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a b s t r a c t 

Tertiary protein structure prediction is a challenging problem in Structural Bioinformatics and is clas- 

sified according to the computational complexity theory as a NP-hard problem. In this paper, we pro- 

posed a first-principle method that makes use of a priori information about known protein structures 

to tackle the three-dimensional protein structure prediction problem. We do so by designing a multi- 

modal memetic algorithm that uses an evolutionary approach with a ternary tree-structured population 

allied to a local search strategy. The method has been developed based on an incremental approach using 

the combination of promising evolutionary components to address the concerned multimodal problem. 

Three memetic algorithms focused on the problem are proposed. The first one modifies a basic version 

of a memetic algorithm by introducing modified global search operators. The second uses a different 

population structure for the memetic algorithm. And finally, the last algorithm consists of the integra- 

tion of global operators and multimodal strategies to deal with the inherent multimodality of the pro- 

tein structure prediction problem. The implementations take advantage of structural knowledge stored in 

the Protein Data Bank to guide the exploiting and restrict the protein conformational search space. Pre- 

dicted three-dimensional protein structures were analyzed regarding root mean square deviation and the 

global distance total score test. Obtained results for the three versions outperformed the basic version 

of the memetic algorithm. The third algorithm overcomes the results of the previous two, demonstrat- 

ing the importance of adapting the method to deal with the complexities of the problem. In addition, 

the achieved results are topologically compatible with the experimental correspondent, confirming the 

promising performance of our approach. 

1. Introduction 

The prediction of the three-dimensional (3-D) structure of pro- 

teins or polypeptides is one of the most important and challenging 

problems in Structural Bioinformatics ( Dorn et al., 2014 ). Each 

protein is defined by a unique sequence of chained amino acids 

that under some physiological conditions fold into a particular 3-D 

shape ( Anfinsen, 1973 ). The folding of an amino acid sequence 

is further constrained by several types of non-covalent bonds 

originated by interactions between different parts of the amino 

acid chain. These forces involve atoms in the polypeptide backbone 

as well as atoms located in the amino acid side-chains. 

It is well known that proteins are present in all living systems, 

performing a variety of fundamental functions. The nature of a 
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function performed by a certain protein is strictly related to its 

adopted conformation or folding. Thus, knowing the 3-D spatial 

arrangements of protein structures allows one to understand in a 

more clear way the roles performed by proteins in the cell. This is 

one of the primary motivations for researchers in the field. Further- 

more, there is an enormous gap between the volume of data gen- 

erated by the Genome Projects ( Consortium et al., 2015 ) and the 

number of 3-D protein structures which are currently known and 

stored in the Protein Data Bank (PDB) ( Berman et al., 20 0 0 ). This 

discrepancy has motivated the development of several computa- 

tional methods for the 3-D Protein Structure Prediction (PSP) prob- 

lem. Hence, less than ≈ 1% of non-redundant protein sequences 

stored in the NCBI Reference Sequence Database ( Pruitt et al., 

2007 ) have non-redundant representatives on the PDB. The PSP is 

a highly hard problem and has challenged Biochemists, Biologists, 

Computer Scientists, Physicists and Mathematicians over the last 

decades ( Baxevanis and Ouellette, 2004; Dorn et al., 2014 ). The 

problem is classified according to the computational complexity 
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theory as a NP-hard problem and describes a complicated scenario 

of mathematical optimization, characterized by the high dimen- 

sionality of the multimodal search space ( Guyeux et al., 2014; 

Handl et al., 2008 ). The problem challenge relies on the combi- 

natorial explosion of plausible shapes, even for a small protein, 

where a chain of amino acid residues ends up in a few confor- 

mations around a native state out of a vast number of possible 

structures ( Anfinsen, 1973; Baxevanis and Ouellette, 2004 ). 

In recent years, several computational strategies were proposed 

as solutions to the PSP problem. Existing methods can be catego- 

rized into four different classes ( Dorn et al., 2014 ) according to the 

use of structural information from the PDB: ( i ) first principle meth- 

ods without database information or ab initio ( Osguthorpe, 20 0 0 ); 

( ii ) first principle methods with database information ( Rohl et al., 

2004 ); ( iii ) fold recognition methods ( Bowie et al., 1991 ); and ( iv ) 

comparative modeling methods ( Martí-Renom et al., 20 0 0 ). Specif- 

ically, group ( ii ) represents a hybrid class of knowledge-based 

methods that make use of template information from experimen- 

tally determined protein structures combined with an ab initio 

approach based on simulations of physicochemical properties of 

the folding process in nature ( Srinivasan and Rose, 1995 ). They do 

not compare the whole target protein to a known structure, but 

do so only for short fragments or combinations of amino acids 

in an attempt to get relevant information that would help in the 

target structure prediction. We note that our work is focused on 

this class of methods. For a complete description of prediction 

methods see Dorn et al. (2014) . 

In the absence of experimentally determined structures, the 

computational modeling of proteins can offer a suitable alterna- 

tive to facilitate structure-based studies. Since PSP is a NP-hard 

problem, there is the need to use computational techniques that 

can deal with it. Metaheuristics are one of the most common and 

powerful techniques employed in this case. They do not always 

guarantee the optimal solution, but they give a good approxi- 

mation with a limited computational effort ( Talbi, 2009 ). Thus, 

nowadays to predict the 3-D structure of a protein, only from its 

linear sequence of amino acid residues, a wide range of optimiza- 

tion algorithms and metaheuristics are being applied ( Dorn et al., 

2014 ). However, especially in Structural Bioinformatics problems, 

the simple application of the canonical implementations of these 

methods is not enough to achieve realistic solutions. One reason 

for that is the severe roughness (multimodality) of the search 

space, mainly characterized by the several local and global minima 

in the energy landscape, where a small molecule can assume mul- 

tiple conformations ( Bryngelson et al., 1995; Handl et al., 2008 ). 

The incorporation of previous knowledge of known protein 

structures stored in a protein data bank, such as the PDB, is an 

important strategy to improve these methods and reduce the size 

and complexity of the conformational search space. According to 

the latest editions of the Critical Assessment of Protein Structure 

Prediction (CASP), which aims to assess the current state of the art 

in protein structure prediction methods, the best results for the 

free modeling (FM) category are being achieved by knowledge- 

based methods ( Kinch et al., 2016; Moult et al., 2016; Tai et al., 

2014 ). Thereby, in this paper, we propose a knowledge-based com- 

putational strategy, which implements an Evolutionary Algorithm 

(EA) focused on the prediction of 3-D protein structures. Due 

to the intrinsic multimodality of the PSP problem, we aimed to 

incorporate concepts related to multimodal evolutionary strate- 

gies to better explore the solution space ( Das et al., 2011 ). The 

discovery and maintenance of the best distinct solutions found 

over the optimization processes is fundamental to reveal hidden 

properties regarding the input target protein and reach a final set 

of good-enough structural models. 

Our algorithm was designed to explore in a more efficient way 

the multimodal condition of the PSP’s search space, by means of 

the partitioning of the state space following specific rules related 

to the packing degrees of the protein structures given by the radius 

of gyration (RG) measure ( Lobanov et al., 2008 ). The main concern 

of the method is the maintenance of a certain diversity degree in 

the EA population while preserving a possible convergence state 

within each created solutions group. The method was combined 

with a local search (LS) technique to intensify the search around 

the most favorable regions and highlight them toward the large 

search space. The hybridization of global and local search tech- 

niques are commonly known as Memetic Algorithms (MAs) or 

Hybrid Genetic Algorithms ( Moscato, 1989 ). MAs are based on the 

combination of existing algorithmic structures, avoiding the choice 

limitation of only one strategy to face the problem ( Krasnogor 

and Smith, 2005; Moscato and Cotta, 2010 ). In many cases, the 

balancing between exploration and exploitation can significantly 

improve the search effectiveness. Nevertheless, one of the greatest 

challenges in MAs structuring consists in how the search space 

must be explored. To obtain good results through this kind of 

algorithm, besides an acceptable performance, it is essential to 

reach the correct balancing among the global and local search 

techniques ( Boussaïd et al., 2013; Moscato and Cotta, 2010 ). 

In this way, we have structured the presented method based on 

a more general Memetic Algorithm for Continuous Optimization 

(MACO) presented by Molina et al. (2010b ), the MA-SW-Chains 

algorithm. The same idea of MA was also described in a previous 

work from the same authors ( Molina et al., 2010a ), where different 

LS techniques, scalability, and a set of parameters, as well as the 

intensity of the local searches over the global operations, were 

tested against a large set of continuous optimization functions. We 

have chosen this algorithm as it is the most recent in this line of 

works. It has addressed the challenge of balancing of the search 

space exploration inherent to the MAs, and was tested on a set 

of scalable optimization functions, defined in the Special Session 

on Large-Scale in Global Optimization of the 2010 IEEE Congress on 

Evolutionary Computation ( Tang et al., 2009 ). MA-SW-Chains has 

presented good results, winning the competition. 

Firstly, we applied the original MA-SW-Chains to the PSP 

problem. After considering the obtained results, we modified it 

to better face the problem and improve results exploiting the 

available knowledge about the problem, developing three new 

algorithm versions based on the general MA. Hence, this set of 

new algorithms was designed by an incremental development 

approach. The first version of our method, the Mod-MA , suffered 

modifications only on the global operators, such as crossover and 

mutation . Attempting to better explore the complex search space 

of the problem and consider a different structured population 

scheme in the MA, we developed the second version. The TT-MA 

algorithm implements a structured ternary tree population of 

agents based on the meme concept ( Dawkins, 1976 ), besides the 

global search operators and LS strategies already included in the 

Mod-MA . The concept of meme comes from the cultural evolution, 

and it is described as a component of cultural transmission, 

where complex ideas are divided into agents that propagate and 

mutate them while trying to keep a reasonable diversity. Each 

agent represents a subset of the solutions population, where the 

interactions between agents through global search operators and 

local refinements lead to the evolution and progressive improve- 

ments of the entire population. Also, in cultural evolution, ideas 

represent the results of search operators, and such as in culture, 

good ideas tend to survive while weak ones will disappear over 

the generations, culminating in a final set of acceptable solutions 

( Krasnogor and Smith, 2005; Ong et al., 2010 ). Similar ideas to 

this population scheme and the global search operators used in 

the designed versions were already presented in a previous work 

by Corrêa et al. (2016) . Our aim in this work was to implement 

it as an incremental approach by using different components 



starting from the MA-SW-Chains algorithm together with the ones 

described in Corrêa et al. (2016) . Therefore, the last version of 

the proposed method consists of an adaptation to deal with the 

multimodality issues of the problem. We note that none of the 

previously described methods have addressed such multimodality. 

So, the conformational search space for a given target protein is 

split out into different chunks from a min-max preset RG interval, 

the T-MA TT-MA algorithm was adapted to work with the search 

space break, where the protein models generated along the opti- 

mization processes are classified into the different chunks based 

on the RG values in order to cluster the most similar structures 

and keep a certain degree of population diversity. This version is 

referenced as TT-MMMA and uses the structured ternary tree pop- 

ulation of agents to distribute the solutions over the RG intervals 

to facilitate the control of diversity generation and maintenance. 

The most significant contribution of this work is the design 

and assessment of efficient evolutionary strategies and com- 

ponents to tackle the PSP multimodal problem. This paper is 

organized as follows. Section 2 presents fundamental concepts of 

proteins, conformational preferences of amino acids and flexibility. 

