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Abstract

This thesis presents two substantial aspects of the analysis of Z boson produc-
tion in association with jets, where the Z boson decays to a muon-antimuon
pair: jet energy calibration and triple differential cross section measurements.
Data have been used that were recorded with the CMS detector in the year 2016
at a center-of-mass energy of 13TeV. These data correspond to an integrated
luminosity of 35.9 fb−1 of proton-proton collisions at the LHC.
The first part of this thesis contributes to the jet energy calibration in

CMS by estimating residual corrections that account for differences in jet
reconstruction between measurement and simulation. Correction factors are
extracted from Z (→ µµ) + jet events by comparing the transverse momentum
of a jet to the one of a balancing Z boson, which can be reconstructed very
precisely from muons.
The second part of this thesis presents triple differential measurements of

inclusive cross sections for Z (→ µµ) + jet production. The cross sections are
measured as a function of the Z boson transverse momentum pZ

T or alterna-
tively the variable φ∗η, the rapidity separation y∗ of the Z boson and the leading
jet, and the boost yb of their center-of-mass system. The observable φ∗η has
the advantage to be determined from angular information of the muons only,
thereby further increasing the reconstruction precision in comparison to pZ

T.
The observables y∗ and yb introduce a division of the phase space that promises
a better sensitivity to the parton subprocesses and thus the PDFs. The mea-
sured cross sections are corrected for detector effects by a three-dimensional
unfolding procedure and are compared to theory predictions calculated at
next-to-next-to-leading order in perturbative QCD.
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"Daß ich erkenne, was die Welt
Im Innersten zusammenhält"

Johann Wolfgang von Goethe,
Faust I





CHAPTER 1

Introduction

"So that I may perceive whatever holds
The world together in its inmost folds"

The above quote from Johann Wolfgang von Goethe’s Faust describes the fascination
and enthusiasm that drives many researchers. But instead of making a pact with the
devil, as the protagonist of the play does, modern science aims to develop technological
devices and theoretical concepts that help improve our understanding of the world.

In physics, this has led to the construction of the Large Hadron Collider (LHC) at the
CERN research centre near Geneva, the most powerful and advanced particle accelerator
built to day, which is used to test one of the most sophisticated theoretical frameworks, the
Standard Model of particle physics. An important missing piece of the Standard Model,
a Higgs boson, whose existence was predicted almost 50 years earlier, was discovered
at the LHC in the year 2012, which lead to the award of the Nobel Prize in the year
2013 [1].

However, particle physics still holds secrets to be unveiled. One of them is the inner
structure of the proton. The Standard Model provides techniques for calculating processes
involving elementary particles. However, the description of processes involving composite
particles such as the proton requires knowledge of how their constituents, the partons,
contribute to the overall process. This information can be provided by parton distribution
functions (PDFs).

The PDFs are a measure of the probability of finding a parton with a certain fraction
of the momentum of the proton. The lack of a sophisticated technique which permits
to compute PDFs from first principles necessitates the use of experimental data to
determine them. Latest results have been obtained by combining data from various
scattering processes such as electron-proton scattering at the HERA collider [2] at the
DESY research centre in Hamburg, proton-antiproton scattering at the Tevatron collider
at the Fermilab research centre and proton-proton scattering at the LHC [3–6]. Particle
physics, however, has reached a point at which measurements have become more precise
than the calculations of certain processes. Further constraints on PDFs which reduce
their uncertainties can therefore help to improve predictions for many physics analyses.
High experimental precision is required for this task. The CMS detector at the LHC

achieves its highest precision in the reconstruction of muons and antimuons. Processes
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Introduction

in which Z bosons decay into muon-antimuon pairs can therefore be used for two main
tasks on which this thesis is focused. First of all, the measurement of cross sections for
Z boson production can be used for deriving PDF constraints. Secondly, the analysis of
Z boson events also has a technical application in the calibration of jets, the observable
signature of partons in the detector.

This thesis presents both aspects of a Z boson analysis. After introducing the necessary
theoretical background and explaining the experimental setup, the CMS detector, the
first part discusses the steps of the jet energy calibration of the data taken in the year
2016. The work of this thesis contributed to the estimation of residual corrections, which
account for differences between measurement and simulation.
The second part presents the measurement of the triple differential inclusive Z bo-

son cross section in association with one jet. The triple differential measurement uses
observables which allow for a suitable division of the phase space in order to obtain a
better sensitivity to the parton subprocesses and thus the PDFs. To correct the measured
cross sections for detector effects, a three-dimensional unfolding procedure is used. The
comparison of the resulting cross sections to theory predictions calculated at next-to-
next-to-leading order perturbative QCD provides information on the constraints on the
PDFs that can be concluded from this measurement.
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CHAPTER 2

Theoretical background

To introduce the necessary theoretical background for this thesis, the following chapter
presents the basic ideas of the physical and mathematical structure on which particle
physics is based on. In a first step, a general introduction into the phenomenology of
the Standard Model is given in Section 2.1, followed by the basic ideas of quantum field
theory in Section 2.2. Subsequently, the main aspects of both the electroweak theory
and quantum chromodynamics are discussed in Sections 2.3 and 2.4, respectively. The
methods of Monte Carlo simulations are explained in Section 2.5. Finally, the techniques
of jet clustering are introduced in Section 2.6.

2.1 Phenomenology of the Standard Model of particle
physics

The discovery of the neutron completed a very simple concept of particle physics in the
first half of the 20th century, according to which matter is composed only of electrons,
protons and neutrons. Atoms consist of electrons and an atomic nucleus, which itself
consists of protons and neutrons. However, this model could not be sustained when new
particles were discovered subsequently, such as the muon or the neutrino. New concepts
have been developed, such as the quark model, which can be used to understand protons
and neutrons as composite particles. These concepts are nowadays unified in the Standard
Model of particle physics, based on the small set of elementary particles presented in
Figure 2.1, mathematically embedded in the structure of quantum field theory.

There are two classes of particles: fermions, the building blocks of matter, and bosons,
the mediators of interactions. There are three fundamental interactions which can be
described by the Standard Model: the electromagnetic force, the weak force and the strong
force. Each elementary boson corresponds to one of the forces, each elementary fermion
can be classified via the forces acting on it. Figure 2.1 gives an overview of the elementary
particles of the Standard Model, whose properties are introduced in the following.

Fermions that are subject to the strong force are called quarks, the bosons that mediate
the strong force are called gluons. Most matter in the universe consists of up and down
quarks, though it has been found that each quark has two equivalents with the same
properties except their masses, also referred to as different quark flavours. The strong
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Theoretical background

Figure 2.1: Elementary particles that occur in the StandardModel of particle physics. Illustration
provided by [7] based on properties taken from [8].

force holds protons and neutrons together and therefore plays an important role in nuclear
reactions. Particles that are subject to the strong force carry colour charge. The theory
that describes the strong force is called quantum chromodynamics and will be discussed
in Section 2.4.

Fermions that are not subject to the strong force are called leptons, whose most famous
representative is the electron. Similar to quarks, each lepton has two equivalents sharing
the same properties except for their masses. The muon should be mentioned as the
heavier equivalent of the electron because of its particular importance to this thesis.
Particles experiencing the electromagnetic force carry electromagnetic charge, whose

mediating boson is the photon. The electromagnetic force defines the properties of atoms
and molecules and is therefore the most abundant fundamental force in everyday life
(besides gravity, which is not part of the Standard Model).

Leptons that are not subject to the electromagnetic interaction are called neutrinos.
Within the Standard Model, neutrino masses are assumed to be zero. Although this
assuption is known to violate the observation of neutrino oscillations, it is a suitable
approximation given the limit provided by the Particle Data Group Collaboration [8] in
comparison to other particle masses displayed in Figure 2.1.

All fermions experience the weak force, mediated by the Z and W bosons. It is the only
interaction that provides the possibility to change the flavour of a particle and therefore
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2.2 Quantum field theory

plays a crucial role in the decays of atomic nuclei. The electromagnetic and the weak
interaction have been unified within the electroweak interaction, which will be discussed
in Section 2.3.
Before its discovery in 2012, the Higgs boson was the last missing piece to complete

the Standard Model [9]. A particle acquires mass by interacting with the Higgs field, a
mechanism that has already been published in the 1960s [10].

2.2 Quantum field theory

Quantum field theory (QFT) provides the mathematical structure of the Standard Model.
It combines quantum mechanics and field theory by considering quantum mechanical
operators as functions of continuous parameters such as space-time. Field theories rely on
a Lagrangian L that defines the equations of motion derived as Euler-Lagrange equations.

For a fermion of mass m, described by a spinor ψ, the Lagrangian Lf yields the Dirac
equation.

Lf = ψ(i/∂ −m)ψ (2.1)

To ensure gauge symmetry, which is one of the fundamental principles of theoretical
particle physics and well known for classical electrodynamics, the Lagrangian has to
be modified by the introduction of gauge fields Aµ with vector boson properties. The
Standard Model Lagrangian is invariant under transformations belonging to the sym-
metry groups U(1), SU(2) and SU(3), which are connected to the fundamental forces
as summarized in Table 2.1. The vector bosons can be related to the generators of the
gauge group and fulfil the Maxwell equations derived from the Lagrangian Lb, written
with the field tensor Fµν = ∂µAν − ∂νAµ.

Lb = −1
4FµνF

µν (2.2)

The full Lagrangian follows as the sum of Lf and Lb by replacing all derivatives ∂µ with
the covariant derivatives Dµ = ∂µ − igAµ. This procedure is known as minimal coupling.
It creates interaction terms containing the coupling constant g in addition to the free
field Lagrangians Lf and Lb. In an abelian gauge theory, the interaction Lagrangian is
given by Lint, although additional terms can follow in non-abelian gauge theories when
replacing ∂µ by Dµ in the field tensor Fµν (Yang-Mills-Theory).

Lint = gψ /Aψ (2.3)

In particle physics, the common experimental setup is scattering, meaning that a set of
incoming particles interacts to form a set of outgoing particles, whose properties can
then be estimated by the measurement.
Following from the quantum nature of QFT, a theoretical prediction determines the

probability that a particular configuration of the properties of outgoing particles is formed.
This probability divided by the flux of incoming particles is defined as the cross section,
which is the central observable in both experimental and theoretical particle physics. The
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Table 2.1: Gauge symmetries and the fundamental forces.
gauge group number of generators fundamental force gauge boson

U(1) 1 electromagnetic force photon
SU(2) 3 weak force W+, W−, Z boson
SU(3) 8 strong force 8 gluons

flux of particles, more specific the number of particles passing through an area per time,
is also known as luminosity.
In scattering theory, the incoming and the outgoing particles are assumed to behave

asymptotically like free, non-interacting particles and therefore follow the free Lagrangian
Lf + Lb, whose equations of motion can be solved analytically. If the coupling constant
is small, the impact of the interaction terms on the time evolution can be treated
perturbatively. The terms contributing to the calculation of matrix elements up to
a particular order in perturbation theory can be visualized in Feynman diagrams, and
reversely, the diagrams can be interpreted as mathematical expressions using Feynman
rules. Feynman rules are derived from the structure of the Lagrangian. The two basic
concepts are the propagation of particles illustrated as lines, following from the free
Lagrangian, and their interactions illustrated by vertices, following from the interaction
Lagrangian. Figure 2.2 shows the four basic processes that follow from Lint in Equation 2.3.
The full set of Feynman rules can be found in textbooks about QFT such as [11].

Feynman diagrams are classified as leading order (LO), next-to-leading order (NLO),
next-to-next-to-leading order (NNLO), etc., according to the power of the coupling con-
stant g in the perturbative series. Since each vertex corresponds to a factor of g, the
number of vertices represents the order at which a certain diagram contributes to the
process.
At LO, the lowest number of vertices is required to visualize a process of interest in

the simplest way. Feynman diagrams contributing to calculations at LO typically show
a tree-like structure. At higher orders, calculations become challenging for diagrams in
which additional vertices allow the formation of loops. Loops are interpreted as integrals
which are usually divergent.

At NLO, there are divergent terms from Feynman diagrams containing physically non-
observable emissions of bosons which are soft (carrying little energy) or collinear (emitted
at narrow angles). These terms exhibit the same functional structure as the low-energy
region of the loop integration phase space (infrared divergence). The corresponding
diagrams are referred to as real and virtual corrections to the LO calculation, carry
different signs and therefore cancel each other out.

However, divergencies at the high-energy region (ultraviolet divergence) are absorbed
into free parameters such as the coupling constant, a procedure called renormalization.
This comes at the price of the introduction of an arbitrarily chosen renormalization
scale µR, on which the renormalized parameters depend. Measurable physical quantities
are supposed not to depend on an arbitrarily chosen parameter, which is only an artifact
of the mathematical approach used for the calculation. In fact, the scale dependence
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2.3 Electroweak theory

f

f

b

(a) emission

b

f

f

(b) absorption

b

f

f

(c) pair production

f

f

b

(d) annihilation

Figure 2.2: Basic processes described by the interaction Lagrangian Lint from Equation 2.3. It
defines the vertex as the crossing point of two fermion lines f and one boson line b. If the
horizontal is understood as the time axis, four processes can be illustrated by the same vertex:
(a) a fermion emits a boson; (b) a fermion absorbs a boson; (c) a boson splits into a fermion
and an antifermion; (d) a fermion and an antifermion fuse into a boson.

decreases when including higher orders in perturbation theory. It is expected to eventually
vanish completely, but remains for calculations at fixed orders in the form of a scale
uncertainty.

The ratio between results derived at two consecutive orders (for example NLO/LO or
NNLO/NLO) is referred to as (NLO or NNLO) k-factor. A perturbative series can be
checked for convergence by assuring that the k-factors converge to unity when including
higher orders. The convergence also depends on an appropriately chosen scale, which is
usually set in the range of the momentum transfer during the collision.

All three fundamental forces can be described within the same mathematical framework,
differing only in the consequences following from the gauge symmetry, such as coupling
constants and the behaviour of the gauge bosons. These consequences are subject of the
next sections.

2.3 Electroweak theory

Quantum electrodynamics (QED) is an abelian gauge theory. The generators of the gauge
group U(1) commute, leaving no self-couplings for the single massless boson, the photon.
As a consequence, the electromagnetic force has an infinite range with a decreasing field
strength, as known from the Coulomb potential.
In contrast to QED, the weak interaction is described by a non-abelian gauge theory.

The gauge group SU(2) induces three bosons which were experimentally found to carry
masses, the W+, W− and the Z boson. The extension of the Lagrangian by simple mass
terms contradicts its gauge symmetry, such that masses have to be introduced indirectly
via the Higgs mechanism. An additional scalar boson that couples to the gauge bosons
creates terms that take the role of mass terms, but preserve the gauge symmetry.

The electroweak theory is a unification of weak interaction and QED. The combination
of the U(1) and the SU(2) gauge groups introduces two coupling constants and four gauge
bosons that all couple to the Higgs boson. Only linear combinations of the gauge bosons
are physically relevant and represent the massive W and Z bosons and the massless
photon. The linear combination acts like a rotation around the angle Θw, called the
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γ

q/l−

q/l+

(a) photon vertex

Z

q/l−/ν

q/l+/ν

(b) Z boson vertex

W±

q/l−/ν

q′/ν/l+

(c) W boson vertex

Figure 2.3: Fermion vertices appearing in electroweak theory. (a) A photon γ interacts with
charged fermions, i.e. quarks q, antiquarks q, charged leptons l− and charged antileptons l+.
(b) Apart from quarks and charged leptons, a Z boson also interacts with neutral fermions, i.e.
neutrinos ν and antineutrinos ν. (c) Like a Z boson, a W boson interacts with all fermions,
additionally allowing for changing the type (flavour) of the fermion. Furthermore, there are
boson self-interaction vertices that are not shown here.

Weinberg angle. The angle is given by the relation between the physical masses mW

and mZ of the bosons.
cos (Θw) = mW

mZ (2.4)

The experimentally derived values of the masses can be found in Figure 2.1.
As a consequence of the relatively large masses of the interaction bosons, the range

of the weak interaction is limited, whereas the electromagnetic interaction has infinite
range, mediated by the massless photon.

Figure 2.3 gives a summary of the interaction vertices corresponding to the electroweak
force that involve fermions. In addition, there are boson self-interaction vertices involving
photons, Z and W bosons, resulting from the non-abelian nature of the SU(2) gauge
group.

2.4 Quantum chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory based on the SU(3)
symmetry describing the strong interaction between particles carrying colour charge. The
symmetry introduces one coupling constant gS and eight interaction bosons, called gluons.
Though gluons are massless, the strong force is known to be delimited to short distances.
This is due to additional gluon self-interaction terms in the Lagrangian, resulting from
the non-abelian nature of the theory. Figure 2.4 shows the vertices appearing in QCD.
In contrast to QED, the coupling constant of QCD decreases with increasing values of
the renormalization scale µR.

At short distances, corresponding to large energies and momenta, strongly interacting
particles, i.e. quarks and gluons, behave like free particles, a phenomenon known as
asymptotic freedom.

On the other hand, the strong interaction increases with small energies, corresponding
to large distances. To separate two quarks, energy has to be expended that is stored in
the interjacent gluon field. At a certain point, it is energetically favourable for a gluon to
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g

q

q

(a) gluon-quark vertex

g

g

g

(b) 3-gluon vertex

g

g g

g

(c) 4-gluon vertex

Figure 2.4: Vertices appearing in QCD. (a) A gluon g interacts with quarks q and antiquarks q.
Gluons interact with each other via (b) 3-gluon vertices and (c) 4-gluon vertices.

split into a quark-antiquark pair. The effect is that all particles carrying colour charge
form colourless bound states, a phenomenon known as confinement. Quarks do not occur
separately in nature, but always in the form of hadrons, either as three-quark (baryons,
such as the proton) or quark-antiquark combinations (mesons). One of the consequences
of confinement is the hadronization of strongly interacting particles occurring in the final
state of a scattering process. This leads to collimated bunches of hadrons, known as jets,
which are discussed in Section 2.6.

Parton distribution functions

The description of hadrons as a three-quark or quark-antiquark bound state is not
complete. Gluons can be emitted by quarks and subsequently split into two or three
gluons due to the self-coupling, but also create quark-antiquark pairs of any flavour.
Thus, any quark, antiquark or gluon, commonly referred to as parton, has a certain
probability to be found inside a hadron.

If a proton, as an example for a hadron, is travelling with a momentum p, each parton
can be understood to carry the momentum xp, with 0 < x < 1. The corresponding parton
distribution function (PDF) fa(x) contains the probability of finding the parton of type a
carrying the momentum fraction xa. These functions appear when calculating the cross
section of processes where hadrons are involved, such as proton-proton scattering. The
subprocess cross section σab(xa, xb) of parton a scattering with parton b, where each
parton carries the momentum fraction xa and xb, respectively, can be calculated pertur-
batively using Feynman diagrams. The cross section σpp for proton-proton scattering
then follows as a sum of folding integrals of the partonic cross sections with the PDFs.

