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Abstract

Short-circuit tests and simulations carried out with a resistive SCFCL modular assembly are presented. Each SCFCL

module consists of a BSCCO 2212 bulk coil with a critical current of about 520 A at 77 K. Series and parallel connection

were tested. In series connection, prospective current as high as 67 kArms was limited to about 11 kApeak in the first peak.

In parallel connection, prospective current as high as 65 kArms was limited to about 20 kApeak in the first peak. Low

fault current tests were also carried out (current peaks of about 3Ic) and in this case the SCFCL module takes more time

to actuate, being considered satisfactory for ”inrush” currents. Computational simulations were done considering the

bulk coil E-J curve and heat transfers between SCFCL components and the LN2 bath. The simulations can reasonably

predict the performance of the SCFCL assembly and provide additional information such as the temperature rise of

superconductor and shunt.
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1. Introduction

Due to increase of levels of fault currents around the world because of growing consumption of electric-

ity, interconnection of generation and transmission systems and insertion of power plants unforeseen under

the original plan, the use of fault current limiters in electrical systems has become more frequent in recent

years.

Among the fault current devices in study, superconducting fault current limiters (SCFCL) are one of the

most promising due to their characteristics: does not need to be replaced after a short-circuit, presents low

impedance under normal conditions and does not require any sensor or actuation system (self triggering).

There are several types of SCFCLs. The resistive type is the most studied nowadays, due to its relative

simplicity, low inductance and size.

In this paper we investigate the behavior of these devices when subjected to high and low fault currents.

The term low faults describes peaks of fault currents that are only about three times the value Ic of the

components used. How we will see, the time of transition from superconducting state to normal state of

such devices depends on the level of the fault current. The low fault current test aimed to show how the

SCFCL would react in the presence of an insrush current.
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The tests were performed with 12 modules manufactured by Nexans Superconductors GmbH (MCP-

BSCCO-2212). These modules have a CuNi alloy soldered throughout their whole length, which acts as a

shunt resistor, to avoid hot spots during the transition from superconducting to normal state (quenching) [1].

The total length of a single component is 270 cm and the transversal section area of the superconducting

material is 0.534 cm2. The components were tested in series and parallel connection.

A simple computational method was developed to simulate the behavior of these devices allowing the

assessment of the temperature rise during a short-circuit. The temperature rise is a hard parameter to measure

and the simulation of this parameter helps us to predict the final temperature of the components.

2. Procedures

2.1. Tests
The twelve SCFCL components were cooled in a liquid nitrogen bath (77 K) in the High Current Lab-

oratory of ELETROBRAS CEPEL (Electric Power Research Center) and subjected to short-circuits tests.

The test circuit is composed of impedances that controls the value of the prospective fault current (without

the SCFCL) and transformers that controls the voltage of circuit. A better description of test circuit can be

found in [2]. In table 1, we summarize the main characteristics of three tests performed (T1, T2 and T3).

Table 1. Short-Circuit Test Parameters

Test Fault Current (kArms) Voltage (kVrms) Connection Branches Fault Duration (s)

T1 67 1.0 Series 1 × 12 0.08

T2 65 0.5 Parallel 2 × 6 0.08

T3 1.2 0.135 Single Component 1 × 1 2.0

The peak values of fault current does not correspond to rms value ×√2, since the prospective currents

are not symmetric. T3 corresponds to the low fault test, carried out to study the slow transition from super-

conducting to normal state of these devices when subjected to currents in order of 3Ic (Ic = 526 A).

2.2. Computational Simulations
The computational simulations were made considering the heat exchange of SCFCL with N2 bath in

order to approximate our simulations to a more realistic condition. We consider a uniformly heating of

superconducting material and shunt resistance along their lenght [3]. The following equations (1, 2 and 3)

describes the termal behavior of model.

ρc
(
Tsp

) dTsp

dt
= EJ − Q2 − Q1 (1)

Q1 = h1A1 (Tsh − 77) (2)

Q2 =
h2A2

C2

(
Tsp − Tsh

)
(3)

In 1 - 3, Tsp is the temperature of superconducting material (K), Tsh is the temperature of shunt resistance

(K), Q1 is the rate of convective heat transfer between the shunt resistance and liquid nitrogen, Q1 is the rate

of conduction heat transfer between the superconducting material and the shunt resistance, A1 is the surface

area of shunt for convective heat transfer, h1 is convective heat transfer coefficient (0.02 W/cm2K), h2 is the

conduction heat transfer coefficient (5.0×10−4 W/cmK), A2 is the surface area of solder between BSCCO

2212 and shunt, C2 is the solder thickness between BSCCO 2212 and shunt (0.2 mm), ρ is the volumetric

density (6.0 g/cm3) and c(Tsp) is the specific heat (J/kgK) of the superconducting material.

The simulations are done considering the superconducting material as a variable resistor, according with

E-J curve described in [4], connected in parallel with the shunt resistance. A linear dependence of critical



1244   W.T.B. de Sousa et al.  /  Physics Procedia   36  ( 2012 )  1242 – 1247 

current Jc density on temperature Tsp of BSCCO 2212 was also taken in account [5]. In normal state, the

resistance of a single limiter module was modeled according with the linear behavior of BSCCO 2212 above

its onset critical temperature Tc (104 K) [6] obtained from a experimental resistance × temperature curve. A

homogeneous Tc distribution is assumed in our simulation model. All simulations were developed using the

Alternative Transient Program (ATP) version of EMTP and ATPDraw for Windows via MODELS language.

