark significantly more vertices, have a shorter preprocessing time and result
in substantially fewer access nodes. Both the Farthest and kMeans-BC algorithms perform
significantly worse than Simple and Partition-BC and provide no notable improvement
over random transit nodes. In all further experiments, only the best transit node set for
each graph is used. For CA and Wiki-Talk, the Partition-BC works best. For all other
graphs, Simple-BC transit nodes are used.

6.2.2. Distance Table

The time to compute the distance table between all transit nodes (for the transit node
set specified in Section 6.2.1) is presented in Table 6.3. We state both the total running
time in seconds and the relative time compared to the average BFS running time on that
specific graph. There is only little variation between the running times of the different
transit node sets. As shown in Table 6.3, the time to compute the distance table correlates
roughly with the time to compute k BFS. This correlation is as expected since the naive
approach (see Section 3.1.2) consists of computing a BFS from each of the k transit nodes
with some additional overhead to construct the distance table.

Distance Table
Graph Time Time/BFS k

Gnutella 0.7 s 337 250
Epinions 0.8 s 347 275
Slashdot 0.8 s 353 287

NotreDame 4.7 s 640 571
CA 241.8 s 1483 1399

Wiki-Talk 26.9 s 1809 1546
Skitter 28.1 s 1577 1302
Pokec 36.3 s 1537 1278
Orkut 107.0 s 1955 1753

Table 6.3.: Running time to compute the complete distance table between all transit nodes
in seconds and divided by the average time to compute a BFS compared to the
number of transit nodes.

6.2.3. Access Node Determination

This section evaluates the two main steps of the access node determination: determining
the initial access nodes with the three different covering searches introduced in Section 2.5
and removing superfluous access nodes with the postprocessing. As in Section 3.1.3, we
use a marking radius of r = 1 for the seven smaller graphs and r = 2 for Pokec and Orkut.
We abbreviate the covering searches with cons, aggr, and stal in the following tables and
figures.

39

6. Evaluation

Covering Searches

Table 6.4 gives the running times of all evaluated access node determinations divided by
the number of edges. On most graphs, the aggressive and stall-on-demand approaches are
significantly faster than the conservative approach. An exception to this are the graphs
Gnutella and CA. On Skitter, the running time differences are also not as significant as
on the other graphs. These three graphs repeatedly form an exception throughout this
chapter.

Gn
ute
lla

Ep
ini
on
s

Sla
shd

ot

No
tre
Da
me

CA W
iki
-Ta

lk

Sk
itt
er

Po
kec

Or
ku
t

cons 74.59 5.87 7.79 44.81 373.01 6.04 763.77 13.69 1.70
aggr 52.41 0.47 0.67 6.06 3835.40 0.26 494.37 0.02 0.00
stal 319.05 0.62 0.46 6.54 4993.17 0.29 190.05 0.03 0.00

Table 6.4.: Average running time in microseconds per edge of the covering searches used to
determine the access nodes.

The average number of access nodes per vertex both before and after the postprocessing is
given in Table 6.5. Section 6.2.3 discusses the postprocessing and the number of removed
access nodes in more detail. It is evident that the conservative approach yields the least
amount of initial access nodes, followed by the stall-on-demand approach. The aggressive
variant always results in the most access nodes.
This behavior is as expected. The aggressive covering search often searches around marked
nodes at which it was stopped, reaching other marked nodes via paths that have long been
covered. This can add many unnecessary access nodes. The stalling search performed
by stall-on-demand detects a proportion of these sub-optimal paths and removes the
corresponding access nodes by stalling. The conservative approach adds the fewest access
nodes since all vertices are visited via an actual shortest path. Unnecessary access nodes
can only be added if there are multiple shortest paths of which only some contain a marked
node. The impact of these multiple shortest paths is further reduced by the processing
order described in Section 5.2.

Gn
ute
lla

Ep
ini
on
s

Sla
shd

ot

No
tre
Da
me

CA W
iki
-Ta

lk

Sk
itt
er

Po
kec

Or
ku
t

before
cons 191.59 3.07 4.74 4.13 11.99 1.11 31.56 1.48 1.13
aggr 196.39 9.45 15.91 36.87 1393.44 1.12 498.28 1.56 1.17
stal 195.86 3.97 6.58 13.78 1372.59 1.12 169.59 1.53 1.13

after
cons 80.72 1.71 2.49 1.64 9.44 1.10 4.74 1.34 1.11
aggr 80.89 1.71 2.49 1.64 9.60 1.10 4.75 1.34 1.11
stal 81.02 1.71 2.49 1.63 9.38 1.10 4.72 1.34 1.11

Table 6.5.: Average access nodes per vertex before and after the postprocessing.

After the postprocessing removed unnecessary access nodes the difference between the
three approaches are negligible, the number of resulting access nodes is almost identical.
The selected covering search has therefore no significant impact on the final number of
access nodes. However, it still affects the locality filter (see Section 6.2.5 and Section 6.3.1),

40

6.2. Preprocessing

which is based on the search space of the covering search. Except for Gnutella, the number
of access nodes can be reduced to less than ten on all graphs.

Postprocessing

The postprocessing is conducted at the end of each access node determination and removes
superfluous access nodes. As shown by Table A.1, computing the postprocessing takes less
than a second on all graphs, except CA and Skitter which are among the largest graphs
processed with r = 1.

Wiki−Talk Skitter Pokec Orkut

Gnutella Epinions Slashdot NotreDame CA

cons aggr stal cons aggr stal cons aggr stal cons aggr stal

cons aggr stal cons aggr stal cons aggr stal cons aggr stal cons aggr stal
0

500

1000

0

10

20

30

0.0

0.3

0.6

0.9

1.2

0

5

10

15

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

0

100

200

300

400

500

0

50

100

150

200

0.0

0.3

0.6

0.9

A
ve

ra
ge

 A
cc

es
s

N
od

es
 p

er
 V

er
te

x

Access Nodes

Removed

Remaining

Average Number of Access Nodes per Vertex

Figure 6.1.: Overview of the number of access nodes removed by the postprocessing. The
total bar height corresponds to the access nodes initially added by the covering
searches. Of these access nodes, those colored light-green are removed by the
postprocessing leaving only the nodes colored bright-green in the final set.

Figure 6.1 is an illustration of Table 6.5 and showcases the number of superfluous access
nodes that are removed by the postprocessing. In some instances, up to 99 % of the initial
access nodes are removed. The number of remaining access nodes is very similar for all
three variants of the covering search regardless of the initial differences. This suggests that
the resulting set of access nodes is close to the minimal required set. The postprocessing
reduces the average number of access nodes per vertex to less than ten, reaching similarly
small label sizes as TNR on road networks [BFM+07, ALS13]. Only the Gnutella network
requires about 80 access nodes per vertex even after the preprocessing.

