
Nonholonomic Motion Planning for
Automated Vehicles in Dense Scenarios

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Holger Banzhaf

aus Laichingen

Tag der mündl. Prüfung: 11. Dezember 2019
Erster Gutachter: Prof. Dr.-Ing. J. Marius Zöllner, KIT
Zweiter Gutachter: Prof. Dr.-Ing. Rüdiger Dillmann, KIT

Document template provided by:

Institute of Industrial Information Technology (IIIT)
Karlsruhe Institute of Technology (KIT)
Hertzstraße 16
76187 Karlsruhe

Abstract

Motion planning is one of the crucial components in the software stack of
an automated vehicle. It is responsible for the computation of a safe and
preferably optimal trajectory from a given start state to a desired goal. While
a local solution to this problem is sufficient for highway driving, this thesis
focuses on the computation of a global solution, which is typically required to
handle unstructured environments or complex maneuvers. Relevant scenar-
ios include dead ends, blocked lanes, or various parking problems that have
proven difficult for automated vehicles to solve, particularly when space is
tight.

The contributions of this thesis can be grouped into three parts. The first
part focuses on steering functions for car-like robots, which play a major
role in both search-based and sampling-based motion planning. Within this
context, the novel steering function hybrid curvature (HC) steer is introduced
that computes smoother paths than the well-known Reeds-Shepp steering
function [152] and shorter paths than continuous curvature (CC) steer [53].
Especially in tight environments, HC steer proves to be a powerful tool
for the computation of directly executable motion plans with continuous
curvature between direction switches. In addition to that, the two novel
steering functions continuous curvature rate (CCR) and hybrid curvature
rate (HCR) steer are presented that extend the smoothness of both CC and
HC steer from curvature to curvature rate continuity. This allows to increase
the comfort for passengers as well as the tracking performance of the low-
level motion controller.

The second part of this thesis focuses on motion planning under uncer-
tainty aiming to improve the robustness of the motion plans by explicitly
considering the localization and control errors of the system. For this pur-
pose, the previously mentioned steering functions are extended to belief
space in which every vehicle state is associated with its respective uncer-
tainty. Furthermore, two novel algorithms for probabilistic collision checking
are introduced in order to bound the collision probability of the computed
vehicle motion.

ii

The third part addresses the problem of slow convergence in sampling-
based motion planning if samples are only drawn from a uniform distribution.
To overcome this problem, a data-driven approach is presented that utilizes a
convolutional neural network to predict a distribution over future vehicle
poses given the current environment and the boundary conditions of the
planning problem. Samples from this distribution can then be used to bias
the motion planner towards promising regions in the state space allowing to
improve the planning performance in complex scenarios.

Finally, the proposed methods from all three parts are integrated into the
sampling-based motion planner RRT* [93] and its bidirectional extension
BiRRT* [86] to demonstrate their benefits in a broad set of challenging en-
vironments. The motion planner is not only tested in simulation, but also
integrated into a research vehicle proving its effectiveness in real-world
applications.

Acknowledgment

This thesis evolved during my time at the automated driving research de-
partment of the Robert Bosch GmbH. The following lines are dedicated to
the people who made this work possible.

First of all, I would like to thank Professor Zöllner, director of the Technical
Cognitive Systems (TKS) group at the Research Center for Information Tech-
nology (FZI) in Karlsruhe, for the scientific supervision of this thesis. Thank
you for the fruitful discussions, for pointing me in the right directions, and
the freedom and trust you gave me to conduct this research. Also, I would
like to thank Professor Dillmann, head of the Humanoids and Intelligence
Systems Lab at the KIT, for the interest in my work and for serving as the
second examiner on the thesis committee.

This work would not have been possible without the support of the Robert
Bosch GmbH, my department manager, Arno Schaumann, my group leader,
Axel Stamm, and my strategic program leader, Frank Niewels. Many thanks
for providing me with the resources and such an inspiring environment.
Special thanks also to my Bosch colleagues, in particular to Dennis Nienhüser
who supervised me from the company’s side. I always appreciated your
valuable and sincere feedback, our great conversations on so many different
topics, and your advice that helped me to successfully finish this thesis. My
thanks also go to my project leader, Steffen Knoop, and team leader, Thomas
Schamm, for discussing and supporting my ideas already from the very
beginning. Extra thanks to Luigi Palmieri for the inspiring motion planning
exchanges and to Maxim Dolgov for valuable discussions and support in
the development of the probabilistic collision checking approaches. Special
thanks also to Ulrich Baumann and Jan Stellet for reviewing my publications
and the insightful conversations far beyond the topic of automated driv-
ing. Also, I would like to thank Frank Quedenfeld, my students, the entire
TKS group, and my former PhD colleagues, Benjamin Völz, Jan Rhode, Di
Feng, and Stefan Jesenski, for the excellent collaboration.

I have been extremely fortunate to be mentored by Franz Fehrenbach,
chairman of the supervisory board of Robert Bosch GmbH, and his assistants,

Jörg Klingler and Cornelius Surkamp. It was a real pleasure exchanging ideas
with you, looking at problems from novel perspectives, and listening to your
advice. Thank you very much for your time and effort.

Finally, I would like to express my greatest thanks to my parents and family
for their unconditional support, their open feedback, and the courage and
energy they have given me to realize this thesis. It is a privilege to build on
such a great foundation.

Karlsruhe, December 2019 Holger Banzhaf

Contents

Nomenclature . ix

1 Introduction . 1
1.1 Problem Statement . 2
1.2 State of the Art . 6

1.2.1 Search-Based Planners 7
1.2.2 Sampling-Based Planners 8
1.2.3 Other Approaches . 10
1.2.4 Open Problems . 10

1.3 Research Questions and Key Contributions 12
1.4 Outline . 16

2 Steering Functions for Car-Like Robots 19
2.1 State of the Art . 22
2.2 G1 Continuous Steering Functions 25

2.2.1 Dubins Steer . 26
2.2.2 Reeds-Shepp Steer . 31

2.3 G2 Continuous Steering Functions 34
2.3.1 Continuous Curvature Steer 35
2.3.2 Hybrid Curvature Steer 46
2.3.3 Arbitrary Start and Goal Curvatures 56
2.3.4 Experimental Evaluation 59

2.4 G3 Continuous Steering Functions 64
2.4.1 Continuous Curvature Rate Steer 66
2.4.2 Hybrid Curvature Rate Steer 76
2.4.3 Experimental Evaluation 80

2.5 Steering Functions in Belief Space 84
2.5.1 Monte Carlo Simulation 86
2.5.2 Extended Kalman Filter for Motion Planning 90

2.6 Summary . 95

vi Contents

3 From Footprints to Beliefprints: Probabilistic Collision Checking 97
3.1 State of the Art . 99
3.2 Beliefprint Computation . 102

3.2.1 Approximate Beliefprint 103
3.2.2 Robust Beliefprint . 109

3.3 Summary . 115

4 Learning Pose Predictions for Guided Motion Planning 117
4.1 State of the Art . 118
4.2 Data Generation . 120
4.3 Learning Ego-Vehicle Pose Predictions 123

4.3.1 Model . 123
4.3.2 Vehicle Pose Sampling 126
4.3.3 Training and Metrics 126
4.3.4 Hyperparameter Optimization 128

4.4 Experimental Evaluation . 130
4.5 Summary . 135

5 Sampling-Based Motion Planning in Dense Scenarios 137
5.1 Problem Formulation . 137
5.2 Platforms and Setups . 141
5.3 Experimental Results . 144

5.3.1 Maneuvering in Tight Parking Space 144
5.3.2 From Single to Double Ackermann Steering 148
5.3.3 G3 Continuous Motion Planning 154
5.3.4 Motion Planning in Gaussian Belief Space 157
5.3.5 Guided Motion Planning 161

5.4 Summary . 165

6 Conclusion and Outlook . 167
6.1 Conclusion . 167
6.2 Outlook . 170

A Appendix . 173
A.1 Robot Motion . 173

A.1.1 Straight Line . 173
A.1.2 Circular Arc . 174
A.1.3 Clothoid . 176
A.1.4 Cubic Spiral . 179

Contents vii

A.2 Hybrid Curvature Candidate Paths 180
A.2.1 Family CSC . 180
A.2.2 Family CCC . 181
A.2.3 Family CC|C . 182
A.2.4 Family C|CC . 183
A.2.5 Family C|C|C . 183
A.2.6 Family CSC|C . 184
A.2.7 Family C|CSC . 185
A.2.8 Family CC|CC . 186
A.2.9 Family C|CC|C . 188
A.2.10 Family C|CSC|C . 188
A.2.11 Family CS|C . 189
A.2.12 Family C|SC . 191
A.2.13 Family C|S|C . 192

Bibliography . 195
List of Publications . 209
List of Awards . 210

Nomenclature

Abbreviations

Abbreviaton Description

BiRRT* Bidirectional RRT*
BIT* Batch informed tree
CC Continuous curvature
CCR Continuous curvature rate
CNN Convolutional neural network
CP Collision probability
CVAE Conditional variational autoencoder
D Dubins
DOF Degree of freedom
EKF Extended Kalman filter
EKF-MP Extended Kalman filter for motion planning
FMT* Fast marching tree
GPS Global positioning system
HC Hybrid curvature
HCR Hybrid curvature rate
KC Key contribution
LiDAR Light detection and ranging
LQG Linear quadratic Gaussian
MC Monte Carlo
OSE Orientation-aware space exploration
PDF Probability density function
PMF Probability mass function
QP Quadratic program
ROS Robot operating system
RQ Research question
RRBT Rapidly-exploring random belief tree
RRT Rapidly-exploring random tree
RRT* Asymptotically optimal rapidly-exploring random tree
RS Reeds-Shepp
SH Sigma hull

x Nomenclature

Abbreviaton Description

SLAM Simultaneous localization and mapping
SST Stable sparse RRT
TTFS Time-to-first-solution
UKF Unscented Kalman filter

Mathematical Notations

Notation Description

x, y, . . . Scalars
x, y, . . . Vectors
ix, iy, . . . Vectors given in coordinate frame i
A, B Matrices
In Identity matrix of dimension n× n
f(•) Function that returns a scalar
f(•) Function that returns a vector
∇xf(x) Jacobian of f(x)

arg minx f(x) Argument that minimizes f(x)

diag(a1, . . . , an) Diagonal matrix with entries a1, . . . , an
i : j Sequence of integers (i, i+ 1, . . . , j)
bel(•) Belief distribution
N (x; µ,Σ) Multivariate normal distribution of random vector x with

mean µ and covariance Σ

x ∼ (•) Random vector x is distributed as
p(•) Probability density function
Pr(•) Probability measure
Cov[•] Covariance
E[•] Expected value
| • | Absolute value
‖•‖2 Euclidean norm
erf(•) Error function
exp(•) Natural exponential function
1(•) Indicator function
sgn(•) Sign of a variable
tr(•) Trace of a matrix
(•)ᵀ Transpose of a variable

1 Introduction

With the significant progress in the field of automated driving over the last
decades, the dream of self-driving cars seems to be closer than ever before.
While the first experiments with driverless cars were already conducted in
1921 [41] and 1925 [169], the development of this technology has gained mas-
sive traction since the 1980s [19, 88]. Especially the DARPA Urban Challenge
in 2007 [24] marks the start of numerous research projects [18, 103, 168, 203]
that envision level 4/5 autonomy according to the SAE Standard J3016 [185].

One of the main drivers for the development of automated vehicles is
Vision Zero [190], namely the reduction of road traffic fatalities from 1.35 mil-
lion in 2016 [64] to zero. Self-driving cars are expected to contribute to this
vision by replacing the human driver with a robotic system. In contrast to
humans, robots typically have a shorter reaction time, can keep a 360° view of
the environment, do not get tired while driving, and can be programmed to
drive carefully. Hence, it is expected that many accidents that were formerly
caused by humans can be prevented with automated vehicles in the future.

Besides increasing safety, the goal of this technology is also to raise the com-
fort of daily commutes and to reduce urban traffic with shared self-driving
cars. Furthermore, automated vehicles allow a larger fraction of our society,
e.g. children, disabled or elderly people, the access to personal mobility.

Leveraging these advantages requires to solve the problem of automated
driving, which is often divided into three parts: (1) the vehicle needs to sense
its environment and perceive all relevant objects in the scene, (2) it has to plan
a safe and preferably optimal sequence of actions from the current state to a
desired goal, and (3) it must execute these actions by controlling its actuators
accordingly. This thesis focuses on the second part of this sense-plan-act
paradigm [174] and more specifically on the motion planning problem for
self-driving cars. Further details are provided in the remainder of this chapter,
which is organized as follows: Sec. 1.1 states the problem addressed in this
thesis, Sec. 1.2 highlights the state of the art in motion planning, and Sec. 1.3
presents the research questions and the scientific key contributions. The
structure of this thesis is finally outlined in Sec. 1.4.

2 1 Introduction

1.1 Problem Statement

Automating the driving task is currently one of the most challenging prob-
lems in engineering. Although some companies [18, 103] are already working
on level 4 solutions (autonomy in restricted areas [185]), it remains an open
question whether automated driving can ever be solved up to level 5 (auton-
omy without restrictions [185]).

The complexity of the underlying problem mostly stems from two facts:
(1) automated vehicles are required to operate in an open world and thus
have to make appropriate decisions in all possible situations, and (2) solving
the driving task requires the interaction of many software and hardware
components, where already small failures in the system can lead to fatal
consequences. The second aspect can be observed in Fig. 1.1 that visualizes
the dependencies between the different components of an automated vehicle.

Offline Maps

Pr
ed

ict
io

n

Platform
ActuatorsSensors

Behavior Planning

Mission Control

Motion Planning

Vehicle Control

Environment Model

Localization Perception
Global
Planner

Local
Planner

Figure 1.1 Currently dominating system architecture1 in automated driving. The
focus of this thesis is highlighted in green. Based on [16] and adapted from [212],
© 2017 IEEE.

Starting with the platform itself, it can be seen in Fig. 1.1 that the infor-
mation from the on-board sensors is directly forwarded to the localization
and the perception module. While the former computes the current vehicle
pose using an offline generated map, the latter perceives the world and tries
to detect all surrounding obstacles. The output from both modules as well
as the map itself is then utilized to generate a model of the environment
that includes the static and dynamic obstacles in the scene. This information

1With the advances in machine learning, it is possible that some components in Fig. 1.1 will
be combined and jointly learned in the future (see e.g. [5]).

1.1 Problem Statement 3

along with a prediction of the dynamic obstacles is then forwarded to the
navigation stack, which describes all components on the right side in Fig. 1.1.
While the mission control computes the route to the desired destination, the
behavior planner outputs a sequence of high-level actions (e.g. keep/switch
lane, make a turn, park the car) that guide the vehicle on that previously com-
puted route to the goal. On this basis, a collision-free trajectory is optimized
by the motion planner and sent to the low-level vehicle controller. The latter
finally actuates the vehicle based on the computed trajectory and thereby
closes the loop in the signal chain.

As highlighted in Fig. 1.1, the focus of this thesis lies on the motion plan-
ning component of an automated vehicle. Here, the underlying problem is
to find an optimal collision-free trajectory between a start and a goal state that
takes into account the vehicle model, the obstacles in the environment, and
the comfort requirements of the passengers on board. Due to the complexity
of this problem, current automated vehicles are typically equipped with two
different motion planners. The local planner is generally used for corridor
driving on highways and urban streets. In these scenarios, the availability of
a lane centerline (obtained e.g. from a precomputed map) allows to solve the
motion planning problem locally, i.e. to only compute a trajectory close to the
center of the lane. In contrast to that, complex maneuvers or unstructured
environments often require a global solution to the underlying problem as
local approaches typically fail. As visualized in Fig. 1.2 and Fig. 1.3, possible
scenarios within this context include dead ends, blocked lanes, or various
parking problems.

Figure 1.2 Dense scenarios in automated driving (part 1). From left to right, a dead
end, a blocked intersection, and a blocked lane. The ego-vehicle is highlighted in red
in all three scenarios.

4 1 Introduction

Figure 1.3 Dense scenarios in automated driving (part 2). The images show various
parking problems including 45° parking on the left, a circular parking lot in the
middle, and a high density parking layout [210] on the right.

While promising approaches already exist for the local motion planning
problem [193, 204], computing globally optimal solutions is still an actively
researched topic [28, 139, 163]. Especially in dense scenarios with a highly
non-convex environment (see Fig. 1.2 and Fig. 1.3), various (complicating)
aspects have to be considered as further detailed below on the basis of Fig. 1.4.

Here, the red ego-vehicle is required to make a turn at the illustrated dead
end, however, the centerline used for local motion planning is blocked by
a parked vehicle. In order to resolve this situation, a multi-point turn must
be computed using a global motion planner. Thereby, the following three
aspects have to be considered:

(1) The kinematic of the vehicle (front steering with maximum steering
angle < π/2) as well as the nonholonomic constraints (lateral velocity
at tires (appox.) zero) prevent the vehicle from making a turn on the
spot [112]. For the computation of a kinematically feasible solution, it is
therefore required to take into account the constraint on the minimum
turning radius of the vehicle.

(2) The computed motion plan must be smooth in order to guarantee a high
degree of comfort for passengers on board. This can be achieved by
minimizing the jerk (change in acceleration with respect to time) along
the trajectory.

(3) Noisy measurements and imperfect models result in uncertainty that
must be considered in the motion plan in order to keep the collision
probability below a given threshold.

1.1 Problem Statement 5

Figure 1.4 Detailed view of the dead end scenario from Fig. 1.2. The red ego-vehicle
is required to make a turn, however, the parked black transporter is blocking the lane
centerline. As a result, a multi-point turn must be executed to resolve this situation.
The annotations highlight the various aspects that either have to be considered or are
beneficial to consider in the computation of the motion plan. Adapted from [209].

In addition to those three aspects, it might also be beneficial in certain scenar-
ios to take into account the following two points:

(4) To avoid overly conservative solutions, it might be required to consider
the actual contour (and not just a rough bounding box) of both the
ego-vehicle and the surrounding obstacles.

(5) Biasing the planner towards promising regions in the state space (expert
knowledge in Fig. 1.4) is often necessary to increase the efficiency of the
underlying algorithm or sometimes even to find a solution within the
limited computation time.

Combining these aspects along with the ones given in [163] allows to
derive the requirements listed in Tab. 1.1 for global motion planning. Briefly
summarized, the motion planner should find the optimal solution in arbitrary
environments with minimal computing effort, and failure should only be
reported if no solution exists. The output of the motion planner, namely the
motion plan, should be collision-free and smooth in oder to ensure a high

6 1 Introduction

Table 1.1 Requirements for global motion planning based on [163] and on the
previously discussed aspects (1)–(5). A short description of the adjectives used
below can be found under this table.

The motion planner should be: The motion plan should be:
generic1

complete2

optimal3

efficient4

collision-free5

smooth6

robust7

true-to-contour8

1solve arbitrary scenarios 5do not collide with obstacles
2return a solution, if one exists 6guarantee a high degree of comfort
3return minimal cost solution 7take into account uncertainty
4require little computing power 8consider actual shape of objects

degree of comfort. Furthermore, it should be robust against uncertainties and
also take into account the actual shape of all objects in the scene.

As there is currently no approach that satisfies all of these requirements,
the aim of this thesis is to advance the state of the art in global motion plan-
ning for automated vehicles. The focus lies on challenging dense scenarios
that are particularly difficult to solve for existing generic approaches. In-
stead of building one monolithic algorithm, several modular components
are developed, analyzed, and benchmarked within the presented work in
order to (better) satisfy the previously discussed requirements. As a result,
this thesis provides the community with several novel concepts that allow
to increase the effectiveness of different existing motion planners including
sampling-based and search-based approaches.

1.2 State of the Art

Solving the global motion planning problem both in robotics and automated
driving has attracted many researchers over the years. Due to the complexity
of the underlying problem, there is currently no dominant solution, but rather
a large and diverse pool of available methods. Therefore, the aim of this
section is to review the state of the art in this field as well as to highlight the
capabilities and limitations of the available approaches. In comparison to the
state of the art in Chapters 2–4, this one gives a broad overview while the
other ones focus on specific (sub)problems arising in several of the algorithms

1.2 State of the Art 7

presented below. Additionally, the reader is referred to the recent surveys [66,
95, 133, 167] that also provide a summary of the local methods for corridor
driving (not detailed here).

Based on the taxonomy from [66], the remainder of this section is organized
as follows: Sec. 1.2.1 presents the related work in search-based motion plan-
ning, Sec. 1.2.2 reviews the available algorithms in sampling-based motion
planning, and Sec. 1.2.3 summarizes three other approaches that can often
be found in the literature. On this basis, Sec. 1.2.4 finally derives the open
problems that are consequently tackled in the following chapters.

1.2.1 Search-Based Planners

The general idea in search-based motion planning is to discretize the state-
action space and to solve the resulting problem using classic graph search
techniques [48]. For instance, the state lattice approach from [143] discretizes
the state space and uses offline computed paths2 to locally connect the discrete
states. These connections must comply with the motion model of the vehicle
and can, for instance, be obtained using a steering function (see Ch. 2). To
generate a feasible path from start to goal, the constructed graph must then
be searched with an appropriate algorithm such as A* [72] or D* Lite [101].
The obtained solution is both resolution-complete and resolution-optimal in
the sense that both properties are fulfilled up to the underlying discretization
resolution. Therefore, the discretization must be selected carefully (adapted
to the problem) in order to avoid a failure of the planner although a solution
exists.

The previously described state lattice approach was, e.g., used by the win-
ning team of the DARPA Urban Challenge in unstructured environments [120,
188]. Here, the state lattice was constructed on the basis of the approach de-
scribed in [73, 144] and then searched with AD* [119]. Another application
of motion planning with state lattices in the context of automated parking
can be found in [175]. Both applications reveal the major disadvantage of
lattice-based approaches: unnatural (jagged) paths that are snapped to the
discrete states of the lattice. In order to still guarantee a high degree of
comfort, a post-smoothing step is typically required. An advantage of this
method, however, is that it can be extended from pure path planning to

2In contrast to a trajectory, a path is defined as a sequence of vehicle states without temporal
information.

8 1 Introduction

spatiotemporal motion planning. The latter allows to also consider dynamic
obstacles (up to a given horizon) as shown in [106, 139, 157].

The search-based planners in [28, 40, 206] follow a different paradigm than
the previous approach. Here, the state of the vehicle is kept continuous and
not discretized to a lattice. This allows to make node expansions by forward
propagation of the current state using (1) the underlying motion model and
(2) a discrete set of actions. Then, a feasible path can be computed from start
to goal by applying a search algorithm such as Hybrid A* [40]. Although the
latter has proven its effectiveness in the DARPA Urban Challenge [40, 127],
Hybrid A* has several drawbacks including the fact that it cannot provide
any theoretical guarantees with respect to completeness and optimality. In
addition to that, a post-smoothing step might be required if only a simple
motion model and a coarse set of actions is selected [40].

In summary, search-based techniques are an effective tool for global motion
planning in automated driving whenever completeness is a minor problem
(e.g. in large open spaces) and suboptimality can be overcome with a post-
smoothing algorithm. However, if completeness is essential, as e.g. in dense
scenarios, search-based techniques require expert knowledge to come up
with a proper discretization of the state-action space. Otherwise, the planner
might fail although a feasible solution exists.

1.2.2 Sampling-Based Planners

In addition to search-based approaches, the motion planning problem can
also be solved with sampling-based techniques. Here, the idea is to generate
a solution incrementally using samples from the underlying state-action
space. One of the simplest algorithms in this field is the well-known rapidly-
exploring random tree (RRT) [114, 116] that computes a motion plan by
growing a tree from start to goal. During this process, RRT only requires a
motion model of the system in order to propagate the tree as close as possible
to the randomly generated states. The advantage of RRT is its simplicity
and its probabilistic completeness, which means that an existing solution is
guaranteed to be found in the limit of infinite samples. However, as there is
no optimization step involved in the algorithm, the quality of the computed
solutions is typically poor making this approach less suitable for automated
driving.

The previously mentioned suboptimality can be overcome with the asymp-
totically optimal rapidly-exploring random tree (RRT*) [93, 94]. This algo-

1.2 State of the Art 9

rithm not only grows a tree from start to goal, but also rewires that tree locally
in order to ensure asymptotic convergence to the optimal solution. However,
RRT* requires in contrast to RRT a steering function that outputs an optimal
connection between two arbitrary states while neglecting obstacles in the
environment. Fortunately, such a steering function exists for automated
vehicles at low speeds as further detailed in Ch. 2. An extension to RRT* is
bidirectional RRT* (BiRRT*) [86, 100] that constructs a tree from start to goal
and vice versa at the same time. Compared to the single-tree version, BiRRT*
typically improves the overall planning performance leading to, e.g., a higher
success rate and a lower cost than RRT* itself. An application of both RRT*
and BiRRT* to global motion planning for automated vehicles can be found
in [92, 100]. Both approaches, however, only compute discrete curvature
paths that do not satisfy a high degree of comfort as typically required in
automated driving.

Recent advances in sampling-based motion planning combine both sam-
pling and search techniques to improve the performance of the planner. For
instance, the asymptotically optimal fast marching tree (FMT*) [82, 164] first
generates a set of samples and then uses graph search combined with a steer-
ing function to derive a motion plan from start to goal. Instead of generating
a single set of samples at the start of the algorithm, it is proposed in [55] to
iteratively execute sampling and graph search on only a batch of samples.
The so-called batch informed trees (BIT*) are, however, currently limited to a
Euclidean state space, where the output of the steering function reduces to a
straight line. Therefore, it remains an open question whether this approach
can be efficiently extended to systems with nonholonomic constraints (see
e.g. [104, 199]).

While all of the previously described asymptotically optimal motion plan-
ners require a steering function, the stable sparse RRT (SST) [118] only relies
on forward propagation to compute an asymptotically near-optimal solution.
To provide this guarantee, however, SST depends on a Monte Carlo (MC)
sampling of the underlying action space resulting in a potentially slow con-
vergence rate.

In conclusion, sampling-based motion planners provide important theo-
retical guarantees with respect to completeness and optimality that allow to
generate high quality solutions in challenging environments. Most of the
approaches require a steering function, which is in general hard to derive,
but exists for automated vehicles at low velocities (see Ch. 2). Furthermore,
a problem-specific sampling distribution is often required to ensure a fast

10 1 Introduction

convergence to the optimal solution [77].
In the context of automated driving, the previously described approaches

have seen only few applications. This is mainly due to (1) the randomization
in the underlying sampling process, and (2) the potentially slow convergence
rate. Both aspects are, however, subject to current research [77, 83, 123, 149]
and might result in future motion planners that are more powerful than the
currently often preferred search-based approaches from Sec. 1.2.1.

1.2.3 Other Approaches

In addition to the previous approaches, three other classes of motion plan-
ners can often be found in the literature: interpolating curve planners,
optimization-based planners, and a fairly new direction denoted here as
learning-based approaches.

The idea of interpolating curve planners in the context of global motion
planning is to concatenate a set of predefined geometric primitives, such as
straight lines, circular arcs, or splines, in order to solve a specific planning
problem. One of the most prominent use-cases for these planners are par-
allel and perpendicular parking [85, 192], where simple strategies can be
formulated to move in/out of a parking bay. Although such techniques are
computationally efficient, they can only handle a very limited number of
predefined scenarios making them impractical for generic motion planning.

Optimization-based planners solve the motion planning problem typi-
cally along a given reference line using numerical optimization [70, 204]. Due
to the local nature of these approaches, they are less suitable for global motion
planning, but can be used for post-smoothing of the generated path [201].

Recently, a new class of learning-based approaches emerged that either
learn the driving task end-to-end [5, 15] or replace single building blocks of a
classic motion planner with a learned component [34, 77, 183]. As Ch. 4 deals
exactly with the latter, an in-depth review of the related work in this field can
be found in Sec. 4.1.

1.2.4 Open Problems

On the basis of the presented state of the art, three open problems can be
identified:

(1) Steering functions: The main idea of a steering function is to solve a
simplified motion planning problem by explicitly considering the kine-

1.2 State of the Art 11

(a) Dubins path. (b) RS path.

Figure 1.5 Visualization of two exemplary paths computed with the steering func-
tions Dubins [43] and Reeds-Shepp (RS) [152]. While the Dubins path only allows the
vehicle to move either forwards or backwards, the RS path also contains direction
switches to further optimize the path length. Both solutions are discrete in curvature
and consist of straight lines and circular arcs of minimum turning radius.

matic and dynamic constraints of the system while neglecting obstacles
in the environment [113]. The output is typically a path or a trajectory
connecting two states with a preferably optimal solution (see Fig. 1.5). As
discussed above, steering functions are crucial for both search-based [40,
143] and sampling-based [94, 164] motion planners. While many of
these approaches rely on the well-known steering functions Dubins [43]
and Reeds-Shepp (RS) [152] (see Fig. 1.5), the resulting output is only
discrete in curvature requiring often a post-smoothing step. An alter-
native to RS steer is continuous curvature (CC) steer [53] that outputs a
curvature-continuous path. At direction switches, however, CC steer al-
ways enforces zero curvature resulting in unnatural solutions especially
in tight environments such as encountered in parallel parking. Therefore,
a novel steering function is required that closes the gap between RS and
CC steer. Additionally, CC steer’s bang-bang steering inputs require an
infinite steering acceleration, which might violate the physical limits of
the actuator. As a result, new approaches must be found that enforce
even higher degrees of continuity.

(2) Planning under uncertainty: Due to the complexity of planning in be-
lief space, many motion planners neglect the uncertainty of the vehicle
motion and the environment model. Especially in safety-critical ap-
plications, such as automated driving, it is however essential to com-
pute robust motion plans that keep the underlying collision probability

12 1 Introduction

bounded. Therefore, novel techniques must be found that allow to effi-
ciently take into account the uncertainties of the system in the planner.

(3) Sampling distributions: Many sampling-based motion planners guar-
antee asymptotic optimality, however, the convergence rate often de-
pends strongly on the underlying sampling distribution. Especially
in real-time motion planning, fast convergence is essential to derive
high quality solutions within the limited cycle time. As a consequence,
non-uniform sampling distributions are required that consider the en-
vironment, the boundary conditions, and the vehicle model in order to
guide the motion planner quickly towards the optimal solution.

All three open problems play a central role in this thesis and are conse-
quently tackled in the following chapters.

1.3 Research Questions and Key Contributions

Based on the requirements from Tab. 1.1 and the previously discussed open
problems, this section highlights the research questions (RQs) and the scien-
tific key contributions (KCs) of this thesis3.

The first RQ addresses the two crucial requirements completeness and
smoothness (see Tab. 1.1) and is given as

RQ1 How can smoothness be integrated into global motion planning without
losing completeness?

This RQ is motivated by the fact that the motion planner should always find
a solution, if one exists, and additionally, guarantee a possibly high degree
of comfort (smoothness) along the computed trajectory. RQ1 is addressed
on the level of the previously discussed steering functions that not only
determine the smoothness of the motion plans, but also the completeness of
the planner [170]. The work on this RQ led to three KCs that are given as

KC1.1 Introduction of the novel steering function hybrid curvature (HC)
steer that enforces curvature continuity while the vehicle is moving

3The KCs have been previously published in [210, 211, 213, 214, 216, 218] out of which
[213] received the best paper award at the 2018 IEEE Intelligent Transportation Systems
Conference (ITSC) and [214] the third prize best application paper award at the 2018
IEEE Intelligent Vehicles Symposium (IV). Both ITSC and IV are the annual flagship
conferences of the IEEE Intelligent Transportation Systems Society.

1.3 Research Questions and Key Contributions 13

either forwards or backwards, but allows curvature discontinuities at
direction switches [211] (see Sec. 2.3.2). Compared to the state of the
art, HC steer computes smoother paths than RS steer [152] and outper-
forms CC steer [53] with respect to path length (see Sec. 2.3.4). These
properties allow to compute motion plans in dense scenarios with
less direction switches than CC steer while providing a higher degree
of comfort for passengers than RS steer. As HC steer also allows to
preserve the completeness of the planner (see Sec. 2.3.2.4), it proves
to be an effective tool for motion planning in tight environments (see
Sec. 5.3.1 and Sec. 5.3.2). Note that the implementation of HC steer
is provided as open source and can be found along with the other
state-of-the-art steering functions in [208].

KC1.2 Extension of CC steer [53] to arbitrary start and goal curvatures (see
Sec. 2.3.3). This allows now to compute a curvature-continuous short-
est path approximation between any two four-dimensional vehicle
states given with position, orientation, and curvature. Such a prop-
erty is, for instance, crucial if the motion plan needs to be replanned
while the vehicle is in an arbitrary state with non-zero velocity and
curvature.

KC1.3 Introduction of the two novel steering functions continuous curvature
rate (CCR) and hybrid curvature rate (HCR) steer that extend both
CC and HC steer to curvature rate continuity [214] (see Sec. 2.4.1 and
Sec. 2.4.2). Compared to the latter two steering functions, CCR and
HCR steer not only allow to limit the maximum curvature and the
maximum curvature rate, but also the maximum curvature accelera-
tion along the computed path. Due to this additional constraint, CCR
and HCR steer enforce the highest degree of smoothness compared
to all other previously mentioned approaches (see Sec. 2.4.3). Thus,
more comfort for passengers as well as a better tracking performance
of the low-level motion controller can be achieved with those two
steering functions.

While KC1.1–KC1.3 assume that the computed vehicle motion can be
precisely executed by a low-level controller, this is typically not the case in
reality due to e.g. localization and control uncertainty. Taking into account
these uncertainties leads to the fact that the vehicle state can no longer be
represented by a deterministic value, but must rather be described by a

14 1 Introduction

belief distribution over possible states. Combined with the desire to compute
motion plans that also consider the actual shape of the vehicle (see Tab. 1.1),
this leads to the second RQ given as

RQ2 How can the full geometric information of the vehicle contour be lever-
aged in the motion planner while also taking into account the localiza-
tion and control uncertainty?

The KCs related to RQ2 can be summarized as

KC2.1 Extension of the previously discussed steering functions to belief
space by computing a belief distribution along the nominal path of a
steering procedure [213] (see Sec. 2.5). This can either be achieved with
the MC simulation presented in Sec. 2.5.1 or the extended Kalman
filter for motion planning (EKF-MP) [23] described in Sec. 2.5.2. Such
a consideration of uncertainties in the steering function lifts the strong
assumption of knowing the exact vehicle state at all times.

KC2.2 Introduction of two novel algorithms for probabilistic collision check-
ing. They allow to determine whether the collision probability of a
vehicle state exceeds a user-defined threshold considering the actual
contour of the vehicle [213, 218] (see Sec. 3.2). This can be used to
increase the robustness of the motion plans by bounding the collision
probability of the computed vehicle motion (see Sec. 5.3.4).

Due to the complexity of the motion planning problem [27, 153], it is
well known [28, 40, 77, 207] that high quality solutions can often only be
computed using problem-specific heuristics. Especially in nonholonomic
motion planning, the design of such heuristics is still an open problem as
they must adapt to the various different environments and take into account
the constraints of the system. Therefore, the next RQ is given as

RQ3 How can all information about the planning problem, such as the
environment, the boundary conditions, and the system dynamics, be
used to bias the planner towards promising regions in the state space?