σpp =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxb σab(xa, xb, µF, µR) fa(xa, µF)fb(xb, µF) (2.5)

This multiplicative separation of the PDFs from the subprocess cross sections is theoreti-
cally justified by the factorization theorem that requires the introduction of a factorization
scale µF on which the PDFs depend. Roughly speaking, µF defines the separation of the
range for the validity of the perturbative treatment of the subprocess calculation and the
non-perturbative treatment of the PDFs. Together with the renormalization scale µR,
it is considered in the scale uncertainty which decreases when including calculations at
higher orders.
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Figure 2.5: NNPDF3.1 parton distribution functions for up (uv) and down (dv) valence quarks,
strange (s), charm (c) and bottom (b) sea quarks, up (u) and down (d) antiquarks and the
gluon (g) at a scale of µ =

√
10GeV (left) and µ = 100GeV (right), determined by NNPDF [3].

The evolution between the scales is described by the DGLAP equations [12–14].

There is no technique known yet that allows the calculation of PDFs from first princi-
ples, such that their determination is left to experiments. For this purpose, measurements
are compared to theoretical predictions and the PDFs are fitted such that the best agree-
ment between measurement and prediction is achieved. The fit result depends on the
scale µ of the measurement, which is usually taken as both the factorization scale µF
and the renormalization scale µR, and is itself commonly chosen in the range of the
momentum transfer during the collision. The evolution of the PDFs to other scales can
be calculated by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations [12–
14].

There are several groups that provide proton PDFs, each differing in the selection of
experiments, the PDF parametrization or the method of the fitting procedure. Figure 2.5
shows the NNPDF3.1 fit results for PDFs estimated by the NNPDF collaboration at two
different scales µ =

√
10GeV and µ = 100GeV [3].

Interpolation techniques

To evaluate the integrals in Equation 2.5, the subprocess cross sections σab need to be
known at any values of (xa,xb). In practice, this approach requires an enormous amount
of computing power and is therefore not feasible. Alternatively, techniques have been
developed which evaluate the subprocess cross sections and the PDFs at a number of
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grid values of x and interpolate the intermediate behaviour. The fastNLO project is
an example for an implementation of this technique [15].
The interpolated results for the subprocesses are stored in interpolation grids that

enable a flexible use of different PDFs as well as the variation of the renormalization
and factorization scales or the value of the strong coupling constant. The difference
between cross section predictions obtained with and without interpolation is aimed to be
less than 0.1%, requiring the interpolation nodes to be chosen reasonably. The method
is particularly important when performing PDF fits that require many iterations of
changing PDFs and comparing the results to experimental measurement.

2.5 Monte Carlo simulations

With the theoretical framework at hand, predictions for cross sections of a scattering
process of interest can be calculated. Those degrees of freedom that are not of particular
interest (such as spin or kinematic properties) or even impossible to probe (such as colour
charge) are averaged over all possible realizations in the initial state and summed or
integrated over the possibilities in the final state. As the integration phase space can
have large dimensionality, a Monte Carlo integration method is the tool of choice.

Particles in the initial state are usually understood to have well-defined momenta. For
hadrons in the initial state, this statement holds only for the hadron as a whole, though
its partons follow the respective PDFs. Particles in the final state can have any kinematic
properties which energy conservation renders possible.

The cross section of a process can be derived perturbatively at a fixed order by the use
of calculation frameworks such as MadGraph5 and aMC@NLO [17] or NNLOjet [18].
However, an accurate comparison to an experiment requires a simulation under con-

sideration of additional effects that are explained in the following. Such a simulation
is performed using Monte Carlo techniques, implemented by event generators such as
Pythia8 [19], Herwig++ [20, 21] or Sherpa [22].
The dominant effects in the context of proton-proton scattering are multiple parton

interaction, parton showering and hadronization.

• Multiple parton interaction: In a proton-proton collision there is usually one so-
called hard scattering process, meaning a parton-parton collision with high momen-
tum transfer. Apart from this hard process, the remnants of the protons experience
multiple parton interaction (MPI) and form the underlying event (UE) [23].

• Parton shower: Both initial state and final state partons can spontaneously
emit other partons that contribute to the event in form of additional jets. The
main challenge of parton showering is the correct use in conjunction with real
emission contributions to the hard process. To avoid double-counting, algorithms
have been developed to combine parton showers with LO or NLO matrix elements
(CKKW [24], MLM [25], FxFx [26], powheg [27], mc@nlo [28]).

• Hadronization: Due to confinement, partons in the final state can not exist sep-
arately, but fragment into a multitude of partons that form colourless hadrons.
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Figure 2.6: Sketch of a simulated proton-proton collision including all effects covered by event
generators. The dark red blob in the centre illustrates the hard scattering between two partons,
resulting in a number of outgoing particles whose further decay is illustrated by the bright
red blobs. Parton showers can emerge from partons before (initial state radiation (ISR), blue
lines) as well as after the collision (final state radiation (FSR), red lines). The underlying event
consists of remnants of the proton (turquoise blobs) that can also experience multiple parton
interactions illustrated by the purple blob and lines. The bright green blobs indicate the point
where hadronization of the outgoing partons sets in, resulting in the multitude of particles
illustrated by dark green blobs. Furthermore, any charged particle can emit soft photons (i.a.
bremsstrahlung). Taken from [16].
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Hadronization takes place at scales where the perturbative approximation is not
applicable. The used hadronization models differ between the event generators.
Considering the interactions between particles carrying colour charge to be pro-
portional to their distance leads to the Lund string model [29], which is chosen for
Pythia8. A hadronization model based on the formation of color singlets organized
in clusters, a phenomenon called preconfinement [30], is preferred in Herwig++.

Furthermore, electroweak interactions can cause soft photon radiation emitted by
charged particles at any stage of the simulation. Figure 2.6 illustrates the interplay of
the previously described effects, eventually resulting in an event with a multitude of final
state particles.
Each of those effects are implemented using parameters that are tuned such that

the result best describes the experimental data. There is no certainty which choice of
simulation method is better, each with its own advantages and disadvantages in its
predictive power. The agreement to experimental results has to be validated for every
measurement, disagreements have to be considered by systematic uncertainties.
As a last step, the interaction of the particles in the final state with the detector can

be simulated with Geant4 [31, 32].

2.6 Jets

As a result of confinement, partons in the final state of a process fragment into a multitude
of particles, approximately moving into the same direction. Algorithms have been devel-
oped to cluster the four-momenta of particles unambiguously into a well-defined jet, whose
four-momentum serves as a measure for the original parton before the fragmentation.
Jets are among the most common observable objects in collider physics.

As jet clustering combines four-momenta of particles, the coordinate system widely
used in collider physics is discussed in the following.

2.6.1 Coordinate conventions

In a typical scattering process, a beam of particles is incident either on a fixed target
or head-on a second beam of particles. Both scenarios inherit a cylindical symmetry
with the beam axis as the centre line. It is therefore commonly chosen as the z-axis, the
transverse component parallel to the ground is commonly chosen as the x-axis.
A particle leaving the collision point with a momentum ~p = (px, py, pz) can then be

described by its transverse momentum pT =
√
p2
x + p2

y, the angle φ between the x-axis
and the projection on the x-y-plane and the angle θ between ~p and the z-axis.
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The relativistic nature of the particles involved in high energy physics motivates the
transformation of the angle θ to the pseudorapidity η, which can also be written using ~p
and pz.

η = − ln
(

tan
(
θ

2

))
= 1

2 ln
( |~p|+ pz
|~p| − pz

)
(2.6)

The latter notation is the reason for its denotation, as it is closely related to the rapidity y
along the beamline.

y = 1
2 ln

(
E + pz
E − pz

)
(2.7)

For particles whose masses can be neglected compared to their momentum, which is often
the case for decay products in particle physics, the rapidity and the pseudorapidity are
identical.
Differences in the rapidity y and in the angle φ are invariant when transforming

the laboratory system to a reference system boosted along the beamline. By the use
of these coordinate conventions, the distance between particles with the four-momenta
pi = (Ei, ~pi) and pj = (Ej , ~pj) in the y-φ-plane can be expressed by ∆ij .

∆ij =
√

(yi − yj)2 + (φi − φj)2 (2.8)

∆ is invariant under boosts along the beamline and can therefore be used by algorithms
that identify sets of particles most likely to originate from the same parton.
Analogously, the angular distance ∆R between particles is defined by replacing the

rapidity y by the pseudorapidity η in the definition of ∆ in Equation 2.8.

2.6.2 Clustering algorithms

There are several requirements imposed on an algorithm to guarantee its applicability to
general particle physics. First, it needs to be applicable to experimental measurements
as well as to theory predictions. Regarding the theory predictions, the algorithm must be
capable of dealing with any simulation level such as parton level, particle level or detector
level.

• At parton level, the event topology includes partons and non-strongly interacting
particles in the final state. Only effects that can be described in the perturbative
approximation, such as parton shower, contribute to the parton level. Parton-level
jets typically consist of a small number of constituents.

• The particle level represents the outcome of a scattering process after consider-
ation of non-perturbative effects such as hadronization. Partons are fragmented
into cascades of hadronic particles that are colour-neutral. The comparison of the
particle level to the parton level can be used to derive non-perturbative (NP) cor-
rections on cross sections calculated at fixed order. Particle-level jets usually consist
of numerous constituents.
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• To reach the detector level, the particle-level event undergoes a detector sim-
ulation, which makes it finally possible to compare the simulation to an actual
measurement. Since the detector level is the only level actually accessible by exper-
iments, the simulations can be used in order to correct measurements for detector
effects. The constituents of detector-level jets are four-momenta which are recon-
structed from energy depositions in the detector.

Jet algorithms can be classified either as cone algorithms or as sequential recombination
algorithms. Cone algorithms sum up all four-momenta within a certain distance ∆,
as defined in Equation 2.8, from a starting four-momentum to calculate the jet four-
momentum. Sequential recombination algorithms use an iterative approach. A distance
measure is defined that can take into account the transverse momentum in addition to
angular and rapidity information of particles.
A widely used distance measure dij between the four-momenta pi and pj includes a

parameter p, a distance parameter R, also referred to as the jet size, and the distance ∆ij

as defined in Equation 2.8.

dij = min
(
p2p

Ti, p
2p
Tj

) ∆2
ij

R2 (2.9)

Furthermore, the distance of a four-momentum pi to the beam axis is defined as diB.

diB = p2p
Ti (2.10)

A sequential recombination algorithm based on this distance measure creates a list of all
distances dij by combining all pairs of four-momenta in the event, extended by the list of
distances diB of all four-momenta to the beam axis. It merges particles by summing up
the pair of four-momenta with the smallest distance dij and recalculating all distances.
If the smallest distance in the list is diB, a termination condition is reached and the four-
momentum pi is called a jet. All entries involving the four-momentum pi are removed
from the list of distances. The algorithm continues until no entry is left.
The choice of the parameter p defines further properties of the algorithm. A widely

used example of a sequential recombination algorithm is the anti-kt algorithm based on
this distance measure with p = −1 [33].

A jet area can be assigned to each jet by artificially adding infinitesimal four-momenta
to the event, which are uniformly distributed in the y-φ-plane. The jet area is defined as
the domain covered with those infinitesimal four-momenta which are clustered into the
jet. In case of the anti-kt algorithm, it can be understood as the area of the cone base
that contains the eventual jet, having a cone base radius R.

This definition of a jet area is possible only if the algorithm fulfils infrared and collinear
safety, which is one of the most important requirements on jet algorithms. Because partons
are non-observable objects, cross sections are typically calculated with jets instead of
partons in the final state. Collinear or infrared emissions of partons correspond to real
contributions in higher order calculations. If the jet clustering is not sensitive to these
emissions the algorithm is called infrared and collinear safe and can be used within
perturbation theory [34, 35].
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The application of such an algorithm always results in the same, well-defined set of
clustered jets. However, since the mapping of a particular four-momentum onto a jet
depends on the chosen clustering algorithm, the topology of jets in an event is ambiguous.
The out-of-cone effect occurs if a particle that actually originates from the parton is
not covered by the jet area. Conversely, particles originating from other partons can
be included by the clustering. Thus, the choice of the jet algorithm is crucial for the
calculation as well as for the measurement of cross sections of proton-proton scattering
processes.
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CHAPTER 3

Experimental setup

The European Organization for Nuclear Research, CERN, situated at the border be-
tween France and Switzerland close to Geneva, is nowadays one of the most prominent
research institutions in the world. Throughout the last 60 years, it has had a huge impact
on the technological progress of physical research, eventually leading to the most powerful
particle accelerator ever built, the Large Hadron Collider (LHC).

This progress was driven by the intention to test theoretical predictions derived from
the Standard Model of particle physics. Scattering experiments procure a controlled
environment, in which the interactions between particles can be described by the Standard
Model. To probe particles carrying high masses or interacting at small distances, high
energies are necessary which, in a controlled environment, can only be provided by the
LHC.

3.1 The Large Hadron Collider

The LHC consists of a circular tunnel with a circumference of 27 km in a mean depth of
100m below ground, populated with superconducting electromagnets whose coils contain
an electric current which is able to create a magnetic field of up to 8T. These fields keep
protons (or heavy ions) on track at a velocity close to the speed of light. The protons
originate from ionized hydrogen and undergo several stages of acceleration before they
eventually enter the LHC, arranged as bunches, each containing billions of protons. Since
the year 2015, they accumulate an energy of

√
s = 6.5TeV during the acceleration.

Figure 3.1 illustrates the LHC complex, in which several experiments are embedded as
well. Two beams consisting of thousands of bunches are travelling in opposite directions
and are forced to cross at four interaction points where the main experiments are situated.
The number of protons contained in each beam divided by the circulation time of about
100µs and the beam area gives rise to the luminosity, which is a measure for the particle
flux. In principle, a collision is possible every 25 ns, when two bunches cross each other.
If a collision occurs, detectors will observe the remnants of the scattering process. One
of the detectors at the LHC is the Compact Muon Solenoid (CMS), which recorded the
data used within this thesis.
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Figure 3.1: The LHC complex at CERN close to Geneva. Besides the main experiments CMS,
LHCb, ATLAS and ALICE, numerous other experiments are embedded. The way of the protons
starts at the linear accelerator LINAC2, passes the pre-accelerators BOOSTER, PS (Proton
Synchrotron) and SPS (Super Proton Synchrotron) and finally leads to the LHC. Illustration
taken from [36].

3.2 The Compact Muon Solenoid

The CMS experiment is placed in a cavern at one of the four interaction points within
the LHC tunnel. It is designed as a general-purpose detector to study a broad range of
physical processes. The detector composition of several layers of detector subsystems is
illustrated in Figure 3.2. Its name reflects the compact way to arrange most subsystems
inside a solenoid magnet and the high performance for detecting muons.

3.2.1 Detector subsystems

Each detector subsystem plays a specialized role in the identification of scattering prod-
ucts. In the following, these subsystems are shortly described, starting with the innermost
parts. A detailed description of the detector can be found in [38].

• Silicon tracker: The tracking system is composed of several layers of silicon pixels
(inner tracker) and silicon strips (outer tracker). Charged particles passing a pixel
or a strip create free charge carriers in the semiconductor material. As a result,
an applied voltage creates an electric current which can be read out and detected
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Figure 3.2: The CMS detector. A small piece of a transverse slice through the CMS detector
exhibits the subsystem structure. The silicon tracker detects trajectories of charged particles, the
calorimeters measure particle energies. The trajectories are bent because of the superconducting
solenoid magnet, whose field is extended to the outer region by an iron return yoke. The muon
chambers detect muon trajectories. The combination of tracks and energy depositions in the
calorimeters allows the classification of particles as electrons, photons, muons, charged and
neutral hadrons. Illustration taken from [37].

as a hit. These hits are combined to reconstruct particle tracks. Their curvature
provides information about the charge and the momentum of the particle.

• Electromagnetic calorimeter (ECAL): Electromagnetically interacting parti-
cles such as photons, electrons and positrons are absorbed in lead tungstate scintil-
lators. The emerging electromagnetic showers are measured by photodetectors and
provide information about the particle energies.

• Hadron calorimeter (HCAL): Due to their higher radiation length, hadrons
pass the ECAL and enter an alternating arrangement of brass and steel absorbers
and plastic scintillators. The hadrons create cascades of further particles in the
absorbers, whose energies are measured via the scintillators. The thickness of this
arrangement is of the order of multiple absorption lengths, ensuring that nearly all
particles created in the collision can be detected.

• Superconducting solenoid: A superconducting solenoidal coil contains a current
whose magnetic field of 3.8T is responsible for the curved paths of charged particles.
The field is stabilized by an iron return yoke outside of the electromagnet.

• Muon chambers: Muons are particles which are able to escape all layers of the
detector. They leave tracks in the muon chambers as well as in the silicon tracker.
There are three types of muon detectors that all rely on the ionization of a gas
volume by a passing muon. Drift tubes (DT) contain a positively charged stretched
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wire that detects the drift of ionized gas particles. Cathode strip chambers (CSC)
use the same mechanism, supplemented by cathode strips perpendicular to the
anode wires, providing additional position information. Resistive plate chambers
(RPC) consist of two high resistivity plastic plates separated by the gas volume
and are particularly used for triggering.

The subsystems are arranged around the collision point, separated into a central and
a forward part, such that particles can be detected in a wide pseudorapidity range,
excluding those travelling with a small angle along the beam line. All the information
provided by the subsystems is read out by electronics and handed over to a two-staged
trigger system that decides for each collision independently whether or not it is worth
to be stored.

3.2.2 Trigger System

Two proton bunches cross each other at a rate of 40MHz in the centre of the detector,
giving rise to one potential collision each 25 ns. Since most of these collisions only happen
at low energy scales, their physical relevance is negligible. The disk space required for
one reconstructed event is in the range of 1MB, meaning that about 40PB of data would
be stored per second if every event was kept, more than even the combined computing
power of the CERN infrastructure could handle. Therefore, a two-staged trigger system
scans each event for potentially interesting features, reducing the rate of data flow to
about 1GB per second [39].

• L1: The level 1 trigger is mainly hardware-based to allow for triggering at the high
rates necessary at the LHC. Only simple signatures such as an energy deposition
in a calorimeter or a track in the muon system are taken into account for a fast
selection.

• HLT: The software-based high level trigger preliminarily reconstructs events that
pass the L1 selection. A trigger computing farm above ground is necessary to
evaluate the information from the different subsystems in short timescales.

There is a large number of different trigger requirements, also called trigger paths,
combining L1 and HLT requirements used for a classification of the event, ranging from
the detection of a single particle above an energy threshold to the sum of all detector
components. If any of these paths is triggered, the event will be classified accordingly.

