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ABSTRACT 

Labyrinth seals are a commonly used sealing technology to prevent and control leakage 

flows at rotor-stator interfaces in turbo machinery. Small clearances required by higher 

pressure ratios and the economical use of cooling air lead to potential rubbing events. 

These may cause detrimental heat input into the rotating structure and can lead to severe 

damages. Honeycomb liners on the stator part tolerate rubbing events to a certain extent 

and therefore allow for smaller gap widths, which lead to minimal leakage. 

A unique and independently developed one-dimensional numerical model is used to 

investigate critical rubbing conditions in a typical aircraft flight mission. It considers 

kinematic contact conditions, friction, heat conduction and abrasive and plastic wear. 

This model allows the calculation of the loads, such as the contact pressures and 

temperatures on the components. First experimental investigations for an idealized 

contact between a metal foil, representing the honeycomb part, and a rotating seal fin 

are used to validate the model. Then, predictions of engine performance calculations are 

additionally used to calculate input parameters for the one-dimensional model. These 

are the relative contact velocity and the casing temperature of the honeycomb. 

Finally, the results of the one-dimensional rubbing model such as rub forces, 

temperatures and wear of the seal fin or the honeycomb liner are compared for five 

different operating points of the flight mission: Ground idle, Takeoff, Cruise, Approach, 

Re-slam. Based on these results, damaging effects on the sealing system are evaluated 

and the most critical operating point, in this case the Re-slam, could be identified. 

Keywords: labyrinth seal; rubbing process; honeycomb; engine performance; aircraft 

flight mission; load prediction 
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NOMENCLATURE 

Latin 

𝐸 Young’s modulus [N/m2] 

ℎ heat transfer coefficient [W/m2 K] 

𝑘 stiffness coefficient [N/m3] 

𝑝 pressure [MPa] 

𝑟 radius [mm] 

𝑅 yield strength [N/m2] 

𝑞̇ heat flux [W/m2] 

𝑠 incursion [mm] 

𝑇 temperature [K] 

𝑣 velocity [m/s] 

𝑤 wear [m] 

Greek 

𝛽 heat partitioning factor [-] 

𝜇 coefficient of friction [-] 

Subscripts 

𝜑 circumference  

𝑎 abrasive  

𝑎𝑥 axial  

𝐶 nominal contact  

𝑓𝑜𝑖𝑙 metal foil  

𝑓𝑟𝑖𝑐 friction  

𝑖 initial  

𝑝𝑙 plastic  

𝑟𝑎𝑑 radial  

𝑠𝑓 seal fin  

𝑡𝑜𝑡 total  

1.0  INTRODUCTION 

In order to reduce or control leakage mass flows between static and rotating 

components, labyrinth seals are state of the art in gas and steam turbines [1]. The main 

parameters for the leakage mass flow through a labyrinth seal are the gap width between 

sealing tip and stator and the pressure ratio across the seal [2,3]. High pressure ratios 

and high combustion temperatures, as they occur in modern gas turbines and especially 

in aircraft engines, require efficient use of cooling air and high component efficiencies. 

By reducing the sealing gap width, the efficiency of the gas turbine can be increased, 

and fuel consumption reduced. However, a small gap can lead to contact between the 

rotor and stator during rapid changes in operation and manoeuvre loads. In such a so-

called rubbing process, the sudden release of frictional heat may cause a harmful 

temperature rise and thus critical damage to the rotor [4]. Therefore, abradable liners are 

used which guarantee targeted and rapid wear of the stator and thus protect the rotor 

from damage. 

Some experimental investigations were carried out on the rubbing process between 

labyrinth seals and honeycombs with the focus on different coating materials and 

temperature resistances [5–11]. However, there is a lack of experimental and numerical 

investigations, which enable the investigation of the fundamental physical mechanisms. 

Pychynski et al. [12] introduced the experimental setup depicted in Figure 1. The 

complex honeycomb structure is idealized to the contact between a single metal foil 

representing the double wall section and a seal fin. The test rig allows to determine the 

influence of the rubbing parameters relative velocity, incursion rate and incursion depth 

on resulting contact forces, temperatures and wear for stainless steel material 

combinations. On the basis of the experimental investigation Pychynski [13] further 

developed a modelling approach. Munz et al. [14] performed a sensitivity analysis for 

the nickel-based alloys most commonly used in turbines. Fischer et al. [15] used the 
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experimental data to validate a finite element model of the rubbing contact taking into 

account an advanced friction law, von Mises plasticity and a ductile failure criterion. 