6.2.4. Preprocessing Time Overview

Figure 6.2 presents an overview of the time required for each step of the preprocessing by
instance and variant of the access node determination. Furthermore, the exact running
times can be found in Table A.1. Selecting the transit nodes and computing the distance
table is the same for all three variants of the covering search. The running times are
therefore equal across all three approaches.
The preprocessing is dominated by determining the access nodes with the covering search
and by computing the distance table. Selecting the transit node set, creating the locality
filter from the covering search search-spaces, and removing superfluous access nodes with
the postprocessing all consume only a negligible part of the total running time.

Computing the distance table takes between 1µs and 10µs per edge on all instances and
is roughly proportional to the number of BFS conducted to compute it (see Section 6.2.2).

41

6. Evaluation

Wiki−Talk Skitter Pokec Orkut

Gnutella Epinions Slashdot NotreDame CA

cons aggr stal cons aggr stal cons aggr stal cons aggr stal

cons aggr stal cons aggr stal cons aggr stal cons aggr stal cons aggr stal
0e+00

1e−03

2e−03

3e−03

4e−03

5e−03

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

0e+00

1e−06

2e−06

0.0e+00

2.5e−06

5.0e−06

7.5e−06

0.0e+00

5.0e−06

1.0e−05

1.5e−05

0e+00

2e−06

4e−06

6e−06

8e−06

0e+00

2e−04

4e−04

6e−04

8e−04

0e+00

1e−04

2e−04

3e−04

0.0e+00

2.5e−06

5.0e−06

7.5e−06

1.0e−05

R
un

ni
ng

 T
im

e
pe

r
E

dg
e

[s
]

Preprocessing Step

Postprocessing

Locality Filter

Access Nodes

Distance Table

Transit Nodes

Average Running Time of the Preprocessing per Edge

Figure 6.2.: Running time of the complete preprocessing for each graph split into the
different preprocessing steps and scaled by the number of edges.

The access node determination ranges between 250ns per edge reached by the Aggressive
approach on Wiki-Talk and 5ms per edge required by Stall-on-Demand on the CA road
network. The total running time for our preprocessing on the social networks and web
graphs varies between 1–50µs per edge depending on the graph and the selected covering
search variant. Preprocessing the road network CA and the computer networks Gnutella
and Skitter takes significantly longer, mainly due to the slow access node determination.
The poor performance of the road network CA is somewhat expected since the marked
nodes do not work too well on road networks. Due to the long diameter and low vertex
degree, only very few vertices are marked. As shown by Table 6.2, less than one percent
of CA’s vertices are marked while for most other graphs more than a third are marked.
On CA, we therefore need to compute more covering searches that are also not as easily
truncated thus causing a significantly longer running time.

6.2.5. Space Consumption

The space consumption of the preprocessed data is determined by the distance table, the
access nodes, and the locality filter. An overview of the different parts that make up the
total size is given in Figure 6.3. Table 6.6 gives the total space requirement per vertex.
The preprocessing is currently stored as a text file. Converting this to a more efficient
storage method should save some additional space.

The distance table grows quadratically with the number of transit nodes k. We set k =
√
n

resulting in a linear size distance table. Except for Gnutella, the final number of access
nodes is less than ten per vertex on all graphs and all three preprocessing variants. This is
reflected in the size of the access nodes data structure.

Furthermore, the approximated search space of each vertex – comprised of the visited
Voronoi cells – is stored for the locality filter. As shown by Figure 6.3, these search spaces
account for a large proportion of the total space requirement. Some graphs, such as CA
and Skitter, spend almost all of their required memory on the locality filter. Reducing
the space consumption of the locality filter therefore seems promising for reducing the
total required space and is interesting for future work. The locality filter size relates to the
number of initial access nodes illustrated in Figure 6.1.

42

6.3. Queries

Wiki−Talk Skitter Pokec Orkut

Gnutella Epinions Slashdot NotreDame CA

cons aggr stal cons aggr stal cons aggr stal cons aggr stal

cons aggr stal cons aggr stal cons aggr stal cons aggr stal cons aggr stal
0

2000

4000

6000

0

50

100

150

0

10

20

30

0

20

40

60

80

0

10

20

30

0

20

40

0

500

1000

1500

2000

0

300

600

900

1200

0

10

20S
iz

e
pe

r
V

er
te

x
[B

]

Locality Filter

Access Nodes

Distance Table

Size of the Preprocessing

Figure 6.3.: Overview of the preprocessing size in bytes per vertex.

Looking at the total space consumption per vertex shown by Table 6.6, most graphs are
processable with a size of less than 50 bytes per vertex. This does not apply for the Gnutella,
CA, and Skitter graphs whose preprocessing size ranges between 140 and 6000 bytes.

Gn
ute
lla

Ep
ini
on
s

Sla
shd

ot

No
tre
Da
me

CA W
iki
-Ta

lk

Sk
itt
er

Po
kec

Or
ku
t

cons 1147.06 32.59 42.25 39.33 139.91 27.64 166.88 30.41 28.60
aggr 1165.12 55.78 83.38 158.67 5954.41 27.64 2104.99 30.76 28.77
stal 1164.70 35.71 48.51 73.86 5863.28 27.64 726.87 30.64 28.60

Table 6.6.: Total size of the preprocessing in bytes per vertex.

6.3. Queries
This section evaluates the performance of the queries and the quality of their computed
distances. Additionally, we analyze the locality filter in Section 6.3.1.

Five different query algorithms are evaluated. First of all, the local and global query are
considered on their own as they are described in Section 3.2.1 and 3.2.2. Secondly, the
three different variants of the combined query introduced in Section 3.2.3 are analyzed.
We denote the original TNR combined query by combined-TNR, the exact combined query
with limited local query by combined-exact, and the approximate combined query by
combined-approx. A limit of five is used for the approximate combined query.

All queries are evaluated on the same set of point-to-point queries. From each distance in
the graph, one thousand random vertex pairs are selected and used as query input. The
same pairs are also used to evaluate the locality filter.

6.3.1. Locality Filter

The locality filter is an essential part of our query algorithm. It is called by each combined
query and should therefore be reasonably fast to avoid slowing down the query. Figure 6.4

43

6. Evaluation

illustrates the running time necessary to classify a vertex pair as local or global. There is
only little variation in the running time between the different graphs and preprocessing
approaches. Most notably are the CA and Skitter graph with a slightly increased running
time compared to the other graphs. As mentioned in Section 6.2.5, these are also the
graphs with the largest locality filter data structure.

Figure 6.4.: Running time of the locality filter.

Even more important than its running time is the quality of the locality filter as it decides
between running a fast global query over a much slower local query. This quality depends
on the number of correctly classified vertex pairs compared to those falsely classified as
local or global. For the correctness of the combined queries, local vertex pairs should never
be classified as global. To determine the actual locality of a vertex pair all shortest paths
between them are checked for marked nodes. If there exists a shortest path containing a
marked node, the query is global; otherwise, it is local. This locality is then compared
to the classification by the locality filter. An overview of the locality filter accuracy and
correctness is given in Figure 6.5. There are no queries wrongly classified as global. Thus,
our locality filter is correct. This is in accordance with the proof given in Section 3.4.2.

