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a b s t r a c t

In this article, the adjoint lattice Boltzmann method (ALBM) for solving fluid domain
identification problems for incompressible fluids, proposed by Krause et al. (2016), is
improved and validated. The problem is formulated as a distributed control problemwhich
minimises the distance between a given, e.g. frommeasurements likeMRI, and a simulated
flow field. Thereby, the simulated flow field is the solution of a parametrised porous
media BGK–Boltzmann problem, where the parameters represent porosity distributed in
the domain. The proposed parametrisation consists of linking the variables representing
a lattice-dependent porosity with the control variables. Hereby, it is paid attention that a
given control parameter set yields results which are independent of the underlying grid
resolution. It enables solving an optimisation problem with different resolutions without
adapting the initial set of control variables.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Solving fluid flow domain identification problems numerically is a very important task, not only for academic studies,
but also for medical and process engineering applications. One possible application is the improvement of Phase Contrast
MRI (PC-MRI) measurements through coupling of measured and simulated results, which can lead to a significantly more
accurate characterisation of flows and flowdomains in complex geometries. The so improved PC-MRI promises to expand the
area of its application and further enables saving costly and limited resources or improving the effectiveness of their use. The
suggested approach has therefore an enormous economic and social impact. A great challenge thereby is to numerically solve
the problem in a time reasonable for practical applications. Fluid flow domain identification problems can be formulated as
restricted optimisation problems, where the difference of a measured and simulated fluid flow field is minimised. Because
the side condition to be solved, here a fluid flow problem, requires a very large amount of computer resources, a highly
efficient and scalable parallelisation of the solution strategy is vital.

Because of the simplicity of the core algorithm and its local computations, the lattice Boltzmann methods (LBM) have
not only become a widely accepted numerical tool to solve incompressible Navier–Stokes equations [1], but also for
high performance computing (HPC) and various physical problems [2,3]. However, for fluid flow control and optimisation
problems its usefulness has only been partially discussed. For example for 2D topology and design optimisation by Pingen
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Nomenclature

Abbreviations

ALB Adjoint lattice Boltzmann
ALBM Adjoint lattice Boltzmann method
BGK Bhatnagar, Gross and Krook
CFD Computational fluid dynamics
HPC High Performance Computing
LB Lattice Boltzmann
LBM Lattice Boltzmann method

Fluid Constants, Parameters and Variables

ϕ Adjoint particle density function
dMeq

f ,Bα Adjoint Porous Media Maxwellian distribution
α Control
α0 Control start value
ρf , ρf h Density, discrete density
J Goal functional
Gh Grid term
ν Kinematic viscosity
K Permeability
dh Porosity
Meq

f ,Bα Porous media Maxwellian distribution
f Particle density function
B Projection operator
Re Reynolds number
G Side condition function
R Universal gas constant
u,uf ,uf h Velocity of flow (macroscopic, mesoscopic, discrete)
u∗ Velocity of flow of the measurement
c Velocity of molecules (microscopic)

Norms and Spaces

x · y Standard scalar product for x, y ∈ Rn, n ∈ N
∥x∥ Euclidean norm,

√
x · x for x ∈ Rn, n ∈ N

d Dimension of the position space Ω , d = 2,3
R≥0 Positive real numbers with zero, x ∈ Rwith x ≥ 0
h Discretisation/model parameter, h ∈ R>0
Ω Domain filled by the fluid, Ω ⊆ Rd

Ωh Lattice, uniform mesh with spacing h, Ωh ∼= Xh ⊆ Nd

I Time interval [t0, t1] = I ⊆ R, 0 ≤ t0 < t1 < ∞

Ih Discrete time interval, Ih :=
{
t ∈ I : t = t0 + h2k, k ∈ N

}
∥ξ∥L2(X) L2(X)-norm over X ⊆ Rd, ∥ξ∥L2(X) := (

∫
X ξ (x) dx)1/2 for ξ ∈ L2(X)

∥ξ h
∥L2(Xh) L2(Xh)-Norm over Xh ⊆ Nd, ∥ξ h

∥L2(Xh) := ( 1
hd

∑
x∈Xh

ξ (x))1/2 for ξ h
∈ L2(Xh)

