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Abstract

Abstract – When the period of unit-cells constituting metamaterials is no longer
much smaller than the wavelength but only smaller, local material laws fail to describe
the propagation of light in such composite media when considered at the effective level.
Instead, nonlocal material laws are required. They have to be derived by approximating
a general response function of the electric field in the metamaterial at the effective
level that is accurate but cannot be handled practically. But how to perform this
approximation is not obvious at all. Indeed many approximations can be perceived
and one should be able to decide as quick as possible which of these possible material
laws are mathematically and physically meaningful at all. Here, at the example of
a second order Padé approximation of the general response function of the electric
field, we present a checklist each possible constitutive relation has to pass in order
to be physically and mathematically liable. As will be shown, only one out of these
nine Padé approximations passes the checklist. The work is meant to be a guideline
applicable to decide which constitutive relation makes actually sense at all. It is an
essential ingredient for future research on composite media as any possible constitutive
relation to be discussed should pass it.

1 Introduction
Electromagnetic metamaterials (MMs) are artificial structures made of subwavelength inclusions. These inclu-
sions are called meta-atoms and they are mostly arranged in a periodic manner. The purpose of constructing
MMs is to control the light propagation in a way inaccessible with natural materials. A referential purpose, but
of course not the only one, would be to achieve a material where the real parts of both the permittivity and
the permeability can be simultaneously negative at some frequencies. Because of their properties, MMs enable
many applications. For instance, super lenses [1, 2], cloaking devices [25], medical devices [4], and many others
(see, e.g., [5, 6, 7, 8, 9]) could be mentioned.

Due to the mesoscopic features of MMs, their homogenization was always a prime theoretical challenge. The
homogenization consists of linking the mesoscopic structure of the actual MM to a macroscopic homogeneous
material, i.e., replacing a MM by a hypothetical homogeneous material described by some effective material
parameters [10]. Many homogenization techniques can be found in literature (see, e.g., [11, 14, 15, 16]). However,
local constitutive relations have been, mostly, considered in the homogenization and it was frequently assumed
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that the MM possesses a weak spatial dispersion (WSD). An effective description with at most bi-anisotropic
constitutive relations would be the most advanced model to describe the MM at the level of such local constitutive
relations [21]. Local constitutive relations are only justified as long as the period of the meta-atoms’ arrangement
is much smaller than the wavelength of light [22].

Unfortunately, most MMs do have a period only smaller than the wavelength and period and operational
wavelength are actually often in the same order of magnitude. This implies that WSD is insufficient to capture
the properties of most actual MMs. A natural extension to capture the physics of MMs at the effective level,
therefore, are nonlocal constitutive relations [23, 24]. There, the induced response does not just depend on
the electric and magnetic field at the same spatial locations but also on the fields at points further apart.
Alternatively, the response depends besides on the fields also on the gradients of the field at the same location,
a notion that is usually called strong spatial dispersion (SSD) [25]. We take both terms, nonlocality and
SSD, as synonymous here. Constitutive relations accommodating SSD or nonlocality, respectively, were already
discussed by several authors, see, e.g., [26, 27, 28, 30, 32, 33]. It was unambiguously shown that they frequently
capture the properties of actual MMs much more accurately than ordinary local constitutive relations. But
how to come to meaningful nonlocal constitutive relations for the effective description? It is clear that any
description has to depart from a general nonlocal response function R(ω, r− r′) (also written in spatial Fourier
space as R̂(ω,k)) that expresses the response at the effective level as a convolution. Here, the response function
links the electric field to the electric displacement. It constitutes an exact description but the use of this nonlocal
response function at the effective level, however, is cumbersome and not handy. It has to be approximated if it
shall be of any practical use. But how to approximate it in a suitable manner?

The general nonlocal response function can be expanded, as one possible path towards meaningful nonlocal
constitutive relations, by a Taylor polynomial [30, 31]. Truncating the Taylor polynomial to the fourth order,
forcing the coefficients of the Taylor polynomials to obey certain relations, and while omitting odd order terms
that vanish for MMs with an inversion symmetry, as we do assume also here, the following constitutive relation
can be derived:

D̂(ω,k) = ε(ω)Ê(ω,k)− k× (α(ω)k× Ê)(ω,k) + k× k× (γ(ω)k× k×)Ê(ω,k). (1)

In the real space, the corresponding expression to Eqn. (1) is given by

D(ω, r) = ε(ω)E(ω, r) +∇× α(ω)∇×E(ω, r) +∇×∇× (γ(ω)∇×∇×)E(ω, r). (2)

The material parameters ε(ω), α(ω), and γ(ω) are anisotropic diagonal matrices, which implies that in general
they do not commute with the curl operators. There is a physical meaning behind each of these terms. The
first term corresponds to a local electric response, and indeed the permittivity ε(ω) appears here. It is a local
response because the induced electric displacement field D(ω, r) depends locally on the electric field E(ω, r).
The second term is associated with a weak spatial dispersion [34]. However, while it obviously depends on
spatial derivatives of the electric field, a suitable gauge transformation to Maxwell’s equations can be applied
that forces the appearance of this second term as an artificial local magnetic response [36]. This implies that the
magnetic field depends locally on the magnetic induction, where the response is mediated by the permeability
that is explicitly expressed in terms of this parameter α(ω). That finding is important as it shows that an
artificial magnetism in MMs is a consequence of the weak spatial dispersion in the electric response. The third
term in Eqns. (1) and (2) is special and indeed constitutes the suggested extension to capture effects due to
strong spatial dispersion [30]. It is a consequence of the fourth order term in the Taylor polynomial. This term
cannot be transformed to emerge in some local constitutive relation and is truly nonlocal. The choice of the
specific functional dependency of that term can be motivated by the apparent similarity to the term that was
used to capture the artificial magnetism, i.e. the material parameter is sandwiched between an equal number
of curl operators.

To make practical use of such constitutive relation, interface conditions need to be derived that connect
the fields inside the MM to the fields in a medium adjacent to an interface. These interface conditions can
be derived for a given constitutive relation using a weak formulation to Maxwell’s equations (see, e.g., [37]).
Essential to nonlocal materials laws is the appearance of multiple modes [35]. While in a local material and
for a given polarization of the electromagnetic field, the dispersion relation says that for a given frequency
and transverse wave vector component there is only a single forward and a single backward propagating mode,
nonlocal constitutive relations lead to multiple solutions. Therefore, not just ordinary interface conditions are
needed but some additional (see, e.g., [29, 38]).

However, the choice of the specific model for the constitutive relation based on a Taylor polynomial that
led to Eqn. (1) leaves the impression as being somewhat arbitrary. Many other approximations to the general
nonlocal response function could have been considered and could have been applied to the homogenization [39].
A decision concerning a most appropriate model for the homogenization is always the question of how well the
homogeneous model can capture the response from an actual MM. But of course, prior any consideration it is
of utmost importance to know which model for a constitutive relation is eligible at all. It is the purpose of this

2



Figure 1: Illustration of the domain in which the light propagates, the upper-half space is occupied by vacuum and the lower-half
space is occupied by a homogenized MM. The surface separating the two half-spaces is denoted Γ. The normal n is outward directed
from the homogenized MM.

contribution to establish, at the example of a specific but systematic approach to generate nonlocal constitutive
relations more complicated than those of the bi-anisotropic material, a checklist that can be used to validate
whether a specific constitutive relation is admissible to homogenize a MM or not.

This suggested checklist has three entries. First, the dispersion relation of a nonlocal media, as mentioned,
gives rise to multiple modes to be excited when an interface between an ordinary material and a nonlocal
MM is illuminated with a plane wave. Therefore, we require to derive from the combination of constitutive
relations and possible weak formulations the same number of interface conditions as modes supported in the
MM. Neither more (overdetermined) nor less (underdetermined) interface conditions are admissible. Second,
we require that the nonlocal models resort to the local models in the limiting case of a vanishing nonlocality.
Third, reciprocity relations, expressed here in terms of the Casimir-Onsager relations, need to be fulfilled by
the constitutive relations. As we show, many of the possible models one could imagine actually do not cope
with these requirements and, indeed, expression (1) is already an excellent choice to express the fourth order
term in the nonlocality.

We demonstrate the checklist, exemplary, while considering a more general expansion of the non-local re-
sponse kernel, namely a Padé-approximation. The Padé-approximation has the advantage of expanding the
nominator and the denominator or a rational function independently. Moreover, we can admit models where
the material parameters are not written specifically between symmetric order of curl operators, as written in
Eqn. (1). This offers a path to derive quite diverse nonlocal constitutive relations that may or may not capture
the response from an actual MM quite well. However, before being considered for this task, these constitutive
relations have to pass the suggested checklist.

This paper is organized as follows. In Sec. 2, we recall the Maxwell equations in the specific setting of
interest. In Sec. 3, we talk about the concept of homogenization, by showing the difference between the
local and nonlocal homogenization notions. In Sec. 4, we present constitutive relations for what we call Padé
MMs obtained from a Padé-type approximation of the nonlocal response function. The nine possible cases
to perform the Padé-type approximation constitute the constitutive relations expressing the properties of the
MMs at the effective level. In Sec. 5, we give the solutions to the dispersion relations for the nine cases, by
treating separately both transverse electric (TE) and transverse magnetic (TM) polarizations. For the sake of
readability, a detailed derivation of the dispersion relations is presented in an Appendix. In Sec. 6, we set the
function space we need in the present research, and we explain the essence of the weak formulation. Our main
contribution is given in Sec. 7, in which we present the criteria we set for the checklist in order to analyze the
validity of each case. These criteria are based on mathematical and physical first-principles. This necessarily
requires also a derivation of the interface conditions that is done in Subsec. 7.1 as well. In Sec. 8, we discuss
and summarize our findings. At the end of the paper we present in an appendix the detailed coefficients given
in the solutions to the dispersion relations.

