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Abstract

The level of cancer biomarkers in cells, tissues or body fluids can be used for the prediction of the presence of cancer or can even
indicate the stage of the disease. Alpha-fetoprotein (AFP) is the most commonly used biomarker for early screening and diagnosis
of hepatocellular carcinoma (HCC). Here, a combination of three techniques (click chemistry, the biotin—streptavidin—biotin sand-
wich strategy and the use of antigen—antibody interactions) were combined to implement a sensitive fluorescent immunosensor for
AFP detection. Three types of functionalized glasses (dibenzocyclooctyne- (DBCO-), thiol- and epoxy-terminated surfaces) were
biotinylated by employing the respective adequate click chemistry counterparts (biotin—thiol or biotin—azide for the first class,
biotin—maleimide or biotin—-DBCO for the second class and biotin—amine or biotin—thiol for the third class). The anti-AFP antibody
was immobilized on the surfaces via a biotin—streptavidin—biotin sandwich technique. To evaluate the sensing performance of the
differently prepared surfaces, fluorescently labeled AFP was spotted onto them via microchannel cantilever spotting (uCS). Based

on the fluorescence measurements, the optimal microarray design was found and its sensitivity was determined.
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Introduction

Hepatocellular carcinoma (HCC) is the major cause of
morbidity and mortality in patients with chronic liver disease,
the sixth most common cancer and the fourth leading cause of
cancer-related deaths worldwide. The last release of the Global
Cancer Observatory (GCO) database in September 2018 esti-
mated about 840,000 new cases and 780,000 deaths of liver
cancer in 2018 for both sexes and all ages [1]. Cirrhosis of the
liver, hepatitis B virus (HBV) and hepatitis C virus (HCV)
infections, heavy alcohol consumption, ingestion of aflatoxin
and certain diseases like hemochromatosis, alpha 1-antitrypsin
deficiency (A1AD or AATD) and nonalcoholic steatohepatitis
(NASH) are the most important risk factors for HCC develop-
ment [2-4].

The life expectancy of HCC patients depends on the stage of the
disease at detection. A diagnosis of HCC at early stage through
surveillance methods provides highly effective treatment and
prolongs the lifetime of patients. However, when the disease is
detected in advanced stage, available therapies are restricted to
palliative care and local treatment and have no satisfactory
effect [5]. The current methods of HCC diagnosis are divided
into two main categories: imaging and biomarker tests. Cancer
biomarkers are measurable molecules or substances observed in
cells, tissues or body fluids, and their level predicts the pres-
ence of cancer or even indicates the stage of cancer. The mea-
surement of biomarkers always leads to a specific numeric
value, and the obtained result, although not necessarily accu-
rate, is generally more objective than images produced by
imaging techniques, since their interpretation is often subjected
to the judgment and experience of physicians. Additionally,
there is a strong economic argument for the acceptance of bio-
markers in cancer detection, especially in the countries where
advanced imaging instruments are limited or even unavailable
[5-8].

Recent studies have identified a number of biomarkers in the
early detection of HCC, including alpha-fetoprotein (AFP)
[9-11], lens culinaris agglutinin-reactive alpha-fetoprotein
(AFP-L3) [10,12,13], des-gamma-carboxyprothrombin (DCP)
[9,10,13], glypican-3 (GPC-3) [14,15], cytokeratin 19 (CK19)
[15], golgi protein 73 (GP73) [16], microRNA (miRNA)
[17,18], osteopontin (OPN) [11,19], annexin A2 [20] and
midkine (MDK) [21]. According to the five-phase program
adopted by the Early Detection Research Network (EDRN) of
the National Cancer Institute (NCI), most HCC biomarkers
have been evaluated in phase II and III studies, and further in-
vestigations are needed to determine their utility for clinical
purposes. AFP is the only HCC biomarker that has been studied
through all five phases of biomarker development. This bio-

marker has been the most commonly used one as an early
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screening and diagnosis tool of HCC [7,8]. The average level of
serum AFP in the healthy person is less than 20 ng/mL [22], but
high levels, sometimes exceeding 100 ug/mL, can be found in
the serum of patients suffering from HCC [23].