Section 3 shows related protein structure prediction methods. 

Section 4 describes the proposed methods and strategies used to 

deal with the PSP. Section 5 shows the computational experiments 

and discussion of the obtained results. Finally, Section 6 concludes 

the paper and points out future works. 

2. Problem definition 

The algorithms presented in this work use the same prob- 

lem representation ( Section 2.1 ), as well as the fitness function 

( Section 2.2 ) and the Angle Probability List approach ( Section 2.3 ) 

described below. The algorithms receive as input parameters only 

the amino acid sequence of the target protein and its expected 

secondary structure. 

2.1. Structure representation 

The computational representation of a 3-D protein structure is 

a challenging task due to the difficulty in representing the protein 

structure components and simulate all the factors that contribute 

to the native structure stability. This representation is related to 

the level of detail used to describe the 3-D protein structure. 

The higher the number of features, the higher is the capacity of 

representing the protein as it appears in nature. The most detailed 

computational representation includes all atoms of the proteins 

as well as the solvent molecules ( all-atom model). Nevertheless, 

using all-atom models to represent proteins is computation- 

ally expensive, and thus, simplified representations are often used 

( Chivian et al., 2003 ). In an all-atom model, the atomic coordinates 

in the 3-D space can be represented by a single coordinate vector 

X in a 3 N a -dimensional state space, where N a is the total number 

of atoms in the molecule. Since X contains three coordinates ( x, y, 

z ) for each atom, we see that for real proteins ( ≈ 50 - 500 amino 

acid residues), the dimension of X is in the range of about 30 0 0 - 

30,0 0 0 positions. 

Another possibility is to represent the polypeptide structure 

using its set of dihedral angles. This representation is based on 

the fact that bond lengths are nearly constant in a polypeptide 

chain ( Neumaier, 1997 ). A peptide is a molecule composed of 

two or more amino acid residues linked by a chemical bond 

known as peptide bond . Larger peptides are called polypeptides or 

proteins. All amino acids found in proteins have the same main 

structure (main chain or backbone) and differ only in the structure 

of the side chain. In a chain of amino acids, the peptide bond 

( C-N ) (Omega angle - ω) has a partially-double bond feature and 

tends to be planar, presenting little or no modification. The free 

rotation is only permitted around the bonds N-C α (Phi angle - φ) 

and C α-C (Psi angle - ψ), varying from −180 ° to +180 ° under a 

continuous domain. These angles are the main responsibles for the 

conformation adopted by a protein molecule, while the stable local 

arrangements of amino acids in the protein form its secondary 

structure. Similar to the polypeptide backbone, the side chains of 

a protein also have dihedral angles (Chi angles - χ ), and their 

conformation contributes to the protein structure stabilization and 

packing. The number of Chi angles existing in an amino acid side 

chain depends on its type, ranging from 0 to 4 angles, also varying 

from −180 ◦ to +180 ° under a continuous domain. Thereby, the 

sequence of dihedral angles of all residues of a protein defines 

its 3-D conformation ( Hovmöller et al., 2002 ). Based on that, a 

solution representation of a protein with N r residues can be seen 

as a vector of real values of size N r × 7, but considering little 

modifications on the Omega angles and assigning null values to 

the missing Chi angles in the amino acid side chains. In this 

work, the protein structure is modeled and represented only by 

the dihedral angles of the backbone and side chains in order 

to reduce the complexity of the all-atom protein representation. 

The use of dihedral angles has the advantage over the Cartesian 

model for having reduced degrees of freedom. For the backbone 

representation of a polypeptide with N r amino acids, this gives 

rise to 3 N r degrees of freedom (range of 360 °). Considering the 

varied number of Chi angles in the side chains of the N r amino 

acids, we have 3 N r + ( 
∑ N r 

1 
| χ0 −4 | ) degrees of freedom. 

2.2. Fitness function 

Searching methods for the PSP problem change the orienta- 

tion of atoms of the protein structure to minimize an energy 

function ( Desjarlais and Clarke, 1998 ), since the native structure 

of a protein theoretically corresponds to the global minimum of 

its Gibbs free energy ( Anfinsen, 1973 ). To evaluate the quality of 

a predicted structure, we employed the Rosetta energy function 

(all-atom high-resolution strategy) implemented by the PyRosetta 

toolkit ( Chaudhury et al., 2010 ). In the Rosetta scoring function 

more than 18 energy terms are available, and most of them are 

derived from knowledge-based potentials. It is noteworthy that in 

the last CASP assessment, Rosetta-based algorithms achieved one 

of the best performance when compared to other implementa- 

tions ( Tai et al., 2014 ). The function has Newtonian physics-based 

terms E physics −based (6–12 Lennard-Jones interactions ( Kuhlman and 

Baker, 20 0 0 ) and Solvation potential approximation ( Lazaridis and 

Karplus, 20 0 0 )). The function also has an inter-atomic electro- 

static interactions which is computed through a pair potential 

E inter−elect rostat ic ( Kuhlman and Baker, 20 0 0 ) and hydrogen bond 

potential E Hbonds ( Kortemme et al., 2003 ). These terms are com- 

bined with a set of knowledge-based potentials E knowledge −based 

( Rohl et al., 2004 ) and with the free energy of the amino acids in 

the unfolded state E AA . The total energy of a protein or residue is 

thus the summation of all weighted terms ( Eq. (1) ). The weight 

for each term is assigned based on the Talaris2014 energy function, 

which is currently the standard Rosetta function used to evaluate 

all-atom structural models. 

E PyRosetta = 

{
E physics −based + E inter−elect rostat ic 

+ E Hbonds + E knowledge −based + E AA 

(1) 

In addition to the default terms of Rosetta’s function, we also 

considered as a term the Solvent Accessible Surface Area ( SASA term 

) 

with an atomic radius of 1.4 ̊A( Richmond, 1984 ) to aid on the 

packing of the 3-D structures. The proposed algorithms receive 

as input parameters the primary and secondary sequences of the 

target protein. Then, to improve the formation of correct secondary 

structures (SS), we employed the SS term ( Eq. (2) ) that was also 

integrated into the scoring function. The procedure gives a positive 



reinforcement, adding a negative constant (−const) to the result 

of the term, when the corresponding SS ( zp i ) of the i th amino acid 

( aa i ) of the structure ( Ps ) that is being predicted is equal to the 

SS ( zi i ) of the same residue of the previously informed SS of the 

protein. On the other hand, the technique gives a negative rein- 

forcement to the term, adding a positive constant (+ const) , when 

the SS of the corresponding amino acid residues are not equal. All 

amino acids of the protein are comparable during the evaluation 

of the conformation. A simplified version of the DSSP ( Kabsch and 

Sander, 1983 ) algorithm implemented by the PyRosetta Toolkit 

was used to assign the secondary structures along the simulation. 

Finally, all the terms ( E PyRosetta , SASA term 

, and SS term 

) are combined, 

forming the final scoring function ( Eq. (4) ) adopted in this work. 

We note that this evaluation function was also used in the work 

by Corrêa et al. (2016) . 

SS term 

= 

∑ 

aa ∈ Ps 

V (aa i , zp i , zi i ) (2) 

V (aa, zp, zi ) = 

{
−const , zp = zi 
+ const , zp � = zi 

(3) 

E f inal = E PyRosetta + SASA term 

+ SS term 

(4) 

2.3. Angle Probability List 

The proposed methods take advantage of using experimental 

knowledge stored in the PDB. The primary benefit of incorporating 

this kind of information in a heuristic algorithm is to “decrease”

the PSP complexity, reducing the size of the search space and 

increasing the method effectiveness. To incorporate the structural 

information of known protein templates and determine the confor- 

mational preferences of a target amino acid, we used a modified 

version of the Angle Probability List (APL) 1 scheme, proposed by 

Borguesan et al. (2015) . The APL aims to assign the angle values 

to the amino acid targets through analysis of the conformational 

preferences of these residues in known protein structures con- 

sidering their secondary structures (SS). Thus, we employed the 

extended version of the APL designed by Corrêa et al. (2016) in 

an attempt to reach more precise results and to better explore 

the conformational preferences of amino acids. This technique 

also takes into account the influence that the neighborhood of 

amino acids has on the reference amino acid. Beyond the original 

APL , the authors designed three other types of APL: ( i ) APL-2l that 

considers the influence of the amino acid at the immediate left 

position and its SS; ( ii ) APL-2r that examines the influence of the 

amino acid at the immediate right position and its SS; and ( iii ) 

APL-3 that considers the importance of the amino acids at left and 

right and their secondary structures. The database used was built 

from a set of 11,130 protein structures experimentally determined 

by X-ray diffraction with resolution ≤ 2.5 Å, R-factor ≤ 20%, a 

and stored in the PDB until December 2015. For proteins with 

sequence identity above 30%, only one of them was considered. 

Thus, a set of 5,255,768 amino acids with occupancy equal to 

1 was used for further analysis. For each amino acid residue, 

the dihedral angles and its secondary structure information were 

assigned using STRIDE ( Heinig and Frishman, 2004 ). 

To handle this information, the authors have built histograms 

( H aa, ss ) of [ −180 ◦, 180 ◦] × [ −180 ◦, 180 ◦] cells in order to generate 

different combinations of amino acid ( aa ) residues up to a size of 

three amino acids (1–3 aa ) and their respective secondary struc- 

tures ( ss ), considering the neighborhood of the reference aa for 

combinations with length greater than 1 °. We note that unlike 

the fragment assembly approaches ( Simons et al., 1997 ), in the 

1 http://sbcb.inf.ufrgs.br/apl . 

APL each aa combination is used to assign the angles only to the 

reference amino acid, whereas in the fragment-based approaches 

the angles of all amino acids that encompass the fragment are as- 

signed. In this way, it is possible to perform the prediction of struc- 

tures that do not have a template in the PDB. Each cell ( i, j ) of 

the histogram contains the number of times that a given amino 

acid aa (or a combination of amino acids) has a pair of torsion 

angles ( i ≤ φ < i + 1 , j ≤ ψ < j + 1 ) with the secondary structure 

ss . To highlight the densest conformational regions, for each cell 

of a given histogram we add the value of the eight neighbor cells 

( Eq. (5) ). Then, for each H 

′ we compute the torsion Angle Probabil- 

ity List (APL aa, ss , Eq. (6) ) that represents the normalized frequency 

of each square. Fig. 1 illustrates the dihedral angles distribution ( φ
and ψ) for the dataset of 5,255,768 amino acids without ( Fig. 1 - 

a) and with the normalized frequencies ( Fig. 1 -b). This figure also 

shows the different APLs for the amino acid combination “FNM”

with secondary structure “CCH”: ( c, d, e ) represent the conforma- 

tional preferences of an amino acid and its respective SS with- 

out considering neighboring amino acids ( original APL ); ( f ) shows 

the conformational preferences of the reference amino acid residue 

“N” considering its neighboring amino acids (left “F” and right 

“M”) and their secondary structures ( APL-3 ). ( g, h, i, j ) consider a 

neighboring-dependent pair at right ( APL-2r ) or at left ( APL-2l ). It 

is easy to observe that the regions with higher frequencies change 

based on the amino acid and secondary structure under analysis, 

as well as according to the influence of the amino acid neighbor- 

hood. For a complete description of this approach, we refer our 

web server ( NIAS-Server ) 2 ( Borguesan et al., 2016 ) developed to an- 

alyze the conformational preferences of amino acids in proteins. 