Differential Operators
d
dx Total derivative
∂
∂x Partial derivative
∇x Gradient
∇x· Divergence

et al. [4–6], which has been extended for transient flows by Kirk et al. [7]. These methods use an adjoint sensitivity approach
to calculate the needed gradient based on the discrete lattice Boltzmann equation. This approach leads to a linear system,
which is then solved by e.g. the Schur-complement method [5], or for transient problems by matrix–vector products due to
backwards in time evaluation [7]. The first to derive an adjoint lattice Boltzmann equation were Tekitek et al. [8], whereby
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the adjoints were also derived from the discrete equations. In contrast, the strategy proposed by Krause et al. [9] follows
a sensitivity-based so-called first-optimise-then-discretise approach [10], also called first-differentiate-then-discretise [11],
where the adjoint equation is derived on a continuous basis and then discretised afterwards. This discretisation strategy,
referred to as adjoint lattice Boltzmann method (ALBM) [9], leads to algorithms as efficient as LB algorithms due to similar
locality properties. Recently, Liu et al. [12] and also Laniewski-Wollk et al. [13] showed that using the first-discretise-then-
optimise also yields structures similar to LBM and thus no matrix solving is required. ALBM is most often used for solving
topology optimisation problems, e.g. by Liu et al. [12], Yaji et al. [14], Laniewski-Wollk et al. [13], Yonekura et al. [15] while
its application to other inverse or optimisation problems is rarely studied.

Themain aim of this article is to improve the robustness of the adjoint lattice Boltzmannmethod (ALBM) for solving fluid
flow domain identification problems, proposed by Krause et al. [16]. Additionally, the method is to be thoroughly validated
for laminar fluid flow regimes with existing steady state.

In order to determine the flow domain and the physical flow dynamics, it is proposed to formulate the fluid flow problem
parametrised with a porous media model, where porosities are linked to control variables. The use of porosities thereby
guarantees continuous functions, which are necessary for the solution strategy considered here. The optimisation problem is
then minimising the difference between resulting and the measured velocity distribution. After completion of the gradient-
based optimisation algorithm (e.g. the LBFGS scheme [17]), a porosity threshold value is chosen in order to interpret the
resulting porosity values as solid or fluid. In order to enable solving an optimisation problem with different resolutions
without adapting the initial set of control variables, i.e. to guarantee the robustness of the parametrisation, a linking is
proposed which connects the variables representing a lattice-dependent porosity with control variables. Hereby, it is paid
attention that a given control parameter set yield to results which are independent of the underlying grid resolution.

In Section 2 the optimisation problem is introduced, and with it a parametrised BGK–Boltzmann model for fluid flow
through porousmedia, as well as a sensitivity-based strategy to solve fluid flow domain identification problems. In Section 3
the discretisation for the primal and dual problem is discussed, thereby the similar structure of both problems is utilised
which leads to discretisation methods referred to as lattice Boltzmann method and adjoint lattice Boltzmann method. In
Section 4, a robust parametrisation is introduced. It is shown that the proposed relation between the lattice-dependent
porosities and the control variables are robust with respect to grid resolution. Further, the result is a projection which
turns the optimisation problem in an unrestricted problem which enables the use of standard gradient-based optimisation
schemes as Steepest Decent or L-BFGS.

2. Method

Here, a brief overview of the usedmethod and the later needed variables and terms are provided. Thereby, the governing
equations are first derived in continuous description and discretised afterwards, a procedure often referred to as the
first-optimise-then-discretise strategy [18]. Further, the underlying porous media BGK–Boltzmann equation is introduced,
a continuous solution strategy for the optimisation problem is given by formulating a primal and dual problem, and the
specific domain identification problem equations are formulated. The method is described in detail in the preceding work
of Krause et al. [16].

2.1. Overview

We consider the following constrained optimisation problem

minimise J(f ,α), such that G(f ,α) = 0. (1)

Thereby f is said to be the state, α the control, J the goal function and G(f , α) = 0 the side condition or constraint. Using a
quasi-Newton method, like BFGS [17], the optimisation problem is solved iteratively using only the goal function J and its
total derivative with respect to the control d

dα J (cf. [9,16]). However, finding the total derivative or calculating it efficiently
is the main challenge for optimisation problems.

2.2. Side condition

Here, the side condition is an element of the diffusive limit family of porousmedia BGK–Boltzmann equations [19,16] denoted
as

h2 d
dt

f +
1
3ν

(
f − Meq

f ,dh

)
= 0 , (2)

where f = f (t, r, c) is the particle distribution function, with time t ∈ I = [t0, t1) ⊆ R≥0, position r ∈ Ω ⊆ Rd, velocity
c ∈ Rd, model parameter h ∈ R>0 and kinematic viscosity ν ∈ R. As shown by Saint-Raymond [20] Eq. (2) is related to an
incompressible Navier–Stokes equation. The macroscopic density and velocity ρf , uf of the Newtonian fluid can be obtained
as moments of f via

ρf :=

∫
Rd

f (v)dv and uf :=
1
ρf

∫
Ω

vf (v)dv .
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Furthermore,

Meq
f ,dh

=
ρf hd( 2
3π

)d/2 exp
(

−
3
2

(
c h − duf h

)2) in I × Ω × Rd

denotes the Porous Media Maxwellian distribution, where the porosity d : Ω → [0, 1] is defined by (c.f. [21,16])

d(r) = 1 −
ντ

K
(3)

with permeability K . Porosity values of d := d(r) are to be interpreted as solid (d = 0), fluid (d = 1) and porous (d ∈ (0, 1))
at point r ∈ Ω .