The remaining data are stored at computing clusters at CERN and around the world,
available for further analysis.

3.2.3 Computing infrastructure

The worldwide LHC computing grid (WLCG) manages the distribution of the data
collected by all LHC installations to computing resources around the world [40]. There
are several hierarchical levels within its organisation. The CERN Data Centre at the

24



3.3 Reconstruction of physical objects

CERN site, also denoted by the name Tier 0, provides internal storage for raw data
collected by the experiments and computing power for first offline processing steps.
Currently, 13 Tier 1 centres are distributed at universities and institutes around the

world, of which one is situated in Karlsruhe. They provide computing power mainly for
centrally coordinated data reprocessing and simulation. Additionally, they store copies
of the experimental data accessible for researchers.

More than 100 Tier 2 centres, also distributed at universities and institutes around the
world, provide computing power for data analysis by individual working groups, as well
as for simulations that are eventually stored and made available at the Tier 1 centres.

Furthermore, several computing centres that are available for the local research groups
are categorized as Tier 3. At KIT, additional computing resources that are not exclusively
meant for particle physics purposes are integrated on-demand. One of them is the high
performance bwForCluster NEMO at the university of Freiburg, which was used for most
of the analysis in the scope of this thesis [41].

3.3 Reconstruction of physical objects

3.3.1 Particle flow algorithm

Besides the composition of the CMS detector, Figure 3.2 also illustrates how information
from all subsystems is combined to reconstruct physical objects. The method used within
the CMS collaboration is called the particle flow (PF) algorithm and leads to a collection
of PF candidates which are categorized as one of five different types [42, 43].

• Muon candidate: A trajectory within the muon system only, combining infor-
mation from DT, CSC and RPC, defines a standalone muon, whereas a track
reconstructed within the silicon tracker, whose extrapolation matches at least one
hit in the muon system, defines a tracker muon. If a standalone muon trajectory
matches a track, it is stored as a global muon. Furthermore, the sign of the track
curvature provides information about it being a muon or an antimuon [44].

• Electron candidate: The remaining tracks within the silicon tracker are extra-
polated to the calorimeters. A track which is compatible with an energy deposition
in the ECAL defines an electron or a positron, depending on its curvature.

• Photon candidate: An energy deposition in the ECAL above a given threshold
without any compatible track defines a photon.

• Charged and neutral hadron candidates: In the same manner, the remaining
tracks are compared with depositions in the HCAL to define charged and neutral
hadrons.

If a PF candidate is reconstructed, all depositions and hits used for its reconstruction
are removed from the event. Mathematically, one event is built out of the set of the
four-momenta of all PF candidates.
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Missing transverse momentum

The resulting PF candidates will further be used for jet clustering and tau lepton recon-
struction, but also for the computation of yet another important quantity: the missing
tranverse momentum ~p miss

T . It is defined as the negative transverse component of the
momentum sum of all reconstructed PF candidates. Its importance results from the
initial state of the colliding particles, which does not have any momentum component
perpendicular to the beam direction. Thus, pmiss

T would vanish if all particles emerging
from the collision were measured correctly. It can therefore be used for two important
tasks: calibration of the detector using events whose properties are well understood, such
as Z boson events, where the Z boson decays to a muon-antimuon or an electron-positron
pair, or for an indirect detection of particles that are invisible to the CMS detector, such
as neutrinos or any exotic kind of unknown (dark) matter.

3.3.2 Pileup

As protons travel through the LHC in the form of bunches, it is inevitable that the
products of the main proton-proton collision are overlaid by remnants from additional
proton-proton collisions. Pileup is a collective name for any depositions in the detector
that bias the event reconstruction by not originating from the main collision. As a result,
additional jets can be reconstructed, which typically carry low energies. There are several
observables which quantify the pileup contribution of an event, all of which increase with
the LHC operating at higher luminosities.

• Tracks of charged particles enable the reconstruction of primary vertices as their
crossing points along the beamline [45]. The number nPV of primary vertices serves
as a measure for pileup.

• A second quantity that can serve as a measure for pileup is the pT-density ρ.
Assuming that pileup is isotropically distributed in an event, it can be estimated
as the median value of all jet transverse momenta divided by the respective jet
area [46]. However, ρ is also biased by contributions from the underlying event and
detector noise.

• In simulations, pileup contributions are manually added to each event, such that
the actual number of pileup interactions nPU is well known. In the experiment, this
number can only be estimated averaged over a certain time interval, a luminosity
section, during which the beam properties can be regarded as constant. The lumi-
nosity integrated over a luminosity section, which is approximately 24 s, multiplied
by the total proton-proton scattering cross section gives rise to the mean number
of pileup interactions µ = 〈nPU〉.

Pileup mixing in simulations suffers from the fact that the actual pileup contribution
in the experiment is not known in advance. To gain more flexibility, each simulated
event can be weighted, so that the distribution of the pileup quantity in the simulation
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matches the one in the measurement. The official recommendation is to use µ for pileup
reweighting.

3.3.3 Muon reconstruction

In addition to the PF algorithm, further criteria can be applied to improve the muon
reconstruction. To reject particles falsely categorized as muons, identification working
points are defined, the most common being the loose and tight working points [44].

• loose: Any muon reconstructed as a global or a tracker muon by the PF algorithm
passes the loose working point, maximizing the muon reconstruction efficiency.

• tight: For a muon to pass the tight selection, in addition to the reconstruction
by the PF algorithm as a global and a tracker muon, criteria as summarized in
Table 3.1 are applied, minimizing the possibility to misidentify a track for a muon.

Table 3.1: Criteria for a muon to pass the tight identification as applied in 2016.
χ2/n.d.f . of the global muon track fit < 10
Number of hits in muon system included in the global muon track fit ≥ 1
Number of stations (i.e. layers) hit in muon system ≥ 2
Number of layers hit in the pixel or strip tracker ≥ 6
Number of layers hit in the pixel tracker ≥ 1
Transverse distance |dxy| of the track to primary vertex < 0.2 cm
Longitudinal distance |dz| of the track to primary vertex < 0.5 cm

Furthermore, to discriminate between muons originating from heavy-flavour decays
and muons from boson decays, the muon isolation is used, taking into account particles
within a surrounding cone. The PF relative isolation is defined as the ratio of the sum
of the transverse momenta of photons, charged and neutral hadrons with an angular
distance of less than ∆R = 0.4 to the transverse momentum of the muon. The loose and
the tight working points reject muons with a relative isolation of more than 25% or 15%,
respectively.

3.3.4 Jet reconstruction

Within the CMS collaboration, jets are clustered from PF candidates using a jet clustering
algorithm of choice. The anti-kt algorithm is most commonly used with a distance
parameter of R = 0.4 or R = 0.8 [33]. The distance parameter R = 0.4 is applied for jets
used within this thesis.
To reject noise or badly reconstructed jets, identification working points are defined

which take into account energy fractions of PF candidate types and their multiplicities,
depending on the pseudorapidity η of the jet. The selection criteria of the loose jet ID
working point are given in Table 3.2 [47].
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Table 3.2: Criteria for a jet with |ηjet| < 2.4 to pass the loose identification as applied in 2016.
Neutral Hadron Fraction < 0.99
Neutral EM Fraction < 0.99
Number of Constituents > 1
Charged Hadron Fraction > 0
Charged Multiplicity > 0
Charged EM Fraction < 0.99

Pileup creates a significant number of detector depositions that are part of the collec-
tion of PF candidates contributing to the jet reconstruction. To identify jets which are
clustered from pileup contributions, a supplemental identification criterion is provided
as loose, medium and tight working points. This pileup jet ID is based on a multivariate
analysis of a multitude of parameters describing the shape and the vertex origin of the
constituent particles of a jet [48].
There are additional methods to reduce the pileup contribution which is as well in-

herent to every jet that does not completely originate from pileup. The charged hadron
subtraction (CHS) method vetoes PF candidates that are identified not to originate from
the main collision vertex. As this method does not affect the contribution of neutral
particles, the pileup per particle identification (PUPPI) method independently attaches
a weight to each PF candidate before jet clustering. The weight reflects the probability
for the PF candidate to originate from pileup and is derived based on a multivariate
analysis [49].
At last, corrections for the jet transverse momentum are used to assign the recon-

structed transverse momentum on detector level to the one on particle level. Chapter 4
gives an overview about how these corrections are derived by jet energy calibration.
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CHAPTER 4

Jet energy calibration
using Z (→ µµ) + jet events

Jets are among the most common observable objects in collider physics. Many analyses
rely on a precise estimation of the energy of a jet to determine cross sections involving
outgoing partons.

Confinement forces a parton leaving the collision point to transform to a collimated
bunch of hadronic particles that form a jet, a process which is referred to as hadronization.
Jet clustering combines the four-momenta of these particles to derive a measure for the
original parton.

On detector level, inefficiencies and noise in the detector components, as well as addi-
tional contributions from pileup bias the jet momenta. In addition, any mismodelling in
the detector simulation can have similar effects. For these reasons, the jets need to be
calibrated to achieve accurate results.

In the following, the jet energy calibration is discussed, as carried out by the CMS
collaboration. The calibration workflow is separated into multiple stages which provide jet
energy corrections (JEC) on different aspects of jet mismeasurement. The used methods
have been developed for the data taking period between of 2010 to 2012 with the LHC
operating at a centre-of-mass energy of 7TeV [50] and 8TeV [51] (Run I). A short
description of the stages and methods is provided in Section 4.1.

The analysis of Z boson events in association with jets, where the Z boson decays to
a muon-antimuon pair (Z (→ µµ) + jets), is discussed in Section 4.2 as an example for
the estimation of residual corrections, which account for differences between simulation
and measurement. This calibration channel and its implementation for the data taking
at 13TeV is part of the work presented in this thesis.

For the final calibration, results of all calibration channels are combined in a global
fit, as presented in Section 4.3. Closure tests performed within the scope of this thesis
contribute to the validation of the global fit results, as described in Section 4.4. At last,
uncertainties on the derived corrections are estimated, which is explained in Section 4.5.
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Figure 4.1: Stages of jet energy calibration. Taken from [51].

4.1 Stages of jet energy calibration

JECs are derived in multiple stages that are illustrated in Figure 4.1, using inputs from
numerous simulated as well as experimental results. Each stage yields multiplicative
factors which are applied consecutively on the jet transverse momentum. The stages are
shortly discussed in the following [50, 51].

4.1.1 Pileup offset corrections

The first stage is an offset correction for contributions from pileup and detector noise.
Two methods, which make use of pileup observables introduced in Section 3.3.2, have
been developed to determine correction factors:

• Jet area method: Under the assumption that pileup and noise are isotropically
distributed, an offset correction for each jet can be determined by multiplying its
area with the pT-density ρ. However, the contributions from the underlying event
have to be estimated from no-pileup events and subtracted from the correction
because they form an immanent feature of the main proton-proton collision.

• Average offset method: Alternatively, correction factors can be derived from
the number of primary vertices nPV of the event and an ηjet-dependent average
offset correction. The latter is derived by scanning for energy depositions in the
η-φ-plane by randomly placed cones (random cone (RC) method) and averaging
over φ and the events.

In CMS, both methods are combined to a hybrid method. The correction dependends
on ηjet, the jet area and the pT-density ρ of the event.

4.1.2 Simulated response corrections

Correction factors that connect the pT of the detector-level jet to the pT of the particle-
level jet are derived from simulation. At first, both jets have to be assigned to each other
by matching: for each detector-level jet, the particle-level jet with the closest angular
distance ∆R, which must not exceed half the jet distance parameter R, is chosen. The
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ratio of the detector-level to the particle-level transverse momentum is taken as response
variable R. Averaging over all jets in a certain acceptance range in all events leads to the
response as a function of pT and η of the detector-level jet. The inverse response then
serves as a correction factor dependent on the pT and η of the jet.

4.1.3 Residual corrections

Simulated response corrections are crucially dependent on the simulation input, especially
on the detector simulation, but also on the physics modelling used by the Monte Carlo
generators. If their modelling differs from nature, additional corrections or uncertainties
have to account for these effects.
The determination of the residual corrections is based on the estimation of response

variables that compare the pT of a jet to the pT of a reference object. The corrections
are named relative and absolute corrections and are derived in two steps.

Relative residual corrections

Relative residual corrections aim at calibrating the pT of a jet in a high-|η| (forward)
region in relation to a reference object in the low-|η| (central) region. Although other
objects are possible, the reference object is chosen to be another jet because of the
abundance of dijet events at the LHC. The relative response values derived from the
forward jet with respect to the central one are estimated as a function of η of the forward
jet.

Absolute residual corrections

Absolute residual corrections aim at calibrating the pT of a jet in the central region in rela-
tion to a well-measured reference object. This object is typically a Z boson, either decaying
to a muon-antimuon (Z (→ µµ) + jet) or an electron-positron pair (Z (→ ee) + jet),
or a photon (γ + jet). Above a certain pjet

T threshold, a sufficient amount of data is not
available using the former processes. A multijet topology, meaning the sum of several
already well-calibrated jets, is used as reference object for one high-energetic jet. The
response values are determined as a function of pT of the jet. The methods are combined
to cover as large as possible a range in pT and to reduce the uncertainties of the obtained
correction factors.

By combining relative and absolute residual corrections, jets can be calibrated for
differences between data and simulation over a wide range of their pT and η. The work
performed within this thesis has made a contribution to the determination of absolute
residual corrections by analyzing Z (→ µµ) + jet events. The used methods are explained
in more detail in Section 4.2.
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4.1.4 Flavour corrections

Jets originating from partons that differ in flavour (flavour in this context refers to
gluons as well as to quarks) experience differences in jet clustering. For example, gluons
hadronize into a larger number of particles than quarks; bottom or charm quarks decay in
association with neutrinos. These differences bias the resulting pjet

T . Therefore, additional
corrections are derived from simulations by comparing momenta of jets of different
flavour.

Applying flavour-dependent JEC remains an optional task for most analyses. However,
the study of jets of different flavour is included in the JEC uncertainties, as described in
Section 4.5.

4.2 Absolute residual corrections using Z (→ µµ) + jet
events

The analysis of Z + jet events forms an important contribution to jet energy calibration
because of the precision that can be achieved. A Z boson decaying to an electron-positron
or a muon-antimuon pair can be reconstructed with high accuracy and low background
contamination, and is therefore a suitable reference object for the estimation of residual
corrections. Especially the precisely measured muon momenta render the Z (→ µµ) + jet
topology the most accurate channel for jet calibration.

4.2.1 Methods of absolute residual corrections

The determination of absolute residual corrections is based on the comparison of a jet
in the central detector region to a suitable reference object, which in this case is the
Z boson. There are two complementary methods that yield a response variable R to be
used for calibration: the pT balance method and the missing transverse momentum (pmiss

T )
projection fraction (MPF) method.

Transverse momentum balance method

The pT balance method is the straightforward way to obtain a response variable R by
taking the ratio of the transverse momentum of the jet to the one of the Z boson.

RpTbal. = pjet
T
pZ

T
(4.1)

In an exclusive Z + jet event topology, with exactly one jet, pjet
T and pZ

T must be equal and
therefore RpTbal. = 1 if the jet was reconstructed correctly. Otherwise, the inverse value
of RpTbal. immediately gives rise to a correction factor for the jet, under the assumption
that the Z boson is reconstructed correctly. However, the inequality of their transverse
momenta is not only induced by detector imperfections, noise and pileup contributions,
but also by additional jet activity. As additional jets can arise from parton showers or
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gluon emissions, an exclusive Z + jet event topology is unlikely. To obtain a correction
factor from the pT balance method, the additional jet activity has to be eliminated.

MPF method

An alternative way to obtain a response variable is to take the missing transverse mo-
mentum ~p miss

T into account. In an exclusive Z + jet event topology and respecting the
vector properties of transverse momenta, the ~pT of the correctly reconstructed jet and
the Z boson must compensate each other.

~p jet
T + ~p Z

T = 0 (4.2)

Assuming that the Z boson is reconstructed correctly, but the jet reconstruction alters
its momentum by a response factor R, the sum returns ~p miss

T .

R~p jet
T + ~p Z

T = −~p miss
T (4.3)

Thus, inserting Equation 4.2 in Equation 4.3 yields the MPF response variable.

RMPF = 1 + ~p miss
T · ~p Z

T(
~p Z

T
)2 (4.4)

In contrast to the pT balance, the MPF response is hardly sensitive to additional jet
activity by taking into account the complete detector information. However, any poorly
calibrated detector component can bias the MPF results.

In an inclusive Z + jet event topology, there is usually more than one jet present in
the event. To avoid ambiguity, the selection of jets is ordered by transverse momenta and
the highest-pT (leading) jet is chosen as the jet to be calibrated. To provide a measure
of additional jet activity, an observable α is defined as the ratio of the second-highest-pT
(subleading) jet and pZ

T.

α = pjet2
T
pZ

T
(4.5)

The estimation of the pT balance or MPF response as a function of α makes it possible
to extrapolate their values to α → 0, representing an exclusive Z + jet event topology.
In this limit, both methods are expected to coincide and to yield the same correction
factor by their inverse response.

4.2.2 Measurement and simulation

Residual jet energy corrections are extracted from data and simulation samples made
available by the CMS collaboration. The following sections provide information about
the ones taken into account for the Z (→ µµ) + jets channel.
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Table 4.1: Information about the simulated samples used for the calibration. All samples are
combined to one simulation which is used in the following.

label process fixed order
DY1J DY + 1 jet LO
DY2J DY + 2 jets LO
DY3J DY + 3 jets LO
DY4J DY + 4 (and more) jets LO

Data

The data used for calibration belong to the Double Muon dataset, meaning that two
muons have been identified simultaneously by the trigger algorithm.

The data taking period in 2016 has been divided into several eras labelled with letters
from B to H, reflecting the time dependence of the detector performance. It was found
that several eras show compatible behaviour in terms of jet reconstruction, so that they
were grouped into three intervals of validity (IOV): beginning (BCD), middle (EF) and
end of data taking period (GH). The most important impact on the detector performance
was caused by dynamic inefficiencies in the tracking system, an issue whose fix defined
the transition of the IOV EF to the IOV GH [52]. Thus, the jet energy corrections are
derived separately for each IOV.
The events recorded within a certain time window are grouped into luminosity sec-

tions [53]. If a luminosity section is certified as good, meaning that the detector perfor-
mance meets the necessary requirements, it is used for the analysis. A data certification
file provides the information about good luminosity sections.

The certified data collected in 2016 correspond to an integrated luminosity of 35.9 fb−1.