H 

′ 
aa,ss (i, j) = 

i +1 ∑ 

r= i −1 

j+1 ∑ 

s = j−1 

H aa,ss (r, s ) (5) 

AP L aa,ss (i, j) = 

H 

′ 
aa,ss (i, j) ∑ 

∀ x,y H 

′ 
aa,ss (x, y ) 

(6) 

We have integrated the APL to our methods to generate short 

combinations of amino acids (length of 1–3 aa ) in an attempt to 

use high-quality solutions as a starting point or after a restarting 

procedure (see the next sections for a complete description). 

3. Related works for the PSP problem 

Most of the existing challenging optimization problems cannot 

be optimally solved by any known computational method due 

to the high dimensionality and complexity of the search space 

( Talbi, 2009 ). To overcome these issues, metaheuristics techniques 

are being applied in an attempt to find near-optimal solutions 

to these problems ( Boussaïd et al., 2013 ). Many search tech- 

niques have been proposed to deal with the PSP problem. The 

design of robust approaches that comprise several interconnected 

modules to better guide the processes by taking advantage of 

experimentally determined protein structures, search heuristics, 

screened strategies and clustering, and different types of protein 

representation and evaluation is being explored. For example, 

Elofsson et al. (1995) developed a Genetic Algorithm (GA) com- 

bined with a heuristic responsible for performing “local moves”

with small modifications in the dihedral conformational space 

of the protein structure, to emphasize the exploitation of local 

minima performed by the hybrid GA. In Dorn et al. (2011) , a GA 

with a population structured in “castes” was also allied to a path- 

relinking procedure ( Glover, 1994 ) used as a Local Search strategy. 

According to the latest CASP editions ( Kryshtafovych et al., 

2014; Moult et al., 2016 ), the most promising PSP methods for the 

2 http://sbcb.inf.ufrgs.br/nias . 
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Fig. 1. Distribution of the dataset of 5,255,768 amino acids and the APL for an amino acid sequence “FNM” with secondary structure “CCH”. The dark red color marks the 

densest regions of the Ramachandran plot. The boldface letters represent the reference amino acids and their SS.(For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

FM category are being developed through the effort s to couple 

relevant structural information from known protein structures to 

state-of-the-art search strategies such as EAs, MAs (hybrid EAs) 

and replica-exchange methods. Jayaram et al. (2012) proposed the 

Bhageerath method that consists in a hybrid knowledge-based and 

ab initio model used to exploit local similarities of known proteins 

through Monte Carlo (MC) optimizations and smooth energy 

minimization techniques. In Dorn et al. (2013) , a knowledge-based 

Genetic Algorithm was proposed aiming to reduce the size of 

the conformational search space taking into account previous 

occurrences of amino acid residues in experimentally determined 

proteins. This approach uses reasonable torsion angle intervals for 

the amino acid targets, similar to the APL idea. The use of the 

APL can be found in the work of Borguesan et al. (2015) . In this 

work, the authors show the contribution of using this strategy on 

two different metaheuristics. Recently the authors made available 

the NIAS server ( Borguesan et al., 2016 ) to compute ad-hoc APLs 

to take advantage of them in prediction methods or in any other 

problem that can use conformational preferences of amino acids. 

In a previously developed work by the same authors ( Inostroza- 

Ponta et al., 2015 ), they have shown the first attempt of an MA 

that uses a variation of the APL. 

Nowadays, Quark ( Xu and Zhang, 2012 ), Zhang-Server 

( Zhang et al., 2016 ), and Baker-RosettaServer ( Kim et al., 2004 ) 

can be pointed out as “reference methods” in the PSP area due to 

the best results achieved in the latest CASP editions. Specifically, 



Baker-RossetaServer is a primary web server for the Rosetta pro- 

tocol ( Bradley et al., 2005; Rohl et al., 2004 ) used to predict both 

ab initio and comparative models of protein structures ( Song et al., 

2013 ). The ab initio optimization of Rosetta consists in a first 

principle method with database information based on a fragment 

assembly strategy, which uses small fragments of known protein 

structures (3 or 9 aa ) to generate the initial structural templates. 

Rosetta is divided into multiple optimization stages where differ- 

ent structural representations and energy functions are employed. 

The method starts from a low-resolution optimization, and grad- 

ually increases the level of accuracy until finalizing the process 

with a more precise all-atom refinement technique. Via clustering 

techniques and sampling of thousands of individuals, Rosetta aims 

to locate different conformations distributed over the search space 

surface. The distinct structural groups are optimized by several 

MC simulations, known as Replica Exchange Monte Carlo (REMC), 

through the processes of exchange of structural fragments. At the 

end of execution, the best topologically distinct structures are 

selected as final models. 

Despite the advances in the design of computational methods 

for the PSP problem, the development of new strategies, the 

adaptation, and combination of state-of-the-art computational 

methods are needed. The complex energy landscape and its 

inherent rugosity challenge the development of more robust meta- 

heuristics. Thus, one of the most prominent metaheuristics for 

solving hard optimization problems are the Memetic Algorithms. 

Such kind of algorithm is defined as a hybrid metaheuristic that 

incorporates concepts and operators of population-based global 

search methods, such as those present in GAs, combined with 

LS techniques ( Moscato, 1989; Moscato and Cotta, 2010 ). As an 

example, Saleh et al. (2013) proposed an MA composed by two 

population-based evolutionary search strategies with coarse- 

grained representations and fragment assembly techniques to 

tackle the PSP. The authors have used two different ener gy func- 

tions to test the algorithm, a modified version of the Associative 

Memory Hamiltonian with Water (AMW) ( Shehu et al., 2009 ) and 

the Rosetta energy function (centroid low-resolution strategy) 

Rohl et al. (2004) . In a previous proposition by Corrêa et al. (2016) , 

the authors developed an MA that incorporates concepts of EAs 

coupled with a Simulated Annealing algorithm as an LS strategy 

to deal with the problem. The MA comprises a ternary tree 

structured population of individuals, as well as ad-hoc crossover 

and mutation operators specifically designed for the problem, 

aiming to improve the quality of structural models. The authors 

implemented a scheme to apply the LS only in the loop regions 

of the individuals in an attempt to focus the search on areas that 

were most sensitive to the prediction. Unlike other methods, the 

algorithm explores the knowledge stored in PDB by using the 

APL strategy, to reduce the search space and to better guide the 

optimization ( Section 2.3 ). Additionally, the authors proposed the 

evaluation function used in this work, described in Section 2.2 . 

3.1. Multimodal optimization 

It is noteworthy that several problems of the most di- 

verse knowledge areas encompass complex objective functions 

( Glibovets and Gulayeva, 2013 ). The energy functions used to 

evaluate the 3-D protein structures in the PSP, for example, fit 

into the complex category of multimodal objective functions 

( Handl et al., 2008 ). Structural models with similar energy values 

may assume very different conformations for the same target 

protein ( Kim et al., 2009 ). Knowing the difficulties that the energy 

functions have regarding the representation of optimal points 

(energy values) as the best structural solutions, it is interesting to 

discover, throughout the execution of the optimization processes, 

the maximum number of distinct solutions to provide sufficient 

resources for future expert analysis. Thus, multimodal optimization 

seeks to overcome the difficulties imposed by the multimodality 

of the functions through adaptations in the search algorithms. 

The goal here is to find a varied set of solutions to the problem 

and not just a single one ( Das et al., 2011 ). The discovery of 

multiple solutions can help on the performance of the methods 

since various points in the state space can be easily optimized and 

modified without affecting the overall processes’ performance. 

In this way, the EAs present advantages over other more clas- 

sical search heuristics that are not population-based. Ideally, if an 

EA can maintain the diversity of solutions coming from an effec- 

tive exploration of the search space, at the end of the algorithm 

execution, it is possible to obtain multiple good solutions instead 

of only one ( Das et al., 2011 ). Thus, the discovery and maintenance 

of multiple solutions over the algorithm execution configure the 

main challenges in the use of evolutionary metaheuristics applied 

to multimodal optimization ( Belda et al., 2007 ). The most common 

multimodal optimization strategies are based on the niching idea 

( Glibovets and Gulayeva, 2013 ), which is related to the attempt 

to find and maintain multiple groups or parts of the search space 

around multiple solutions in order to prevent the convergence to 

a single solution. Several niching methods were proposed over the 

years, but the central idea consists in the crowding of solutions 

( Thomsen, 2004 ) regarding some similarity criteria. 

For example, in Rosetta ( Rohl et al., 2004 ), the final result of 

a prediction process involves not only a single structural model, 

but a set of energetically favorable and topologically distinct 

solutions resulting from the many minimizations and clustering 

procedures carried out during the simulation. In the work of 

Garza-Fabre et al. (2016) , the authors proposed an MA based on a 

fragment assembly technique that associates as a search heuristic 

the Rosetta ab initio protocol. As an alternative to the search 

space roughness, the MA uses the stochastic ranking-based selection 

procedure, which aims to minimize the evaluation function while 

keeping the structural diversity of the population. In addition, 

the method implements a modified version of the fragment- 

based initialization used by Rosetta in an attempt to reach an 

appropriate balance between the exploration and exploitation of 

the conformational space. Rocha et al. (2016) proposed a multi- 

objective GA, which uses the phenotypic crowding strategy as a 

similarity criterion for the selection of individuals. Based on this, 

two solutions are selected according to their structural differences. 

The most similar ones are selected, which implies in the delay 

of the population convergence. The authors also worried about 

the maintenance of the Pareto front diversity, incorporating the 

crowding distance technique of the Non-dominated Genetic Sort- 

ing Algorithm (NSGA-II) ( Deb et al., 2002 ) as a criterion for the 

insertion of new individuals in the population. Optimizations were 

compared considering only a single objective against the same 

function decomposed into two and three objectives, and with 

Quark ( Xu and Zhang, 2012 ). According to these authors, the GA 

was able to reach good-enough results, appearing to be promising 

in dealing with the PSP problem. 

4. Proposed strategies 

In spite of the wide range of metaheuristics proposed for 

multimodal and large-scale optimization, there is still the need for 

developing new computational methods focused on these concerns 

when applied to the PSP problem. Therefore, we started designing 

the proposed methods from a more general metaheuristic. Firstly, 

we used the MA-SW-Chains algorithm ( Section 4.1 ) to the problem 

together with MA components described by Corrêa et al. (2016) . 

We developed three new algorithm versions based on these ideas 

by an incremental development approach. We attempt to incor- 

porate the PSP problem-dependencies and previous knowledge of 



experimentally-determined 3-D protein structures to make them 

more pertinent to the problem under study. We also used the APL 

scheme and the structural arrangements preferences of proteins 

( Daggett and Fersht, 2003 ) employed in the APL mutation and the 

Secondary Structure Uniform crossover . Our primary focus on this 

work was to propose a final method capable of dealing with the 

inherent multimodality of the problem by the incorporation of 

niching concepts, aiming at improving the state space exploration 

and keeping a possible trade-off between convergence and diver- 

sity of the individuals. All of these algorithms are detailed in the 

next sections. 