Using the porous media model requires the control parameter α(r) ∈ R to be projected onto the porosity parameter
dh(r) ∈ [0, 1] for all points r ∈ Ω through an operator Bα = dh. An appropriate operator B is introduced in Section 4. This
coupling of porosity and control leads to

G(f (α),α) = h2 d
dt

f +
1
3ν

(
f − Meq

f ,Bα

)
. (4)

2.3. Goal function

For domain identification problems the goal functional J is defined as

J(f , α) =
1
2

∫
ΩJ

(uf − u∗)2dr , (5)

with u∗ is the measured flow field (e.g. by a PC-MRI scan) and ΩJ ⊆ Ω is the objective domain. The partial derivative with
respect to the particle distribution, needed for the optimality condition (Section 2.4), reads

∂

∂ f
J(f , α) = −

(u∗
− uf )(v − u∗)

ρf
.

Note that the evaluation of the goal functional J requires solving the side conditionG(f ,α) = 0, which corresponds to solving
a fluid flow problem.

2.4. Optimality condition

A necessary condition for an optimal state (f ∗, α∗) is given by the optimality condition d
dα J(f

∗, α∗) = 0 [9,16]. Here, the
optimality condition formulates as

d
dα

J(f (α),α) = uτ
∫
Rd

ϕ 3h2(v − Bαuf )M
eq
f ,Bα dv +

∂

∂ f
J(f , α) , (6)

where ϕ is determined by solving the adjoint porous media BGK–Boltzmann equation (cf. [16])
d
dt

ϕ −
1
3ν

(ϕ − dMeq
f ,Bα) +

∂

∂ f
J = 0 , (7)

with the adjoint Maxwellian distribution

dMeq
f ,Bα =

∫
Rd

ϕ(v̂)
(
3h2

(
uf − v

) (
Bαuf − v̂

)
Bα + 1

)
ρ

Meq
f ,Bα(v̂) dv̂ .

The main advantage of this method is the similarity of the porous media BGK–Boltzmann equation (2) and its adjoint
formulation (7), as they both can be discretised in a similar manner, which is discussed in Section 3. The discretised form
of the optimality condition (6) is then used for a gradient-based method like steepest descent or BFGS in combination with
e.g. the Armijo or the Wolfe–Powell rule to find the optimal state iteratively (cf. [22,16]).

3. Discretisation

Due to the similar structure of the LB equation (2) and the ALB equation (7), similar discretisation methods can be used,
which are referred to as lattice Boltzmann method (LBM) and adjoint lattice Boltzmann method (ALBM), depending on the
based equations.

LBM are strategies for discretising a family of Boltzmann equations or of other mesoscopic Boltzmann-like equations
which is related to a target equation in a certain limit which is usually macroscopic in nature. The basic and common idea
of all LBM is the coupling of discretisation parameters with those parameters characterising the limit process.

The specific domain identification problem equations are discretised with an adjoint lattice Boltzmann method (ALBM)
[9,16].
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3.1. Lattice Boltzmann method

The continuous space I × Ω × Rd is replaced by a discrete space Ih × Ωh × Q where h is identified with the model
parameter and is now called the discretisation parameter. The position space Ωh is chosen as a uniform grid with spacing h
and the discrete time interval is set to Ih :=

{
t ∈ I : t = t0 + kh2, k ∈ N

}
. The velocity space Q consists of q ∈ N directions

ci (i = 0, 1, . . . , q− 1) which link dedicated neighbouring positions in such a way that for r ∈ int Ωh it holds r+ cih2
∈ Ωh,

i.e. ci ∼ h−1. The resulting discrete phase space is called the lattice and denoted by DdQq. The continuous distribution
function f is replaced by a set f h of q distribution functions fi (i = 0, 1, . . . , q − 1), which represent an average value of f in
the neighbourhood of the velocity ci. For the porous media model the lattice porosity dh is defined as [16,21,23]

dh = 1 − h2 νhτh

K
, (8)

with physical permeability K and relaxation time τh = 3νh + 1/2. Where the parameter h2 comes from non-
dimensionalisation of the physical permeability. The iterative process in an LB algorithm can be written in two steps as
follows, the collision step (9) and the streaming step (10):

f̃i(t, r) = fi(t, r) −
1

3νh + 1/2

(
fi(t, r) − Meq

fi,dh
(t, r)