Wiki−Talk Skitter Pokec Orkut

Gnutella Epinions Slashdot NotreDame CA

cons aggr stal cons aggr stal cons aggr stal cons aggr stal

cons aggr stal cons aggr stal cons aggr stal cons aggr stal cons aggr stal
0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

0 %

25 %

50 %

75 %

100 %

Correctness

Correct

False Local

False Global

Correctness of the Locality Filter

Figure 6.5.: Accuracy of the locality filter. A classification is false local if it is classified as
local but should be global. Accordingly, it is false global if it is classified as
global but should be local.

Furthermore, Table 6.7 contains the percentage of queries recognized as global for each
graph. This directly affects the running time of the combined queries, which is discussed
in Section 6.3.2. More global queries directly result in faster combined queries.

44

6.3. Queries

Gn
ute
lla

Ep
ini
on
s

Sla
shd

ot

No
tre
Da
me

CA W
iki
-Ta

lk

Sk
itt
er

Po
kec

Or
ku
t

cons 4.56 85.08 88.04 92.96 95.87 96.39 63.12 98.28 96.57
aggr 4.10 80.92 83.63 90.45 0.00 96.38 35.48 98.12 95.48
stal 4.10 83.57 86.61 92.17 0.00 96.38 49.87 98.14 96.23

Table 6.7.: Percentage of global queries recognized by the locality filter.

On most graphs, our locality filter is very effective. A large percentage of the queries is
correctly classified as global. This leads to many fast global queries.
There are, however, some graphs – specifically Gnutella, CA, and Skitter – on which the
locality filter classifies much more queries as local than necessary. This is also reflected in
their query time and correctness described in the following sections and their preprocessing
performance evaluated in Section 6.2. When comparing these three graphs to the rest, it
is noticeable that these groups are represented in the classification of the networks (see
Table 6.1). Our distance oracle works well for the social networks and web graphs. Road
networks and computer networks are still solved correctly but require much more time
and space. These results are not surprising since aTNR is specifically designed for social
networks and web graphs.

6.3.2. Query Time

The query running time is in general not strongly affected by the different preprocessing
variants. Figure 6.6 shows the query performance based on the conservative preprocessing.
Unless mentioned otherwise, the running times for the other two approaches are comparable.
A complete overview of all variants is given in Figure B.1 and Table B.2 in the appendix.

Figure 6.6.: Query running time with preprocessing based on conservative access nodes.

As stated in Table B.2, the average running time of the global query is less than one
microsecond for most graphs. Gnutella has the slowest global query with an average
running time of about 15µs. This disparity can be explained by the much higher number
of access nodes (see Table 6.5) since Gnutella is the only graph with more than ten access
nodes per vertex.

For all three combined queries, it applies that the majority of point-to-point queries is
about as fast as the global query. This is in accordance with the findings in Section 6.3.1

45

6. Evaluation

since most queries are correctly classified as global. The average running time as shown in
Table B.2 is increased by slow outliers – those queries classified as local. These local pairs
make up a rather small proportion of all tested vertex pairs but have a significant impact
on the average performance due to their very long running time. This divide of the queries
by their locality is also apparent in Figure 6.6 as the outliers of the combined queries are
often separated into two groups: one with a running time similar to the local query, and a
faster group whose performance is not much worse than the global query.

The combined-exact query is the fastest of the considered queries that still guarantees a
maximum additive error of 4r. It offers a slight improvement over the combined-TNR
query and is up to two times faster. The approximate combined query is slightly faster
than this but cannot guarantee the same additive error. Concerning the running time, its
effect is negligible on most tested graphs. The only graph for which it offers a significant
speedup is the road network CA. However, it also introduces a much higher error of up
to 35 as discussed in Section 6.3.3. This effect is generally expected since a limit of five
has a much higher impact on a road network with a diameter of more than eight hundred
than on a social network with diameter ten. An overview of the best average query times
reached while guaranteeing an additive error of at most 4r is given in Table 6.8.

For CA and Skitter, the running time of the combined queries increases significantly if
a preprocessing based on the aggressive or stall-on-demand covering search is used. The
combined queries are not much faster than the local query for these variants. On Gnutella
even the conservative preprocessing results in very inefficient queries. This is most likely
due to the inefficient locality filter on these graphs (see Section 6.3.1).

Gn
ute
lla

Ep
ini
on
s

Sla
shd

ot

No
tre
Da
me

CA W
iki
-Ta

lk

Sk
itt
er

Po
kec

Or
ku
t

cons 148.26 23.56 19.09 17.32 269.39 26.49 226.79 9.44 22.84
aggr 176.90 29.53 24.77 24.10 85079.10 29.16 327.63 12.71 32.52
stal 179.51 24.90 21.40 16.02 84711.83 24.74 286.54 9.52 26.52

Table 6.8.: Average running time of the combined-exact query in µs.

6.3.3. Query Error

As for the running time, the different preprocessing variants have no significant effect on
the query error. Figure 6.7 gives an overview of the query errors using the conservative
preprocessing. Results for the other variants can be found in the appendix in Figure B.2
and B.3 as well as Table B.3. The error of the local query is not evaluated since it always
yields the correct distance.

Our distance oracle guarantees an additive error of at most 4r. As mentioned in Section 6.2,
we use r = 1 for the seven smaller graphs and r = 2 for the Pokec and Orkut graph,
therefore allowing a maximum additive error of four and eight respectively. We guarantee
this maximum error for the combined-TNR and combined-exact query. The global and
combined-approx query are not affected by this.

Overall, the query accuracy is very good. The vast majority of queries has an error of less
than or equal to r. The average error is also less than r. This even applies to the global
query which is altogether very accurate even without the locality filter. An exception is
again the CA road network for which errors of up to 40 can occur (see Figure B.3). This
result is reasonable since the diameter is much larger.

46

6.4. Comparison to Other Distance Oracles

Figure 6.7.: Query error up to ten with preprocessing based on conservative access nodes.

Furthermore, the maximum error is not exceeded by the combined-TNR and -exact queries.
This confirms the correctness of our distance oracle which is already proven in Section 3.4.2.

6.4. Comparison to Other Distance Oracles
We compare aTNR to both CH-TNR by Arz et al. [ALS13], and the Pruned Landmark
Labeling (PLL) by Akiba et al. [AIY13]. The results for CH-TNR are measured on an
“Intel Core i7-920 clocked at 2.67 GHz with four cores and 12 GiB of RAM” [ALS13]. The
preprocessing is computed in parallel, but the queries are sequential. They also provide a
sequential running time for their preprocessing. Akiba et al. conduct their experiments on
an Intel Xeon X5670 machine clocked at 2.93 GHz with 12 cores and 48 GiB main memory
[AIY13]. Both the preprocessing and the queries of PLL are sequential.
For better comparability, this section considers only the sequential running times. Further-
more, Table 6.9 provides a scaling factor of the different machines using the int-speed
benchmark of the SPEC CPU2006 benchmark [Hen06]. This scaling factor is the factor by
which the running times need to be multiplied to be comparable according to the SPEC
benchmark.

int-speed Scaling Factor

aTNR 30.4 1 1.00
CH-TNR 29.5 2 0.97

PLL 42.9 3 1.41

Table 6.9.: Comparison of the machines used by the different distance oracles by their
SPEC CPU2006 int-speed result.