With this work, we unlock the opportunities to consider in the future other constitutive relations. Basically
many formulations can be postulated but only those should be considered that pass the presented checklist.

2 General setting
For the sake of simplicity, we assume that the propagation of light takes place in the entire space R3, where the
upper-half space R3

+ is occupied by vacuum and the lower-half space R3
− is occupied by a MM. The interface

between them is denoted by Γ. The unit normal n is outwardly directed from the homogeneous MM (see Fig.
1).

We recall Maxwell’s equations with no external charges and currents, which govern the propagation of light
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in a material

∇× Ẽ +
1

c

∂B̃

∂t
= 0, ∇ · B̃ = 0,

∇× H̃− 1

c

∂D̃

∂t
= 0, ∇ · D̃ = 0.

(3a)

(3b)

This system of equations includes four vector fields: the electromagnetic field given by the pair (Ẽ, H̃) and
the electromagnetic induction given by the pair (D̃, B̃). They depend on the position r and the time t in
R3 × R −→ C3, but this dependency is omitted here for brevity. The speed of light is given by c and the time
frequency is given by ω > 0. For a harmonic time dependency, Maxwell’s system is written as

∇×E− ik0B = 0, ∇ ·B = 0,

∇×H + ik0D = 0, ∇ ·D = 0.

(4a)
(4b)

Here, k0 refers to the wavenumber of the external monochromatic light, it is given by the relation k0 =
ω

c
.

The electromagnetic MMs we are considering are supposed to be, only for simplicity, centro-symmetric, such
that no optical activity emerges in the principal axes. A typical example of such structure is the Fishnet MM
(see, e.g., [41, 42]). Providing the relation between the electromagnetic fields and the electromagnetic induction
is required to solve the system of equation. These relations are the desired constitutive relation if considered
at the effective level. For the mesoscopic, i.e. for the actual, MM, the usual local constitutive relations are
considered and we assume that the MM itself is made from a non-magnetic media.

3 Homogenization of metamaterials
The modeling of phenomena occurring in composite materials leads generally to partial differential equations
whose coefficients are strongly oscillating. In our case, these coefficients refer to the spatially dependent permit-
tivity that describes the properties of the actual MM in real space. These oscillations can generate problems in
the analytical and numerical resolution of these equations. Moreover, we do not wish to solve Maxwell’s equa-
tions exactly anytime a device made from MMs is considered; but we wish to consider MMs actually on an equal
footing as ordinary materials. The theory of homogenization serves to overcome these difficulties by replacing
problems with strongly oscillating coefficients by approximate problems whose coefficients are constant, and
therefore much simpler to process numerically. For an introduction to this theory we refer the reader to see for
instance [43, 44, 45]. In the case of MMs, the homogenization process has to be done in order to associate the
MM to its effective properties. The principle consists in defining a hypothetical homogeneous material, which is
characterized by effective properties. We require that in the homogeneous material: (a) the propagation of light
has to be analogous as in the actual MM and (b) the reflection and transmission coefficients on an interface,
separating a MM to an adjacent known material, have to be also analogous for both the homogeneous material
and the actual MM. For the description of MMs at the effective level, either local or nonlocal constitutive
relations can be used.

3.1 Local homogenization of metamaterials
Most frequently, local constitutive relations are considered to homogenize MMs, where the electromagnetic field
and the electromagnetic induction are linked to each other through local constitutive relations. This is a mere
extension of how we treat natural materials in Maxwell’s equations. The functional dependency of D and H is
a linear combination of the macroscopic fields E and B, that read

D(ω, r) = E(ω, r) + P(E)(ω, r),

H(ω, r) = B(ω, r)−M(B)(ω, r),

(5a)
(5b)

where P is the polarization and M is the magnetization. They shall explicitly depend only on E and B at the
same spatial location and also not on derivatives. Please note, for the centro-symmetric materials as considered
here there is no electromagnetic cross-coupling, i.e. P does not depend on B and M does not depend on E.
For intrinsically non-magnetic materials, we have M ≡ 0. To apply such constitutive relations, the size of the
meta-atoms constituting the MM has to be much smaller than the wavelength, something that does not apply
to most MMs frequently considered especially at optical frequencies. Most MMs do have a period only smaller
than the wavelength and both of them are in the same order of magnitude. This implies that the WSD is
insufficient to capture the properties of most actual MMs, and going beyond local homogenization with WSD
is then needed for a proper homogenization.

A typical example of the local homogenization is the asymptotic homogenization (see, e.g., [15, 16, 17, 18,
19, 20]). The concept considers a small parameter δ referring to the period of the meta-atoms’ arrangement.
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Homogenizing the Maxwell system consists in studying the asymptotic behavior of its solution when δ tends to
0.

3.2 Nonlocal homogenization of metamaterials
To further advance the effective description, nonlocal constitutive relations with SSD are required. We consider
the general nonlocal material law of a homogeneous medium written in the real space in the following form

D(ω, r) =

ˆ
R3

R(ω, r− r′)E(ω, r′) dr′, (6)

where the kernel R(ω, r − ·) represents the response function of the electric Field E. If the response tensor
R(ω, r− ·) contains distributional terms, the nonlocal material law (6) can be written as a dual pairing, i.e., as
a distributional action, as follows

D(ω, r) = 〈 R(ω, r− ·),E(ω, ·) 〉 . (7)

In general, the formula of the response tensor is unknown, hence it is not clear how to evaluate the electromag-
netic field on the interface separating two disparate media. Finally, while the expression is certainly correct, it
is unhandy for any practical purpose. Therefore, this expression of the response kernel needs to be simplified
in order to reach a constitutive relation of practical utility. How this can be done will be discussed in the next
section.

4 Padé metamaterials

4.1 Constitutive relations
In the spatial frequency space the nonlocal material law (6) is written in the following form

D̂(ω,k) = R̂(ω,k)Ê(ω,k). (8)

In [30] a specific approximation of the nonlocal response function based on a Taylor approximation up to the
fourth order was considered. In this paper, we consider rational response functions, i.e., of Padé-type, written
as

R̂(ω,k) = (I − q̂(ω,k))−1(ε(ω)I + p̂(ω,k)), (9)

where I refers to the identity matrix, p̂(ω, ·) and q̂(ω, ·) are C3×3 matrices, polynomially depending on k and
vanish at k = 0. They are assumed to take the following expressions

p̂(ω,k) ∈ {(−α(ω)k× k×), (−k× α(ω)k×), (−k× k× α(ω)) },
q̂(ω,k) ∈ { (−γ(ω)k× k×), (−k× γ(ω)k×), (−k× k× γ(ω)) },

(10a)
(10b)

with α(ω) and γ(ω) representing the material parameters corresponding to the polynomials p̂ and q̂, respectively.
Together with the electric permittivity ε(ω), they are assumed to be C3×3 anisotropic diagonal matrices with
smooth and bounded entries depending on the frequency ω.

After backward Fourier transform, we see that the polynomial-matrices p̂ and q̂ amount to one of the
following differential operators

p(ω, i∇) ∈ {(α(ω)∇×∇×), (∇× α(ω)∇×), (∇×∇× α(ω)) },
q(ω, i∇) ∈ { (γ(ω)∇×∇×), (∇× γ(ω)∇×), (∇×∇× γ(ω)) }.

(11a)
(11b)

Thereafter, the nonlocal material law amounts to

(I − q(ω, i∇)) D(ω, r) = (ε(ω)I + p(ω, i∇)) E(ω, r), (12)

which is a partial differential equation. According to the choices of p(ω, i∇) and q(ω, i∇), Eqn. (12) leads to
nine different formulations that we call in the following "cases".

Let us now justify the assumptions on the material parameter of being anisotropic diagonal matrices. The
anisotropy of a given material is the property of being directionally dependent. More precisely, anisotropic
materials admit different properties in different directions. They can be represented by 9 element tensors, i.e.,
C3×3 matrices. However, for a suitable choice of coordinate system, we can only have nonzero diagonal elements
in the material parameters tensors, whereas all the off-diagonal elements are zero. For this reason, instead of full
anisotropic tensors, we consider only diagonal matrices that simplify computations. Furthermore, if the three
values for the diagonal elements are equal, we say that the material is isotropic. Under an isotropy assumption,
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the material parameters are simply scalars. This fact implies that the three different formulae of the operator
p(ω, i∇) expressed in (11a) will be identical; the same will hold also for the operator q(ω, i∇) expressed in
(11b). Hence, we get only one wave-like equation instead of several formulations.

In this paper, we adopted the naming Padé metamatrials because we used a Padé-type expansion for the
nonlocal response function of the electric field inside MMs. Such kind of expansions, i.e., of Padé-type, were
already considered in the literature, for example:

• when expressing the properties of metals within a hydrodynamic Drude-model, e.g. applicable to study
for plasmonic nanostructures (see for example [47, 48]), where the nonlocal response function is given by

R̂(ω,k)Hydro = 1−
ω2
p

ω2 + iωγ − β2|k|2
, (13)

for ωp being the plasma frequency of the free electrons, γ the damping constant, and β a nonlocal term
proportional to the Fermi velocity.

• when expressing the properties of wire media [49, 50], which constitutes an example of complex artificial
electromagnetic materials, consisting of metallic nanowires embedded in a dielectric host medium. See for
instance [51], where a nonlocal homogenization theory was applied to homogenize a wire medium and it
was compared to a homogenization theory specifically derived for the wire medium in [52]. We can see
clearly in [52] that the permittivity of a nanowire medium is of Padé-type, having the following form

εm = εbulk +
iω2
pτ(Rb −R)

ω(ωτ + i)(ωτR+ iRb)
. (14)

The first term of the permittivity, denoted by εbulk, corresponds to the permittivity of bulk gold. The
second term represents additional effects, with ωp being the plasma frequency, Rb and R refer to the
mean-free path and the effective mean-free path of the electrons respectively, τ refers to the relaxation
time of the conducting electrons.