)
, (9)

fi(t + h2, r + cih2) = f̃i(t, r) (10)

for i = 0, 1, . . . , q − 1, where

Meq
fi,dh

(t, r) :=
wi

w
ρf h

(
1 + 3h2 ci · dhuf h −

3
2
h2(dhuf h )

2
+

9
2
h4(ci · dhuf h

)2) (11)

is a discretised Porous-Media Maxwell distributionwith moments ρf h and uf h which are defined as

ρf h :=

q−1∑
i=0

fi and uf h :=
1

ρf h

q−1∑
i=0

cifi ,

where uf h corresponds to the macroscopic fluid velocity and ρf h to the mass density. The lattice viscosity νh is assumed to be
given, and the terms wi/w, cih (i = 0, 1, . . . , q − 1) are model dependent constants. An exhaustive derivation of various LB
equations can be found e.g. in [1,24,25].

For D2Q9 and D3Q27 Krause [26] showed that the truncation error comparing an element of the diffusive limit family
of BGK–Boltzmann equations with its corresponding discrete LB term is of second order. Krause’s approach is different to
previously published derivations of LBM, where macroscopically motivated assumptions are made. For the derivation of the
ALBM the approach in [26] is followed.

3.2. Adjoint lattice Boltzmann method

Like for the LBM (cf. [1,24,27]), the particular choice of Ih×Ωh×Q sets up anALBMmodelwhich is denoted byDdQqwith d
representing the dimension and q the number of discrete velocities in Q ⊆ Rd. Commonly D2Q9, D3Q19 and D3Q27models
are applied. In a similar manner an iterative algorithm can be derived, which is executed step by step but for decreasing
t ∈ Ih. In every time step two operations are to be performed for all r ∈ Ωh and every j = 0, 1, . . . , q− 1, namely the adjoint
collision step (12) and the adjoint streaming step (13)

ϕ̃j(t, r) = ϕj(t, r) −
1

3νh + 1/2

(
ϕj(t, r) − dMeq

f h,Bα
(t, r)

)
(12)

+
6νh

6νh + 1
h2dJf h,Bα(t)

ϕj(t − h2, r − h2cj) = ϕ̃j(t, r) , (13)

where ϕj(t, r) := ϕ(t, r, cj) and cj ∈ Q , and with velocity discrete adjoint Maxwellian distribution

dMeq
f h,Bα

(cj) :=

q−1∑
i=0

ϕi(ci)
(
3Bα

(
Bαhuf h − c̃j

) (
huf h − c̃i

)
+ 1

)
ρf h

Meq
f h,Bα

.

The velocity discrete derivative of the goal functional reads

dJf h,Bα(cj) = −
(u∗

− uf h )(cj − u∗)
ρf h

.

The advantage of the ALBM is that the resulting equations (cf. (12), (13)) are very similar to the LB equations (cf. (9), (10)).
The main differences are its time reverse character and the additional term 6νh

6νh+1h
2dJf h . However, its locality properties

basically remain the same.
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Fig. 1. Relative Average Velocity Norm (RAV Norm) over Permeability K . We observe that the RAV norm is approximately the same for all grid resolutions
N . This is a strong indication for the grid-independence of permeability K in a sense that for different grid sizes, the same value of permeability leads to the
same fluid flow behaviour.

Consequently an ALB algorithm can be implemented similarly to a LB algorithm [16]. In particular, the data structure
design and the hybrid parallelisation strategy proposed early for standard LBM in [28] can be applied. Therefore, executing
an ALB scheme is expected to qualitatively perform as efficient as a LB scheme. For a detailed analysis and efficient
implementation the preceding work of Krause et al. [16] is recommended.

4. Projection: linking porosity and control

The proposed optimisation problem is unbounded, i.e. all control variable are α ∈ R, but to change the topology of our
domain we need to control the porosity parameter dh which is in [0, 1]. This section is dedicated to finding a projection
B : R → [0, 1] with α → Bα := dh, linking each optimisation parameter α ∈ R to a porosity value dh ∈ [0, 1]. Thereby
the proposed projection should preserve the physical properties of fluid flow in porous media, such that the optimisation
problem can be solved for different resolutions without adapting the initial set of control variables.

4.1. Analysis of lattice porosity and permeability in porous media LBM

In order to analyse the influence of the lattice porosity on the simulation, we define a simple test case and a measure of
the average flow velocity through a certain domain within a flow field. The test case is a cube of side length 1 m extending
from geometrical point (0, 0, 0) to (1 m, 1 m, 1 m), defined as the flow domain Ωh with constant inflow at the surface of
the cube at y = 0 and constant outflow at y = 1. At the inflow and outflow plane the velocity is set to 1 m/s in y-direction
(cf. Fig. 4), with viscosity of 0.1m2/s. Boundary conditions at x = 0, x = 1, z = 0 and z = 1 are set to bounce back. The design
domain D (green), where a fixed porosity dh is set, is defined as a cube of side length 0.4 m in the centre ofΩ , extending from
(0.3, 0.3, 0.3) to (0.7, 0.7, 0.7) (cf. Fig. 4). This test case is also used in the numerical experiments in Section 5.