We compare our results for the road network CA to the results obtained for CH-TNR
in [ALS13]. As shown by Table 6.9, the machine used by CH-TNR has a very similar
sequential performance resulting in a scaling factor of only 0.97. The road networks used in
CH-TNR are about ten times larger than CA. It is also important to note that the results
for CH-TNR were obtained on weighted graphs while we only evaluate unweighted graphs.
For road networks, this can eradicate the underlying edge hierarchy.

1https://www.spec.org/cpu2006/results/res2012q2/cpu2006-20120504-21457.html
2https://www.spec.org/cpu2006/results/res2010q1/cpu2006-20100215-09677.html
3https://www.spec.org/cpu2006/results/res2011q4/cpu2006-20110928-18635.html

47

https://www.spec.org/cpu2006/results/res2012q2/cpu2006-20120504-21457.html
https://www.spec.org/cpu2006/results/res2010q1/cpu2006-20100215-09677.html
https://www.spec.org/cpu2006/results/res2011q4/cpu2006-20110928-18635.html

6. Evaluation

PT PS QT Error SPEC Scaling

aTNR 31557.3 s 140 byte/vertex 147.89 µs 0.09 1.00
CH-TNR 1046 s 147 byte/vertex 1.38 µs 0 1.41

Table 6.10.: Comparison of aTNR and CH-TNR regarding preprocessing time (PT), prepro-
cessing size (PS), query time (QT), and error. All running times are sequential.
Additionally, the SPEC scaling factor from Table 6.9 is given.

A comparison of the results for aTNR and CH-TNR is shown in Table 6.10. Both the
preprocessing and the queries of aTNR are significantly slower than CH-TNR. Our fastest
preprocessing for CA – which is based on the conservative variant – has a running time of
about 16ms per vertex. CH-TNR has a preprocessing time of only 58µs per vertex, that
is almost three orders of magnitude faster than aTNR. This result is not that surprising
since CH-TNR utilizes the specific properties of road networks whereas aTNR is focused
on social networks. It is therefore expected to work better on road networks than aTNR.
Concerning the space consumption, aTNR is slightly better with a size of only about
140 bytes per vertex compared the 147 bytes per vertex necessary for CH-TNR.
The combined queries are about three orders of magnitude slower than CH-TNR with
147.89µs compared to 1.38µs. However, our global queries require only around 0.89µs
which is slightly faster than CH-TNR. Furthermore, our locality filter correctly classifies
less than 5 % of the queries as local. A large part of the disparity to CH-TNR is therefore
most likely caused by the much slower local query. Our local query uses only bidirectional
search as a speed-up technique, unlike CH-TNR, which uses a CH-Query. This causes our
local query to be more than three orders of magnitude slower.
CH-TNR is an exact method and therefore yields exact results while aTNR results in an
average error of about 0.09.

We furthermore compare our results to the Pruned Landmark Labeling (PLL) introduced
by Akiba et al. [AIY13] on the shared input instances. More specifically these are the
graphs Gnutella, Epinions, Slashdot, NotreDame, WikiTalk, and Skitter. Table 6.11 gives
an overview of the obtained results. Note that they differ from the previous results for
aTNR because both the preprocessing and the queries are computed sequentially. The
conservative version of the access node determination is notably affected the most by this.
Due to prohibitively long running times, not all preprocessings for Skitter are computed
sequentially. Instead, the parallel running time is scaled by 30. This is the speedup
measured for the preprocessings of Gnutella and CA which behave very similarly to Skitter.
As shown by Table 6.9, the machine used by PLL achieves a slightly better result in the
SPEC benchmark leading to a scaling factor of 1.41.

The sequential preprocessing time of aTNR depends heavily on the input. On some
graphs, such as Epinions and Slashdot, the aggressive and stall-on-demand approaches
for determining the access nodes can compete with PLL. Other graphs, however, require
up to two orders of magnitude more time than PLL. Having said that, we do offer a
parallel version of our preprocessing. But even the parallel running times, given for example
by Table A.1, are not always faster than PLL’s sequential algorithm. We do, however,
outperform PLL regarding the space consumption of the preprocessed data with aTNR
requiring less space by an order of magnitude.
The query of PLL is clearly faster and outperforms aTNR by up to two orders of magnitude.
Even for those graphs for which the locality filter works efficiently, such as Wiki-Talk and
NotreDame, the aTNR combined-Exact query is significantly slower than PLL’s query.
This result is somewhat expected since it is a 2-hop algorithm, whereas aTNR is based on
a 3-hop approach. However, the disparity should not be as significant. The global query of

48

6.4. Comparison to Other Distance Oracles

the graphs Epinions, Slashdot, NotreDame, and Wiki-Talk – those graphs for which the
current locality filter is efficient – has an average running time of 0.24 to 0.37 µs. This is
about as fast as the PLL query. It therefore seems likely that the different running time is
caused to a large extent by the very slow local query. This indicates that accelerating the
local query can offer a significant opportunity for improvement.
PLL – just like CH-TNR – is an exact approach whereas aTNR can only guarantee a
maximum additive error of 4r. The actual average error is, however, less than one.

aTNR PLL
CS PT PS QT Err PT PS QT

Gnutella
cons 355.5 s 71.8 MB 109.93 µs 0.90

54 s 209 MB 5.2 µsaggr 281.6 s 72.9 MB 110.82 µs 0.90
stal 717.2 s 72.9 MB 98.36 µs 0.90

Epinions
cons 69.0 s 2.5 MB 16.04 µs 0.65

1.7 s 32 MB 0.5 µsaggr 2.9 s 4.2 MB 21.46 µs 0.65
stal 2.6 s 2.7 MB 18.94 µs 0.65

Slashdot
cons 112.7 s 3.5 MB 15.45 µs 0.74

6.0 s 48 MB 0.8 µsaggr 5.7 s 6.9 MB 20.72 µs 0.74
stal 2.6 s 4.0 MB 16.28 µs 0.74

NotreDame
cons 1455.8 s 12.8 MB 21.75 µs 0.07

4.5 s 138 MB 0.5 µsaggr 203.0 s 51.7 MB 35.48 µs 0.07
stal 125.0 s 24.1 MB 24.68 µs 0.07

Wiki-Talk
cons 398.2 s 66.0 MB 125.0 µs 0.48

61 s 1.0 GB 0.6 µsaggr 196.0 s 66.0 MB 128.2 µs 0.48
stal 196.4 s 66.0 MB 126.0 µs 0.48

Skitter
cons ≈ 70.9 h 282.8 MB 833.51 µs 0.45

359 s 2.7 GB 2.3 µsaggr ≈ 46.7 h 3.6 GB 1.61 ms 0.45
stal 11.6 h 1.2 GB 1.22 ms 0.45

Table 6.11.: Comparison of our aTNR algorithm, based on the different covering searches
(CS), and the Pruned Landmark Labeling in terms of preprocessing time (PT),
preprocessing size (PS), query time (QT) and average error (Err). Since PLL
is an exact method, its average error is omitted. The preprocessing times for
Skitter marked with ≈ are approximated from the parallel running time.