4.1. MA-SW-Chains algorithm 

Molina et al. (2010b ) proposed a MACO, called MA-SW-Chains , 

based on the system presented in Molina et al. (2010a ), combined 

with the Solis and Wets algorithm ( Solis and Wets, 1981 ) as its 

LS strategy. Basically, MA-SW-Chains is a steady-state genetic 

algorithm (SSGA) plus a continuous LS technique (SSMA) that uses 

the concept of LS chain to adjust the search intensity (number of 

fitness evaluations) applied to the SSMA population according to 

the algorithm evolution. Such strategy has the objective of explor- 

ing the most promising areas of the search space maintaining the 

history of the LS procedures already performed on each individual. 

The SSMA generates only one offspring in each generation. Parents 

are randomly selected through a negative assortative mating to 

produce new offsprings by the crossover operation, which then is 

replaced in the population by the standard replacement strategy. 

This approach replaces an offspring only if it is better than the 

worst individual already in the population. This method was 

designed to produce high population diversity levels by the use 

of the BLX- α crossover ( Eshelman, 1993 ) with a great value for its 

associated parameter ( α = 0 . 5 ), combined with the BGA mutation 

operator ( Mühlenbein and Schlierkamp-Voosen, 1993 ). For every 

n frec number of fitness evaluations of the SSMA, the local search 

is performed on a particular individual of the population in an 

attempt to improve the exploitation of global minima or escape 

from local minima. 

– Solis and Wets Local Search: The Solis and Wets (SW) algo- 

rithm ( Solis and Wets, 1981 ) consists in a randomized hill-climber 

heuristic with an adaptive step size which starts at a given point 

x of the energy landscape. A constant of deviate d is defined 

from a normal distribution with standard deviation p . If x + d or 

x − d improves the current step x , a move is performed to the 

better x , and success is recorded. Otherwise, a failure is recorded. 

The adaptive step is defined using the adjust of the parameter p 

according to the number of successes and failures obtained along 

the search. After a defined number of successes ( maxSuccesses ), p 

is increased to move quicker, and after a considerable number of 

failures ( maxFailures ), p is decreased to focus the search. Also, a 

bias term b is used to guide the method intended right directions. 

We used maxSuccesses = 5, maxFailures = 3, p = 1 .0 and b = 0 as in 

Molina et al. (2010b ). 

– LS Chain strategy: Individuals in the population of SSMA 

may exist for a long time, allowing that the same individual 

becomes the starting point of subsequent invocations of the LS 

procedure. The LS chain strategy ( Molina et al., 2010a ) keeps the 

history of the LS parameterization of each individual to be used 

as the initial configuration for the next LS applications, providing 

an uninterrupted connection between successive LS invocations of 

the same individual. 

– MA-SW-Chains Balancing: MA-SW-Chains uses a constant to 

regulate the LS intensity ( I str ) every time that the SW algorithm 

is applied. The LS intensity is defined using the total number of 

fitness evaluations allowed in one search invocation. Based on 

this, Molina et al. (2010b ) set the ratio parameter ( r L / G ) respon- 

sible for balancing the efforts spent on the global search and in 

the refinements of the region around the most promising areas, 

preventing an unnecessary LS exploitation. Hence, for every n frec 

( Eq. (7) ) number of global evaluations, the continuous LS method 

is applied to a specific individual ( c LS ). 

n f rec = I str 

1 − r L/G 

r L/G 

(7) 

Starting from the best individual of the population, c LS is 

selected if the SW algorithm has never optimized it or if it was 

previously refined and obtained a fitness value improvement 

greater than δ min 
LS (threshold). The LS is applied to the best in- 

dividual that satisfies these conditions. If none fits, the SSMA 

population is restarted (keeping the best solution). 

– Restarting: If no individual of the SSMA is submitted to the 

LS, the restarting procedure discards the entire population of the 

SSMA, keeping only the best solution, and generates a new one. 

– Parameterization of the MA-SW-Chains: In this work, we 

used the same parameterization presented in Molina et al. (2010b ). 

The SSMA population size is 60 individuals and the APL strategy 

initializes all of them. The BLX- α crossover is used with α = 0 . 5 . 

The parameter associated with the negative assortative mating 

is set to 3. Every generation, after the selection of parents, the 

crossover application and the replacement step, the MA-SW-Chains 

tries to apply the BGA mutation to the entire SSMA population 

with a probability of 0.125, only excluding the best solution. For 

each individual, mutation is applied to each φ and ψ angles of the 

amino acid residues with a probability of 0.125. The balancing pa- 

rameters were defined as I str = 10 0 0 and r L/G = 0 . 5 , consequently 

n f rec = 10 0 0 . δ min 
LS is set to 0 as the energy function does not have 

any threshold value. 

4.2. Mod-MA algorithm 

The first version of our method uses two new global operators 

focused on the problem-specific properties, the Secondary Structure 

Uniform crossover and the APL mutation , instead of those used in 

the MA-SW-Chains . Similar versions of them were proposed in 

Corrêa et al. (2016) . The Mod-MA algorithm remains an SSMA that 

uses the same LS combined with the LS chain technique presented 

in the MA-SW-Chains . The differences among them are just in 

the global operators. We have used the same parameter setting 

of the MA-SW-Chains except for the new operators. This version 

was designed to infer how much the knowledge-based operators 

influence in the method effectiveness. Algorithm 1 shows the 

pseudocode of the Mod-MA . 

– Secondary Structure Uniform crossover: Based on the 

structural arrangement preferences of proteins ( Daggett and Fer- 

sht, 2003 ), the Secondary Structure Uniform crossover ( Algorithm 1 , 

line 6) was designed to favor the correct formation of secondary 

structures. This approach prioritizes the solutions (parents in 

the crossover) that have already formed the proper arrangement 

related to the secondary sequence input parameter. It tries to keep 

the similarity found so far between the secondary structures of 

the solutions that are being worked and the previously informed 

secondary sequence (input parameter) to generate good offspring 

with correct secondary arrangements. Similar to the uniform 

crossover idea ( Syswerda, 1989 ), for each residue (specific positions 

in the vector solution), the dihedral angles φ, ψ and χ(0 −4) are 

taken either from parent 1 or parent 2. The same probability 

of 0.5 is maintained if both the secondary structures related to 

the individuals’ residues are equal or different to the previously 

informed secondary sequence. If only one of them is equal to 

the secondary structure sequence parameter, the torsional angles 

corresponding to this residue are assigned to the new offspring. 

The incorporation of such knowledge and the use of this crossover 



Algorithm 1 Pseudocode of the Mod-MA algorithm. 

Require: number of energy evaluations, primary and secondary amino acid sequence 

Ensure: best solution found 

//Generate initial population through the APL 1: Initialize population 

2: while stop criteria not satisfied do 

//Global search 

3: repeat 
//Crossover 4: par 1 ← NegativeAssortativeMating ( population ) 

5: par 2 ← NegativeAssortativeMating ( population ) 

6: of f spring ← SSUniformCrossover (par 1 , par 2 ) 
7: population ← StandardReplacementStrategy (population, of f spring) 

//Mutation 

8: for each ind i v id ual in population do 

9: if random prob < 0 . 125 then 

10: ind i v id ual ← APLMutation (ind i v id ual) 
11: end if 
12: end for 
13: Sort population 

14: until n f rec 

15: S LS ← verify if there is any individual to be refined by LS 

16: if S LS � = ∅ then 

17: C LS ← best individual of S LS 

//Local Search 

18: if SW (C LS ) was improved then 

19: replacement of the former C LS in population by the improved C LS 

20: Sort population 

21: end if 
22: else 

23: Restart population 

24: end if 
25: end while 

instead of the BLX- α was necessary because an operator based 

only on probabilities tends to disrupt the secondary structures of 

parents that already formed it, generating offspring with unrea- 

sonable structures. This version maintains the approach of standard 

replacement strategy ( Algorithm 1 line 7) from the MA-SW-Chains 

algorithm, that replaces an offspring only if it is better than the 

worst individual already in the population. 

– APL mutation: According to the conformational preferences 

of amino acids in proteins, the APL mutation tries to mutate the 

residues of an individual of the MA population. This mutation 

occurs based on a set of angles generated by the APL scheme con- 

sidering the type of the amino acid and its secondary structure, 

not just a random value in a determined interval as in BGA muta- 

tion . The problem is that the BGA range can comprise “prohibited 

values” that are probably wrong and will not reflect the native-like 

angles of the protein structure as they do not have occurrences 

in the APL Ramachandran plots, comprising empty areas in the 

histograms. Thus, the routine avoids the use of angle values that 

do not have previously occurred in known 3-D protein structures. 

Similar to the MA-SW-Chains , every generation the Mod-MA algo- 

rithm attempts to apply the APL mutation to the entire SSMA pop- 

ulation considering a small probability of 0.125 for each individual, 

excluding the best one to not worsen the solution and lose the best 

path found ( Alg. 1 , line 10). For each individual, the APL mutation is 

applied to each residue of the primary sequence also respecting a 

probability of 0.125. The algorithm jumps to another cell in the APL 

and assigns new values for the φ and ψ angles related to the con- 

cerned residue only if the maximum absolute difference between 

the current and new angles ( φ and ψ) is not greater than the jump 

parameter (diversity control). We fixed the constant jump = 50 . 

4.3. TT-MA algorithm 

To better explore the complex search space of the problem 

and consider a new structured population scheme in the MA, we 

have designed the second version of our method. TT-MA is an MA 

that uses a structured ternary tree population ( Fig. 2 ) instead of 

the SSGA, combined with the specifically designed global search 

operators already incorporated in the Mod-MA ( Section 4.2 ). The 

organization of the MA population in a ternary tree was presented 

in the previous work by Corrêa et al. (2016) to tackle the PSP prob- 

lem. Each node of the tree represents an agent that stores a subset 

of solutions. All of the agents’ solutions form the entire population 

of the method. As in the Mod-MA , this approach also uses the 

SW algorithm and the LS chain strategy, which differs from the 

Simulated Annealing algorithm ( Kirkpatrick et al., 1983 ) used as LS 

in Corrêa et al. (2016) . The interactions between agents give the 

optimization of solutions through global searches and local refine- 

ments, which leads to the evolution and progressive improvements 

of the entire population. Basically, TT-MA assembles all of the com- 

ponents already described with a different organization of the 

population. With this, we can assess the role of the ternary tree in 

the MA performance when compared with the previous versions. 

– Population definitions: The population of the TT-MA is 

composed of thirteen agents organized in a hierarchical ternary 

tree that forms four overlapped subpopulations consisting of three 

supporters and one leader agent. Each agent maintains a set of 

n solutions where one of them is called current solution and the 

others are the pocket solutions ( Fig. 2 ). In this work, we adopted 6 

solutions per agent to be compatible with the previous algorithm 

versions. The agents can only interact with the ”leader agent” of 

the subpopulation to which they belong. The pocket solutions are 

the best solutions found so far, and the current solution represents 

the one that is being modified in the current generation of the 

algorithm. Algorithm 2 shows the pseudo-code of the TT-MA . 

– Interactions between agents: according to the Algorithm 2 , 

in each generation of the global search step, the ”leader agent” of 

a subpopulation applies the Secondary Structure Uniform crossover 

on the agents located in the lower level of its subpopulation 

( Algorithm 2 , line 8). The parents for the crossover are ran- 

domly selected from the pocket solutions of the concerned agents 

( Algorithm 2 , lines 6 to 7). Then, the generated offsprings are 



Fig. 2. Structured ternary tree population used in the MA. On the top right, it illustrates an agent composed by n solutions: a current one and the pocket solutions. Adapted 

from Corrêa et al. (2016) . 