For a fixed porosity value dh, we define the L2 norm of the velocity inside the cube D

udh := ∥u∥L2(D) =

(∫
D
u2dr

)1/2

, (14)

where dh(r) = dh for all r ∈ D and u being the flow velocity function. We define the relative average velocity (RAV) norm
udh
rel as the relative change of the velocity field inside the design domain for a certain porosity dh with respect to the velocity

field of full fluid flow (dh = 1)

udh
rel :=

udh

u1 . (15)

The simulation was performed for five different grid sizes h = 1/N and twenty-eight permeability values K which are
translated into different porosity values dh by relation dh = 1 − h2νhτh/K (cf. (8)). The results are shown in Fig. 1, which
indicate that the physical permeability is grid-independent in the sense that it does not change the fluid flow behaviour for
higher resolutions. The presented result is expected as it only indicates the validity of the used porous media model [21].

The problem which arises is the grid dependency of porosity due to Eq. (8), therefore resulting in grid dependency of the
optimisation parameter if used directly, for example in optimisation methods with bounded sets. The relation of porosity
and permeability is shown in Fig. 2 for a viscosity of uh = 0.002. It shows that for a given permeability the corresponding
porosity changes with the resolution. In order to maintain the fluid behaviour for different resolutions, we must therefore
take permeability into account.
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Fig. 2. Porosity dh over Permeability K for different grid resolutions N . This is the graph of relation (8) for uh = 0.002. Here the grid dependency of the
relation porosity and permeability can be seen. This is in contrast to Fig. 1, where the grid-independency of the permeability is indicated.

Fig. 3. RAVnormof projection B formultiple grid resolutionsN . Using the proposed projection it can be seen that for different resolutions the fluid behaviour
is very similar for fixed optimisation parameters. This is a good indication of the grid-independence of the proposed projection.

4.2. Constructing a projection using permeability

To combine the advantages of grid-independency of permeability with the usability of porosity, we use the relation of
the porous media model (cf. (8)). After defining the grid term Gh := h2νhτh for notation purpose, we get

dh = 1 −
Gh

K
, (16)

where K ∈ [Gh, ∞). We want the control to have the same properties as the permeability, therefore we are looking for a
subprojection p : R → (0, ∞) such that p(α) + Gh ∈ [Gh, ∞), which leads to

Bα = 1 −
Gh

p(α) + Gh
. (17)

We propose p(α) := eα which yields

Bα = 1 −
Gh

eα + Gh
=

eα

eα + Gh
, (18)

with B ∈ C∞(R) and Bα ∈ (0, 1). Analysing the projection with the RAV norm, a similar fluid behaviour for a given control
is observed, see Fig. 3. This is expected as Fig. 1 shows the logarithmic plot of K , where now the control is mapped to
α = log(K − Gh) with Gh

h→0
−−→ 0. Note, that using α = log(K ) directly would lead to dh ∈ (−∞, 1) and could therefore

not be used in the porous media model.
To summaries, the proposed projection Bα =

eα
eα+Gh

is a smooth function, which maps the control α ∈ R to a porosity
dh ∈ (0, 1). Thereby the control is linked to the physical permeability which is consistent with the used porousmediamodel.
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Fig. 4. Object Identification Setup. A cube of side length 1 m extending from geometrical point (0, 0, 0) to (1, 1, 1) is defined as the flow domain Ω with
constant inflow at y = 0 and constant outflow at y = 1. Boundary conditions at x = 0, x = 1, z = 0 and z = 1 are set to bounce back. The design domain D
(green) is defined as a cube of side length 0.4 m in the centre of Ω , extending from (0.3, 0.3, 0.3) to (0.7, 0.7, 0.7). Different object geometries C are placed
inside the design domain which are then attempted to be identified by the optimisation algorithm.

5. Numerical experiments

In this section, different flow domain identification test cases are investigated for validation. First, the novel domain
identification approach of a priori defined geometries is presented in detail. Then, a simple test case of identifying a cube in
the centre of a flow domain is presented, with the objective domain subsequently being reduced to subsets of the flow data.