49

7. Conclusion

This thesis introduces an approximate distance oracle for social networks based on transit
node routing. We developed two different variants of this distance oracle. Our main contri-
bution is approximate transit node routing (aTNR) which offers a variable approximation
of the distances with a parameter r ≥ 0. It guarantees a maximum additive error of 4r.

Approximate transit node routing works well on social networks and web graphs. The
global queries – that make up a large proportion of the queries – achieve a running time of
about a microsecond. The combined queries take around 20µs. On the tested computer
and road networks, the combined queries are about an order of magnitude slower. The
average additive error is less than r; the maximum allowed error 4r is only reached by a
small number of outliers. On the smaller social networks, our preprocessing only takes a
few seconds. Using r = 2, we can even preprocess larger social networks – such as Orkut –
in less than two minutes. The preprocessing results can be stored in less than 50 bytes
per vertex for the tested social networks and web graphs. Other tested graphs need up to
1.1 KB per vertex which is still less than the Pruned Landmark Labeling by Akiba et al.
[AIY13].

Additionally to aTNR, we theoretically describe the Voronoi search distance oracle which
has potentially faster preprocessing and query times but no upper bound for the error.

7.1. Future Work
Due to the time constraints of this thesis, there are many interesting aspects we are not able
to cover in this work. This section outlines several ideas, ranging from pure implementation
to additional algorithmic approaches and variants of the given distance oracles, that would
be interesting to pursue in the future.

Evaluation. The current comparison to CH-TNR and Pruned Landmark Labeling is
based on the SPEC benchmark. A comparison on the same machine would of course be
more informative. It would furthermore be interesting to compare aTNR to CH-TNR on
the same graphs since CA is about ten times smaller than the instances tested by Arz et
al. [ALS13].
There are also some parameters that could be investigated more thoroughly. The number
of transit nodes k is set to k =

√
n for all experiments in this work. Increasing it increases

the size of the distance table quadratically but should reduce the access nodes and search
space size. Furthermore, evaluating different values for the marking radius r on the same

50

7.1. Future Work

instance might be interesting. There is also the limit of the local query in the approximate
combined query that can be adjusted for either better approximation or faster queries.
As already mentioned in Section 5.2.1, we tried both arrays and hash tables as data
structure for the vertices visited by the covering searches. We might be able to accelerate
the covering searches further with a more optimized data structure based on an extensive
evaluation.

Implementation. It is certainly interesting to implement and evaluate those variants
of our distance oracles that are not yet covered by our implementation. First of all,
the implementation can be extended to directed and weighted graphs as the current
implementation can only handle unweighted and undirected graphs. Secondly, the Voronoi
search distance oracle is currently only described theoretically. Implementing it and
comparing it to aTNR is an interesting next step. Furthermore, the naive distance table
computation could be replaced by the overlay-graph approach introduced in Section 3.1.2.
This could speed up the preprocessing significantly for some graphs. For example on Wiki-
Talk and Orkut, computing the distance table makes up almost the complete preprocessing
time when using the aggressive or stall-on-demand covering search.

Access Node Determination. Besides computing the distance table, the access node
determination has a major impact on the preprocessing time. Especially for the computer
and road networks Gnutella, Skitter and CA, the covering searches require the most
preprocessing time. It would therefore be useful to accelerate these searches. Using the
distance table and the distances stored in the Voronoi diagram, one might be able to
truncate the covering searches before even reaching a marked node. To do so, one would
combine these two distances and compare them to the distance of a queued vertex to
determine whether there are any transit nodes that can be visited on a shortest path via
this vertex. However, this might invalidate the correctness of the current locality filter if
the searches are stopped too early so that their search spaces do not intersect.

Locality Filter. The locality filter has two main aspects for improvement. First of all,
it currently wrongly classifies many global queries as local on both computer and road
networks. This slows the combined queries down significantly. Increasing the number
of correctly recognized global queries is therefore very important for reducing the query
time. The accuracy for social networks is much better but not perfect either, as some
combinations have up to 20 % false local classifications. They might therefore also benefit
from such improvements. Secondly, the locality filter accounts for a large proportion of the
total preprocessing size. This could be improved using more approximation of the search
spaces, for example with fewer, but larger Voronoi cells. Storing the search spaces with the
access nodes, as for example done by Arz et al. [ALS13], could also reduce the required
space. One would, however, need to consider how the combine this with our postprocessing.
Another option would be to compress the search spaces. One could, for example, use a
compression scheme similar to the one used in Brunel et al. [BDGW10] for compressing
arc-flags, by grouping vertices with similar search spaces.

Local Query. Even though most queries are correctly classified as global, the average
combined query is up to two orders of magnitude slower than the global query. This
indicates that the running time of the local query is too slow. Currently, the local query
is only accelerated by using a bidirectional search. The original transit node routing
algorithm [BFM+07] used a multilevel approach which speeds up local queries with a
recursive application of TNR. An additional larger set of second transit nodes is selected
to solve local queries of the first level. The local queries of the second level could be
solved using a third level of transit nodes and so on. One could probably develop a
similar multilevel approach for aTNR. Furthermore, one could try to apply other speed up
techniques unrelated to TNR.

51

7. Conclusion

Path Retrieval. Currently, both introduced distance oracles compute only the distance
between two vertices. For many applications, it is, however, also required to return an
actual shortest path. The original transit node routing algorithm solves this by successively
determining the edges (s, u) with δ(s, u) + δ(u, t) = δ(s, t) and repeating the same steps
with s = u [BFM+07, Section 3.6]. Since our distance oracles return the distances of
actual paths – even though they might not be the shortest paths – it should be possible to
implement the path retrieval in the same way. However, the high vertex degree in social
networks probably increases the running time significantly compared to road networks.
Moreover, the approximation with the marked nodes might cause problems for finding the
shortest paths from a transit node t since all neighboring marked nodes are routing via t.

52

Bibliography

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
A Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. In
10th Symposium on Experimental Algorithms (SEA), volume 6630 of LNCS,
pages 230–241. Springer, 2011.

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
Hierarchical Hub Labelings for Shortest Paths. In 20th European Symposium
on Algorithms (ESA), volume 7501 of LNCS, pages 24–35. Springer, 2012.

[AIY13] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast Exact Shortest-Path
Distance Queries on Large Networks by Pruned Landmark Labeling. In
Proceedings of the International Conference on Management of Data, pages
349–360. ACM SIGMOD, 2013.