In the next subsection, we express one wave equation that governs the propagation of light in a medium
characterized by each of these constitutive relations.

4.2 Wave equations
We recall Maxwell’s equation for the electric field

∇×∇×E(ω, r) = k2
0D(ω, r). (15)

By substituting the general nonlocal material law (12) in the wave Eqn. (15), we obtain

(I − q(ω, i∇)) (∇×∇×E(ω, r)) = k2
0 (ε(ω)I + p(ω, i∇))E(ω, r). (16)

Hence, the general wave-like equation for homogenized MMs is given by

∇×∇×E(ω, r) = k2
0ε(ω)E(ω, r) +

[
k2

0p(ω, i∇) + q(ω, i∇)(∇×∇×)
]
E(ω, r). (17)

By combining each possible expression for p(ω, i∇) with each possible expression for q(ω, i∇), given in (11a) and
(11b), we get nine equations modeling the propagation of light in a homogeneous MM. In a domain with upper-
half space vacuum and lower-half space MM, the wave-like equations generated from the Padé-type response
functions, named from Case 1 to Case 9, are given in Tab. 1

Under the anisotropy assumption, the material parameters are C3×3 diagonal matrices given by

ε̃ =

 ε̃xx 0 0
0 ε̃yy 0
0 0 ε̃zz

 , α̃ =

 α̃xx 0 0
0 α̃yy 0
0 0 α̃zz

 , γ̃ =

 γ̃xx 0 0
0 γ̃yy 0
0 0 γ̃zz

 , (18)

such that, for j ∈ {x, y, z} we have

ε̃jj =

{
1, z > 0,
εjj , z < 0,

α̃jj =

{
0, z > 0,
αjj , z < 0,

γ̃jj =

{
0, z > 0,
γjj , z < 0.

(19)

We stress that the second order terms in all equations in Tab. 1 describe the local effect, i.e., the effect produced
using local constitutive relations. These terms can be regrouped by means of the parameter µ̃ = (1 − k2

0α̃)−1.
We notice that for the formulae corresponding to cases 1, 2, and 3 in Tab. 1, the parameter µ̃ represents the
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Case 1:
∇×∇×E =
k2

0 ε̃E + k2
0∇× α̃∇×E

+∇×∇× γ̃∇×∇×E

Case 2:
∇×∇×E =
k2

0 ε̃E + k2
0∇× α̃∇×E

+∇× γ̃∇×∇×∇×E

Case 3:
∇×∇×E =
k2

0 ε̃E + k2
0∇× α̃∇×E

+γ̃∇×∇×∇×∇×E

Case 4:
∇×∇×E =
k2

0 ε̃E + k2
0∇×∇× α̃E

+∇×∇× γ̃∇×∇×E

Case 5:
∇×∇×E =
k2

0 ε̃E + k2
0∇×∇× α̃E

+∇× γ̃∇×∇×∇×E

Case 6:
∇×∇×E =
k2

0 ε̃E + k2
0∇×∇× α̃E

+γ̃∇×∇×∇×∇×E

Case 7:
∇×∇×E =
k2

0 ε̃E + k2
0α̃∇×∇×E

+∇×∇× γ̃∇×∇×E

Case 8:
∇×∇×E =
k2

0 ε̃E + k2
0α̃∇×∇×E

+∇× γ̃∇×∇×∇×E

Case 9:
∇×∇×E =
k2

0 ε̃E + k2
0α̃∇×∇×E

+γ̃∇×∇×∇×∇×E

Table 1: Wave-like equations modeling the propagation of light in media, where the upper-half space is vacuum and the lower-half
space is a MM. These equations are obtained by means of a Padé-type expansion of the nonlocal response function to an incident
electric field.

magnetic permeability. For the other cases, we don’t have an explicit physical explanation. The nonlocal effect
is given through the fourth order derivative terms, and it is represented by the parameter γ̃.

We emphasize that the present approach, i.e., Padé-type expansion of the response function, can be consid-
ered as a mathematical justification to the different locations of the material parameters expressed in Tab. 1. In
other words, this approach shows that these models are not randomly chosen. Notably, due to the anisotropy of
the material parameters, they do not commute with the curl operators. Together with the fact of approximating
the nonlocal response function R by means of fractional functions, it is clear that we can easily end up at a
large number of formulations. We highlight that possibly not all of these formulations are useful. Therefore,
a checklist needs to be established, that allows to conclude which formulations are correct and which are not.
Certainly, Padé-type approximation is not the only way for generating different formulations, and any future
suggestions for a more general constitutive relation should respect such sort of checklist to end up with mean-
ingful and sound results.

We remark that the first wave-like equation in Tab. 1, denoted as Case 1, coincides implicitly with the wave
equation obtained in [30, 38, 41] using a Taylor approximation of the response function truncated at the fourth
order terms. Namely, for centro-symmetric MMs the constitutive relation in the real space is given by

Di(ω, r) = aijEj(ω, r) + cijlm∇l∇mEj(ω, r) + eijklmn∇k∇l∇m∇nEj(ω, r). (20)

The expansion coefficients are assumed to satisfy the following formulae

aij
!
= ε(ω),

cijlm∇l∇mEj
!
= [∇× (α(ω)∇×E)]i,

eijklmn∇k∇l∇m∇nEj
!
= [∇×∇× (γ(ω)∇×∇×E)]i.

(21a)

(21b)

(21c)

Then, the obtained wave-like equation reads

∇×∇×E = k2
0

(
ε(ω)E +∇× α(ω)∇×E +∇×∇× γ(ω)∇×∇×E

)
. (22)

On the other hand, if we choose the operators p(ω, i∇) and q(ω, i∇) as follows

p(ω, i∇) = ∇× α(ω)∇×,
q(ω, i∇) = ∇×∇× γ(ω),

(23a)
(23b)

and we scale the parameter γ(ω), we get exactly the same equation as in case 1 of the Padé approximation. This
equation was studied in detail in references [30, 38, 41], and it provided good results (reflection and transmission
coefficients) when compared to those obtained from a direct solution of Maxwell’s equations for the actual MM.
(see e.g., [53, 54]). Our main concern in this paper is to study the other cases in Tab. 1 and to compare them
to case 1.

Before presenting the established checklist, analyzing the wave-like equations obtained in the present paper,
and solving the interface problems; we solve first the bulk problems. Namely, we compute and solve the
dispersion relations which are required to define the propagating eigenmodes within a MM.
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5 Dispersion relations
For a plane wave propagating within a medium, the dispersion relation has to be satisfied to guarantee that the
plane wave indeed solves Maxwell’s equations [55]. The dispersion relation expresses the functional dependency
of the wave vector components of the wave and its frequency for a given medium, i.e., kz(kx, ky, k0, ε, α, γ).
For a homogeneous material, we can obtain the dispersion relation by plugging a plane wave ansatz in the
wave equation. Hence, we get an algebraic system of equations instead of differential equations. For nontrivial
solutions, the determinant of the corresponding matrix has to be zero. It is a polynomial with indeterminants
the wave vector’s components. The eigenvalues are the roots of the dispersion relation and the associated
eigenmodes are the modes sustained inside the homogeneous material. In Fourier space, the general wave-like
Eqn. (17) is written as [

k2
0(ε(ω)I + p̂(ω,k)) + (I − q̂(ω,k)) (k× k×)

]︸ ︷︷ ︸
W(ω,k)

Ê(ω,k) = 0, (24)

for p̂(ω,k) and q̂(ω,k) having one of the forms expressed in (10a) and (10b). The vanishing of the determinant
of the wave operator W(ω,k) represents the dispersion relation. In vacuum, the dispersion relation is given by
k2
z = k2

0− (k2
x+k2

y). It has two solutions kz = ±
√
k2

0 − (k2
x + k2

y) which represent the forward and the backward
modes, respectively. In a bulk MM described by the effective material parameters (18), we will see that the
dispersion relations are polynomials of order four, which gives rise to multiple, exactly four, modes propagating
per polarization. Precisely, in the presence of interfaces, for example a MM slab with finite thickness, there will
be two forward modes excited at the first interface and two backward modes at the second interface, instead of
only one at each interface in the absence of strong spatial dispersion.

Without loss of generality, we assume that the incident wave propagates in the yz-plane with the z direction
as a principal propagation direction. Hence we set kx = 0 and the wave vector is written k = (0, ky, kz)

T .
Furthermore, along an interface Γ, the system is invariant under translation. Consequently, the wave vectors
for all plane waves at the interface share the same y−component that we commonly denote by ky. Further, we
decompose the incident wave into its transverse electric (TE) and transverse magnetic (TM) polarized modes.
Due to the absence of optical activity in centro-symmetric MMs, polarization is preserved for the reflected and
transmitted fields, such that:

• TE-polarization:

E = E0 exp(ik · r), with E0 = (Ex, 0, 0)T and k = (0, ky, kz)
T ,

• TM-polarization:

E = E0 exp(ik · r), with E0 = (0, Ey, Ez)
T and k = (0, ky, kz)

T .