5.1. Test case and generic evaluation approach

For validation of the flow domain identification method, a generic test case approach is set up, where the geometry
information which is to be identified is available a priori. Hereby, first the fluid flow around a solid object geometry Π is
simulated and the resulting flow field is saved. Then the optimisation algorithm is applied to the obtained flow field by
choosing a start value α0 and setting dh(r) = Bα0 for all points r in the design domain D ⊇ Π (see Fig. 4). Algorithm 1
describes the generic approach of a priori defined geometries in more detail.

1. Simulate fluid flow with dh(r) = 1 for r /∈ Π and dh(r) = 0 for r ∈ Π ;
2. Save the resulting flow data as the solution flow field u∗;
3. Choose start value α0 and set dh(r) = 1 for r ∈ Ω \ D and dh(r) = Bα0 for all points r ∈ D;
4. Solve optimisation problem with the ALBM-based method presented in Section 2;

Algorithm 1: Generic validation approach with an a priori defined geometry Π .

The quality of the resulting object geometry is evaluated by comparison to the a priori defined geometry Π .
The modelling and discretisation of the fluid flow simulation follows the approach of collide and stream presented in

Section 3. Themodelling and discretisation of the optimisation problem follows the approach of ALBMdescribed in Sections 2
and 3. The simulations and optimisations are run on a regular grid of resolution N = 100 , i.e. a lattice length of 1/N = 0.01,
if not noted otherwise. In all test cases, the gradient-based quasi-Newton algorithm BFGS [17] is used. For the physical
properties of the object identification test case a viscosity of ν = 0.1 m2/s is used which results in a Reynolds number of 10.

The geometrical setup of these test cases consists of a cube of side length 1 m, which is defined as the flow domain Ω as
described in Fig. 4. The design domain D (green) is defined as a cube of side length 0.4 m in the centre of Ω . Various different
object geometries Π are placed inside the design domain D, which are to be identified by the solution approach.

5.2. Partial data objectives

It is a commonproblemwith flowdomain identification to have only incomplete data available. For example,with PC-MRI
measurements, most of the time only slices of data are measured. This poses a big challenge to the optimisation algorithm.
Onemay be interested in a specific object which is unfortunately not covered by the areawhere themeasurement is applied.
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Fig. 5. Cube Identification from Partial Data (Scheme). Inside the design domainD (green) an object C =: Π is placed, which is to be identified. The objective
domain (red) is reduced to different parts of the domain, and therefore only partial information of the flow data is used for the optimisation algorithm. For
(a) (Shadow Quarter) the objective domain is reduced to the quarter behind the cube with respect to the flow direction, reaching from y = 0.75 to y = 1.
For (b) (Upper Quarter) the upper quarter of the flow domain, reaching from z = 0.75 to z = 1 is used. And for (c) (Two Slices) one slice in front of the
object, reaching from y = 0.1 to y = 0.2, and one slice behind the object, reaching from y = 0.8 to y = 0.9 is used. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Object Identification: Cube (Scheme). A cube C =: Π of side length 0.2 m (blue) is placed in the centre of the design domain D (green).

Therefore, the same cube identification test case as presented above is set up with Π := C , but the objective domain,
where the objective functional is evaluated, is reduced to three different subdomains ofΩ . In all three partial data test cases,
the design domain D is completely uncovered by the objective functional. The partial data test cases are the flow shadow
quarter test case where only the 25% of the flow data behind the cube is being used. An upper quarter test case with only
the upper 25% of the flow data is being used. And the two slices test case where only two slices of each 10% of the flow data
behind and in front of the cube is being used (cf. Fig. 5).

5.3. Test case 1: Cube identification

First a simple flow domain identification test case is set up. A single cube C =: Π of 0.2 m is placed in the centre of the
previously introduced design domain D. The detailed setup of this test case is presented in Fig. 6.

The graph of the optimisation objective for the numerical results of this test case are presented in Fig. 7 for different grid
resolutions N = 25, 50 and 100, i.e. the voxel length is 1/N m. It is observed that the value of the objective decreases for
increasing grid resolutions, indicating the convergence of the objective towards zero if N tends to infinity, as well as the grid
independence of the start value.

In Fig. 8, a graphical visualisation of the numerical results of this test case with a porosity threshold value of dh = 0.99
is presented. The results show very few points of a porosity value near the threshold value of dh = 0.99 after termination
of the optimisation algorithm. The cube can be clearly identified after as few as 10 optimisation steps, with a highly precise
identification after 35 steps with very low porosity values, indicating a very clear separation between solid and fluid points.
In Fig. 9 the porosity in a slice of the cube in the y − z plane is shown. As it can be seen, the inside of the cube is also getting
more solid. In order to measure the error of the object identification we propose following error norm

∥dh − dC∥L2(D)

∥dC∥L2(D)
, (19)
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Fig. 7. Optimisation objective on different grid resolutions N . Results for the fluid flow characterisation. The optimisation algorithm reached a termination
condition for grid resolution N = 50 after 17 optimisation steps. For N = 25 and N = 100, the number of optimisation steps exceeded 30. An artificial data
point is inserted for N = 50 at step 30 with the same value as at step 17 for comparison purposes.