[AJB99] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diame-
ter of the World-Wide Web. nature, 401(6749):130–131, 1999.

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders. Transit Node Routing Re-
considered. In 12th Symposium on Experimental Algorithms (SEA), volume
7933 of LNCS, pages 55–66. Springer, 2013.

[AV07] David Arthur and Sergei Vassilvitskii. K-means++: The Advantages of
Careful Seeding. In Proceedings of the 8th Symposium on Discrete Algorithms
(SODA). ACM-SIAM, 2007.

[BCKO08] Mark de Berg, Otfried Cheong, Mark van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer, 3 edition,
2008.

[BDG+15] Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias
Zündorf. Shortest Feasible Paths with Charging Stops for Battery Electric
Vehicles. In Proceedings of the 23rd International Conference on Advances
in Geographic Information Systems, pages 44:1–44:10. ACM SIGSPATIAL,
2015.

[BDG+16] Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Re-
nato F Werneck. Route Planning in Transportation Networks. In Algorithm
engineering, volume 9220 of LNCS, pages 19–80. Springer, 2016.

[BDGW10] Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner. Space-
Efficient SHARC-Routing. In 9th Symposium on Experimental Algorithms
(SEA), volume 6049 of LNCS, pages 47–58. Springer, 2010.

[BDPW13] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-
Optimal Routes for Electric Vehicles. In Proceedings of the 21st International
Conference on Advances in Geographic Information Systems, pages 54–63.
ACM SIGSPATIAL, 2013.

53

Bibliography

[BDPW16] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dy-
namic Time-Dependent Route Planning in Road Networks With User Pref-
erences. In 15th Symposium on Experimental Algorithms (SEA), volume
9685 of LNCS, pages 33–49. Springer, 2016.

[BFM+07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In Transit to Constant Shortest-Path Queries in Road Networks. In
Proceedings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 46–59. SIAM, 2007.

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast
Routing in Road Networks with Transit Nodes. Science, 316(5824):566,
2007.

[BGSV13] G Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Mini-
mum Time-Dependent Travel Times with Contraction Hierarchies. Journal
of Experimental Algorithmics (JEA), 18:1–4, 2013.

[BK06] S. Baswana and T. Kavitha. Faster Algorithms for Approximate Distance
Oracles and All-Pairs Small Stretch Paths. In 47th Annual Symposium on
Foundations of Computer Science (FOCS), pages 591–602. IEEE, 2006.

[Bra01] Ulrik Brandes. A Faster Algorithm for Betweenness Centrality. The Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[BS06] Surender Baswana and Sandeep Sen. Approximate Distance Oracles for
Unweighted Graphs in Expected O(n2) Time. Transactions on Algorithms
(TALG), 2(4):557–577, 2006.

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and
Distance Queries via 2-Hop Labels. Journal on Computing, 32(5):1338–1355,
2003.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 3 edition, 2009.

[Dij59] Edsger W Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[DKP12] Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel Computation of
Best Connections in Public Transportation Networks. Journal of Experi-
mental Algorithmics (JEA), 17:4, 2012.

[DSGNP10] Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy. A
Sketch-Based Distance Oracle for Web-Scale Graphs. In Proceedings of the
3rd Conference on Web Search and Data Mining (WSDM), pages 401–410.
ACM, 2010.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Engineering Route Planning Algorithms. In Algorithmics of Large and
Complex Networks, volume 5515 of LNCS, pages 117–139. Springer, 2009.

[EFS11] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning
for Electric Vehicles in Large Networks. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence, pages 1108–1113, 2011.

[Erw00] Martin Erwig. The Graph Voronoi Diagram with Applications. Networks:
An International Journal, 36(3):156–163, 2000.

54

Bibliography

[Flo62] Robert W Floyd. Algorithm 97: Shortest Path. Communications of the
ACM, 5(6):345, 1962.

[Fre77] Linton C Freeman. A Set of Measures of Centrality Based on Betweenness.
Sociometry, pages 35–41, 1977.

[FT87] Michael L Fredman and Robert Endre Tarjan. Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms. Journal of the ACM
(JACM), 34(3):596–615, 1987.

[GBSW10] Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and Gerhard Weikum.
Fast and Accurate Estimation of Shortest Paths in Large Graphs. In Pro-
ceedings of the 19th Conference on Information and Knowledge Management
(CIKM), pages 499–508. ACM, 2010.

[GPPR04] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. Distance
Labeling in Graphs. Journal of Algorithms, 53(1):85–112, 2004.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In 7th Workshop on Experimental and Efficient Algorithms (WEA),
volume 5038 of LNCS, pages 319–333. Springer, 2008.

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.
Exact Routing in Large Road Networks Using Contraction Hierarchies.
Transportation Science, 46(3):388–404, 2012.

[Hen06] John L. Henning. SPEC CPU 2006 Benchmark Descriptions. Computer
Architecture News, 34(4):1–17, 2006.

[Jai10] Anil K Jain. Data Clustering: 50 Years Beyond K-Means. Pattern Recognition
Letters, 31(8):651–666, 2010.

[Joh77] Donald B. Johnson. Efficient Algorithms for Shortest Paths in Sparse
Networks. Journal of the ACM (JACM), 24(1):1–13, 1977.

[JRXL12] Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. A Highway-Centric
Labeling Approach for Answering Distance Queries on Large Sparse Graphs.
In Proceedings of the International Conference on Management of Data,
pages 445–456. ACM SIGMOD, 2012.

[KV18] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer, 6 edition, 2018.

[Lei10] Charles E Leiserson. The Cilk++ Concurrency Platform. The Journal of
Supercomputing, 51(3):244–257, 2010.

[LHK10a] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting Positive
and Negative Links in Online Social Networks. In Proceedings of the 19th
Conference on World Wide Web (WWW), pages 641–650. ACM, 2010.

[LHK10b] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed Networks
in Social Media. In Proceedings of the Conference on Human Factors in
Computing Systems (CHI), pages 1361–1370. ACM SIGCHI, 2010.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data, 2014.

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs Over Time:
Densification Laws, Shrinking Diameters and Possible Explanations. In
Proceedings of the 11th Conference on Knowledge Discovery in Data Mining
(KDD), pages 177–187. ACM, 2005.

55

http://snap.stanford.edu/data

Bibliography

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph Evolution:
Densification and Shrinking Diameters. Transactions on Knowledge Discovery
from Data (TKDD), 1(1), 2007.

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.
Community Structure in Large Networks: Natural Cluster Sizes and the
Absence of Large Well-Defined Clusters. Internet Mathematics, 6(1):29–123,
2009.

[Meh88] Kurt Mehlhorn. A Faster Approximation Algorithm for the Steiner Problem
in Graphs. Information Processing Letters, 27(3):125–128, 1988.

[MMG+07] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and Analysis of Online Social
Networks. In Proceedings of the Internet Measurement Conference (IMC).
ACM, 2007.