This RQ is addressed for sampling-based motion planning, where a problem-
specific sampling distribution is required to ensure a fast convergence to the
optimal solution. The corresponding KC is given as

KC3 Introduction of a convolutional neural network (CNN) that computes a
sampling distribution over future vehicle poses given observations of

1.3 Research Questions and Key Contributions 15

the environment as well as the vehicle’s start and goal state [215, 216]
(see Ch. 4). The CNN is trained end-to-end using a dataset recorded
in a simulator. Compared to uniform sampling and an A*-based ap-
proach [30], the network predicts future vehicle poses more accurately
(see Sec. 4.4) leading to an overall better planning performance when
integrated into a sampling-based motion planner (see Sec. 5.3.5).

All of the previously mentioned KCs are first benchmarked standalone
against their corresponding state of the art and then integrated into RRT* [93]
and its bidirectional extension BiRRT* [86]. The performance of the resulting
motion planner is evaluated in Ch. 5 using an automated vehicle simulator.
The latter has been built up from scratch for this thesis and allows to exe-
cute a motion plan in closed loop while perceiving the environment with
a simulated light detection and ranging (LiDAR) system. Additionally, the
developed motion planner has been successfully integrated into a research
vehicle proving its effectiveness in real-world applications.

With the capability to maneuver automated vehicles in extremely tight
environments (see Sec. 5.3), the question arises whether future vehicles can
be parked more efficiently. The corresponding RQ is given as

RQ4 How can the potential of the developed motion planner be leveraged
to park automated vehicles more efficiently?

In fact, parking is one of the key problems in urban areas. It not only requires
massive land to store the vehicles [33], but also increases the traffic due to a
lack of parking space [173]. The KC related to this problem is given as

KC4 Introduction of a novel parking layout that not only stores vehicles
perpendicular to the driveway, but also in double-ended queues on one
side of it [210] (see Fig. 1.3 on the right). This parking layout can be
integrated into existing parking lots and increases their capacity by up
to 25 %. Furthermore, an algorithm is introduced for the coordination of
the vehicles that keeps the per-car shunting operations bounded during
parking. Combining both aspects allows a more efficient use of parking
space while limiting unnecessary vehicle movement.

This KC is not further detailed in the following chapters as they focus exclu-
sively on the motion planning problem. However, additional information on
KC4 can be found in the corresponding publication [210].

16 1 Introduction

1.4 Outline

This thesis consists of six chapters that are organized according to Fig. 1.6.

Introduction (Ch. 1)

Steering Functions for Car-Like Robots (Ch. 2)

G1 Continuous
(Sec. 2.2)

G2 Continuous
(Sec. 2.3)

G3 Continuous
(Sec. 2.4)

Steering Functions in Belief Space (Sec. 2.5)

Probabilistic Collision Checking
(Ch. 3)

Learning Pose Predictions
(Ch. 4)

Sampling-Based Motion Planning in Dense Scenarios (Ch. 5)

Conclusion and Outlook (Ch. 6)

Figure 1.6 Outline of this thesis.

After the introduction, Ch. 2 addresses the previously described steering
problem for car-like robots. The presented steering functions in Sections 2.2–
2.4 increase successively the complexity of the underlying motion model
resulting in solutions with a higher degree of smoothness. These steering
functions are then extended to belief space in Sec. 2.5, where every state of
the vehicle is associated with its uncertainty originating from localization
and control errors.

Given such a belief of the vehicle state, the natural question arises of how to
assess whether the corresponding collision probability with the environment
remains below a user-defined threshold. This question is addressed in Ch. 3
with the novel concept of beliefprints that can be used for probabilistic colli-
sion checking. Furthermore, two algorithms are described that compute the
vehicle’s beliefprint under the assumption of a Gaussian belief distribution.

Ch. 4 introduces a data-driven approach for the computation of a non-
uniform sampling distribution. Here, a CNN is presented that predicts a
distribution over future vehicle poses given a start and goal state as well
as observations of the environment. Interfacing the CNN with a sampling-
based motion planner allows to bias the planner towards promising regions

1.4 Outline 17

in the state space and thus improve its overall performance in challenging
scenarios.

Building on the results of the previous chapters, the goal in Ch. 5 is to
solve the motion planning problem in various dense scenarios. This is accom-
plished using the sampling-based motion planner RRT* and its bidirectional
extension BiRRT* along with the algorithms from Chapters 2–4. The pre-
sented experimental results highlight the effectiveness of the developed
methods in a broad set of challenging environments.

Ch. 6 finally concludes this thesis and gives an outlook on possible future
research directions.

2 Steering Functions for Car-Like
Robots

Steering functions for car-like robots are one of the essential concepts in
nonholonomic motion planning. The basic idea is to solve a simplified version
of the planning problem by explicitly considering the kinematic and dynamic
constraints of the robot while neglecting obstacles in the environment [113].
The resulting output is a feasible and preferably optimal connection between
a start and a goal state as visualized in Fig. 2.1.

Figure 2.1 Exemplary solution of a steering procedure connecting a start and goal
state with a feasible path. Reprinted from [214], © 2018 IEEE.

Over the years, four different use cases have emerged in the literature
that either rely or benefit from the solution of a steering function. One of
the most prominent applications are sampling-based motion planners such
as the asymptotically optimal rapidly-exploring random tree (RRT*) [93].
The latter, for example, does not only rely on a steering function to build
a tree from start to goal, as illustrated in Fig. 2.2(a), but also to rewire the
tree locally for asymptotic convergence to the optimal solution. The second

20 2 Steering Functions for Car-Like Robots

application uses the steering function to generate point-to-point motion
toward a goal state, i.e. to derive the inputs from the current state to a desired
terminal state. As visualized in Fig. 2.2(b), this can be used in parking and
inductive charging, where a precise positioning at a given target pose is
required. Equally important are steering functions in the context of search-
based planners. Here, the steering function can be used to reduce the search
effort by directly connecting the best vertex in the graph with the goal [40]
(see Fig. 2.2(c)) and also to offline generate the directed graph in state lattice
planning [143]. Lastly, numerical optimization-based planners [202, 204]

(a) Sampling-based mo-
tion planning.

(b) Goal controller for
exact positioning.

(c) Goal extension in
search algorithms [40].

Figure 2.2 Use cases for steering functions in the context of automated driving.
(a)–(b) Reprinted from [209]. (c) Reprinted with permission from [40], © 2010
Dmitri Dolgov et al.

require a good initial guess for a fast convergence to the optimal solution.
Such a guess can be provided by a steering function, which then has to
be modified by the optimization algorithm to also take into account the
surrounding obstacles.

As previously described, a steering function solves a relaxed motion plan-
ning problem. The corresponding mathematical formulation for a general
dynamic system is given as

arg min
X̌ , Ǔ

J(X̌ , Ǔ) (2.1a)

s.t. x̌0 = x̌s, (2.1b)
x̌N̄ = x̌g, (2.1c)

x̌k+1 = f̌(x̌k, ǔk), (2.1d)

21

x̌min ≤ x̌k+1 ≤ x̌max, (2.1e)
ǔmin ≤ ǔk ≤ ǔmax, k = 0 : N̄ − 1, (2.1f)

where x̌k ∈ Rn describes the state of the system, ǔk ∈ Rm the input, and f̌(•)
the respective motion model. The start state is denoted by x̌s, the goal state
by x̌g, and the state and input constraints of the vehicle by x̌min, x̌max, ǔmin,
ǔmax. The user-defined objective function is given by J(•) and maps the N̄+1
states X̌ = 〈x̌0, . . . , x̌N̄〉 and the corresponding inputs Ǔ = 〈ǔ0, . . . , ǔN̄−1〉 to
a scalar cost.

Due to the complexity of solving (2.1) for arbitrary objective functions and
vehicle models, three simplifications are often made in automated driving.
First, the problem can be simplified by decoupling path planning (spatial di-
mension) from velocity profiling (temporal dimension), which is also known
as path-velocity decomposition [91]. The major challenge of this decoupled
problem lies in the computation of a smooth path that takes into account the
nonlinearity as well as the constraints of the vehicle.

Second, the complexity of the vehicle dynamics in (2.1d) can be reduced to
a kinematic motion model if the vehicle only moves at low longitudinal ve-
locities (e.g. less than 5 m s−1) [146, 151]. This is often fulfilled in challenging
tight scenarios, where possible maneuvers might also contain switches in the
driving direction.

Third, the minimization objective in (2.1a) is commonly restricted to func-
tions that facilitate the optimization. For instance, a common approach in
low-speed maneuvering is to minimize path length (shortest path problem)
as comfort requirements are typically dominated by the desire for a low
execution time. To still guarantee a certain level of smoothness, the state
and input constraints in (2.1e)–(2.1f) can be adjusted accordingly. Within
this context, the definition of smoothness is adapted from [6, 10, 22], where
geometric continuity of planar curves is expressed as

G1 continuity: a path with continuous orientation.

G2 continuity: a path with continuous curvature.

G3 continuity: a path with continuous curvature rate.

G4 continuity: a path with continuous curvature acceleration.

Gk continuity: a path with geometric continuity of order k.

22 2 Steering Functions for Car-Like Robots

Here, the terms curvature rate and curvature acceleration denote the first
and second derivative of curvature with respect to arc length. Note that
the provided definitions of geometric continuity can be directly linked to
the smoothness of the steering input using the flatness property of car-like
robots [22, 50]. For instance, it is shown in [22] that a G2 continuous path has
a C0 continuous steering profile.

In general, higher degrees of smoothness positively influence the driving
comfort and the tracking performance of the motion controller [132, 172, 201]
while decreasing the mechanical stress on the steering system. However,
computing smoother paths might also increase the computation time, which
is typically limited by the real-time constraint of the motion planner.

In this regard, the following sections focus on fast evaluations of (2.1) for
car-like robots, where the vehicle is not only allowed to drive forwards, but
also forwards and backwards. Sec. 2.1 details the state of the art, and Sec. 2.2,
Sec. 2.3, and Sec. 2.4 present three classes of steering functions ranging from
G1 to G3 continuity. An extension to belief space as required for probabilistic
motion planning is presented in Sec. 2.5, and a concluding summary is
finally given in Sec. 2.6. Note that parts of this chapter have previously been
published in [208, 209, 211, 213, 214].

2.1 State of the Art

Solving the steering problem in (2.1) has attracted many researchers since the
1950s [43] and still remains an active field of research [29, 57, 132]. Among
the various different approaches in the robotics and control literature, the
four most prominent ones are highlighted in this section including non-
parametric as well as parametric optimization, geometric primitives, and
sinusoidal inputs.

Non-parametric optimization Numerical optimization with no assump-
tions on the underlying solution is one of the most intuitive ways to solve the
steering problem in (2.1). Here, the entire complexity of the problem, such
as the nonlinear system dynamics, is forwarded to the optimizer that either
computes a locally optimal solution or fails due to the non-convex nature of
the problem. Such an approach is, for instance, realized in [154] by combining
the Hamilton-Jacobi framework with numerical optimization. In contrast
to that, sequential quadratic programming is applied in [195] by iteratively
converting (2.1) into a quadratic program (QP) (quadratic cost function with

2.1 State of the Art 23

linear constraints). A state-of-the art optimizer is then used to solve the QPs
until convergence. A direct solution to the nonlinear program is computed
in [156] using the Levenberg-Marquard algorithm. This approach, however,
requires a relaxation of the hard constraints and thus might result in solutions
that violate the physical limits of the robot. All of these approaches have
in common that they typically require a high computational cost as well as
a good initial guess in order to quickly converge to the optimal solution.
A possible way to address these drawbacks is to simplify the optimization
problem by explicitly constraining the solution to a given set of parametric
curves.

Parametric optimization Such an approach is presented in [96], where the
parameters of a polynomial spiral [39] are numerically optimized using a La-
grange method. It is shown that efficient solutions can be computed that sat-
isfy the boundary conditions in (2.1b)–(2.1c). However, the presented method
does not explicitly constrain the states and inputs, as required in (2.1e)–(2.1f),
and therefore might compute paths that violate the actuator limits. Also,
the solutions only allow the vehicle to move either forwards or backwards
and do not consider any switching points, which are often necessary for
various maneuvering tasks. Therefore, one of the applications of this method
is on-street driving as shown in [125]. The problem of a potential constraint
violation, as mentioned before, is tackled in [46]. Here, a post-processing
step is conducted that enforces the vehicle constraints at the potential risk
of violating the terminal boundary condition in (2.1c). Another approach
in the domain of on-street driving is presented in [193], where fifth-order
polynomials are used to steer the vehicle to terminal manifolds. Similar
to [96], the vehicle constraints are not explicitly considered in the genera-
tion of the trajectories, but must be verified in a subsequent step. Satisfying
theses constraints along the entire path, as shown in the context of B-spline
fitting in [90], might significantly increase the complexity of the optimization
problem leading to a potential loss in efficiency.

Geometric primitives The insight that path planning is mostly a geometric
problem has raised the question whether (2.1) can be solved by concatenat-
ing a set of geometric primitives. Indeed, Dubins proves in [43] that the
shortest path for a car-like robot with bounded curvature and constrained
driving direction (either forwards or backwards) consists of straight lines and
circular arcs of maximum curvature. Moreover, this path can be computed
very efficiently on the basis of the analytic expressions presented in [43].

24 2 Steering Functions for Car-Like Robots

Building on these results, Reeds and Shepp achieve another breakthrough
in [152] by deriving the shortest path for a vehicle that is allowed to move
both forwards and backwards and not just in one direction as in [43]. The
corresponding solution can still be computed analytically and thus results in
an extremely efficient steering function. The only remaining disadvantage is
that the computed paths are discontinuous in curvature. In order to improve
the continuity of these paths, the set of geometric primitives can be extended
with curves that allow a smooth transition of the vehicle from straight lines
to circular arcs. Within this context, possible candidates are splines, such as
B-splines [102], Bézier curves [126], or the various η-splines [60, 141, 142], as
well as polynomial spirals [39] like clothoids [172] or cubic spirals [89]. Com-
pared to splines, polynomial spirals are often preferred as they describe the
curvature and its derivatives by polynomials that can be easily constrained
to the steering limits of the vehicle. For example, CC steer [53] extends the
geometric set of primitives with clothoids and by doing so, extends the RS
paths to curvature continuity. The insight that CC steer has certain draw-
backs in tight environments as well as its limitation to zero curvature at both
ends of the path are the two main motivations behind the contributions in
Sec. 2.3.2 and Sec. 2.3.3.

Raising the continuity to even higher dimensions is addressed in [57, 132,
136]. For instance, [57] enforces G3 continuity using a nonlinear parametric
curve obtained from feedback control. The presented approach, however,
does not allow to constrain the maximum curvature rate nor the maximum
curvature acceleration to arbitrary values. Hence, a careful design of the
velocity profile is required in the execution phase such that the dynamic
actuator limits of the robot are not violated. Furthermore, it remains unclear
how elementary paths [159, 160] can be built into this method. In contrast to
that, the idea in [132] is to compute G3 continuous paths that enforce hard
constraints on the maximum steering angle as well as on its first and second
derivative. While this idea is similar to the one in Sec. 2.4 ([132] and the
underlying paper of Sec. 2.4 [214] appeared at about the same time), both
approaches differ in the realization of the G3 continuous transitions as well
as of the elementary paths [131, 132]. Unlike the previous methods, which
integrate the enhanced smoothness directly into the generation of the path,
[136] proposes to only locally smooth a Dubins path with an infinitely differ-
entiable curve. However, it remains unanswered whether such a smoothing
procedure can always be conducted and what the computational burden of
the numerical operations is.

2.2 G1 Continuous Steering Functions 25

Sinusoidal inputs Especially in the 1980s and 1990s, it was discovered that
sinusoidal inputs have the capability to (sub)optimally steer a nonholonomic
system to its goal. Much of the work in this field goes back to [21]. Here, it
is shown that for a certain class of dynamic systems, the optimal solution
of the steering problem with respect to the minimization of squared effort
consists of sinusoidal inputs. Building on these results, a suboptimal step-
wise approach is presented in [129] that steers a car-like robot to a desired
goal. The sequential nature of this algorithm is then removed in [187] by
applying a linear combination of sinusoidal inputs. A similar idea is real-
ized in [49] that constructs a Fourier series whose coefficients have to be
determined numerically. The two major drawbacks of these approaches are
that the computed paths might be highly suboptimal [129, 170] and that the
constraints in (2.1e)–(2.1f) are not explicitly taken into account. As previously
mentioned, this might lead to a violation of the actuator limits leading to a
potential deviation from the planned path when executed in closed loop.

Out of the four different approaches presented above, the following sec-
tions focus on the method using geometric primitives. The reasons for this are
threefold: (1) the concatenation of geometric primitives can be implemented
very efficiently while at the same time guaranteeing robustness (solutions can
always be found), (2) this method allows to compute high quality paths by
explicitly minimizing the path length of the steering procedure, and (3) geo-
metric primitives make it possible to enforce the vehicle constraints along the
entire path by constraining the curvature profile accordingly. These aspects
along with the foundations in this field of research are briefly highlighted
in the following. Furthermore, the corresponding drawbacks of the exist-
ing methods are outlined along the text and afterwards addressed by the
contributions in Sections 2.3–2.5.

2.2 G1 Continuous Steering Functions

This section reviews the pioneering works of Dubins in Sec. 2.2.1 and Reeds
and Shepp in Sec. 2.2.2. Most of the publications in this field are based on
those two results as they came up with novel ways to solve (2.1) optimally
for a car-like robot.

The derived solution in both cases describes a G1 continuous path with a
discrete curvature profile. Such a path is represented by a sequence of vehicle
states x̌k =

(
x̌k y̌k θ̌k

)ᵀ
, where the position of the rear axle’s center is given

26 2 Steering Functions for Car-Like Robots

by
(
x̌k y̌k

)
, and the heading angle of the vehicle by θ̌k. The corresponding

inputs are defined as ǔk =
(
∆šk κ̌k

)ᵀ, where ∆šk denotes the signed arc
length and κ̌k the curvature of the path at

(
x̌k y̌k

)
.

2.2.1 Dubins Steer

Back in 1957, Dubins discovered a novel way to compute the shortest path for
a particle moving in the plane with a bounded turning radius [43]. It turns
out that the underlying system, which is nowadays referred to as Dubins
car, corresponds to the simplest version of a car-like robot [115]. This section
briefly highlights the ideas of the Dubins steering function including the
motion model in Sec. 2.2.1.1, the so-called Dubins turn in Sec. 2.2.1.2, and
the construction of a Dubins path in Sec. 2.2.1.3. Notice that the term Dubins
steer is used in the following to refer to the steering function itself whose
output is a Dubins path between two given states.

2.2.1.1 Dubins Car

A vehicle that only moves forwards or backwards on a path with bounded
curvature is called a Dubins car. Its equation of motion can be formulated
similar to (2.1d) as

x̌k+1 =

x̌k+1

y̌k+1

θ̌k+1

 =

x̌ky̌k
θ̌k

+

ˆ ∆šk

0

cos(θ̌k+1(s))

sin(θ̌k+1(s))
κ̌k

 ds. (2.2)

Note that throughout this thesis, the equations of motion are given in discrete
form, which facilitates the implementation on a computing hardware.

The solution of (2.2) either describes a motion on a straight line (κ̌k = 0)
or on a circular arc (κ̌k 6= 0) with radius 1/κ̌k. Both cases can be described
analytically as shown in Sec. A.1.1 and Sec. A.1.2. The corresponding motion
constraints, which take into account the selected driving direction and the
maximum steering angle, are given as

ǔmin =
(
0 −κmax

)ᵀ
, (2.3a)

ǔmax =
(
∞ κmax

)ᵀ
, (2.3b)

where κmax denotes the maximum curvature of the vehicle. Notice that (2.3)
is given for forwards driving and has to be adjusted accordingly for going in
reverse.

2.2 G1 Continuous Steering Functions 27

2.2.1.2 Dubins Turn

The insight from [43] that the shortest path of the Dubins car only consists
of straight lines and circular arcs of maximum curvature motivates the in-
troduction of the so-called Dubins turn. Such a turn is visualized in Fig. 2.3
and describes a robot motion on a circle that starts in x̌s and terminates in x̌g.
The angular change between both states is called deflection and is denoted
by δ ∈ [0, 2π).

1x

1y

Ix

Iy

x̌s

xc

x̌g

δ

κ−1
max

Figure 2.3 Visualization of a Dubins turn for a forward motion to the left. The
start state x̌s and the goal state x̌g are connected with a circular arc of maximum
curvature.

For the fast computation of the Dubins path in the next section, it is re-
quired to correlate all variables shown in Fig. 2.3. To do this, two additional
parameters have to be introduced, namely the gear of the vehicle g ∈ {−1, 1}
(backwards, forwards) at the start state x̌s and the desired turning direction
t ∈ {−1, 1} (right, left). The center of a Dubins turn xc can now be computed
as

1xc =

(
1xc
1yc

)
=

(
0

tκ−1
max

)
, (2.4)

where 1(•) denotes a variable given in the local frame 1 (see Fig. 2.3). The
output of this equation can then be used along with the deflection δ to
compute the goal state x̌g as

1x̌g =

1x̌g
1y̌g

1θ̌g

 =

1xc + tκ−1
max sin(gtδ)

1yc − tκ−1
max cos(gtδ)
gtδ

 . (2.5)

28 2 Steering Functions for Car-Like Robots

While (2.4)–(2.5) are given in the local frame 1, a transformation to the inertial
frame I (see Fig. 2.3) can be conducted by

I x̌(•) =

I x̌s
I y̌s

I θ̌s

+

cos(I θ̌s) − sin(I θ̌s) 0

sin(I θ̌s) cos(I θ̌s) 0
0 0 1

1x̌(•)
1y̌(•)
1θ̌(•)

 , (2.6)

where I(•) denotes a variable given in the inertial frame I . Notice that in
Fig. 2.3, both the inertial frame I as well as the local frame 1 are aligned,
which might not necessarily be the case in practice.

Lastly, the arc length l(δ) of a Dubins turn can be computed by

l(δ) = κ−1
maxδ. (2.7)

2.2.1.3 Dubins Path

The aim in this section is to outline the computation of a Dubins path and to
briefly discuss its strengths and weaknesses. As mentioned before, such a
path minimizes the length between two arbitrary states while satisfying the
motion constraints of the Dubins car. The underlying objective function is
given in the form of (2.1a) as

J(Ǔ) =
N̄−1∑
k=0

|∆šk| , (2.8)

where ∆šk describes the signed arc length of the various segments required
to steer the vehicle to the goal. Without loss of generality, it is assumed in the
following that the Dubins car only moves forwards.

In the first step of the computations, two circles of maximum curvature,
but different turning directions, have to be fitted to the given start state x̌s
and goal state x̌g. This can be seen in Fig. 2.4, where ti=1:4 either describes a
turn to the right (−1) or to the left (+1). Note that the center of the visualized
circles xc,i=1:4 can be obtained using (2.4).

Next, the obtained circles have to be connected with up to six candidate
paths out of which one describes the shortest connection [43]. These can-
didates are constructed using tangent conditions and the Dubins families
listed in Tab. 2.1. It can be seen that only two families are required for the
description of the shortest path. Note, however, that both turning directions
at the start and goal state have to be considered, which yields six candidate

2.2 G1 Continuous Steering Functions 29

x̌s x̌g

xc,1

xc,2

xc,3

xc,4

t1 = +1

t2 = −1

t3 = +1

t4 = −1

Figure 2.4 Two circles of maximum curvature, but different turning directions,
fitted to the start and goal state.

Table 2.1 Dubins families, where C describes a circle of maximum curvature and S

a straight line.

Dubins families

CSC
CCC

paths as mentioned above. For instance, the family CSC denotes a path that
starts on a circle C , moves on to a straight line S, and ends on a circle C again
as illustrated in Fig. 2.5. Furthermore, it has to be noted that the families CS,
SC, C, and S are special cases of CSC and therefore not listed separately in
Tab. 2.1.

x̌s x̌g

xc,2 xc,4

Figure 2.5 Extension of Fig. 2.4 with a Dubins candidate path based on the family
CSC.

Every Dubins family comes with a set of existence conditions that specify
under which circumstances a solution can be computed with the respective
primitives. For instance, the corresponding conditions for the visualized can-
didate path in Fig. 2.5, where the tangent runs parallel to the line connecting

30 2 Steering Functions for Car-Like Robots

both circle centers, are given as

ti · tj !
= +1, (2.9a)∥∥xc,j − xc,i

∥∥
2

!
≥ 0, (2.9b)

where i ∈ {1, 2}, j ∈ {3, 4}, and ‖•‖2 measures the Euclidean distance
between both circle centers. These two equations imply that the turning di-
rection of the two Dubins turns must be the same while there is no constraint
on the distance between them. Note that the corner case

∥∥xc,j − xc,i
∥∥

2
= 0

describes a motion on a single turn. The fact that (2.9) can always be ful-
filled given arbitrary start and goal states already shows that Dubins steer is
complete in the sense that a solution can always be found.

Having computed all candidate paths according to Tab. 2.1, the shortest one
including the inputs for the Dubins car can finally be obtained by selecting the
path with the minimal length [43]. Based on the implementation from [179],
a visualization of such a shortest path connection is displayed in Fig. 2.6.

Figure 2.6 Visualization of the shortest path for a vehicle that only moves forwards.
The front wheels of the vehicle are displayed in white, its contour in cyan, and the
path is colored green.

It can be seen that the illustrated path is G1 continuous as the vehicle’s
orientation changes smoothly between start and goal. However, the track
of the front wheels depicts the curvature discontinuities at the transitions
between circles. This has to be taken into account when computing the
velocity profile along the path because no steering actuator can immediately
switch between +κmax and−κmax. A possible solution is to stop the car at the

2.2 G1 Continuous Steering Functions 31

curvature discontinuities in order to adjust the steering angle. However, such
a trajectory not only appears unnatural, but also imposes a high mechanical
stress on the steering actuator. As a result, paths with a higher geometric
continuity are required that smoothly steer the vehicle from start to goal.

Apart from optimality and completeness, it is worth mentioning that Du-
bins steer is not symmetric and does not fulfill the topological property [111,
170]. Symmetry within this context describes the property of a steering func-
tion to output the same path when both start and goal state are swapped.
This is not the case here as the Dubins car is not allowed to switch directions.
The concept behind the topological property is more complex and further
discussed in Sec. 2.3.2.4. Here, it is sufficient to know that a motion planner,
which relies on a steering function, can only be complete if that steering
function fulfills the topological property. This is, however, not the case for
Dubins steer [111].

2.2.2 Reeds-Shepp Steer

In 1990, 33 years after Dubins’ publication, Reeds and Shepp found a way to
compute the shortest path for a car-like robot with bounded curvature and
no constraint on the driving direction [152]. This breakthrough was so funda-
mental that it still can be found in various state-of-the-art motion planning
algorithms [40, 100]. The underlying concepts are briefly reviewed in this
section including the so-called RS car in Sec. 2.2.2.1 and the computation of a
RS path in Sec. 2.2.2.2. Note that the RS turn is identical to the Dubins turn
from Sec. 2.2.1.2 and therefore not further detailed here.

2.2.2.1 Reeds-Shepp Car

Similar to the Dubins car, the RS car moves on a path with bounded curvature,
but without a constraint on the driving direction. While the corresponding
motion model remains the same as in (2.2), the input is now constrained by

ǔmin =
(
−∞ −κmax

)ᵀ
, (2.10a)

ǔmax =
(
+∞ +κmax

)ᵀ
, (2.10b)

and allows the vehicle to move both forwards and backwards. This yields
a symmetric system [113] that can now move from a start state to some
destination and back again to the initial state on exactly the same path.

32 2 Steering Functions for Car-Like Robots

2.2.2.2 Reeds-Shepp Path

Given two arbitrary vehicle states, it is proven in [152] that the shortest
connection can be computed analytically using straight lines and circular arcs
of maximum curvature. The resulting solution is a generalization of Dubins
steer as it guarantees to find the same or a shorter path by allowing direction
switches (cusps) between start and goal. The computation of a RS path is
very similar to the one of a Dubins path and briefly outlined in the following.

The first computation step requires the same circle fitting as in the Dubins
case. This can be seen in Fig. 2.7, where the two circles at the given states x̌s
and x̌g allow the vehicle to turn in both directions. The only difference to the

x̌s

x̌g

xc,1

xc,2
xc,3

xc,4

t1 = +1

t2 = −1
t3 = +1

t4 = −1

Figure 2.7 Two circles of maximum curvature, but different turning directions,
fitted to the start and goal state.

computation of the Dubins path now lies in the fact that the RS car is allowed
to move both forwards and backwards on all four circles.

Obviously, this increases the computational complexity of the optimal
solution, which now requires to evaluate 46 possible candidate paths [182].
These candidates have to be constructed in the second step of the algorithm
on the basis of the RS families given in Tab. 2.2.

Table 2.2 RS families, whereC describes a circle of maximum curvature, S a straight
line, and | a direction switch.

RS families

CSC CSC|C C|CSC|C
CC|C C|CSC
C|CC CC|CC
C|C|C C|CC|C

2.2 G1 Continuous Steering Functions 33

In comparison to the Dubins families, it can be observed that direction
switches are now allowed raising the number of possible families from two to
nine. For instance, the family CSC|C describes a path that starts on a circle
C , moves on to a straight line S, transitions to another circle C , and switches
the driving direction before reaching the terminal circle C. An example of
such a path can be found in Fig. 2.8.

x̌s

x̌g

xc,1
xc,5

xc,4

Figure 2.8 Extension of Fig. 2.7 with a RS candidate path based on the family
CSC|C.

Similar to the Dubins case, not every RS family allows to connect the
i ∈ {1, 2} start circles with the j ∈ {3, 4} goal circles (see Fig. 2.7). For
instance, the existence conditions for the visualized candidate path in Fig. 2.8,
where the tangent runs parallel to the line connecting the center of the start
and goal circle, are given as

ti · tj !
= −1, (2.11a)∥∥xc,j − xc,i

∥∥
2

!
≥ 2κ−1

max. (2.11b)

Here, the turning direction at the start must be different to the one at the goal,
and the distance between the corresponding circle centers must be larger
or equal to the given value in (2.11b). Notice that

∥∥xc,j − xc,i
∥∥

2
= 2κ−1

max
describes the corner case, where both the RS turn at the start and the one in
the middle become a single turn.

Having constructed all candidate paths as described above, the optimal
solution to the shortest path problem can finally be obtained by selecting the
one with the minimal length [152]. An implementation of this procedure can
be found in [179], and a visualization of the shortest path for the same start
and goal state as in Fig. 2.6 is given in Fig. 2.9.

It can be seen in Fig. 2.9 that in contrast to Dubins steer (see Fig. 2.6),
RS steer requires the vehicle to first move backwards and to switch direction
before arriving at the goal. The resulting path is G1 continuous as the orien-
tation of the vehicle changes smoothly along the path. Just as with Dubins

34 2 Steering Functions for Car-Like Robots

Figure 2.9 Visualization of the shortest path for a vehicle that moves both forwards
and backwards. The front wheels of the vehicle are displayed in white, its contour in
cyan, and the path is colored green.

steer, a precise closed-loop execution of the RS path forces the vehicle to stop
at the curvature discontinuities in order to adjust the steering angle. This
restriction is tackled in the next section, where the computed path is required
to be continuous in curvature.

Additionally, it has to be mentioned that RS steer is complete, symmetric,
and fulfills the topological property [111]. Completeness can be easily veri-
fied on the basis of the RS family CSC and the argumentation provided in
Sec. 2.2.1.3. In contrast to Dubins steer, symmetry can be guaranteed due to
three reasons: (1) the RS car is allowed to move both forwards and backwards,
which yields a symmetric system [113], (2) the RS families are symmetrical by
definition like C|C|C, or (3) a symmetrical counterpart exists such as in the
case of CC|C and C|CC. The proof with respect to the topological property
of RS steer can be found in [111]. Here, it is sufficient to note that RS steer
fulfills that property and thus guarantees completeness when integrated into
a complete motion planner.

2.3 G2 Continuous Steering Functions

The curvature discontinuities of Dubins and RS steer motivate the devel-
opment of steering functions with higher continuity. Within this context,
two G2 continuous steering functions are highlighted in this section. Both

2.3 G2 Continuous Steering Functions 35

approaches require to increase the state space by one dimension to R4. The
vehicle’s state x̌k =

(
x̌k y̌k θ̌k κ̌k

)ᵀ
now also includes the curvature κ̌k of

the path at the position
(
x̌k y̌k

)
. The input is adjusted accordingly such that

the vehicle is now actuated by ǔk =
(
∆šk σ̌k

)ᵀ, where σ̌k denotes the change
in curvature (curvature rate) at the current arc length šk.

This section is organized as follows: Sec. 2.3.1 reviews the concepts be-
hind CC steer [53], and Sec. 2.3.2 introduces a novel steering function called
HC steer. The latter is motivated by the fact that CC steer has certain draw-
backs in tight environments as further detailed below. Sec. 2.3.3 then extends
both CC as well as HC steer to start and goal states with arbitrary curvatures,
and Sec. 2.3.4 finally evaluates the described approaches experimentally.

2.3.1 Continuous Curvature Steer

An extension of Dubins and RS steer to G2 continuity was first presented
in [53]. The derived steering function, called CC steer, enforces curvature
continuity along the path and satisfies the vehicle’s maximum curvature and
maximum curvature rate constraint. The underlying ideas are reviewed in
the following sections including the motion model in Sec. 2.3.1.1, the so-called
CC turns in Sec. 2.3.1.2, and the computation of a CC path in Sec. 2.3.1.3.

2.3.1.1 Continuous Curvature Car

In analogy to the RS car, a CC car [53] is defined as a vehicle that moves
forwards and backwards on a path with bounded curvature and bounded
curvature rate. Its motion model can be formulated as

x̌k+1 =


x̌k+1

y̌k+1

θ̌k+1

κ̌k+1

 =


x̌k
y̌k
θ̌k
κ̌k

+

ˆ ∆šk

0


cos(θ̌k+1(s))

sin(θ̌k+1(s))
κ̌k+1(s)
sgn(s)σ̌k

 ds, (2.12)

where sgn(•) denotes the sign of a variable. The solution of (2.12) can be
split into three cases. If the input σ̌k 6= 0, the vehicle moves on a clothoid,
also known as Euler or Cornu spiral, whose curvature changes linearly with
the traveled distance. If σ̌k = 0, the vehicle either moves on a circular arc
(κ̌k 6= 0) or on a straight line (κ̌k = 0). All three robot motions can be
evaluated explicitly as outlined in Sec. A.1.1, Sec. A.1.2, and Sec. A.1.3. Note,
however, that the computation of a clothoid requires a numerical evaluation

36 2 Steering Functions for Car-Like Robots

of the Fresnel integrals [1], which can be efficiently approximated using e.g.
Chebyshev polynomials [122].