Simulation

To obtain the residual corrections, the results from data have to be compared to simula-
tions. These simulations were created using the Pythia8 event generator, as introduced
in Section 2.5. The hard process matrix elements were provided by MadGraph5 at LO
precision. Parton showering was used to improve the agreement to data. Their merging
with the matrix element was provided by the MLM scheme [25]. The simulation of the
interaction of particles with the detector was performed with the Geant4 simulation
package.
The Z (→ µµ) + jets process is included in the Drell-Yan process [54] in association

with jets (DY + jets). Four independent simulated samples with a different number of
jets in the final state of the hard process are used and combined: exactly 1 jet, 2 jets, 3
jets and at least 4 jets, respectively. Table 4.1 provides an overview about the simulated
samples taken into account.
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4.2.3 Event selection

The events that are suitable for the calibration are chosen as follows according to several
requirements on the detector-level event topology. The relevant objects for the calibration
are the muons, which are used to reconstruct the Z boson, and the leading and subleading
jets.

Muon selection

Muon candidates are reconstructed by the PF algorithm. Muon identification and isola-
tion criteria are applied as introduced in Section 3.3.3. The tight identification criterion
ensures further rejection of misidentified or background muons, the tight isolation ensures
the rejection of muons originating from heavy-flavour quark decays. Additionally, muons
are only taken into account in a kinematic range of pseudorapidity |ηµ| < 2.3, determined
by the tracker coverage, and transverse momentum pµT > 20GeV, set above the trigger
threshold in data, which requires two muons to be reconstructed as isolated global or
tracker muon, one with a transverse momentum pµT > 17GeV and the second one with
pµT > 8GeV.

Figure 4.2 shows the distributions of the transverse momenta and pseudorapidities of
muons and antimuons.

Z boson selection

The four-momenta of the two muons passing the previous selection steps can be added
to form a dimuon system, which is called a Z boson candidate if the muons have opposite
charges and the resulting dimuon mass mµµ lies within a difference of 20GeV to the
official Z boson mass mZ

PDG = 91.1876GeV [8]. If the event contains three muons, the
Z boson candidate is chosen as the one whose mass is closest to mZ

PDG. Events containing
more than three muons are vetoed.
Figure 4.3 shows the transverse momentum, the mass and the rapidity of the recon-

structed Z boson.

Jet selection

Jets are clustered from PF candidates by the anti-kt algorithm with a distance parameter
of R = 0.4. The charged hadron subtraction (CHS) algorithm revises reconstructed jets
for charged hadronic PF candidates not originating from the reconstructed main collision
vertex, thereby reducing the pileup contribution.

The loose jet identification criterion, as introduced in Section 3.3.4, rejects noise or
badly reconstructed jets. As muons are also reconstructed as jets by the clustering
algorithm, each jet with an angular distance ∆R < 0.3 to one of the two muons which
are used for the Z boson reconstruction is vetoed to avoid double counting.

The JEC, except for residual or later corrections, are applied. They are applied to the
missing transverse momentum ~p miss

T by replacing those PF candidates that are clustered
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Figure 4.2: Distributions of the transverse momenta (top) and the pseudorapidity (bottom)
of the muon (left) and the antimuon (right). The data distributions are normalized to the
simulated distributions, resulting in a good agreement. The pseudorapidities of the muons
exhibit a dip at certain pseudorapidity values, originating from gaps in the muon system.
Muons with tracks in proximity to gaps can be vetoed because of insufficient identification
criteria. The ratio hints that these inefficiencies are not completely modelled in simulations.
These differences have no impact on the calibration purpose, as only well-reconstructed events
are taken into account. For a cross section measurement, corrections have to be applied.
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Figure 4.3: Distributions of the transverse momentum (top), the mass (bottom left) and the
rapidity (bottom right) of the Z boson. The data distributions are normalized to the simulated
distributions, resulting in a good agreement in the entire yZ and a wide pZ

T range. A small shift
of less than 0.2% can be observed in mZ, which does not affect the jet calibration.
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Figure 4.4: Distributions of the transverse momentum (left) and the pseudorapidity (right)
of the leading jet. The |ηjet1| < 1.3 selection was not applied for the right figure. The data
distributions are normalized to the simulated distributions, resulting in a good agreement in a
wide pjet1

T and the central pseudorapidity region.

Figure 4.5: Distributions of the transverse momentum of the subleading jet pjet2
T (left) and

α = pjet2
T /pZ

T (right). The α < 0.3 selection was not applied for these figures. The data
distributions are normalized to the simulated distributions. Additional jet activity is not
completely described by the LO simulation. These deviations are compensated in the final
results by the extrapolation α→ 0.
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into jets by the corrected jets and recalculating ~p miss
T . This yields the Type-I corrected

~p miss
T which is then used to calculate the MPF response.
After JEC, the jets are reordered by pT and the leading and the subleading jets are

selected. The leading jet is requested to have a transverse momentum of pjet1
T > 12GeV

and a pseudorapidity of |ηjet1| < 1.3.
Figure 4.4 shows the distributions of the transverse momentum and the pseudorapidity

of the leading jet.

α and ∆φ selection

To reduce the influence of additional jet activity in the selected events, the second jet
is resctricted to α = pjet2

T /pZ
T < 0.3. Furthermore, the leading jet and the Z boson

are requested to exhibit a back-to-back topology, requesting the angle between their
transverse momenta to fulfil |∆φ jet1,Z − π| < 0.34.
Figure 4.5 shows the distributions of the transverse momentum of the subleading jet

and the second jet activity α, indicating that additional jet activity is not completely
described by the LO simulation. The extrapolation α→ 0 compensates for this sort of
data-to-simulation discrepancy.
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Figure 4.6: Distributions of the pT balance response (left) and the MPF response (right)
separated into the IOVs BCD, EF and GH. The data distributions are normalized to the
simulated distributions.

4.2.4 Response estimation

As it was found that the detector performance varies during the data taking period,
three IOVs were chosen that for themselves show compatible behaviour in terms of jet
reconstruction, labelled with BCD, EF and GH. Figure 4.6 shows the distribution of
the two response methods for these IOVs in comparison to the simulation. Whereas the
MPF response is distributed around unity, the mean of the pT balance response is shifted
towards lower values as a result of the occurence of additional jets.

A shift towards lower response values can also be observed when comparing the respec-
tive distributions from the different IOVs to the ones from the simulation. The aim of
residual correction factors is to shift each jet pT so that the mean values of the data and
the simulated response distributions match. Different correction factors are necessary for
different IOVs, indicated by varying differences between data and simulation. To derive
these factors, the subleading jet activity has to be eliminated.

4.2.5 Extrapolation

The quantity α = pjet2
T /pZ

T was introduced as a measure for additional jet activity. Fig-
ure 4.7 shows the mean values of the pT balance, the MPF and the true response as a
function of α for the IOV BCD. The true response is defined in simulation only as the
ratio of the leading jet pT on detector level to the one on particle level.
Within the allowed range of α < 0.3, the response values exhibit an approximately

linear behaviour. To eliminate additional jets and obtain results corresponding to an
exclusive Z + jet event topology, the responses are extrapolated to zero using a linear
function. The sketch in Figure 4.8 illustrates this procedure. Decreasing pjet2

T forces any

40



4.2 Absolute residual corrections using Z (→ µµ) + jet events

Figure 4.7: Linear extrapolation of the pT balance, MPF and true response to α = 0 for the
IOV BCD. The lowest bin α < 0.05 is excluded because of the lack of events.

jet except for the leading jet to vanish. The use of α as extrapolation quantity allows for
a finer tuning dependent on the pZ

T region than the use of pjet2
T .

The strong sensitivity of the pT balance response to the occurence of additional jets is
indicated by the slope in Figure 4.7, whereas the MPF response remains stable with re-
spect to α. At α = 0, their extrapolated values agree for data and simulation, respectively,
within the uncertainties, given as statistical uncertainies propagated through the extra-
polation. The agreement provides the verification that the pT balance and MPF methods
coincide in case of an exclusive Z + jet event topology. Furthermore, the agreement of
the true response with both pT balance and MPF response in simulation confirms that
the methods yield suitable correction factors for the transverse momentum of a jet.

Figure 4.8: Sketch of the extrapolation procedure. Decreasing α forces additional jets to vanish,
resulting in an exclusive Z + jet topology.
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Figure 4.9: Ratio of response values of data to simulation as a function of pjet
T after the global

fit (post-fit). The fit result for the IOV BCD is shown as a dashed line with yellow uncertainty
bands (Run II). In contrast to the result from the 8TeV dataset (Run I), which is displayed as
the line with blue uncertainty bands, the linear parametrization had to be extended to allow
for an adequate fit convergence. Taken from [55].

4.3 Global fit results

The results of the absolute residual correction determination are provided as a func-
tion of pT of the reference object and additional jet activity. The previously explained
Z (→ µµ) + jet calibration channel is brought together with the Z (→ ee) + jet, which is
also provided by our KIT working group, γ + jet and multijet channels that are analysed
similarly.
The global fit is used to parametrize the pT balance and the MPF response from all

channels simultaneously as a function of pjet
T after extrapolating to α → 0. Nuisance

parameters are taken into account to respect uncertainties from the different channels.
The Z (→ µµ) + jet channel contributes to these uncertainties by the momentum scale
uncertainty for muons of the order of 0.2%. The result of the global fit for the early
data taking period BCD, corresponding to an integrated luminosity of 12.9 fb−1, is pre-
sented in Figure 4.9, provided by [55]. The inverse of the fit gives rise to pjet

T -dependent
absolute residual correction factors for jets in the low-|η| region. In combination with
ηjet-dependent relative residual correction factors, jet energies can be corrected for differ-
ences between data and simulation in the entire phase space which is accessible to the
detector.
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Figure 4.10: Distributions of the pT balance response (left) and the MPF response (right)
separated into the IOVs BCD, EF and GH, after applying the residual corrections. The data
distributions are normalized to the simulated distributions.

4.4 Closure test

To verfify the applicability of the methods used to derive both relative and absolute
residual corrections, their effect on the pT balance and the MPF response distributions is
presented in Figure 4.10. The ratios indicate that the shift between data and simulation
is highly reduced in comparison to Figure 4.6. Especially the MPF response in IOV EF
and GH shows a remarkable agreement within their statistical uncertainties.
This impression can be confirmed by Figure 4.11, showing the mean values of the

responses as a function of pZ
T with and without residual corrections applied. It is worth

noting that, before applying residual corrections, the response values for the IOV GH
steadily lie between the other IOVs and the simulation, which is an artifact of the dynamic
inefficiency issue in the tracking system [52]. Due to the residual corrections, the MPF
response values from the respective IOVs are consistently brought into agreement with
the simulation within 1% over the entire pZ

T range. The pT balance response values are
consistently shifted as well, however, they show sizeable differences to the simulation at
low pZ

T.
The illustration of the responses as a function of pZ

T demonstrates the effect of absolute
residual corrections. Figure 4.12 illustrates the effect of relative residual corrections by
comparing the mean values of the responses as a function of |ηjet1|, with and without
residual corrections applied. In contrast to the MPF response, the pT balance response
exhibits a significant decrease toward higher |ηjet1|.

In the pseudorapidity region beyond |ηjet1| < 2.4, which is not covered by the tracking
system, the agreement between data and simulation becomes unstable. Nevertheless, the
overall agreement in this region is still improved by the residual corrections.
The differences between pT balance and MPF response method are included in the

JEC uncertainties, as described in Section 4.5.
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Figure 4.11: The pT balance response (top) and the MPF response (bottom) as a function of pZ
T

separated into the IOVs BCD, EF and GH, before (left) and after (right) applying residual
corrections, compared to the simulation (MC).
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Figure 4.12: The pT balance response (top) and the MPF response (bottom) as a function
of ηjet1 separated into the IOVs BCD, EF and GH, before (left) and after (right) applying
residual corrections, compared to the simulation (MC). The |ηjet1| < 1.3 selection was not
applied in these figures.
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4.5 Jet energy correction uncertainties

The results of the full calibration chain are centrally provided for use by analysts of the
CMS collaboration. As any measurement, the calibration of jet energies can be biased by
systematic effects due to approximations and limited knowledge of detector components.
Uncertainties are attached to the derived correction factors to take into account the
following effects.

• Pileup:
An uncertainty on offset corrections can be derived from the difference between the
true and the measured offset contribution in a simulated event and the variation of
the mean number of pileup interactions from an average of 〈µ〉 = 25. A significant
contribution arises at low pjet

T .

• Relative scale:
An uncertainty on both simulated and residual ηjet-dependent relative corrections
is derived by studying the differences in the physics modelling (parton shower,
hadronization and multiple parton interaction) among event generators and in the
jet energy resolution between data and simulation.

• Absolute scale:
An uncertainty on both simulated and residual pjet

T -dependent absolute corrections is
derived from reconstruction uncertainties of the reference objects (photon, electron
and muon) and the differences in the physics modelling among simulations.

• Jet flavour:
An uncertainty on flavour corrections is derived by studying differences among
event generators in the simulation of partons with a particular flavour.

• Time stability:
An uncertainty due to varying detector conditions can be derived by comparing
the corrections obtained for the full data taking period to the luminosity-weighted
results for each era.

• Method & sample:
An additional uncertainty is derived from the difference between the results of the
pT balance and the MPF method and among results from different data samples.
Thereby remaining discrepancies beyond statistical and systematic uncertainties
can be covered.

Figure 4.13 shows the uncertainty results obtained for the 2016 data taking period
taken from [55]. The individual uncertainty sources are combined as the square root of
their quadratic sum. With an uncertainty of less than 1%, the highest precision can be
achieved for a central pseudorapidity jet with a sufficiently large transverse momentum
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Figure 4.13: Relative jet energy uncertainties as a function of pjet
T in the low ηjet region (left)

and as a function of ηjet in the low pjet
T region (right). The respective uncertainty sources are

shown as symbols. The yellow shape represents the total uncertainty when taking into account
pileup, relative and absolute scale and method & sample uncertainties. Including time stability
and jet flavour uncertainties results in the grey shape. For comparison, the result from the
8TeV dataset (Run I), excluding time stability and flavour uncertainties, is displayed as red
shape. Taken from [55].

of more than 100GeV. This uncertainty is slightly larger than the one obtained in the
8TeV dataset (Run I), which is mainly because of the method & sample uncertainty.
However, given the challenges with which the collaboration was faced during the data
taking at high luminosities, such as increased pileup from an average 〈µ〉 ≈ 20 to 〈µ〉 ≈ 25
and dynamic inefficiencies in the tracking system [52], this value is an indication for the
outstanding performance of jet reconstruction in the CMS detector.

4.6 Summary

In this chapter, the workflow of the jet energy calibration within the CMS collaboration
was presented. The described methods have been developed for the data taking periods
with a collision energy of 7TeV [50] and 8TeV [51]. The results of the different calibration
steps were provided by several working groups. For the data recorded in the year 2016,
with a collision energy of 13TeV, the analysis of Z (→ µµ) + jet events used for the
determination of absolute residual corrections has been performed and presented within
this thesis. The results of a global fit, which combines the results of all channels for the
residual corrections to achieve the highest accuracy, have been validated by closure tests.
The estimation of the final JEC uncertainties was described.

During the data taking period in 2016, the collaboration faced challenges such as an
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increase of pileup in comparison to previous periods and a dynamic inefficiency in the
tracking system. Especially the fixing of the latter prompted the separation of the data
taking period into several IOVs, for which data-driven residual corrections were derived
independently. This practice of subdividing data into IOVs in order to better evaluate
time dependent effects is maintained for subsequent data taking periods in the years 2017
and 2018.

The calibration results presented within this thesis have been used by various analyses
which include the 2016 dataset. However, during the processing of the 2017 and the
2018 calibration, additional detector issues have been discovered that necessitate further
studies on their effects on the 2016 jet energy calibration. Because of those ongoing
studies the final correction results could not be presented here. The publication of final
results on the complete 13TeV dataset (RunII) is expected within the next years but is
beyond the scope of this thesis.
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CHAPTER 5

Measurement of the triple differential inclusive
Z (→ µµ) + jet cross sections

The measurement of cross sections is a central task in particle physics, as it immediately
allows to compare experimental results to theoretical calculations. At the LHC, protons
collide at energies at which their inner structure is observable. This inner structure
can be described by parton distribution functions (PDF). The precision of theoretical
calculations is determined by the precise knowledge of the PDFs. Since these functions
cannot yet be calculated from first principles, the measurement of a well-understood
process can in turn be used for constraints.

The aim of this thesis is to provide inclusive cross section results for Z boson production
at a centre-of-mass energy of 13TeV in association with one jet, where the Z boson decays
to a muon-antimuon pair. The measurement of this process has several advantages from
an experimental and theoretical point of view which are discussed in Section 5.1. It
is compared to theoretical predictions calculated at NNLO precision. The results can
subsequently be used to improve the description of the proton PDFs.
A number of analyses within the CMS collaboration addressing a similar task have

been published in the previous years, such as measurements of the differential Z boson
production cross section at 13TeV [56] and the differential Z boson production cross
section in association with jets at 8TeV [57] and 13TeV [58]. A double differential inclusive
Z boson analysis using the decay channel into an electron-positron pair at 8TeV [59] and
another one using the decay channel into a muon-antimuon pair at 13TeV [60] are worth
to be mentioned as precursor for this thesis.
A triple differential approach was first used by a dijet measurement at 8TeV [61],

introducing the rapidity variables y∗ and yb, with y∗ being half the rapidity separation
of the two selected jets and yb being the boost of their centre-of-mass system. While y∗
is given by the scattering angle and therefore dependent on the matrix element of the
subprocess, yb is determined by the momentum fractions of the involved partons. For
this reason, cross section contributions originating from the PDFs and those resulting
from the matrix element can be disentangled.
Within this thesis, the triple differential approach is first applied to Z (→ µµ) + jet

events. The rapidity variables are derived from the Z boson and the leading-pT jet. The
cross section is measured as a function of the Z boson transverse momentum pZ

T and the
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Figure 5.1: Feynman diagrams of all parton-parton scattering processes contributing to Z + jet
production at LO.

rapidity variables y∗ and yb.
Furthermore, the use of a variable φ∗η, derived from muon angular observables, as an

alternative to pZ
T, enables a cross section measurement with reduced uncertainty because

of the better resolution in this variable compared to momentum variables.
In the following sections, the analysis is explained in detail. At first, the advantages

of the triple differential inclusive Z (→ µµ) + jet cross section measurement and the
used observables are introduced in Sections 5.1 and 5.2. Subsequently, the datasets
and simulations which are taken into account are presented in Section 5.3. The details
of the object reconstruction are explained in Section 5.4. Unfolding is used to correct
the measured distributions for detector effects based on a so-called forward smearing
aproach, which is described in Section 5.5. Experimental uncertainties associated with the
measurements are explained in Section 5.6. The measured cross sections are compared
to the simulations in Section 5.7. Theoretical predictions have been computed at NNLO
precision as described in Section 5.8. At last, the measured cross sections are compared
to the predictions in Section 5.9.