In what follows, we treat the TE and TM polarizations separately, i.e., we plug the corresponding polarized
plane wave into the wave-like equation for each case in Tab. 1 and seek for the solutions kz(kx, ky, k0, ε, α, γ).
In all nine cases the dispersion relations are polynomials of order 4 that depend on the polarization of the field.
The corresponding solutions specify the forward and backward propagating eigenmodes inside such MMs. The
solutions to the wave equation for the nine studied cases are summarized in Tab. 2. In fact, only five different
functional dependencies of kz(ky) emerge in these 2 × 9 resulting dispersion relations, leading to identical
isofrequency contours. These five types are

Dispersion of type A: k2
z(ky) = − 1

2 (q0 + q1)k2
y + p0 ±

√
l0 +

(
p0 + q0−q1

2 k2
y

)2
,

Dispersion of type B: k2
z(ky) = −k2

y + p0 ±
√
l0 + p2

0 + 2(p1 − p0)k2
y,

Dispersion of type C: k2
z(ky) = − 1

2 (q0 + q1) + p0 ±
√
l0 +

(
p0 − q0+q1

2 k2
y

)2
+ 2q0p1k2

y − q0q1k4
y,

Dispersion of type D: k2
z(ky) = −k2

y + p0 ±
√
l0 + p2

0,
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p(ω,k)

q(ω,k)
k× k× γ k× γk× γk× k×

k× αk× Case 1 Case 2 Case 3
TM: A TE: B TM: A TE: C TM: C TE: B

k× k× α Case 4 Case 5 Case 6
TM: C TE: D TM: C TE: A TM: E TE: D

αk× k× Case 7 Case 8 Case 9
TM: C TE: D TM: C TE: A TM: C TE: D

Table 2: Summary of the different types of dispersion relations for the wave-like equations defined in Tab. 1, with respect to the
transverse electric (TE) and the transverse magnetic (TM) polarized modes.

Dispersion of type E: Q0(ky)k2
z(ky) = P0(ky)±

√[
P0(k2

y)
]2

+ P1(k2
y).

Here, the coefficients p0, p1, q0, q1, l0, P0, P1, and Q0 are products and ratios of the material parameters and
depend on the polarization and on the case. For the sake of readability, we summarize the exact coefficients of
the dispersion relations in Appendix.

Concerning the first case, the dispersion relations (later the interface conditions as well) for both TE and
TM polarization are identical to the wave equation considered by the Taylor approach that has been previously
introduced in [30], with a normalization of the parameter expressing the nonlocal effects. The reader can return
to [38, 30, 41] for detailed discussions. Here, we repeat this dispersion relation for completeness. While eight
out of nine Padé approximants yield a polynomial type of dispersion relations, the TM polarization of case 6
seems to be of special type, namely type E. It is the only case, where the functional dependency of kz(ky) is
of Padé type as well, leading to peculiar isofrequency contours, inaccessible with the other eight cases. The
above types of dispersion relations repeat also in a few occasions. The same type of dispersion relations will
eventually reproduce the same bulk properties. In cases (4,7) and (5,8) the dispersion relations as well as their
corresponding coefficients are pairwise identical. However, this does not forcibly mean that the corresponding
pairs of cases are equivalent, as their interface conditions differ. Consequently, light at the interface will couple
differently, leading to different electromagnetic response, i.e., reflection and transmission coefficients. To reach
to these interfaces, we need to say something more general on the function space setting and the possible weak
formulations that we discuss in the next section.

6 Function spaces setting and weak derivatives
The wave-like equations expressed in Tab. 1 are strong formulations for Padé MMs. C4(R3)-solutions1 do not
exist. However, due to the discontinuity of ε̃(ω), α̃(ω), and γ̃(ω) on the surface Γ separating the upper-half
space vacuum to the lower-half space MM (see Fig. 1), the derivatives in Tab. 1 are no more considered
as classical derivatives. Namely, these equations are understood in the generalized sense (see, e.g., [58]) and
their solutions are generalized solutions, which are linear functionals acting continuously on smooth compactly
supported functions. The space of generalized functions2 is denoted D′(R3). This space represents the dual
space of compactly supported smooth functions, i.e., C∞0 (R3).

Locally integrable functions on R3 (i.e., functions f ∈ L1
loc(R3)) provide generalized functions Ff , called

regular generalized functions, acting on Ψ ∈ C∞0 (R3) by

Ff [Ψ] :=

ˆ
R3

f(r)Ψ(r) dr.

In the same manner, we can define the associated generalized functions for a subset of L1
loc(R3), which is the

space of locally square integrable functions, i.e., f ∈ L2
loc(R3). In this paper, we deal with functions located in

this space.
To solve the interface problems corresponding to equations in Tab. 1, we need to write them in a weaker

formulation. The essence of this operation consists of formally multiplying the strong form3 with a test function,
i.e., compactly supported smooth functions, and integrating over the domain on which the equations are defined.
In the generalized sense, the definition of generalized derivatives mimics partial integration. For example, for
E ∈ L2

loc(R3), ∇×E ∈ D′(R3), and

(∇×E)[Φ] :=

ˆ
R3

E · (∇×Φ) dr, ∀Φ ∈ C∞0 (R3).

1C4(R3): the space of vector-functions, with components functions continuously differentiable up to order 4.
2In some references they are called distributions (see, e.g., [58]).
3The governing partial differential equation, in which the order of derivatives is not reduced as in the weak form.
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Let us now consider a term appearing in cases 4, 5, and 6 in Tab. 1, given by ∇×∇× α̃E, and show how
to define the weak derivation. For F := α̃E ∈ L2

loc(R3) and ∇×∇× α̃E ∈ D′(R3), by definition we have

(∇×∇× F)[Φ] :=

ˆ
R3

F · (∇×∇×Φ) dr, ∀Φ ∈ C∞0 (R3).

On the other hand, we have
ˆ
R3

F · (∇×∇×Φ) dr =

ˆ
R3

α̃E · (∇×∇×Φ) dr =

ˆ
R3

−

αE · (∇×∇×Φ) dr.

Thus, the weak derivative of ∇×∇× α̃E reads

(∇×∇× F)[Φ] =

ˆ
R3

−

αE · (∇×∇×Φ) dr, ∀Φ ∈ C∞0 (R3).

According to the same principle, we define the weak derivatives in all the wave-like equations in Tab. 1 (see
Sec. 7).

Always dealing with the term ∇×∇× α̃E, we stress that due to the discontinuity of α̃E at the surface Γ,
it is not correct to consider the following weak derivative

(∇×∇× F)[Φ] =

ˆ
R3

−

(∇× αE) · (∇×Φ) dr, ∀Φ ∈ C∞0 (R3),

because it is not possible to define the corresponding regular generalized function to ∇ × F since ∇ × F =
∇× α̃E /∈ L1

loc(R3).

After explaining the principle of generalized derivatives and weak formulation, we solve the interface problems
for the different cases presented in Tab. 1 by deriving the interface conditions. For the sake of shortness, we
combine this task with the checklist for each model in Tab. 1 in the next section.

7 Selection criteria and discussions
To decide which case can possibly describe the propagation of light in homogeneous MMs, we shall present
mathematical and physical criteria that intervene basically in the checking process.

• At first, we need to solve the interface problem for each case, which reveals the main principle one has
to respect in such study. We highlight that the number of unknown field amplitudes at the interface Γ
is defined through the dispersion relations by counting the number of eigenmodes (cf. Sec. 5). To define
their amplitudes, the number of eigenmodes must coincide with the number of interface conditions that
we can derive at the interface Γ.

• At second, as the nonlocal approach should always contain the local approach as a limit, we have to
analyze the resulting reflection and transmission coefficients calculated from the Fresnel equations. To
this end, we check the limit of these coefficients when γ → 0. More precisely, they have to be the same
as the reflection and transmission coefficients produced by the WSD approach. In case of mismatch, the
case corresponding to the chosen weak formulation cannot be considered for further applications.

• The third criterion that must be fulfilled in the effective description of optical MMs is the conformity with
the Casimir-Onsager reciprocity principle [56], which imposes some symmetry conditions for the nonlocal
response function R̂(ω,k).

In the following subsection we derive first of all the interface conditions for all nine cases and verify their
conformity with our first criteria. Afterwards, we impose in following subsections the other criteria and rule
out an increasing number of cases to possibly express constitutive relations.

7.1 Interface conditions analysis
The number of eigenmodes excited in a half-space or a slab MM is determined from the dispersion relations (cf.
Sec. 5 and [29]). When spatial dispersion occurs, the classical interface conditions are not sufficient to compute
the amplitudes of all eigenmodes. For every constitutive relation proposed in Tab. 1, light-matter interaction is
modeled differently. Therefore, one has to derive additional interface conditions for each case separately. In the
literature they are not often calculated analytically, but rather introduced on phenomenological grounds (see,
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e.g., [24]). For that reason, solving the interface problems by exploiting the weak formulation of each wave-like
equation in Tab. 1 represents one of our main contributions in this investigation.

Before starting, we recall Green’s formula for the ∇×-derivative (see, e.g., [40]). For Ω a bounded domain
in R3 with a Lipschitz boundary ∂Ω = Γ, we define the space H (curl,Ω) as follows

H (curl,Ω) = {u ∈ L2 (Ω) , ∇× u ∈ L2 (Ω)}.
For u and v two vector fields in the space H (curl,Ω), we have the following Green’s formula

ˆ
Ω

u · (∇× v) dr =

ˆ
Ω

(∇× u) · v dr +

ˆ
Γ

(u× n) · vt ds, (25)

where vt represents the tangential component of the vector field v on the surface Γ and ds represents the area
of the surface element on Γ. The normal vector n is outwardly directed from Ω.

For E a vector field defined in the upper-half space R3
+, we denote by E+ its trace on the surface Γ.

Conversely, for E a vector field defined in the lower-half space R3
−, we denote by E− its trace on the surface Γ.

The strategy of deriving the interface conditions consists in writing the corresponding weak formulations
of the wave-like equations. A weak formulation requires formally writing the equations in the function space
D′(R3) (cf. Sec. 6 ). Then, we can derive the additional interface conditions by re-establishing the strong
formulations via partial integration.