As the CC car enforces curvature continuity without a constraint on the
driving direction, its input is bounded by

ǔmin =
(
−∞ −σmax

)ᵀ
, (2.13a)

ǔmax =
(
+∞ +σmax

)ᵀ
, (2.13b)

where σmax denotes the maximum curvature rate. This parameter can be
derived according to [53] and ensures that the vehicle’s maximum steering
rate is satisfied. In addition to that, the maximum steering angle of the CC car
constrains the vehicle’s curvature to

−κmax ≤ κ̌k+1 ≤ κmax. (2.14)

The properties of the CC car without the constraint in (2.14) have been
extensively studied in previous publications [14, 38, 181], especially with
respect to the shortest path problem. An extension of the analysis to the
fully constrained system is conducted in [158, 162]. Briefly summarized, it is
known that an optimal path with minimal length exists for arbitrary start and
goal states. Such a path consists of straight lines, circular arcs of maximum
curvature, and clothoids of maximum curvature rate. However, a closed-
form solution, as in the case of the Dubins and RS car, does not exist anymore
because the shortest path may consist of an infinite number of clothoids.
Therefore, a hierarchical approach is presented in [53, 161] that computes a
suboptimal solution to the shortest path problem for the CC car. An integral
part of this approach are the so-called CC turns, which are described in the
next section.

2.3.1.2 Continuous Curvature Turns

The main idea of CC turns [53, 161] is to design a novel circle that enforces cur-
vature continuity when being concatenated with other CC turns or straight
lines. This is achieved by enforcing zero curvature at the two states x̌s and x̌g
that enter and exit such a turn. Inspired by the fact that an optimal path for
the CC car consists of circular arcs of maximum curvature and clothoids of
maximum curvature rate, a CC turn connects both states in three steps (see
Fig. 2.10): (1) the vehicle moves on a clothoid of maximum curvature rate
σmax from x̌s to the first intermediate state x̌i, (2) it continues on a circular arc

2.3 G2 Continuous Steering Functions 37

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc
r

κ−1
max

δ

δmin
x̌j

µ

x̌g
µ

(a) Regular CC turn.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc

r κ−1
max

δ−δmin

x̌j

x̌g
µ

(b) Irregular CC turn.

Figure 2.10 Visualization of a regular and irregular CC turn for a forward motion to
the left. Both turns connect the start state x̌s and the goal state x̌g with two clothoids
and a circular arc. The irregular turn yields a shorter connection for δ > 2δmin + π.

with radius κ−1
max until it reaches the second intermediate state x̌j , and (3) the

vehicle arrives at the goal state x̌g on a clothoid of curvature rate −σmax. The
corresponding profiles of the curvature rate σ̌(š) and the curvature κ̌(š) with
respect to the traveled arc length š are displayed in Fig. 2.11.

−σmax

σmax

σ̌

šκmax

σmax
δ−2δmin

κmax

κmax

σmax

(a) Curvature rate profile.
−κmax

κmax

κ̌

šκmax

σmax
δ−2δmin

κmax

κmax

σmax

(b) Curvature profile.

Figure 2.11 Curvature rate and curvature profile of a CC turn to the left. The
curvature profile is obtained by integrating the curvature rate along the arc length š.

Depending on the deflection δ ∈ [0, 2π), which measures the angular
change in orientation between x̌s and x̌g, it is distinguished between a regu-
lar CC turn and an irregular one as illustrated in Fig. 2.10. In contrast to the
regular CC turn, the irregular one allows a direction switch at the interme-
diate states x̌i and x̌j . This results in a shorter connection for δ > 2δmin + π,

38 2 Steering Functions for Car-Like Robots

where the angle δmin
4 describes the deflection between x̌s and x̌i as

δmin = κ2
max/(2σmax). (2.15)

A major advantage of the CC turn is that all its variables (see Fig. 2.10) can
be described explicitly given the vehicle’s initial gear g ∈ {−1, 1} (backwards,
forwards), the desired turning direction t ∈ {−1, 1} (right, left), the start
state x̌s, and the deflection δ. For instance, the first intermediate state x̌i is
computed as

1x̌i =


1x̌i
1y̌i

1θ̌i
1κ̌i

 =


g
√
π/σmaxCf(

√
2δmin/π)

t
√
π/σmaxSf(

√
2δmin/π)

gtδmin
tκmax

 , (2.16)

where 1(•) describes a variable in the local frame 1 (see Fig. 2.10) and Cf(•),
Sf(•) the Fresnel integrals given in (A.14). The center of the CC circle xc can
be obtained by

1xc =

(
1xc
1yc

)
=

(
1x̌i − 1κ̌i

−1 sin(1θ̌i)

1y̌i + 1κ̌i
−1 cos(1θi)

)
, (2.17)

and its outer radius r by

r = ‖1xc‖2 . (2.18)

Rotating x̌i by δ − 2δmin on a circle with radius κ−1
max and center xc yields the

second intermediate state x̌j as

1x̌j =


1x̌j
1y̌j

1θ̌j
1κ̌j

 =


1xc + 1κ̌i

−1 sin(1θ̌i + gt(δ − 2δmin))

1yc − 1κ̌i
−1 cos(1θ̌i + gt(δ − 2δmin))

1θ̌i + gt(δ − 2δmin)

1κ̌i

 . (2.19)

The goal state x̌g can finally be calculated according to

1x̌g =


1x̌g
1y̌g

1θ̌g
1κ̌g

 =


1xc + tr sin(gt(δ + µ))

1yc − tr cos(gt(δ + µ))
gtδ
0

 , (2.20)

4Throughout this thesis, the minimal deflection δmin is assumed to be less than π/2, which
is typically fulfilled at low speeds. An extension to arbitrary minimal deflections can be
found in [208].

2.3 G2 Continuous Steering Functions 39

where the angle µ is given by

µ = gt arctan(1xc/1yc). (2.21)

Note that all states x̌(•) are given in the local frame 1 and can be transformed
to the inertial frame I (see Fig. 2.10) with

I x̌(•) =


I x̌s
I y̌s

I θ̌s
0

+


cos(I θ̌s) − sin(I θ̌s) 0 0

sin(I θ̌s) cos(I θ̌s) 0 0
0 0 1 0
0 0 0 1




1x̌(•)
1y̌(•)
1θ̌(•)
1κ̌(•)

 . (2.22)

As the regular and irregular CC turns always steer the vehicle to maximum
curvature, two special cases have to be considered (see Fig. 2.12) that result
in a shorter arc length for small deflections. In case there is no change in
orientation between the start and goal state, the CC turn reduces to a straight
line as visualized in Fig. 2.12(a). For 0 < δ < 2δmin, it is proposed in [53, 161]
to connect both states with an elementary path [159, 160] as illustrated in
Fig. 2.12(b).

1x
1y

Ix

Iy x̌s −µ

µ

xc

r κ−1
max

µ

x̌g

µ

(a) Straight line.

1x
1y

Ix

Iy x̌s −µ

µ

xc

r κ−1
max

x̌g

µ

δ/2

µ

x̌m

(b) Elementary path.

Figure 2.12 Two special cases of the CC turn for small deflections: a straight line
for δ = 0 and an elementary path for 0 < δ < 2δmin.

The main idea of such an elementary path is to connect both vehicle states
with two symmetric clothoids that satisfy the constraints of the CC car. It
is shown in [160, 161] that a unique solution to this problem exists in the

40 2 Steering Functions for Car-Like Robots

interval 0 < δ < 2δmin if δmin is smaller than ≈ 0.7313π. The curvature rate
σ0 of the two clothoids can then be explicitly computed according to

σ0 =
π(cos(δ/2)Cf(

√
δ/π) + sin(δ/2)Sf(

√
δ/π))2

(r sin(δ/2 + µ))2 . (2.23)

Fig. 2.13 visualizes both the curvature rate and the curvature profile of an
elementary path.

−σmax

σmax

σ0

−σ0

σ̌

√
δ
σ0

š√
δ
σ0

√
δ
σ0

(a) Curvature rate profile.
−κmax

κmax√
δσ0

κ̌

−
√
δσ0

√
δ
σ0

š√
δ
σ0

√
δ
σ0

(b) Curvature profile.

Figure 2.13 Curvature rate and curvature profile of an elementary path to the left.

It can be seen that such a path not only satisfies the vehicle’s constraints
given by σmax and κmax, but also yields a symmetric connection between
the start and goal state. This can also be observed in Fig. 2.12(b), where
the symmetry axis is marked by the line joining the circle center xc and the
intermediate state x̌m. The latter can be explicitly expressed in the local
frame 1 as

1x̌m =


1x̌m
1y̌m

1θ̌m
1κ̌m

 =


g
√
π/σ0Cf(

√
δ/π)

t
√
π/σ0Sf(

√
δ/π)

gtδ/2
t
√
δσ0

 . (2.24)

On the basis of the details given above, the arc length l(δ) of a CC turn can
now be derived. In the regular case, it is given by

l(δ) =


2r sin(µ), if δ = 0,

2
√
δ/σ0, if 0 < δ < 2δmin,

2lmin + κ−1
max(δ − 2δmin), if δ ≥ 2δmin,

(2.25)

where the length lmin of the clothoids are calculated as

lmin = κmax/σmax. (2.26)

2.3 G2 Continuous Steering Functions 41

The first two cases in (2.25) describe the length of a straight line and of
an elementary path while the third case gives the length of two clothoids
concatenated with a circular arc. Similarly, the arc length of an irregular
CC turn is defined by

l(δ) =


2r sin(µ), if δ = 0,

2
√
δ/σ0, if 0 < δ < 2δmin,

2lmin + κ−1
max(δ − 2δmin), if 2δmin ≤ δ ≤ 2δmin + π,

2lmin + κ−1
max(2π − δ + 2δmin), if δ > 2δmin + π,

(2.27)

where the fourth case accounts for the direction switches at the intermediate
states x̌i and x̌j . Note that using irregular rather than regular CC turns in the
computation of continuous curvature paths remains a design choice to the
user, which trades off path length against the number of direction switches.

2.3.1.3 Continuous Curvature Path

A CC path can now be computed such that it connects a given start and goal
state while satisfying the constraints of the CC car. This steering function is
called CC steer [53] and comes in two variants: CC-Dubins, which only allows
driving forwards or backwards, and CC-RS, which poses no constraint on the
driving direction. As indicated by their names, they extend both Dubins as
well as RS steer toG2 continuity. In the original publication [53], CC steer only
connects start and goal states with zero curvature, in the following referred
to as CC00-Dubins and CC00-RS. As this is a rather strong limitation, the
extension in Sec. 2.3.3 describes a novel way that also takes into account the
actual curvature at both ends of the path. Before that, a better understanding
of the original computation steps is required, which are briefly outlined in
the following on the basis of CC00-RS steer.

Given a start state x̌s and a goal state x̌g, both with zero curvature, four
CC circles are fitted to each state such that all possible driving and turning
directions of the CC car are covered. This is visualized in Fig. 2.14, where
each circle center is obtained according to (2.17). As it can be seen in this
figure, the initial gear of the vehicle at the start and goal state is abbreviated
by gi=1:4 and gj=5:8 and its initial turning direction by ti=1:4 and tj=5:8. As both
states are treated equally, it is required to invert gj when deriving the actual
driving direction on the goal circle.

In the next computation step, candidate paths have to be constructed using
CC turns, straight lines, and tangency conditions to concatenate them. Op-

42 2 Steering Functions for Car-Like Robots

x̌s

x̌g

xc,1

xc,2xc,3

xc,4

xc,5

xc,6

xc,7

xc,8

g1 = +1

t1 = +1

g2 = +1

t2 = −1

g3 = −1

t3 = +1

g4 = −1

t4 = −1

g5 = +1

t5 = +1

g6 = +1

t6 = −1

g7 = −1

t7 = +1

g8 = −1

t8 = −1

Figure 2.14 Four CC circles fitted to the start and goal state. Each circle accounts
for a different driving and turning direction of the vehicle at the respective state.

posed to Dubins and RS steer, the shortest connection cannot be expressed
by a closed set of candidate paths anymore as the solution might require
an infinite number of clothoids. Thus, it is proposed in [53] to construct
the candidate paths based on the Dubins and RS families given in Tab. 2.1
and Tab. 2.2. Depending on the available computation time, additional fami-
lies [52] can be added, which might further reduce the length of the computed
paths. Therefore, CC-RS steer is evaluated throughout this thesis with the
families listed in Tab. 2.3, and CC-Dubins steer with the Dubins families
given in the first column of that table.

Each family in Tab. 2.3 comes with a set of existence conditions that allow
to quickly assess whether a start and a goal circle can be connected by the
respective family. For instance, the existence conditions for CC|C can be
derived as

gi · gj !
= +1, (2.28a)

ti · tj !
= +1, (2.28b)

2r(1− cos(µ))
!
≤
∥∥xc,j − xc,i

∥∥
2

!
≤ 2r(1 + cos(µ)), (2.28c)

where the first and second equation condition the driving and turning di-
rection on the start and goal circle, and the third equation defines a valid

2.3 G2 Continuous Steering Functions 43

Table 2.3 CC-RS families, where C describes a CC turn, S a straight line, and | a
direction switch.

Dubins families Additonal RS families Additional families

CSC CC|C CS|C
CCC C|CC C|SC

C|C|C C|S|C
CSC|C
C|CSC
CC|CC
C|CC|C
C|CSC|C

interval between both circle centers. If all three conditions are fulfilled, a
candidate path can be constructed. This is, for instance, visualized in Fig. 2.15
for a candidate of the family CC|C.

Ix
Iy

x̌s

x̌g

xc,2

xc,9
xc,6

2r cos(µ)

d

1x
1y

Figure 2.15 Extension of Fig. 2.14 with a CC00-RS candidate path based on the
family CC|C. The existence condition in (2.28c) can be verified by unrolling the start
CC circle on the circle in the middle such that the distance d is mini-/maximized.

It can be seen that three CC turns are concatenated to a curvature continu-
ous path that includes one direction switch. The geometric relations between
the CC circles allow to compute the unknown circle center xc,9 =

(
xc,9 yc,9

)ᵀ

44 2 Steering Functions for Car-Like Robots

in the local frame 1 (see Fig. 2.15) according to

1xc,9 =
4r2(1− cos2(µ)) + d2

2d
, (2.29a)

1yc,9 =
√

4r2 − 1x
2
c,9, (2.29b)

where the law of cosines and the Pythagorean theorem are used. The overall
length of a candidate path can now be computed by summing up the arc
length of the CC turns and the length of the straight line, if one is contained
within the respective family. This procedure has to be repeated for all possible
candidate paths of all families. Additional information about the existence
conditions of the other families including illustrations of possible candidate
paths can be found in [68].

Having computed all candidates, CC steer selects the one with the minimal
length as an approximation of the shortest connection. Additionally, it derives
the inputs ǔk that steer the CC car to the goal. This is implemented in [208]
for the steering procedures CC00-Dubins and CC00-RS. A visualization of two
example paths with the same start and goal pose (position and orientation)
as in Fig. 2.6 and Fig. 2.9 is displayed in Fig. 2.16.

(a) CC00-Dubins path. (b) CC00-RS path.

Figure 2.16 Two illustrations of the shortest path approximation for a CC car that
only moves forwards (a) and both forwards and backwards (b). The colors have the
same meaning as in Fig. 2.6 and Fig. 2.9.

It can be observed that CC00-Dubins steer chooses the family CCC to
connect both states while CC00-RS steer further optimizes the path length

2.3 G2 Continuous Steering Functions 45

by selecting the family CSC|C. The selected families are similar to the ones
chosen by Dubins and RS steer in Fig. 2.6 and Fig. 2.9. This is, however, not
always the case and depends on the two given states and the parameters
of the vehicle. In addition to that, the track of the front wheels in Fig. 2.16
reveals the G2 continuity of the computed CC paths. As a consequence, the
CC car can smoothly follow the computed path without having to deal with
curvature discontinuities as in the G1 continuous case.

Just as with Dubins and RS steer, it is left to discuss the completeness,
symmetry, and topological property [170] of CC steer. With respect to com-
pleteness, CC steer guarantees that a path exists for arbitrary start and goal
states with zero curvature. This can be verified by comparing the existence
conditions of all CC00-Dubins and CC00-RS families, which reveal that at least
one family can always be constructed. In contrast to that, symmetry and
the topological property can only be ensured by CC00-RS and not by CC00-
Dubins steer. This is not surprising as Dubins and RS steer show the same
characteristics. However, it has to be noted that in the case of CC00-RS steer,
satisfying the topological property requires the introduction of additional
so-called topological paths [53]. Further details can be found in Sec. 2.3.2.4.

Albeit the advantages of CC steer compared to its G1 continuous counter-
parts, three potential drawbacks remain:

(1) The computed bang-bang steering inputs (see Fig. 2.11(a) and Fig. 2.13(a))
require an infinite steering acceleration, which might violate the physical
limits of the actuator. Possible outcomes include a high mechanical
stress on the steering system as well as a potential deviation from the
calculated path when it is executed by the vehicle in closed loop.

(2) CC00-Dubins and CC00-RS steer are restricted to zero curvature at the
start and goal. This can be a significant limitation in the replanning
phase of a motion planner when the vehicle is in a state with non-zero
velocity and curvature.

(3) The CC car never allows to turn its wheels on the spot, which might
cause unnatural solutions in tight environments such as encountered in
parallel parking.

All three limitations are tackled in the following sections. A solution to (1)
can be found in Sec. 2.4, a solution to (2) in Sec. 2.3.3, and the next section
addresses the drawback stated in (3).

46 2 Steering Functions for Car-Like Robots

2.3.2 Hybrid Curvature Steer

As previously mentioned, maneuvering automated vehicles in tight environ-
ments without steering the wheels in place might result in unnatural paths
with many cusps. Observations have shown, however, that humans often
overcome this problem by allowing curvature discontinuities when switch-
ing the driving direction. This is one of the major motivations behind the
introduction of HC steer, a novel steering function for automated vehicles in
dense scenarios. HC steer enforces G2 continuity between direction switches,
but allows curvature discontinuity at cusps. By doing so, it computes directly
executable paths with less curvature discontinuities than RS steer and shorter
path length than CC steer.

The required computation steps of HC steer including its properties are out-
lined in the following sections: Sec. 2.3.2.1 introduces the HC car, Sec. 2.3.2.2
describes the so-called HC turns, and Sec. 2.3.2.3 outlines the computation
of a HC path. In addition to that, the topological property of HC steer is
discussed in Sec. 2.3.2.4.

2.3.2.1 Hybrid Curvature Car

Similar to the CC car, the so-called HC car moves on straight lines, clothoids,
and circular arcs. Its motion model is identical to the one of the CC car, which
constrains the maximum curvature as well as the maximum curvature rate
(see Sec. 2.3.1.1). At direction switches, however, the HC car allows to change
the curvature while the vehicle is not moving. In order to account for this
in the arc length dependent motion model (2.12), it is required to directly
modify the vehicle’s current curvature to the desired value. As a result, the
HC car behaves the same as the CC car between direction switches and acts
similar to the RS car at cusps.

An interesting question is whether the shortest path of the HC car can
be expressed similar to Dubins and RS steer with a closed set of families.
Unfortunately, the insights from the analysis of the CC car allow to conclude
that this is in general not the case. It can be verified by considering an
optimal path that contains no direction switch. In this case, it is known for
the CC car that: (1) if the start and goal state are far enough away from each
other, the shortest path contains a straight line [38, 158], and (2) if a straight
line is contained among other segments, an infinite number of clothoids are
required to describe the optimal solution [14, 158]. As the HC car behaves
the same as the CC car in the absence of cusps, the result that no closed-form

2.3 G2 Continuous Steering Functions 47

solution exists for this problem can be directly transferred to the HC car.
In order to still derive a computationally tractable solution, a shortest path
approximation is computed similarly to CC steer. This requires to introduce
HC turns next as one of HC steer’s basic components.

2.3.2.2 Hybrid Curvature Turns

The aim of this section is to introduce a novel curvature continuous turn
called HC turn that transitions the vehicle from a start state x̌s with zero
curvature to a goal state x̌g with maximum curvature. Such a turn can be
seen as a combination of a CC turn, which also enforces zero curvature at the
start state, and a RS turn, which terminates in a goal state with maximum
curvature, too. This hybrid approach allows to concatenate HC turns with
straight lines or other RS, CC, and HC turns such that curvature continuity
is enforced at the start state and curvature discontinuity at the goal state.
Thus, HC turns are an integral part of HC steer, which enforces curvature
continuity except at cusps.

Similar to RS and CC turns, HC turns use clothoids of maximum curvature
rate σmax and circular arcs of maximum curvature κmax to connect start and
goal. This can be seen in Fig. 2.17, where a clothoid steers the vehicle from
zero curvature at the start state x̌s to maximum curvature at the intermediate

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

δxc
r

κ−1
max

x̌g

(a) Regular HC turn.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

δxc

r κ−1
max

x̌g

(b) Irregular HC turn.

Figure 2.17 Visualization of a regular and irregular HC turn for a forward motion
to the left. Both turns connect the start state x̌s and the goal state x̌g with a clothoid
and a circular arc. The irregular turn results in a shorter connection for δ < δmin
and δ > δmin + π.

48 2 Steering Functions for Car-Like Robots

state x̌i. The goal state x̌g is then reached on a circular arc with radius κ−1
max.

The corresponding profiles of the curvature rate σ̌(š) and the curvature κ̌(š)
with respect to the arc length š are given in Fig. 2.18.

−σmax

σmax

σ̌

šκmax

σmax
δ−δmin

κmax

(a) Curvature rate profile.
−κmax

κmax

κ̌

šκmax

σmax
δ−δmin

κmax

(b) Curvature profile.

Figure 2.18 Curvature rate and curvature profile of a HC turn to the left. The
curvature profile is obtained by integrating the curvature rate along the arc length š.

Just as with CC turns, it is distinguished here between a regular and
irregular HC turn (see Fig. 2.17). As opposed to the regular turn, the irregular
one allows a direction switch at the intermediate state x̌i. This results in a
shorter arc length for δ < δmin and δ > δmin + π, where δmin is computed
according to (2.15). Note, however, that a single direction switch at x̌i inverts
the initial driving direction, which has to be taken care of when computing
HC paths.

Both HC turns in Fig. 2.17 can be completely described given the vehicle’s
initial gear g ∈ {−1, 1}, the desired turning direction t ∈ {−1, 1}, the start
state x̌s, and the deflection δ ∈ [0, 2π). For example, the circle center xc and
the outer radius r can be evaluated according to (2.17)–(2.18). The angle µ is
given by (2.21) and the intermediate state x̌i by (2.16). A rotation by δ − δmin
of x̌i on a circle with radius κ−1

max and center xc yields the goal state x̌g in the
local frame 1 as

1x̌g =


1x̌g
1y̌g

1θ̌g
1κ̌g

 =


1xc + 1κ̌i

−1 sin(1θ̌i + gt(δ − δmin))

1yc − 1κ̌i
−1 cos(1θ̌i + gt(δ − δmin))

1θ̌i + gt(δ − δmin)

1κ̌i

 , (2.30)

which can be transformed to the inertial frame I using (2.22).
The arc length l(δ) of a HC turn can now be derived. For a regular turn, it

2.3 G2 Continuous Steering Functions 49

is defined by

l(δ) =

{
lmin + κ−1

max(2π + δ − δmin), if δ < δmin,

lmin + κ−1
max(δ − δmin), if δ ≥ δmin,

(2.31)

where lmin is calculated according to (2.26). Note that small deflections (δ <
δmin) result in longer connections than large deflections (δ ≥ δmin). This is
due to the fact that the regular HC turn does not allow a direction switch
at x̌i. Thus, the vehicle is forced to go once all around the circle in order to
reach a goal state with δ < δmin. As opposed to that, the irregular HC turn
inverts the driving direction at x̌i for δ < δmin and δ > δmin + π resulting in

l(δ) =


lmin + κ−1

max(−δ + δmin), if δ < δmin,

lmin + κ−1
max(δ − δmin), if δmin ≤ δ ≤ δmin + π,

lmin + κ−1
max(2π − δ + δmin), if δ > δmin + π.

(2.32)

Notice, however, that a single direction switch on a HC turn has to be kept
in mind when constructing HC paths, which are supposed to only allow
curvature discontinuities at cusps. This requires a case-by-case analysis to
determine whether a regular HC turn can be replaced by an irregular one
without violating the definition of HC steer.

2.3.2.3 Hybrid Curvature Path

This section details the computation steps of HC steer, a novel steering
function that enforces curvature continuity except at cusps. The computed
HC path minimizes path length and satisfies the constraints of the HC car.
As this steering function can only be applied to vehicles that move both
forwards and backwards, it is also denoted as HC-RS steer. Its computation
is explicitly detailed in the following paragraphs for HC00-RS, which enforces
zero curvature at both the start and the goal state. This limitation is then
removed in Sec. 2.3.3.

Given a start state x̌s and a goal state x̌g, both with zero curvature, four
HC circles are fitted to each state by iterating over all possible driving and
turning directions. This can be seen in Fig. 2.19, where the center of each
HC circle is computed according to (2.17). The variables gi=1:4 and gj=5:8

denote the vehicle’s initial gear at the start and goal state while ti=1:4 and
tj=5:8 describe its turning direction at the respective state. Similar to CC steer,

50 2 Steering Functions for Car-Like Robots

x̌s

x̌g

xc,1

xc,2

xc,3

xc,4

xc,5

xc,6

xc,7

xc,8

g1 = +1

t1 = +1

g2 = +1

t2 = −1

g3 = −1

t3 = +1

g4 = −1

t4 = −1

g5 = +1

t5 = +1
g6 = +1

t6 = −1

g7 = −1

t7 = +1

g8 = −1

t8 = −1

Figure 2.19 Four HC circles fitted to the start and goal state. Each circle describes
a different driving and turning direction of the vehicle at the respective state.

it has to be noted that the vehicle’s actual driving direction on the goal circle
is inverse to gj .

Next, candidate paths are computed that minimize path length while
fulfilling the desired properties of HC steer. In contrast to Dubins and RS steer,
the shortest path for the HC car can generally not be described by a finite set
of candidate paths (see Sec. 2.3.2.1). To still obtain a computationally tractable
solution, it is therefore proposed to construct candidate paths on the basis of
the same heuristically selected families as CC-RS steer (see Tab. 2.3).

It is known that each family in Tab. 2.3 comes with a set of existence
conditions. They allow to quickly determine which of the four start and
goal HC circles (see Fig. 2.19) can be connected by the respective family. For
instance, the existence conditions of C|CC are defined as

gi · gj !
= +1, (2.33a)

ti · tj !
= +1, (2.33b)

2(r − κ−1
max)

!
≤
∥∥xc,j − xc,i

∥∥
2

!
≤ 2(r + κ−1

max). (2.33c)

The first two conditions in (2.33) formulate a constraint on the initial and final
driving and turning direction. Opposed to that, the third condition gives a
valid interval between the center of the circles xc,i=1:4 and xc,j=5:8. Only if all

2.3 G2 Continuous Steering Functions 51

three conditions are fulfilled, a candidate path of the respective family can
be constructed between two HC circles. As these existence conditions are
essential for a fast implementation of HC steer, they are listed for all families
in Sec. A.2.

Now, straight lines as well as RS, CC, and HC turns are used to construct
candidate paths on the basis of the given families and the definition of
HC steer. For instance, Fig. 2.20 illustrates such a candidate path of the family
C|CC.

Ix
Iy

x̌s

x̌g

xc,3

xc,9

xc,7
d

1x
1y

Figure 2.20 Extension of Fig. 2.19 with a HC00-RS candidate path based on the
family C|CC. The existence condition in (2.33c) can be verified by unrolling the start
HC circle on the circle in the middle such that the distance d is mini-/maximized.

It can be seen that the computed path consists of two HC turns and one
CC turn at the end. Thus, the steering procedure enforces curvature continu-
ity everywhere except at the cusp as required by the definition of HC steer. In
this example, the unknown circle center xc,9 =

(
xc,9 yc,9

)ᵀ can be computed
in the local frame 1 (see Fig. 2.20) as

1xc,9 =
4(κ−2

max − r2) + d2

2d
, (2.34a)

1yc,9 =
√

4κ−2
max − 1x

2
c,9, (2.34b)

where the law of cosines and the Pythagorean theorem are used. The overall
path length can now be derived by adding the arc length of the turns to the
length of the straight line, if one is contained within the respective family.
These steps have to be repeated for all possible candidate paths of all families,

52 2 Steering Functions for Car-Like Robots

which are further detailed in Sec. A.2. HC steer finally selects the candidate
path with the minimal length and returns the corresponding inputs that move
the vehicle to the goal. The resulting path is an approximation of the shortest
path problem for the HC car with zero curvature at the start and goal.

The previously described steering function HC00-RS enforces zero curva-
ture at both ends of the path. Modifications to the start and/or the goal circle
allow to also realize the steering functions HC0±-, HC±0-, and HC±±-RS,
where the superscript denotes the curvature at the start and goal (zero or
±κmax). For instance, HC0±-RS steer denotes a steering procedure that starts
with zero curvature and terminates with either ±κmax depending on the
shorter path length. An implementation of all four steering functions can be
found in [208] and an exemplary visualization of HC00- and HC±±-RS steer
in Fig. 2.21.

(a) HC00-RS path. (b) HC±±-RS path.

Figure 2.21 Visualization of two shortest path approximations for a HC car. The
illustrated paths are once computed for zero curvature at the start and goal state (a)
and once for either ±κmax at both states (b). The colors are adopted from Fig. 2.9.

Both images highlight the nature of HC steer: computation of paths that
enforceG2 continuity everywhere except at cusps. This can be seen by looking
at the track of the front wheels in Fig. 2.21. As a result, HC steer is closely
related to RS steer at cusps (see Fig. 2.9) and to CC-RS steer everywhere else
(see Fig. 2.16(b)).

Further important questions are whether HC steer is complete and sym-
metric, and whether it fulfills the topological property [170]. With respect to
completeness, all four derivatives of HC steer, namely HC00-, HC0±-, HC±0,

2.3 G2 Continuous Steering Functions 53

and HC±±-RS are complete. This can be verified by comparing the exis-
tence conditions of the families used for the computation of the candidate
paths [208]. The symmetry analysis of RS steer in Sec. 2.2.2.2 can be directly
transferred to HC00- and HC±±-RS steer allowing to conclude that both steer-
ing functions are symmetric. In contrast to that, HC0±- and HC±0-RS steer
cannot fulfill this property due to the different curvatures at both ends of the
path. Regarding the topological property of HC steer, a discussion can be
found in the next section.

2.3.2.4 Topological Property

Integrating a steering function into a (probabilistically) complete motion
planner, such as RRT*, raises the question whether completeness can be
preserved for the resulting combination. On the basis of [170], it is known
that such a combination remains complete if the steering function respects the
topological property. In order to proof that this is the case, it has to be shown
that the steering function fulfills the underlying definition given in [170] as

∀ε > 0,∃η > 0 such that ∀x̌s ∈ Rn,

∀x̌g ∈ B(x̌s, η)⇒ steer(x̌s, x̌g) ∈ B(x̌s, ε),
(2.35)

where ε and η are scalar values that describe the radius of a ballB(•) centered
at the given start configuration x̌s, and steer(•) denotes the steering function
that outputs a feasible connection from the start to the goal state. Within this
context, it has to be noted that steer(•) is not restricted to a single steering
function call, but rather allowed to concatenate multiple steering procedures
in order to fulfill the given condition.

In other words, (2.35) says that a steering function fulfills the topological
property if all states in an η-neighborhood can be reached by a path that
completely remains within an ε-region. This allows to immediately conclude
that all steering functions whose path length is lower bounded can not fulfill
the topological property. Combining such steering functions with a motion
planner yields an incomplete algorithm that might not be able to solve a
feasible planning problem.

Out of the previously discussed G2 continuous steering functions, HC±±-
RS steer directly fulfills the topological property without any further modi-
fication. The same can be guaranteed for the other derivatives of HC steer
and for CC00-RS steer if additional so-called topological paths [53] are intro-
duced. Otherwise, the path length of these steering functions would be lower

54 2 Steering Functions for Car-Like Robots

bounded and thus violate the topological property as discussed above. While
more information on this and the topological paths can be found in [53], the
following paragraphs focus on HC±±-RS steer and its ability to satisfy the
topological property without such an extension.

Remember that HC±±-RS steer computes hybrid curvature paths by evalu-
ating the families in Tab. 2.3 and enforcing ±κmax at the start and goal. An
in-depth analysis of the families shows that in this setup, both C|C|C and
C|S|C only contain RS turns and no CC or HC turns. The advantage of
RS turns is that they do not possess a lower bound on the arc length (com-
pare (2.7), (2.25), and (2.31)) making them suitable candidates for paths that
respect (2.35). Indeed, it can now be shown that the families C|C|C and
C|S|C are sufficient in the HC±±-RS case to satisfy the topological property.

To this end, an η-neighborhood must be derived such that (2.35) can be
fulfilled. Without loss of generality, the following two assumptions are made.
First, the dimension n in (2.35) is set to three and the curvature at the start
and goal state is neglected. This simplification is allowed in path planning
as the vehicle can always be brought to a stop in order to adjust the wheels
to the desired value [53]. Second, it is assumed similar to [53] that the goal
state x̌g =

(
x̌g y̌g θ̌g

)ᵀ
, where x̌g ∈ B(x̌s, η), is reached from the start state

x̌s =
(
0 0 0

)ᵀ in three steps: (1) reorient the vehicle to the first intermediate
state x̌i =

(
0 0 θ̌i

)ᵀ
(see Fig. 2.22(a)), (2) move it laterally to the second

intermediate state x̌j =
(
x̌g y̌g θ̌i

)ᵀ
(see Fig. 2.22(b)), and (3) apply another

reorientation similar to (1) in order to reach the terminal state x̌g.
The reorientation path in Fig. 2.22(a) is given by the family C|C|C of

HC±±-RS steer. It moves the vehicle on three consecutive RS turns from x̌s
to x̌i without leaving the circle with radius 0 < rreo ≤ min (ε, κ−1

max). The
deflections δ1, δ7, and δ9 on those three circles can be computed analytically
as

δ1(rreo) = δ7(rreo) = 2 arcsin
(rreoκmax

2

)
, (2.36a)

δ9(rreo) = 2 arccos

 κ−1
max + rreo sin(δ1/2)√

r2
reo + κ−2

max + 2rreoκ
−1
max sin(δ1/2)

 . (2.36b)

In other words, given an arbitrary intermediate orientation θ̌i ∈ [−π, π), one
can always find a radius rreo > 0 that allows to reach θ̌i without leaving the
ε-bound. Note that if ε < κ−1

max, it might be required to concatenate multiple
reorientation paths to end up at θ̌i. Additionally, it has to be mentioned that

2.3 G2 Continuous Steering Functions 55

x̌sx̌i

xc,1

xc,9

xc,7

ε rreo

(a) Reorientation path.

x̌i

x̌j

xc,1

xc,8

ε

rlat dlat

(b) Lateral path.

Figure 2.22 Illustration of a reorientation and a lateral path. The reorientation
path moves the robot on three RS turns from x̌s to x̌i without leaving the circle with
radius rreo. In contrast to that, the lateral path uses two RS turns and one straight
line to shift the vehicle sideways to x̌j while remaining within the circle of radius rlat.
Notice that both paths are derivatives of HC±±-RS steer’s families C|C|C and C|S|C.
Furthermore, it has to be noted that x̌i describes the same vehicle pose in both images
(only aligned horizontally in (b) for better readability).

due to the symmetry of the family C|C|C, negative orientations can also be
realized by starting with a right turn instead of a left turn as in Fig. 2.22(a).