3. Results and Discussion

In Fig. 1 we observe the results of short circuit tests performed in CEPEL’s High Current Lab. For the

test T1 the first current peak without SCFCL of 98.8 kApeak was limited to 11.0 kApeak with the SCFCL

assembly in series connection. The subsequent current peaks are about 3.15 kApeak. In the test T2 the

first current peak without SCFCL of 109.9peak kA was limited to 20.6peak kA with the SCFCL assembly in

parallel connection. The subsequent current peaks are about 6.6 kApeak.

(a) (b)

Figure 1. Tests results; comparison between prospective current and limited current for a) Series connection (T1) with prospective

current = 67.0 kArms subjected to 1.0 kVrms and b) Paralell connection (T2) with prospective current = 65.0 kArms subjected to 0.5

kVrms.

These behaviors suggests that the transition from superconducting to normal state occurs in the first cy-

cle of current once after that, the current remains in a quasi ”steady-state” regime. This can be explained of

following way: after transition of superconductor material, its resistance becomes much higher than resis-

tance of CuNi metal (shunt). Because they are soldered one in another, the current flows almost completely

in the shunt.

Figures 2 and 3 show experimental results of limited current and voltage compared with the respec-

tive simulated results for T1 and T2 respectively. In both simulations (T1 and T2) we observe a sudden

change in the second peak of simulated limited currents with a correspondent voltage spike occurring at

the same instant. These differences between calculated and measured data probably came from the sharp

superconducting-normal transition in the simulation which did not happen in the measurement, since mag-

netic fields were not taken into account in our model and the superconducting material was approximated

to a single homogeneous material. In fact there are intrinsic heterogeneities that lead to changes in the

value of Tc along the superconductor material. In addition, a homogeneous distribution of temperature upon

quenching was also assumed, but the temperature may vary in function of the position in the bulk.

From these simulations we can also estimate the temperature rise of the BSCCO 2212 and CuNi shunt

during the tests, as shown in figure 4. We note, a fast heating of BSCCO 2212 during the transition from

superconducting to normal state in both curves. After the transition of BSCCO material, the temperature

rises smoothly because the current flows almost entirely through the shunt. For this reason, the temperature

of shunt is higher than temperature of superconductor material at the end of tests.
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(a) (b)

Figure 2. Comparison between measured and simulated results of limited current and voltage across SCFCL assembly. Fault current:

67.0 kArms, subjected to 1.0 kVrms (T1 - series connection)

(a) (b)

Figure 3. Comparison between measured and simulated results of limited current and voltage across SCFCL assembly. Fault current:

65.0 kArms subjected to 0.5 kVrms (T2 - parallel connection).

The temperatures of shunt and BSCCO reaches high values on test T2 because of parallel connection,

once in this kind of connection, higher currents flows in each limiter module than in series connection (T1),

as we can observe in figures 2 (a) and 3 (a).

The results of low fault test T3 can be observed in figures 5 and 6. In the figure 5 (a) we show the

first 0.3 second of test and observe that the SCFCL does not actuate, once there is no much difference

between currents of circuit with and without the SCFCL module. Figure 5 (b) shows the voltage across the

SCFCL terminals and confirms the idea that the superconductor material still does not develop a considerable

resistance because the voltage is lower than 2.5 Vpeak. This voltage rises due the resistance contact of SCFCL

module with the circuit.

However, the resistance of superconductor material starts to develop on the time once the current peak

of circuit is about 3Ic. In the figure 6 (a) we observe differences on current peaks of circuit with and without

the SCFCL module in last 0.3 second of test (between 1.7s and 2.0s). Due the development of resistance

of SCFCL module, the voltage across its terminals rise as showed in figure 6 (b). This voltage does not

reach values higher than 20 V what indicates that BSCCO 2212 material is just initiating the transition to

the normal state.
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(a) (b)

Figure 4. Temperature rise during short-circuit for a) Test T1 - series connection and b) Test T2 - parallel connection.

(a) (b)

Figure 5. Result of T3 in the first 0.3 seconds: a) The current of circuit with and without the SCFCL and b) Voltage across the SCFCL

module.

(a) (b)

Figure 6. Result of T3 in the last 0.3 seconds: a) Comparison current of circuit with and without the SCFCL and b) Voltage across the

SCFCL module
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(a) (b)

Figure 7. Results for Test T3, a)Temperature rise during low fault test and b) Comparison between measured and simulated currents.

The simulation model was used to estimate the temperature rise during test T3, as we can observe in

figure 7 (a). This simulation result show us that the BSCCO 2212 does not really transited to normal state

once the final temperature 99.5 K was lower than its onset critical temperature Tc (104 K). Figure 7 (b) show

us the comparison between measured current and simulated current for the time between 1.7 s and 2.0 s on

test T3. The simulation result agrees well with the measured current.

4. Conclusions

This work aimed to study the behavior of a resistive SCFCL, by simulating and testing SCFCL BSCCO

2212 components when subjected to high and low fault current levels. According to test and simulation

results, we conclude that these devices can be considered effective for protecting circuits against problems

caused by raising short circuit current levels, since they limited fault currents of about 65 kArms and 67 kArms

to 11 kApeak and 20 kApeak at first peak. We also conclude from test T3 that at low faults the superconductor

material of these components takes more time to develop a considerable resistance value and might not move

to normal state. This result can be considered satisfactory for ”inrush” currents, when the SCFCL should

not actuate.

Although our simulations presented some differences in comparison to experimental results, we can

consider the algorithm satisfactory for practical purposes. The simulation method developed in the present

work can be further improved, by considering heterogeneous temperature and Tc distributions, as well as by

including the effect of the magnetic field.
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