 

 
Figure 1 Idealized contact on the honeycomb double wall section and experimental setup, 

modified from [16] 

In this study, the model of the rubbing process introduced by Pychynski [13] is used to 

calculate contact temperatures, contact pressures and wear for different operating points 

in a flight mission of an aircraft. The method used is illustrated in Figure 2. The input 

parameters for the flight mission calculations are taken from a typical flight cycle of a 

regional commercial jet. The calculation of the relevant quantities is explained in more 

detail in section 2.0. Furthermore, the model of Pychynski [13] is calibrated with 

experimental data from the test bench shown in Figure 1 (section 3.0 and 4.0 ). With 

this set of model result data, the load on the seal fin is evaluated and the most critical 

operating points are identified. 

 
Figure 2 Flow diagram of the investigation with the individual modules of the simulation, the 

computed quantities and the corresponding section. 

2.0  ENGINE PERFORMANCE 

For the estimation of boundary values for the model a gas turbine performance 

software (GasTurb [17]) is used. The software offers an existing model of a twin-shaft 

geared turbofan with a design bypass ratio of 12. The fan has a diameter of 2.36 m and 

is driven by a transmission gear with a ratio of 2.5. The coupled low-pressure 

compressor consists of three stages, the high-pressure compressor has nine stages. The 

high-pressure turbine consists of two stages and the low-pressure turbine has three 

stages. These values are in the range for the variants of the PW1000G by 

Pratt & Whitney. The aim of the study is to indicate a trend and not to claim to be a 

quantitative calculation for a specific engine. 

2.1 Flight mission 
The data consists of a steady state off-design calculation of a typical flight mission and 

a transient simulation of a “hot Re-slam” at the end of the mission. The flight mission 

depicted in Figure 3 is extracted from [18] and compared to a flight profile recorded 

onboard a regional commercial jet [19]. For this study, four operating points are 
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considered: Ground Idle, Takeoff, Cruise and Approach. The resulting altitude, Mach 

number and power setting are depicted in Figure 3 and used as an input for GasTurb. 

The power lever angle (PLA) setting was adjusted according to the rotational speed of 

the high-pressure shaft. All calculations were carried out at International Standard 

Atmosphere (ISA). 

 
Figure 3 Typical flight cycle, modified from [18] and [19] 

At the end of the flight mission a “Re-slam” was simulated. The “Re-slam” is a flight 

manoeuvre in which the aircraft is in the landing approach but must perform an 

emergency takeoff. Because the casing temperatures in the engine are very low during 

the landing approach and the rotor disks are still relatively hot, a sudden acceleration 

leads to a minimal gap clearance. Therefore, it is an operating point of the engine at 

which it is most likely that rubbing processes take place [20]. 

2.2 Operating points 
The calculated engine parameters for each operating point are depicted in Table 1. The 

labyrinth seal fin considered in this study is located at the shroud of the first high-

pressure turbine disk. The radius of the blade tip is about 278 mm. With the speed of the 

high-pressure spool, the relative velocity is calculated. The software was also used to 

estimate the casing temperature of the first turbine stage. This was determined by using 

a design point calculation with the burner exit temperature T4 and flight altitude for the 

different operating points. These boundary conditions are applied in the rubbing model 

to calculate the load on the seal fin. 

 

Table 1 Data for flight mission 

Description Unit Ground 

Idle 

Takeoff Cruise Approach Re-slam 

Altitude m 180 180 10668 1800 500 

Mach Number  - 0 0 0,8 0,5 0,3 

PLA % 25 80 75 40 80 

Net Thrust  kN 15,8 118,0 29,9 5,1 123,4 

HP Spool Speed rpm 8593 14347 13824 10162 15376 

LP Spool Speed rpm 3166 6570 7454 4432 7760 

Burner Exit 

Temperature (T4) 
K 1158 1674 1549 1251 1814 

Casing 

Temperature 
K 760 950 780 765 1003 

Relative velocity m/s 250 418 403 296 448 
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3.0  RUBBING MODEL 

The rubbing model represents the experimental setup as described in Figure 1 and the 

applied boundary conditions are depicted in Figure 4. It follows a one-dimensional 

approach and all parameters describe macroscopic quantities. The rotor has a diameter 

of 360 mm. The seal fin is 4 mm high and has a width of 0.6 mm. The stationary metal 

foil has the dimensions 20x12 mm with a variable thickness from 0.3 to 0.6 mm. 