Algorithm 2 Pseudocode of the TT-MA algorithm. 

Require: number of energy evaluations, primary and secondary amino acid sequence 

Ensure: sol best : best solution found 

//Generate initial population through the APL 1: Initialize population 

2: sol best ← best solution of agent 0 
3: while stop criteria not satisfied do 

//Global search 

4: repeat 
//Crossover and Mutation 5: for each agent do 

6: par 1 ← random solution of the sub-leader agent 
7: par 2 ← random solution of the agent 
8: of f spring ← SSUniformCrossover (par 1 , par 2 ) 
9: agent.cur rent ← APLMutation (of f spr ing) 

10: end for 
11: Sort population 

12: Update population 

13: until n f rec 

//Local search 14: for each agent do 

15: agent sol best ← SW (agent.sol best ) 
16: end for 
17: Update population 

18: if best solution of agent 0 < sol best then 

19: sol best ← best solution of agent 0 
20: end if 
21: if No Improvement Threshold reached then 

22: Restart population 

23: end if 
24: end while 

submitted to the APL mutation with a probability of 0.125 and 

stored without restrictions in the corresponding current solutions 

of the supporter agents ( Algorithm 2 , line 9). Each agent keeps 

the pockets always sorted according to the best energy found so 

far ( Algorithm 2 , line 11). After a generation has been completed, 

the population is updated ( Algorithm 2 , line 12) following three 

steps: ( i ) the current solution of each agent is added to the pocket 

solutions if it is better than one that is already stored; ( ii ) in the 

subpopulations 1, 2 and 3, the lower level agents send their best 

solutions to the leader agents and receive back the worst ones, 

characterizing the swap operation ; ( iii ) the supporter agents of the 

subpopulation ”0” also perform the swap , sending their best solu- 

tions to the agent 0 and receiving back the worst ones. Therefore, 

the best solutions are kept on the top of the hierarchy in the pock- 

ets of the agent 0 . As in the previously described SSMAs, every n frec 

number of global energy computations, the SW algorithm is ap- 

plied to the best solution of each agent ( Algorithm 2 , line 15) using 

the LS Chain technique. Still, the restarting procedure ( Algorithm 2 , 

line 22) is applied when the algorithm reaches a premature sta- 

bilization ( Algorithm 2 , line 21). If the best solution of the agent 0 
has not been improved over three turns of global and local search 

execution, it will restart the population by keeping only the best- 

known solution of each agent. We emphasize that we kept the 

same parameter setting already defined in the previous algorithms. 

4.4. TT-MMMA algorithm 

As already stated, our central objective in this work was to 

design an incremental approach using the combination of promis- 

ing evolutionary components to finally address the multimodal 

PSP problem. Thus, the last version of the MA is a variation of 

the TT-MA algorithm, described above. It incorporates concepts 



related to evolutionary multimodal strategies ( Das et al., 2011 ) 

to better guide the solution space exploration in an attempt to 

discover and optimize a set of distinct structural solutions instead 

of spending effort s to optimize only one solution when the MA 

reaches a convergence state. It is noteworthy that it is not only the 

discovery but also the maintenance of the best distinct solutions 

found for the optimization processes, which are fundamental to 

reach a final set of different structural models. The multimodal 

optimization strategies try to divide in some way the state space, 

be it by partitioning the problem space or by creating multiple 

clusters around the most distinct solutions, in order to prevent 

the convergence of the entire population of the algorithm to a 

single point. This “restriction” imposed to the method can balance 

the computational efforts to focus on more than one promising 

solution. None of the previously described algorithm versions 

have addressed this. Since the PSP conformational space is known 

by the severe roughness and the enormous complexity due to 

the high dimensionality of variables ( Bryngelson et al., 1995; 

Handl et al., 2008 ), TT-MMMA was developed to deal with these 

complexities that are inherent to the solution space. 

In this way, we decided to divide the conformational search 

space of the problem, following a particular structural measure of 

proteins to maintain some level of diversity in the population of 

the MA and explore more distinct folds while preserving a possible 

convergence state in each created niche. The partitioning of the so- 

lution space was defined by specific rules related to the packing de- 

grees of the protein structures given by the radius of gyration (RG) 

measure ( Lobanov et al., 2008 ). The RG of a protein structure is the 

root mean square distance of the protein atoms from its center of 

mass. The RG can be used as a packing indicator, since the lower 

the RG, the higher the proximity of the atoms with the center of 

the protein. If a protein structure is stable next to its native state, 

the RG will probably remain stable. However, when the protein is 

unfolded (less stable conformation), the RG values tend to vary. 

For a given target protein, its search space is split out into dif- 

ferent chunks (sub-intervals) from a min-max preset RG interval. 

The range of the minimum and maximum RG values of this inter- 

val defines the possible values that the protein models (solutions) 

can assume during the optimization regarding the target protein. 

The TT-MMMA was adapted to work with the search space break. 

The protein models generated along the optimization processes 

are classified into the different chunks based on their RG values 

to cluster the most similar structures and keep some level of pop- 

ulation diversity. The idea of partitioning the range of RG values 

into sub-intervals forces population of the method to always keep 

distinct solutions throughout the optimization. The RG interval 

thresholds are established according to specific characteristics of 

the target protein, which consider the length of the amino acid 

sequence and its structural class. The class of a protein is defined 

considering the structural arrangements and components of the 

secondary structure (SS). From the length of the target amino acid 

sequence and its class, the minimum and maximum thresholds 

of the RG interval are defined by analyzing experimental protein 

structures that follow the same pattern (length and class). 

– Protein classes: Proteins can be classified according to 

their SS components and arrangements. The classification of 

proteins into different structural classes can provide detailed 

descriptions and insights about the relationships and in common 

features among them. The classes configure different molecular 

interactions, which originate different SS arrangements and 3-D 

topologies. In this work the proteins were classified into five 

classes. This classification follows the predominance values delin- 

eated in the work of Chou (1995) , which comprises: ( i ) class of 

α-helices, covering proteins that have more than 40% of α-helices 

and less than 5% of β-sheets in their SS composition; ( ii ) class 

of β-sheets, which comprises proteins that have more than 40% 

of β-sheets and less than 5% of α-helices; ( iii ) class of irregular 

regions, which includes proteins with less than 10% of α-helices 

and β-sheets; ( iv ) class of α- and β-proteins, which encompass 

proteins that have more than 15% of α-helices and β-sheets; and 

( v ) hybrid class, which comprises proteins that do not fit into any 

of the previous classes, i.e., they present a combination of the 

three types of SS in their SS composition. 

– Protein database: The definition of the RG interval for a 

given target protein is done through the correlation between its 

length and structural class and the experimentally determined 

protein structures that follow the same pattern (length and class). 

To search the corresponding experimental proteins, we used the 

same protein database developed for the APL strategy. Its speci- 

fications were already detailed in Section 2.3 and includes 11,130 

protein structures obtained from the PDB. Thus, for all of the 

proteins in the dataset, we have defined their structural classes 

and calculated the RG measure. 

– Definition of the RG interval: For a certain target protein, 

the min-max RG thresholds are defined by querying the idealized 

database, relating the length of the amino acid sequence and 

its class defined by the SS. The query returns a set of proteins 

compatible in length and class with the target. From the returned 

set, the minimum and maximum thresholds are assigned from the 

lowest and highest RG values attached to the returned structures, 

respectively. We defined a minimum number of 5 proteins to 

define the RG interval. To ensure that at least 5 proteins are 

returned by the query, the length parameter is modified whenever 

this condition is not satisfied. If the length of the returned set 

is less than 5 (condition not satisfied), the parameter length is 

increased by ± 1. It allows proteins with length equal, greater and 

smaller than the target, respecting the current length parameter. 

So when the condition is not satisfied, a new query is performed 

using the modified length parameter. This procedure is repeated 

until a representative set is returned. 

– Population definitions: As a variation of the TT-MA algo- 

rithm, the TT-MMMA keeps the same MA components already 

included in it. The algorithm makes use of the structured ternary 

tree population of agents to distribute the solutions over the 

chunks created by the partitioning of the RG interval to facilitate 

the control of diversity generation and maintenance. Given that 

the ternary tree ( Fig. 2 ) has nine agents in its lowest level, the RG 

interval for a certain target protein is also divided into 9 chunks, 

such that each lower level agent (leaves) is associated with one 

of these. For example, the agent 4 is assigned to the first chunk of 

the interval and the agent 12 to the last one. The sub-leader agents 

are associated to the chunks of their children in the tree, e.g., 

the agent 1 is assigned to the first three chunks. The agent 0 (root) 

encompasses the whole RG interval. These associations mean that 

over the optimization process, the RG measures of the solutions of 

an agent must be within the range of its chunk. 

To ensure the property that the RG of the solutions of an agent 

will be in the range of its associated RG chunk over the optimiza- 

tion, the interactions between agents described in the TT-MA had 

to be slightly changed. The agents still interact with the ”leader 

agent” of the subpopulation to which they belong to, but now they 

can interact with the agents located in the same level of the tree 

(horizontal interactions). For example, agent 4 communicates with 

the other 8 leaf agents. In general, the algorithm of the TT-MMMA 

is the same as the TT-MA . The only differences are in the update 

function ( Algorithm 2 , lines 12 and 17) and in the LS technique 

( Algorithm 2 , line 15). The value of the application threshold 

( Algorithm 2 , line 21) of the restarting ( Algorithm 2 , line 22) was 

also modified. 

– Interactions between agents: According to the Algorithm 2 , 

after a generation of the global search has been completed or after 

the execution of the LS, the population is updated. The update 



function is responsible for adding the current solution of an agent 

to its pocket solutions and performing the swap operation between 

agents. Thus, the RG interval restriction was only imposed to the 

pocket solutions. The current solution can assume any RG value 

since it is the individual which is modified over the generations 

of the algorithm. To ensure that each agent stores in its pocket 

only solutions with RG compatible with the range of its chunk, 

the update function for the TT-MMMA was modified and follows 

the steps below: 

1. The current solution of each agent is added to the pocket 

solutions if they are better than one that is already stored and 

if their RG value is within the range of agent’s RG chunk; 

2. If the current solution of an agent is not added to its pocket 

solutions because it is out of the range of its chunk (step 1), 

then the agent tries to add this solution to the pocket solutions 

of the other agents located in the same level of the tree (hor- 

izontal interaction), starting from its neighbors. If the solution 

does not fit in any RG chunk, then it is not stored. In the next 

generation, it will be replaced anyway ( Algorithm 2 , line 9); 

3. In the subpopulations 1, 2 and 3, the lower level agents send 

their best solutions to the leader agents and receive back the 

worst ones, characterizing the swap operation . The agents only 

swap solutions if the solution of the leader agent fits in the 

RG chunk of its child and if the solution of the child fits in the 

chunk of the leader agent. If some of them do not fit, then the 

operation is not performed; 

4. The supporter agents of the subpopulation 0 also perform the 

swap , sending their best solutions to the agent 0 and receiving 

back the worst ones. The operation is performed if the solution 

of the agent 0 is within the range of the chunk of the supporter 

and if the solution of the supporter is in the range of the chunk 

of the agent 0 . If some of them do not fit, then the operation is 

not performed. 