In this study, we compare different approaches of binding
chemistry for the construction of sensitive fluorescent
immunosensors for AFP detection by combining the unique
characteristics of click chemistry with the high sensitivity of the
biotin—streptavidin—biotin sandwich strategy as well as the high
selectivity of antigen—antibody interactions. Six different fabri-
cation routes based on dibenzocyclooctyne- (DBCO-), thiol-
and epoxy-functionalization of glasses and click chemistry
attachment of biotinylated molecules (Figure 1) were used to
obtain biotinylated surfaces for the construction of the AFP
detection sandwich. Finally, the best performing fabrication
route was evaluated for its efficiency as sensor platform. Click
chemistry reactions, which have been widely studied since their
introduction by Kolb, Finn and Sharpless in 2001 [24], have
unique advantages such as high reaction rates, high yield, mild
reaction conditions and easy post-treatment [25-29]. After-
wards, the biotinylated glasses produced following the six dif-
ferent functionalization procedures, which are referred to as
routes 1-6 throughout this article, were gradually incubated
with solutions of streptavidin and biotinylated anti-AFP to
obtain a biotin—streptavidin-biotin sandwich structure. The
biotin—streptavidin—biotin sandwich strategy is used in the fab-
rication of immunosensors due to the improved sensitivity [30-
32]. Lastly, fluorescent micropatterns were fabricated by micro-
channel cantilever spotting (uCS). Here, patterns are written
with fluorescently labeled AFP (as antigen) on the surfaces
modified with anti-AFP (as antibody). In different studies,
many selective biosensors have been developed based on
antigen—antibody interactions [22,30,31,33-37]. The technique
used in this work provides a new platform for the fabrication of
clinical immunosensors, which is applicable for the fast and
effective diagnosis of HCC.

Results and Discussion

Generation of biotinylated surfaces

To generate biotinylated surfaces as a basis for the sensor anti-
body sandwich, six different fabrication routes were followed
(Figure 1). First, the glass substrates were plasma-treated to
generate reactive hydroxy groups on their surfaces and then
functionalized with either acid (to obtain DBCO-terminated sur-
faces) or silanes (to obtain thiol- and epoxy-terminated sur-
faces). After base functionalization, biotin was immobilized on
the DBCO-, thiol- or epoxy-functionalized glasses by incuba-
tion with the respective click chemistry partner molecules

leading to the six different biotinylation routes: for DBCO-
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Figure 1: Biotin immobilization on the hydroxy-terminated glasses via different click reactions. Hydroxy-terminated glasses were first functionalized
with DBCO-OH (path i), (3-mercaptopropyl)trimethoxysilane (MPTMS) (path ii) or (3-glycidyloxypropyl)trimethoxysilane (GPTMS) (path iii) and subse-
quently biotinylated through different click reactions (routes 1-6).
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terminated glass, biotin—thiol (route 1) and biotin—azide
(route 2) were used, for thiol-terminated glass, biotin—male-
imide (route 3) and biotin—-DBCO (route 4) were used and for
epoxy-terminated glass, biotin—amine (route 5) and biotin—thiol
(route 6) were employed. The six different surfaces were subse-
quently characterized, which is mandatory for their successful
implementation and a thorough comparison of their properties.

Characterization of the surfaces by XPS and
AFM

All steps of the immobilization reactions were monitored by
X-ray photoelectron spectroscopy (XPS) to validate the ex-
pected chemical reactions taking place (Figure 2). The functio-
nalization of the glasses with DBCO-OH is proven by the ap-
pearance of a peak at 400.4 eV attributed to the N-C=0 groups
present in DBCO [38] (Figure 2a). For the sample produced
following route 2, the nitrogen concentration increases clearly
after the reaction with the biotin—azide, and the absence of a
peak around 405 eV [39,40] proves the reaction of the azide to a
triazole ring (Figure 2c). For the sample produced via route 1,
the attachment of the biotin—thiol is shown here by the pres-
ence of the S 2p doublet with S 2p3/, at 163.3 eV [41]
(Figure 2b).

Similarly, the thiol-terminated glass presents a clear sulfur
signal attributed to the thiol and a weak component at 168.0 eV
probably due to the oxidation of some sulfur atoms (Figure 2d).
The next steps (route 3 and 4) can be followed by the increase
of the nitrogen content at the surface (Figure 2e and Figure 2f).
The C 1s peak (Figure 2g) indicates the functionalization with
(3-glycidyloxypropyl)trimethoxysilane (GPTMS) especially
given the pronounced increase of the intensity of the compo-
nent at 286.6 eV [42] attributed to the C—O moiety. For the
samples of routes 5 and 6 (Figure 2h and Figure 2i), the clear
signals attributed to nitrogen occurring in the spectra at
400.0 eV also result from the successful reactions. To confirm
the quality of the functionalized layers, after each step of the
functionalization process, the roughness of the samples was
monitored by atomic force microscopy (AFM). The results are
shown in Supporting Information File 1, Figure S1. While the
roughness increases slightly over the course of functionaliza-
tion, overall, the samples remain relatively smooth with root-
mean-square roughness values (Rg) below 1 nm, showing a ho-
mogeneous reaction built-up without introduction of a nanotex-
ture that might lead to confounding factors in the evaluation of

surface binding.