 
 

Figure 4 Boundary conditions of the rubbing model  

It is assumed that the metal foil and the seal fin are in continuous contact and the 

contact pressure 𝑝𝐶  is distributed uniformly over the nominal contact area. Therefore, 

the contact pressure 𝑝𝐶  is a function of the incursion 𝑠: 

𝑝𝐶 = 𝑠 𝑘. (1) 

The pressure-dependent radial stiffness 𝑘 is calculated for the geometry of the metal 

foil, seal fin and foil holder of the test rig. The calculation of the incursion 𝑠 takes into 

account the constant incursion of the foil base, thermal expansion of the metal foil and 

wear. Coulomb’s law of friction is used with a constant and uniform coefficient of 

friction and must be obtained from experimental results. Therefore, the friction heat flux  

𝑞̇𝑓𝑟𝑖𝑐 = 𝜇 𝑝𝐶  𝑣𝜑 (2) 

is only a function of relative velocity and contact pressure. For determining the contact 

pressure, friction and wear behaviour the prediction of the resulting temperatures is 

crucial. For this, a thermal contact model is implemented. 

3.1 Thermal contact model 
The dissipation of the friction energy is a process that takes place on a microscopic 

scale. An initial heat partitioning factor 𝛽𝑖 is introduced in order to determine the 

resulting macroscopic heat fluxes: 

𝑞̇𝑓𝑜𝑖𝑙 = 𝛽𝑖  𝑞̇𝑓𝑟𝑖𝑐 ,  (3) 

 𝑞̇𝑠𝑓 = (1 − 𝛽𝑖) 𝑞̇𝑓𝑟𝑖𝑐 . (4) 

Thus, and with the assumption of an initial even heat partitioning (𝛽𝑖 = 0.5), the heat 

flux into the seal fin  𝑞̇𝑠𝑓 and into the metal foil 𝑞̇𝑓𝑜𝑖𝑙  can be calculated. The contact is 

assumed to be perfect. Due to the different materials and temperatures, a heat flux 

𝑞̇𝐶 = ℎ𝐶  (𝑇𝐶,𝑓𝑜𝑖𝑙 − 𝑇𝐶,𝑠𝑓) (5) 

is consequently formed from the seal fin to the metal foil with the heat transfer 

coefficient ℎ𝐶 . The heat transport from the seal fin to the foil interacts with the initial 

heat partitioning so that the effective heat partitioning 𝛽𝑒𝑓𝑓  can be determined. It is a 

function of the temperatures of seal fin and metal foil, the area of the contact, the initial 
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heat partitioning factor, and the heat transfer coefficient. The resulting heat fluxes from 

the thermal contact model are applied as input parameters to numerical finite difference 

models for the seal fin and metal foil. Convective cooling, radiation and the effect of 

moving heat source because of the relative velocity are also considered. 

3.2 Wear model 
The total wear of the metal foil is composed of the abrasive wear 𝑤𝑎 and the plastic 

wear 𝑤𝑝𝑙: 

𝑤𝑡𝑜𝑡 = 𝑤𝑎 + 𝑤𝑝𝑙 . (6) 

The abrasive wear is modelled by Archard’s law of wear and a viscoplastic wear model 

is used. The corresponding equations are attached to the Appendix. The percentage of 

dominant wear conditions can be described using the wear ratio 𝑤𝑎 𝑤𝑡𝑜𝑡⁄ . A wear ratio 

greater than 0.5 is therefore indicating a higher amount of abrasive wear. The empirical 

equations used for abrasive and plastic wear as well as the heat transfer coefficient must 

be determined based on experimental data. 

No significant wear of the seal fin was observed during the experimental investigation. 

Therefore, it is neglected in the model.  

3.3 Material properties and calibration 
The material properties for the rotor material Inconel 718 and the foil material 

Hastelloy X were taken from data sheets by the manufacturers Haynes 

International [21] and Special Metals [22]. They are implemented as a function of the 

one-dimensional temperature distribution. An extract of the material parameters used is 

given in Table 2 for ambient temperature and 1000°C. 

Table 2 Selection of the material properties for Inconel  718 and Hastelloy  X at two arbitrary 

temperatures (Young’s modulus 𝐸, yield strength at 0.2% offset 𝑅𝑝02, thermal conductivity 𝜆, 

specific heat 𝑐𝑝, coefficient of thermal expansion 𝛼) 

Inconel  718 𝐸 in GPa 𝑅p02 in MPa 𝜆 in 
W

m K
 𝑐𝑝 in 

J

kg K
 𝛼 in 10−6  

1

K
 

20 °C 204 1030 11,52 460 14,1 

1000 °C 134 640 25,80 637 17,4 

Hastelloy  X      

20 °C 205 378 9,18 486 13,0 

1000 °C 141 83 27,20 809 15,6 

 

The parameters for the abrasive and plastic wear model and the heat transfer coefficient 

in the contact were adjusted so that the resulting contact pressure, the resulting foil 

temperature near the contact 𝑇𝐶,𝑓𝑜𝑖𝑙 and the wear ratio are consistent with the 

experimental reference scenario. The calibrated model parameter are summed up in 

Table 3. In addition, the coefficient of friction determined from the experiment is given. 