Now that it is shown that there always exists an η-neighborhood for the
reorientation of the car, the same must be true for its lateral displacement.
This requires an in-depth analysis of the lateral path visualized in Fig. 2.22(b).
The general goal of such a path, which belongs to HC±±-RS steer’s family
C|S|C, is to shift the vehicle sideways from x̌i to the parallel vehicle pose x̌j
without leaving the circle with radius 0 < rlat ≤ ε. To achieve this, the
deflections δ1 = δ8 on the two RS turns in Fig. 2.22(b) can be computed by
solving

r2
latκ

2
max

4
=

4 sin4(δ1/2)

cos2(δ1)
+

4 sin4(δ1/2)

cos(δ1)
+ sin2(δ1/2). (2.37)

The right hand side of (2.37) describes a monotonously increasing curve for
δ1 ∈ [0, π/2) that takes a value of zero for δ1 = 0 and goes to +∞ as δ1 → π/2.
Therefore, it can be concluded that a numerical root finding algorithm can
always solve (2.37) for arbitrary values of rlat. The displacement dlat of such a

56 2 Steering Functions for Car-Like Robots

lateral path (see Fig. 2.22(b)) can now be computed as

dlat(rlat) =
4 sin2(δ1/2)

κmax cos(δ1)
. (2.38)

As a result, the lateral path allows to shift the vehicle sideways to arbitrary
vehicle states x̌j , which are no further than dlat(rlat = ε) away from x̌i. The
resulting vehicle motion is guaranteed to lie within the ε-bound due to the
definition of the lateral path.

Now that the vehicle has reached the second intermediate state x̌j =(
x̌g y̌g θ̌i

)ᵀ
, another reorientation similar to the one in Fig. 2.22(a) can be

applied to finally reach the goal x̌g. Here, it only has to be considered that the
vehicle is not at the center of the ε-ball anymore, which requires to constrain
rreo in this step to 0 < rreo ≤ min(ε− dlat, κ

−1
max).

In summary, the previous analysis shows that the concatenation of mul-
tiple reorientation paths with a single lateral path allows to reach all states
x̌g ∈ B(x̌s, η), where η = dlat(rlat = ε). Furthermore, it is guaranteed by the
definition of both the reorientation as well as the lateral path that the result-
ing vehicle motion remains within the given ε-region. As these two paths
are natively integrated into the computations of HC±±-RS steer, it can be
concluded that this steering function fulfills the topological property without
any further modification.

2.3.3 Arbitrary Start and Goal Curvatures

While the previously described G2 continuous steering functions restrict the
curvature at both ends of the path to zero or ±κmax, this section presents
a novel approach that removes this limitation. Thus, the general goal is to
compute a shortest path approximation for the CC or HC car with arbitrary
start and goal states. This capability is especially required in the replanning
phase of a motion planner when the vehicle is in a state with non-zero velocity
and curvature. Another application is the goal extension in search-based
planners (see Fig. 2.2(c)) that solve the motion planning problem in the G2

continuous state-action space.
The required computation steps that extend both CC and HC steer to

arbitrary start and goal curvatures are detailed in this section on the basis
of CC-Dubins steer (forward motion only). A transfer to CC-RS and HC-
RS steer is directly possible. Note that the naming of the steering functions
without superscript denotes the case with arbitrary start and goal curvatures.

2.3 G2 Continuous Steering Functions 57

The general idea in this section consists of three steps: (1) propagate the
start state x̌s =

(
x̌s y̌s θ̌s κ̌s

)ᵀ
and the goal state x̌g =

(
x̌g y̌g θ̌g κ̌g

)ᵀ
to

zero and maximum curvature using (2.12), (2) connect all combinations of
these new states with a shortest path approximation, and (3) select the path
with the overall minimum length. As a result, the transformation in (1) allows
to apply the efficientG2 continuous solutions from the previous sections in (2).
A visualization of the first step can be found in Fig. 2.23.

x̌s

x̌g
x̌s,2

x̌g,1

x̌s,1

x̌g,2

Figure 2.23 Propagation of the start state x̌s and the goal state x̌g to the intermediate
states x̌s,i=1:2 and x̌g,j=1:2 with zero and maximum curvature.

Here, the start state x̌s is propagated forwards on two clothoids of maxi-
mum curvature rate ±σmax until they reach the two novel states

x̌s,1 =
(
x̌s,1 y̌s,1 θ̌s,1 sgn(κs)κmax

)ᵀ
, (2.39a)

x̌s,2 =
(
x̌s,2 y̌s,2 θ̌s,2 0

)ᵀ
, (2.39b)

The usage of clothoids of maximum curvature rate is motivated by the fact
that they are along with circles and straight lines the components of the
shortest-path solution (see Sec. 2.3.1.1). The same approach is used to propa-
gate the goal state x̌g backwards resulting in

x̌g,1 =
(
x̌g,1 y̌g,1 θ̌g,1 sgn(κg)κmax

)ᵀ
, (2.40a)

x̌g,2 =
(
x̌g,2 y̌g,2 θ̌g,2 0

)ᵀ
. (2.40b)

Note that if the vehicle is allowed to move both forwards and backwards, the
start and the goal state also have to be propagated forwards and backwards
resulting in a total of eight new states.

In order to connect the derived states, the steering functions CC00-, CC0±-,
CC±0, and CC±±-Dubins are required. While CC00-Dubins is already known
from Sec. 2.3.1.3, the other three steering functions with maximum curvature
at the start and/or the goal can be derived in a similar way using HC turns.
The reader is referred to [208] for an implementation.

58 2 Steering Functions for Car-Like Robots

x̌s

x̌g
x̌s,2

x̌g,1

Figure 2.24 Connection of x̌s,2 and x̌g,1 from Fig. 2.23 with CC0−-Dubins steer.

An extension of Fig. 2.23 with a shortest path approximation between
x̌s,2 and x̌g,1 is shown in Fig. 2.24. It can be seen that the computed path of
CC0−-Dubins steer connects both states with a CC turn, a straight line, and
a HC turn at the end. Similar connections can be computed for the other
intermediate start and goal states using one of the steering functions listed
above.

At the end, the path with the overall minimal length is selected as an
approximation of the shortest path for the CC-Dubins car. This procedure is
provided as open source for CC-Dubins and HC-RS steer in [208], and two
example paths are visualized in Fig. 2.25.

(a) CC-Dubins path. (b) HC-RS path.

Figure 2.25 Visualization of a shortest path approximation for a CC car that only
moves forwards (a) and a HC car that moves both forwards and backwards (b). The
curvature at the start and goal is randomly chosen, and the colors are adopted from
Fig. 2.6 and Fig. 2.9.

2.3 G2 Continuous Steering Functions 59

Analyzing the track of the front wheels in both images shows that the
computed paths now take into account the randomly selected curvature at
the start and goal. This can also be seen by comparing the two results in
Fig. 2.25 with the corresponding counterparts in Fig. 2.16 and Fig. 2.21, which
either enforce zero or maximum curvature at both ends of the path. It can
also be observed that apart from the extension to arbitrary curvatures, the
steering functions keep their properties, namely the computation of directly
executable G2 continuous paths. The computational effort of the presented
concepts along with a benchmark against the G1 continuous counterparts is
highlighted in the next section.

2.3.4 Experimental Evaluation

The previously described G1 and G2 continuous steering functions are bench-
marked in this section with regard to computation time, path length, and
curvature discontinuities. Every steering function is evaluated on 105 random
steering procedures with κmax = 1 m−1 and σmax = 1 m−2. The vehicle’s start
and goal position is uniformly sampled within a 20 m× 20 m area, and the
corresponding heading angle is randomly chosen from the interval [0, 2π). If
the steering function also takes into account the start and the goal curvature,
a random value between [−κmax,+κmax] is selected as the initial and final cur-
vature. Additionally, irregular CC and HC turns are allowed to be deployed
in the computation of the G2 continuous paths. The presented results are
based on the open-source implementation in [208], which is executed on a
single core of an Intel Xeon E5@3.5 GHz. Note, however, that the underlying
computations are well suited for parallel computing because the families of
each steering function can be evaluated independently.

Tab. 2.4 shows the average computation time of the G1 and G2 continuous
Dubins steering functions. Remember that in the curvature continuous case,
a superscript denotes a restriction of the initial and final curvature to the
indicated values.

It can be seen in Tab. 2.4 that all steering functions can be evaluated on
average below 14.69 µs with a maximum standard deviation of 3.88 µs. Du-
bins steer performs on average about four times faster than CC00-Dubins and
about one order of magnitude faster than CC-Dubins. This is because the
CC approach comes with an increase in complexity, such as the evaluation of
CC turns including the numerical approximation of the Fresnel integrals. The
difference in computation time between CC00-Dubins and CC-Dubins is due

60 2 Steering Functions for Car-Like Robots

Table 2.4 Average computation time of the G1 and G2 continuous Dubins steering
functions.

computation time

mean [µs] std [µs]

Dubins 1.29 ±0.65
CC±±-Dubins 7.16 ±2.98
CC±0-Dubins 5.70 ±1.85
CC0±-Dubins 5.51 ±1.72
CC00-Dubins 4.90 ±1.67
CC-Dubins 14.69 ±3.88

to the fact that CC-Dubins requires four independent steering procedures to
connect the intermediate start and goal states as described in the previous
section. The other G2 continuous Dubins steering functions with maximum
curvature at the start and/or the goal perform about as fast as CC00-Dubins.
The reason for this is that they only require to replace the initial and/or the
final CC circle with a HC circle to achieve the desired behavior.

The path length comparison in Fig. 2.26(a) visualizes how well the CC-
Dubins steering functions approximate the provably shortest connections of
Dubins steer. It can be observed that start and goal states with maximum
curvature better approximate the shortest path length than states with either
zero or arbitrary curvature. For instance, the length of the CC±±-Dubins
paths deviate in approximately 70 % of the 105 steering procedures less than
5 % from the length of the optimal Dubins paths. In contrast to that, only
about 20 % of the CC00-Dubins paths achieve this 5 % path length deviation.
The reason for this is that the Dubins paths typically start and end with±κmax
similar to the paths computed by CC±±-Dubins steer. As opposed to this,
the CC00-Dubins paths generally steer the vehicle from zero to maximum
curvature first and back to zero curvature at the destination (see Fig. 2.16(a)).
These additional transitions at both ends of the path finally result in an overall
higher path length compared to the steering functions CC±±-, CC±0-, and
CC0±-Dubins.

As previously mentioned, the major disadvantage of Dubins steer is that
its paths are discrete in curvature. This may result in up to two curvature
discontinuities at the concatenation of the geometric primitives as it can be
seen in Fig. 2.26(b). In contrast to that, the greatest strength of CC-Dubins

2.3 G2 Continuous Steering Functions 61

0 10 20 30 40
0

20

40

60

Rel. diff. in path length to Dubins [%]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]
CC±±-D
CC±0-D
CC0±-D
CC00-D
CC-D

(a) Path length comparison.

0 1 2 3 4
0

20

40

60

80

100

Curvature discontinuities [-]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

Dubins
CC±±-D
CC±0-D
CC0±-D
CC00-D
CC-D

(b) Curvature discont. comparison.

Figure 2.26 Benchmark of the G2 continuous Dubins (D) steering functions against
their G1 continuous counterpart with respect to path length (a) and curvature dis-
continuities (b).

steer is that it enforces curvature continuity along the entire path. As a result,
the computed G2 continuous paths can be directly executed by a vehicle
without having to deal with curvature discontinuities.

A similar evaluation as for the Dubins steering functions is conducted for
theG1 andG2 continuous RS steering functions below. The current implemen-
tation in [208] includes RS steer, all derivatives of HC steer, and CC00-RS steer
as initially introduced in [53] without topological paths. Tab. 2.5 lists the
corresponding average computation times.

In contrast to the Dubins steering functions, the vehicle is now allowed
to move both forwards and backwards. It can be seen in Tab. 2.5 that this
results in higher computation times as more families with a higher complexity
have to be evaluated. For instance, RS steer is about seven times and CC00-
RS steer about eleven times slower than their corresponding counterpart
in Tab. 2.4. While the evaluation of RS steer only takes on average 7.34 µs,
the mean computation time of HC-RS steer with arbitrary start and goal
curvatures raises to 449.89 µs. The reason for this is that the procedure
described in Sec. 2.3.3 requires to connect four intermediate start states with
four intermediate goal states. This results in 16 steering procedures, which
are currently evaluated independently. However, some of these steering
procedures compute the same candidate paths leaving room for further
optimization in the future.

62 2 Steering Functions for Car-Like Robots

Table 2.5 Average computation time of the G1 and G2 continuous RS steering
functions.

computation time

mean [µs] std [µs]

RS 7.34 ±1.69
HC±±-RS 55.71 ±9.49
HC±0-RS 53.82 ±8.25
HC0±-RS 47.59 ±7.52
HC00-RS 53.74 ±7.87
HC-RS 449.89 ±67.15
CC00-RS 53.19 ±7.93

Tab. 2.5 also illustrates the variations in computation time measured by
the standard deviation. The reason for these variations is that each of the
underlying families (see Tab. 2.2 and Tab. 2.3) comes with a set of existence
conditions that determine whether it can be evaluated for a given start and
goal state. In general, less valid families lead to the evaluation of less candi-
date paths and thus to faster computations. Conversely, more valid families
increase the computation time. Tab. 2.5 shows that the standard deviation is
generally higher for the G2 continuous steering functions as the computation
of a candidate path is more complex than in the G1 continuous case.

A comparison of the path length computed by theG1 andG2 continuous RS
steering procedures is visualized in Fig. 2.27(a). It is shown that all derivatives
of HC steer approximate the length of the provably shortest RS path better
than CC00-RS steer. This is due to the fact that similar to RS steer, HC steer
allows curvature discontinuities at direction switches, which is not permitted
by CC00-RS steer. The latter requires transitions to zero curvature at cusps
resulting in longer paths. As previously discussed, theG2 continuous steering
functions with maximum curvature at the start and/or the goal state yield a
shorter path length compared to their counterpart with zero curvature at both
ends of the path. For instance, more than 80 % of the 105 computed HC±±-RS
paths are less than 5 % longer than the respective RS path. In contrast to that,
only about 50 % of the HC00-RS paths achieve such a 5 % deviation.

While RS steer outperforms the G2 continuous steering functions with
respect to computation time and path length, the G1 continuous paths suffer

2.3 G2 Continuous Steering Functions 63

0 10 20 30 40
0

20

40

60

80

Rel. diff. in path length to RS [%]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]
HC±±-RS
HC±0-RS
HC0±-RS
HC00-RS
HC-RS
CC00-RS

(a) Path length comparison.

0 2 4 6
0

20

40

60

80

100

Curvature discontinuities [-]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

RS
HC±±-RS
HC±0-RS
HC0±-RS
HC00-RS
HC-RS
CC00-RS

(b) Curvature discont. comparison.

Figure 2.27 Benchmark of the G2 continuous RS steering functions against their G1

continuous counterpart with respect to path length (a) and curvature discontinu-
ities (b).

from up to four curvature discontinuities as shown in Fig. 2.27(b). In contrast
to that, the major advantage of CC00-RS steer is that it enforces curvature
continuity along the entire path. A trade-off between path length and the
number of curvature discontinuities is made by the derivatives of HC steer,
whose paths mostly contain none or just one curvature discontinuity. As a
result, the G2 continuous steering functions compute smoother paths than
RS steer. Furthermore, these paths can be directly executed without having
to cope with curvature discontinuities between direction switches as in the
G1 continuous case.

The last benchmark in this section evaluates the influence of the additional
families CS|C, C|SC, and C|S|C (see Tab. 2.3) on the performance of the
G2 continuous RS steering functions. Excluding these families from the
evaluations reduces the computation time of HC-RS steer by about 80 µs
compared to Tab. 2.5. All other G2 continuous RS steering functions only see
a 7.7 µs improvement compared to the previous benchmark.

Regarding the path length and the curvature discontinuities, the impact
of excluding the additional families from the computations is shown in
Fig. 2.28. A comparison of Fig. 2.27 and Fig. 2.28 shows that the additional
families mainly influence the results of HC±±-, HC±0-, and HC0±-RS steer.
For instance, the number of HC±±-RS paths that deviate less than 5 % in
path length from the RS solution drops by about 10 %. At the same time, the

64 2 Steering Functions for Car-Like Robots

0 10 20 30 40
0

20

40

60

80

Rel. diff. in path length to RS [%]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

HC±±-RS
HC±0-RS
HC0±-RS
HC00-RS
HC-RS
CC00-RS

(a) Path length comparison.

0 2 4 6
0

20

40

60

80

100

Curvature discontinuities [-]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

RS
HC±±-RS
HC±0-RS
HC0±-RS
HC00-RS
HC-RS
CC00-RS

(b) Curvature discont. comparison.

Figure 2.28 Benchmark of the G2 continuous RS steering functions against their
G1 continuous counterpart, where CC and HC steer are evaluated without the
additional families CS|C, C|SC, and C|S|C (see Tab. 2.3).

number of HC±±-RS steering procedures without curvature discontinuities
increases by 10 %. As a consequence, excluding the additional families from
the computations might require the steering function to select an alternative
candidate path with possibly higher path length, but potentially also fewer
direction switches. Note that these results may vary for vehicles with different
parameters and must therefore be evaluated on a case-by-case basis.

Briefly summarized, the results in this section show that HC steer computes
smoother paths than RS steer and outperforms CC steer with respect to
path length. While the computation times of both HC and CC steer are
similar, enforcing G2 continuity increases the computing effort compared to
the simpler G1 continuous case. Future implementations could, however,
leverage the parallelizability of the underlying problem and by doing so,
decrease the computation times of both theG1 and theG2 continuous steering
functions.

2.4 G3 Continuous Steering Functions

One of the drawbacks of the previously computed G2 continuous paths are
the bang-bang steering inputs, which require an infinite steering acceleration.
This might not only result in a high mechanical stress on the steering system,

2.4 G3 Continuous Steering Functions 65

but also in a violation of the actuator’s physical limits. A potential outcome
might be a deviation from the calculated path when it is executed by a motion
controller in closed loop as shown in Fig. 2.29(a). In order to overcome this

(a) G2 continuous path. (b) G3 continuous path.

Figure 2.29 Closed-loop tracking performance of a G2 and a G3 continuous path.
The green line depicts the planned path while the red line shows the executed track.

problem, a possible approach is to increase the smoothness of the computed
paths to G3 continuity. This allows to not only enforce hard constraints
on the maximum curvature and maximum curvature rate, but also on the
maximum curvature acceleration. Such a path can improve the closed-loop
tracking performance of the motion controller as illustrated in Fig. 2.29(b)
and highlighted from a control perspective in [132].

Therefore, the goal in this section is to extend the previously described G2

continuous steering functions to G3 continuity, which requires to increase the
vehicle’s state space by one dimension to R5. The state of the vehicle is now
described by x̌k =

(
x̌k y̌k θ̌k κ̌k σ̌k

)ᵀ
and the input by ǔk =

(
∆šk ρ̌k

)ᵀ,
where ρ̌k denotes the second derivative of curvature with respect to arc
length.

The following sections are organized as follows: Sec. 2.4.1 and Sec. 2.4.2
introduce two novel G3 continuous steering functions called continuous
curvature rate (CCR) and hybrid curvature rate (HCR) steer, and Sec. 2.4.3
compares them with the G1 and G2 continuous approaches.

66 2 Steering Functions for Car-Like Robots

2.4.1 Continuous Curvature Rate Steer

The modular approach of RS and CC steer is leveraged in this section to
derive a novel steering function called CCR steer that enforces curvature rate
continuity along the entire path. In addition to that, hard constraints on the
maximum curvature, maximum curvature rate, and maximum curvature ac-
celeration are satisfied in order to take into account the physical constraints of
the vehicle. The details of CCR steer are outlined in the following: Sec. 2.4.1.1
presents the underlying motion model, Sec. 2.4.1.2 introduces CCR turns,
and Sec. 2.4.1.3 finally describes the computation of a CCR path.

2.4.1.1 Continuous Curvature Rate Car

Extending the CC car [53] to curvature rate continuity leads to the CCR car
whose motion model is given by

x̌k+1 =


x̌k+1

y̌k+1

θ̌k+1

κ̌k+1

σ̌k+1

 =


x̌k
y̌k
θ̌k
κ̌k
σ̌k

+

ˆ ∆šk

0


cos(θ̌k+1(s))

sin(θ̌k+1(s))
κ̌k+1(s)

sgn(s)σ̌k + ρ̌ks
sgn(s)ρ̌k

 ds. (2.41)

For ρ̌k = 0, the given equation of motion reduces to the one of the CC car
whose solution either describes a straight line, a circular arc, or a clothoid
(see Sec. 2.3.1.1). For ρ̌k 6= 0, the solution of (2.41) is given in Sec. A.1.4 and
describes a third-order polynomial spiral [39] also known as cubic spiral [89].
Similar to clothoids, the position update on a cubic spiral has no closed-form
solution. However, efficient numerical techniques, such as Gauss-Legendre
quadrature [1], exist to evaluate the corresponding integrals.

In order to bound the maximum steering acceleration of the CCR car, its
input is limited by

ǔmin =
(
−∞ −ρmax

)ᵀ
, (2.42a)

ǔmax =
(
+∞ +ρmax

)ᵀ
, (2.42b)

where ρmax denotes the maximum curvature acceleration. It can either be
set to the physical limit of the steering actuator or alternatively be used as a
tuning parameter, which determines the comfort of the resulting motion. Just
as with the CC car, the maximum curvature and the maximum curvature rate

2.4 G3 Continuous Steering Functions 67

of the CCR car are bounded in order not to violate the physical constraints of
the vehicle. The resulting state constraints are given as

−κmax ≤ κ̌k+1 ≤ κmax, (2.43a)
−σmax ≤ σ̌k+1 ≤ σmax. (2.43b)

The goal now is to derive a steering function that takes into account the
motion model of the CCR car while minimizing the length of the computed
path. To do so, a similar approach as for RS and CC steer is pursued. This
requires to encapsulate the system’s nonlinear turning behavior into the
so-called CCR turns, which are presented in the next section.

2.4.1.2 Continuous Curvature Rate Turns

This section introduces CCR turns as the basic component of CCR steer. The
general objective is to come up with a modular description of the CCR car’s
turning behavior, which allows to abstract away the nonlinearity of the sys-
tem. The resulting CCR turns are closely related to the previously described
CC turns, however, differ in complexity due to the required increase in
smoothness.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc
r

κ−1
max

δ

δmin x̌j

µ

x̌g
µ

(a) Regular CCR turn.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc

r κ−1
max

δ−δmin

x̌j

x̌g

µ

(b) Irregular CCR turn.

Figure 2.30 Visualization of a regular and irregular CCR turn for a forward motion
to the left. The turns connect the start state x̌s and the goal state x̌g with a set of
cubic spirals and a circular arc. The irregular turn results in a shorter connection
for δ > 2δmin + π.

As visualized in Fig. 2.30, a CCR turn starts in x̌s with zero curvature and
zero curvature rate. Next, it transitions the vehicle on a set of cubic spirals to

68 2 Steering Functions for Car-Like Robots

the intermediate state x̌i, where it reaches the maximum curvature κmax. The
CCR turn then moves the vehicle on a circular arc to the second intermediate
state x̌j . Finally, the goal state x̌g with zero curvature and zero curvature
rate is reached on another set of cubic spirals. The corresponding curvature
rate profile of the described motion is given in Fig. 2.31. Note that due to the
symmetry of the CCR turns, only the transition between x̌s and x̌i is further
detailed in the following.

−σmax

σmax

σ̌I

š

š1 š2

√
κmax

ρmax

√
κmax

ρmax

δ−2δmin

κmax

š3

(a) Case I.
−σmax

σmax

σ̌II

š1 š2

σmax

ρmax

κmax

σmax
− σmax

ρmax

σmax

ρmax

š3 š4

δ−2δmin

κmax

š

(b) Case II.

Figure 2.31 Curvature rate profile of a CCR turn to the left. The first case (a) has to
be applied if κmax ≤ σ2max/ρmax and the second case (b) for all other parameterizations.

First of all, it can be seen in Fig. 2.31 that two cases have to be distinguished
for the transition between the start and intermediate state. Inspired by
CC turns, both cases aim at transitioning the vehicle as fast as possible to
the maximum curvature while enforcing hard constraints on the maximum
curvature rate and the maximum curvature acceleration. If κmax ≤ σ2

max/ρmax,
the maximum curvature can be reached with no saturation of the curvature
rate as illustrated in Fig. 2.31(a). In this case, two cubic spirals of maximum
curvature acceleration ±ρmax are used to connect x̌s and x̌i. In contrast to
that, κmax > σ2

max/ρmax leads to the second case visualized in Fig. 2.31(b).
Here, three cubic spirals are concatenated such that the maximum curvature
rate σmax is taken into account.

The piecewise affine functions that describe the continuous curvature rate
profiles in Fig. 2.31 can now be derived. In the first case, they are given as

σ̌I(š1) = ρmaxš1, š1 ∈ [0,
√

κmax
ρmax

], (2.44a)

σ̌I(š2) = −ρmaxš2 +
√
κmaxρmax, š2 ∈ [0,

√
κmax
ρmax

], (2.44b)

and in the second case as

σ̌II(š1) = ρmaxš1, š1 ∈ [0, σmax
ρmax

], (2.45a)

2.4 G3 Continuous Steering Functions 69

σ̌II(š2) = σmax, š2 ∈ [0, κmax
σmax
− σmax

ρmax
], (2.45b)

σ̌II(š3) = −ρmaxš3 + σmax, š3 ∈ [0, σmax
ρmax

], (2.45c)

where š1, š2, and š3 denote the respective arc length as illustrated in Fig. 2.31.
Integrating (2.44)–(2.45) leads to a quadratic curvature profile, which is de-
fined as

κ̌I(š1) =
ρmax

2
š2

1, (2.46a)

κ̌I(š2) = −ρmax

2
š2

2 +
√
κmaxρmaxš2 +

κmax

2
, (2.46b)

and

κ̌II(š1) =
ρmax

2
š2

1, (2.47a)

κ̌II(š2) = σmaxš2 +
σ2

max

2ρmax
, (2.47b)

κ̌II(š3) = −ρmax

2
š2

3 + σmaxš3 + κmax −
σ2

max

2ρmax
, (2.47c)

where the properties κs = 0 and κi = κmax are used. Another integration
of (2.46)–(2.47) results in the heading angle θ̌(š), which is, however, omitted
here for brevity. Note that, hereinafter, the indices I and II of the different
cases above are dropped for better readability.

Similar to the CC turn, it is distinguished here between a regular and
irregular CCR turn as shown in Fig. 2.30. In contrast to the regular CCR turn,
the irregular one allows a direction switch at the intermediate states x̌i and x̌j .
By doing so, a shorter connection between x̌s and x̌g can be generated for
δ > 2δmin + π, where the minimal deflection δmin is defined as

δmin =


√

κ3max
ρmax

, if κmax ≤ σ2
max/ρmax,

κ2max
2σmax

+ κmaxσmax
2ρmax

, else.
(2.48)

The remaining variables of both turns (see Fig. 2.30) can now be derived
given the vehicle’s initial gear g ∈ {−1, 1} (backwards, forwards), the de-
sired turning direction t ∈ {−1, 1} (right, left), the start state x̌s, and the
deflection δ. At this point, the focus lies on those variables that are calculated

70 2 Steering Functions for Car-Like Robots

differently than the ones in Sec. 2.3.1.2. The first intermediate state x̌i, for
instance, can be obtained in the local frame 1 (see Fig. 2.30) by

1x̌i =


1x̌i
1y̌i

1θ̌i
1κ̌i
1σ̌i

 =


g
´ lmin

0 cos(1θ̌(s)) ds

t
´ lmin

0 sin(1θ̌(s)) ds
gtδmin
tκmax

0

 , (2.49)

where the length lmin of the transition between x̌s and x̌i is given as

lmin =


√

4κmax
ρmax

, if κmax ≤ σ2
max/ρmax,

κmax
σmax

+ σmax
ρmax

, else.
(2.50)

The second intermediate state x̌j and the goal state x̌g, both with zero cur-
vature rate, are computed according to (2.19)–(2.20). All states x̌(•) can be
transformed from the local frame 1 to the inertial frame I (see Fig. 2.30) with

I x̌(•) =


I x̌s
I y̌s

I θ̌s
0
0

+


cos(I θ̌s) − sin(I θ̌s) 0 0 0

sin(I θ̌s) cos(I θ̌s) 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1x̌(•)
1y̌(•)
1θ̌(•)
1κ̌(•)
1σ̌(•)

 . (2.51)

As already known from the CC turn, two special cases exist for δ < 2δmin
(see Fig. 2.32) that result in a shorter overall arc length than the regular and ir-
regular case described above. For example, if the deflection between x̌s and x̌g
is zero, the CCR turn reduces to a straight line as illustrated in Fig. 2.32(a).
For 0 < δ < 2δmin, a G3 continuous elementary path can be constructed that
connects the start and goal state without steering the CCR car to maximum
curvature. This is illustrated in Fig. 2.32(b). In contrast to the G2 continuous
elementary path from Sec. 2.3.1.2, two cases have to be considered here as
visualized in Fig. 2.33. Note that the symmetry of the elementary path allows
to only detail the left part of the illustrated continuous curvature rate profiles
in the following.

As it can be seen in Fig. 2.33(a), the first elementary path concatenates
two cubic spirals in order to connect the start state x̌s with the intermediate
state x̌m (see Fig. 2.32(b)). For a turn to the left, the corresponding curvature
rate profile initially accelerates with ρ0 ≤ ρmax and then decelerates back to

2.4 G3 Continuous Steering Functions 71

1x
1y

Ix

Iy x̌s −µ

µ

xc

r κ−1
max

µ

x̌g

µ

(a) Straight line.

1x
1y

Ix

Iy x̌s −µ

µ

xc

r κ−1
max

x̌g

µ

δ/2

µ

x̌m

(b) Elementary path.

Figure 2.32 Two special cases of the CCR turn for small deflections: a straight line
for δ = 0 and an elementary path for 0 < δ < 2δmin.

−σmax

σmax

σ̌I

š

š1 š2
3
√

δρ20
2

− 3
√

δρ20
2

3

√
δ

2ρ0
3

√
δ

2ρ0

(a) Elementary path I.
−σmax

σmax

σ0

−σ0

σ̌II

σ0

ρmax

σ0

ρmax

− 3σ0

2ρmax
+

√
σ2
0

4ρ2max
+ δ

σ0

š

(b) Elementary path II.

Figure 2.33 Curvature rate profiles of a G3 continuous elementary path to the left.

zero curvature rate with −ρ0. The arc length of both cubic spirals is given in
Fig. 2.33(a) using the properties κ̌s = 0 and θ̌m = δ/2. Contrary to this, the
second elementary path in Fig. 2.33(b) uses three cubic spirals to reach x̌m. In
this case, the first and the third cubic spiral accelerate with ±ρmax while the
second one saturates the curvature rate at σ0 ≤ σmax. The same properties as
before can be applied to determine the arc length of the cubic spirals given
in Fig. 2.33(b). Both elementary paths have exactly one unknown parameter,
namely ρ0 and σ0. They can be computed by projecting x̌m (see Fig. 2.32(b))
onto the line joining the start state x̌s and the goal state x̌g according to(

cos(δ/2)
sin(δ/2)

)ᵀ

·
(
x̌m
y̌m

)
=

1

2

∥∥∥∥(x̌gy̌g
)
−
(
x̌s
y̌s

)∥∥∥∥
2

, (2.52)

72 2 Steering Functions for Car-Like Robots

where
(
x̌m y̌m

)
,
(
x̌g y̌g

)
, and

(
x̌s y̌s

)
denote the positions of the states x̌m,

x̌g, and x̌s. The right side in (2.52) can be replaced with the term r sin(δ/2+µ)
(see Fig. 2.32(b)) resulting in

x̌m cos(δ/2) + y̌m sin(δ/2) = r sin(δ/2 + µ). (2.53)

In order to solve (2.53) for the unknown parameter ρ0 and σ0, respectively,
x̌m and y̌m have to be substituted by their corresponding integral. In case of
the first elementary path (see Fig. 2.33(a)), these integrals are given as

x̌m,I = 3

√
6
ρ0

ˆ 3
√

δ
12

0
cos
(
ť3
)

+ . . .

+ cos

(
−ť3 + 3

√
9δ
4 ť

2 +
3

√
3δ2

16 ť+ δ
12

)
dť,

(2.54a)

y̌m,I = 3

√
6
ρ0

ˆ 3
√

δ
12

0
sin
(
ť3
)

+ . . .

+ sin

(
−ť3 + 3

√
9δ
4 ť

2 +
3

√
3δ2

16 ť+ δ
12

)
dť,

(2.54b)

where the initial integration variables š1 and š2 (see Fig. 2.33(a)) are substi-
tuted by š1 = š2 = 3

√
6/ρ0ť. Combining (2.53) and (2.54) allows to compute

the parameter ρ0 according to

ρ0 =
6D3

I (δ)

(r sin(δ/2 + µ))3 , (2.55)

where the function DI(δ) is given as

DI(δ) = cos
(
δ
2

) ˆ 3
√

δ
12

0
cos
(
ť3
)

+ . . .

+ cos

(
−ť3 + 3

√
9δ
4 ť

2 +
3

√
3δ2

16 ť+ δ
12

)
dť+ . . .

+ sin
(
δ
2

) ˆ 3
√

δ
12

0
sin
(
ť3
)

+ . . .

+ sin

(
−ť3 + 3

√
9δ
4 ť

2 +
3

√
3δ2

16 ť+ δ
12

)
dť.

(2.56)

A visualization of DI in the interval δ ∈ [0, 2π) can be found in Fig. 2.34.

2.4 G3 Continuous Steering Functions 73

0 1 2 3 4 5 6

−0.5

0

0.5

δ

D
I

Figure 2.34 Visualization of DI in the interval δ ∈ [0, 2π). The root of this function
lies at ≈ 1.3721π.

Once ρ0 is computed using (2.55)–(2.56), it must be verified that the ob-
tained solution does not violate the constraints of the CCR car. Unfortunately,
it cannot be generally guaranteed that this is the case for arbitrary deflections
0 < δ < 2δmin.

With respect to the second elementary path (see Fig. 2.33(b)), the unknown
parameter σ0 must also be determined on the basis of (2.53). In contrast to
the previous case, the resulting equation does not possess an explicit solution
and thus requires a numerical root-finding algorithm to obtain σ0. Similar to
the first elementary path, it has to be verified afterwards that the resulting
solution is compliant with the constraints of the CCR car.

As neither the first nor the second elementary path can guarantee a feasible
solution for 0 < δ < 2δmin, the regular or irregular CCR turn have to be
used as backup to avoid situations without a connection. The resulting arc
length l(δ) for 0 < δ < 2δmin can therefore be derived as

l(δ) =



3

√
32δ
ρ0
, if ρ0 6= ∅,

σ0
ρmax

+

√
σ2
0

ρ2max
+ 4δ

σ0
, elif σ0 6= ∅,

2lmin + κ−1
max(−δ + 2δmin), elif irregular CCR turn,

2lmin + κ−1
max(2π + δ − 2δmin), else (regular CCR turn),

(2.57)

where the first two cases describe the arc length of the two elementary paths
and the last two cases the one of a regular or irregular CCR turn.