With these modifications in the update function we ensure that 

the solutions stored in the agents’ pockets respect the ranges of 

the chunks associated with the agents. Since the LS strategy is 

applied directly to the best solutions of each agent, it was also 

modified to accept only moves that respect the range of its chunk. 

The application threshold of the restarting was increased from 3 

to 10 since the division of the search space already increases the 

population diversity. Hence, if the best solution of the agent 0 has 

not been improved over ten turns of global and local search, it 

will restart the population by keeping the best-known solution of 

each agent. We kept the same parameter setting described in the 

previous algorithms. 

– Adaptation to the spot: All of agents’ solutions are initialized 

by the APL strategy without restrictions of RG interval. So at the be- 

ginning of the simulation or after a restarting, the solutions are not 

following the range of the RG chunks of the agents. The property 

of restriction of RG interval of the agents’ solutions appears as they 

begin to update the population over the optimization since no so- 

lution out of the range of the chunks is inserted in the population. 

Thus, as the solutions start to be stored in the pocket solutions, 

this property emerges. We called this pattern as adaptation to the 

spot , which means that due to the restrictions imposed in the up- 

date function the solutions are gradually adapting to the chunk of 

the agents. At the end of the simulation, the agents will present 

distinct solutions with different conformations and packing degrees . 

5. Computational experiments 

All of the algorithms described in this work were coded in 

Python. They were run 30 times with stop criterium of 10 6 

evaluations of energy per run on each target protein. Tests were 

performed in an Intel Xeon E5-2650V4 30 MB, 4 CPUs, 2.2Ghz, 96 

Table 1 

Amino acid sequences used to test the proposed algorithm 

versions. The second column shows the number of residues, 

and the third column shows the secondary structure compo- 

nents. 

PDB ID Target length SS Content 

1ACW 29 One β-sheet/One α-helix 

1CRN 46 One β-sheet/Two α-helices 

1ENH 54 Three α-helices 

1K43 14 One β-sheet 

1L2Y 20 Two α-helices 

1Q2K 31 One β-sheet/One α-helix 

1ROP 63 Two α-helices 

1UTG 70 Five α-helices 

1WQC 26 Two α-helices 

1ZDD 35 Two α-helices 

2MR9 44 Three α-helices 

2P5K 64 One β-sheet/Three α-helices 

2P6J 52 Three α-helices 

2P81 44 Two α-helices 

2PMR 87 Three α-helices 

3V1A 48 Two α-helices 

cores/threads, 128G, 4TB. The sequences of sixteen small proteins 

ranging from 14 to 87 amino acids were obtained from the PDB 

and used as case studies in our experiments. These targets were 

selected taking into account different sizes and the secondary 

structure content. Table 1 presents details of the target protein se- 

quences. We note that the knowledge of algorithms was restricted 

regarding the target proteins to test the algorithms as if we were 

performing a prediction with any similar structure in the PDB 

(Free Modeling category). To guarantee that the proposed method 

does not take advantage of any protein structure from the PDB 

with a high level of similarity to the targets, we removed from the 

APL database all of the protein structures indicated by the SAS 3 

( Sequence Annotated by Structure ). Also, to situate our methods 

according to the most relevant methods in the field, we have 

done a comparison with the Rosetta ab initio protocol ( Rohl et al., 

2004 ). As already mentioned, according to the latest CASP editions, 

Rosetta is in the state-of-the-art and is one the most promising 

methods to deal with the problem. The computational experi- 

ments aimed to analyze the behavior of the algorithms regarding 

energy and to measure the biological significance (quality) of 

the best solutions found. All of the described algorithm versions 

were compared, including the MA-SW-Chains and the previously 

proposed MA of Corrêa et al. (2016) . 

5.1. Results and discussion 

For each case study, we present a structural analysis of the 

solutions among the 30 performed runs. The quality of the pre- 

dicted structures was evaluated by similarity comparisons with 

experimentally determined protein structures regarding the root 

mean square deviation (RMSD, minimization measure) ( Zhang and 

Skolnick, 2004 ) and the global distance total score test (GDT_TS, 

maximization measure) ( Zemla, 2003 ). Table 3 shows the final re- 

sults of the MA-SW-Chains (M1) and the three proposed algorithm 

versions, Mod-MA (M2), TT-MA (M3) and TT-MMMA (M4) applied 

to the target proteins. It also shows the results of the MA proposed 

in Corrêa et al. (2016) (M5) and the Rosetta ab initio protocol (R.), 

both of them applied to the same set of target proteins. Table 2 

summarizes the main components and differences among methods 

developed in this work. 

– Comparisons between methods M1, M2, M3 and M4: An- 

alyzing the results of the Table 3 , we observe that in the average 

3 http://www.ebi.ac.uk/thornton-srv/databases/sas/ . 

http://www.ebi.ac.uk/thornton-srv/databases/sas/


Table 2 

Variations of the proposed algorithm versions developed based on an incremental ap- 

proach by means of the combination of promising evolutionary components to finally 

address the PSP as a multimodal problem. All of the four methods use only the experi- 

mental knowledge provided by the APL. 

Population Crossover Mutation Multimodal 

SSMA Ternary Tree BLX- α SS Uniform BGA APL 

M1 X X X 

M2 X X X 

M3 X X X 

M4 X X X X 

of the 30 runs, the methods M2, M3, and M4 outperformed the 

M1 regarding the RMSD and GDT_TS in all of the case studies. 

It can also be noticed in the results related to the lowest RMSD 

and highest GDT_TS, with some exceptions. Nevertheless, M2 and 

M3 did not present significant differences in the average of the 

cases. Both methods showed similar results; method M2 achieved 

better average results of RMSD and GDT_TS in 7 cases while M3 

achieved better average results in 5. In the other 4 cases, M2 and 

M3 obtained equal results or while one achieved a better average 

result of RMSD, the other performed better in GDT_TS, and vice 

versa. M3 produced better results in 6 targets considering the 

lowest RMSD and 9 cases regarding the highest GDT_TS. These 

results show that the final structures of each method tend to be 

different and may point out that both versions are capable of 

generating better solutions than the general method M1. Probably, 

one reason for that is the combination of the parameter set 

defined in the MA-SW-Chains with the incorporation of previous 

knowledge about the PSP problem, e.g., the knowledge-based 

global operators. It was able to reduce the size and complexity 

of the conformational search space and facilitate the search. This 

combination aided in the good performance of the algorithms as 

the exploration was improved and more refined solutions were 

found. Thus, it is possible to state that the correct balancing 

(trade-off between global and local search) of the MA-SW-Chains 

was kept in the subsequent versions. Such results also reinforce 

the need to include previous knowledge about the problem in the 

search strategies. We still observe that these analyses indicate that 

the organization of the population in a ternary tree is not as ef- 

fective as the incorporation of specific-problem properties and the 

correct parameterization and balancing of the MA. Although M3 

did not surpass the results of M2 in its absolute majority, it was 

important to give rise to the multimodal adaptations implemented 

in M4, since the partitioning of the search space and the clustering 

of similar solutions according to their RG values were designed 

based on the ternary tree structure and the agents’ interactions. 

Regarding results of the method M4 summarized in the Table 3 , 

we notice that the method outperformed all of the previous algo- 

rithms (M1, M2, and M3) concerning the average results of RMSD 

and GDT_TS in almost all of the targets, except for the average 

RMSD of the 2P81, 1ZDD and 1K43, and GDT_TS of 1K43. Similar 

results can be seen analyzing the lowest values of RMSD, where 

the method achieved better or equal results in 14 targets. For the 

highest values of GDT_TS, M4 obtained better results in 9 cases. 

We observe that the last version of the incremental MA, which 

comprises the promising MA components included on the previ- 

ous algorithm versions combined with the multimodal strategy, 

was able to better guide the conformational space exploration 

and, consequently, find better solutions facing a multimodal and 

complex problem such as the PSP. M4 overcame the results of its 

previous versions. Thus, these results demonstrate the importance 

of adapting the method to deal with the multimodality issues of 

the problem employing the generation and maintenance of the 

population diversity over the optimization process. 

– Execution analysis of the method M4: Fig. 3 illustrates 

three scenarios of the optimization processes of the M4 method 

for three target proteins: ( i ) the leftmost plot shows the average 

RG of the sub-population of each agent throughout the algorithm 

execution; ( ii ) the central plot shows the energy convergence 

curve of the best solution of each subpopulation and the average 

energy of all of the agents’ solutions; and ( iii ) the rightmost 

plot shows a comparative analysis between the best solution of 

each subpopulation at the beginning of the optimization and 

at the end of it, according to the energy and RMSD values. We 

note that the plots ( i ) and ( ii ) in Fig. 3 show only a piece of the 

generations of the algorithm related to the execution that reached 

the lowest value of RMSD out of the 30 runs. Each generation 

represents a complete cycle of global and local searches, which 

means that according to the parameters of balancing ( I str = 10 0 0 , 

n f rec = 10 0 0 ) in Algorithm 2 , each generation represents 10 0 0 

energy evaluations both for global and local searches. The LS was 

applied to the best solution of each agent. The plot ( iii ) shows the 

initial and final individuals of the agents of the 30 runs performed. 

The complete description of the three scenarios for all of the target 

proteins is included in the supplementary material ( Fig. 1 -3). 

From the first scenario illustrated in Fig. 3 , it is possible to 

note that the average RG of the solutions of each agent tended to 

concentrate according to the range of the established chunks for 

each agent. The blue color of the agent 4 in the graph illustrates 

the chunk with the lower RG values while the orange color of 

the agent agent 12 shows the chunk with the higher RG values 

of the interval. The peaks in the graphs represent the restarting 

procedure, and with this we observe the capacity of the method 

to gradually adjust each sub-population to its correct range of RG 

values, exemplifying the pattern called as adaptation to the spot . 

We can also observe that the partitioning of the search space 

following the RG interval of a given target protein and the restric- 

tions imposed to force each agent to optimize in a different RG 

interval ensured the generation and maintenance of a diverse set 

of solutions (with different packing degrees ) over the optimization 

process. Fig. 2 in the supplementary material shows a comparative 

analysis between average RG of the sub-population of each agent 

( scenario i ) over the M3 and M4 executions for all of the target 

proteins. This comparison reinforces the multimodal optimization 

capacity of M4. We see that the method M3 tends to fastly 

converge to a single local optimum given the low variation of the 

average RG of the solutions of each agent. The second scenario 

shows the capacity of the method to optimize distinct structural 

models and still converge to similar energy values. These plots il- 

lustrate the multimodality of the energy function, where structural 

models with similar energy values may assume different confor- 

mations for the same target protein. Corroborating with this, the 

scenario iii shows that the method was able to optimize the initial 

individuals while keeping their structural differences. We observe 

that the final individuals tended to finish with similar energy 

values but different RMSD values, which confirms the structural 

differences of the solutions, the roughness of the search space and 



Table 3 

Simulation results of the proposed methods. M1 represents the MA-SW-Chains algorithm, M2 is the Mod- 

MA , M3 is the TT-MA and M4 is the final version TT-MMMA . Method M5 is the MA proposed in the previous 

work by Corrêa et al. (2016) and the R. is the Rosetta protocol. The boldface numbers are the best results 

regarding Energy, RMSD and GDT_TS, excluding the Rosetta results. The ( ∗) denotes the case studies where 

Rosetta outperformed all of the others. 