Fig. 8. Cube Identification (Results). The cube identification algorithm after 5, 10, 20 and 35 optimisation steps. The original cube is marked by a black
outline. The figure shows the same section, displaying only lattice-porosities of dh ≤ 0.99.

Fig. 9. Cube Identification Inside (Results). The cube identification algorithm after 5, 10, 20 and 35 optimisation steps. Shown is the porosity in a slice of
the cube in the y − z plane, with threshold of dh ≤ 0.99.

where dh is the lattice porosity obtained by the optimisation method and dC the porosity of the object. Fig. 10 shows the
proposed error norm for the identification of the cube, where the error starts at 97% and reaches 2% in the end, indicating
the clear identification of the object.

5.3.1. Test case 2: Cube identification from partial data
For the fluid flow characterisation the relative L2 error of the velocity inside the objective domain

∥u − u∗
∥L2(Ω)

∥u∗∥L2(Ω)
(20)

was considered. The results of the three partial data test cases and the full data test case is presented in Fig. 11. It is observed
that for all three partial data test cases the objective reaches very low values, indicating that the optimisationworks verywell
inside the objective domain. After 10 steps the error reaches near its minimum for all cases. Fig. 12 shows the error inside
the whole domain. For all test cases the error gets minimised, where the full information case works best, as expected. The
shadow quarter test case is the slowest of the three to converge, but still reaches an error of 5%. The two slices test case
produces the best approximation in the lowest number of optimisation steps with only 20% of the flow data being used and
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Fig. 10. Object Identification. The relative L2 error for the given and simulated porosity fields is shown. The error starts at 97% and reaches 2%, indicating a
clear identification of the object.

Fig. 11. FlowCharacterisation:ObjectiveDomain. The relative L2 error inside the objective domain for the velocity is given for the full andpartial information
test cases.

an error of 1%. Although the fluid flow is very accurately characterised by the proposed method, the object is not as clearly
identified. As can be seen in Fig. 14 a cubical form is nearly identified but with high porosities and low porosities are only
found near the objective domain. This is best seen for the upper quarter case. For the two slices case the lowest porosities
are in direction of the flow. Fig. 13 shows the relative L2 error of the porosities were an error of 64% for the shadow case,
33% for the two slices case and 79% for the upper case are found. This contrasts strongly with the results obtained for the
flow characterisation, where the error is less than 5%. This could be due to the interpretation of the lattice porosities, which
is strongly dependent on the grid size, as discussed in Section 4. The interpretation of a lattice porosity for one grid size is a
very different one for another grid size (cf. 2).

5.4. Test case 3: Identification of more complex object geometries

After successfully identifying a simple cube in the design domain D in the previous test cases, the optimisation algorithm
is applied to increasingly complex geometries. For each of the following test cases, a scheme is provided, describing the a
priori defined geometry Π that is to be identified by the optimisation algorithm and the numerical results are visualised for
validation.

5.4.1. Object identification: Sphere
In this test case, a sphere S =: Π of radius 0.1 m (blue) is placed in the centre of the design domain (green) as described

in Fig. 15.
The numerical results are visualised in Fig. 16, the result of the relative L2 error of the objective is shown in Fig. 17. It is

observed that the optimisation algorithm is able to identify the position and shape of the sphere at a satisfying level after 5
steps and with very low porosity values after only 15 steps.

After 2 steps, the object is barely to be recognised, but after 5 steps, the sphere is mostly identified. After 10 steps, the
porosity values have become lower and the shape of the sphere is identified more precisely. After 15 steps, the sphere is
clearly identified with very low porosity values.
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Fig. 12. Flow Characterisation: Whole Domain. The relative L2 error for the velocity inside the whole domain is given for the full and partial information
test cases. The full information case reaches the lowest error. For the partial information cases the shadow case shows the highest error at 5%, where the
two slices case reaches 1%.

Fig. 13. Object Identification. Shown is the relative error of given and simulated porosity fields for the partial test cases.

5.4.2. Two spheres side by side
In this test case, two spheres {S1, S2} =: Π are placed side by side in the centre of the design domain as described in

Fig. 18. It is assumed that the area in the middle of the two spheres poses a big challenge for the optimisation algorithm.
The visualisation of the numerical results are presented in Fig. 19, the result of the relative L2 error in Fig. 20. It is observed

that the optimisation algorithm is able to clearly identify the position and shape of the two spheres with very low porosity
values after 25 steps.