Based on the previous derivations, the arc length l(δ) of the CCR turn can
now be determined in the interval δ ∈ [0, 2π). In case of a regular CCR turn,

74 2 Steering Functions for Car-Like Robots

it is given by

l(δ) =


2r sin(µ), if δ = 0,

see (2.57), if 0 < δ < 2δmin,

2lmin + κ−1
max(δ − 2δmin), if δ ≥ 2δmin.

(2.58)

Similarly, the arc length of an irregular CCR turn is defined as

l(δ) =


2r sin(µ), if δ = 0,

see (2.57), if 0 < δ < 2δmin,

2lmin + κ−1
max(δ − 2δmin), if 2δmin ≤ δ ≤ 2δmin + π,

2lmin + κ−1
max(2π − δ + 2δmin), if δ > 2δmin + π,

(2.59)

where the last case considers the two direction switches at the intermediate
states x̌i and x̌j . The derived CCR turns can now be used to compute G3

continuous paths as further outlined in the following section.

2.4.1.3 Continuous Curvature Rate Path

The modularity of CCR turns allows to concatenate them along with straight
lines to a CCR path. The underlying procedure can be directly adopted from
CC steer (see Sec. 2.3.1.3) with the only difference that CC turns must be
replaced with CCR turns. The resulting steering function is called CCR steer
and minimizes path length while satisfying hard constraints on the maximum
curvature, maximum curvature rate, and maximum curvature acceleration.
Two variants of CCR steer can be distinguished: CCR-Dubins, which only
allows the vehicle to move forwards or backwards, and CCR-RS, which does
not restrict the driving direction. Similar to their G2 continuous counterpart,
both steering functions can be evaluated very efficiently if the start and goal
state are given with either zero or maximum curvature and without curvature
rate. For instance, CCR00-Dubins and CCR00-RS steer enforce zero curvature
at the start and goal state as indicated by the corresponding superscript. In
this case, zero curvature rate is implicitly assumed at both ends of the path
and not further annotated in the description of the steering function. An
illustration of a CCR00-Dubins and CCR00-RS steering procedure is shown in
Fig. 2.35.

It can be observed that CCR00-Dubins steer selects a CSC candidate path
as an approximation of the shortest connection between start and goal while

2.4 G3 Continuous Steering Functions 75

(a) CCR00-Dubins path. (b) CCR00-RS path.

Figure 2.35 Visualization of two G3 continuous shortest path approximations for
a CCR car that only moves forwards (a) and both forwards and backwards (b).
The front wheels of the vehicle are displayed in white, its contour in cyan, and the
computed path in green.

CCR00-RS steer outputs a path of the family CSC|C. The G3 continuity
of both paths is displayed in Fig. 2.36, where the corresponding curvature
profile is plotted with respect to arc length š.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

−0.2

−0.1

0

0.1

0.2

š [m]

κ̌
[m

−
1
]

CCR00-Dubins
CCR00-RS

Figure 2.36 Curvature profile of the CCR00-Dubins and CCR00-RS path from
Fig. 2.35.

It can be seen that both profiles are given by smooth quadratic functions
that are bounded by the maximum curvature of the vehicle. Additionally,
the first and second derivative of these functions are limited by the maxi-
mum curvature rate and the maximum curvature acceleration. Hence, the
computed G3 continuous paths can be directly executed by the CCR car.

76 2 Steering Functions for Car-Like Robots

Finally, it has to be mentioned that CCR steer’s characteristic with respect
to completeness, symmetry, and the topological property are identical to
CC steer (see Sec. 2.3.1.3) and therefore not further discussed here.

2.4.2 Hybrid Curvature Rate Steer

Following the same motivation as in Sec. 2.3.2, HCR steer enforces G3 conti-
nuity while the vehicle is moving either forwards or backwards, but allows
curvature discontinuity at cusps. This hybrid approach combines the proper-
ties of RS steer at direction switches and the ones of CCR steer everywhere
else. As a result, the computed paths are not only smoother than RS paths,
but also shorter than the ones of CCR steer. Further details with respect to
HCR steer are outlined in the following: Sec. 2.4.2.1 describes the underlying
motion model, Sec. 2.4.2.2 introduces HCR turns as one of HCR steer’s fun-
damental components, and Sec. 2.4.2.3 finally discusses the computation of a
HCR path.

2.4.2.1 Hybrid Curvature Rate Car

The so-called HCR car extends the CCR car from Sec. 2.4.1.1 with the capabil-
ity to also steer the wheels in place while the vehicle is changing its driving
direction. The evolution of motion between cusps is identical to the one of the
CCR car, which bounds the maximum curvature, the maximum curvature
rate, and the maximum curvature acceleration. In order to also take into ac-
count the described behavior at direction switches, the arc length dependent
motion model (2.41) requires to directly modify the vehicle’s curvature and
possibly its curvature rate to the desired values. Hence, the HCR car behaves
similar to the RS car at cusps and identical to the CCR car everywhere else.

The aim of the following sections is to develop a steering function that
connects two vehicle states with a shortest path approximation and leverages
the characteristics of the HCR car. To accomplish this in a similar way as
in the previously described steering functions, it is required to introduce
HCR turns next as one of HCR steer’s fundamental components.

2.4.2.2 Hybrid Curvature Rate Turns

The motivation behind the so-called HCR turns in this section is to smoothly
transition the HCR car from zero curvature to maximum curvature while
taking into account its constraints. Terminating in a state with maximum

2.4 G3 Continuous Steering Functions 77

curvature allows to generate paths that permit steering in place at cusps. An
exemplary visualization of two HCR turns can be found in Fig. 2.37.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc
r

κ−1
max

δ

x̌g

(a) Regular HCR turn.

1x
1y

Ix

Iy x̌s −µ

µ
δmin x̌i

xc

r κ−1
max

δ

x̌g

(b) Irregular HCR turn.

Figure 2.37 Illustration of a regular and irregular HCR turn for a forward motion
to the left. Cubic spirals and a circular arc are used to connect the start state x̌s
with the goal state x̌g. The irregular turn yields a shorter arc length for δ < δmin
and δ > δmin + π.

Similar to the CCR turn in Sec. 2.4.1.2, the HCR turn starts in x̌s with zero
curvature and zero curvature rate. It then transitions to the intermediate state
x̌i, where it reaches the maximum curvature κmax, using a set of up to three
cubic spirals. The goal state x̌g with maximum curvature and zero curvature
rate is finally reached on a circular arc. Fig. 2.38 illustrates the corresponding
curvature rate profile including the two cases that are already known from
the CCR turn.

−σmax

σmax

σ̌I

š

š1 š2

√
κmax

ρmax

√
κmax

ρmax

δ−δmin

κmax

š3

(a) Case I.
−σmax

σmax

σ̌II

š1 š2

σmax

ρmax

κmax

σmax
− σmax

ρmax

σmax

ρmax

š3 š4

δ−δmin

κmax

š

(b) Case II.

Figure 2.38 Curvature rate profile of a HCR turn to the left. The first case (a) has to
be applied if κmax ≤ σ2max/ρmax and the second case (b) for all other parameterizations.

78 2 Steering Functions for Car-Like Robots

Apart from the length of the circular arc, both profiles are identical to the
first part of the CCR turn’s curvature rate profiles given in Fig. 2.31 and
therefore not further analyzed here. Also, the distinction in Fig. 2.37 between
a regular and an irregular HCR turn is not further elaborated in this section
as it is identical to the already known one from HC turns (see Sec. 2.3.2.2).

The variables in Fig. 2.37, which completely define a HCR turn, can all be
computed using the already derived equations from the previous sections.
For instance, the computation of the intermediate state x̌i is given in (2.49),
and the evaluation of the goal state x̌g with zero curvature rate can be con-
ducted according to (2.30). The arc length of a regular and irregular HCR turn
is calculated in the same way as in (2.31)–(2.32), where the variables δmin and
lmin have to be replaced by the respective correlation given in (2.48) and (2.50).
On this basis, G3 continuous HCR paths can now be computed as further
detailed in the next section.

2.4.2.3 Hybrid Curvature Rate Path

The computation of a HCR path that enforces G3 continuity everywhere ex-
cept at cusps follows the same procedure as the one described for HC steer in
Sec. 2.3.2.3. The only difference is that theG2 continuous CC and HC turns are
replaced by their G3 continuous counterparts, namely CCR and HCR turns.
Similar to the G2 continuous case, the resulting steering function can be
evaluated in a particularly efficient way if (1) the curvature rate vanishes at
the start and goal state, and (2) the curvature at both ends of the path takes
either the value zero or ±κmax. These cases are highlighted in the following
with the already known superscript that denotes the respective curvature at
the initial and terminal state. For example, HCR00-RS steer computes a path
with zero curvature at the start and goal, and HCR±±-RS steer either chooses
±κmax at both ends of the path. An exemplary visualization of two shortest
path approximations computed by these steering functions can be found in
Fig. 2.39.

It can be seen that both steering procedures select a CSC|C candidate path
to steer the vehicle to the goal. The track of the front wheels reveals that
a curvature discontinuity occurs at the direction switch while G3 continu-
ity is enforced everywhere else. This can also be seen in Fig. 2.40, which
illustrates the curvature profile of the two paths with respect to the traveled
distance š. Both profiles are described by a smooth quadratic function that
takes into account the maximum curvature, the maximum curvature rate,

2.4 G3 Continuous Steering Functions 79

(a) HCR00-RS path. (b) HCR±±-RS path.

Figure 2.39 Illustration of two G3 continuous shortest path approximations for a
HCR car. Zero curvature at both ends of the path is enforced in (a) while the path in
(b) chooses either ±κmax as the initial and terminal curvature. The colors are adopted
from Fig. 2.35.

and the maximum curvature acceleration of the vehicle. In addition to that, a
curvature discontinuity can be observed at about 19 m, which corresponds
to the direction switch shown in Fig. 2.39. As a result, the computed paths
satisfy the constraints of the HCR car and can therefore be directly executed
by such a system.

Furthermore, it is worth mentioning that with respect to completeness,
symmetry, and the topological property, HCR steer behaves identical to
HC steer. Therefore, the reader is referred to Sec. 2.3.2.3 and Sec. 2.3.2.4 for
further details.

0 2 4 6 8 10 12 14 16 18 20 22

−0.2

−0.1

0

0.1

0.2

š [m]

κ̌
[m

−
1
]

HCR00-RS
HCR±±-RS

Figure 2.40 Curvature profile of the HCR00-RS and HCR±±-RS path from Fig. 2.39.

80 2 Steering Functions for Car-Like Robots

2.4.3 Experimental Evaluation

The experiments in this section evaluate and compare the performance of
the G3 continuous steering functions with their G1 and G2 continuous coun-
terparts. The setup for the evaluation is the same as in Sec. 2.3.4, and the
additional parameter ρmax is set to 1 m−3. Furthermore, all G3 continuous
steering functions are allowed to use the irregular variant of the previously
introduced CCR and HCR turns in order to further optimize the length of
the computed paths. The implementation of CCR and HCR steer is based on
the open-source code from [208] that has been extended to also compute G3

continuous paths.
The qualitative comparison in Fig. 2.41 highlights how an increase in

geometric continuity influences the computed path and the corresponding
curvature profile.

−4 −2 0 2 4 6

−2

0

2

4

x̌s
x̌g

x [m]

y
[m

]

Dubins
CC00-D
CCR00-D

(a) Path comparison.

0 2 4 6 8 10 12 14 16

−1

0

1

š [m]

κ̌
[m

−
1
]

(b) Curvature profiles.

Figure 2.41 Qualitative comparison of a G1, G2, and G3 continuous Dubins (D)
steering procedure. The computed paths are shown in (a) and the corresponding
curvature profiles in (b). Note that the legend in (a) also applies to (b).

It can be seen in Fig. 2.41(a) that compared to the provably shortest path
of the G1 continuous approach, increasing the smoothness also increases the
length of the path. This effect depends strongly on the vehicle’s maximum
curvature rate σmax and its maximum curvature acceleration ρmax and be-
comes larger if one of these parameters decreases. With respect to curvature
continuity, Fig. 2.41(b) shows that the G1 continuous solution is discrete in
curvature while the G2 and G3 continuous solutions are described by a linear
and a quadratic function, respectively. Especially the G3 continuous steering
function with its bounded curvature acceleration represents a promising ap-

2.4 G3 Continuous Steering Functions 81

proach whenever a high comfort or a high tracking performance is required.
However, it also has to be considered that a higher degree of smoothness

increases the average computation time. This is shown in Tab. 2.6, which
compares the computation times of the G1, G2, and G3 continuous Dubins
steering functions.

Table 2.6 Average computation time of the G1, G2, and G3 continuous Dubins
steering functions.

computation time

mean [µs] std [µs]

Dubins 1.29 ±0.65
CC±±-Dubins 7.16 ±2.98
CC00-Dubins 4.90 ±1.67
CCR±±-Dubins 10.85 ±10.67
CCR00-Dubins 13.12 ±13.56

While the average computation time of all listed steering functions is below
13.12 µs, the G3 continuous versions perform up to a factor of 2.7 slower
than their respective G2 continuous counterpart. In addition to that, the
standard deviation raises to ±13.56 µs mostly due to the complexity of the G3

continuous elementary paths.
As already discussed in the qualitative comparison above, increasing the

smoothness of the paths also raises the path length. This effect is displayed
for 105 random steering procedures in Fig. 2.42(a). It can be observed that the
G3 continuous steering function with maximum curvature at both ends of
the path approximates the length of the Dubins paths more closely than the
version with zero curvature at both states. This effect and the reasons behind
it are identical to the G2 continuous case that was analyzed in Sec. 2.3.4.
Furthermore, it has to be noted that the width of the illustrated distribution
in Fig. 2.42(a) significantly depends on the maximum curvature acceleration
ρmax. In general, increasing ρmax shifts the distribution of the G3 continuous
steering functions closer towards the one of the G2 continuous steering
functions that implicitly assume ρmax = ∞. The opposite is true for lower
values of ρmax.

The major advantage of the G3 continuous steering functions is that they
enforce both curvature as well as curvature rate continuity. In contrast to
that, the results in Fig. 2.42(b) show that the G1 and G2 continuous paths

82 2 Steering Functions for Car-Like Robots

0 20 40 60 80 100 120
0

20

40

60

Rel. diff. in path length to Dubins [%]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

CC±±-D
CC00-D
CCR±±-D
CCR00-D

(a) Path length comparison.

0 2 4 6 8 10 12
0

20

40

60

80

100

Curvature rate discontinuities [-]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

Dubins
CC±±-D
CC00-D
CCR±±-D
CCR00-D

(b) Curvature rate discont. comparison.

Figure 2.42 Comparison of the G1, G2, and G3 continuous Dubins (D) steering
functions with respect to path length (a) and curvature rate discontinuities (b).

contain between two and seven curvature rate discontinuities5. Remember
that each discontinuity requires an infinite steering acceleration, which might
cause a high lateral jerk or a potential deviation from the planned path when
being executed in closed loop. Only in the G1 continuous case, this can be
overcome by bringing the vehicle to a stop as both the curvature and the
curvature rate discontinuities occur together.

The same benchmark as above is also carried out for the G1, G2, and G3

continuous RS steering functions. An overview of the average computation
times is given in Tab. 2.7. It is interesting to see that HCR±±-RS steer performs
almost as fast as its G2 continuous counterpart. As opposed to this, the mean
computation time of CCR00-RS steer is about 2.6 times higher than the one
of CC00-RS steer with a standard deviation that differs by a factor of 7.3. As
the construction of HCR±±-RS and CCR00-RS paths only differ in the number
of CCR turns used, it can be concluded that the additional complexity of
the CCR turns causes the observed difference in performance. Especially
the numerical computation of the G3 continuous elementary paths currently
slows down the evaluation of the CCR turns.

5As described at the beginning of this chapter, the term curvature rate denotes the first deriva-
tive of curvature with respect to arc length. This derivative is mathematically not defined
at transitions between discrete curvatures. In order to still account for the infinitely high
curvature rate impulses required to realize these transitions, every curvature discontinuity
is also counted as a curvature rate discontinuity throughout this thesis.

2.4 G3 Continuous Steering Functions 83

Table 2.7 Average computation time of the G1, G2, and G3 continuous RS steering
functions.

computation time

mean [µs] std [µs]

RS 7.34 ±1.69
HC±±-RS 55.71 ±9.49
HC00-RS 53.74 ±7.87
CC00-RS 53.19 ±7.93
HCR±±-RS 59.28 ±12.76
HCR00-RS 88.90 ±33.94
CCR00-RS 139.83 ±57.69

The path length comparison in Fig. 2.43(a) confirms the insight from above
that an increase in geometric continuity also raises the length of the computed
connections.

0 20 40 60 80
0

20

40

60

80

Rel. diff. in path length to RS [%]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

HC±±-RS
HC00-RS
CC00-RS
HCR±±-RS
HCR00-RS
CCR00-RS

(a) Path length comparison.

0 2 4 6 8 10
0

20

40

60

80

100

Curvature rate discontinuities [-]

N
or

m
al

iz
ed

fr
eq

ue
nc

y
[%

]

HC±±-RS
CC00-RS
HCR±±-RS
HCR00-RS
CCR00-RS

RS
HC00-RS

(b) Curvature rate discont. comparison.

Figure 2.43 Comparison of the G1, G2, and G3 continuous RS steering functions
with respect to path length (a) and curvature rate discontinuities (b).

However, it can also be observed that the length of the G3 continuous
RS paths deviates less from the shortest connection given by RS steer than
in the Dubins benchmark before. This is due to the fact that the RS steering
functions do not restrict the driving direction of the vehicle and also evaluate

84 2 Steering Functions for Car-Like Robots

more families than the respective Dubins counterparts.
The number of curvature rate discontinuities within the 105 evaluated paths

is compared in Fig. 2.43(b). Here, it can be seen that CCR00-RS steer enforces
curvature rate continuity along the entire path. In contrast to that, HCR±±-
RS and HCR00-RS steer allow to directly adjust the curvature at direction
switches leading to the visualized number of curvature rate discontinuities.
Note, however, that the latter is not a problem in practice as the vehicle has
to stop at direction switches anyway allowing to smoothly adjust the steering
angle to the desired value. In comparison to that, the G2 continuous steering
functions stand out with up to eight curvature rate discontinuities. Also in
the G1 continuous case, the number of curvature rate discontinuities ranges
from two to four.

In conclusion, the G3 continuous RS paths outperform the other state-
of-the-art approaches with respect to smoothness, however, require more
computation time and a higher path length in order to connect two given
vehicle states.

2.5 Steering Functions in Belief Space

The steering functions in Sections 2.2–2.4 compute a sequence of N̄ nominal
inputs Ǔ = 〈ǔ0, . . . , ǔN̄−1〉 that steer the vehicle to a desired goal. Given
these inputs and the vehicle’s initial state, the deterministic motion models
of the form (2.1d) can then be used to obtain the corresponding states X̌ =
〈x̌0, . . . , x̌N̄〉. In reality, however, various errors lead to a deviation from the
planned path when it is executed by a motion controller in closed loop. To
still guarantee a bounded collision probability, the goal in this section is to
compute a belief distribution over vehicle states along the nominal path of
the steering functions.

In this regard, two uncertainties are distinguished: (1) control/execution
uncertainty resulting from model errors and external disturbances, such as
wind forces or uneven road surfaces, and (2) localization uncertainty due to
measurement errors. In the presence of both uncertainties, the deterministic
motion model in (2.1d) changes to

xk+1 = f(xk,uk,wk), (2.60a)
zk = h(xk,vk), (2.60b)

where f(•) describes the evolution of the disturbed vehicle state xk ∈ Rn

given the input uk ∈ Rm and the motion noise wk ∈ Rp. The actual mea-

2.5 Steering Functions in Belief Space 85

surement is denoted by zk ∈ Rq, the measurement model by h(•), and the
measurement noise by vk ∈ Rr. The input uk, which tries to keep the vehicle
close to the nominal path, is computed by

uk = ǔk − k(µk, x̌k), (2.61)

where −k(•) describes the feedback term that tries to minimize the error
between the mean µk ∈ Rn of the state estimate and the desired nominal
state x̌k ∈ Rn. Note that in the presence of localization uncertainty, only a
state estimate instead of the true vehicle state xk is available to the system.
On the basis of (2.60), such an estimate can be computed using e.g. the
extended Kalman filter (EKF), the unscented Kalman filter (UKF), or the
particle filter [186].

In order to capture the uncertainty of the vehicle motion, the goal now
is to compute the belief distribution along the nominal path of a steering
procedure (see Fig. 2.44). This information can then be used, for example, in

Figure 2.44 Visualization of a sequence of beliefs (purple ellipsoids) propagated
along the nominal path (green line) of a steering procedure. In this image, the beliefs
are represented by multivariate normal distributions that describe the uncertainty
arising from control and localization errors. Reprinted from [213], © 2018 IEEE.

a probabilistic collision checker to evaluate the collision probability of the
computed path. Following the definition in [186], a belief is defined here as

bel(xk) = p(xk|z0:k,u0:k), (2.62)

86 2 Steering Functions for Car-Like Robots

where p(•) denotes the probability density function (PDF) of the true vehicle
state xk given the past measurements z0:k and the inputs u0:k.

In the following sections, two approaches are highlighted for the compu-
tation of the beliefs. Sec. 2.5.1 presents a MC simulation that computes a
discrete approximation of the true belief distribution. Despite the flexibility
of this method, it is well known that MC approaches typically come with
a high computational cost [84, 165]. As a result, they are either used as a
reference method for comparison or require advanced techniques that exploit
the parallelizability of the underlying problem [76]. More efficient, but also
more restrictive methods exist in Gaussian belief space. Here, the belief is
parametrized by a multivariate normal distribution. A closed-form solution
for the belief update can then be derived as in [8, 23, 117, 145], where [117,
145] assume a maximum likelihood observation and [8, 23] consider all pos-
sible measurements. On this basis, the EKF-MP [23] is used in Sec. 2.5.2 to
propagate a Gaussian belief along the nominal path of the steering functions.

2.5.1 Monte Carlo Simulation

As previously mentioned, the MC simulation computes a discrete approxima-
tion of the true belief distribution by propagating samples of the noise models
through the system. This is shown in Alg. 1, where M closed-loop executions
X [i=1:M] are computed given an initial belief bel(x0) and the nominal path X̌
as well as the nominal inputs Ǔ from a steering procedure.

At the end of the simulation, each belief bel(xk) is approximated by M sim-
ulated vehicle states x

[i=1:M]
k that can be retrieved from the computed closed-

loop executions. The underlying calculations make no assumption on the
system given in (2.60)–(2.61) and only require that sampling from the initial
belief as well as from the motion and measurement noise is possible. In
addition to that, a state estimator is required to evaluate the feedback term
in (2.61). Without loss of generality, it is assumed in Alg. 1 that a Gaussian
filter [186] is used to compute that estimate, which is in this case represented
by the mean µk ∈ Rn and the covariance Σk ∈ Rn×n. Note that other estima-
tors, such as a particle filter, can also be integrated into Alg. 1 by adjusting
Line 10 accordingly.

To start the MC simulation in Alg. 1, the expected value E[•] and the
covariance Cov[•] of the initial belief distribution are computed in Line 2
for future use. The remainder of the algorithm is then composed of two
nested for loops: the outer loop iterates over the M MC runs while the

2.5 Steering Functions in Belief Space 87

Algorithm 1 Monte Carlo Simulation (adapted from [213], © 2018 IEEE)
mc_sim(bel(x0), X̌ , Ǔ):

1: X [i=1:M] = ∅
2: µ[i=1:M]

0 = Ex∼bel(x0)[x]; Σ
[i=1:M]
0 = Covx∼bel(x0)[x]

3: for i = 1 : M do
4: sample x

[i]
0 ∼ bel(x0)

5: X [i] += 〈x[i]
0 〉

6: for k = 0 : N̄ − 1 do
7: u

[i]
k = ǔk − k(µ[i]

k , x̌k)

8: x
[i]
k+1 = f(x

[i]
k ,u

[i]
k ,w

[i]
k)

9: z
[i]
k+1 = h(x

[i]
k+1,v

[i]
k+1)

10: µ[i]
k+1,Σ

[i]
k+1 = estimator(µ[i]

k ,Σ
[i]
k ,u

[i]
k , z

[i]
k+1)

11: X [i] += 〈x[i]
k+1〉

12: end for
13: end for
14: return X [i=1:M]

inner loop propagates the state of the vehicle N̄ steps along the nominal
path. This procedure starts with the sampling of an initial vehicle state x

[i]
0

from the belief bel(x0) (see Line 4). The obtained state can then be updated
using the input u

[i]
k in Line 7, a sample w

[i]
k from the motion noise, and the

motion model in Line 8. Next, an estimate µ[i]
k+1 of the vehicle state x

[i]
k+1

must be computed such that the control law −k(•) can be evaluated in the
next iteration. To do so, a state estimator is used in Line 10 that not only
requires the previous state estimate and the current input u

[i]
k , but also a

measurement z
[i]
k+1 of the updated vehicle state. The latter is generated in

Line 9 by sampling v
[i]
k+1 from the measurement noise and by evaluating the

measurement model accordingly. Repeating the previously described steps
N̄ times yields one closed-loop execution X [i] = 〈x[i]

0 , . . . ,x
[i]

N̄
〉 of the system.

The algorithm finally terminates after having computed M runs X [i=1:M] in
an identical way.

A visualization of such an MC simulation along the path of a RS steering
procedure can be found in Fig. 2.45. In this example, it can be seen that both
the stabilizing feedback controller and the fact that measurements are taken
into account keep the uncertainty bounded as the vehicle moves from the

88 2 Steering Functions for Car-Like Robots

Figure 2.45 RS path from Fig. 2.9 augmented with 100 MC runs. The initial belief
bel(x0) visualized in the lower right corner (three-sigma ellipse) is given by a Gaus-
sian distribution. A subset of the nominal states x̌k is shown by the black dots on
the green line that illustrates the nominal path X̌ , and the corresponding disturbed
vehicle states are highlighted by the dark purple dots.

initial belief bel(x0) to the goal. Details on the underlying implementation
are given in the next section.

2.5.1.1 Implementation Details

The following paragraphs detail the design choices that have been made on
the basis of [31, 186] for the implementation of Alg. 1 in this thesis. First of
all, the state-action space for the MC simulation is chosen to be the one of
the G1 continuous steering functions that is commonly used in low-speed
driving. As a result, the vehicle state is given by xk =

(
xk yk θk

)ᵀ and
the input by uk =

(
∆sk κk

)ᵀ. The motion model f(•) is assumed to be
given by the constant curvature model in (2.2) with the only difference that
the nominal input ǔk is replaced by uk + wk. This implies that the motion

2.5 Steering Functions in Belief Space 89

noise wk, which is described by a Gaussian distribution with zero mean and
covariance Qk, is added to the control input uk and propagated through f(•).
Similar to [186], the covariance Qk is defined as

Qk =

(
α1∆š

2
k + α2κ̌

2
k 0

0 α3∆š
2
k + α4κ̌

2
k

)
, (2.63)

where α1:4 ∈ R≥0 are parameters of the model, and ∆šk and κ̌k the nominal
inputs of the steering procedure.

In order to keep the system close to the nominal path, a stabilizing feedback
controller has to be implemented. Within this context, a linear controller is
selected whose output is computed according to

k(µk, x̌k) =

(
k1 0 0
0 k2 sgn(∆šk)k3

)
·TkI(θ̌k) · (Iµk − I x̌k), (2.64)

where k1:3 ∈ R denote the parameters of the controller and TkI(θ̌k) the
transformation matrix that rotates a state from the inertial frame I to the local
frame k defined by the nominal state x̌k.

The assumption that a localization system provides the measurements zk
allows to define the corresponding measurement model as

h(xk,vk) = xk + vk, (2.65)

where the measurement noise vk is drawn from a Gaussian distribution with
zero mean and covariance Rk. Currently, it is assumed that Rk is constant
throughout the state space and given as

Rk = diag(σ2
x, σ

2
y, σ

2
θ), (2.66)

where diag(•) describes a diagonal matrix and σ2
x, σ2

y , and σ2
θ the variance

of the localization module. Note, however, that the assumption of Rk being
constant can be removed if precomputed localizability maps are available
that allow to deduce the measurement covariance at a given vehicle pose.

Although the MC simulation provides the greatest flexibility with no as-
sumptions on the underlying system, its computational complexity with
the two nested for loops restricts its usage in real-time motion planning.
Therefore, the next section details the EKF-MP [23] that allows to propagate
a Gaussian belief along the nominal path of the steering functions.

90 2 Steering Functions for Car-Like Robots

2.5.2 Extended Kalman Filter for Motion Planning

The basic idea of the EKF-MP is to propagate a Gaussian distribution along
the nominal path of the vehicle while considering the localization and control
uncertainty. This is, for example, visualized in Fig. 2.44, which highlights a
subset of the Gaussian beliefs B = 〈bel(x0), . . . , bel(xN̄)〉 computed along the
path of a G2 continuous steering procedure. Based on the derivation in [23],
the beliefs are parametrized by

bel(xk) = N (xk;µk,Σk + Λk), (2.67)

whereN (•) denotes a multivariate normal distribution with mean µk ∈ Rn

and covariance (Σk + Λk) ∈ Rn×n. While the meaning of the covariance Σk

is generally known from the standard EKF [186], the interesting part in (2.67)
is the additive term Λk. It accounts for the fact that in motion planning, the
future measurements are not known at planning time. Therefore, the EKF-MP
takes into account all possible future measurements, which are assumed to
be given by a Gaussian distribution. As stated in [23], this leads to the fact
that the mean µk of the state estimate is not a deterministic variable anymore,
as in the case of the standard EKF [186], but instead distributed as

µk = N (µk;µk,Λk). (2.68)

Further details on the derivation of (2.67) using (2.68) can be found in [23].
The EKF-MP requires to linearize both the motion and the measurement

model in (2.60) as well as the feedback controller in (2.61) along the nominal
path of the steering function. A linearization of (2.60) yields

x̃k+1 = Fx,kx̃k + Fu,kũk + Fw,kwk, (2.69a)
z̃k = Hx,kx̃k + Hv,kvk, (2.69b)

where the deviations from the nominal path are given as x̃k = xk − x̌k,
ũk = uk− ǔk, and z̃k = zk− žk. The matrices Fx,k = ∇xk

f(xk,uk,wk), Fu,k =
∇uk

f(xk,uk,wk), Fw,k = ∇wk
f(xk,uk,wk) describe the partial derivatives

of (2.60a) with respect to the indexed variable. Similarly, the partial deriva-
tives of (2.60b) are given as Hx,k = ∇xk

h(xk,vk) and Hv,k = ∇vk
h(xk,vk).

All matrices have to be recomputed at every step k at the respective nomi-
nal state x̌k and input ǔk. Furthermore, it is assumed that both the motion
noise wk as well as the measurement noise vk are drawn from two indepen-
dent zero-mean Gaussians with covariances Qk and Rk, respectively.

2.5 Steering Functions in Belief Space 91

With respect to the feedback controller in (2.61), a linearization yields

uk = ǔk −Kx,k(µk − x̌k), (2.70)

where Kx,k = ∇xk
k(µk, x̌k) denotes the linearized controller gain that also

has to be evaluated at every step k at the respective nominal state x̌k and
input ǔk.

Based on (2.69)–(2.70), the EKF-MP can now be used to update the current
belief bel(xk) given a nominal input ǔk. The required computation steps,
which can be divided similar to the standard EKF into a prediction and
update step, are extracted from [23] and listed in Alg. 2.

Algorithm 2 EKF for Motion Planning (reprinted from [213], © 2018 IEEE)
ekf_mp(µk,Σk,Λk, ǔk):

Prediction
1: FK,k = Fx,k − Fu,kKx,k

2: µ̄k+1 = f(µk, ǔk,0)
3: Σ̄k+1 = Fx,kΣkF

ᵀ
x,k + Fw,kQkF

ᵀ
w,k

4: Λ̄k+1 = FK,kΛkF
ᵀ
K,k

Update
5: Σxz,k+1 = Σ̄k+1H

ᵀ
x,k+1

6: Σz,k+1 = Hx,k+1Σxz,k+1 + Hv,k+1Rk+1H
ᵀ
v,k+1

7: Lk+1 = Σxz,k+1Σ
−1
z,k+1

8: µk+1 = µ̄k+1

9: Σk+1 = Σ̄k+1 − Lk+1Σ
ᵀ
xz,k+1

10: Λk+1 = Λ̄k+1 + Lk+1Σ
ᵀ
xz,k+1

11: return µk+1,Σk+1,Λk+1

In the prediction step, it can be observed that the stabilizing controller only
acts on Λk and not on Σk (see Lines 3–4). This is because the EKF-MP uses the
linear(ized) system from (2.69) to which the separation principle [108] applies,
i.e. the possibility to treat both control and state estimation independently.
The latter is also known from linear quadratic Gaussian (LQG) control [177],
where the optimal controller can be designed separately from the optimal
filter.

Another interesting observation can be made in the update step of Alg. 2.
Here, it can be seen that the updated covariance Σk+1 is smaller than its
predicted counterpart Σ̄k+1 (see Line 9). This behavior is already known

92 2 Steering Functions for Car-Like Robots

from the standard EKF, where the availability of measurements leads to a
reduction in uncertainty. As opposed to this, it can be noticed in Line 10 that
the updated covariance Λk+1 is larger than its predicted counterpart Λ̄k+1.
This is due to the fact that the actual measurements are not available dur-
ing planning and therefore the entire distribution of possible measurements
has to be considered. Although this leads to an increase in uncertainty (see
Line 10), the stabilizing controller has the capability to keep the correspond-
ing covariance bounded (see Line 4, where FK,kΛkF

ᵀ
K,k is contractive for a

stabilized system [23]).
The last insight from Alg. 2 is that the sum of the predicted covariances

Σ̄k+1 + Λ̄k+1 is equal to the covariance of the updated belief Σk+1 + Λk+1.
This highlights the fact that during planning, the overall uncertainty can only
be reduced by the controller in Line 4 and not in the update step of Alg. 2
due to the absence of actual measurements.

A visualization of the Gaussian beliefs from the EKF-MP along with the
output from the MC simulation is shown in Fig. 2.46. Here, it can be seen that
the Gaussian distributions result in a good approximation of the true belief
distribution. However, it has to be kept in mind that this depends strongly on
the nonlinearity of the system as well as on the intensity of both the motion
and the measurement noise. Therefore, it is highly recommended to always
use the MC simulation in order to verify if the EKF-MP can be used for a
given problem.

2.5.2.1 Implementation Details

This section details the implementation of the EKF-MP used in this thesis
to propagate Gaussian beliefs along the nominal path of the steering func-
tions. Similar to Sec. 2.5.1.1 and [31], the vehicle state is represented here
by xk =

(
xk yk θk

)ᵀ and the input by uk =
(
∆sk κk

)ᵀ. This results in the
computation of three-dimensional Gaussian distributions that describe the
uncertainty in position and orientation as required for probabilistic collision
checking (see Ch. 3).