Comparison of the immobilization routes for
the sandwich application

The performance of the different types of biotinylated surfaces

was probed by addition of a biotin—streptavidin—biotin sand-
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wich structure for antibody immobilization (Figure 3). To this
end, the surfaces were first incubated with streptavidin and
subsequently with a biotinylated anti-AFP antibody leading to a
surface homogeneously covered by the antigen binding anti-
body. To evaluate the amount of antigen that the different sur-
faces can bind, fluorescently labeled AFP was then spotted onto
the surfaces via pCS.

The microarrays were incubated for performing antigen—anti-
body interaction for different times (10 to 60 min) and at differ-
ent temperatures (room temperature of 25 °C and elevated phys-
iological temperature of 37 °C). Then, the samples were washed
and the fluorescence signal of the spot array was quantified
(Figure 4). As a general trend, higher fluorescence intensities
are observed at an elevated temperature of 37 °C for all micro-
arrays at the same incubation time. For room temperature incu-
bation, the observed fluorescence intensity increases with incu-
bation time for all routes within the monitored time frame of 10
to 60 min. In the case of incubation at 37 °C, some routes ex-
hibit the same behavior (routes 2, 4, and 6) while the others
(routes 1, 3 and 5) exhibit an intensity peak after some time
before the fluorescence intensity decreases again. This behav-
ior is probably caused by the drying effect that becomes more
pronounced at elevated temperatures since the solvent evapora-
tion is enhanced. When the material is dried out (and is thus
only physisorbed onto the surface), it is more easily removed in
the washing step before the fluorescence measurement. Based
on the results of the fluorescence analysis, an incubation of
samples of either route 3 or 5 at 37 °C for 20 min was deter-
mined to offer an optimal performance.

Evaluation of sensitivity

To further elucidate the capability of the approach for sensing
applications, a sensitivity curve for one of the optimal samples
(route 5, 37 °C, 20 min) was measured. Here, the optimal
microarray was incubated with different concentrations of the
fluorescently labeled AFP (ranging from 12.5 to 800 ug/mL).
The resulting fluorescence intensity curve and corresponding

representative images are presented in Figure 5.

When extrapolating the low-concentration part in the linear
regime of the curve (y = 40.77x + 345.22) and taking into
account the fluorescence background in the different experi-
ments (745.58 £ 118.32 a.u.), a sensitivity limit of the detection
of 9.8 £ 2.9 ug/mL is obtained for the given conditions of our
setup. Negative control samples (no AFP present) yielded no
fluorescence signal (Supporting Information File 1, Figure S2a).
Furthermore, unspecific binding of non-target proteins is
assumed to be low as revealed by a control experiment with
fluorescently labeled streptavidin as model protein. Here, the

fluorescence remaining after washing of the microarray is
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Figure 2: XPS characterization of a) the hydroxy-terminated (bottom) and the DBCO-terminated (top) glasses, b) the DBCO-terminated glass
(bottom) and the sample of route 1 (top), c) the DBCO-terminated glass (bottom) and the sample of route 2 (top), d) the hydroxy-terminated (bottom)
and the thiol-terminated (top) glasses, e) the thiol-terminated glass (bottom) and the sample of route 3 (top), f) the thiol-terminated glass (bottom) and
the sample of route 4 (top), g) the hydroxy-terminated (bottom) and the epoxy-terminated (top) glasses, h) the epoxy-terminated glass (bottom) and
the sample of route 5 (top), i) the epoxy-terminated glass (bottom) and the sample of route 6 (top).
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Figure 3: Schematic of the microarrays prepared for AFP detection. a) Incubating biotinylated surfaces with streptavidin solution, b) reaction of the
streptavidin on the surface with the biotinylated anti-AFP, c) delivery of fluorescently labeled AFP via pCS, and d) preparation of fluorescently labeled
AFP through the reaction between the NHS-ester reagent (NHS—rhodamine) and the primary amine of the antigen (AFP).

highly reduced (Figure S2b). Finally, it should be noted that
unlabeled AFP can also be detected in this approach. For
demonstration, unlabeled AFP was spotted by uCS and stained
via the same type of biotinylated antibodies as immobilized on
the surface. This enables the identification of the sites were
unlabeled AFP bound by subsequent staining with fluores-
cently labeled streptavidin (Figure S3). After incubation a fluo-

rescent microarray pattern becomes visible again (Figure S4).