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, 2008.

[MSD16] Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent Hash Ta-
bles: Fast and General?(!). Proceedings of the 21st Symposium on Principles
and Practice of Parallel Programming (PPoPP), 2016.

[MSS15] Henning Meyerhenke, Peter Sanders, and Christian Schulz. Parallel Graph
Partitioning for Complex Networks. 29th International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1055–1064, 2015.

[PBCG09] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis.
Fast Shortest Path Distance Estimation in Large Networks. In Proceedings
of the 18th Conference on Information and Knowledge Management (CIKM),
pages 867–876. ACM, 2009.

[PR10] Mihai Pătraşcu and Liam Roditty. Distance Oracles Beyond the Thorup-
Zwick Bound. In 51st Symposium on Foundations of Computer Science
(FOCS), pages 815–823. IEEE, 2010.

[QXSW13] Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. Toward a Distance
Oracle for Billion-Node Graphs. Proceedings of the VLDB Endowment,
7(1):61–72, 2013.

[RAD03] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust Man-
agement for the Semantic Web. In International Semantic Web Conference,
volume 2870 of LNCS, pages 351–368. Springer, 2003.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems and Implications
for System Design. Computing Research Repository (CoRR), 2002.

[SB13] Julian Shun and Guy E. Blelloch. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In Proceedings of the 18th Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 135–146.
ACM, 2013.

[SDB15] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and Faster:
Parallel Processing of Compressed Graphs with Ligra+. In Data Compression
Conference (DCC), pages 403–412. IEEE, 2015.

56

Bibliography

[SS07] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In
6th Workshop on Experimental and Efficient Algorithms (WEA), volume
4525 of LNCS, pages 66–79. Springer, 2007.

[Str17] Ben Strasser. Dynamic Time-Dependent Routing in Road Networks Through
Sampling. In 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS), volume 59, pages 3:1–3:17.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017.

[TACGB+11] Konstantin Tretyakov, Abel Armas-Cervantes, Luciano García-Bañuelos,
Jaak Vilo, and Marlon Dumas. Fast Fully Dynamic Landmark-Based Esti-
mation of Shortest Path Distances in Very Large Graphs. In Proceedings of
the 20th Conference on Information and Knowledge Management (CIKM),
pages 1785–1794. ACM, 2011.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate Distance Oracles. Journal of
the ACM (JACM), 52(1):1–24, 2005.

[TZ12] Lubos Takac and Michal Zabovsky. Data Analysis in Public Social Networks.
In International Scientific Conference and International Workshop Present
Day Trends of Innovations, volume 1, 2012.

[UCDG08] Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. Search-
ing the Wikipedia with Contextual Information. In Proceedings of the 17th
Conference on Information and Knowledge Management (CIKM), pages
1351–1352. ACM, 2008.

[VFD+07] Monique V Vieira, Bruno M Fonseca, Rodrigo Damazio, Paulo B Golgher,
Davi de Castro Reis, and Berthier Ribeiro-Neto. Efficient Search Ranking
in Social Networks. In Proceedings of the 16th Conference on Information
and Knowledge Management (CIKM), pages 563–572. ACM, 2007.

[War62] Stephen Warshall. A Theorem on Boolean Matrices. Journal of the ACM
(JACM), 9(1):11–12, 1962.

[WXD+12] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu,
and Shuigeng Zhou. Shortest Path and Distance Queries on Road Networks:
An Experimental Evaluation. Proceedings of the VLDB Endowment, 5(5):406–
417, 2012.

[YBLS08] Sihem Amer Yahia, Michael Benedikt, Laks VS Lakshmanan, and Julia
Stoyanovich. Efficient Network Aware Search in Collaborative Tagging Sites.
Proceedings of the VLDB Endowment, 1(1):710–721, 2008.

[YL15] Jaewon Yang and Jure Leskovec. Defining and Evaluating Network Com-
munities Based on Ground-Truth. Knowledge and Information Systems,
42(1):181–213, 2015.

57

Appendix

A. Preprocessing Evaluation

Time per Preprocessing Step in s

Graph CS Transit
Nodes

Distance
Table

Access
Nodes

Locality
Filter

Postpro-
cessing

Gnutella
cons 0.001 0.716 11.030 0.140 0.340
aggr 0.001 0.716 7.750 0.180 0.320
stal 0.001 0.716 47.180 0.160 0.320

Epinions
cons 0.001 0.768 2.380 0.010 0.010
aggr 0.001 0.768 0.190 0.010 0.020
stal 0.001 0.768 0.250 0.000 0.000

Slashdot
cons 0.001 0.759 3.930 0.010 0.010
aggr 0.001 0.759 0.340 0.010 0.030
stal 0.001 0.759 0.230 0.000 0.010

NotreDame
cons 0.002 4.681 48.850 0.020 0.030
aggr 0.002 4.681 6.610 0.070 0.310
stal 0.002 4.681 7.130 0.030 0.110

CA
cons 0.015 26.945 1029.640 0.410 0.160
aggr 0.015 26.945 10587.200 72.330 260.730
stal 0.015 26.945 13783.100 33.140 243.090

Wiki-Talk
cons 0.015 26.945 28.130 0.110 0.030
aggr 0.015 26.945 1.220 0.150 0.040
stal 0.015 26.945 1.360 0.140 0.040

Skitter
cons 0.009 28.142 8473.440 0.230 1.170
aggr 0.009 28.142 5484.610 17.310 74.370
stal 0.009 28.142 2108.410 1.260 15.300

Pokec
cons 0.011 36.251 305.310 0.120 0.030
aggr 0.011 36.251 0.440 0.060 0.040
stal 0.011 36.251 0.620 0.080 0.030

Orkut
cons 0.018 107.035 199.410 0.140 0.040
aggr 0.018 107.035 0.290 0.120 0.040
stal 0.018 107.035 0.330 0.120 0.030

Table A.1.: Overview of the running time for the different preprocessing steps and prepro-
cessing variants.