ID_PDB Energy RMSD GDT_TS 

Lowest Avg. (std) Lowest Avg. (std) Highest Avg. (std) 

1ACW-M1 −8634.1 2134.6 ± (4874.1) 3.3 7.6 ± (1.9) 62.1 44.8 ± (5.9) 

1ACW-M2 −13312.8 −2475.4 ± (6809.1) 3.4 6.7 ± (2.0) 64.7 51.3 ± (5.3) 

1ACW-M3 −13443.8 −3825.4 ± (6615.1) 2.9 6.9 ± (1.7) 62.1 49.9 ± (4.9) 

1ACW-M4 −23152.1 −22872.1 ± (210.3) 1.6 2.7 ± (1.5) 79.3 70.0 ± (6.9) 

1ACW-M5 −12400.9 −11582.8 ± (578.1) 1.4 3.8 ± (1.9) 82.8 63.5 ± (9.2) 

1ACW-R. −31.8 −25.0 ± (5.2) 1.5 ∗2.3 ± (0.9) ∗82.8 ∗72.6 ± (6.3) 

1CRN-M1 −7907.8 −6890.5 ± (754.7) 8.1 11.3 ± (1.7) 41.3 33.8 ± (3.8) 

1CRN-M2 −11911.8 −8784.8 ± (811.5) 6.1 10.4 ± (2.3) 60.9 42.2 ± (5.2) 

1CRN-M3 −9588.5 −8100.9 ± (870.0) 6.3 10.5 ± (2.1) 49.5 41.1 ± (3.2) 

1CRN-M4 −39923.7 −33723.4 ± (2215.8) 4.0 8.4 ± (1.8) 54.9 46.6 ± (3.5) 

1CRN-M5 −12599.6 −2520.1 ± (2985.1) 3.8 9.2 ± (2.6) 60.3 44.1 ± (7.1) 

1CRN-R. −57.9 −43.9 ± (11.8) ∗2.8 ∗4.8 ± (1.0) ∗76.1 ∗63.4 ± (6.9) 

1ENH-M1 −32338.8 −30603.2 ± (957.4) 3.1 13.1 ± (3.3) 45.4 32.0 ± (3.4) 

1ENH-M2 −33503.0 −32838.6 ± (304.0) 3.5 8.9 ± (2.9) 42.6 37.6 ± (3.0) 

1ENH-M3 −32886.5 −32322.4 ± (425.7) 3.1 10.2 ± (3.0) 47.2 36.6 ± (3.2) 

1ENH-M4 −49321.6 −48820.9 ± (175.8) 2.1 6.2 ± (3.2) 46.3 40.2 ± (3.6) 

1ENH-M5 −32685.2 −32166.0 ± (388.6) 2.7 6.5 ± (2.6) 46.8 39.4 ± (3.6) 

1ENH-R. −102.1 −86.6 ± (6.6) ∗1.2 ∗2.7 ± (1.1) ∗49.5 ∗44.4 ± (1.6) 

1K43-M1 −4182.2 −2794.0 ± (1747.2) 0.6 1.2 ± (0.6) 89.3 79.2 ± (6.4) 

1K43-M2 −4 4 41.0 −4281.8 ± (363.2) 0.5 1.0 ± (0.2) 89.3 82.0 ± (4.0) 

1K43-M3 −4481.9 −4334.4 ± (63.1) 0.6 1.0 ± (0.2) 87.5 81.4 ± (4.1) 

1K43-M4 −12589.4 −12525.1 ± (35.0) 0.5 1.1 ± (0.2) 87.5 78.5 ± (4.4) 

1K43-M5 −4601.8 −4495.8 ± (61.2) 0.6 1.0 ± (0.2) 85.7 78.9 ± (4.0) 

1K43-R. 4.8 133.0 ± (242.9) 0.6 ∗0.9 ± (0.1) 85.7 80.0 ± (3.1) 

1L2Y-M1 −6885.1 −6287.5 ± (343.1) 2.2 4.7 ± (1.0) 71.3 59.7 ± (6.6) 

1L2Y-M2 −7286.2 −5357.1 ± (2614.6) 1.7 3.7 ± (1.2) 78.8 70.2 ± (4.9) 

1L2Y-M3 −6367.1 −5935.7 ± (252.2) 1.3 2.7 ± (1.0) 85.0 73.4 ± (5.9) 

1L2Y-M4 −13774.0 −13708.1 ± (33.6) 1.0 2.0 ± (0.7) 86.3 79.0 ± (4.7) 

1L2Y-M5 −3238.9 −2307.3 ± (245.2) 1.1 1.9 ± (0.4) 85.0 78.3 ± (4.1) 

1L2Y-R. −33.7 −26.9 ± (4.4) ∗0.6 ∗1.4 ± (0.3) ∗96.2 ∗82.1 ± (5.1) 

1Q2K-M1 −5624.6 −870.2 ± (1962.4) 2.9 7.5 ± (2.3) 67.7 48.8 ± (8.2) 

1Q2K-M2 −12119.6 −5195.4 ± (4651.5) 2.7 5.6 ± (2.1) 70.2 58.8 ± (5.8) 

1Q2K-M3 −12797.7 −5132.7 ± (3948.3) 2.8 5.3 ± (1.7) 75.0 59.0 ± (5.9) 

1Q2K-M4 −28581.1 −25975.6 ± (2433.0) 1.4 3.6 ± (0.9) 83.1 65.2 ± (4.8) 

1Q2K-M5 −16456.3 −13106.5 ± (2485.1) 2.0 3.8 ± (0.9) 79.8 63.5 ± (5.4) 

1Q2K-R. −39.3 −28.3 ± (8.2) ∗0.6 ∗1.8 ± (0.8) ∗97.6 ∗81.0 ± (9.8) 

1ROP-M1 −45103.9 −4 484 4.2 ± (171.6) 4.9 13.0 ± (3.8) 56.3 48.2 ± (4.8) 

1ROP-M2 −46705.3 −46129.0 ± (298.5) 1.8 7.8 ± (5.1) 81.3 59.9 ± (9.4) 

1ROP-M3 −46412.7 −45961.2 ± (268.3) 2.4 7.4 ± (4.5) 75.0 59.3 ± (7.9) 

1ROP-M4 −51715.4 −51496.6 ± (103.6) 1.8 3.0 ± (0.7) 78.1 69.5 ± (3.7) 

1ROP-M5 −47027.1 −46683.8 ± (262.3) 1.9 3.2 ± (0.9) 76.8 67.3 ± (5.8) 

1ROP-R. −101.1 −86.1 ± (8.9) ∗1.1 5.6 ± (2.9) ∗88.8 61.9 ± (13.9) 

1UTG-M1 −46770.3 −43663.7 ± (1455.6) 10.2 16.7 ± (3.6) 37.9 30.4 ± (3.3) 

1UTG-M2 −48884.3 −47704.5 ± (708.7) 5.5 15.4 ± (4.2) 48.9 36.0 ± (4.9) 

1UTG-M3 −48545.9 −46925.3 ± (1727.1) 6.4 13.6 ± (3.6) 51.1 39.7 ± (5.3) 

1UTG-M4 −63760.0 −62459.7 ± (787.0) 3.8 8.4 ± (2.6) 63.2 46.2 ± (7.6) 

1UTG-M5 −45533.3 −4 4 423.1 ± (689.1) 3.3 7.2 ± (2.2) 63.2 46.8 ± (8.4) 

1UTG-R. −122.4 −103.5 ± (6.0) 3.4 8.6 ± (3.2) 61.4 46.3 ± (8.8) 

1WQC-M1 −13042.7 −12372.5 ± (751.2) 3.1 5.5 ± (1.3) 61.5 51.9 ± (5.5) 

1WQC-M2 −13220.6 −12901.8 ± (235.6) 3.4 4.7 ± (0.6) 64.4 58.5 ± (3.1) 

1WQC-M3 −13087.9 −12752.9 ± (222.7) 2.7 4.7 ± (0.9) 70.2 59.9 ± (4.3) 

1WQC-M4 −21553.8 −21434.3 ± (60.6) 2.7 4.1 ± (0.5) 69.2 61.5 ± (2.9) 

1WQC-M5 −13287.4 −13026.4 ± (126.9) 2.5 4.0 ± (0.7) 69.2 61.1 ± (4.2) 

1WQC-R. −37.6 −26.9 ± (7.3) ∗1.7 ∗2.3 ± (0.3) ∗76.9 ∗71.1 ± (2.8) 

1ZDD-M1 −21749.3 −20319.7 ± (774.8) 3.6 8.8 ± (2.2) 46.3 39.6 ± (3.1) 

1ZDD-M2 −22342.8 −20152.4 ± (549.8) 2.7 5.5 ± (1.9) 47.8 43.0 ± (2.4) 

1ZDD-M3 −20628.1 −19996.8 ± (286.6) 3.2 6.5 ± (2.2) 47.8 43.4 ± (2.1) 

1ZDD-M4 −30421.0 −28975.4 ± (851.2) 2.4 6.8 ± (2.5) 48.5 43.7 ± (2.4) 

1ZDD-M5 −20869.8 −20473.0 ± (242.3) 1.9 3.6 ± (1.4) 48.5 43.6 ± (2.1) 

1ZDD-R. −57.5 −48.7 ± (4.8) ∗0.8 ∗1.6 ± (0.8) 44.1 42.7 ± (1.2) 

2MR9-M1 −25308.2 −24211.4 ± (718.9) 6.9 10.7 ± (2.0) 41.5 36.0 ± (3.5) 

2MR9-M2 −26388.3 −25671.9 ± (439.8) 3.6 8.0 ± (1.7) 61.4 45.5 ± (5.8) 

2MR9-M3 −26234.3 −25274.7 ± (461.5) 4.5 8.2 ± (1.6) 62.5 45.1 ± (6.1) 

2MR9-M4 −40690.2 −40346.8 ± (117.5) 3.1 6.7 ± (1.3) 63.1 50.5 ± (4.7) 

2MR9-M5 −26254.0 −25605.1 ± (385.7) 2.6 5.9 ± (1.4) 66.5 49.5 ± (6.0) 

2MR9-R. −78.6 − 70.2 ± (4.9) ∗1.4 ∗2.2 ± (0.6) ∗83.5 ∗73.8 ± (5.7) 

2P5K-M1 −28190.8 −18843.8 ± (2839.4) 10.5 15.4 ± (2.5) 45.2 29.7 ± (4.2) 

2P5K-M2 −39455.7 −26651.9 ± (5408.1) 5.4 10.7 ± (2.8) 42.1 33.2 ± (3.2) 

2P5K-M3 −33307.6 −25496.6 ± (4592.0) 5.7 12.5 ± (4.0) 39.7 32.4 ± (2.7) 

2P5K-M4 −55792.7 −49652.3 ± (3425.4) 5.9 10.0 ± (2.8) 40.5 34.2 ± (3.2) 

( continued on next page ) 



Table 3 ( continued ) 

ID_PDB Energy RMSD GDT_TS 

Lowest Avg. (std) Lowest Avg. (std) Highest Avg. (std) 