One of the prerequisites of Alg. 2 is a linearization of the vehicle’s motion
along the nominal path according to (2.69a). For the previously introduced
steering functions, the corresponding partial derivatives Fx,k and Fu,k are
given in Sec. A.1. The assumption that the motion noise acts directly on the
input of the system, as in Sec. 2.5.1.1, leads to Fw,k = Fu,k. Furthermore, it
is assumed here that the motion noise wk is given by a zero-mean Gaussian

2.5 Steering Functions in Belief Space 93

Figure 2.46 Extension of Fig. 2.45 with the Gaussian beliefs from the EKF-MP. The
ellipses illustrate the three-sigma uncertainty of the beliefs bel(xk) while the meaning
of the other markers is identical to Fig. 2.45.

whose covariance Qk is computed analogously to (2.63).
The stabilizing feedback controller from (2.64) can be used here directly as

it is already given in a linear form. The corresponding controller gain Kx,k is
defined as

Kx,k =

(
k1 0 0
0 k2 sgn(∆šk)k3

)
·TkI(θ̌k), (2.71)

where k1:3 and TkI(θ̌k) have the same meaning as in (2.64).
The assumptions in Sec. 2.5.1.1 with respect to the localization system

are adopted here. The matrices Hx,k and Hv,k in Alg. 2 can therefore be
directly derived from (2.65) as Hx,k = Hv,k = I3, where I3 denotes the three-
dimensional identity matrix. On the basis of these equations, the EKF-MP can
now be used to propagate the beliefs along the nominal path. A benchmark
of the computational complexity is highlighted in the next section.

94 2 Steering Functions for Car-Like Robots

2.5.2.2 Experimental Evaluation

This section compares the computation times of the nominal steering func-
tions with the ones in Gaussian belief space, where the belief distribution
is computed along the nominal path using the EKF-MP. For this purpose,
the implementation of the G1 and G2 continuous steering functions has been
extended with Alg. 2. The corresponding source code is publicly available
in [208]. Note that on the basis of the provided details, the G3 continuous
steering functions can also be extended to Gaussian belief space, which is,
however, beyond the scope of this section.

The setup for the conducted experiments is similar to the one in Sec. 2.3.4.
Briefly summarized, 105 random steering procedures are evaluated on a
single core of an Intel Xeon E5@3.5 GHz. The vehicle’s start and goal posi-
tion is uniformly sampled within a 20 m× 20 m area and its orientation is
randomly chosen from the interval [0, 2π). The parameters of the vehicle are
set to κmax = 1 m−1 and σmax = 1 m−2, and the states/beliefs are computed at
equidistant arc lengths with a discretization of 10 cm. In contrast to Tab. 2.4
and Tab. 2.5, which only list the time for the computation of the actions
ǔk ∈ Ǔ , the evaluation here also includes the derivation of the states/beliefs
using the corresponding motion model. The source code is implemented in
C++ and uses the Eigen library [69] for the linear algebra in Alg. 2.

The results of the conducted benchmark are listed in Tab. 2.8.

Table 2.8 Average computation time of theG1 andG2 continuous steering functions
with/without the usage of the EKF-MP for the computation of the belief distribution.

without EKF-MP with EKF-MP

mean [µs] std [µs] mean [µs] std [µs]

Dubins 8.4 ±2.9 65.0 ±23.5
CC00-Dubins 16.1 ±3.2 85.6 ±23.5
RS 13.4 ±2.9 63.3 ±23.6
HC±±-RS 56.8 ±7.0 112.6 ±23.0
HC00-RS 57.5 ±6.1 117.2 ±20.3
CC00-RS 64.6 ±7.6 126.3 ±19.7

It can be seen that the computation of the beliefs increases the average
computation times between 49.6 µs and 69.5 µs. This is due to the additional
complexity of Alg. 2 that is executed in the given setup every 10 cm. A

2.6 Summary 95

relative comparison shows that especially in the G1 continuous case, the
EKF-MP increases the average computation times by up to a factor of 7.7.
In contrast to that, this factor is only 2.0 in case of the G2 continuous RS
steering functions. The underlying reason is that the computation time for
the belief update is fairly decoupled from the smoothness of the path. This
makes steering functions with an originally low computation time relatively
more expensive. Additionally, it has to be considered that the length of the
path determines the number of beliefs and thus how often Alg. 2 needs to be
executed. The belief propagation is therefore more expensive for longer paths
as it can be seen by comparing the mean computation time with/without
EKF-MP for CC00-Dubins (+69.5 µs) and RS steer (+49.9 µs). Nevertheless,
Alg. 2 is currently one of the most efficient approaches to also consider the
localization and control uncertainty in motion planning.

2.6 Summary

Solving the steering problem in (2.1) is one of the major problems in motion
planning for car-like robots. It requires to find a preferably optimal solution
that connects a start and goal state while satisfying the constraints of the
system. Obstacle avoidance can then be enforced in a subsequent step by
iteratively probing the computed states for collision with the environment.

On the basis of the prominent steering functions Dubins [43], RS [152], and
CC steer [53], several novel methods are presented and benchmarked in this
chapter to tackle the drawbacks of those three approaches. For instance, the
novel steering function HC steer in Sec. 2.3.2 enforces curvature continuity
between direction switches, but allows to turn the wheels at cusps. As shown
in Sec. 2.3.4, the resulting paths are not only smoother than the curvature-
discrete ones of RS steer, but also shorter than the paths of CC steer. Especially
in tight environments, as it will be shown in Sec. 5.3.1, these properties allow
to compute motion plans with less direction switches than CC steer while
providing a higher degree of comfort for passengers than RS steer.

An extension of HC and CC steer to arbitrary start and goal curvatures is
then introduced in Sec. 2.3.3. While the original publication of CC steer [53]
requires zero curvature at both ends of the path, the novel approach allows
to connect two arbitrary four-dimensional states (position, orientation, curva-
ture) with either a HC or a CC path. This feature is especially useful when
the vehicle is in a state with non-zero velocity and curvature.

96 2 Steering Functions for Car-Like Robots

One of the remaining problems that both HC and CC steer impose infinite
steering acceleration on the vehicle is tackled in Sec. 2.4. Here, the smoothness
of the paths is raised to curvature rate continuity while at the same time
satisfying the vehicle’s constraints on the maximum curvature, maximum
curvature rate, and maximum curvature acceleration. Among the advantages
of the so-called HCR and CCR steering functions are a better closed-loop
tracking performance, less mechanical stress on the steering system, and
more comfort due to a reduction in lateral jerk. However, it also has to be
considered that the corresponding paths are typically longer than their G1

and G2 continuous counterparts and also more expensive to compute. Both
aspects were elaborated in detail in Sec. 2.4.3.

While the previous approaches assumed perfect state estimation and con-
trol, an extension of these nominal steering functions to belief space is finally
presented in Sec. 2.5. Here, two methods are described that allow to compute
the belief distribution along the nominal path by explicitly taking into ac-
count the localization and control uncertainty. This distribution can then be
used in the motion planner to compute more robust solutions with bounded
collision probability as further detailed in Ch. 3 and Ch. 5.

In the future, researchers are encouraged to build upon the presented re-
sults by using the steering function package in [208] that has been developed
and provided as open source as part of this thesis. Two robots that currently
leverage the capabilities of this implementation are the Bosch Campus Shut-
tle and the automated forklifts of the ILIAD project [79] both visualized in
Fig. 2.47. Further details on how the provided steering functions can be used
in a sampling-based motion planner are given in Ch. 5.

(a) Bosch Campus Shuttle. (b) Automated forklifts [79].

Figure 2.47 Two robots that currently use the open-source implementation [208] of
the steering functions. (b) Reprinted with permission from [79], © 2018 Timm Linder.

3 From Footprints to Beliefprints:
Probabilistic Collision Checking

Collision checking is one of the important aspects in motion planning. It
requires to determine whether a sequence of states can be executed safely
by probing the footprint of the vehicle for collision with the environment.
Within this context, the footprint is defined as the robot’s contour projected
onto the ground. For efficient collision checking, the exact footprint of the
vehicle is typically approximated by several disks [205] or as in this chapter
by a convex polygon (see Fig. 3.1).

Depending on the representation of the surrounding obstacles, different
algorithms must be applied for collision checking. For instance, Fig. 3.1(a)
illustrates the case where both the ego-vehicle as well as the obstacle are
represented by a polygon. In contrast to that, an occupancy grid [124] is
used in Fig. 3.1(b) to describe the area covered by the obstacle. In both cases,
efficient algorithms exist in the literature for collision checking.

(a) Polygon–polygon collision check. (b) Polygon–occ.-grid collision check.

Figure 3.1 Different representations of the environment require different ap-
proaches for collision checking. Two polygons (green contours) must be examined
for collision in (a) while (b) requires to check a polygon (green contour) against an
occupancy grid (purple area). Reprinted from [209].

98 3 From Footprints to Beliefprints: Probabilistic Collision Checking

For example, a well-known approach for the polygon–polygon collision
check in Fig. 3.1(a) is the Gilbert-Johnson-Keerthi algorithm [62]. It is based
on the fact that two convex polygons are collision-free if the corresponding
Minkowski difference [45] does not contain the origin. If, however, the envi-
ronment is represented by an occupancy grid as in Fig. 3.1(b), the Bresenham
algorithm [20] allows to efficiently evaluate whether the edges of a polygon
intersect with the occupied area. In order to not only check the edges, but also
the interior of that polygon, filling algorithms from computer graphics [51]
or a convolution-based approach [184] can be applied. In summary, efficient
approaches exist for collision checking when both the state of the robot as
well as the shape of the obstacles are given without uncertainty.

In reality, however, this is typically not the case due to e.g. noisy measure-
ments or imperfect execution of the nominal motion plan. As outlined in
Sec. 2.5, the latter leads to the fact that the state of the vehicle is no longer
given by a deterministic value, but rather described by a belief distribution.
This can be seen in Fig. 3.2(a), where the purple ellipsoid at the center of the
rear axle illustrates the uncertainty of the ego-vehicle’s state.

(a) Vehicle state with uncertainty. (b) Beliefprint for collision checking.

Figure 3.2 Transformation of the footprint (green polygon) into the beliefprint
(cyan polygon) for collision checking under uncertainty. The environment is assumed
to be given by the same occupancy grid as in Fig. 3.1(b) while the uncertain vehicle
pose is described by a three-dimensional Gaussian distribution (purple ellipsoid).
Reprinted from [209].

A natural question in such a situation is how to assess whether the collision
probability (CP) with the environment remains below a user-defined thresh-
old. This motivates the introduction of the so-called beliefprint Bk ⊂ R2,
which describes the area occupied by the robot given its footprint F ⊂ R2, a

3.1 State of the Art 99

belief bel(xk) with xk ∈ Rn≤3, and a confidence P ∈ (0.5, 1]. A visualization
of such a beliefprint can be found in Fig. 3.2(b). The general idea behind this
concept is to derive a new polygon that guarantees a CP below 1 − P if it
does not collide with the surrounding obstacles. Therefore, beliefprints are
especially interesting from a planning perspective as they allow to enforce
the frequently arising chance constraint [12, 23, 121, 191]

Pr(xk ∈ Xobs) < 1− P, (3.1)

where Pr(•) measures probability and Xobs ⊂ Rn denotes the states that lead
to a collision with the surrounding obstacles. Note that these obstacles are
assumed to be given without uncertainty, however, an extension to a proba-
bilistic environment representation is also possible. Furthermore, the ideas
presented in this chapter are not only restricted to a single two-dimensional
rigid body, but rather transferable to a three-dimensional multi-body system.
Both aspects are, however, beyond the scope of this thesis and subject of
future work.

The remainder of this chapter, which is based on [213, 218], is organized as
follows: Sec. 3.1 reviews the state of the art in probabilistic collision checking,
and Sec. 3.2 introduces two novel algorithms for the computation of the
beliefprint in Gaussian belief space. A summary is finally given in Sec. 3.3.

3.1 State of the Art

Over the years, various approaches have emerged in the literature to evaluate
collisions from a probabilistic point of view. Typically, these methods differ in
the assumptions they make about the shape of the robot and the representa-
tion of both the belief distribution as well as of the environment. Within this
context, the following paragraphs first highlight the state-of-the-art Monte
Carlo (MC) approaches for probabilistic collision checking followed by the
currently available methods in Gaussian belief space.

Monte Carlo sampling Computing CPs using MC sampling is one of the
most flexible tools that requires the fewest assumptions about the problem.
For instance, [109] presents an MC algorithm that approximates the CP of
two vehicles whose states are described by two independent PDFs. An
extension of this algorithm to the more general case of a joint PDF describing
the underlying distribution is given in [42]. In order to not only evaluate

100 3 From Footprints to Beliefprints: Probabilistic Collision Checking

the CP of a single state but rather the one of an entire motion plan, the
approaches in [35, 84, 165] perform trajectory rollouts using MC sampling.
For instance, [35] considers the case where the future motion of the target
vehicles is described by Gaussian processes. In contrast to that, the focus
in [84, 165] lies on the ego-motion being subject to uncertainty similar to
Sec. 2.5.1. In general, all of the previously mentioned MC approaches come
with a high computational cost especially for accurate approximations of the
true CP. Although advanced techniques, such as importance sampling [84,
165], can reduce this cost, only highly parallelized implementations allow
an application in real-time motion planning [76]. More efficient methods for
probabilistic collision checking can be derived in Gaussian belief space as
highlighted in the next paragraphs.

Gaussian belief space Under the assumption of two point robots with a
joint Gaussian distribution, it is known from e.g. [42] that the exact CP can be
computed analytically. However, if both robot shapes are modified to a disk,
no closed-form solution exists anymore. In this case, one must either rely on
an approximation or on an upper bound on the true CP [42, 134]. Even in
the case where only one of the two circular robots is subject to uncertainty,
no analytic solution can be found. Instead, it is proposed in [106, 140] to
either store the underlying integral in a look-up table [106] or to evaluate
it numerically on the fly [140]. A different approach for a circular robot
in a known polygonal environment is presented in [8]. Here, the authors
compute the minimum probability that no collision occurs with the obstacles
at a given time step. Unfortunately, the efficiency of this approach can not
be maintained in the case of a non-circular robot, where an optimization
problem must be solved for every Gaussian belief [180]. Note that both
approaches [8, 180] can also be used in e.g. [137] to approximate the CP of an
entire trajectory.

In automated driving, most of the obstacles as well as the ego-vehicle itself
have a non-circular shape. This is for example considered in [196], where
a conservative hull is constructed such that the translational uncertainty
of the ego-vehicle is taken into account. While this might be sufficient for
probabilistic collision checking, the grid-based approach in [139] allows to
actually compute the CP (up to a discretization error) in case that only one of
the two (colliding) objects is subject to translational uncertainty. If, however,
the position of both objects is uncertain, the algorithm in [135] can be used
to compute an upper bound on the true CP. In order to also consider the

3.1 State of the Art 101

uncertainty of the rotational degree of freedom (DOF), a two-step approach
is introduced in [71]. Here, both the translational as well as the rotational
DOF are treated separately as the corresponding uncertainties are assumed
to be independent.

In contrast to that, the idea of sigma hulls (SHs) [117] is to derive a convex
hull that captures the uncertainty of a Gaussian belief with respect to a user-
defined confidence P . To do so, it is proposed to first transform the robot to
the sigma points known from the UKF [87] and then to compute a convex hull
that encloses the robot’s shape at all of these configurations. An exemplary
visualization of this procedure for a vehicle with one rotational and two
translational DOFs can be found in Fig. 3.3.

x [m]4.8
5.0 5.2

y [m] 2.8
3.0

3.2

0.5

0.6

0.7

θ
[r

ad
]

(a) Sigma points.

4 6 8

2

4

6

µk

x [m]

y
[m

]

SH

(b) Sigma hull (SH).

Figure 3.3 Visualization of the sigma hull given the Gaussian belief from (a) with
mean µk. The underlying procedure computes the convex hull of the footprints
(dashed lines in (b)) that are transformed to the sigma points of the Gaussian.

Unfortunately, the sigma points only yield an optimistic approximation of
the Gaussian belief as indicated by the polyhedron in Fig. 3.3(a). Therefore,
checking a SH for collision with the environment provides no guarantee that
the corresponding CP is below the given threshold 1− P . This insight is one
of the main motivations behind the two novel approaches presented in the
following section.

Finally, it has to be mentioned that there are also methods that take into
account the perception uncertainty in the evaluation of the CP [3, 13, 54, 139].
Especially [54] has to be highlighted here as it outlines the computation of the
CP in a probabilistic occupancy grid [44] that is frequently used in automated
driving [63, 189, 194]. Note that this procedure can also be combined with

102 3 From Footprints to Beliefprints: Probabilistic Collision Checking

the previously introduced concept of beliefprints in order to compute CPs
that account for both perception and ego-motion uncertainty.

3.2 Beliefprint Computation

This section introduces two novel algorithms for the computation of the
beliefprint given a Gaussian belief, the vehicle’s footprint, and a confidence P .
The development of both algorithms is motivated by the fact that state-of-
the-art approaches [117, 196] fail to calculate a conservative approximation
of the actual beliefprint Bk. To better understand this, Fig. 3.4 illustrates how
Bk can be computed for a three-dimensional vehicle state with uncertain
position and orientation.

x [m]4.8 5.0 5.2
y [m]

2.8
3.0

3.2
0.4

0.5

0.6

0.7

θ
[r

ad
]

(a) Gaussian belief bel(xk).

4 6 8

2

4

6

µk

x [m]

y
[m

]

Bk

(b) Beliefprint Bk.

Figure 3.4 Illustration of a three-dimensional Gaussian belief bel(xk) along with
the corresponding beliefprint Bk. The latter can be obtained by transforming the
footprint F (dashed line in (b)) to all states on the surface of the blue ellipsoid shown
in (a).

Briefly summarized, one must first compute the ellipsoid visualized in
Fig. 3.4(a) such that it encloses the probability mass P of the Gaussian belief
bel(xk) = N (xk;µk,Γk)

6 with mean µk ∈ Rn and covariance Γk ∈ Rn×n.
The beliefprint Bk can then be obtained by taking the union of all footprints
transformed to the (infinitely many) states on the surface of the previously

6Throughout this section, the belief is represented by a multivariate normal distribution
as computed, for example, by the EKF-MP in Alg. 2. Note, however, that the underlying
PDF neglects that angles are typically wrapped to a 2π interval (see e.g. wrapped normal
distribution [81]) and thus only yields a good approximation for small angular uncertainties.

3.2 Beliefprint Computation 103

computed ellipsoid. Comparing this procedure with the state of the art, it can
be seen that [196] completely neglects the rotational uncertainty while [117]
approximates the belief optimistically with the 2n+ 1 sigma points as shown
in Fig. 3.3(a). Furthermore, the procedure described above also reveals that
Bk itself cannot be calculated efficiently due to the infinitely many transfor-
mations involved in the underlying computations.

Therefore, the goal in this section is to derive an efficient and systematic
approach that allows to approximate the beliefprint Bk conservatively. To do
so, two novel algorithms are proposed on the basis of [213] in Sec. 3.2.1 and
[218] in Sec. 3.2.2. While the first algorithm can only guarantee conservatism
in certain cases, it serves as an integral part of the second algorithm that
provides this guarantee for arbitrary three-dimensional Gaussians (uncertain
position and orientation).

3.2.1 Approximate Beliefprint

The basic idea in this section lies in the approximation of the beliefprint by a
convex hull that encloses the vehicle’s footprint F transformed to a finite set
of vehicle states. The key aspect of such an approach is the derivation of these
states such that the resulting beliefprint B̂k yields a conservative approxima-
tion of Bk. In this section, it is proposed to use the vertices of a polyhedronPk,
that encloses the probability mass P of the Gaussian belief bel(xk), for the
required transformations. In certain cases, such a procedure allows a conser-
vative approximation of Bk as further detailed below. Note that the following
derivations are given for the two-dimensional case (F ,Bk, B̂k ⊂ R2 and
xk ∈ Rn≤3), but can also be transfered to three dimensions (F ,Bk, B̂k ⊂ R3

and xk ∈ Rn≤6).
The computation of the approximate beliefprint B̂k is divided into two

stages. The first one requires the definition of a polyhedron P ⊂ Rn with
s vertices p[i=1:s] ∈ Rn such that it encloses the probability mass P of an
n-dimensional standard normal distribution as follows

P =
1√

(2π)n

ˆ
P

exp

(
−1

2
xᵀx

)
dx, (3.2)

where the vector x ∈ Rn contains the n states of the robot. For n = 3,
interesting candidates forP are the Platonic solids [37] such as the octahedron
or the icosahedron both shown in Fig. 3.5.

104 3 From Footprints to Beliefprints: Probabilistic Collision Checking

x
−1 0 1y −1

0
1

θ

−1

0

1

p
[i]
oct

(a) Octahedron.
x

−1 0 1y −1
0

1

θ

−1

0

1

p
[i]
ico

(b) Icosahedron.

Figure 3.5 Visualization of an octahedron with six vertices and of an icosahedron
with twelve vertices that both enclose a unit sphere. Adapted from [213], © 2018
IEEE.

The advantage of these polyhedrons is that their symmetry facilitates the
integration in (3.2). In case of the octahedron, for example, (3.2) can be written
as

Poct(R) =
8√

(2π)3

ˆ R

0

ˆ R−x

0

ˆ R−x−y

0
exp

(
−1

2
xᵀx

)
dθ dy dx, (3.3)

where the state of the robot is given by x =
(
x y θ

)ᵀ, and the circumscribed
radius by R =

√
3r with r being the inscribed radius visualized by the blue

sphere in Fig. 3.5(a). In a similar way, the probability mass can be derived
that is contained within an icosahedron given, for example, its inscribed
radius. A numerical evaluation of these integrals for different values of r can
be found in Fig. 3.6, which also includes the corresponding correlation for a
sphere. In this case, the integration in (3.2) can be conducted very efficiently
using a spherical coordinate system, which yields

Psph(r) = erf

(√
2

2
r

)
−
√

2

π
r exp

(
−1

2
r2

)
, (3.4)

where r denotes the radius of the sphere and erf(•) the error function [1].
It can be seen in Fig. 3.6 that for a given radius r, both the octahedron as

well as the icosahedron enclose more probability mass than the sphere. This
is due to the fact that both polyhedrons enclose the sphere entirely and also

3.2 Beliefprint Computation 105

0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

r [m]

P
[−

]
sphere
octahedron
icosahedron

Figure 3.6 Comparison of the probability mass P contained within a sphere, an oc-
tahedron, and an icosahedron with regard to the inscribed radius r given a standard
normal distribution. Adapted from [213], © 2018 IEEE.

capture additional probability mass at the corners (see Fig. 3.5). However,
adding more vertices to the polyhedron in order to better approximate the
sphere reduces this effect as it can be observed by comparing the curves of
the octahedron and the icosahedron in Fig. 3.6.

Apart from this analysis, Fig. 3.6 also allows to derive the inscribed radius
of the two polyhedrons given a user-defined confidence P . This value can
then be used to specify the vertices p[i] (see Fig. 3.5) that are required for the
remaining computations.

While all of the previous steps can be executed offline, the second phase of
the proposed algorithm must be repeated online for every Gaussian belief
bel(xk) = N (xk;µk,Γk). The goal now is to compute the s vertices p

[i]
k of

the polyhedron Pk, which encloses the probability mass P of the belief. In
fact, it is possible to show that these vertices can be calculated efficiently by
transforming the vertices p[i] of the polyhedron P according to

p
[i]
k = Lkp

[i] + µk, (3.5)

where Lk ∈ Rn×n denotes the lower triangular matrix obtained from the
Cholesky factorization of Γk [65]. From a geometric point of view, (3.5) first
deforms the polyhedron P linearly using Lk and then shifts it to the mean µk
as shown in Fig. 3.7(a). Note that this affine transformation is also known
from the generation of multivariate Gaussian samples when only sampling
from a standard normal distribution is possible [59].

Now that the polyhedron Pk is known, the approximate beliefprint B̂k

106 3 From Footprints to Beliefprints: Probabilistic Collision Checking

x [m]4.8
5.0 5.2

y [m]
2.8

3.0
3.2

0.5

0.6

0.7

θ
[r

a
d

]

p
[i]
k

(a) Transformed polyhedron Pk.

4 6 8

2

4

6

µk

x [m]

y
[m

]

B̂k

(b) Approximate beliefprint B̂k.

Figure 3.7 Illustration of the transformed polyhedron Pk and the approximate
beliefprint B̂k. The latter describes the convex hull of the footprints transformed to
the s vertices p

[i]
k of Pk. Note that the ellipsoid in (a) is already known from Fig. 3.4(a)

and encloses the same probability mass as Pk. Adapted from [213], © 2018 IEEE.

can be computed similar to [117] in two steps: (1) transform the vehicle’s
footprint F to the s vertices p

[i]
k of Pk, and (2) compute the convex hull of

these transformed footprints in order to end up with B̂k. A visualization of
both steps can be found in Fig. 3.7(b), and a summarizing description of the
algorithm in Alg. 3.

Algorithm 3 Approximate Beliefprint (adapted from [213], © 2018 IEEE)
approx_beliefprint(µk,Γk,P ,F):

1: LkL
ᵀ
k = cholesky(Γk)

2: Fk = ∅
3: for i = 1 : s do
4: p

[i]
k = Lkp

[i] + µk
5: F [i]

k = transform(F ,p[i]
k)

6: Fk += 〈F [i]
k 〉

7: end for
8: B̂k = convhull(Fk)
9: return B̂k

A step-wise analysis of the described computations allows to derive the
time complexity of this algorithm. Remember that the dimension of the
vehicle’s state is denoted by n and the polyhedron’s number of vertices by s.

3.2 Beliefprint Computation 107

Furthermore, it is assumed that the footprint is composed of p points. On
this basis, the time complexity of Alg. 3 is given by O(n3 + sn2 + sp log(sp)).
More precisely, the Cholesky factorization in Line 1 has a complexity of
O(n3) [65], the for loop in Lines 3–7 is O(s(n2 + p)), and the complexity of
the convex hull operation in Line 8 is given by O(sp log(sp)) [148]. Based on
these results, it is expected that the total number of generated points sp has a
major influence on the overall runtime of this algorithm. Further details on
the actual computation time for different values of s and p are highlighted in
the next section.

Finally, it remains to be answered in which cases Alg. 3 yields a conser-
vative approximation of the beliefprint Bk. In general, conservatism can be
guaranteed if the approximate beliefprint describes the union of all footprints
transformed to the infinitely many points on the surface of Pk. The reason
for this is that the polyhedron Pk encloses the probability mass P exactly,
however, its vertices lie further away from the mean than all points on the
corresponding ellipsoid (see Fig. 3.7(a)) that is used to compute Bk .

Under the assumption that the robot has only translational DOFs, the
previously described problem of transforming the footprint F to all points
on Pk corresponds to the computation of the Minkowski sum [45]. If both Pk
and F are convex, it is known from e.g. [61] that Alg. 3 computes exactly this
Minkowski sum and by doing so, derives a conservative approximation of Bk.
In case of a non-convex footprint, a convexification must first be conducted
in order to approximate Bk conservatively [166].

In contrast to that, if the state of the robot also contains a rotational DOF,
it can generally no longer be ensured that the output of Alg. 3 yields a
conservative approximation of Bk. This is due to the nonlinearity of the
rotation, which not only requires the evaluation of F at the vertices of Pk,
but rather on its whole surface. However, one exemption can be identified: if
the footprint F only consists of a single point (or a disk), the rotational DOF
has no effect on the actual shape of Bk. In this case, the output from Alg. 3
yields a conservative approximation of Bk as it can be seen in Fig. 3.8

3.2.1.1 Experimental Evaluation

The experimental results in this section compare the performance of the
proposed method with sigma hulls (SHs) [117] and an MC approach. The
latter draws a given number of samples from the Gaussian distribution such
that the user-defined confidence P is satisfied with a certain probability [25].

108 3 From Footprints to Beliefprints: Probabilistic Collision Checking

4.8 5 5.2

2.8

3

3.2

µk

x [m]
y
[m

]

Bk

B̂k (ico.)
SH

Figure 3.8 Beliefprint Bk of a point robot given the three-dimensional Gaussian
distribution from Fig. 3.4(a). In contrast to SHs [117], the approximate beliefprint B̂k

(computed here with an icosahedron) captures additional probability mass at the
corners resulting in a more conservative/larger beliefprint than Bk itself.

In the experiments below, this probability is set to 99 %, and the three-sigma
confidence in three dimensions (97.1 %) is chosen for P . On the basis of
these parameters, Fig. 3.9 compares the shape of the beliefprint Bk with the
approximations of the other three approaches given the Gaussian belief from
Fig. 3.4(a).

4 5 6 7 8 9

2

3

4

5

6

µk

x [m]

y
[m

]

Bk

B̂k (oct.)
B̂k (ico.)
SH
MC

Figure 3.9 Comparison of the beliefprint Bk with the approximate beliefprint
B̂k of an octahedron/icosahedron, a sigma hull (SH) [117], and the result of an
MC approach given the Gaussian belief from Fig. 3.4(a).

It can be seen in Fig. 3.9 that the SH lies completely within Bk and thus
might result in situations where the actual CP exceeds the user-defined
threshold 1− P . As opposed to this, the approximate beliefprint B̂k of the

3.2 Beliefprint Computation 109

octahedron leads to a fairly conservative approximation of Bk. The reason
for this is that the octahedron consists of only six vertices, which must be
placed further away from the mean to capture the same probability mass as
e.g. an icosahedron with its twelve vertices (see Fig. 3.5). In fact, it can be
observed that both the icosahedron as well as the MC approach yield the
closest approximation of Bk in this example. However, both methods differ
significantly with respect to their computational effort as it is shown in the
following benchmark.

Especially in real-time applications, methods with a low computation time
are required. Therefore, the different beliefprint approximations are now
compared with respect to their average computation time given 104 random
beliefs. All methods are implemented in C++ and benchmarked on a single
core of an Intel Xeon E5@3.5 GHz. The corresponding values can be found in
Tab. 3.1, where the shape of the footprint is varied between a rectangle with
four points Frectangle and a polygon with 20 points Fcontour.

Table 3.1 Benchmark of the average computation time [µs] for a single beliefprint
approximation. Adapted from [213], © 2018 IEEE.

MC SH oct. ico.

Frectangle 750.6 3.5 3.6 5.2
Fcontour 1708.2 9.1 9.8 17.2

It can be seen that the computation of a sigma hull takes about as long
as the execution of Alg. 3 in combination with an octahedron. In contrast
to that, replacing the octahedron with an icosahedron raises the average
computation time by up to 75.5 %. A similar trend can be observed when
comparing the computation times for the different footprints Frectangle and
Fcontour. These results are aligned with the analysis of the time complexity
above and therefore not further detailed here. In addition to that, it has to
be mentioned that the MC approach is orders of magnitude slower than the
three other approaches limiting its usability in real-time applications.

3.2.2 Robust Beliefprint

The insight that the nonlinearity of the rotation prevents the previous method
from being conservative inspired the algorithm presented in this section.
The general idea here is to first construct a hull that completely captures the

110 3 From Footprints to Beliefprints: Probabilistic Collision Checking

uncertainty of the rotational DOF and then use this result to also enclose the
uncertainty of the vehicle’s position. The output of this method is called ro-
bust beliefprint B̄k as it guarantees (under the premise of Footnote 6 (p. 102))
to approximate the beliefprint Bk conservatively.

The results in this section are currently limited to a three-dimensional
Gaussian belief bel(xk) = N (xk;µk,Γk) whose components are given as

bel(xk) = N

xkyk
θk

 ;

µx,kµy,k
µθ,k

 ,

Γxx,k Γxy,k Γxθ,k
Γyx,k Γyy,k Γyθ,k
Γθx,k Γθy,k Γθθ,k

 . (3.6)

Note that the covariance matrix Γk is symmetric and that xk and yk describe
the vehicle’s position and θk its heading angle.

Similar to Sec. 3.2.1, the overall goal in the following derivation is to derive
a volume Vk ⊂ R3 that encloses the probability mass P of the current belief
bel(xk) = p(xk, yk, θk) according to

P =

ˆ ˆ ˆ
Vk
p(xk, yk, θk) dxk dyk dθk. (3.7)

This equation can be modified by applying the definition of conditional
probability [186] as

P =

ˆ ˆ ˆ
Vk
p(θk|xk, yk)p(xk, yk) dxk dyk dθk, (3.8a)

P =

ˆ ˆ
Ak
p(xk, yk)

ˆ
Hk
p(θk|xk, yk) dθk dxk dyk, (3.8b)

where the volume Vk is decomposed into the two-dimensional area Ak ⊂ R2

and into the one-dimensional bound Hk ⊂ R that may depend on xk and
yk. For a Gaussian belief, it is known that both the marginal distribution
p(xk, yk) as well as the conditional distribution p(θk|xk, yk) remain Gaussians.
In particular, the latter is described byN (θ|x, y;µθ|x,y,Γθ|x,y), where the index
k is dropped in the following for better readability. The mean µθ|x,y and the
variance Γθ|x,y of this distribution are given according to [11] by

µθ|x,y = µθ +
(
Γθx Γθy

)(Γxx Γxy
Γyx Γyy

)−1((
x
y

)
−
(
µx
µy

))
, (3.9a)

Γθ|x,y = Γθθ −
(
Γθx Γθy

)(Γxx Γxy
Γyx Γyy

)−1(
Γxθ
Γyθ

)
. (3.9b)

3.2 Beliefprint Computation 111

Two important facts can be observed in (3.9) that are used later on: (1) the
mean µθ|x,y is a linear function of the vehicle’s position

(
x y

)
, and (2) the

variance Γθ|x,y is constant and can be determined with the values from (3.6).
Using the previous results, (3.8b) can be reformulated as

P =

ˆ ˆ
A
p(x, y)

ˆ µθ|x,y+∆θ

µθ|x,y−∆θ
N (θ|x, y;µθ|x,y,Γθ|x,y) dθ dx dy, (3.10)

where the integration boundH is replaced with µθ|x,y ±∆θ. The general idea
behind this substitution is to capture the uncertainty of the rotational DOF in
an interval ±∆θ around the mean µθ|x,y of the underlying distribution. This
allows to further simplify (3.10) by shifting the integration bounds to

P =

ˆ ˆ
A
p(x, y)

ˆ +∆θ

−∆θ
N (θ|x, y; 0,Γθ|x,y) dθ dx dy. (3.11)

The inner integral can now be solved leading to the final result

P =

ˆ ˆ
A

erf

(
∆θ√
2Γθ|x,y

)
p(x, y) dx dy, (3.12a)

P = erf

(
∆θ√
2Γθ|x,y

)
︸ ︷︷ ︸

Prot

ˆ ˆ
A
p(x, y) dx dy︸ ︷︷ ︸
Ptrans

, (3.12b)

where the fact that the variance Γθ|x,y from (3.9b) does not depend on the
variables x and y is leveraged. On this basis, it can be concluded that an
alternative way to satisfy P is to compute an interval ±∆θ and an area A
such that they enclose the probability mass Prot and Ptrans, respectively. The
corresponding values for Prot and Ptrans must be defined by the user such
that the multiplication of both terms gives the confidence P (see (3.12b)). For
instance, one can set P to the three-sigma value in three dimensions (97.1 %),
and Ptrans to the three-sigma value in two-dimensions (98.9 %), which yields
Prot = P/Ptrans. These confidences can then be used to determine both ∆θ
and A analytically by applying the results from Sec. 3.2.1.

For instance, ∆θ can be obtained by solving (3.2) offline (n = 1 and con-
fidence Prot) and by transforming the resulting two bounds similar to (3.5)
with

√
Γθ|x,y [59]. This procedure has the advantage that it only requires

a simple linear transformation in the online phase of the algorithm. The
two-dimensional area A in (3.12b) can also be derived with the method from

112 3 From Footprints to Beliefprints: Probabilistic Collision Checking

Sec. 3.2.1 using n = 2 and the confidence Ptrans. In this case, regular polygons
are promising candidates for the integration in (3.2) due to their symmetry.