Conclusion

In this study, we present the implementation of a sensitive fluo-
rescent immunosensor for the detection of AFP, which is used
as a common cancer-related model protein. We compared the
AFP microarray sensors resulting from six different fabrication
routes based on different functionalization methods (DBCO-,
thiol- and epoxy-termination) and subsequent click chemistry

immobilization of biotin. In the present setup, the functionaliza-
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Figure 4: Detection of the AFP antigen. a) Fluorescence of the microarrays after incubating fluorescently labeled AFP spots with anti-AFP on the sur-

faces at different times (10, 20, 30 and 60 min) and at two temperatures (25

and 37 °C). Anti-AFP was immobilized on the different biotinylated sur-

faces using the biotin—streptavidin—biotin sandwich technique previously prepared via different click reaction methods (samples of routes 1-6). b—g)
Fluorescence microscope images of the micropatterns obtained at the optimum incubation time and temperature. All microarrays were spotted at a
relative humidity of 20%. The ink concentration was 800 pg/mL. Dwell and exposure times of all images were 0.1 and 0.4 s, respectively. The corre-

sponding spot size distribution is given in the insets. All scale bars are equal

tion by thiol-silane with subsequent biotin immobilization by
biotin—maleimide as well as the functionalization by
epoxy—silane with subsequent biotin immobilization by
biotin—amine yielded the best performance of the correspond-
ing microarray sensors. The sensitivity of the epoxy—amine-
based array was evaluated to be 9.8 = 2.9 ng/mL, providing a
rapid and inexpensive screening sensor compared to the more
sensitive, but also much more elaborate detection approaches.
Moreover, the approach can be extended towards label-free
detection. To this end, a sandwich strategy is employed by

attaching a second biotinylated antibody and a fluorescently

to 50 pm.

labeled streptavidin. Further sensitivity improvements are ex-
pected upon utilizing novel antifouling and special wettability
surfaces [43,44]. Our results highlight the utility of binding
chemistry in the building of highly sensitive protein detection

sensors needed, for example, in cancer biomarker detection.

Experimental

Chemicals

Table 1 lists the most important materials used in this study. All
other materials were of analytical grade and were used

as-received without extra purification steps.
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Figure 5: Evaluation of the sensitivity of the microarrays prepared from the sample of route 5 after incubating anti-AFP spots with fluorescently
labeled AFP. a) Fluorescence intensity of the microarrays at different concentrations of fluorescently labeled AFP (12.5, 25, 50, 100, 200, 400 and
800 pg/mL). b) Fluorescence microscope images of the micropatterns. All microarrays were spotted at a relative humidity of 20%. The dwell and
exposure times of all images were 0.1 and 0.4 s, respectively. As incubation conditions we chose 37 °C and 20 min. All scale bars are equal to

50 pm.

Preparation of biotinylated substrates

Standard glass coverslips (1 X 1 cm, VWR, Germany) were
cleaned with chloroform, 2-propanol and deionized water, dried
by blowing with nitrogen and exposed to oxygen plasma
(10 sccm Oy, 0.2 mbar and 100 W) for 2 min. The obtained
hydroxy-terminated glasses were first functionalized with
DBCO-acid, MPTMS or GPTMS and subsequently biotiny-
lated via different click reactions as follows:

Functionalization

To obtain DBCO-functionalized surfaces, the hydroxy-termi-
nated glasses were immersed in solutions of DBCO-acid, DCC
and DMAP in DMSO for 24 h at room temperature (Figure 1,
path i). Thiol-functionalized surfaces were obtained by soaking
the hydroxy-terminated glasses in a 2% v/v solution of MPTMS
in toluene for 5 h at room temperature (Figure 1, path ii). To
obtain epoxy-functionalized surfaces, the hydroxy-terminated
glasses were immersed in a 2% v/v solution of GPTMS in tolu-
ene for 5 h at room temperature (Figure 1, path iii). All the
functionalized glasses were washed sequentially with deionized
water and suitable solvents to remove unreacted materials and

dried under a nitrogen stream.

