KIT | KIT-Bibliothek | Impressum | Datenschutz

Vacuum‐Assisted Growth of Low‐Bandgap Thin Films (FA$_{0.8}$MA$_{0.2}$Sn$_{0.5}$Pb$_{0.5}$I$_{3}$) for All‐Perovskite Tandem Solar Cells

Abdollahi Nejand, Bahram 1,2; Hossain, Ihteaz M. 1,2; Jakoby, Marius 1,2; Moghadamzadeh, Somayeh 1,2; Abzieher, Tobias 1; Gharibzadeh, Saba 1,2; Schwenzer, Jonas A. 1,2; Nazari, Pariya ORCID iD icon 2; Schackmar, Fabian 1,2; Hauschild, Dirk 3,4; Weinhardt, Lothar 3,4; Lemmer, Uli 1,2; Richards, Bryce S. ORCID iD icon 1,2; Howard, Ian A. 1,2; Paetzold, Ulrich W. ORCID iD icon 1,2
1 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)
4 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

All-perovskite multijunction photovoltaics, combining a wide-bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low-bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum-assisted growth control (VAGC) of solution-processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well-established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge-carrier lifetime. The improved optoelectronic characteristics enable high-performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four-terminal all-perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active-area solar cells up to 1 cm².


Verlagsausgabe §
DOI: 10.5445/IR/1000104357
Veröffentlicht am 21.01.2020
Originalveröffentlichung
DOI: 10.1002/aenm.201902583
Scopus
Zitationen: 77
Web of Science
Zitationen: 69
Dimensions
Zitationen: 78
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Institut für Technische Chemie und Polymerchemie (ITCP)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000104357
HGF-Programm 43.23.04 (POF III, LK 01) Nanophotonics for Energy Conversion
Erschienen in Advanced energy materials
Verlag Wiley-VCH Verlag
Band 10
Heft 5
Seiten Article: 1902583
Vorab online veröffentlicht am 13.12.2019
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page