The results of the previous analysis are visualized in Fig. 3.10.

x [m]4.8 5.0 5.2
y [m]

2.8
3.0

3.2
0.4

0.5

0.6

0.7

θ
[r

a
d

]

(a) Joint distribution p(x, y, θ).

4.8 5 5.2

2.8

3

3.2

µθ|x,y

x [m]

y
[m

]
(b) Marginal distribution p(x, y).

Figure 3.10 Visualization of the joint and the marginal distribution along with the
ellipsoid (a) and the ellipse (b) that indicate the user-defined confidence P and Ptrans.
In addition to that, the polygon A and the mean µθ|x,y at the corners of A are also
shown in (b). Note that the illustrated wedges in (b) indicate the ±∆θ bound derived
from the confidence Prot.

Here, a polygon with five vertices is chosen to enclose the probability mass
Ptrans of the marginal distribution p(x, y). Furthermore, the wedges at the
respective vertices display the range ±∆θ that is required to also capture Prot.
From the previous analysis, it is known that ∆θ is constant for all positions
inA, however, the mean heading angle µθ|x,y changes linearly with respect to
x and y (see (3.9a)). This effect can also be seen in Fig. 3.10(b) by comparing
the corresponding values visualized at the corners of A.

In order to ensure conservatism in the computation of the robust beliefprint,
the dependence of µθ|x,y on x and y must first be eliminated. Here, it is
proposed to over-approximate this value with the maximum µ̄θ|x,y and the
minimum

¯
µθ|x,y that occur on A. Under the assumption that a polygon

is used to describe A, finding these extrema is equal to solving a linear
program, where (3.9a) defines the objective function andA the corresponding
constraints. Fortunately, it is known from linear optimization that both
extrema occur at the corners of the underlying polygon [9]. Therefore, it is
sufficient to evaluate µθ|x,y at these positions (see Fig. 3.10(b)) and then to
take the maximum value as µ̄θ|x,y and the minimum as

¯
µθ|x,y.

3.2 Beliefprint Computation 113

On this basis, a conservative hull B̄θ can be computed that fully encloses
the uncertainty of the rotation. As shown in Fig. 3.11(a), the corresponding
procedure requires to rotate the footprint F from

¯
µθ|x,y −∆θ to µ̄θ|x,y + ∆θ

and to over-approximate the swept area with a polygon. Note that during

0 2

0

2

x [m]

y
[m

]

B̄θ

(a) Rotational hull B̄θ.

4 6 8

2

4

6

µ

x [m]

y
[m

]

B̄

(b) Robust beliefprint B̄.

Figure 3.11 Conservative approximation B̄θ of the rotational uncertainty (a) and
illustration of the resulting beliefprint B̄ (b) given the Gaussian belief from Fig. 3.10.
The footprints (dashed lines in (a)) are obtained by rotating F from

¯
µθ|x,y − ∆θ to

µ̄θ|x,y + ∆θ. In contrast to that, the dashed lines in (b) illustrate the rotational hull B̄θ

transformed to the five vertices of the polygon A visualized in Fig. 3.10(b).

this rotation, each point on the footprint moves on a circle centered at the
origin, allowing to derive efficient methods for the computation of B̄θ.

Building on the results of Sec. 3.2.1, the translational uncertainty can now
be taken into account by translating B̄θ to the corners of A and by taking
the convex hull of the resulting polygons. A visualization of this procedure,
which outputs the robust beliefprint B̄, is given in Fig. 3.11(b). It has to
be noted that this approximation is guaranteed to be conservative as no
assumptions are made in the integration process and only geometric over-
approximations are used to derive B̄. Furthermore, the full correlation of
the underlying belief is considered here, and no independence assumptions
between the rotational and the translational uncertainty, as e.g. in [71], are
made. To the author’s best knowledge, this algorithm is the first approach
that provides these guarantees while at the same time, only requires analytical
evaluations (apart from the precomputations that can be executed offline).

3.2.2.1 Geometric Interpretation

The aim of this section is to briefly analyze the concept behind the previously
introduced algorithm from a geometric point of view. This interpretation

114 3 From Footprints to Beliefprints: Probabilistic Collision Checking

is meant to provide a better understanding of the underlying computation
steps that were only highlighted from a mathematical perspective above.

Starting with the insights from (3.9)–(3.12) that the rotational uncertainty
can be captured in an interval µθ|x,y ± ∆θ and assuming that the area A
is described by a polygon with five vertices leads to the visualization in
Fig. 3.12(a).

x [m]4.8 5.0 5.2
y [m] 2.8

3.0
3.2

0.4

0.5

0.6

0.7

θ
[r

ad
]

(a) Pentagonal prism.

x [m]4.8 5.0 5.2
y [m] 2.8

3.0
3.2

0.4

0.5

0.6

0.7

θ
[r

ad
]

(b) Over-approximated prism.

Figure 3.12 Geometric interpretation of (3.9)–(3.12) in (a) and visualization of the
over-approximation (dashed lines) made in the robust beliefprint computation (b).
Both images are based on the Gaussian belief given in Fig. 3.10(a).

Here, a pentagonal prism is constructed such that it encloses the probability
mass P of the underlying belief while keeping its vertical edges parallel to
the θ-axis. In fact, the height of this prism corresponds to the previously
derived value 2∆θ, and the planes running through its upper and lower base
are given by µθ|x,y ±∆θ. Furthermore, projecting all vertices of that prism
onto the ground results in the area A known from (3.12b).

As the rotational DOF still depends on x and y in Fig. 3.12(a), the proposed
algorithm conducts the over-approximation shown in Fig. 3.12(b). Here,
a new prism (dashed lines) is constructed that fully encloses the previous
one and whose upper and lower base run parallel to the xy-plane. This
over-approximation corresponds to the computation of µ̄θ|x,y and

¯
µθ|x,y that,

augmented by ±∆θ, describe the two vertical limits shown in Fig. 3.12(a).
Now that the rotational and the translational DOFs are decoupled, one can

proceed with the computation of B̄θ and B̄ as described above and visualized
in Fig. 3.11.

3.3 Summary 115

3.2.2.2 Experimental Evaluation

Finally, it remains to be answered how conservative the robust beliefprint B̄k

is compared to Bk and the approximation B̂k from Sec. 3.2.1. For this purpose,
Fig. 3.13 shows a comparison of the outputs obtained from the previously
described methods given the Gaussian belief from Fig. 3.10(a).

4 5 6 7 8 9

2

3

4

5

6

µk

x [m]

y
[m

]

Bk

B̄k

B̂k (oct.)
B̂k (ico.)

Figure 3.13 Comparison of the beliefprint Bk with the robust beliefprint B̄k

and two variants of the approximate beliefprint B̂k computed with an octahe-
dron/icosahedron given the Gaussian belief from Fig. 3.10(a).

Once again, it can be observed that the best approximation of Bk is gener-
ated by B̂k using an icosahedron. However, it cannot be generally guaranteed
that the corresponding result approximates Bk conservatively. As opposed
to that, the robust beliefprint B̄k enforces conservatism, which leads in the
given example to a significant over-approximation of Bk. This could be a
problem in tight environments, where the robust beliefprint B̄k might indi-
cate a collision although Bk is collision-free. From a practical point of view, it
might therefore be required to rely on the approximate and not on the robust
beliefprint in order to avoid a too conservative behavior of the robot.

3.3 Summary

Motion planning in belief space requires approaches that allow to evaluate
whether a given belief exceeds a user-defined collision probability (CP). Un-
der the assumption of Gaussian beliefs, two novel algorithms are introduced

116 3 From Footprints to Beliefprints: Probabilistic Collision Checking

in this chapter that calculate the so-called beliefprint: the area occupied by
the robot given its footprint, a belief distribution, and the user-defined confi-
dence P . These beliefprints can then be used for collision checking to ensure
that the CP of a vehicle state does not exceed the given threshold 1− P .

Based on the insight that the actual shape of the beliefprint cannot be com-
puted efficiently, the two algorithms in this chapter focus on conservative
and efficient approximations thereof. While the approach in Sec. 3.2.1 can
only ensure conservatism in certain cases, e.g. for a robot with only transla-
tional DOFs, the extension in Sec. 3.2.2 provides this guarantee for a robot
with one rotational and two translational DOFs. The latter is typically the
case in automated driving, where the vehicle’s position and orientation are
frequently used for two-dimensional collision checking. In this case, it is
shown that the approximate beliefprint from Sec. 3.2.1 already results in a
fairly precise approximation of the actual beliefprint. In contrast, the robust
beliefprint in Sec. 3.2.2 outputs a more conservative area that might lead to a
too defensive behavior when actually being deployed on a real robot.

With respect to efficiency, the presented approaches allow to perform
all complex calculations offline such that only analytical evaluations are
required in the online phase of the algorithms. This two-stage approach
reduces the computation time to microseconds as it is shown in Sec. 3.2.1.1
for the calculation of the approximate beliefprint.

In the future, it would be interesting to extend the presented algorithms
to belief representations other than the Gaussian distribution considered in
this chapter. Moreover, it remains an interesting question how the provided
concept can be used for the computation of an obstacle’s beliefprint. In this
case, the proposed algorithms must be extended such that the perception
uncertainty can be taken into account as well.

4 Learning Pose Predictions for
Guided Motion Planning

Motion planning in complex environments often requires problem-specific
heuristics for the fast computation of a preferably optimal solution [28, 40,
77, 207]. In automated driving, however, the large variety of possible scenar-
ios as well as the nonholonomic constraints of the vehicle make it difficult
to design such heuristics manually. Therefore, a data-driven approach is
proposed in this chapter that allows to guide a motion planner through com-
plex scenarios. More specifically, a convolutional neural network (CNN) is
presented that predicts future ego-vehicle poses from a start to a goal state
given observations of the current environment. As shown in Fig. 4.1, these
predicted poses can then be used by a sampling-based motion planner, such

Figure 4.1 "Evasive maneuver due to an accident blocking the road. The path of
the ego-vehicle (green line) is computed using the learned vehicle pose predictions
(gray arrows). The obstacles in the environment are visualized by the red voxels,
and the corresponding two-dimensional cost map for motion planning is depicted
on the ground" [216]. Reprinted from [216], © 2019 IEEE.

118 4 Learning Pose Predictions for Guided Motion Planning

as RRT* [93], along with one of the steering functions from Ch. 2 to compute
a feasible path to the desired goal. Biasing the motion planner in this way
has the potential to accelerate the convergence and improve the success rate
in challenging environments. These two aspects are further detailed in the
guided motion planning experiments in Sec. 5.3.5.

The remainder of this chapter is organized as follows: Sec. 4.1 reviews
the state of the art, Sec. 4.2 highlights the generation process of the training
data, and Sec. 4.3 describes the CNN used for the prediction of the future ego-
vehicle poses. A benchmark of its performance against uniform sampling and
an A*-based approach can be found in Sec. 4.4, and a concluding summary
is finally given in Sec. 4.5. It has to be noted that parts of this chapter have
previously been published in [216] and in the extended version [215].7

4.1 State of the Art

"Recent advances in deep learning have opened up new possibilities to
improve or even replace existing motion planning algorithms for robot nav-
igation. For instance, impressive results have been achieved in the field of
imitation learning, where a robot is trained to act based on expert demonstra-
tions, such as end-to-end learning for self-driving cars" [215].

End-to-end learning While early achievements in this field go back to
1989 [147], significant progress has been made with the possibility to train
even more complex (deeper) models end-to-end. An example of such an
approach for lane following is presented in [15], where a CNN learns to
control the steering angle of a vehicle given raw camera inputs. Building on
these results, the adapted models in [36, 74] also take into account a discrete
set of navigation commands to initiate e.g. a turn at an intersection.

A known problem of the previously described approaches is that they only
compute a reactive policy given the raw measurements of a front-facing sen-
sor. This is especially an issue from a safety perspective as hard constraints,
such as collision avoidance or actuator limits, cannot be explicitly enforced.

7Various passages in the text below are directly quoted (sometimes over multiple pages)
from these two publications, where the following formatting is applied: (1) direct quotations
are marked by "..." [•] as it can be seen in the caption of Fig. 4.1, (2) modified references (to
figures, tables, equations, bibliography) for a consistent appearance in this thesis are not
explicitly highlighted inside the quoted text, however, the quotation marks are changed to
'...' [•], and (3) all other changes to the original content are indicated by square brackets.

4.1 State of the Art 119

In addition to that, a 360° surround view might be required to make safe
decisions in challenging traffic situations. To overcome these problems, a
recurrent neural network is trained in [5] that outputs an entire trajectory
given a detailed top-down representation of the environment. One of the ad-
vantages of this approach is that it takes into account the entire surrounding
while allowing for a further optimization of the computed trajectory with re-
spect to comfort and safety. However, with its focus on corridor driving, this
method might fail in situations that require a global solution to the motion
planning problem.

Hybrid approaches The fact that learning-based approaches cannot (yet)
enforce hard constraints motivates the introduction of so-called hybrid ap-
proaches that combine classic motion planning algorithms with machine
learning techniques. By doing so, it is possible to maintain the theoretical
guarantees of the motion planner (optimality and completeness) while im-
proving its overall performance. 'Depending on the planning algorithm,
different approaches exist in the literature. Optimization-based planners
[emphasis added], for example, often suffer from short planning horizons.
This issue can be resolved with a learned cost shaping term that aligns the
short-term horizon with the long-term goal as proposed in [183].

In contrast to that, search-based planners [emphasis added] in continuous
state-action space require an action sampling distribution for graph expan-
sion and a cost-to-go heuristic for node selection. The former is addressed
in [98], where a generative adversarial network [67] is trained to guide the
search towards the goal. Minimizing search effort through learned cost-to-go
heuristics is achieved in [34]. However, iteratively evaluating the heuristic
during search limits the capacity of the neural network due to real-time con-
straints. Furthermore, optimality can only be guaranteed in a multi-heuristic
setup' [215].

With respect to sampling-based motion planning, it is generally known
that biasing the sampling distribution towards promising regions in the
state space can significantly improve the performance of the planner [56,
197–199, 207]. Especially deep learning-based approaches allow to compute
such non-uniform distributions conditioned on various features such as the
environment of the robot or a desired goal state. For instance, both [75]
and [107] train a neural network to guide a sampling-based local motion
planner in an environmental aware fashion. In contrast to that, sampling
distributions for global motion planning are learned in [77, 123] using a

120 4 Learning Pose Predictions for Guided Motion Planning

conditional variational autoencoder (CVAE). Although these results appear
promising, further studies are required to evaluate the CVAE’s capability to
avoid obstacles while generalizing to a broad set of scenarios. Another inter-
esting approach in this field is presented in [150], where dropout instead of a
generative model is used to compute samples for the motion planner. Future
research must investigate how such a method performs in motion planning
for automated vehicles, where the static environment is often represented by
a high-dimensional occupancy grid.

Opposed to the previous approaches, [138] directly computes a sampling
distribution over future robot positions using a fully convolutional neural
network. Such a distribution can then be sampled to guide the planner
towards a cost-minimizing solution. Note that this approach is similar to
the one presented in this chapter, however, the method proposed below
computes not only a distribution over future vehicle positions as in [138],
but also provides the heading angle at a predicted position. Especially in
nonholonomic motion planning, where the vehicle is not capable to make a
turn on the spot, it is essential to provide the planner with this information
to both accelerate the planning and improve the convergence rate.

Instead of directly computing a non-uniform sampling distribution, the
approaches in [105, 200] still rely on uniform sampling, but train a neural net-
work that either rejects [200] or modifies the generated samples locally [105].
In problems with narrow passages, such strategies may, however, still fail as
uniform sampling remains at the core of both approaches.

Just recently, several novel planning algorithms [78, 149, 176, 178] are
proposed "that conduct planning in a learned latent space rather than in the
complex configuration space. The general idea is to simplify the planning
problem by solving it in the lower-dimensional latent space. While still in
an early development phase, the future of these approaches in safety-critical
applications highly depends on the possibility to satisfy hard constraints like
collision avoidance" [215].

4.2 Data Generation

This section is extracted from [215]: 'Learning ego-vehicle predictions in
a supervised fashion requires a diverse dataset consisting of the vehicle’s
trajectory from start to goal and the corresponding observations of the envi-
ronment. Such a dataset with a total number of 13 418 trajectories is recorded

4.2 Data Generation 121

in a [...] simulator using Gazebo and ROS. The implemented data genera-
tion process is fully automated and parallelized with multiple simulation
instances, and requires no time-consuming manual labeling of the recorded
training data.

Each recording is generated in one of the eleven scenarios visualized in
Fig. 4.2. As this research is embedded in a project with a focus on low-
speed maneuvering in tight environments, the designed scenarios focus on
challenging setups that require the vehicle to act precisely in a highly non-
convex workspace. Exemplary situations include blocked roads, dead ends,
or different parking problems. Variation is introduced in each scenario by
changing the start and goal pose of the ego-vehicle as well as the number
and location of the static obstacles. For unstructured environments, this is
implemented by randomly sampling the obstacles and the vehicle’s start
and goal pose. For semi-structured environments, obstacles are randomly
assigned to predefined locations, such as parking spots. The ego-vehicle’s
start and goal pose are, in this case, randomly chosen within predefined
locations corresponding to the entrance and exit of a scenario, the driveway,
or a parking spot.

The following procedure is then applied to obtain a recording in the
randomly configured instances of each scenario. First, the motion plan-
ner BiRRT* generates a curvature-continuous collision-free path from start
to goal as detailed in [Ch. 5]. Here, BiRRT* is guided by the A*-based
heuristic described in Sec. 4.4, and its initial motion plan is optimized for
5 s. Next, a motion controller executes the computed solution resulting in
a trajectory with t = 1, . . . , T vehicle states [X = 〈x1, . . . ,xT 〉], where a
state xt = [

(
xt yt θt κt vt

)ᵀ] at time step t is defined by the vehicle’s
position [

(
xt yt

)
], orientation θt, curvature κt, and velocity vt. Note that

throughout this [thesis], the term vehicle pose is only used to describe a
lower-dimensional subset of the state including the vehicle’s position and
orientation. Finally, the observations from a simulated LiDAR perception are
fused in a two-dimensional 60 m× 60 m occupancy grid with a resolution of
10 cm and recorded along the trajectory. A visualization of such a recording
can be found in Fig. 4.4 on the [top] left.

It has to be noted that, similar to [34], motion planning for data generation
is conducted with full environmental information in order to guarantee fast
convergence to a cost-minimizing solution. In contrast to that, the recorded
occupancy grid only fuses the current history of sensor observations resulting
in unobserved areas due to occlusions. This forces the model in the learning

122 4 Learning Pose Predictions for Guided Motion Planning

Figure 4.2 "Visualization of the eleven scenarios used in the generation of the
dataset. Each scenario highlights a challenging driving task in the context of low-
speed maneuvering in cluttered environments" [215]. First row: dead end and
roundabout. Second row: blocked T-intersection, arena, and blocked road. Third
and forth row: different parking scenarios. Adapted from [215].

4.3 Learning Ego-Vehicle Pose Predictions 123

phase to also resolve situations with partial observability that requires an
intuition where possible solutions might lie' [215].

4.3 Learning Ego-Vehicle Pose Predictions

This section presents the model that predicts future ego-vehicle poses from a
start to a goal state given observations of the current environment. Sec. 4.3.1
specifies the architecture of the model as well as the representation of its in-
and output, and Sec. 4.3.2 highlights the generation of N discrete vehicle
poses from the CNN’s output. The training process including the metrics
used for the evaluation are detailed in Sec. 4.3.3, and a hyperparameter
optimization is finally conducted in Sec. 4.3.4. Note that all four sections are
extracted from [215].

4.3.1 Model

'The model is designed to generate a sampling distribution over future ve-
hicle poses connecting a start and goal state given an occupancy grid with
environmental observations. Previous publications [7, 26, 138] have shown
that CNNs are well suited for processing high dimensional inputs and pre-
dicting multi-modal distributions over future ego-vehicle locations. For
nonholonomic motion planning, however, it is essential to enrich such a
spatial distribution with the information about the robot’s heading angle at
all predicted positions. Therefore, it is proposed to jointly learn a sampling
distribution over future vehicle positions as well as a mapping from position
to heading angle for a complete representation of a vehicle pose.

This task is realized with the encoder-decoder architecture shown in Fig. 4.3.
The illustrated CNN, which contains about 2.5 million parameters, is based
on the well-known SegNet [4] from semantic segmentation. The main contri-
bution is not the architecture of the model itself, as it can be easily exchanged
with any other state-of-the-art architecture, but the representation of the input
and output layers.

The proposed network takes five grids with a resolution of 256 px× 256 px
as an input. These grids encode the static obstacles, the unknown environ-
ment, the past path, and the start and goal state of the vehicle (see Fig. 4.4). A
simple and effective encoding of the vehicle state is achieved by a 7 px× 7 px
square that describes three information: (1) its location in the grid marks the

124 4 Learning Pose Predictions for Guided Motion Planning

25
6 ×

 25
6 ×

 64

25
6 ×

 25
6 ×

 64

25
6 ×

 25
6 ×

 5

12
8 ×

 12
8 ×

 64

12
8 ×

 12
8 ×

 64

12
8 ×

 12
8 ×

 64

64
 ×

 64
 ×

 64

64
 ×

 64
 ×

 12
8

64
 ×

 64
 ×

 12
8

32
 ×

 32
 ×

 12
8

32
 ×

 32
 ×

 12
8

32
 ×

 32
 ×

 12
8

16
 ×

 16
 ×

 12
8

16
 ×

 16
 ×

 25
6

16
 ×

 16
 ×

 25
6

16
 ×

 16
 ×

 12
8

32
 ×

 32
 ×

 12
8

32
 ×

 32
 ×

 12
8

32
 ×

 32
 ×

 12
8

64
 ×

 64
 ×

 12
8

64
 ×

 64
 ×

 12
8

64
 ×

 64
 ×

 64

12
8 ×

 12
8 ×

 64

12
8 ×

 12
8 ×

 64

12
8 ×

 12
8 ×

 64

25
6 ×

 25
6 ×

 64

25
6 ×

 25
6 ×

 64

25
6 ×

 25
6 ×

 4

pooling indices

encoder context decoder

conv pool unpoolinput/output

Figure 4.3 "Architecture of the CNN, which predicts a two-dimensional sampling
distribution over future ego-vehicle positions [...] and the corresponding mapping
from position to heading angle" [216]. Adapted from [216], © 2019 IEEE.

position of the vehicle, (2) its inner pixels encode the corresponding vehicle
velocity, and (3) its outer pixels depict the respective heading angle. Note
that the curvature of the start state is implicitly encoded in the past path as it
can be seen in [Fig. 4.4(c)].

The input of the CNN is first encoded and then decoded back to its original
size using alternating blocks of convolutional layers with 3× 3 kernels and a
stride of 1, 2× 2 max pooling layers, and 2× 2 unpooling layers. All convo-
lutional layers except the last one are followed by a batch normalization [80]
and a ReLU activation [130].

The CNN outputs four grids of the same resolution as the input grids. The
first two grids give the results of a cell-wise classification that is trained to
predict whether a given cell belongs to the future path or not. An example of
such a prediction is shown in [Fig. 4.5(a)], where the intensity corresponds
to the probability ppath(c) of a cell c being part of the future path. In contrast
to that, the last two output grids contain the results of a cell-wise regression
for the sine and cosine components of the robot’s heading angle. The decom-
position into sine and cosine has three advantages: (1) a cell with zeros in
both components represents an invalid orientation and can therefore be used
to label cells without angle information (see Fig. 4.4), (2) computing the cell-
wise norm of the predicted components can be interpreted as a confidence
measure pθ(c) indicating if an angle information is available at a respective
cell c (see [Fig. 4.5(b)]), and (3) the prediction of the heading angle can be
treated as a regression task rather than a classification task, which yields a

4.3 Learning Ego-Vehicle Pose Predictions 125

Figure 4.4 "Visualization of a perpendicular parking task on the [top] left, and
the derived input grids (a)–(e) and label grids (f)–(h) for training the CNN. The
ego-vehicle is represented by the green arrow in the center of the image on the [top]
left and the target vehicle pose by the white arrow without a tail. The color of the
arrows indicates the vehicle’s velocity at the respective pose" [215].

(a) Path prediction. (b) Heading angle prediction.

Figure 4.5 Output of the CNN given the scenario from Fig. 4.4. While (a) gives
a distribution over future vehicle positions, (b) provides a mapping from position
to heading angle. Note that for a compact illustration, the four output grids (see
Fig. 4.3) are blended into the two images shown above.

126 4 Learning Pose Predictions for Guided Motion Planning

compact representation of the output and avoids an exponential growth of
its dimension. However, the latter comes with a potential drawback of not
being able to predict multi-modal, cell-wise heading angle predictions. The
experiments have shown, however, that this is only an issue in rare corner
cases as most of the scenarios do not require the vehicle to change its heading
angle significantly while staying in the same region of the environment' [215].

4.3.2 Vehicle Pose Sampling

'Generating i = 1, . . . , N continuous vehicle poses x
[i]
pred from the output of

the CNN is conducted in four steps. First, N random cells c[i]
pred are sampled

from the CNN’s path prediction ppath(c), which can be seen as a probability
mass function [(PMF)] that describes the relative probability of a cell c being
part of the future path (see [Fig. 4.5(a)]). Sampling from the [PMF] can be
realized efficiently using the low-variance sampling algorithm in [186]. Its
linear time complexity yields a fast computation even for large values of N .
Next, a continuous position prediction [(x[i]

pred y
[i]
pred)] is obtained by sampling

uniformly within the previously computed discrete cell c[i]
pred. The heading

angle prediction θ[i]
pred is now evaluated at the cell c[i]

pred. If required, it can be

interpolated with respect to the continuous position [(x[i]
pred y

[i]
pred)], which is

omitted here for the sake of simplicity. In a final step, the sampled position
and the corresponding heading angle are concatenated yielding a sampled
vehicle pose x

[i]
pred.

Note that throughout this [thesis], samples are exclusively drawn from
cells with ppath(c) > 0.5 in order to only guide the motion planner towards
regions with a high probability to be part of the future path. In contrast to that,
visualizations of ppath(c) are never thresholded and show the unmodified
output of the CNN' [215].

4.3.3 Training and Metrics

'The proposed model is trained end-to-end using 64 % of the recorded tra-
jectories. The training dataset is further augmented by randomly selecting
up to 100 different start states on a recorded trajectory resulting in 807 273
(partly correlated) data points. This augmentation strategy does not only

4.3 Learning Ego-Vehicle Pose Predictions 127

upscale the dataset, but also forces the CNN to adjust its prediction as more
information on the vehicle’s environment becomes available.

The parameters of the network are optimized using Adam [99] and the
loss function

L =
∑
c∈C

(fCE(c)LCE(c) + fMSE(c)LMSE(c)) +
∑
w∈W

λw2

2
, (4.1)

where the first term computes the cell-wise cross-entropy loss LCE(c) of the
classification task, the second term the cell-wise mean squared error LMSE(c)
of the regression task, and the last term the L2 regularization loss of the
weights w ∈ W with a scaling factor λ. As the majority of cells in the label
grids contain no path information (see Fig. 4.4), a weighting of the relevant
cells is conducted with the functions fCE(c) and fMSE(c) given as

fCE(c) = 1 + 1c · (γCE − 1), (4.2)
fMSE(c) = 1 + 1c · (γMSE − 1), (4.3)

where γCE and γMSE are hyperparameters of the model, and 1c is the indicator
function that is 1 if the future path crosses a cell c and 0 otherwise.

In order to evaluate the prediction capability of the model, two metrics are
introduced below. The first metric measures the proximity of the N predicted
samples [Xpred = 〈x[1]

pred, . . . ,x
[N]
pred〉] to the ground truth trajectory xt ∈ X by

computing the average path deviation D according to

D(X ,Xpred) =

∑N
i=1 minxt∈X d(xt,x

[i]
pred)

N
, (4.4)

where d(•) describes the distance between a pose on the trajectory and a
sample. It is computed by a weighted sum of the Euclidean distance and the
angular deviation given as

d(xt,x
[i]
pred) = wpos

∥∥∥x[i]
pred − xt

∥∥∥
2

+ wθ

∣∣∣θ[i]
pred − θt

∣∣∣ , (4.5)

where the different units of both terms are taken into account by setting wpos
to 0.35 and wθ to 0.65 throughout this [chapter].

As the predicted poses are supposed to guide the motion planner through
complex scenarios, it is beneficial to have evenly distributed samples along
the ground truth trajectory. Therefore, the second metric measures the maxi-
mum prediction gap G in the following two steps: (1) project every sample

128 4 Learning Pose Predictions for Guided Motion Planning

onto the trajectory, and (2) evaluate the maximum arc length that is not
covered by any sample. The projection in step 1 is defined as

x
[i]
ref = arg min

xt∈X
d(xt,x

[i]
pred), (4.6)

where x
[i]
ref is the reference pose of the predicted sample x

[i]
pred on the trajectory.

These reference poses are then added to the ordered listXref according to their
arc length s[i]

ref. The maximum prediction gap G ∈ [0, 1] is finally obtained by

G(X ,Xref) =
maxi=1:N−1 s

[i+1]
ref − s

[i]
ref

sT
, (4.7)

where the length of the recorded trajectory is denoted by sT ' [215].

4.3.4 Hyperparameter Optimization

'This subsection evaluates the influence of the hyperparameters on the CNN’s
prediction performance based on the previously derived metrics. The anal-
ysis is conducted on a validation dataset containing 16 % of the recorded
trajectories. Similar to the training dataset, up to five different start states are
selected on each trajectory resulting in 10 730 (partly correlated) data points.

The different parametrizations of the model are trained on an Nvidia
Titan X with a batch size of 20 using the Python interface of TensorFlow.
Training a model to convergence takes about 30 h, which corresponds to
90 000 iterations. A visualization of the training statistics for one of the
conducted optimizations can be found in Fig. 4.6.

In order to decrease the exponentially growing search effort, only the
hyperparameters with the highest expected influence on the CNN’s overall
performance are optimized. Therefore, two out of the five hyperparameters,
namely the exponential learning rate decay lrd and the L2 regularization
scaling factor λ, are fixed to lrd = 0.01 after 106 iterations and λ = 0.003. The
remaining hyperparameters are optimized in two steps. First, the learning
rate lr is varied while keeping γCE and γMSE at 25, and second, lr is set to its
best value while γCE and γMSE are optimized.

The quantitative results of the hyperparameter optimization are listed in
Tab. 4.1. It can be seen that lower learning rates result in a better prediction
performance as they decrease the maximum prediction gap metric G as well
as the average path deviation metric D. The insights from [7] that higher

4.3 Learning Ego-Vehicle Pose Predictions 129

0 20000 40000 60000 80000

iteration [-]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

L
[-

]

0.0

0.2

0.4

0.6

0.8

G
[-

],
D

[-
]

L (train)

L (val)

G (train)

G (val)

D (train)

D (val)

Figure 4.6 "Visualization of the training statistics with the hyperparameters set to
γCE = γMSE = 25 and lr = 10−5 (learning rate). Note that for better comparability,
the loss L is visualized without the L2 regularization term as it is only computed at
training and not at inference time. The metrics G and D are evaluated on 50 sampled
vehicle poses" [215]. Reprinted from [215].

Table 4.1 "Quantitative comparison of the hyperparameter optimization on the ba-
sis of 200 sampled vehicle poses carried out on the validation dataset. The displayed
values are given with mean and standard deviation" [215]. Reprinted from [215].

lr γCE γMSE G [%] D [−]

10−3

25 25
20.7 ± 18.9 0.64 ± 0.26

10−4 16.9 ± 18.6 0.35 ± 0.33
10−5 10.1 ± 12.0 0.33 ± 0.35

10−5

10 10 12.6 ± 14.9 0.26 ± 0.26
10 25 12.7 ± 15.3 0.26 ± 0.28
10 100 12.5 ± 14.9 0.25 ± 0.25
25 10 11.2 ± 13.4 0.31 ± 0.35
25 25 10.1 ± 12.0 0.33 ± 0.35
25 100 10.8 ± 12.9 0.33 ± 0.33

100 10 9.8 ± 10.6 0.45 ± 0.40
100 25 10.3 ± 11.6 0.46 ± 0.45
100 100 10.3 ± 11.5 0.42 ± 0.35

130 4 Learning Pose Predictions for Guided Motion Planning

(a) lr = 10−5, γCE = 10, γMSE = 100. (b) lr = 10−5, γCE = 100, γMSE = 10.

Figure 4.7 "Qualitative comparison of the different hyperparameters on a test set
trajectory with 50 sampled vehicle poses" [215]. The heatmap visualizes the relative
probability of a cell belonging to the future path, and the gray arrows indicate
the heading angle at the respective positions. A supplementary visualization for
lr = 10−5, γCE = 25, γMSE = 25 can be found in [215]. Adapted from [215].

values for γCE incentivize the CNN to classify more cells as part of the future
path can also be observed in Tab. 4.1 and Fig. 4.7. Thus, increasing γCE reduces
the maximum prediction gap G while raising the average path deviation D
because more samples are placed further away from the ground truth. A
potential risk of too large values for γCE is a deterioration of the heading
angle prediction, which cannot be recovered by increasing γMSE (see Tab. 4.1).
For the remaining evaluations, the model with γCE = 25, γMSE = 25, and
lr = 10−5 is selected as this combination yields a smooth distribution of the
samples in close vicinity of the ground truth' [215].

4.4 Experimental Evaluation

This section is extracted from [215]: 'The following paragraphs analyze the
prediction capability of the CNN and benchmark its performance against
uniform sampling and the A*-based approach called [o]rientation-[a]ware
[s]pace [e]xploration (OSE) [30]. To the best of the authors’ knowledge, the
latter is currently one of the most effective approaches for guiding a motion
planner through complex environments. It is based on an A* graph search

4.4 Experimental Evaluation 131

and explores the workspace with oriented circles as illustrated in Fig. 4.8.

Figure 4.8 "Orientation-[a]ware [s]pace [e]xploration visualized by the white circles
on the ground including 200 sampled vehicle poses (gray arrows)" [215]. Reprinted
from [215].

Discrete vehicle poses can then be obtained by sampling from three-
dimensional Gaussian distributions located at the center of the circles. The
standard deviation of the Gaussians can be made dependent of the radius r
and is set to σx = σy = r/3 for the translational and σθ = π/6 for the rota-
tional component, respectively. Additional parameters of the OSE heuristic
used in this [thesis] are listed in Tab. 4.2.