Table 3 Calibrated model parameters 

ℎ𝐶,0 proportionality factor of 

contact heat transfer 

[1/m] 20616 

𝑘𝑤,𝑎 abrasive wear coefficient [-] 19,25 

𝑡𝑝𝑙 time constant for plastic wear [ms] 39,8 

𝜇 coefficient of friction [-] 0,09 

 

For further information regarding the model and validation please refer to 

Pychynski [13] and Munz et al. [14]. To calculate the resulting contact pressures, 

friction temperatures and wear rates, with the model described here, input parameters in 

the form of relative velocity and ambient temperature are necessary. 
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4.0  RESULTS 

In order to investigate the five critical flight conditions with the model, the behaviour of 

the results for increasing relative velocity and casing temperatures is first discussed. The 

model described in section 3.0 was calibrated with experimental results from the 

rubbing test rig. For calibration and validation, a scenario with a relative velocity of 

110 m/s, the incursion rate 0.25 mm/s and a final incursion depth of 1 mm was used.  

4.1 Increasing relative velocity 
Figure 5 depicts the simulated foil temperature at the contact, contact pressure and the 

resulting wear ratio as a function of the relative velocity. The contact pressure and foil 

temperature are averaged over the duration of the rubbing process. The wear ratio is the 

final result of the process, which is determined after the experimental test by weight 

loss. The experimental reference point used for calibration is also illustrated. 

The first observation is that the development of the temperature near the contact 𝑇𝐶,𝑓𝑜𝑖𝑙 

in Figure 5 a) shows a significant increase up to approx. 200 m/s. Then the gradient 

decreases and a nearly stationary section develops. This behaviour is consistent with 

experimental results [12] and the numerical investigation of Fischer et al. [15]. The 

contact pressure depicted in Figure 5 b) is decreasing with increasing relative velocity. 

As the relative velocity increases, more frictional heat is released in the contact 

surface (see eq. (2)) and therefore the temperature of the metal foil increases. Thereby 

the Young’s modulus of elasticity and the yield strength of the material are reduced 

which leads to decreasing contact pressures. The wear ratio shown in Figure 5 c) 

exhibits only a very low sensitivity to the increasing relative velocity and has approx. a 

value of a 0.2 throughout the whole range of relative velocities. Consequently, mainly 

plastic wear is present. 

  a)                                                                                   b)                                                        

     
  c) 

   
 

Figure 5 Predicted foil temperature in the contact, contact pressure and resulting wear ratio as a 

function of the relative velocity 𝑣𝜑 in the contact and the experimental reference point 

4.2 Increasing casing temperature 
Figure 6 depicts the simulated foil temperature at the contact, contact pressure and the 

resulting wear ratio as a function of the casing temperature. The experimental 

investigation is carried out in ambient conditions. In order to simulate changing 

boundary conditions of the engine, the ambient temperature and the initial temperature 
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of the metal foil as well as the seal fin were initialized with the temperature of the 

casing. 

The foil temperature depicted in Figure 6 a) increases with increasing casing 

temperature. The friction power released in the contact continues to cause the system to 

heat up. As the casing temperature in Figure 6 b) increases, the contact pressure 

decreases as described in section 4.1. With increasing casing temperatures, the wear 

ratio also decreases (see Figure 6 c). The increasing temperature leads to an earlier 

activation of plastic wear and thus to an even lower proportion of abrasive wear. Both, 

the relative velocity as well as the casing temperature have similar effects on the 

resulting contact pressures, contact temperatures and wear ratios. In the flight cycle 

operating points both factors change simultaneously. 

  a)                                                                                  b)  

     
  c) 

   
 

Figure 6 Predicted foil temperature in the contact, contact pressure and the resulting wear ratio as 

a function of the casing temperature and the experimental reference point 

4.3 Operating points 
As a next step, the resulting relative velocities and casing temperatures from the flight 

mission calculation in Table 1 are used as input for the rubbing model. The predicted 

contact pressure is shown in Figure 7. The contact pressure does not vary significantly 

and is relatively low due to the increased initial temperature of metal foil and seal fin. 

Therefore, the main part of the load on the seal fin is due to thermal expansion in the 

contact region. 