We emphasize that because of reasons linked to the discontinuity of the material parameters on the surface
Γ, it is not always possible to write symmetric weak formulations. Namely, the bilinear form associated to the
respective weak formulation is not always symmetric, i.e., the order of derivatives applied on the vector field
E is not always the same as the order of derivatives applied on the test function Φ. Actually, our plan is not
necessarily shifting all the ∇×-derivatives located before the parameters α and γ to the test function Φ.

Some cases will be already excluded due to violation of the first criterion. Regarding the other cases, they
need to fulfill the second and the third criteria. As previously mentioned, case 1 coincides implicitly with the
model given by the Taylor approach studied in [38], in this paper we will just recall its corresponding interface
conditions for a self contained paper.

7.1.1 Interface conditions for Case 1

We recall the wave-like equation corresponding to case 1:

∇×∇×E = k2
0 ε̃E + k2

0∇× α̃∇×E +∇×∇× γ̃∇×∇×E. (26)

Weak formulation: Eqn. (26) is understood in the generalized sense. For E having the following regularities

E ∈ L2
loc(R3), ∇×E ∈ L2

loc(R3), and ∇×∇×E ∈ L2
loc(R3

−), (27)

and for Φ ∈ C∞0 (R3), we define the weak formulation corresponding to the Eqn. (26) as follows
ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(α∇×E) · (∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×E) · (∇×∇×Φ) dr. (28)

We say that E is a weak solution to the wave-like Eqn. (26) if it has the regularities (27) and satisfies the weak
formulation (28).

Interface conditions: (See [38])

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(α∇×E−)× n + (∇× γ∇×∇×E−)× n = 0,

(γ∇×∇×E−)× n = 0.

(29a)

(29b)
(29c)

The third term in the second interface condition (29b) is purely coming from nonlocality. The interface condition
(29c) represents the one what we call in this context "the additional interface condition". In contrast to
Maxwell’s equations with the classical constitutive relations, we only have two interface conditions given by

(E+ −E−)× n = 0,

(∇×E+ − µ−1∇×E−)× n = 0.

(30a)

(30b)

Here, µ represents the magnetic permeability, that can be written as follows µ = (1− k2
0α)−1 (cf. Subsec. 4.2).
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7.1.2 Analysis of Case 2

The wave-like equation corresponding to case 2 reads

∇×∇×E = k2
0 ε̃E + k2

0∇× α̃∇×E +∇× γ̃∇×∇×∇×E. (31)

Weak formulation: In the generalized sense, for E verifying the following regularities

E ∈ L2
loc(R3), ∇×E ∈ L2

loc(R3), and ∇×∇×∇×E ∈ L2
loc(R3

−), (32)

and for Φ ∈ C∞0 (R3), the weak formulation of the wave-like Eqn. (31) reads

ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(α∇×E) · (∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×∇×E) · (∇×Φ) dr. (33)

We say that E is a weak solution to the wave-like Eqn. (31) if it has the regularities (32) and satisfies the weak
formulation (33).

Interface conditions:

First interface condition: It represents a natural interface condition obtained from the fact that ∇×E ∈
L2

loc(R3) and not from the weak formulations. This is why it represents also the first interface condition for all
the other cases. The proof will be presented only in this paragraph, and for the other cases we cite it without
showing the proof again.

For E ∈ L2
loc(R3) and ∇×E ∈ L2

loc(R3), we have

∀Φ ∈ C∞0 (R3) :

ˆ
R3

(∇×E) ·Φ dr =

ˆ
R3

E · (∇×Φ) dr. (34)

Integrating by parts on each half-space, we get

ˆ
R3

(∇×E) ·Φ dr =

ˆ
R3

+

(∇×E) ·Φ dr +

ˆ
R3

−

(∇×E) ·Φ dr

=

ˆ
R3

+

E · (∇×Φ) dr +

ˆ
R3

−

E · (∇×Φ) dr +

ˆ
Γ

(E+ × n−E− × n) ·Φt ds

=

ˆ
R3

E · (∇×Φ) dr +

ˆ
Γ

(E+ × n−E− × n) ·Φt ds, (35)

Since Φ is arbitrary, we get from Eqns. (34) and (35) the first interface condition, given by

(E+ −E−)× n = [E× n] = 0, (36)

where [·] represents the jump across the surface Γ.

Second interface condition: For E a weak solution to (31) with the regularitiesE ∈ L2
loc(R3),∇×∇×E ∈

L2
loc(R3), by taking first a test function Φ ∈ C∞0 (R3

+) and then in C∞0 (R3
−), we can show that:

∇×∇×E = k2
0E, for a.e. x ∈ R3

+,

∇×∇×E = k2
0εE + k2

0∇× α∇×E +∇× γ∇×∇×∇×E, for a.e. x ∈ R3
−.

(37a)

(37b)

For more details, we cite Ref. [38]. We integrate by parts Eqn. (33) in a way that we reconstruct in the
integrand Eqns. (37a) and (37b). Then, we write volume integrals on the left-hand side and surface integrals
on the right-hand side, as follows

ˆ
R3

(∇×∇×E) ·Φ dr−
ˆ
R3

+

k2
0E ·Φ dr−

ˆ
R3

−

(
k2

0εE + k2
0∇× α∇×E +∇× γ∇×∇×∇×E

)
·Φ dr

=

ˆ
Γ

(
(∇×E+ −∇×E−)× n + k2

0(α∇×E−)× n + (γ∇×∇×∇×E−)× n
)
·Φt ds. (38)
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Using Eqns. (37a) and (37b), the left-hand side in (38) vanishes. Since Φ is arbitrary, we get the second
interface condition

(∇×E+ −∇×E−)× n + k2
0(α∇×E−)× n + (γ∇×∇×∇×E−)× n = 0. (39)

We remark that the number of interface conditions for case 2 is less than the number of the reflected and
transmitted fields. More precisely, from the dispersion relation we know that there are two transmitted fields at
the interface Γ into R3

− and one reflected field into R3
+. Hence, there are three unknowns, whereas we got only

two equations (interface conditions) to identify them. This system of equations is under-determined and can,
therefore, lead to ambiguous solutions. In addition, case 2 does not admit any other weak formulation that may
give the necessary number of interface conditions. Thus, the corresponding case is not adequate for describing
the propagation of light in Padé MMs. For the same reason, case 8 will be excluded from the investigation of
Padé MMs.

7.1.3 Analysis of Case 3

The wave-like equation corresponding to case 3 is given by:

∇×∇×E = k2
0 ε̃E + k2

0∇× α̃∇×E + γ̃∇×∇×∇×∇×E. (40)

Weak formulation: In the generalized sense, for E verifying the following regularities

E ∈ L2
loc(R3), ∇×E ∈ L2

loc(R3), and ∇×∇×∇×∇×E ∈ L2
loc(R3

−), (41)

and for Φ ∈ C∞0 (R3), we define the weak formulation corresponding to the wave-like Eqn. (40) as follows

ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(α∇×E) · (∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×∇×∇×E) ·Φ dr. (42)

We say that E is a weak solution to the wave-like Eqn. (40) if it has the regularities (41) and satisfies the weak
formulation (42).

Interface conditions: We follow the same principle as in case 2. By means of the equations

∇×∇×E = k2
0E, for a.e. x ∈ R3

+,

∇×∇×E = k2
0εE + k2

0∇× α∇×E + γ∇×∇×∇×∇×E, for a.e. x ∈ R3
−.

(43a)

(43b)

We need to apply just one partial integration on the weak formulation (42) to recover Eqns. (43a) and (43b).
Then, we obtain
ˆ
R3

+

(
∇×∇×E− k2

0E︸ ︷︷ ︸
=0

)
·Φ dr+

ˆ
R3

−

(
∇×∇×E− k2

0εE− k2
0∇× α∇×E− γ∇×∇×∇×∇×E︸ ︷︷ ︸

=0

)
·Φ dr

=

ˆ
Γ

(
(∇×E+ −∇×E−)× n + k2

0(α∇×E−)× n
)
·Φt ds = 0. (44)

For an arbitrary test function Φ, we get the second interface condition

(∇×E+ −∇×E−)× n + k2
0(α∇×E−)× n = 0. (45)

Because of the same reason as in case 2, which is a lack of additional interface conditions, case 3 will be excluded
form the study. This inconsistency is due to the material parameters γ that represents the nonlocal effect, which
is located in the first position in the fourth order differential operator. Cases 6 and 9 share the same nature of
the fourth order term. Hence, case 9 will be immediately excluded in turn. Whereas, because of the nature of
the second order term in case 6, we have a chance to keep it initially in the investigation.

7.1.4 Analysis of Case 4

We recall the wave-like equation corresponding to case 4:

∇×∇×E = k2
0 ε̃E + k2

0∇×∇× α̃E +∇×∇× γ̃∇×∇×E. (46)
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Weak formulation: Eqn. (46) is understood in the generalized sense. For E verifying regularities (27) and
for Φ ∈ C∞0 (R3), we define the weak formulation corresponding to case 4 as follows
ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(αE) · (∇×∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×E) · (∇×∇×Φ) dr. (47)

We say that E is a weak solution to the wave-like Eqn. (46) if it has the regularities (27) and satisfies the weak
formulation (47).