Biotin immobilization

Different click reactions were used for the immobilization of
biotin on the DBCO-, thiol- or epoxy-functionalized surfaces
(Figure 1, routes 1-6). For all reactions routes, biotin solutions
of the same concentration (2 pmol/mL in DMSO) were
selected. The reactions proceeded within 20 min at 37 °C. The
samples of routes 1 and 2 were prepared by immersing the
DBCO-functionalized glasses in solutions of biotin—thiol
My, = 2000 g/mol, 4000 pg/mL) and biotin—azide
(My, = 445 g/mol and 890 ug/mL), respectively. For routes 3
and 4, the samples were provided by soaking the thiol-functio-
nalized glasses in solutions of biotin-maleimide
My, = 922 g/mol, 1844 pug/mL) and biotin—-DBCO
(M, = 750 g/mol, 1500 pg/mL), respectively. The reaction be-
tween thiol and maleimide was catalyzed by 10 mol % triethyl-
amine (TEA) to biotin—maleimide added to the solution. The
samples of routes 5 and 6 were obtained by adding epoxy-
functionalized glasses to solutions of biotin—amine (M, =
595 g/mol, 1190 pg/mL) and biotin—thiol (M, = 2000 g/mol,
4000 ug/mL), respectively. For the reaction between epoxy and
amine, 1 mol % Bi(OTf)3 to biotin—amine was added as a cata-

lyst to the biotin—amine solution. The reaction between epoxy
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Table 1: Overview of the materials used in the experiments.

Commercial name Short name
biotin PEG thiol, MW 2000 biotin—thiol
azide—PEGs—biotin conjugate biotin—azide
biotin~dPEG®;{-MAL biotin-maleimide
dibenzylcyclooctyne—PEG,—biotin conjugate biotin—-DBCO
biotin~dPEG®7—NH biotin—amine
dibenzocyclooctyne-acid DBCO-acid
(3-mercaptopropyl)trimethoxysilane MPTMS
(3-glycidyloxypropyl)trimethoxysilane GPTMS
N,N'-dicyclohexylcarbodiimide DCC
4-dimethylaminopyridine DMAP
triethylamine TEA
bismuth(lll) trifluoromethanesulfonate Bi(OTf)3
streptavidin S
streptavidin—Cy3 (fluorescently labeled F-S
streptavidin)

alpha-fetoprotein (source: human cord AFP or Ag
serum)

AFP antibody (C3) [biotin] B-Ab

5-(and 6)-carboxytetramethylrhodamine, NHS-rhodamine

succinimidyl ester
phosphate buffered saline
dimethyl sulfoxide

PBS
DMSO

and thiol was catalyzed by 10 mol % TEA to biotin—thiol. After
incubation, the excess ink solution was rinsed with deionized
water and suitable solvents and the samples were dried in a
nitrogen stream.

Antibody attachment via sandwich

To detect the AFP antigen, anti-AFP was coated on the glass as
antibody (Ab). As shown in Figure 2a and Figure 2b, the anti-
body coating was performed in two steps. First, the biotiny-
lated surfaces were incubated for 1 h in a solution of 10 ug/mL
of streptavidin in phosphate buffered saline (PBS). The sam-
ples were washed with PBS and deionized water and were
blow-dried with nitrogen. Second, a solution of 10 pg/mL of the
biotinylated antibody (B-Ab) was made to react with the strep-
tavidin molecules on the surface. The resulting antibody-termi-
nated surfaces were rinsed with PBS to remove any excess solu-

tion and were dried with nitrogen.

Microarray writing via uCS

To study the interaction between antibody and antigen, fluores-
cently labeled AFP ink was spotted onto the antibody-termi-
nated surfaces by uCS within 15 X 15 spot arrays. The spotting
process was performed on a nanolithography platform (NLP

2000 system, Nanolnk, USA) utilizing surface patterning tool

Beilstein J. Nanotechnol. 2019, 10, 2505-2515.