5.1 Z boson production in association with at least one jet
at the LHC

As previously discussed in Chapter 4, the analysis of Z boson events in association with
jets is of interest especially for tasks that require high experimental precision, such as jet
energy calibration. As the CMS detector is most accurate at the reconstruction of muons
and antimuons, the muonic decay channel of Z bosons provides a very clear signature
with low background contribution.

Even more important, the measurement of the inclusive cross section for Z boson
production in association with one jet in proton-proton collisions inherits unique advan-
tages from the theoretical perspective. Figure 5.1 shows the Feynman diagrams of those
parton-parton scattering subprocesses that contribute to the cross section at LO and
which resemble the Drell-Yan process [54] in association with jets. The contribution of a
particular subprocess to the cross section highly depends on the momentum fractions of
the partons and is therefore determined by the PDFs.
From a comparison of the subprocesses and the knowledge of PDFs determined from
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Figure 5.2: 2D histogram of the (φ∗
η, pZ

T) bin occupation filled from an LO simulation to illustrate
their correlation.

previous experiments, as already presented in Figure 2.5, a number of conclusions can be
made. There is a high probability for a quark to carry a large momentum fraction as well
as for a gluon or an antiquark to carry a small momentum fraction. Thus, contributions
from the gluon-antiquark subprocess tend to result in events with low energy content. As
the PDF of the gluon is much larger than the one of the antiquark, the contribution of the
quark-antiquark subprocess is less favoured than the quark-gluon subprocess. This leaves
quark-gluon scattering to be expected as the dominant subprocess for the production of
inclusive Z + jet events.

Further subprocesses, namely quark-quark, antiquark-antiquark and gluon-gluon scat-
tering, can contribute at NLO or NNLO. As well as the previously discussed subprocesses,
the amount of their contribution is highly dependent on the momentum fractions carried
by the partons. To gain insight in the subprocess decomposition, experimental observ-
ables are required that provide information about these fractions in the reconstructed
event. This can be achieved by the rapidity observbles y∗ and yb. The observables are
explained in the following section.

5.2 Observables

In an exclusive Z + jet event topology, the momenta of the Z boson and the jet cancel
out each other in the transversal plane. Thus, their transverse momenta must be equal.
However, due to experimental (e.g. pileup) and theoretical reasons (e.g. gluon radiation),
the appearance of additional jets in an event is very likely. To reduce bias by additional
jet activity, pZ

T as the observable with higher experimental reconstruction precision is
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Figure 5.3: Visualization of y∗ and yb. The cone illustrates a jet, the lines illustrate a Z boson
that decays to muons, the horizontal line illustrates the beam axis. Large values of yb correspond
to a boosted Z + jet system, large values of y∗ correspond to large scattering angles.

preferred over pjet
T or an averaged pT observable.

For dilepton events, a variable φ∗η can be used to further improve the experimental reso-
lution in comparison to transverse momenta. φ∗η is determined only by angular observables
of the muons, namely their pseudorapidities ηµ± and their azimuthal angles φµ± .

φ∗η = tan
(
π

2 −
φµ

+ − φµ−

2

)
sin (θ∗) (5.1)

cos (θ∗) = tanh
(
ηµ

+ − ηµ−

2

)
(5.2)

It can be thought of as the transverse momentum of the dilepton system divided by the
dilepton invariant mass, thus conserving the pZ

T dependence, but cancelling out the effects
of momentum resolution [62]. Since angular observables can be measured more precisely
than energy-related ones, φ∗η is expected to be measured with a better resolution than
pZ

T. On the other hand, as can be seen in Figure 5.2, the observables are correlated, such
that pZ

T and φ∗η can be treated analogously.
The rapidities yZ and yjet are the variables that give an indication to the initial partonic

states of the event. Instead of their immediate utilization, it is convenient to combine

52



5.2 Observables

Figure 5.4: 2D histogram of the (y∗, yb) bin occupation filled from an LO simulation to illustrate
the asymmetry between the distribution of same-side (SS) and opposite-side (OS) events.

them to the observables y∗ and yb. This approach was necessary for the dijet analysis [61]
to avoid ambiguities of jets as indistingishable objects. As the Z boson is distinguishable
from a jet, the ambiguity is no longer present in a Z + jet analysis. However, as explained
in the following, the advantage of sensitivity to the PDFs remains.
The observable y∗ is defined as the rapidity separation

y∗ = 1
2 |y

Z − yjet| (5.3)

It is closely related to the scattering angle in the centre-of-mass system, which itself
is determined by the matrix element of the subprocess. In turn, information about the
partonic momentum fractions x1 and x2 is contained within the observable yb, defined
as the boost of the centre-of-mass system.

yb = 1
2 |y

Z + yjet| (5.4)

Partons carrying similar values of x1 and x2 lead to a small boost, otherwise to large
boost.
This results in a natural way to distinguish opposite-side (OS) from same-side (SS)

events, where both objects either lie in opposite or the same rapidity directions. A geomet-
ric visualization of possible Z boson and jet rapidity configurations in the respective y∗
and yb regions can be found in the sketch in Figure 5.3.

Figure 5.4 illustrates the event distribution in the y∗-yb-plane, showing an asymmetry
between the number of OS and SS events. This asymmetry can be explained by differences
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in the parton-parton scattering subprocess decomposition in the respective phase space
regions. As pointed out in Section 5.1, inclusive Z + jet production is expected to be
dominated by the quark-gluon subprocess.

An event in the high y∗ region requires both partons to carry similar momentum frac-
tions, which is unlikely for the quark-gluon subprocess, as well as for the quark-antiquark
subprocess. Therefore, a proper description of the OS region requires calculations at NLO
or NNLO precision that include further subprocesses, such that large NLO k-factors can
be expected.

An event in the high yb region results from partons with different momentum fractions.
The quark-gluon subprocess can therefore be expected to dominate this phase space
region almost exclusively. This region will be of particular interest for gluon PDF studies.

A three-dimensional phase space spanned by the variables (pZ
T, y∗, yb) and (φ∗η, y∗, yb)

permits access to the kinematics of the colliding partons, with the latter providing an
even higher precision. The differential cross section measurement based on this approach
can subsequently be used for PDF studies.

5.3 Measurement and simulation

The data as well as simulation samples are made available by the CMS collaboration.
The following sections provide information about the ones taken into account for the
inclusive Z (→ µµ) + jet cross section analysis.

5.3.1 Data

Datasets contain events that are classified according to certain trigger requirements. The
data used within this analysis belong to the Single Muon dataset, meaning that at least
one muon has been identified by the trigger algorithm.

As already described in Section 4.2.2, the data taking period in 2016 has been divided
into several intervals of validity (IOV), reflecting the time dependence of the detector
performance. The certified data collected in 2016 correspond to an integrated luminosity
of 35.9 fb−1.

5.3.2 Simulations

To gain a deeper understanding of the process of interest, simulations were created and
will be compared to the measurement. The event generators Pythia8 and Herwig++
were used to generate events, as introduced in Section 2.5. For complicated processes, the
matrix elements were calculated by matrix element generators such as MadGraph5_-
aMC@NLO. The simulation of parton showers was used to improve the description of the
process. The subsequently used hadronization method depends on the event generator.
A simulation of the interaction of particles with the detector was performed with the
Geant4 simulation package.
The inclusive Z (→ µµ) + jet process is described by a Drell-Yan process [54] in

association with jets. Several simulated samples have been used:

54



5.3 Measurement and simulation

Table 5.1: The simulated samples used for this analysis. The same labels are also used in
subsequent figures.

label process fixed order
Signal
DY (P8+MG) DY + jets LO
DY (HW+MG) DY + jets LO
DY (P8+aMC) DY + jets NLO
Background
ZZ Z + Z LO
WZ W + Z to leptons + jets NLO
WW W + W to leptons NLO
TT top quark-antiquark pair + jets LO
TW single top quark/antiquark + W NLO

• P8+MG: A simulation at LO precision created with Pythia8 using MadGraph5
and the MLM parton shower merging scheme is used as reference simulation for
subsequent figures. To improve the normalization to the luminosity of the data, its
total cross section is scaled by a NNLO k-factor.

• HW+MG: To study the difference between hadronization models, a simulation at
LO precision created with Herwig++ using MadGraph5 and the MLM parton
shower merging scheme is taken into account.

• P8+aMC: For a comparison to NLO precision, a simulation created with Pythia8
using MadGraph5_aMC@NLO and the FxFx multijet merging scheme is taken
into account.

Apart from the Drell-Yan process, processes whose final states can be misidentified as
inclusive Z (→ µµ) + jet events have to be included. The contribution of these background
processes needs to be estimated to correct the measured cross sections. Besides the Z
boson decay channels to a tau lepton-antilepton pair (Z→ ττ), which is already included
in the simulation of the DY + jets process, there are two sorts of processes likely to
be misidentified as inclusive Z (→ µµ) + jet events: diboson production, where muons
can originate from any boson, and top quark production, where muons originate from W
bosons resulting from a top quark decay to a bottom quark.

• ZZ: The production of two Z bosons was simulated with Pythia8, relying on a
built-in LO matrix element calculation.

• WZ: The production of a Z boson and a W boson in association with jets, restricted
to the leptonic decay channel of both bosons, has been simulated with Pythia8
at NLO precision with MC@NLO parton shower matching.

• WW: The production of two W bosons both decaying leptonically has been simu-
lated with Pythia8 at NLO with Powheg parton shower matching.
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Figure 5.5: Feynman diagrams of background processes which can be falsely identified as
inclusive Z + jet event.

• TW: Single top quark or antiquark production in association with a W boson has
been simulated with Pythia8 at NLO with Powheg parton shower matching.
Two equivalent simulations were combined, one of them representing the top quark
and the other one the top antiquark contribution.

• TT: The production of top quark-antiquark pairs has been simulated by Pythia8
using a LO MadGraph5 matrix element merged with parton showers according
to the MLM scheme.

Table 5.1 provides an overview of the simulated samples taken into account. Feynman
diagrams of these processes are presented in Figure 5.5. Some further simulation samples,
such as single top quark or antiquark production in the s- and t-channels and W pro-
duction in association with jets have been examined and yield no significant background
contributions.

5.4 Object reconstruction and selection

In the CMS detector, objects are reconstructed using the Particle Flow algorithm which
takes into account information from all detector subsystems. The observables which are
relevant for the triple differential inclusive Z + jet cross section measurement have been
explained in Section 5.2.
To access these observables, the Z boson and one jet have to be reconstructed in an

event. The critera regarding the object reconstruction and their selection, which are
chosen similarly to Chapter 4, are presented in the following.
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Figure 5.6: Transverse momentum (top) and pseudorapidity distributions (bottom) of the
leading-pT muon (left) and the subleading-pT muon (right). The simulated distributions are
normalized to the luminosity of the data, resulting in good agreement.

5.4.1 Muon selection

Muon candidates are reconstructed by the Particle Flow algorithm. Additional selection
criteria ensure further rejection of misidentified or background muons as introduced in
Section 3.3.3. The tight identification criterion ensures further rejection of misidentified
or background muons, the loose isolation reduces the number of muons originating from
heavy-flavour quark decays.
Corrections are applied on the transverse momentum pµT of a muon to correct for

geometric properties such as detector misalignment (Rochester corrections) [63, 64]. Fur-
thermore, muons are only taken into account in a kinematic range of pseudorapidity
|ηµ| < 2.4 and transverse momentum pµT > 25GeV, set slightly above the trigger thresh-

57



Measurement of the triple differential inclusive Z (→ µµ) + jet cross sections

old in data,which requires at least one muon to be reconstructed as an isolated global or
tracker muon with a transverse momentum pµT > 24GeV.

The identification and isolation criteria are applied equivalently to data and simulation.
A trigger requirement has explicitly been used in the dataset classification. It is there-

fore applied to data but not necessarily to simulations.
The use of identification and isolation criteria for the selection suppresses the ap-

pearance of misidentified muons. Strong requirements, on the other hand, increase the
probability of rejecting muons that are suitable for the analysis. The efficiency ε as the
fraction of accepted muons for an identification or isolation working point was estimated
via tag-and-probe by the CMS collaboration [65]. It was found that the efficiency within
Monte Carlo simulations slightly differs from the efficiency in data, as it has been ob-
served in Figure 4.2. This difference is compensated by attaching a weight w to each
event following from the Data/MC scale factors SF (µi) for the muon µi.

SF (µi) = εMC(µi)
εData(µi)

(5.5)

These scale factors are derived for both identification and isolation. Since these are
independent for both muons in the event, the weightw can be expressed as a multiplicative
combination:

w = SFID(µ1)SFID(µ2)SFIso(µ1)SFIso(µ2) (5.6)

In a similar way, the efficiencies for the trigger selection in data are compensated by the
use of a weight wtrigger attached to each event. As it is sufficient for one muon to be
triggered, correlations have to be taken into account for the correct efficiency estimation.
The weight is therefore given by:

wtrigger = 1
1− (1− εtrigger(µ1)) (1− εtrigger(µ2)) (5.7)

Distributions describing the kinematics of the muons are shown in Figure 5.6, showing a
good agreement with differences of less than 10% between data and the simulation.

5.4.2 Z boson selection

The four-momenta of two muons passing the previous selection steps can be added to
form a dimuon system, which is called a Z boson candidate if the muons have opposite
charges and the resulting dimuon mass mµµ lies within 20GeV of the official Z boson
mass mZ

PDG = 91.1876GeV [8]. If the event contains more than two muons, more than
one combination leads to a dimuon system. In this case, the Z boson candidate is chosen
as the one whose mass is closer to mZ

PDG.
Distributions describing the Z boson kinematics are shown in Figure 5.7. The distribu-

tions of pZ
T and φ∗η show small deviations of less than 20% between data and simulation,

which is acceptable for an LO simulation.
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Figure 5.7: Transverse momentum (top left), rapidity (top right) and mass distributions (bottom
left) of the Z boson and the φ∗

η distribution (bottom right). The simulated distributions are
normalized to the luminosity of the data.

5.4.3 Jet selection

Jets are clustered from Particle Flow candidates by the anti-kt algorithm with a distance
parameter of R = 0.4, as introduced in Section 2.6. The CHS algorithm revises recon-
structed jets for charged hadronic PF candidates not originating from the reconstructed
hard scattering vertex, thereby reducing the pileup contribution. To improve its perfor-
mance, the selection is limited to jets in a rapidity range of yjet < 2.4, where the tracking
system is able to identify charged hadrons.
Further selection criteria are applied, as introduced in Section 3.3.4. The loose jet

identification rejects noise or badly reconstructed jets. The medium pileup jet ID working
point is used to veto jets likely to originate from pileup.
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Figure 5.8: Transverse momentum (top left) and rapidity distributions (top right) of the leading
jet, y∗ (bottom left) and yb distribution (bottom right). The simulated distributions are
normalized to the luminosity of the data.

As even isolated muons are reconstructed as a jet by the clustering algorithm, each
jet with an angular distance ∆R < 0.3 to one of the two muons which are used for the Z
boson reconstruction is vetoed.

The remaining jets are ordered by pT after applying the jet energy corrections and the
highest-pT (leading) jet is selected. Each event is further requested to contain a leading
jet with a transverse momentum of pjet1

T > 20GeV.
Distributions resulting from the kinematics of the reconstructed leading jet are shown in

Figure 5.8. Whereas the distributions of yjet1 and yZ are well described by the simulation,
y∗ and yb exhibit sizeable deviations. Especially for the description of the y∗ distribution,
calculations at higher orders are required, as discussed in Section 5.1.
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Figure 5.9: Distributions of the average number of pileup events per lumi section 〈nPU〉 be-
fore (left) and after pileup reweighting (right).

5.4.4 Pileup reweighting

The distribution of the number of pileup interactions nPU in the simulation is only an
estimate of the distribution in the experiment. In data, the corresponding accessible
quantity is 〈nPU〉, meaning the average number of pileup interactions per lumi section,
which can be measured from beam properties. To improve the agreement between data
and simulation, each simulated event is weighted according to its 〈nPU〉 value, such that
the distribution of all events matches the actual distribution in data. The effect of pileup
reweighting on the 〈nPU〉 distribution is shown in the top row of Figure 5.9, leading to a
good agreement between data and simulation.

5.4.5 Binning

The measurement of differential cross sections is based on the counting of event numbers
by filling histograms, which makes the choice of an adequate histogram binning essential.
The binning results from a compromise between the granularity, the statistical precision
and the resolution of the observable.

A finite number of bins implies a loss of information, although necessary to ensure an
acceptable statistical precision in an experiment with a finite number of events. Even if
this number is sufficiently high, a reasonable minimal bin width is determined by the
detector resolution. A bin width below the detector resolution gives rise to migrations
across bins, causing challenges for unfolding, which is a common procedure used for the
correction of detector effects.

For angular variables such as muon and jet rapidities, the resolution is expected to be
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Table 5.2: Bin boundaries of triple differential binning in y∗, yb and pZ
T or φ∗

η.
observable bin edges

y∗ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5
yb 0.0, 0.5, 1.0, 1.5, 2.0, 2.5

central binning (C)

pZ
T/GeV 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100,

110, 130, 150, 170, 190, 220, 250, 400, 1000

φ∗η
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5,
2.0, 3.0, 4.0, 5.0, 7.0, 10, 15, 20, 30, 50

edge binning (E)

pZ
T/GeV 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100,

110, 130, 150, 170, 190, 250, 1000

φ∗η
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5,
2.0, 3.0, 5.0, 10, 50

extra binning (X)
pZ

T/GeV 25, 30, 40, 50, 70, 90, 110, 150, 250
φ∗η 0.4, 0.6, 0.8, 1.0, 5.0

low in comparison to the energy resolution. The large spacing of the chosen y∗ and yb
binning in Table 5.2 ensures that the resolution limit is not reached.
The pZ

T and the φ∗η binning corresponds to that chosen by previous CMS measure-
ments [56, 58]. A resolution study, which is part of the unfolding Section 5.5.2, asserts
that the bin widths remain well above the detector resolution.

However, modifications have been made in certain phase space regions where the event
count per bin becomes insufficient to guarantee statistical significance. The different
binnings for pZ

T and φ∗η are listed in Table 5.2. In the central rapidity regions, a central
binning (C) is used. An edge binning (E) has to be used in the edge regions, such that
the resulting bins contain at least 50 events in the P8+MG simulation sample, which are
necessary for further studies that are part of the unfolding Section 5.5. Likewise, the bin
containing the maximal y∗ values needs to be modified further to fulfil this requirement,
resulting in an extra binning (X).
Which pZ

T or φ∗η binning is applied in which rapidity bin can be retrieved from the
map in Figure 5.10. The triangular structure is a result of the phase space choice: no
Z boson or jet rapidity observables beyond |y| = 2.4 have been taken into account as a
consequence of detector properties.
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Figure 5.10: Map of which pZ
T or φ∗

η binning, as defined in Table 5.2, is used in which rapidity
bin.