Interface conditions: We follow the same principle as in cases 2 and 3. By means of the equations

∇×∇×E = k2
0E, for a.e. x ∈ R3

+,

∇×∇×E = k2
0εE + k2

0∇×∇× αE +∇×∇× γ∇×∇×E, for a.e. x ∈ R3
−,

(48a)

(48b)

after partial integration, the weak formulation (47) leads to the following formula

ˆ
R3

+

(
∇×∇×E− k2

0E︸ ︷︷ ︸
=0

)
·Φ dr+

ˆ
R3

−

(
∇×∇×E− k2

0εE− k2
0∇×∇× αE−∇×∇× γ∇×∇×E︸ ︷︷ ︸

=0

)
·Φ dr

=

ˆ
Γ

(
(∇×E+ −∇×E−)× n + k2

0(∇× αE−)× n + (∇× γ∇×∇×E−)× n
)
·Φt ds

+

ˆ
Γ

(
k2

0(αE−)× n + (γ∇×∇×E−)× n
)
· (∇×Φ)t ds = 0. (49)

The left-hand side is null because of Eqns. (48a) and (48b). To get out the second interface conditions, we
choose the test function Φ given by

Φ(r) =
(

Φ1(x, y)η(z),Φ2(x, y)η(z), 0
)T
, (50)

where Φ1,Φ2 are arbitrary functions in C∞0 (R2) and η(z) ∈ C∞0 (R), satisfying η|{z<d} = 1. On the surface Γ
we have

Φ|Γ =
(

Φ1,Φ2, 0
)T
,

∇×Φ|Γ =
(

0, 0, ∂xΦ2 − ∂yΦ1

)T
.

Then, we obtain

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n + (∇× γ∇×∇×E−)× n = 0. (51)

To extract the third interface conditions, we choose the test function Φ this time in the form

Φ(r) =
(

Φ2(x, y)zη(z),−Φ1(x, y)zη(z), 0
)T
, (52)

such that Φ1,Φ2 ∈ C∞0 (R2) and η(z) ∈ C∞0 (R), satisfying η|{z<d} = 1. On the surface Γ we have

Φ|Γ = (0, 0, 0)T ,

∇×Φ|Γ =
(

Φ1,Φ2, 0
)T
.

Since Φ1 and Φ2 are arbitrary, we have

k2
0(αE−)× n + (γ∇×∇×E−)× n = 0. (53)

Now, we set all the interface conditions for the case 4 as follows

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n + (∇× γ∇×∇×E−)× n = 0,

k2
0(αE−)× n + (γ∇×∇×E−)× n = 0.

(54a)

(54b)

(54c)

The first criterion is satisfied by the case 4 since we have three interface conditions as required.
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7.1.5 Analysis of Case 5

The wave equation corresponding to case 5 reads

∇×∇×E = k2
0 ε̃E + k2

0∇×∇× α̃E +∇× γ̃∇×∇×∇×E. (55)

Weak formulation: Eqn. (55) is understood in the generalized sense. For E verifying regularities (32) and
for Φ ∈ C∞0 (R3), we define the weak formulation corresponding to case 5

ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(αE) · (∇×∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×∇×E) · (∇×Φ) dr. (56)

We say that E is a weak solution to the wave-like Eqn. (55) if it has the regularities (32) and satisfies the weak
formulation (56).

Interface conditions: We follow the same process as in case 4. By taking the choices (50) and (52) for the
test function Φ, we get the following interface conditions

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n + (γ∇×∇×∇×E−)× n = 0,

k2
0(αE−)× n = 0.

(57a)

(57b)

(57c)

We obtained three interface conditions as required, then the first criterion is satisfied by the case 5.

7.1.6 Analysis of Case 6

We recall the wave equation corresponding to case 6

∇×∇×E = k2
0 ε̃E + k2

0∇×∇× α̃E + γ̃∇×∇×∇×∇×E. (58)

The nature of the second order term in this case gives the possibility to keep it initially in the study, even if the
nonlocal material parameter γ̃ is located in the first position as in cases 3 and 9. In such equations, the effect
of the nonlocal parameter does not appear explicitly in the interface conditions, but it is present on the level of
the dispersion relation.

Weak formulation: In the generalized sense, for E verifying regularities (41) and for Φ ∈ C∞0 (R3), we define
the weak formulation corresponding to case 6
ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(αE) · (∇×∇×Φ) dr +

ˆ
R3

−

(γ∇×∇×∇×∇×E) ·Φ dr. (59)

We say that E is a weak solution to the wave-like Eqn. (58) if it has the regularities (41) and satisfies the weak
formulation (59).

Interface conditions: Analogous to cases 2, 4 and 5, we derive the interface conditions corresponding to
case 6, given by

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n = 0,

k2
0(αE− × n) = 0.

(60a)

(60b)

(60c)

7.1.7 Analysis of Case 7

We recall the wave equation corresponding to case 7:

∇×∇×E = k2
0 ε̃E + k2

0α̃∇×∇×E +∇×∇× γ̃∇×∇×E. (61)
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Weak formulation: Eqn. (61) is understood in the generalized sense. For E verifying regularities (27) and
for Φ ∈ C∞0 (R3), we define the weak formulation corresponding to case 7

ˆ
R3

(∇×E) · (∇×Φ) dr = k2
0

ˆ
R3

+

E ·Φ dr + k2
0

ˆ
R3

−

εE ·Φ dr

+ k2
0

ˆ
R3

−

(α∇×∇×E) ·Φ dr +

ˆ
R3

−

(γ∇×∇×E) · (∇×∇×Φ) dr. (62)

We say that E is a weak solution to the wave-like Eqn. (61) if it satisfies the weak formulation (62) and has
the following regularities (27).

Interface conditions: Analogous to cases 2, 4, 5 and 6, we derive the interface conditions corresponding to
case 7, given by

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + (∇× γ∇×∇×E−)× n = 0,

(γ∇×∇×E−)× n = 0.

(63a)
(63b)
(63c)

The first criterion in the checklist consisted on deriving the right number of interface conditions, which are
necessary for computing the amplitudes of all the propagating modes in MMs. The dispersion relation of each
case reveals that we need exactly three interface conditions on each surface. Cases 1, 4, 5, 6, and 7 survived,
because of fulfilling this criterion. The weak formulation of cases 2, 3, 8, and 9 are not adequate to give the
additional interface condition. Hence, the systems of equations necessary for defining the amplitudes of all the
propagating modes are under-determined, which implies that these cases will be rejected. In the next subsection
we study reflection and transmission coefficients for the remaining cases and continue to consider only those
that agree in the limiting case of a vanishing nonlocality with expressions obtained from a WSD.

7.2 Reflection and transmission coefficients analysis
We recall that the main motivation for proceeding with the nonlocal analysis is to overcome the limitations
exhibited when using the local theory. This fact implies that the local approach must be contained in the
nonlocal approach. Meaning, by taking the limit of the parameters representing the nonlocality to zero, we have
to recover the local models. On the level of the mathematical models this can be clearly seen from equations in
Tab. 1. However, for more accurate analysis we need to check the limit of the corresponding interface conditions
and also the produced reflected and transmitted modes. Already, by using the local approach, we know that
we have only one reflected and one transmitted mode in each half-space. Besides, for the nonlocal models we
have one reflected mode together with two transmitted modes. This fact implies that by taking the limit of the
material parameter γ to zero, one of that two transmitted modes must vanish. Actually, we can also observe
that on the level of the interface conditions. In other words, one of the three interface conditions vanish when
γ tends to zero. For this reason, we present a quick check for the remaining cases 1, 4, 5, 6, and 7. Then,
we need to recall the principle of Fresnel equations that serve to compute the amplitudes of the reflected and
transmitted modes, and we give their formulae for the surviving cases.

7.2.1 Analysis of the remaining cases using the second criterion

Analysis of Case 1: We take the limit of γ to zero in the interface conditions corresponding to case 1, we
get

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(α∇×E−)× n = 0.

We notice that using the notation µ = (1 − k2
0α)−1 (cf. Subsec. 4.2), the limit interface conditions take the

same formulae as in presence of WSD, as follows

(E+ −E−)× n = 0,

(∇×E+ − µ−1∇×E−)× n = 0.

Which implies that the second criterion is fulfilled by the first case.
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Analysis of Case 4: In presence of WSD, the wave-like Eqn. (46) reads

∇×∇×E = k2
0 ε̃E + k2

0∇×∇× α̃E.

Its corresponding interface conditions are given by

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n = 0.

On the other hand, the limiting interface conditions for case 4, when γ tends to zero read

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n + k2
0(∇× αE−)× n = 0,

k2
0(αE−)× n = 0.

We can clearly see that the presence of the material parameter α in the third interface condition prevents it to
vanish. Meanwhile, the dispersion relation for γ → 0 states that there is only one transmitted field in the half-
space filled with the MM. In this case, the system of equations is overdetermined and leads to unphysical results.
From a physical point of view, the third interface condition states that the tangential component of E− is zero
at the interface. Linking this with the first (natural) interface condition, would suggest that the tangential
component of E+, i.e., in vacuum is zero. Since the total field in the incidence half-space is EI + ER, the
transversal components of the incident and reflected fields totally cancel, independent of the angle of incidence,
the permittivity contrast between the two half-spaces and polarization. The result is even stranger when the
MM is lossy ,i.e., when =ε > 0, where some energy is absorbed in the MM half-space. However, here, we
obtain a total reflection phenomenon, without incorporating loss. This is clearly a contradiction to the classical
reflection and transmission phenomena between two local materials.

This case represents a counterexample that shows that even if we have the exact number of interface con-
ditions in presence of SSD, that gives the exact number of reflected and transmitted modes in turn, it is not
possible to reproduce the local forward and backward modes after taking the limit of the nonlocal parameter
to zero. To conclude, the case 4 does not fulfill the second criterion, and will, therefore, be excluded.

For the same reason of no conformity with the modes produced by the WSD when taking the limit of γ to
zero, cases 5 and 6 will be excluded from the investigation of Padé MMs.

Analysis of Case 7: When we take the limit of γ to zero, i.e., in presence of WSD, the wave-like Eqn. (61)
reads

∇×∇×E = k2
0 ε̃E + k2

0α̃∇×∇×E.