After 5 steps, the shape of the objects is roughly to be recognised. After 15 steps, the two spheres are identified with low
porosity values, whilst the front area of spheres consists still of very high porosity values. After 25 steps, the two spheres are
clearly identified with very low porosity values.

5.4.3. Cube and cuboid
In this test case, a cube and a cuboid are placed in the design domain asymmetrically as described in Fig. 21. It is assumed

that the asymmetric positioning is a challenging task for the optimisation algorithm. The close positioning of the objects is
suspected to be an additional challenge.

One needs to be aware of the position of the small cube in the corner of the design domain. Since all neighbouring points
outside the design domain are set to be totally fluid (dh = 1), the three outwards oriented surfaces of the cube are assumed
to be immediately identified as even surfaces.

The visualisation of the numerical results are presented in Fig. 22, with the relative L2 error of the objective in Fig. 23.
It is observed that the optimisation algorithm is able to identify both objects with satisfying precision in 10 steps and with
significantly lower porosity values in 25 steps.

After 2 steps, the two objects are still indistinguishable. After 5 steps, one can already roughly identify the two distinct
objects. After 10 steps, the objects are mostly identified, leaving it for the next 15 steps to lower the porosity values of the
points even more. After 25 steps, the objects are clearly identified.
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Fig. 14. Cube Identification from Partial Data (Results). Each row shows the results of the optimisation algorithm for a different partial data test case at the
last optimisation step (cf. Fig. 5). The threshold for every result is given, where dh = 0.9 means all porosities greater than 0.9 are not shown.

Fig. 15. Object Identification: Sphere (Scheme). A sphere S =: Π of radius 0.1 m (blue), which is to be identified, is placed in the centre of the design
domain D (green).
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Fig. 16. Object Identification: Sphere (Results). Optimisation results after 2, 5, 10 and 15 steps are visualised for the test case described in Fig. 15.

Fig. 17. Identification of a Sphere. Relative L2 error of the velocity for the full data test case of a sphere.

Fig. 18. Object Identification: Two Spheres Side By Side (Scheme). Two spheres {S1, S2} =: Π with radius 0.05 m (blue), which are to be identified, are
placed side-by-side in the centre of the design domain D (green). The centre of S1 is at (0.45, 0.5, 0.5) and the centre of S2 is at (0.55, 0.5, 0.5).

It is observed that the outwards oriented surfaces of the small cube are identified as even surfaces as early as in the second
step.

6. Conclusion

In this work, the solution strategy for domain identification problems [16] has been improved and thoroughly validated.
The approach allows the identification of objects in a fluid by solving an optimisation problem based on ALBM. Therefore, the
parameters of a porousmedia fluid flowproblem are controlled to achieve a specified velocity profile. It turns out that linking
the variables representing the porosity of the discrete problem with the control variables is the key to a robust setup that
does not require initial parameter tuning. The linking is analysed and a projection is proposed to ensure grid independence
for a given set of control variables. Based on a porous media model formulated on a mesoscopic scale, it is shown that the
novel ALBM-based optimisation approach is able to clearly identify the flow domain for problems up to 70000 controlled
variables, in wide range of validation test cases, various a priori defined object geometries of increasing complexity and
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Fig. 19. Object Identification: Two Spheres Side By Side (Results). Optimisation results after 2, 5, 15 and 25 steps are visualised for the test case described
in Fig. 18.

Fig. 20. Identification of Two Spheres. Relative L2 error of the velocity for the full data test case of two spheres.

Fig. 21. Object Identification: Cube and Cuboid (Scheme). A small cube C1 of side length 0.1 m (blue) is placed in an upper corner of the design domain D
(green), extending from (0.6, 0.6, 0.6) to (0.7, 0.7, 0.7). An additional cuboid C2 (blue) of side length (0.1 m, 0.2 m, 0.2 m) extending from (0.4, 0.4, 0.4) to
(0.5, 0.6, 0.6) is placed in the design domain D (green). The geometry {C1, C2} =: Π is to be identified.

Fig. 22. Object Identification: Cube and Cuboid (Results). Optimisation results after 2, 5, 10 and 25 steps are visualised for the test case described in Fig. 21.
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Fig. 23. Identification of a Cube and a Cuboid. Relative L2 error of the velocity for the full data test case of a cube and a cuboid.

of decreasing flow data being available. In future, improvements, as for example additional conditions on the volume, are
to be found that ensure the uniqueness of the identified objects. Further, a combination with MRI measurements can be
considered. For it, MRI data could serve as the given velocity profiles. A significant reduction of the noise in the flow field is
expected as well as an identification of the flow domain, i.e. a new segmentation approach is expected, which projects the
measured flow field very close to the physical one.
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