 
Figure 7 Predicted contact pressure as a function of the flight cycle operating points 
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The temperatures of the seal fin and the metal foil near the contact are depicted in 

Figure 8. Additionally the initial temperature T0 ( ) and the temperature increase due to 

the rubbing process ΔT ( ) is indicated. It can clearly be seen that the temperature 

increase of the metal foil (Figure 8 a) is much more pronounced then the temperature 

increase of the seal fin (Figure 8 b). This can be explained by the effect of the moving 

heat source. While the contact of the metal foil always takes place at a stationary point, 

the contact spot on the seal fin moves out of the contact. Only after almost a complete 

revolution does this point meet the hot metal foil again. During this time, it is cooled by 

the surrounding air. It is therefore much cooler than the metal foil. According to 

Pychynski [4], this local temperature increase of the seal fin represents one of the most 

important parameters with respect to the stress of the seal fin. 

For Ground Idle, Cruise and Approach the initial temperature of the metal foil are quite 

similar, but the temperature increase is more pronounced for the Cruise operating point. 

This can be attributed to the higher relative velocity. The highest contact temperatures 

both for the metal foil and the seal fin occur for Takeoff and Re-slam. This corresponds 

to the operating conditions with the highest initial temperatures and the highest relative 

velocities. In Hühn et al. [23] it could be shown that with a rotor initial temperature 

𝑇0  of 500 °C and a temperature increase of delta Δ𝑇 = 400 °C, the temperature-

dependent tensile strength decreases by almost 57 %.  

a)                                                                                    b) 

 
Figure 8 Predicted temperature of the foil and seal fin at the contact as a function of the flight 

cycle operating points 

5.0  CONCLUSIONS 

In this paper, a typical flight mission of a regional commercial jet was used to derive 

boundary conditions for an independently developed model of the rubbing process. 

With the help of a gas turbine performance software, process parameters for an engine 

were calculated from the altitude and speed of the aircraft and the position of the thrust 

lever. For a labyrinth seal situated on the shroud of the first turbine stage, the relative 

speed and casing temperature could be calculated. The results for the operating points 

Ground Idle, Takeoff, Cruise, Approach and Re-slam were used in the rubbing model to 

identify the thermal load on the seal fin. 

With the obtained results, it was shown that an increase in relative velocity and casing 

temperature leads to decreasing contact pressures and increasing temperatures due to 

friction energy released in the contact. The thermal load resulting from the local 

temperature increase in the contact area of the seal fin was highest for the Re-slam 

condition. Using the method presented for a generic engine, the load on the seal fin as a 

result of a rubbing incident could be determined. With the help of more complex and 

realistic boundary conditions, it will be possible to optimize the sealing system with 

regard to the rubbing behaviour for a specific engine. 

The further experimental investigation of the rubbing process for several operating 

points is planned and urgently necessary. An adaptation of the model using these data 

and a more detailed investigation of heat partitioning is an important measure to 
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understand the rubbing process more deeply. This ultimately makes it possible to derive 

appropriate actions to increase the safety and efficiency of the sealing system. 
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APPENDIX 

Heat transfer coefficient 

ℎ𝐶 = ℎ𝐶,0 𝜆𝑒𝑓𝑓  (
𝑝𝑐

𝐸(𝑇𝐶)
)

2

 (7) 

𝜆𝑒𝑓𝑓   thermal conductivity,  

𝐸  Young’s modulus of the softer friction partner 

ℎ𝐶,0 proportionality factor of the heat transfer 

 

Abrasive wear (according to Archard) 

𝑤̇𝑎 = 𝑘𝑤,𝑎 𝑝𝐶

1

𝐸
𝑣𝜑 (8) 

𝑘𝑤,𝑎 empirical abrasive wear coefficient  

 

Plastic wear 

𝑤̇𝑝𝑙 = {

0, 𝑝𝐶 < 𝑘𝑤,𝑝𝑙𝑅𝑝02

(1 − 𝑘𝑤,𝑝𝑙

𝑅𝑝02

𝑝𝐶

)
𝑠  𝑣𝜑

2 𝜋 𝑟𝑠𝑓

(1 − 𝑒
(−

𝛼𝑒𝑐 𝑟𝑠𝑓

𝑡𝑝𝑙 𝑣𝑟
)
) , 𝑝𝐶 ≥ 𝑘𝑤,𝑝𝑙𝑅𝑝02

 (9) 

𝑡𝑝𝑙 time constant 

𝑘𝑤,𝑝𝑙 plastic scaling factor 

𝑟𝑠𝑓 radius of the seal fin 

𝛼𝑒𝑐 angle of the contact segment 