Its corresponding interface conditions are given by

(E+ −E−)× n = 0,

(∇×E+ −∇×E−)× n = 0.

They represent, exactly, the same limiting interface conditions for case 7 when γ tends to zero. Which implies
that the second criterion is fulfilled in this case.

7.2.2 Fresnel coefficients for Cases 1 and 7

We denote the incident, reflected and transmitted fields by the superscripts I, R, and T, respectively, and we
refer to each one of them by ∗. Inside the slab MM, we have four propagating linearly independent eigenmodes.
Two modes are forward and the other two ones are backward, we refer to each one by Ej , for j ∈ {1, 2, 3, 4}.
The total field in the incidence half-space is given by EI + ER. Inside the MM slab, the total field is the sum
of the propagating eigenmodes. It is written Eslab =

∑4
j=1 Ej . In the transmission plane, we have just one

transmitted field ET (see Fig. 2).

The reflection (ρ) and transmission (τ) coefficients represent the ratios of the amplitudes of the reflected and
transmitted waves to the incident wave. We compute the amplitudes of these fields by using Fresnel formulae.
We start by plugging the plane wave ansatzes into the interface conditions defined on the surfaces Γ+ and Γ−.
For both polarizations, we have

• TE-polarization:

E∗ = E∗0 exp(ik∗ · r), with E∗0 = (E∗x, 0, 0)T , and k∗ = (0, ky, k
∗
z)T .

Ej = Ej
0 exp(ik∗ · r), with Ej

0 = (Ejx, 0, 0)T , and kj = (0, ky, k
j
z)
T .
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Figure 2: Propagating modes inside a slab MM. We have two forward modes defined on the the surfce Γ+ and the other backward
modes are defined on the surface Γ−.

• TM-polarization:

E∗ = E∗0 exp(ik∗ · r), with E∗0 = (0, E∗y , E
∗
z )T , and k∗ = (0, ky, k

∗
z)T .

Ej = Ej
0 exp(ik∗ · r), with Ej

0 = (0, Ejy, E
j
z)
T , and kj = (0, ky, k

j
z)
T .

Using the divergence free equation for the electric displacement field D, we get a relation between the y
and z components of the electric field E, that depends on the medium and is given by

E∗y = −k
∗
z

ky
E∗z , in Ω− ∪ Ω+.

Ejy = −εzk
∗
z

εyky
Ejz , in Ωδ.

(65a)

(65b)

Then, we get an algebraic system in the form
AE= F . (66)

In total we have six unknowns for each polarization, such that E= (ER(P ), E
1
(P ), E

2
(P ), E

3
(P ), E

4
(P ), E

T
(P ))

T . The
index (P ) refers to the x component of the electric field for TE polarization and to the z component of the
electric field for TM polarization. The Fresnel matrix A is a 6 × 6 matrix, obtained from the fact that we
have on each surface of the slab three interface conditions leading to three equations. The non-homogeneity is
described by the vector F , which is relative to the incident plane wave.

In the sequel, we give Fresnel matrices for TE and TM polarizations separately. Each matrix combines Fresnel
coefficients for the cases 1 and 7, followed with tables precising the explicit formulae of some coefficients. Fresnel
formulae of the case 1 are computed and written clearly in [41].

Fresnel matrix for TE-polarization

A(TE) =



1 −1 −1 −1 −1 0

kRz b
(TE)
1 b

(TE)
2 b

(TE)
3 b

(TE)
4 0

0 c
(TE)
1 c

(TE)
2 c

(TE)
3 c

(TE)
4 0

0 −eik1zd −eik2zd −eik3zd −eik4zd 1

0 c
(TE)
1 eik1zd c

(TE)
2 eik2zd c

(TE)
3 eik3zd c

(TE)
4 eik4zd 0

0 b
(TE)
1 eik1zd b

(TE)
2 eik2zd b

(TE)
3 eik3zd b

(TE)
4 eik4zd kTz


, (67)

and F (TE) = (−1,−kIz , 0, 0, 0, 0)T . The coefficients b(TE)
j and c(TE)

j for both cases 1 and 7 and 1 ≤ j ≤ 4 are
given in Tab. 3.

Case 1 Case 7

b
(TE)
j −(1− k2

0αy − γx(kj)2)kjz −(1− γx(kj)2)kjz

c
(TE)
j γx(kj)2 γx(kj)2

Table 3: Substitution of the coefficients b
(TE)
j and c

(TE)
j , for 1 ≤ j ≤ 4, corresponding to TE polarization for the cases 1 and 7;

with (kj)2 = (ky)2 + (kjz)2.
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Fresnel matrix for TM-polarization

A(TM) =



kRz − εzεy k
1
z − εzεy k

2
z − εzεy k

3
z − εzεy k

4
z 0

(kR)2 b
(TM)
1 b

(TM)
2 b

(TM)
3 b

(TM)
4 0

0 c
(TM)
1 c

(TM)
2 c

(TM)
3 c

(TM)
4 0

0 − εzεy k
1
zeik1zd − εzεy k

2
zeik2zd − εzεy k

3
zeik3zd − εzεy k

4
zeik4zd 1

0 c
(TM)
1 eik1zd c

(TM)
2 eik2zd c

(TM)
3 eik3zd c

(TM)
4 eik4zd 0

0 b
(TM)
1 eik1zd b

(TM)
2 eik2zd b

(TM)
3 eik3zd b

(TM)
4 eik4zd (kT )2


, (68)

and F (TM) = (−1,−(kI)2, 0, 0, 0, 0)T . The coefficients b(TM)
j and c(TM)

j for both cases 1 and 7 and 1 ≤ j ≤ 4
are given in Tab. 4

Case 1 Case 7

b
(TM)
j −[1− γz(ky)2 − γy(kjz)

2][(ky)2 + εz
εy

(kjz)
2] −[1− γz(ky)2 − γy(kjz)

2][(ky)2 + εz
εy

(kjz)
2]

c
(TM)
j γy[(ky)2 + εz

εy
(kjz)

2]kjz γy[(ky)2 + εz
εy

(kjz)
2]kjz

Table 4: Substitution of the coefficients b
(TM)
j and c

(TM)
j , for 1 ≤ j ≤ 4, corresponding to TM polarization for the cases 1 and 7.

In both polarizations, the notation (k∗)2 means the sum (ky)2 + (k∗z)2.
For both cases 1 and 7, taking the limit of the nonlocal parameter γ towards zero, we get Fresnel matrices

identical to those obtained by considering local constitutive relations. At the level of reflection and transmission
coefficients, everything seems to be fine with the cases 1 and 7. Then, we have to move to the third and final
criterion to end up the checking process.

To summarize this section, the second criterion consists on analyzing the reflection and transmission coeffi-
cients. As the models produced by the WSD are implicitly included in those obtained in presence of SSD, then
we checked whether it is really the case for the remaining proposed cases. Cases 1 and 7 survived, because we
could reproduce the same equations as in presence of WSD. Contrary to cases 4, 5, and 6, their weak formu-
lations led to well posed systems; but the produced interface condition are not valid for computing the right
reflection and transmission coefficients corresponding to the WSD.

7.3 Casimir-Onsager Reciprocity
The last condition in our checklist is the requirement of time-reversal symmetry for reciprocal media. In fact,
it holds that the displacement field D̃(t, r) and the electric field Ẽ(t, r) are symmetric under time inversion, but
antisymmetric under space inversion (parity); and the magnetic flux B̃(t, r) and the magnetic field H̃(t, r) are
antisymmetric under time inversion, but symmetric under space inversion [57]. These symmetries of the fields
have consequences on the symmetry of the nonlocal response function in Fourier space. Due to this fact and
to Eqn. (8), we deduce that the response function R(ω, r) must contain some symmetry as well. In the spatial
frequency space it holds [60]

R̂ij(ω,k) = R̂ji(ω,k), (69)

which represents the Casimir-Onsager reciprocity principle for centrosymmetric structures. In the remaining
case 7, we argue with Casimir-Onsager reciprocity that this case can only exist if α is a scalar (or a multiple of
the identity matrix). In that case, there is no need to distinguish between cases 1 and 7, i.e., case 7 turns out to
be a special case of case 1 with the restriction of αii = αjj , for (i, j) ∈ {x, y, z}×{x, y, z}. For that matter, let’s
first look at the term proportional to α, i.e. γ = 0. The general expression of the nonlocal response function R
is

Di(ω, r) = Rij(ω, i∇)Ej(ω, r) = εijEj(ω, r) + cijlm∂l∂mEj(ω, r) . (70)

According to symmetry condition (69), it must hold that

cijlm = cjilm . (71)

We further require that the electric field E is at least a C2(R3
−)-function. Consequently, according to the equality

of mixed partials (Schwarz’s theorem), the second-order derivatives can be interchanged which renders

cijlm∂l∂mEj = cijlm∂m∂lEj = cijml∂l∂mEj .
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In the first equality we put the fact that E ∈ C2(R3
−) and in the second equation, we simply relabeled the

indices. In fact, we have
cijlm = cjilm = cijml = cjiml . (72)

These are the fundamental symmetry conditions for the fourth-rank tensor cijlm.