Role Source

biotinylated molecule
biotinylated molecule
biotinylated molecule
biotinylated molecule
biotinylated molecule
coupling agent in esterification
coupling agent in silanization

Nanocs Company (USA)
Jena Bioscience (Germany)
Sigma-Aldrich (Germany)
Jena Bioscience (Germany)
Sigma-Aldrich (Germany)
Jena Bioscience (Germany)
Sigma-Aldrich (Germany)

coupling agent in silanization ~ Sigma-Aldrich (Germany)
catalyst Sigma-Aldrich (Germany)
catalyst Sigma-Aldrich (Germany)
catalyst Sigma-Aldrich (Germany)
catalyst Sigma-Aldrich (Germany)
conjugation with biotinylated Sigma-Aldrich (Germany)
molecules

conjugation with biotinylated Sigma-Aldrich (Germany)
molecules

biomarker or antigen Lee BioSolutions, Inc. (USA)

biotinylated antibody or
biotinylated anti-AFP

fluorescent reagent for labeling

Novus Biologicals (USA)
Thermo Scientific (USA)

buffer
solvent

Sigma-Aldrich (Germany)
Sigma-Aldrich (Germany)

cantilevers (SPT-S-C10S, Bioforce Nanosciences) [45,46].
Prior to use, the cantilevers were activated by oxygen plasma
(10 sccm Oy, 0.2 mbar, 100 W, 2 min) and used immediately.
The pen reservoir was filled with 0.2 pL of ink solution. For all
patterns, a probe dwell time of 0.1 s was applied. Spotting was
performed at an optimized relative humidity of 20%, which was
determined in the previous study [25]. Figure 2c illustrates a
schematic picture of the lithography process. To study the influ-
ence of time and temperature on the coupling content, after li-
thography, the reaction between fluorescently labeled AFP and
anti-AFP was allowed to proceed for 10, 20, 30 and 60 min at
either 25 or 37 °C in a temperature chamber (PU-1KP, ESEPC,
Japan). After incubation, the excess ink solution was rinsed
with deionized water and the surface was dried in a nitrogen
stream.

Preparation of fluorescently labeled AFP ink

Succinimidyl-ester labeling reagents are the simplest and most
frequently used reagents for labeling proteins like antibodies.
Within a pH range of 7-9, succinimidyl-ester reacts efficiently
with the primary amino groups (-NH») in the side chain of the
lysine (K) residues of proteins to form stable amide bonds.
This reaction results in the release of N-hydroxysuccinimide
(NHS). For labeling AFP, we used NHS-rhodamine, a
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succinimidyl-ester functional group attached to the rhodamine
core. This fluorescent labeling reagent absorbs green visible
light (552 nm) and emits orange-red visible light (575 nm).
Before labeling, the AFP solution was dialyzed in PBS to
replace the tris(hydroxymethyl)aminomethane buffer solution
with PBS. For AFP labeling, NHS-rhodamine was added
to the AFP solution at a 10- to 15-fold molar excess and
dialyzed again to remove any extra NHS-rhodamine
(Figure 2d).

Surface characterization

The surface of the bare and functionalized glasses was charac-
terized using surface-sensitive techniques, including atomic
force microscopy (AFM) and X-ray photoelectron spectrosco-
py (XPS). To map the surface roughness, AFM in tapping mode
was conducted with a Dimension Icon (Bruker, Germany)
device with HQ:NSC15/A1 BS cantilevers (MikroMasch, USA).
All measurements were done in air and under ambient condi-
tions. As a measure of the roughness, the root-mean-square av-
erage of the height deviations with regard to the mean image
data plane (Rq in the software) was sampled from 5 X 5 um?
images (three per sample) using the AFM system onboard soft-
ware (NanoScope 8.10, Bruker, Germany). The XPS analysis
was performed using a K-Alpha+ XPS spectrometer (Ther-
moFisher Scientific, East Grinstead, UK) using the Thermo
Avantage software as previously described [47]. Sample analy-

sis was performed as reported in [25].

Fluorescence imaging

The fluorescently labeled surface patterns were imaged using a
Nikon Eclipse 80i upright fluorescence microscope (Nikon,
Japan) equipped with an Intensilight illumination (Nikon,
Japan), a CoolSNAP HQ2 camera (Photometrics, USA) and a
Texas Red set (Y-2E/C, Nikon).

Statistical analysis

The data shown in Figure 4 and Figure 5 were expressed as
mean * standard deviation. Significant differences of the arrays
resulting from the different treatment routes were analyzed by
one-way analysis of the variance (ANOVA) and the Duncan
tests at p < 0.05 using the statistical package for the social
sciences (SPSS) software version 19.0.0 (Abacus Concepts Inc.,
Berkeley, California, USA).

Supporting Information
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