2P5K-M5 −39031.7 −30241.6 ± (6757.2) 4.3 9.6 ± (3.7) 45.6 35.0 ± (4.4) 

2P5K-R. −119.5 −100.3 ± (20.3) ∗1.5 ∗2.5 ± (1.0) ∗54.0 ∗50.8 ± (1.9) 

2P6J-M1 −26462.4 −25180.0 ± (940.4) 8.9 14.6 ± (2.3) 44.7 33.4 ± (3.7) 

2P6J-M2 −28137.2 −27691.5 ± (278.6) 5.1 10.2 ± (2.9) 56.7 46.0 ± (5.7) 

2P6J-M3 −28004.7 −27332.8 ± (707.7) 3.5 11.0 ± (2.6) 60.1 45.9 ± (6.5) 

2P6J-M4 −47639.4 −47112.3 ± (230.7) 2.8 4.7 ± (1.8) 68.8 55.4 ± (5.9) 

2P6J-M5 −28896.7 −28208.5 ± (728.4) 2.7 7.5 ± (2.4) 64.4 49.0 ± (4.7) 

2P6J-R. −93.6 −71.1 ± (19.9) ∗2.2 ∗3.4 ± (1.4) ∗74.5 ∗62.9 ± (5.6) 

2P81-M1 −22134.2 −19988.3 ± (954.2) 3.8 8.1 ± (2.9) 36.9 31.7 ± (2.5) 

2P81-M2 −23055.2 −22398.0 ± (683.1) 2.9 6.4 ± (1.9) 38.1 34.5 ± (1.9) 

2P81-M3 −22902.2 −22395.1 ± (456.1) 3.3 6.2 ± (1.9) 39.2 34.6 ± (1.8) 

2P81-M4 −40184.5 −39941.7 ± (119.6) 5.2 6.2 ± (0.7) 36.9 34.7 ± (1.2) 

2P81-M5 −23703.3 −23296.0 ± (238.1) 3.8 6.5 ± (1.1) 37.5 35.8 ± (1.4) 

2P81-R. −75.2 −63.6 ± (4.5) 5.6 6.9 ± (0.7) 36.9 34.0 ± (1.2) 

2PMR-M1 −52858.4 −51454.1 ± (828.4) 9.8 20.3 ± (5.8) 35.5 30.4 ± (2.4) 

2PMR-M2 −54835.0 −53927.4 ± (658.8) 5.8 15.3 ± (5.5) 43.8 36.2 ± (3.2) 

2PMR-M3 −54776.8 −53721.7 ± (299.8) 4.3 15.5 ± (4.1) 43.4 35.7 ± (2.3) 

2PMR-M4 −67768.8 −67313.3 ± (193.1) 3.3 7.4 ± (3.0) 47.0 40.2 ± (3.3) 

2PMR-M5 −55570.7 −54641.0 ± (1149.7) 2.5 6.4 ± (2.6) 51.0 41.6 ± (3.6) 

2PMR-R. −141.8 −121.5 ± (19.1) ∗1.4 ∗3.7 ± (0.9) 48.7 41.0 ± (3.3) 

3V1A-M1 −32749.7 −32248.5 ± (399.4) 7.5 13.9 ± (2.6) 47.4 41.8 ± (3.4) 

3V1A-M2 −33420.1 −33291.3 ± (75.5) 5.2 10.8 ± (2.5) 52.6 47.6 ± (2.1) 

3V1A-M3 −33636.5 −33262.7 ± (168.1) 6.2 10.6 ± (2.9) 53.6 48.6 ± (2.2) 

3V1A-M4 −44105.9 −43850.9 ± (138.1) 2.3 4.5 ± (1.5) 66.1 53.0 ± (4.9) 

3V1A-M5 −33180.1 −32740.0 ± (278.3) 1.9 3.3 ± (1.4) 60.9 51.8 ± (3.2) 

3V1A-R. −86.7 −76.6 ± (7.0) ∗0.7 ∗2.4 ± (1.9) 55.7 51.4 ± (4.6) 

the ability of the method to maintain the population diversity over 

the algorithm execution. It is noteworthy that the agents which 

comprise solutions with RG values far away from the optimum 

RG will always store bad solutions regarding the RMSD, but the 

method was exactly designed to generate and maintain different 

conformations and, consequently, through the combination of 

these diversities by the agents’ interactions provide better solu- 

tions. Analyzing the three scenarios presented in Fig. 3 , one can 

observe that M4 reached a good state space exploration as delin- 

eated by the proposed multimodal strategy and also kept a feasible 

trade-off between convergence and diversity of the individuals. 

Thereby, we note that the multimodal strategy adopted in this 

work is not the only application possibility. Nevertheless, it is 

possible to conclude that regarding the distinct structural metric 

(RG) adopted, the partitioning of the conformational search space 

and the effort s to discover and optimize a set of distinct structural 

solutions enabled the improvement of the results. 

– Comparisons regarding energy values: According to the 

lowest and average energy results in Table 3 , it is possible to 

notice that the M4 outperformed all of the other methods in- 

cluding M5 for all of the targets. With this, it is clear that the 

multimodal strategies can significantly improve the effectiveness 

of the method over a roughness in the energy landscape. M4 was 

able to better explore the search space and find different energy 

basins (distinct structural models), while using the maintenance 

of the diversity of solutions enabled the improvement of the op- 

timization performance. We note that we did not include Rosetta 

in this comparison of energy values because Rosetta contemplates 

multiple optimization stages where different energy functions are 

employed (i.e. the Rosetta models are not obtained using only one 

energy function). The entire Rosetta optimization process is based 

on various evaluation functions, which prevents the comparison 

with the other methods. 

– Comparisons between methods M4, M5 and Rosetta: Ac- 

cording to the results on Table 3 , we observe that the methods 

M4 and M5 presented similar results. M4 reached better average 

results of RMSD and GDT_TS in 6 cases while M5 reached better 

average results in 4. In the other 6 cases, M4 and M5 obtained 

equal results or while one achieved a better average result of 

RMSD, the other performed better in GDT_TS, and vice versa. 

However, M4 produced better results than M5 just in 4 targets 

considering the lowest values of RMSD and 8 cases regarding the 

highest values of GDT_TS, although in some cases the differences 

were minimal. We emphasize that despite the similarities between 

M4 and M5, they comprise some different key com ponents, such 

as the LS technique. Fig. 4 illustrates the comparison between the 

3-D topology of the structures predicted by the proposed methods 

(M1, M2, M3, and M4), M5 and Rosetta superimposed upon the 

experimentally determined ones (red structures). From the Table 3 , 

we notice that Rosetta outperformed all of the methods regarding 

the lowest and average values of RMSD in 11 targets and highest 

and average values of GDT_TS in 9 cases. Although it is possible to 

observe through a visual inspection ( Fig. 4 ) that the methods M4, 

M5, and Rosetta obtained topologies (overall fold) very similar to 

each other and more close to the experimental ones. 

To evaluate the statistical significance of these results ( Table 3 ), 

we performed the Mann-Whitney U test , a non-parameteric pair- 

wise comparisons procedure. Using a significance of α < 0.05, 

we find that when we compared M3 and M4, differences in the 

predictions were not statistically significant only in 2 targets 

(1ZDD and 2P81), considering both RMSD and GDT_TS values. 

When comparing M4 and M5, differences in the results were not 

significant in most of the cases. However, the results of Rosetta 

when compared to M4 were statistically significant in almost all 

cases, except for proteins 1ACW and 1UTG, considering both RMSD 

and GDT_TS. We note that this evaluation corroborates with the 

previously made analysis. Details of the p -values of the statistical 

test can be found in the supplementary material. 

Therefore, we can state that the proposed multimodal approach, 

the TT-MMMA , designed as an incremental algorithm using the 

combination of promising evolutionary components to address the 

PSP as a multimodal problem, is a contribution to the prediction of 

protein structures and that should be further explored to improve 

the results. The proposed method is capable of performing fast 

and effective predictions of protein 3-D structures when no known 

template structures and fold libraries are available. We only use 



Fig. 3. Example of three scenarios of the optimization processes of the method M4 for three target proteins. ( i ) The leftmost plot shows the average RG of the sub-population 

of each agent throughout the algorithm execution. ( ii ) The central plot shows the energy convergence curve of the best solution of each subpopulation and the average energy 

of all of the agents’ solutions. ( iii ) The rightmost plot shows a comparative analysis between the best solution of each subpopulation at the beginning of the optimization 

and the end of it, according to the energy and RMSD values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 



Fig. 4. Representation of the experimental structures (red) compared with the lowest RMSD predicted structures (black structures represent the methods at the left side 

of the legend and the gray ones represent the methods at the right side of the legend) for the MA-SW-Chains (M1), Mod-MA (M2), TT-MA (M3), TT-MMMA (M4), MA of 

Corrêa et al. (2016) (M5), and Rosetta (R.) algorithms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

the local information of conformational preferences of amino acid 

residues in proteins instead of fragments or segments of models 

obtained from experimentally-determined protein structures. 

6. Conclusions 

Despite the significant progress in the protein structure predic- 

tion field according to the latest CASP editions, it is still necessary 

to develop new strategies for extracting, representing and manipu- 

lating data from experimentally determined 3-D protein structures. 

It is also required to develop novel computational strategies to use 

this information to predict, only from the amino acid sequence 

of a protein, its corresponding 3-D structure. The development 

of computer prediction methods which reduce the computational 

effort and allow the prediction of the 3-D structure of proteins 

is presented as one of the main challenges in Structural Bioin- 

formatics and Molecular Biology of the XXI century. There is an 

increasing need for new computational strategies that make use 

of previous knowledge and template information from experimen- 

tally determined protein structures to predict the unknown 3-D 

structure of proteins. 

In this paper, we proposed three versions of a knowledge- 

based search strategy that rely on an incremental approach by 

using different components starting from a more general MACO, 

MA-SW-Chains algorithm, along with the ones described in the 

work by Corrêa et al. (2016) to deal with the PSP problem. The 

proposed versions ( Mod-MA, TT-MA and TT-MMMA ) use differ- 

ent population schemes and global search operators focused on 

the problem, allied to a local search technique to explore in a 

more effective way the protein conformational space. Since the 

PSP conformational space is known by its severe roughness and 

huge complexity due to the high dimensionality of variables, the 

last version of the proposed algorithms was developed to deal 

with the intrinsic multimodality of the problem by means of the 

exploration of multimodal optimization strategies. 

As corroborated by experiments, the three algorithm versions 

outperformed the general described approach regarding biological 

significance quality through the RMSD and GDT_TS measures. 

The last version of the incremental approach was able to better 

guide the conformational space exploration and, consequently, 

find better solutions facing a multimodal and complex problem 

such as the PSP. The method overcomes the results of its previous 

versions, demonstrating the importance of adapting the method 

to deal with the multimodality issues of the problem by the 

generation and maintenance of the population diversity over 

the optimization process. Additionally, it can produce accurate 

predictions as the 3-D protein structures are conformationally 

comparable to their corresponding experimental ones. There are 



several research opportunities to be explored in this field, with 

relevant multidisciplinary applications in Computer Science and 

Bioinformatics. For instance, one could apply the proposed method 

to other classes of proteins. Likewise, other search techniques 

may be tested as variants of it. Finally, the experience gathered 

with known protein structures, knowledge-based operators and 

multimodal strategy can be improved to better tackle the problem. 
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