5.5 Unfolding

To facilitate a comparison of the measurement to other experimental results or theoretical
calculations, the measured distributions have to be corrected for effects that result from
the impact of the detector itself. In case of a cross section measurement, the main effects
of detector bias are inefficiencies and migrations across measurement bins.

Inefficiencies will occur if an object of interest is for example not reconstructed inside
the detector acceptance. Apart from inefficiencies, it is also possible that a different
object is falsely identified as an object of interest.

Migrations arise from the fact that a quantity can only be determined with a limited
resolution, such that its measured value differs from the original value. Their difference
is randomly distributed, such that the original value can not be recovered on an event-
by-event basis.

Unfolding is a common tool to correct for both mentioned detector effects. A detector
simulation provides the necessary knowledge about the connection between the measured
and the original values of a given observable. In the following, the original values are
referred to as particle-level or generated (Gen) observables. They result from a simulation
of the signal process as described in Section 5.3.2. Propagating the particle-level quantities
through the detector simulation yields values as measured in the experiment, in the
following referred to as detector-level or reconstructed (Reco) quantities.
Mathematically, the connection between particle-level and detector-level can be ex-

pressed by a convolution integral. In a discretized phase space, which is the usual case
when binning histograms for a cross section measurement, this integral turns into a ma-
trix multiplication. The response matrix (Kij) gives the probability for a value generated
in bin j of the particle-level histogram hGen to be reconstructed in bin i of the detector-
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Figure 5.11: The pZ
T (left) and the φ∗

η (right) distributions on detector level derived from
different simulated samples compared to the data after background subtraction. The simulated
distributions are normalized to the data for a shape comparison. A sizeable difference between
the HW+MG simulation and the data occurs at high pZ

T.

level histogram hReco. Inefficiencies are included in the normalization of the response
matrix K. Misidentified events, in the following referred to as fakes, are respected by
adding a histogram hFake.

The equation to be solved can be formulated as:

hReco = K hGen + hFake (5.8)

There are several possibilities to solve this equation, depending on the properties of the
response matrix. The easiest way to access hGen is via a simple matrix inversion, which
works well if the response matrix K is sufficiently diagonal. In this case, migrations
among the bins are small and appear mainly between neighbouring bins.
The condition number is an indicator of the invertibility of the response matrix. It

is defined as the ratio between the largest and the smallest eigenvalue. If the condition
number becomes large, a numerical matrix inversion becomes unstable and likely to create
unphysical fluctuations.

This can be reduced by regularization techniques. The D’Agostini algorithm provides
an iterative method[66], whereas the TUnfold framework [67] introduces an additive
regularization term proportional to a parameter τ . However, regularization is not always
needed. At the suggestion of the CMS statistics committee, matrix inversion without
regularization is recommended to be used if the condition number of the response matrix
is smaller than 10 [68].

Several simulations (DY + jets) that describe the inclusive Z (→ µµ) + jet production
have been introduced in Section 5.3.2. The distributions shown in Figures 5.6, 5.7 and 5.8
indicate that the chosen backgrounds in conjunction with the P8+MG simulation at LO
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precision describe the data sufficiently well. Therefore, it is used for the construction of
the response matrices.
The P8+MG simulation has been favoured over the P8+aMC simulation at NLO

precision because the latter suffers from the occurrence of negative event weights, leading
to technical challenges in phase space regions with low statistical occupation. However,
it is used as a cross check, as well as the HW+MG simulation created by Herwig++.
A shape comparison of the simulated pZ

T and φ∗η distributions on detector level to
the data distributions is shown in Figure 5.11. The HW+MG simulation shows sizable
deviations from the data. A potential bias of unfolding results which arise from these
deviations is included in the systematic unfolding uncertainty introduced in Section 5.5.6.

5.5.1 Response matrices

The unfolding procedure is able to correct a measurement for inefficiency, misidentifica-
tion and smearing effects by the use of a response matrix containing all the necessary
information. It also makes it possible to take correlations among bins into account.
The response matrix is constructed by filling events from the simulation into a two-

dimensional histogram. Only events that pass the selection both on particle-level and on
detector-level are filled according to the generated bin on the x-axis and the reconstructed
bin on the y-axis. Each column is normalized to the total number of generated events in
the corresponding bin. Inefficiency and misidentification effects are taken into account by
filling additional one-dimensional histograms with events that do not pass the particle-
level or detector-level selection, respectively.
Response matrices for migrations among bins of pZ

T, φ∗η, yZ, yjet1, y∗ and yb, derived
from the P8+MG simulation, are shown in Figure 5.12. Migrations occur mainly between
neighbouring bins of φ∗η, pZ

T and yZ with a probability at percent level, migrations between
further bins occur with a probability of less than one permille.

However, migrations between bins of yjet1 can be observed with a significant probability,
even to non-neighbouring bins. These migrations propagate to y∗ and yb. They will occur
if the leading reconstructed jet does not originate from the leading generated jet, but
from a subleading generated jet. The order of the jets is therefore switched due to the
detector resolution in pjet

T . The use of additional selection criteria to reduce additional
jet activity, for example kinematic cuts on the ratios pjet2

T /pZ
T or pjet2

T /pjet1
T leads to a

significant event loss without satisfying improvement of the respective response matrix.
The effect, in the following referred to as jet switching, is therefore treated as a detector
effect, covered by unfolding and further discussed in Section 5.5.4.
The detector resolution of each observable can vary in different phase space regions.

To correctly account for migrations within the triple-differential phase space, a mapping
to a one-dimensional global binning has to be introduced. The pZ

T and φ∗η histograms of
each rapidity bin are arranged consecutively to create a combined histogram with 264
and 231 global bins, respectively. The map in Figure 5.13 illustrates the order of the
rapidity bin arrangement. The rapidity bin with index 1 will be referred to as the central
rapidity bin in the following sections, with index 5 as the high-yb and with index 15 as
the high-y∗ bin. Resulting response matrices for this approach, derived from the P8+MG
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Figure 5.12: Response matrices for migrations among bins of pZ
T (top left), φ∗

η (top right), yZ

(centre left), yjet1 (centre right), y∗ (bottom left) and yb (bottom right) derived from the
P8+MG simulation.
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Figure 5.13: Order of the rapidity bin arrangement when mapping the triple differential phase
space to a one-dimensional histogram. The rapidity bin with index 1 is called the central
rapidity bin, with index 5 the high-yb and with index 15 the high-y∗ bin.

simulation, are shown in Figure 5.14.
Response matrices derived from full detector simulations can suffer from a limited

number of events. For this reason, a so-called forward smearing approach is used for
this analysis. Inefficiency, misidentification and resolution parameters are estimated from
the simulation and the response matrices are filled using a toy Monte Carlo simulation.
The advantage resulting from this approach is that the statistical uncertainty due to
insufficient bin occupations can be reduced to a negligible level. On the other hand,
systematic uncertainties are introduced to reflect the dependence on the estimation
methods, which are explained in the following sections.

5.5.2 Resolution

To estimate the resolutions, the generated and the reconstructed values of a given observ-
able are compared separately in each bin on an event-by-event basis. Their difference,
normalized to the generated value, is filled into a histogram to derive the relative resolu-
tion of pZ

T and φ∗η.

R(pZ
T) = pZ,Reco

T − pZ,Gen
T

pZ,Gen
T

(5.9)

R(φ∗η) =
φ∗,Reco
η − φ∗,Gen

η

φ∗,Gen
η

(5.10)

Since y∗ and yb are defined as combinations of rapidities of objects with different resolution
characteristics, the initial observables yZ and yjet1 are used. It is not reasonable to
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Figure 5.14: Response matrices for triple differential unfolding in (pZ
T, y∗, yb) (top) and

(φ∗
η, y∗, yb) (bottom) derived from the P8+MG simulation.
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Figure 5.15: Examples of resolution histograms of pZ
T at low (left) and at high transverse

momentum (right) in the central rapidity bin. A Gaussian fit (orange) can not fully describe
the shapes, especially at low energies. A symmetrized Crystal Ball function (violet) is able to
describe the non-Gaussian tails.

calculate a relative resolution of a quantity distributed over a range which contains zero,
therefore absolute instead of relative resolutions are derived.

R(yZ) = yZ,Reco − yZ,Gen (5.11)
R(yjet1) = yjet1,Reco − yjet1,Gen (5.12)

To avoid bias in the resolution of yjet1 originating from jet switching, reconstructed jets
are matched to generated jets within an angular distance of ∆R < 0.2. The rapidity of
the matched generated jet is taken into account for the calculation of R(yjet1).

Histograms of R(pZ
T) or R(φ∗η), R(yZ) and R(yjet1) are filled for each bin of (pZ

T, y∗, yb)
or (φ∗η, y∗, yb). The distributions are truncated to 98.5% of the total histogram content
to avoid bias due to outliers. Figure 5.15 shows examples of the resulting histograms.
Three kinds of resolution measures are derived from each histogram: the root mean

square (RMS), the Gaussian width and the Crystal Ball width.
The RMS as a measure of the width of the distribution serves as an upper limit to the

resolution.
The fit of a Gaussian function can not describe the shape of the distribution, although

its width yields an approximation to the resolution.
The fit of a symmetrized Crystal-Ball function is able to describe the non-Gaussian

tails and its width yields a lower limit to the resolution. However, in contrast to the
relatively robust fit convergence of the Gaussian function, the fit convergence of the
Crystal Ball function can not be guaranteed without biasing the parameters by limiting
their range.

Due to its straightforward evaluation and its characteristic as an upper bound to the
resolution, the RMS has been chosen as resolution parameter, attached with an RMS
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Figure 5.16: The RMS results of histograms filled with R(pZ
T) or R(φ∗

η), R(yZ) and R(yjet1) in
bins of pZ

T (left) and φ∗
η (right) in the central rapidity bin. Different parametrizations have been

chosen to smoothen the pZ
T and φ∗

η dependence. The RMS uncertainties are scaled to account
for bias by the chosen parametrization and non-Gaussian behaviour of the distributions. An
overview of all rapidity bins can be found in Figures A.3 and A.4.

uncertainty. Figure 5.16 displays its results for pZ
T or φ∗η, yZ and yjet1 as a function of pZ

T
and φ∗η in the central rapidity bin.

The dependence on pZ
T or φ∗η is parametrized by suitable functions to reduce unphysical

fluctuations. The functions have been chosen separately for each resolution to emulate
the pZ

T and φ∗η dependence.
The relative resolution of pZ

T or φ∗η exhibits a minimum that is emulated by the additive
combination of two power law functions with fixed opposite-sign exponents. The observed
trend can be understood as the combination of two competing effects that limit the muon
resolution: their momentum resolution worsens at high momenta because of the reduced
track curvature that is taken into account for its estimation; their angular resolution
worsens at low momenta because the track extrapolation to the interaction vertex becomes
less accurate. The resolution of pZ

T or φ∗η, observables derived as a combination of muon
components, is therefore determined by the limiting component.

The resolution of yjet1 increases with the transverse momentum pjet1
T , which is correlated

to pZ
T and φ∗η. A power law with a fixed negative exponent is used for the parametrization.

The resolution of yZ follows an approximately logarithmic increase with φ∗η. Its depen-
dence on pZ

T can not be parametrized by a simple function. However, its values are small
compared to the resolution of pZ

T and yjet1, so that a constant function suffices for its
parametrization.

Since the distributions used for the RMS calculation are not Gaussian, its uncertainties
are only approximate values. An underestimation of uncertainties potentially results in
large results of the goodness-of-fit estimator (χ2/n.d.f .). To account for both underes-
timation of uncertainties and bias by the choice of the parametrization function, the
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Figure 5.17: Acceptance and fakerate in bins of pZ
T (left) and φ∗

η (right) in the central rapidity
bin. Parametrizations have been chosen to smoothen the pZ

T and φ∗
η dependence. The binomial

uncertainties are scaled to account for bias by the chosen parametrization and deviations from
the binomial approximation. An overview of all rapidity bins can be found in Figures A.5
and A.6.

uncertainties are rescaled uniformly such that the goodness-of-fit estimator becomes
equal to unity. The resulting parametrization and rescaled uncertainties are shown in
Figure 5.16.

5.5.3 Efficiencies

In contrast to the response matrix filled with events that pass the selection both on particle
level and on detector level, there are events that pass only one of them. Unfolding is able
to correct for this sort of detector effects by consideration of marginal distributions. In
this context, an event is categorized as loss if it passes the particle-level selection, but
not the detector-level selection. Conversely, an event is categorized as fake if it passes
the detector-level selection, but not the particle-level selection.

The derived parameters are called acceptance A and fakerate F and are estimated in
every phase space bin. The acceptance A is calculated as the fraction of events generated
in the respective bin that are reconstructed in any bin.

A = #{event in Gen bin & event in any Reco bin}
#{event in Gen bin} (5.13)

The fakerate F is calculated as the complementary fraction of events reconstructed in
the respective bin that have been generated in any bin.

F = 1− #{event in Reco bin & event in any Gen bin}
#{event in Reco bin} (5.14)

It is worth noting that the fakerate is determined as a function of the detector-level
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Figure 5.18: Fraction of matched, switched and pileup events in bins of pZ
T (left) and φ∗

η (right)
in the central rapidity bin. The switching fraction is parametrized by a suitable function.
Its binomial uncertainties are scaled to account for bias by the chosen parametrization and
deviations from the binomial approximation. An overview of all rapidity bins can be found in
Figures A.7 and A.8.

values of pZ
T or φ∗η, y∗ and yb, the acceptance as a function of their particle-level values.

Figure 5.17 shows the results for the central rapidity bin.
The results have been parametrized with suitable functions. Whereas an error function

proved to be a good choice for the acceptance whose shape resembles a turn-on curve, a
hyperbolic function appears to be the better choice to describe the fakerate.
Uncertainties are estimated as binomial errors, which is a good approximation if the

rates are not too close to zero or unity. As the fakerate F approaches zero at higher pZ
T

or φ∗η (corresponding to values of 1 − F in proximity to unity), the uncertainties are
underestimated and uniformly scaled such that the goodness-of-fit estimator (χ2/n.d.f .)
becomes equal to unity. The resulting parametrization and rescaled uncertainties are
added to Figure 5.17.

5.5.4 Switching

The study of the jet rapidity resolution revealed an additional challenge following from
the fact that jets are indistinguishable objects. The analysis takes into account only one
jet, although the occurrence of additional jets is very likely. To avoid ambiguity, the
relevant jet is chosen to be the one with the largest transverse momentum.
However, the jet ordering can differ if one compares an event topology on detector

level to the one on particle level within a simulation. This effect was found to be small
in inclusive jet and dijet cross section measurements, bypassed by the use of angular jet
matching in the former and the averaged dijet transverse momentum in the latter case.

The substitution of the leading particle-level jet by a subleading particle-level jet that
is reconstructed as the leading detector-level jet immediately propagates to the determi-
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nation of the generated and the reconstructed values of y∗ and yb in an inclusive Z + jet
cross section measurement. For a quantitive characterization of the effect, reconstructed
events passing the selection are tagged as one of three exclusive categories that are based
on jet matching:

• matched: An event in which the generated leading jet and the reconstructed
leading jet have an angular distance of ∆R < 0.2 is tagged as matched.

• switched: An event in which there is a subleading generated jet with an angular
distance of ∆R < 0.2 to the reconstructed jet is tagged as switched.

• pileup: An event in which there is no generated jet with an angular distance of
∆R < 0.2 to the reconstructed jet is tagged as pileup. Note that an event tagged
as pileup does not necessarily imply the reconstructed leading jet to be an actual
pileup jet, it can as well originate from a generated jet beyond the accessible phase
space.

Figure 5.18 shows the fractions of events that fall in the respective categories in the
central rapidity bin. While pileup tends to be a negligible effect, the fraction of switched
events lies in the range of less than 5% in the central rapidity bin, increasing to up to 20%
in higher rapidity regions. The effect is corrected for by unfolding, considering switching
to be a migration to a distant bin. The switching fractions are parametrized by suitable
functions, namely an exponential function for the pZ

T and a hyperbolic function for the φ∗η
dependence. To account for the underestimation of binomial uncertainties and bias by
the parametrization, the uncertainties attached to each value of the switching fraction
are again uniformly scaled such that the goodness-of-fit estimator (χ2/n.d.f .) becomes
equal to unity. The resulting parametrization and rescaled uncertainties are added to
Figure 5.18.

5.5.5 Forward smearing

Based on the parameters derived in the previous sections, response matrices for the
triple differential unfolding in (pZ

T, y∗, yb) and (φ∗η, y∗, yb), respectively, are filled using a
toy Monte Carlo simulation. This approach, also called forward smearing, accounts for
fluctuations of the response matrix in phase space regions with low statistical occupation.

The dependence of the parameters on pZ
T or φ∗η, estimated separately in each rapidity

bin, is mapped to the one-dimensional global binning as illustrated in Figure 5.13. The
forward smearing procedure can then be split into four steps:

1. A toy event is generated by random values of pZ
T or φ∗η, yZ and yjet1, following the

particle-level distribution of the full simulation. (pZ
T or φ∗η, y∗, yb) is calculated and

mapped to the generated global bin i.

2. Switching occurs with a probability S, which is given by the switching fraction
in bin i. A random number determines if the generated value of yjet1 is replaced
according to a distribution which is derived from the full simulation and respects
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Figure 5.19: Response matrices for triple differential unfolding of (pZ
T, y∗, yb) (top) and

(φ∗
η, y∗, yb) (bottom), created by forward smearing.
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its correlation to yZ. The resulting (pZ
T or φ∗η, y∗, yb) is mapped to an intermediate

global bin k.

3. Smearing is performed by manipulating each value of pZ
T or φ∗η, yZ and yjet1 in-

dependently by a smearing parameter s. pZ
T or φ∗η are multiplied by s = 1 + Rr,

where R is the relative resolution of the observable in bin k and r a normally
distributed random number. For yZ and yjet1, s = Rr is added to the respective
value, where R is the absolute resolution of the observable in bin k and r a normally
distributed random number. The resulting values of (pZ

T or φ∗η, y∗, yb) are mapped
to the reconstructed global bin j.

4. Acceptance and fakerate are simulated independently. The event is filled into the
reconstructed marginal histogram bin j only with a probability A, given by the
acceptance in bin k. Likewise, it is filled to the generated marginal histogram bin i
with a probability of 1 − F , where F is the fakerate in bin j. If both histograms
are filled, the event is filled into the response matrix bin (i,j) as well.