7.3.1 Study of Case 1 with γ̃ = 0

Let D(ω, r) = ε̃E(ω, r) + ∇ × α̃∇ × E(ω, r). Inside the homogenized MM, this constitutive relation requires
that

cijlm∂l∂mEj
!
= [∇× (α∇×E)]i . (73)

We develop the right hand side in (73), we get

∇× (α∇×E) =

αyy∂x∂zEz − αyy∂z∂zEx + αzz∂x∂yEy − αzz∂y∂yEx
αxx∂y∂zEz − αxx∂z∂zEy + αzz∂x∂yEx − αzz∂x∂xEy
αxx∂y∂zEx − αxx∂y∂yEz + αyy∂x∂zEx − αyy∂x∂xEz

 , (74)

where it has been assumed that α is a diagonal matrix. Comparing the coefficients yieldscxzxz = αyy , cxxzz = −αyy , cxyxy = αzz , cxxyy = −αzz
cyzyz = αxx , cyyzz = −αxx , cyxyx = αzz , cxxyy = −αzz
czyzy = αxx , czzyy = −αxx , czxzx = αyy , czzxx = −αyy

 .

The coefficients in the same number of underlines are related to the same material parameter αii. From
the comparison, we note that the assumption in Eqn. (73) is compatible with the fundamental symmetry
constraints in Eqn. (72). For example we systematically obtain equalities such as cxyxy = cyxyx = αzz or
cyzyz = czyzy = αxx.

We also note that there are constraints that impose ciijj = cjjii for all (i, j) ∈ {x, y, z}× {x, y, z} and i 6= j,
which are not part of the fundamental symmetry constraints. For instance, we have cxxzz = czzxx = −αyy.
Furthermore the fact that such terms differ by a minus sign as well, i.e., cijij = −ciijj for all (i, j) ∈ {x, y, z} ×
{x, y, z} and i 6= j suggests that assumption in Eqn. (73) is of higher symmetry than simply spatial inversion
symmetry. The first constraints, i.e., ciijj = cjjii for all (i, j) ∈ {x, y, z}×{x, y, z} and i 6= j renders the crystal
of a tetragonal system, i.e., of fourfold symmetry. They define the symmetry classes C4 and D4h. We stress
that the fishnet MM is of D2h symmetry (only), while we assume Eqn. (73) to hold. We technically try to
describe a system with lower symmetry (D2h) with coefficients of higher symmetry (D4h). We highlight that
the second constraint cijij = −ciijj for all (i, j) ∈ {x, y, z} × {x, y, z} and i 6= j, is not linked to a symmetry.

One can prove that the symmetry condition is satisfied by the fourth order term, i.e., when γ̃ 6= 0. We
Follow the same principles as in the second order term, i.e., symmetry condition (69) and the mixed partial
derivatives, we can examine the assumption

eijklmn∇k∇l∇m∇nEj
!
= [∇×∇× (γ(ω)∇×∇×E)]i. (75)

Due to having long formulae, we do not present the computational details in this paper.

7.3.2 Study of Case 7 with γ̃ = 0

Let D(ω, r) = ε̃E(ω, r) + α̃∇×∇×E(ω, r)
Here, α̃ is positioned on the left. This supposition imposes that

cijlm∂l∂mEj
!
= (α∇×∇×E)i . (76)

We develop the right hand side in (76), we get

α∇×∇×E =

αxx∂x∂yEy − αxx∂y∂yEx + αxx∂x∂zEz − αxx∂z∂zEx
αyy∂x∂yEx − αyy∂x∂xEy + αyy∂y∂zEz − αyy∂z∂zEy
αzz∂x∂zEx − αzz∂x∂xEz + αzz∂y∂zEy − αzz∂y∂yEz

 . (77)

Comparing the coefficients yieldscxyxy = αxx , cxxyy = −αxx , cxzxz = αxx , cxxzz = −αxx
cyxyx = αyy , ayyxx = −αyy , cyzyz = αyy , cyyzz = −αyy
czxzx = αzz , czzyy = −αzz , czzyy = αzz , czzyy = −αzz

 .
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From this comparison, we read out that the assumption in Eqn. (76) yields that cxyxy = αxx, cyxyx = αyy and
cxzxz = αxx, czyzy = αzz hold simultaneously. Following the fundamental symmetry constraints (72), it must
hold that

αxx = αyy = αzz .

Consequently, the system has to be isotropic, otherwise physical symmetries are violated. In this case, the
position of α̃ among the curl operators is irrelevant and can be placed in another position. Hence, this case is
essentially trivial and can be considered as a special case of model 1.

As a concluding remark, using Casimir-Onsager reciprocity as a third criterion, we end up with a further
elimination of case 7, as it can only exist if α is a scalar and, therefore, is a special case of model 1.

8 Conclusion
In this contribution, we investigated the propagation of light in mediums constituted of MMs, where the unit cells
are centro-symmetric and we considered nonlocal constitutive relations. By means of a second-order Padé-type
approximation of the response functions, we modeled the light-matter interaction with nine different constitutive
relations that lead to different wave equations. The main reason of having this diversity is the nature of the
material parameters, which are supposed to be anisotropic diagonal matrices. That means, they do not commute
with the differential operators, then, they do not express necessarily the same light-matter interaction. Hence,
a checklist process was of major necessity to decide which formulation is suitable for describing the considered
optical phenomena. This analysis is mandatory prior checking the validity of a model to adequately homogenize
a MM. A valid model must simultaneously fulfill the following three criteria:

• The first criterion concerns the analysis of interface conditions posed on surfaces separating MMs from
vacuum. They are obtained by means of the weak formulations corresponding to each case and they
are necessary for computing the reflected and transmitted fields. These propagating modes represent
the solutions to the dispersion relation relative to each case with respect to TE and TM polarizations.
To compute the amplitudes of the reflected and transmitted fields, we derive the corresponding Fresnel
formulae. For well defined systems, the number of propagating modes within MMs must coincide with
the number of the derived interface conditions. Cases 1, 4, 5, 6, and 7 led to weak formulations that
revealed the required number of interface conditions. For cases 2, 3, 8, and 9 it was not the case; the
associated systems of equations obtained by using Fresnel formulae are under-determined due to the lack
of additional interface conditions. Thus, they are rejected from the investigation for not fulfilling the first
criterion.

• The second criterion is called the reflection and transmission coefficients analysis. In principle, by taking
the limit of the nonlocal material parameters to zero, we require to reproduce the reflection and transmis-
sion coefficients produced by the WSD, as the constitutive relations reduce to those of the local models.
More precisely, by following the local approach we get only two propagating fields at each interface. One
of them is reflected and the other one is transmitted. In the nonlocal analysis approach, we have three
fields propagating away from an interface, one reflected and two transmitted. By taking the limit of the
nonlocal material parameter to zero, one of the two transmitted fields must vanish, which is not the case
for cases 4, 5, and 6. Namely, for these three cases, if the second transmitted mode vanishes, it implies
one of two facts: (a) either the material parameter related to the second order terms in the wave-like
equations is zero, which does not even reflect models with WSD, (b) or the tangential components of the
transmitted electric field are zero. The latter result would imply a total reflection, that is independent
from the angle of incidence and the permittivies of the two materials. Both significations are not true.
This fact undeniably rises from the nonvanishing additional interface condition, which makes the system
of equations being too restrictive and overdetermined. For cases 1 and 7 this criterion is fulfilled.

• The third and last criterion was based on the requirement of fulfilling the Casimir-Onsager reciprocity. It
is a symmetry constraint, which is satisfied by the first case, whereas, for the remaining case 7, it makes
sense only when the material parameter related to the second order term is a scalar. It means that case
7 is a special case of the first case.

At the end of the checklist, the only surviving case is the first one, in which the material parameters are
sandwiched between an equal number of curl operators. It represents the model studied previously [30] by
means of a Taylor approximation of the response function. It showed a good description of the propagation of
light in MMs compared to the WSD. The use of Padé-type approximation for the response function opened the
path to derive several representation of the light-matter interaction. This approach couldn’t improve the quality
of the model proposed in [30], but it allowed us to set a solid background to study and check the validity of
other models, not necessarily obtained by following the same approach. For further investigations, the Padé-type
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approximation confirms that going to higher order spacial dispersion is required. However, other constitutive
relations could have been suggested as well but prior being considered in detail, they have to necessarily pass
the checklist that we have put forward in this contribution. Therefore, our work is quite general and important
in the ongoing endeavor to homogenize MMs with advanced and nonlocal constitutive relations.
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Appendix: Exact coefficients of the dispersion relations
In this appendix, we shall summarize the resulting coefficients that appear in every case. While the physical
discussion is made in Sec. 5, here we merely write down the exact solutions. For each case, the solution and its
corresponding coefficients are written first in TM and then in TE polarization.

Case 1 [p̂(ω,k) = −k× αk× and q̂(ω,k) = −k× k× γ]

TM polarization:

k2
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2
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Case 2 [p̂(ω,k) = −k× αk× and q̂(ω,k) = −k× γk×]

TM polarization:

k2
z(ky) = −1

2
(qTM

0 + qTM
1 ) + pTM

0 ±

√
lTM
0 +

(
pTM

0 +
qTM
0 − qTM

1

2
k2
y

)2

, (80)
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Case 3 [p̂(ω,k) = −k× αk× and q̂(ω,k) = −γk× k×]

TM polarization:
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Case 4 [p̂(ω,k) = −k× k× α and q̂(ω,k) = −k× k× γ]

TM polarization:
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Case 5 [p̂(ω,k) = −k× k× α and q̂(ω,k) = −k× γk×]

TM polarization:
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Case 6 [p̂(ω,k) = −k× k× α and q̂(ω,k) = −γk× k×]

TM polarization:
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Case 7 [p̂(ω,k) = −αk× k× and q̂(ω,k) = −k× k× γ]

The dispersion relations for both TE and TM polarizations for this case, are identical to Case 4.

Case 8 [p̂(ω,k) = −αk× k× and q̂(ω,k) = −k× γk×]

The dispersion relations for both TE and TM polarizations for this case, are identical to Case 5.

Case 9 [p̂(ω,k) = −αk× k× and q̂(ω,k) = −γk× k×]

TM polarization:
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