58

B. Query Evaluation

B. Query Evaluation

Average Query Time in µs
Graph CS Local Global CombTNR CombExact CombApprox

Gnutella
r = 1

cons 287.95 17.57 301.22 148.26 153.83
aggr 303.46 14.52 294.32 176.90 137.90
stal 317.41 14.55 299.11 179.51 143.49

Epinions
r = 1

cons 250.17 0.27 40.27 23.56 22.59
aggr 259.68 0.27 53.17 29.53 28.04
stal 253.70 0.25 43.18 24.90 24.22

Slashdot
r = 1

cons 290.18 0.41 35.66 19.09 18.63
aggr 295.00 0.36 49.96 24.77 24.74
stal 294.66 0.41 40.53 21.40 20.71

NotreDame
r = 1

cons 1708.63 0.24 24.52 17.32 17.54
aggr 1669.98 0.29 43.32 24.10 22.95
stal 1667.52 0.29 27.19 16.02 15.62

CA
r = 1

cons 85889.26 1.08 300.08 269.39 23.98
aggr 89256.09 4.44 86565.26 85079.10 562.16
stal 89287.74 8.64 86036.21 84711.83 435.96

Wiki-Talk
r = 1

cons 796.82 1.64 29.97 26.49 25.80
aggr 814.98 3.12 32.63 29.16 28.96
stal 795.26 1.45 31.86 24.74 24.59

Skitter
r = 1

cons 988.95 1.67 396.99 226.79 207.20
aggr 1018.32 0.74 628.17 327.63 307.41
stal 1098.90 1.79 600.92 286.54 197.99

Pokec
r = 1

cons 835.28 0.49 20.83 9.44 8.71
aggr 795.17 0.50 19.30 12.71 11.58
stal 765.90 0.43 16.50 9.52 10.25

Orkut
r = 1

cons 2152.54 0.50 31.31 22.84 22.88
aggr 2103.65 0.60 43.55 32.52 32.97
stal 2151.74 0.52 37.92 26.52 28.42

Table B.2.: The average running time of the different queries sampled over 1000 random
vertex pairs from each distance. A Boxplot of the same experiment is given in
Figure B.1. CS denotes the variants of the preprocessing based on the different
covering searches. CombTNR, CombExact, and CombApprox are the three
variants of the combined query introduced in Section 3.2.3.

59

7. Appendix

Figure B.1.: The running time of the different queries and graphs sampled over 1000 random
vertex pairs from each distance. One plot for each variant of the preprocessing
based on the different covering searches.

60

B. Query Evaluation

Figure B.2.: The error of the different queries and graphs sampled over 1000 random vertex
pairs from each distance. One plot for each variant of the preprocessing based
on the different covering searches.
The first seven graphs are processed with r = 1. We thus guarantee an error
of four or less for the combined-TNR and combined-exact queries. Pokec and
Orkut are processed with r = 2; the allowed error is therefore eight.
On the CA road network, outliers with an error of up to 40 exist due to the
larger diameter. Those outliers are displayed in Figure B.3.

61

7. Appendix

Figure B.3.: The complete error of the different queries on the CA road network containing
all outliers, including those omitted in Figure B.2. The allowed error of four is
only exceeded for the Global and the combined-approx queries. Our guarantee
of an additive error of at most 4 · r is therefore not exceeded.

62

B. Query Evaluation

Average Error
Graph CS Global CombTNR CombExact CombApprox

Gnutella
r = 1

cons 0.91 0.05 0.90 0.90
aggr 0.91 0.04 0.90 0.90
stal 0.91 0.04 0.90 0.90

Epinions
r = 1

cons 0.65 0.59 0.65 0.65
aggr 0.65 0.56 0.65 0.65
stal 0.65 0.58 0.65 0.65

Slashdot
r = 1

cons 0.75 0.67 0.74 0.74
aggr 0.75 0.63 0.74 0.74
stal 0.75 0.66 0.74 0.74

NotreDame
r = 1

cons 0.11 0.06 0.07 0.08
aggr 0.11 0.06 0.07 0.08
stal 0.11 0.06 0.07 0.08

CA
r = 1

cons 0.21 0.08 0.09 0.19
aggr 0.20 0.00 0.08 0.18
stal 0.21 0.00 0.10 0.20

Wiki-Talk
r = 1

cons 0.50 0.48 0.48 0.48
aggr 0.50 0.48 0.48 0.48
stal 0.50 0.48 0.48 0.48

Skitter
r = 1

cons 0.45 0.29 0.45 0.45
aggr 0.45 0.16 0.45 0.45
stal 0.45 0.23 0.45 0.45

Pokec
r = 2

cons 1.64 1.63 1.64 1.64
aggr 1.64 1.63 1.64 1.64
stal 1.64 1.63 1.64 1.64

Orkut
r = 2

cons 1.38 1.31 1.35 1.35
aggr 1.38 1.29 1.34 1.34
stal 1.38 1.30 1.34 1.34

Table B.3.: The average error of the different queries sampled over 1000 random vertex
pairs from each distance. A Boxplot of the same experiment is given in Figure
B.2. The local query is always correct and thus has an average error of 0.
CS denotes the variants of the preprocessing based on the different covering
searches.

63

	Contents
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Graph Theory
	2.1.1 Graphs
	2.1.2 Breadth-First Search (BFS)
	2.1.3 Dijkstra's Algorithm

	2.2 Voronoi Diagrams
	2.2.1 Graph Voronoi Diagrams

	2.3 Distance Oracles
	2.4 Transit Node Routing
	2.4.1 General Transit Node Framework

	2.5 Covering Search
	2.5.1 Problem Definition
	2.5.2 Conservative Covering Search
	2.5.3 Aggressive Covering Search
	2.5.4 Stall-on-Demand Covering Search

	3 Approximate Transit Node Routing
	3.1 Preprocessing
	3.1.1 Transit Node Selection
	Betweenness Centrality
	Simple-BC Transit Node Selection
	Partition-BC Transit Node Selection
	Farthest-BC Transit Node Selection
	k-means++-BC Transit Node Selection

	3.1.2 Distance Table Computation
	The Naive Approach
	The Overlay-Graph Approach

	3.1.3 Access Node Determination
	Covering Search
	Marked Nodes
	Postprocessing to Remove Superfluous Access Nodes

	3.2 Queries
	3.2.1 Global Query
	3.2.2 Local Query
	Local Query with Limited Distance

	3.2.3 Combined Query
	TNR Combined Query
	Exact Combined Query with Limited Local Query
	Approximate Combined Query

	3.3 Locality Filter
	3.3.1 Graph Voronoi Filter

	3.4 Complexity and Correctness
	3.4.1 Time and Space Complexity
	Time Complexity of the Preprocessing
	Time Complexity of the Queries
	Space Complexity

	3.4.2 Correctness

	4 Voronoi Search Distance Oracle
	4.1 Preprocessing
	4.2 Queries
	4.2.1 Combined Query without Locality Filter
	4.2.2 Combined Query with Neighboring Cells Filter

	4.3 Complexity and Correctness
	4.3.1 Complexity
	4.3.2 Correctness

	5 Implementation
	5.1 The Ligra Graph Processing Framework
	5.2 Implementation of our Approximate TNR Oracle
	5.2.1 Data Structures

	6 Evaluation
	6.1 Experimental Setup
	6.1.1 Data Sets

	6.2 Preprocessing
	6.2.1 Transit Node Selection
	6.2.2 Distance Table
	6.2.3 Access Node Determination
	Covering Searches
	Postprocessing

	6.2.4 Preprocessing Time Overview
	6.2.5 Space Consumption

	6.3 Queries
	6.3.1 Locality Filter
	6.3.2 Query Time
	6.3.3 Query Error

	6.4 Comparison to Other Distance Oracles

	7 Conclusion
	7.1 Future Work

	Bibliography
	Appendix
	A Preprocessing Evaluation
	B Query Evaluation