The response matrices based on 109 toy events, which is a factor of 100 in comparison
to the number of simulated events, are shown in Figure 5.19. Disregarding sparsely
populated off-diagonal areas, they are in good agreement with the response matrices
derived from the full simulation in Figure 5.14, but with significantly reduced statistical
fluctuations.

Quantitative benchmarks evaluating how well the method works and a study of uncer-
tainties, both associated with statistical fluctuations and systematic effects due to the
parameter estimation, is described in the following section.

5.5.6 Closure test

The response matrices, both those derived from the simulation (Figure 5.14) and those
from forward smearing (Figure 5.19) have been found to have condition numbers well
below 10. The TUnfold framework without regularization can be used to perform the
unfolding and has been checked to yield the same results as the matrix inversion method.
Background contributions are subtracted from the data before unfolding to obtain signal
distributions that can be compared to the corresponding simulation.
Distributions derived from the full simulations are used to obtain a benchmark for

the closure of an unfolding method. The reconstructed distributions contained in the
simulated samples serve as pseudodata and are used as an input to the unfolding proce-
dure. The unfolded output is compared to the generated distributions of the respective
simulation. Their difference is then compared to the uncertainties associated with the
respective method to obtain a quantitive measure for the accuracy of the method. An
unfolding method can inherit statistical and systematic uncertainties.

Statistical unfolding uncertainties

To estimate a potential bias due to the limited bin occupation of a response matrix, a
set of 1000 pseudoexperiments is performed. For every pseudoexperiment, each bin of
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the response matrix (including fake and loss distributions) is shifted by its statistical
uncertainty multiplied by a normally distributed random number.

The data distributions are used to estimate the effect of this variation. After subtracting
the backgrounds, they are unfolded with the altered response matrix and the result is
compared to the central result unfolded with the unaltered response matrix.
The root mean square of the deviations of each pseudo experiment from the central

result is taken as the statistical unfolding uncertainty.

Systematic unfolding uncertainties

The construction of response matrices by forward smearing depends on the estimation
of the characteristic parameters resolution, acceptance, fakerate and switching fraction.
Their dependence on pZ

T and φ∗η has been parametrized to smoothen unphysical fluctu-
ations. The 68% (1σ) confidence interval of the resulting parametrization, evaluated at
each bin centre, defines the smoothened parameter uncertainties.
These uncertainties are propagated through the unfolding procedure by creating re-

sponse matrices with the respective parameter simultaneously shifted upwards and down-
wards by its uncertainty in each bin. After subtracting the backgrounds, the data dis-
tributions are unfolded with each of the resulting response matrices and compared to
the central result. The maximum difference between the respective upwards/downwards
variations and the central result is taken as the uncertainty on the resulting distribution
associated with the parameter in question.

In principle, the parameters can be derived from any of the simulation samples described
in Section 5.3.2 and compared in Figure 5.11. In practice, the P8+aMC simulation proved
to be technically challenging due to the occurrence of negative event weights and has not
been used for a toy response creation. The P8+MG simulation with the highest number
of simulated events serves as the reference and has been used to illustrate the previous
results. The same procedure has been used for the HW+MG simulation containing about
half as many events within the relevant phase space.

Although the same detector simulation was used in the simulated samples, the imple-
mentation of parton shower and hadronization models in the event generators Pythia8
and Herwig++ can lead to differences of the parameters beyond statistical fluctuations.
Therefore, the difference between the unfolding result of the background-subtracted data
distributions using a toy response matrix based on the P8+MG sample and the unfolding
result of the same histograms using a toy response matrix based on the HW+MG sample
is taken as an additional uncertainty source.

The uncertainty sources are assumed to be uncorrelated, such that their quadratic sum
is taken as the systematic unfolding uncertainty.

χ2-test

The closure of an unfolding method is characterized by a comparison of an unfolded
reconstructed distribution to the respective generated distribution derived from the same
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Figure 5.20: Ratio of the unfolded reconstructed to the respective generated pZ
T (left) and

φ∗
η (right) distribution derived from the same simulation in the central rapidity bin. The

unfolding has been carried out with response matrices filled from the P8+MG simulation (top)
or filled by forward smearing (Toy) based on the P8+MG simulation (bottom). The yellow
band illustrates the statistical unfolding uncertainty, the black lines illustrate the systematic
unfolding uncertainty (where applicable) and the error bars illustrate the statistical uncertainty
of the unfolded distributions.

simulation. Their ratio for the three different simulation inputs is shown in Figure 5.20.
The central rapidity bin is chosen for the illustration.

The response matrix used in the top row of Figure 5.20 has been filled from the P8+MG
simulation, the response matrix used in the bottom row via forward smearing based on
the P8+MG simulation. A comparison of the two figures illustrates the improved precision
when using the forward smearing approach. Statistical unfolding uncertainties, following
from a limited response matrix occupation, are shown as a yellow band which is reduced
to a negligible contribution. The systematic uncertainties, following from the parameter
estimation, shown as a black line in the bottom row of Figure 5.20, have been found to
be smaller than the statistical uncertainty in the top row of Figure 5.20.

To ensure the applicability of the method, a χ2/n.d.f . value was calculated separately
in each rapidity bin and for each simulated sample to obtain a quantitative characteristic

77



Measurement of the triple differential inclusive Z (→ µµ) + jet cross sections

Figure 5.21: Values of χ2/n.d.f . determined for each rapidity bin, for unfolding in
(pZ

T, y∗, yb) (left) and (φ∗
η, y∗, yb) (right). The unfolding has been carried out with a response

matrix filled from the P8+MG simulation (top) or from the HW+MG simulation (bottom).

for the closure. χ2 is calculated as the squared difference of the unfolded reconstructed
histogram hUnf to the generated histogram hGen, divided by the squared sum of the
statistical unfolding uncertainty σStat.Unf., the systematic unfolding uncertainty σSyst.Unf.
and the statistical uncertainty σStat.MC of the unfolded distribution:

χ2 =
∑
bins

(
hUnf − hGen

)2

σ2
Stat.Unf. + σ2

Syst.Unf. + σ2
Stat.MC

(5.15)

Note that σSyst.Unf. = 0 if the response matrix is filled from the simulations.
χ2 is divided by n.d.f ., given as the number of pZ

T or φ∗η bins within the respective
rapidity bin. The closure is accepted to be good if the resulting value of χ2/n.d.f . is
approximately equal to unity. The values as a function of the rapidity bin index (see
Figure 5.13) are presented in Figure 5.21 and 5.22.
For Figure 5.21, the response matrix have been filled from the simulation, either

P8+MG or HW+MG. As expected, unfolding of a pseudodata distribution using a response
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Figure 5.22: Values of χ2/n.d.f . determined for each rapidity bin, for unfolding in
(pZ

T, y∗, yb) (left) and (φ∗
η, y∗, yb) (right). The unfolding has been carried out with a response

matrix filled by forward smearing based on the P8+MG simulation (top) or on the HW+MG
simulation (bottom).

matrix from the same simulation yields exactly the generated distribution and therefore
χ2 /n.d.f . = 0.

The P8+aMC pseudodata inherits large statistical uncertainties (see also Figure 5.20)
as a consequence of the occurrence of negative event weights. Therefore, the resulting
values of χ2/n.d.f . tend to be small (χ2/n.d.f . . 1) for any unfolding method.

If the P8+MG pseudodata is unfolded with a response matrix from the HW+MG
simulation (or vice versa), unusually large values of χ2/n.d.f . (2.0 to 3.5) are reached
consistently in certain rapidity bins. This can be explained by differences in the Monte
Carlo modelling.
For Figure 5.22, the response matrices have been filled by forward smearing. The

parameters were derived either from the P8+MG or the HW+MG simulation.
The figure indicates that unfolding by forward smearing based on the P8+MG simula-

tion is compatible with all pseudodata distributions (χ2/n.d.f . mostly between 0.5 and
1.5), whereas forward smearing based on the HW+MG simulation yields large values of
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Figure 5.23: Bin-to-bin correlation matrices for triple differential unfolding of (pZ
T, y∗, yb) (top)

and (φ∗
η, y∗, yb) (bottom) using response matrices filled by forward smearing based on the

P8+MG simulation. Neighbouring bins are weakly anticorrelated.
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χ2/n.d.f . in several rapidity bins.
However, even in the former case, there is one rapidity bin (#13 in φ∗η unfolding) with

an outlying value of χ2/n.d.f . ≈ 2.8. The bin has been checked further for anomalous
behaviour. As no significant effects have been observed, the large value in this bin is
interpreted as a statistical fluctuation.
As a result of the closure tests, the forward smearing method based on the P8+MG

simulation has been chosen as preferred unfolding method. The difference to the HW+MG
simulation is taken into account by the systematic unfolding uncertainty, therein forming
the dominant contribution, whereas the statistical unfolding uncertainty is negligible.

The resulting bin-to-bin correlation matrices associated with unfolding have been found
to be almost diagonal. Small negative off-diagonal correlation coefficients indicate weak
anticorrelations between neighbouring bins. The matrices are presented in Figure 5.23.

5.6 Experimental uncertainties

The triple differential inclusive Z (→ µµ) + jet cross section measurements involve several
experimental uncertainty sources. The following sources have been taken into account:

• Luminosity:
To determine the cross sections, the measured distributions are normalized to the
delivered luminosity of 35.9 fb−1 in 2016. This value was estimated from machine
parameters and the collider beam. A constant relative uncertainty of 2.5% on any
cross section measurement is recommended [69].

• Background:
The measured distributions are extracted by subtracting the simulated background
from the data distributions. This subtraction depends on the choice of the back-
ground processes and their properties. As a conservative estimate, 50% of the full
background contribution in every observable bin has been used as uncertainty, lead-
ing only to about 0.5% relative uncertainty in the cross section measurement due
to the small background contribution of the inclusive Z (→ µµ) + jet process.

• Efficiency:
Muon efficiency scale factors have been used on data distributions to ensure that
the selection efficiencies of identification, isolation and trigger criteria agree with the
simulation. The efficiencies, estimated via tag-and-probe by the CMS collaboration,
were provided including systematic uncertainties on identification and isolation
scale factors, dependent on the kinematic properties of the muons, and a constant
uncertainty of 0.5% on the single-muon trigger efficiency [65]. The efficiencies and
scale factors have been independently shifted upwards and downwards by their
uncertainties and propagated through the analysis by calculating weights as ex-
plained in Section 5.4.1. The respective upwards and downwards deviations from
the nominal measured distribution in each observable bin after unfolding have been
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Figure 5.24: Total systematic uncertainty (black) and the different uncertainty sources (coloured)
as a function of pZ

T (left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the

high-y∗ bin (bottom), together with the statistical uncertainty (light grey). The uncertainties
have been symmetrized by taking half of the spread in each uncertainty source. An overview
of all rapidity bins can be found in Figures A.9 and A.10.
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taken as uncertainties for identification, isolation and trigger. The respective uncer-
tainties have been assumed uncorrelated and therefore been added in quadrature
to obtain the resulting efficiency uncertainty, which slightly increases with pZ

T or
φ∗η and towards the high-rapidity bins.

• Unfolding:
In Section 5.5.6, statistical and systematic unfolding uncertainties have been es-
timated. Their squared sum has been taken as the unfolding uncertainty. It is
dominated by the systematic uncertainty when using the forward smearing method
to fill the response matrix, which itself is dominated by the difference between the
simulations that are investigated for the unfolding study. The increase with pZ

T
or φ∗η and towards higher-rapidity regions, especially the high-y∗ region, is closely
connected to the lack of statistical occupation in these regions, complicating the
parameter estimation for the forward smearing procedure.

• JEC:
An uncertainty on applying jet energy corrections has been estimated by consistently
varying the pT of each jet upwards and downwards according to its jet energy
calibration uncertainty, which was derived and provided by the CMS collaboration,
as discussed in Chapter 4. The respective upwards and downwards deviations from
the nominal measured distribution in each observable bin after unfolding have been
taken as the JEC uncertainty. Since a dependence on pjet

T was taken into account
exclusively by the selection criterion pjet1

T > 20GeV, only low pZ
T or φ∗η regions

were found to be significantly affected by the JEC uncertainty. At low pZ
T, it even

becomes the dominant uncertainty source.

• JER:
Similarly to the muon efficiencies, it was found that the jet energy resolution
differs between data and simulation. To improve their agreement, the transverse
momenta of jets in simulations can be additionally smeared, either using a scaling
or a stochastic method. For the scaling method, a scale factor is applied on the
difference between the transverse momenta of a detector-level and its matching
particle-level jet, if existent. For the stochastic method, the scale factor is applied
on the simulated jet energy resolution of the detector-level jet. Scale factor and
resolution have been provided by the CMS collaboration, which also recommends
the use of a hybrid method: the scaling method is applied if a matching particle-
level jet can be identified, else the stochastic method is applied [70]. Toy response
matrices for unfolding have been created by forward smearing, as explained in
Section 5.5.5, based on a P8+MG simulation on which the hybrid smearing method
was applied. The JER uncertainty is taken as the difference between the measured
distributions in each observable bin after unfolding with and without additional
smearing. It was found that the resolution of yjet1 as well as acceptance A and
fakerate F are slightly affected by the smearing, resulting in observable deviations
only at small pZ

T.
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The systematic uncertainties are assumed uncorrelated, such that the total systematic
uncertainty is given as the square root of the quadratic sum of all estimated sources.
Figure 5.24 shows the systematic and the statistical uncertainties in several rapidity
bins. Excluding the low-pZ

T region, where the JEC uncertainty supersedes the other
uncertainty sources, the total systematic uncertainty of the triple differential measurement
in (φ∗η, y∗, yb) is comparable to the one in (pZ

T, y∗, yb). It ranges from less than 4% in the
central rapidity region to 6% in the high-yb and up to 20% in the high-y∗ region.
The statistical uncertainty rarely exceeds the total systematic uncertainty across the

entire phase space. Thus, the data collected in 2016 can be used for a precision analysis.
However, the sparsely populated bins in the high-pZ

T or high-φ∗η and the high-rapidity
profit from the extension of the measurement to the full 13TeV data taking period,
corresponding to an integrated luminosity of 137 fb−1.

5.7 Comparison of cross section results to Monte Carlo
simulations

The cross section results have been derived by normalizing the measured and unfolded
distributions to the integrated luminosity of the dataset (35.9 fb−1). They have been
compared to the simulations created with the Pythia8 event generator. These simulations
were created using matrix elements provided at LO precision by MadGraph5 for the
P8+MG simulation and at NLO precision by MadGraph5_aMC@NLO for the P8+aMC
simulation, as introduced in Section 5.3.2. Parton shower and hadronization modelling
was performed by the event generator.

Figure 5.25 shows the results for the high-y∗, the high-yb and the central rapidity
bin. The statistical and systematic uncertainties of the measurements and the statistical
uncertainties of the simulations are shown in the ratios. Since the statistical uncertainties
of the given simulations, especially P8+aMC, increase towards high pZ

T or φ∗η and the
edge rapidity regions, large fluctuations can be observed.

Differences between the data and the P8+MG simulation beyond the uncertainties can
be observed in most of the phase space. Especially towards high y∗, this simulation at
LO precision does not yield a reasonable description of the data.
The deviations are significantly reduced when comparing the data to the P8+aMC

simulation. This simulation at NLO precision is in good agreement with the data at low
pZ

T or φ∗η, even at high y∗. Small deviations remain in the medium range of pZ
T or φ∗η in

the low-yb region and at low pZ
T or φ∗η in the high-yb region.

It is possible that the observed deviations can be covered by further uncertainties
associated with the simulations, such as scale uncertainties, which are not accessible
within the given simulations. Furthermore, as the large k-factors between the LO and
the NLO simulation in the high-y∗ region indicate, theory predictions at NNLO precision
are required. The following Section 5.8 presents and discusses calculations which enable
the estimation of theoretical uncertainties and provide NNLO precision in QCD.
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Figure 5.25: Comparison of measured cross sections to simulations generated with the Pythia8
event generator at LO (P8+MG) and NLO (P8+aMC) precision as a function of pZ

T (left) and
φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗ bin (bottom). In

the ratios, the coloured bands represent the statistical uncertainties of the simulations (green
and red). The total systematic uncertainty of the measurement is shown as hatched grey band,
the quadratic sum of systematic and statistical uncertainties of the data is illustrated as light
grey band. An overview of all rapidity bins can be found in Figure A.11 and A.12.
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5.8 Theoretical predictions

The theoretical predictions for Z + jet production were calculated [71] and have been
compared to the measured cross sections. These calculations were derived up to NNLO
precision in QCD using an implementation by [7] which makes use of the nnlojet parton-
level Monte Carlo generator [18] and interpolation techniques provided by fastnlo [15]
to enable a flexible use of different PDFs and the variation of the renormalization and
factorization scales.

Remark: The implementation was developed as part of a master’s thesis [7] in order
to automate the calculation of theory predictions at NNLO precision, which require an
enormous amount of computing power. As part of a bachelor’s thesis [72], the predictions
presented within this thesis have been provided at a preliminary stage. In particular, a
limitation in the number of available events can be observed as fluctuations.

Figure 5.26 presents the fixed order calculations up to NNLO in several rapidity bins,
using PDFs from the NNPDF3.1 fit [3]. The scale was chosen as

EZ
T =

√
(mZ

T)2 + (pZ
T)2 (5.16)

and the scale uncertainties have been derived by varying the renormalization and factor-
ization scale, respectively, with a factor 0.5, 1.0 or 2.0. The scale uncertainty is taken
as the maximum deviation of all possible combinations of these factors from the central
result.
The ratio NLO/LO illustrates the k-factor, which takes values of up to 1.5 in the

high-yb and the central rapidity bin. It can be noted that the NNLO prediction agrees
with the NLO prediction within their scale uncertainties, indicating a good convergence
of the perturbative series in the low-y∗ region.

Towards high y∗, the differences between the fixed order calculations increase, reaching
NLO/LO k-factors of up to 14. The prediction at NNLO precision exhibits significantly
reduced scale uncertainties and is therefore essential for a comparison to measurements
in this phase space region.
The reason for the large NLO correction is that the parton-parton scattering subpro-

cess composition differs strongly between the fixed order calculations, as discussed in
Section 5.1. The fractional subprocess contributions to the respective cross section are
presented in Figure 5.27 at LO, in Figure 5.28 at NLO and in Figure 5.29 at NNLO
precision.

At LO precision, quark-antiquark, gluon-antiquark and quark-gluon scattering are the
only possibilities for the creation of a Z + jet event, the additional processes of quark-
quark, antiquark-antiquark and gluon-gluon scattering contribute only at higher orders.
The dominant contribution in all regions of the phase space is quark-gluon scattering.
Beyond LO, subprocesses can obtain negative weights as a result of interference between
terms of the perturbative series. Nevertheless, the physical cross sections remain positive,
such that the decompositions shown in the Figures 5.27, 5.28 and 5.29 always sum up to
unity.
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5.8 Theoretical predictions

Figure 5.26: Comparison of distributions in LO, NLO and NNLO calculations as a function of
pZ

T (left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗ bin

(bottom). The coloured bands indicate the scale uncertainty. An overview of all rapidity bins
can be found in Figure A.13 and A.14.
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Figure 5.27: Subprocess decomposition of cross section calculation at LO as a function of pZ
T

(left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗ bin

(bottom). An overview of all rapidity bins can be found in Figure A.15 and A.16.
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5.8 Theoretical predictions

Figure 5.28: Subprocess decomposition of cross section calculation at NLO as a function of
pZ

T (left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗ bin

(bottom). Subprocesses can contribute with negative signs at NLO. An overview of all rapidity
bins can be found in Figure A.17 and A.18.
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Figure 5.29: Subprocess decomposition of cross section calculation at NNLO as a function of
pZ

T (left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗

bin (bottom). Subprocesses can contribute with negative signs at NNLO. An overview of all
rapidity bins can be found in Figure A.19 and A.20.
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5.8 Theoretical predictions

Figure 5.30: Comparison of distributions calculated at NNLO for different PDF sets as a function
of pZ

T (left) and φ∗
η (right) in the central rapidity (top), the high-yb (centre) and the high-y∗

bin (bottom). The coloured bands indicate the PDF uncertainty. An overview of all rapidity
bins can be found in Figure A.21 and A.22.
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The relation between the momentum fractions of the colliding partons is preserved
in y∗ and yb. Large values of y∗, associated with small values of yb, require momentum
fractions of the same magnitude. While an up or a down quark in a proton tends to carry
a large momentum fraction, an antiquark or a gluon tends to carry a comparatively low
momentum fraction. Thus large values of y∗ are unlikely to occur unless higher orders
are included, resulting in large NLO corrections.
Figure 5.30 shows the calculated distributions at NNLO using the fit results of other

PDF studies besides NNPDF3.1: CT14 [4], MMHT2014 [5] and ABMP16 [6]. The differ-
ences are in the range of a few percent.

5.9 Comparison of cross section results to fixed order
calculations

The measured cross section results, normalized to the integrated luminosity of the
dataset (35.9 fb−1), are compared to the theory predictions at NLO and NNLO pre-
cision described in the previous Section 5.8, using PDFs from the NNPDF3.1 fit.

Figure 5.31 shows the results for the high-y∗, the high-yb and the central rapidity bins.
The statistical and systematic uncertainties of the measurements are shown in the ratios,
as well as the theory uncertainties, determined as the quadratic sum of the scale and the
PDF uncertainties.

In most phase space regions, the observed differences between the measurements and
the NLO calculations are compatible with the theory uncertainties. However, in the
low-y∗ regions, deviations of up to 25% can be observed at low pZ

T. These phase space
regions are known to be sensitive to additional effects which are not included in the
calculations, such as non-perturbative corrections or parton showering. The inclusion of
these effects is expected to reduce this discrepancy.

At NNLO precision, deviations of up to 20%, which are not covered by the uncertainties,
are exposed in the high-yb region. Since yb contains information about the kinematics of
the colliding partons, any discrepancy in this region hints to a sensitivity to the PDFs.
The subprocess decomposition in this phase space region is almost exclusively determined
by quark-gluon scattering, making it particularly sensitive to the gluon PDF.
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5.9 Comparison of cross section results to fixed order calculations

Figure 5.31: Comparison of measured cross sections to fixed order calculations at NLO and
NNLO precision as a function of pZ

T (left) and φ∗
η (right) in the central rapidity (top), the

high-yb (centre) and the high-y∗ bin (bottom). In the ratios, the coloured bands represent the
theory uncertainties of the calculations (blue and red). The total systematic uncertainty of the
measurement is shown as hatched grey band, the quadratic sum of systematic and statistical
uncertainties of the data is illustrated as light grey band. An overview of all rapidity bins can
be found in Figure A.23 and A.24.
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5.10 Summary

In this chapter, the first measurement of the triple differential inclusive Z (→ µµ) + jet
cross section at a centre-of-mass energy of

√
s = 13TeV has been performed and presented

as a function of (pZ
T, y∗, yb) and (φ∗η, y∗, yb).

Data recorded by the CMS detector in the year 2016 have been used, corresponding to
an integrated luminosity of 35.9 fb−1. The cross sections have been corrected for detector
effects using three-dimensional unfolding based on forward smearing.

The results have been compared to Monte Carlo simulations at LO and NLO precision
and to preliminary fixed order calculations at NLO and NNLO precision. The measure-
ments have been found in good agreement with the predictions over a wide phase space
range. Differences between the fixed order calculations and the measurements beyond
experimental and theoretical uncertainties have been identified at the low-pZ

T and the
high-yb region, with the latter exposed only at NNLO precision.

In the low-pZ
T region, additional effects such as non-perturbative corrections or parton

showering become relevant. Corrections concerning these effects which are missing in the
theory calculations can be included in the analysis once they have been provided.
In the high-yb region, the quark-gluon dominance of the subprocess decomposition

increases. Limited knowledge of the gluon PDF can therefore explain the deviations
observed in this region. Conversely, the inclusion of the results of this thesis in PDF fits
is expected to be used to further improve the gluon PDF.
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CHAPTER 6

Conclusion

The goal of this thesis was the analysis of Z boson production in association with jets
based on data recorded with the CMS detector at the LHC. The data correspond to an
integrated luminosity of 35.9 fb−1 of proton-proton collisions at a centre-of-mass energy
of 13TeV. Z bosons decaying to a muon-antimuon pair are of particular interest for tasks
that require high precision, of which two were performed and presented within this thesis.
The analysis of Z (→ µµ) + jet events plays an important role in the process of

jet energy calibration, which has been presented in Chapter 4. To account for residual
differences between data and simulation regarding the jet reconstruction in the CMS
detector, the transverse momenta of jets are calibrated in reference to Z bosons. Two
complementary methods have been used within this thesis to derive jet response values
on an event-by-event basis in both data and simulation. Whereas the pT balance method,
based on the ratio between the transverse momenta of the jet and the Z boson, provides
a straightforward estimation of jet miscalibration, the missing transverse momentum
projection fraction (MPF) method, based on the missing transverse momentum in the
event, takes the entire detector configuration into account. There are certain advantages
and challenges for each method, one of which is their differing sensitivity to additional
jet activity. The determined response values have been extrapolated to an exclusive
Z (→ µµ) + jet topology to confirm the consistency of both methods.

The data-to-simulation ratio of the responses is used to perform a global fit, combining
results from several working groups within the CMS collaboration. Different reference
objects are used to maximize the accuracy of the obtained residual corrections. The
Z (→ µµ) + jet calibration channel providing the highest precision forms a crucial input
for the fit procedure.
The resulting jet energy corrections contribute to most physics analyses which take

the 2016 dataset into account. Regarding the challenges of the data taking in 2016, the
collaboration achieved an outstanding performance of jet reconstruction with the CMS
detector.

The discovery of additional detector issues during the 2017 and 2018 calibration necessi-
tates further ongoing studies on their effects in the 2016 jet energy calibration. Therefore,
the publication of the final results of the jet energy calibration for the complete 13TeV
dataset is expected within the next years, which is beyond the scope of this thesis.
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Conclusion

The centre-of-mass energy and the increasing integrated luminosities available at the
LHC give access to sensitivity in phase space regions which have not been accessible in the
past. In Chapter 5, the first triple differential cross section measurement of the inclusive
Z (→ µµ) + jet process has been presented. The measurement has been performed as
a function of the rapidity variables y∗ and yb, and the transverse momentum of the
Z boson pZ

T or the variable φ∗η. The variable φ∗η is an observable derived from muon
angular information which is correlated to pZ

T but can be measured more precisely.
The use of y∗ given as the rapidity separation between the Z boson and the leading jet,

and yb, given as the boost of their centre-of-mass system, provides a suitable division of
the rapidity phase space. The scattering angle corresponds to y∗ and carries information
about the matrix element, the boost yb carries information about the kinematics of the
colliding partons determined by their parton distribution functions (PDFs). Thus, effects
originating from the matrix elements can be disentangled from the PDFs, such that an
increased PDF sensitivity can be reached.

The cross sections measured as a function of (pZ
T, y∗, yb) or (φ∗η, y∗, yb) were corrected

for detector effects by unfolding. Since the available simulations were not optimized for a
three-dimensional measurement approach, they exhibit insufficient statistical significance
in certain phase space regions. Some effort had to be made by choosing a suitable binning
and implementing a forward smearing approach to create response matrices for unfolding.
This procedure implied a number of assumptions and approximations which have been
validated by closure tests. As a result, a sizeable reduction of the uncertainties associated
with unfolding could be reached.

The total systematic uncertainties of the measurements have been estimated to range
between 4% in low φ∗η and central rapidity regions and 20% in the high y∗ region. The
statistical uncertainties provided by the 2016 dataset have been found to exceed the
systematic uncertainties in high pZ

T or high φ∗η regions. These regions profit from the
extension of the measurement to the full 13TeV data taking period, corresponding to an
integrated luminosity of 137 fb−1.
In the high y∗ region, the unfolding uncertainty, which itself is dominated by the

difference between results derived from the Pythia and the Herwig++ event generators,
respectively, has to be reduced when more data becomes available. Besides a higher event
number in simulations, which facilitates the forward smearing procedure, a study of the
tuning parameters which lead to the observed differences could be supportive to improve
the measurement.
The measurement is summarized in Figure 6.1, which presents the measured cross

sections compared to preliminary theory predictions calculated at NNLO precision, and in
Figure 6.2, which presents the data-to-theory ratio as well as experimental and theoretical
uncertainties. The measurements have been found to be in agreement with the predictions
across a wide phase space range. Discrepancies observed at low pZ

T are expected to be
reduced by correcting the fixed order calculations for non-perturbative effects and parton
shower contributions.
In comparison to predictions calculated at NLO precision, the calculations at NNLO

precision have revealed differences to the measurements towards the high yb region. The
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observable yb is characterized by an exemplary sensitivity to the scattering subprocesses,
so that any discrepancy can be traced back to PDFs. Because of the increased domination
of the quark-gluon scattering process, including this measurement to PDF fits is expected
to further improve the gluon PDF.

The measurement will be reprocessed once the jet energy calibration has been finalized
and the missing corrections have been included into final NNLO calculations. Constraints
on PDFs based on this measurement will be available and published subsequently.

In summary, this thesis has explored the possible benefits of high precision associated
with the analysis of Z (→ µµ) + jets events and confirmed that analyzing the full 13TeV
dataset can be expected to provide a significant contribution to PDF extraction. The
results will have an impact on future measurements and calculations and thus, referencing
to the famous quote at the beginning of the thesis, contribute to our understanding of
what "holds the world together in its inmost folds".
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Conclusion

Figure 6.1: The triple differential inclusive Z (→ µµ) + jet cross section measurements as
a function of (pZ

T, y∗, yb) (left) and (φ∗
η, y∗, yb) (right), shown as symbols and compared to

preliminary theory predictions at NNLO precision shown as lines. The legend at the top
illustrates which colour and symbol represent which rapidity bin, as well as which scaling factor
is applied to improve readability.
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Figure 6.2: The ratios of the triple differential inclusive Z (→ µµ) + jet cross section mea-
surements to the preliminary theory predictions calculated at NNLO precision as a function
of (pZ

T, y∗, yb) (left) and (φ∗
η, y∗, yb) (right), shown as symbols. The theory uncertainties are

shown as coloured bands, the systematic uncertainties as hatched grey bands and the total
experimental uncertainty, i.e. the quadratic sum of systematic and statistical uncertainties
of the data as light grey bands. The legend at the top illustrates which colour and symbol
represent which rapidity bin.
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APPENDIX A

Appendix

Table A.1: Used datasets, the data certification file providing the information about certified
luminosity sections and the integrated luminosity resulting from the data certification.

Datasets: /DoubleMuon/Run2016*-17Jul2018*/MINIAOD
/SingleMuon/Run2016*-17Jul2018*/MINIAOD

Data certification: Cert_271036-284044_
13TeV_23Sep2016ReReco_Collisions16_JSON.txt

Integrated luminosity: 35.9 fb−1

Trigger flags: HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_DZ
HLT_IsoMu24 or HLT_IsoTkMu24

Table A.2: Simulated Monte Carlo simulations taken into account.
Calibration
/DY1JetToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
/DY2JetToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
/DY3JetToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
/DY4JetToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
Signal
/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
/DYJetsToLL_M-50_TuneCUETHS1_13TeV-madgraphMLM-herwigpp/[. . . ]
/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/[. . . ]
Background
/ZZ_TuneCUETP8M1_13TeV-pythia8/[. . . ]
/WZJToLLLNu_TuneCUETP8M1_13TeV-amcnlo-pythia8/[. . . ]
/WWTo2L2Nu_13TeV-powheg/[. . . ]
/TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/[. . . ]
/ST_tW_*top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/[. . . ]
[. . . ]
RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_
asymptotic_2016_TrancheIV_v6*/MINIAODSIM
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Appendix

Figure A.1: The pZ
T distribution in all rapidity bins for data and the P8+MG simulation and

backgrounds. The simulations have been normalized to the luminosity of the data.
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Figure A.2: The φ∗
η distribution in all rapidity bins for data and the P8+MG simulation and

backgrounds. The simulations have been normalized to the luminosity of the data.
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Figure A.3: The RMS results of histograms filled with R(pZ
T),R(yZ) and R(yjet1) in bins of pZ

T in
all rapidity bins. Different parametrizations have been chosen to smoothen the pZ

T dependence.
The RMS uncertainties are scaled to account for bias by the chosen parametrization and
non-Gaussian behaviour of the distributions.
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Figure A.4: The RMS results of histograms filled with R(φ∗
η),R(yZ) and R(yjet1) in bins of φ∗

η in
all rapidity bins. Different parametrizations have been chosen to smoothen the φ∗

η dependence.
The RMS uncertainties are scaled to account for bias by the chosen parametrization and
non-Gaussian behaviour of the distributions.
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Figure A.5: Acceptance and fakerate in bins of pZ
T in all rapidity bins. Parametrizations have

been chosen to smoothen the pZ
T dependence. The binomial uncertainties are scaled to account

for bias by the chosen parametrization and deviations from the binomial approximation.
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Figure A.6: Acceptance and fakerate in bins of φ∗
η in the all rapidity bins. Parametrizations have

been chosen to smoothen the φ∗
η dependence. The binomial uncertainties are scaled to account

for bias by the chosen parametrization and deviations from the binomial approximation.
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Figure A.7: Fraction of matched, switched and pileup events in bins of pZ
T in all rapidity bins.

The switching fraction is parametrized by a suitable function. Its binomial uncertainties are
scaled to account for bias by the chosen parametrization and deviations from the binomial
approximation.
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Figure A.8: Fraction of matched, switched and pileup events in bins of φ∗
η in all rapidity bins.

The switching fraction is parametrized by a suitable function. Its binomial uncertainties are
scaled to account for bias by the chosen parametrization and deviations from the binomial
approximation.
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Appendix

Figure A.9: Total systematic uncertainty (black) and the different uncertainty sources (coloured)
as a function of pZ

T in all rapidity bins, compared to the statistical uncertainty (light grey). The
uncertainties have been symmetrized by taking half of the spread in each uncertainty source.
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Figure A.10: Total systematic uncertainty (black) and the different uncertainty sources
(coloured) as a function of φ∗

η in all rapidity bins, compared to the statistical uncertainty
(light grey). The uncertainties have been symmetrized by taking half of the spread in each
uncertainty source.
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Figure A.11: Comparison of measured cross sections to simulations generated with Pythia8
at LO (P8+MG) and NLO (P8+aMC) as a function of pZ

T in all rapidity bins. In the ratios,
the coloured bands represent the statistical uncertainties of the simulations (red and green).
The systematic uncertainty of the measurement is shown as hatched grey band, the total
experimental uncertainty, i.e. the quadratic sum of systematic and statistical uncertainties, is
shown as light grey band.

112



Figure A.12: Comparison of measured cross sections to simulations generated with Pythia8
at LO (P8+MG) and NLO (P8+aMC) as a function of φ∗

η in all rapidity bins. In the ratios,
the coloured bands represent the statistical uncertainties of the simulations (red and green).
The systematic uncertainty of the measurement is shown as hatched grey band, the total
experimental uncertainty, i.e. the quadratic sum of systematic and statistical uncertainties, is
shown as light grey band.
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Figure A.13: Comparison of distributions in LO, NLO and NNLO calculations as a function of
pZ

T in all rapidity bins. The coloured bands indicate the scale uncertainty.
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Figure A.14: Comparison of distributions in LO, NLO and NNLO calculations as a function of
φ∗
η in all rapidity bins. The coloured bands indicate the scale uncertainty.
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Figure A.15: Subprocess decomposition of cross section calculations at LO as a function of pZ
T

in all rapidity bins.
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Figure A.16: Subprocess decomposition of cross section calculations at LO as a function of φ∗
η

in all rapidity bins.
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Figure A.17: Subprocess decomposition of cross section calculations at NLO as a function of
pZ

T in all rapidity bins.
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Figure A.18: Subprocess decomposition of cross section calculations at NLO as a function of
φ∗
η in all rapidity bins.
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Figure A.19: Subprocess decomposition of cross section calculations at NNLO as a function of
pZ

T in all rapidity bins.
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Figure A.20: Subprocess decomposition of cross section calculations at NNLO as a function of
φ∗
η in all rapidity bins.
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Figure A.21: Comparison of distributions calculated at NNLO for different PDF sets as a
function of pZ

T in all rapidity bins. The coloured bands indicate the PDF uncertainty.
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Figure A.22: Comparison of distributions calculated at NNLO for different PDF sets as a
function of φ∗

η in all rapidity bins. The coloured bands indicate the PDF uncertainty.
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Figure A.23: Comparison of measured cross sections to fixed order calculations at NLO and
NNLO precision as a function of pZ

T in all rapidity bins. In the ratios, the coloured bands
represent the theory uncertainties of the calculations (blue and red). The systematic uncertainty
of the measurement is shown as hatched grey band, the total experimental uncertainty, i.e. the
quadratic sum of systematic and statistical uncertainties, is shown as light grey band.
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Figure A.24: Comparison of measured cross sections to fixed order calculations at NLO and
NNLO precision as a function of φ∗

η in all rapidity bins. In the ratios, the coloured bands
represent the theory uncertainties of the calculations (blue and red). The systematic uncertainty
of the measurement is shown as hatched grey band, the total experimental uncertainty, i.e. the
quadratic sum of systematic and statistical uncertainties, is shown as light grey band.
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