Table 4.2 Parameters used for the OSE heuristic. Reprinted from [215].

parameter value

minimum radius 0.2 m
maximum radius 5.0 m
minimum clearance 1.041 m
neighbors 32
maximum curvature 0.1982 m−1

computation timeout 1.0 s

A benchmark of the three approaches on the test dataset can be found in
Tab. 4.3. The 13 420 test cases with up to five different start states on each
trajectory represent the remaining 20 % of the recordings. For a scenario-

132 4 Learning Pose Predictions for Guided Motion Planning

Table 4.3 "Benchmark of uniform sampling, the OSE approach, and the CNN
prediction on the test dataset. The metrics G and D as well as the computation time
are evaluated on 200 sampled vehicle poses and are given with mean and standard
deviation. Notice that the superscript in the notation of the CNN below indicates
which input features have been used in the corresponding test" [216]. Adapted
from [216], © 2019 IEEE.

scenarios G [%] D [−] time [ms]

uniform all 13.5 ± 6.4 7.84 ± 0.44 0.1 ± 0.0
OSE all 15.2 ± 17.4 0.57 ± 0.30 39.7 ± 43.1
CNN1 all 10.4 ± 12.5 0.34 ± 0.39 41.7 ± 14.0
CNN2 all 11.8 ± 14.1 0.35 ± 0.40 39.7 ± 14.5
CNN3 all 11.9 ± 14.3 0.34 ± 0.37 37.3 ± 13.7
CNN4 all 17.8 ± 19.6 0.44 ± 0.35 37.4 ± 14.0
CNN5 all 11.4 ± 14.0 0.32 ± 0.33 35.7 ± 14.5
CNN6 all 12.0 ± 14.8 0.32 ± 0.33 38.8 ± 14.1
CNN7 all 32.6 ± 22.4 0.82 ± 0.55 38.4 ± 13.4
CNN1 arena 14.4 ± 16.2 0.50 ± 0.47 42.5 ± 25.2
CNN1 parking 9.1 ± 9.6 0.23 ± 0.15 40.5 ± 25.1
1all input grids 2all but the obstacle grid
3all but the unknown grid 4all but the obstacle and unknown grid
5all but the past path grid 6all but the start grid
7all but the goal grid

specific evaluation, 5770 trajectories are extracted from this dataset, half of
which come from the scenario arena and the other half from parallel and
perpendicular parking. Both uniform sampling as well as the OSE procedure
are evaluated on a single core of an Intel Xeon E5@3.5 GHz with the latter
being implemented in C++. As opposed to that, the CNN is executed with its
Python pipeline on an Nvidia Titan X and an Intel Xeon E5@3.1 GHz.

In comparison to uniform sampling and the OSE approach, Tab. 4.3 shows
that the CNN1 predicts the vehicle poses more evenly along the ground truth
path and yields overall smaller deviation from it. The mean computation time
of the CNN is comparable to the OSE heuristic, however, with a one-third
smaller standard deviation. The OSE’s high variance in computation time is
due to the fact that the performance of graph search-based algorithms highly
depends on the complexity of the environment. This also causes the problem

4.4 Experimental Evaluation 133

that a solution might not be found before the timeout is reached, which
occurred here in 3.4 % of all test cases. In summary, the CNN, whose output
is qualitatively visualized in Fig. 4.9, makes its predictions more reliably (no
outages) with a lower latency. Both aspects are key features in safety-critical
applications such as automated driving.

In order to better understand the effect of the different input grids on
the performance of the CNN, an ablation study has been conducted. The
results in Tab. 4.3 show that removing features from the CNN’s input causes
a deterioration of at least one of the analyzed metrics. Furthermore, it can be
seen that excluding the goal or the observations causes the greatest decline
in performance. In contrast to that, the metrics only change slightly if the
CNN is trained and evaluated without the obstacle or the unknown grid
(not both). One of the reasons for this is that in many cases, both grids
are complementary in the sense that the unknown grid allows to infer the
obstacles and vice versa (see Fig. 4.4).

The scenario-specific benchmark in Tab. 4.3 highlights that the CNN’s
performance in the parking scenario is almost a factor two better compared to
the maze-like structure arena. The resulting insight is that learning stationary
sampling distributions in completely unstructured environments is a much
harder task for the network than in semi-structured environments. This can
also be seen in Fig. 4.9 [in] the [middle] right, where the CNN prediction
degenerates due to the complexity of the scenario. Possible reasons for this
are longer prediction horizons, a larger variety of feasible maneuvers, and
potentially heavier occlusions. It is left for future work to determine which
network structure is the most suitable one for such challenging environments.

A visualization of the CNN prediction in two novel scenarios, namely
a construction zone and and a cluttered 4-way intersection, can be found
in the [two] lower [...] images of Fig. 4.9. Both scenarios were not seen
during training and contain novel artifacts such as construction barrels and
rectangular dumpsters. While the construction zone only requires the vehicle
to follow the lane, the maneuver at the cluttered 4-way intersection consists of
three steps: (1) exit the tight parking spot, (2) avoid the dumpster at the side
of the road, and (3) make a turn at the intersection. The illustrated predictions
showcase the models capability to deal with so far unseen artifacts as well
as to generalize to novel scenarios. Only in the second case, the initial path
prediction overlaps with the barriers in front of the vehicle. However, this is
not a safety issue if the predictions are combined with a motion planner as
highlighted in [Sec. 5.3.5]' [215].

134 4 Learning Pose Predictions for Guided Motion Planning

Figure 4.9 "Illustration of the CNN prediction including 50 sampled vehicle poses
in different scenarios" [215]. The first two rows highlight the performance on four
trajectories from the test dataset while the third row visualizes the prediction in
two previously unseen scenarios called construction zone and 4-way intersection. A
degeneration in performance can be seen in the middle right. Adapted from [215].

4.5 Summary 135

4.5 Summary

Solving the motion planning problem in real-time typically requires heuris-
tics that accelerate the planning process and improve the convergence rate.
As the large variety of scenarios in automated driving as well as the nonholo-
nomic constraints of the vehicle make it challenging to design such heuristics
manually, a data-driven approach is presented in this chapter. More precisely,
a CNN is introduced in Sec. 4.3 that predicts a distribution over future vehicle
poses given a start and goal state as well as observations of the environment.
Based on the algorithm described in Sec. 4.3.2, discrete vehicle poses can
then be computed from this output in order to guide, e.g., a sampling-based
motion planner through complex environments. The latter is analyzed from
a planning perspective in the next chapter.

Training the neural network requires a diverse dataset that was recorded in
eleven distinct scenarios using an automated vehicle simulator. As detailed
in Sec. 4.2, variation was introduced into the data generation process by
constantly changing the ego-vehicle’s start and goal pose as well as the
number and the position of the obstacles in the environment. The resulting
procedure was fully automated and required no time-consuming manual
labeling to obtain the training data.

The benchmark in Sec. 4.4 finally shows that the CNN predictions are not
only closer to the ground truth, but also more evenly distributed along it
compared to the ones generated with uniform sampling and an A*-based ap-
proach. In addition to that, the CNN makes its predictions with significantly
less variation in computation time than the A*-based approach making it
particularly suitable for real-time applications such as automated driving.
Furthermore, the ablation study shows that excluding single features from
the CNN’s input deteriorates its overall prediction performance and thus
highlights the importance of the selected inputs. Lastly, it is demonstrated in
two previously unseen scenarios that the CNN is able to adapt to completely
new situations with novel artifacts.

Among the various future directions in this field, the following two re-
search questions appear as a natural extension of the presented approach:
(1) How can even higher dimensional distributions (e.g. position, orienta-
tion, and curvature) be predicted given the same input features as above?
And (2) How can the temporal dimension as well as dynamic obstacles be
considered in such an approach? Especially the second question needs to be
addressed in order to overcome the current limitation to a static environment.

5 Sampling-Based Motion
Planning in Dense Scenarios

This chapter combines the previously introduced methods to compute fea-
sible collision-free motion plans in dense scenarios. To do so, the derived
algorithms are integrated into the sampling-based motion planner RRT* [93]
and its bidirectional extension BiRRT* [86]. While the presented steering
functions and the concept of beliefprints could also be used in search-based
algorithms, such as Hybrid A* [40], the focus here lies on sampling-based
motion planning. This is mainly due to the fact that search-based approaches
require expert knowledge to come up with a proper discretization of the state-
action space. Otherwise, and especially in tight situations, the planner might
fail although a feasible solution exists. In contrast to that, sampling-based
approaches do not rely on such a discretization as they compute a solution
by continuously adding samples from a given distribution to the problem.

The remainder of this chapter, which is based on [209, 211, 213, 214, 216],
is organized as follows: Sec. 5.1 formulates the underlying motion planning
problem, Sec. 5.2 describes the platforms and the setups of the experiments,
and Sec. 5.3 highlights the experimental results. A summary is finally given
in Sec. 5.4.

5.1 Problem Formulation

Solving a motion planning problem requires to connect a start and goal state
while taking into account the surrounding obstacles, the vehicle’s constraints,
and the comfort requirements of the passengers. This can be formulated
as a mathematical optimization problem, which is given in the absence of
uncertainty as

arg min
X̌ , Ǔ

J(X̌ , Ǔ) (5.1a)

s.t. x̌0 = x̌s, (5.1b)

138 5 Sampling-Based Motion Planning in Dense Scenarios

x̌N = x̌g, (5.1c)

x̌k+1 = f̌(x̌k, ǔk), (5.1d)
x̌min ≤ x̌k+1 ≤ x̌max, (5.1e)
ǔmin ≤ ǔk ≤ ǔmax, (5.1f)
x̌k+1 /∈ Xobs, k = 0 : N − 1, (5.1g)

where x̌k ∈ Rn denotes the nominal state of the system, ǔk ∈ Rm the nominal
input, and f̌(•) the respective motion model. The start state is described
by x̌s, the goal state by x̌g, the state and input constraints of the vehicle by
x̌min, x̌max, ǔmin, ǔmax, and the states in collision with the environment by
Xobs ⊂ Rn. The user-defined objective function is represented by J(•) and
transforms the N + 1 nominal states X̌ = 〈x̌0, . . . , x̌N〉 and the corresponding
inputs Ǔ = 〈ǔ0, . . . , ǔN−1〉 into a scalar cost.

Informally speaking, the general goal in (5.1) is to find a sequence of N + 1
nominal vehicle states X̌ and the respective inputs Ǔ such that they minimize
the objective function in (5.1a) without violating the given constraints. Note
that in comparison to the steering problem in (2.1), collision avoidance must
now be enforced as indicated by the additional constraint in (5.1g).

Computing a (sub)optimal solution to the given motion planning problem
is conducted here using the well-known path-velocity decomposition [91].
The underlying idea is to first compute a feasible path from start to goal by
only taking into account the static environment and then to derive a velocity
profile such that collisions with dynamic obstacles are avoided. This chapter
focuses on solving the first part of this decomposition in a sampling-based
fashion, which typically requires at least three steps: (1) iteratively sample
a new state, (2) steer the system from an already explored state to that new
sample, and (3) probe the computed connection against collision with the
environment.

One of the most prominent motion planners that implements these steps
by incrementally building a tree from start to goal is RRT*. It guarantees
asymptotic convergence to the globally optimal solution by locally rewiring
the resulting tree in an additional forth step. Another important feature
of RRT* is its probabilistic completeness, which means that the probability
of solving a feasible motion planning problem goes to one in the limit of
infinite samples. Further details on the algorithm can be found in [93], and
an open-source implementation is available in [179]. In deterministic path
planning, RRT* can be replaced by its two-tree version called BiRRT* [86,
100]. The latter is known to outperform RRT* in challenging environments

5.1 Problem Formulation 139

as it solves the problem from start to goal and vice versa at the same time.
Therefore, BiRRT* is used in the experiments below to solve (5.1).

As previously mentioned, the general goal in motion planning is to mini-
mize the cost function in (5.1a) that allows to optimize multiple objectives.
This function is required to return a positive scalar cost for non-trivial
collision-free paths [93] and is given here as

J(X̌ , Ǔ) = wᵀ
J · J(X̌ , Ǔ), (5.2)

where wJ weights the user-defined cost terms stored in J. For nominal
motion planning, J consists here of four scalar terms that are evaluated
according to

Jlength =
N−1∑
k=0

|∆šk|, (5.3a)

Jcusp =
N−2∑
k=0

1∆šk+1·∆šk<0, (5.3b)

Jcurv =
N−1∑
k=0

ˆ |∆šk|
0

|κ̌k+1(s)| ds, (5.3c)

Jprint =
N∑
k=0

footprint_cost(F , x̌k), (5.3d)

where both the nominal arc length ∆šk as well as the nominal curvature
κ̌k are provided by the steering function (see Ch. 2). The first term Jlength
computes the total length of the path, and the second term Jcusp evaluates
the number of direction switches, where 1(•) denotes the indicator function.
The third term Jcurv integrates the curvature along the path, and the fourth
term Jprint sums up the cost of the footprint F at the nominal states x̌k=0:N .
The latter allows to increase the safety of a motion plan by penalizing paths
with only little clearance to surrounding obstacles.

While (5.1)–(5.3) assume perfect state observation and precise execution
of the planned path, taking into account both the localization and control
uncertainty requires to adapt the presented problem formulation. Under the
assumption of a Gaussian belief space, the goal now is to compute a sequence
of N + 1 nominal states X̌ = 〈x̌0, . . . , x̌N〉 and the corresponding inputs
Ǔ = 〈ǔ0, . . . , ǔN−1〉 such that the expected cost is minimized. Furthermore,
a chance constraint is required to ensure that the collision probability (CP)

140 5 Sampling-Based Motion Planning in Dense Scenarios

remains below a user-defined threshold 1 − P , where P ∈ (0.5, 1]. The
resulting optimization problem can be formulated as

arg min
X̌ , Ǔ

J(B, Ǔ) (5.4a)

s.t. x̌0 = µs, (5.4b)
x̌N = µg, (5.4c)

x̌k+1 = f̌(x̌k, ǔk), (5.4d)
bel(x0) = bel(xs), (5.4e)
bel(xk+1) = ekf_mp(bel(xk), ǔk), (5.4f)
x̌min ≤ x̌k+1 ≤ x̌max, (5.4g)
ǔmin ≤ ǔk ≤ ǔmax, (5.4h)
Pr(xk+1 ∈ Xobs) < 1− P, k = 0 : N − 1, (5.4i)

where the initial belief is described by bel(xs) = N (xs;µs,Σs) with mean
µs ∈ Rn and covariance Σs ∈ Rn×n, the desired goal by µg ∈ Rn, and theN+1
Gaussian beliefs obtained from the EKF-MP by B = 〈bel(x0), . . . , bel(xN)〉.
The other variables are identical to the nominal optimization problem in (5.1)
and therefore not further specified here.

As the overall goal in (5.4) is to minimize the expected cost, the objective
function J(•) now depends on the beliefs B and the nominal inputs Ǔ . In the
experiments below, this function evaluates similar to (5.2) a weighted sum
of five cost terms. While the first two terms are identical to (5.3a)–(5.3b), the
other three terms are given as

Jcurv =
N−1∑
k=0

ˆ |∆šk|
0

|E[κk+1(s)]| ds, (5.5a)

Jcov =
N∑
k=0

1

n
tr(Σk + Λk), (5.5b)

Jprint =
N∑
k=0

beliefprint_cost(Bk). (5.5c)

The third term Jcurv integrates the expected curvature along the path, and the
fourth term Jcov considers the uncertainty of the beliefs according to the A-
optimality criterion [32]. Here, tr(•) denotes the trace of the n× n covariance
matrix Σk + Λk that is obtained from the EKF-MP. The fifth term Jprint sums

5.2 Platforms and Setups 141

up the cost of the beliefprints Bk and allows to penalize paths with small
distance to surrounding obstacles.

A solution to the belief space planning problem in (5.4)–(5.5) can still be
computed with RRT*, however, asymptotic convergence to the optimal so-
lution can no longer be guaranteed. This is because paths in belief space
can, in general, only be partially ordered [23] while RRT* relies on a total
ordering. To overcome this problem, two alternatives exist: one can switch to
the rapidly-exploring random belief tree (RRBT) [23], which keeps multiple
beliefs at the sampled nodes, or one can adjust the cost function such that
it fulfills the optimal substructure property [17, 171]. Both approaches are
beyond the scope of this chapter and therefore not further detailed here.
Moreover, it has to be noted that planning in belief space cannot be tackled
bidirectionally any longer. This is because the evolution of uncertainty de-
pends on the previous belief that is initially only known at the start and not
at the goal state.

5.2 Platforms and Setups

In order to show the flexibility of the developed approaches, the experiments
are conducted on two different vehicle platforms that are shown in Fig. 5.1.

(a) Audi A6 Avant. (b) EasyMile EZ10.

Figure 5.1 Illustration of the platforms used in the experiments including the
approximated footprint visualized by the green polygon on the ground.

The red Audi A6 Avant represents a conventional full-size car whose
footprint is approximated by a convex polygon with 20 vertices. If not stated
differently in the experiments below, the A6 is only allowed to turn its front
wheels, which is denoted here as single Ackermann steering. In contrast to

142 5 Sampling-Based Motion Planning in Dense Scenarios

that, the white EasyMile EZ10 represents a so-called people mover that is
capable to transport up to 12 passengers to their destination. Its steering
system allows to turn both the front and the rear wheels at the same time,
which is in the following referred to as double Ackermann steering. Due to
the boxy design of the EZ10, its footprint is approximated by a rectangular
polygon with four vertices. Additional parameters of both platforms can be
found in Tab. 5.1. Note that the given maximum curvature κmax as well as
the maximum curvature rate σmax already include 10 % control reserve for
closed-loop execution.

Table 5.1 Vehicle parameters of the two platforms.

parameter symbol A6 EZ10

length - 4.926 m 3.946 m
width - 2.086 m 1.983 m
wheel base - 2.912 m 2.8 m
max. curvature κmax 0.1982 m−1 0.2274 m−1

max. curvature rate σmax 0.1868 m−2 0.1736 m−2

footprint F 20 vertices 4 vertices

Before executing the developed motion planner on a real-word vehicle,
extensive testing has been conducted in simulation. For this purpose, a
simulator was built up from scratch using Gazebo [58] and ROS [155]. It
implements the different kinematics of both vehicles and allows to actuate
them with a motion controller in closed loop. Furthermore, arbitrary three-
dimensional environments can be created in simulation and then perceived
by different sensors including, for example, a simulated LiDAR system. A
visualization of the developed simulator, which runs in real-time on an Intel
Xeon E5@3.5 GHz and an Nvidia Quadro K2200, can be found in Fig. 5.3.

The current implementation uses an occupancy grid to represent the static
environment by fusing the measurements of the LiDAR perception. This can
be seen in Fig. 5.2(a), which shows the perceived environment in a dead end
scenario. The size and the resolution of the grid can be varied and are given
in the respective experiments.

To speed-up the motion planning process, two cost maps are derived from
the current occupancy grid. The first one is shown in Fig. 5.2(b) and inflates
the obstacles by the inscribed radius of the footprint. The resulting cost
map allows a simple collision check by looking up whether the planned

5.2 Platforms and Setups 143

(a) Occupancy grid. (b) Cost map I. (c) Cost map II.

Figure 5.2 Visualization of the environment model used for motion planning. The
occupancy grid (a) distinguishes between occupied (purple), unknown (greenish
gray), and free space (transparent). The first cost map (b) inflates the obstacles by
the inscribed radius of the footprint (cyan) and the second cost map (c) applies a
user-defined inflation (here 25 cm) of the obstacles (bluish purple).

position of the robot is within the inflated area [47]. If this is not the case,
the footprint/beliefprint is convolved with the second cost map shown in
Fig. 5.2(c), which inflates the obstacles by a user-defined radius. In case
no collision is detected, the integrated cost of that footprint/beliefprint is
returned to evaluate (5.3d) and (5.5c), respectively. As a result, the second
cost map implements a soft safety margin as the algorithm is incentivized
to stay outside the inflated region. In addition to that, the footprint of the
vehicle can be padded by a hard safety buffer in order to account for noisy
measurements. This is realized in Fig. 5.2, where a footprint padding of 10 cm
is applied. The entire collision checking process is repeated every 10 cm with
the parameters listed in Tab. 5.2.

During the planning process, samples for (Bi)RRT* are uniformly gener-
ated in SE(2) [115] if not stated differently in the experiments. The sampling
region for possible vehicle positions is defined by the size of the occupancy
grid, and vehicle orientations are drawn from the interval [−π, π). As sum-
marized in Tab. 5.2, a goal sampling frequency of 5 % is applied in order to
slightly bias the planner towards the goal. The sampling duration for an
initial solution is fixed to 10 s. If a solution can be found during that time, an
additional 3 s are assigned for optimization of the initial plan. Otherwise, the
run is classified as failed. The constant γ of (Bi)RRT* [93] is set to 6, and a
total of 100 simulation runs are conducted per experiment to compensate for
randomization effects.

144 5 Sampling-Based Motion Planning in Dense Scenarios

Table 5.2 Auxiliary parameters used in the motion planning experiments, where
the safety margins are adapted between simulation and real-world testing.

parameter value

cost map II inflation 25 cm (sim.), 50 cm (real)
footprint padding 10 cm (sim.), 20 cm (real)
collision checking every 10 cm
goal sampling frequency 5 %

sampling duration
max. 10 s for initial solution
3 s for optimization

(Bi)RRT* constant γ [93] 6
simulation runs 100

5.3 Experimental Results

A variety of challenging automated driving scenarios has been created
to benchmark the algorithms presented in this thesis. In particular, Sec-
tions 5.3.1–5.3.3 analyze the performance of the different steering functions
along with BiRRT* in various tight environments. The advantages and draw-
backs of planning in Gaussian belief space are presented in Sec. 5.3.4, and the
effects of guiding the motion planner with the previously described neural
network are finally highlighted in Sec. 5.3.5.

5.3.1 Maneuvering in Tight Parking Space

The overall goal of the experiments in this section is to compare the perfor-
mance of HC-RS steer against RS and CC-RS steer in two extremely tight
environments. To do so, two high density parking scenarios are created that
not only allow vehicles to park perpendicular to the driveway, but also on
one side of it [210]. This can be seen in Fig. 5.3, where the red ego-vehicle has
to execute a parallel parking maneuver in Scenario I and a perpendicular one
in Scenario II.

The environment is represented by an occupancy grid with a resolution of
10 cm and a size of 20 m× 10 m in Scenario I and 20 m× 20 m in Scenario II.
In both scenarios, the free space can be controlled by modifying the variable ld,
which describes the distance between the two black transporters as shown
in the top row of Fig. 5.3. This parameter is incrementally decreased in the

5.3 Experimental Results 145

(a) Scenario I. (b) Scenario II.

Figure 5.3 Two high density parking scenarios [210] used to benchmark the G1 and
G2 continuous steering functions along with BiRRT*. The top row illustrates both
scenarios, which can be modified by varying the distance ld between the two black
transporters. The bottom row shows two example paths computed with HC±±-RS
steer, the two trees generated by BiRRT* (yellow and orange lines on the ground),
and the execution of both paths. Additionally, the perceived environment of the
simulated LiDAR system is displayed by the red voxels in the two images on the
bottom right with the corresponding cost maps drawn on the ground.

experiments below until no more solution can be computed within the given
time limit. It has to be kept in mind that the length of the padded footprint is
approximately 5.13 m (see Tab. 5.1 and Tab. 5.2), which makes it impossible
to maneuver into parallel parking spots with ld being smaller than this value.

A summary of the quantitative results in both scenarios can be found
in Tab. 5.3. The performance of BiRRT* along with the different steering
functions is evaluated based on the following five metrics: (1) the time-to-
first-solution (TTFS), which measures the elapsed time until the first solution
is found, (2) the number of curvature discontinuities, (3) the number of
direction switches (cusps), (4) the length of the final path, and (5) the success
rate, which indicates the relative number of simulation runs that succeeded
with a solution. Note that the metrics (2)–(4) are given for the final solution
after 3 s of optimization.

It can be seen both in Tab. 5.3 and Fig. 5.4 that using RS steer for motion

146 5 Sampling-Based Motion Planning in Dense Scenarios

Table
5.3

Q
u

antitative
resu

lts
of

the
exp

erim
ents

in
the

tw
o

high
d

ensity
p

arking
scenarios

show
n

in
Fig.5.3.

T
he

tim
e-to-fi

rst-solution
(T

TFS),the
num

ber
ofcurvature

d
iscontinuities,the

num
ber

ofcusps,and
the

length
ofthe

fi
nal

path
are

given
w

ith
m

ean
and

standard
deviation,and

the
bestvalue

in
each

colum
n

is
highlighted

in
bold.

T
TFS

[s]
#curvature

discont.[−]
#cusps

[−]
length

[m
]

success
rate

[%
]

ld
[m

]
R

S
H

C
±
±

-R
S

C
C
0
0-R

S
R

S
H

C
±
±

-R
S

C
C
0
0-R

S
R

S
H

C
±
±

-R
S

C
C
0
0-R

S
R

S
H

C
±
±

-R
S

C
C
0
0-R

S
R

S
H

C
±
±

-R
S

C
C
0
0-R

S

Scenario I

5.4
-

-
-

-
-

-
-

-
-

-
-

-
0

0
0

5.6
4.0±

2.4
7.2±

2.7
-

15.1±
3.3

9.1±
1.3

-
8.5±

1.4
10.5±

1.3
-

17.1±
4.0

19.6±
7.1

-
79

12
0

5.8
0.9±

0.7
3.7±

2.3
-

12.7±
3.0

7.5±
1.6

-
6.7±

1.7
9.1±

2.1
-

16.6±
2.9

18.0±
5.3

-
100

93
0

6.0
0.3±

0.2
1.2±

0.9
-

11.5±
2.6

6.2±
1.4

-
5.6±

1.2
7.4±

1.7
-

16.9±
4.3

17.9±
4.3

-
100

100
0

6.2
0.2±

0.1
0.6±

0.4
-

10.5±
2.3

5.4±
1.5

-
4.7±

1.0
6.7±

1.8
-

16.9±
4.7

18.5±
5.5

-
100

100
0

6.4
0.1±

0.1
0.3±

0.3
-

9.1±
2.2

4.3±
1.3

-
3.8±

1.2
5.6±

1.7
-

16.7±
4.7

18.2±
5.7

-
100

100
0

6.6
0.1±

0.1
0.2±

0.2
-

8.8±
2.2

3.8±
1.2

-
3.6±

1.2
5.1±

1.6
-

17.5±
4.9

17.7±
4.8

-
100

100
0

...7.2
0.0±

0.0
0.1±

0.1
-

8.6±
2.2

3.4±
1.4

-
3.4±

1.2
4.4±

1.6
-

18.7±
4.5

18.7±
5.0

-
100

100
0

7.4
0.0±

0.0
0.1±

0.1
0.4±

0.2
8.1±

1.8
3.4±

1.4
0.0±

0.0
3.3±

0.9
4.3±

1.6
6.3±

1.6
19.9±

4.1
18.7±

5.1
29.7±

6.0
100

100
100

Scenario II

3.8
-

-
-

-
-

-
-

-
-

-
-

-
0

0
0

4.0
7.9±

1.8
-

-
30.0±

3.0
-

-
14.0±

0.0
-

-
28.1±

0.8
-

-
2

0
0

4.2
6.5±

1.4
9.2±

0.0
-

24.2±
5.5

9.0±
0.0

-
12.5±

2.8
11.0±

0.0
-

22.8±
4.7

27.7±
0.0

-
23

1
0

4.4
4.5±

2.4
5.9±

2.7
-

16.5±
5.0

7.5±
1.8

-
7.9±

2.8
9.5±

2.6
-

17.8±
4.3

17.5±
4.4

-
76

22
0

4.6
2.4±

1.8
4.8±

2.8
-

13.3±
3.1

7.0±
1.7

-
6.3±

1.6
8.8±

2.3
-

15.9±
3.0

16.7±
4.8

-
100

66
0

4.8
1.0±

0.7
2.7±

2.2
-

11.2±
2.7

6.4±
1.9

-
5.2±

1.4
7.8±

2.4
-

14.6±
2.0

16.1±
3.7

-
100

97
0

5.0
0.5±

0.5
1.2±

1.3
-

10.2±
2.0

5.0±
1.5

-
4.5±

1.2
6.1±

1.7
-

14.1±
2.0

14.4±
2.6

-
100

100
0

5.2
0.2±

0.2
0.5±

0.6
-

9.3±
1.5

4.3±
1.4

-
3.9±

1.1
5.4±

1.7
-

14.0±
1.9

14.5±
2.6

-
100

100
0

5.4
0.1±

0.1
0.2±

0.3
5.6±

2.2
8.3±

1.3
3.2±

1.4
0.0±

0.0
3.6±

0.9
4.2±

1.5
8.7±

1.0
13.6±

1.4
13.2±

1.4
28.0±

3.9
100

100
7

5.6
0.1±

0.1
0.1±

0.1
5.3±

3.0
7.5±

1.6
2.5±

1.0
0.0±

0.0
3.4±

1.0
3.4±

0.9
7.7±

1.2
12.9±

1.0
12.6±

0.8
23.2±

4.0
100

100
44

5.8
0.0±

0.0
0.1±

0.1
3.1±

2.4
7.0±

1.5
2.2±

0.7
0.0±

0.0
2.9±

1.0
3.3±

0.7
6.6±

1.7
12.6±

1.2
12.4±

0.6
22.2±

4.3
100

100
97

6.0
0.0±

0.0
0.0±

0.0
1.2±

1.2
6.5±

1.3
2.1±

0.4
0.0±

0.0
2.4±

0.8
3.2±

0.6
5.6±

1.6
12.3±

1.3
12.3±

0.2
20.0±

3.8
100

100
100

6.2
0.0±

0.0
0.0±

0.0
0.1±

0.2
6.4±

1.4
2.1±

0.3
0.0±

0.0
2.4±

0.8
3.1±

0.7
4.1±

0.8
12.1±

1.2
12.4±

0.6
16.1±

2.6
100

100
100

6.4
0.0±

0.0
0.0±

0.0
0.1±

0.1
6.3±

1.3
1.9±

0.5
0.0±

0.0
2.3±

0.7
2.9±

0.8
3.7±

0.9
12.1±

1.6
12.9±

1.5
15.7±

1.9
100

100
100

5.3 Experimental Results 147

5.5 6.0 6.5
ld [m]

0

2

4

6

8

av
g
.

T
T

F
S

[s
]

RS

HC±±-RS

CC00-RS

(a) Scenario I.

4.0 4.5 5.0 5.5
ld [m]

0

2

4

6

8

av
g
.

T
T

F
S

[s
]

RS

HC±±-RS

CC00-RS

(b) Scenario II.

Figure 5.4 Illustration of the quantitative results from Tab. 5.3. The diagrams
compare the average TTFS of BiRRT* in combination with the different G1 and G2

continuous steering functions when ld is incrementally increased in both scenarios.
The size of the circles qualitatively visualizes the number of curvature discontinuities,
where CC00-RS marks the baseline with no discontinuity along the entire path.

planning requires the least computation time, but results on average in 66 %
to 232 % more curvature discontinuities than HC±±-RS steer. Remember
that every curvature discontinuity forces the vehicle to stop and adjust the
steering angle at standstill. This is neither favorable from a passenger’s point
of view nor from the steering system (high mechanical stress).

Enforcing curvature continuity along the entire path can be realized with
CC00-RS steer, which, however, requires much more free space and on aver-
age 28 % to 126 % more cusps than HC±±-RS steer. Especially in Scenario I,
BiRRT* combined with CC00-RS steer needs almost a 2 m longer parking spot
to succeed compared to the other two steering functions. Within this context,
it has to be noted that CC00-RS steer is currently implemented without the
topological paths [53]. Integrating them could possibly improve the perfor-
mance in such tight environments while keeping the problem of (too) many
direction switches. In contrast to that, a good trade-off between direction
switches and curvature discontinuities can be realized with HC±±-RS steer
that balances the respective values between the ones of RS and CC00-RS steer.

A comparison of the success rates in Tab. 5.3 reveals that the scenarios,
which can be solved with RS steer, can generally also be tackled with HC±±-

148 5 Sampling-Based Motion Planning in Dense Scenarios

RS steer. This is due to the fact that both steering functions fulfill the topo-
logical property as described in Ch. 2 and therefore yield probabilistic com-
pleteness when integrated into BiRRT*. The reasons why RS steer still allows
to realize higher success rates than HC±±-RS steer are twofold: (1) the com-
putation time of a single RS steering procedure is about a factor of 8 smaller
(see Tab. 2.5) allowing to explore more states during planning, and (2) the
computed RS paths are typically shorter (see Fig. 2.27(a)) and therefore less
likely in collision with the environment.

Nevertheless, the combination of BiRRT* and HC±±-RS steer yields a pow-
erful approach for tight environments as it integrates smoothness into the
motion plans while still preserving the probabilistic completeness of the
planner.

5.3.2 From Single to Double Ackermann Steering

The definition of the steering functions with respect to curvature and its
derivatives allows to directly apply them on vehicles with double Ackermann
steering. This is shown in this section, where the first part analyzes the
effects on motion planning while the second part highlights two real-world
experiments.

As previously mentioned, double Ackermann steering denotes the capabil-
ity to turn both the front and the rear wheels at the same time. Here, only
the case is considered which increases the maximum curvature by turning
the wheels on both axles in opposite directions (see Fig. 5.5). This increases

(a) Single Ackermann steering. (b) Double Ackermann steering.

Figure 5.5 Comparison of the Audi A6 with single and double Ackermann steering.
In the image on the right, the maximum steering angle at the rear axle is set to be
half as large as the one in the front.

5.3 Experimental Results 149

the previously given parameters of the Audi A6 to κmax = 0.2888 m−1 and
σmax = 0.2722 m−2, where the ratio of the maximum steering angle between
the front and the rear axle is set to 1:0.5.

In order to analyze the effects of planning with the novel kinematic, the
same experiments as in the previous section are repeated. The general setup
is kept the same (see Fig. 5.6) with the only difference that the ego-vehicle’s
maximum curvature and maximum curvature rate are modified to the values
above.

(a) Scenario I. (b) Scenario II.

Figure 5.6 High density parking scenarios used to analyze the effects of planning
with double Ackermann steering. The motion plans visualized in the bottom row
are calculated with BiRRT* and HC±±-RS steer by taking into account the novel
kinematic of the ego-vehicle.

A summary of the motion planning experiments including a comparison to
single Ackermann steering is given in Tab. 5.4 and in Fig. 5.7. It can be seen
that especially in Scenario II, double Ackermann steering has a significant
effect on the computed motion plans. Solutions cannot only be found earlier,
but also with less curvature discontinuities, less direction switches, and
higher success rates. Tab. 5.4 shows that, for instance, the average number
of curvature discontinuities can be reduced by at least 26 % and the average
number of cusps by more than 27 % when double Ackermann steering is
enabled in BiRRT* and HC±±-RS steer. At the same time, the average TTFS

150 5 Sampling-Based Motion Planning in Dense Scenarios

Table 5.4 Quantiative comparison of single and double Ackermann steering in the
two high density parking scenarios shown in Fig. 5.3 and Fig. 5.6. The metrics TTFS,
number of curvature discontinuities, and number of cusps are given with mean and
standard deviation, and the best value in each column is highlighted in bold.

TTFS [s] #curvature discont. [−] #cusps [−] success rate [%]

ld [m] steering RS HC±±-RS RS HC±±-RS RS HC±±-RS RS HC±±-RS

Sc
en

ar
io

I

5.4
single Ack. - - - - - - 0 0
double Ack. - - - - - - 0 0

5.6
single Ack. 4.0±2.4 7.2±2.7 15.1±3.3 9.1±1.3 8.5±1.4 10.5±1.3 79 12
double Ack. 3.5±2.5 5.4±2.6 11.4±2.8 6.7±1.4 6.4±1.6 6.8±1.4 89 35

5.8
single Ack. 0.9±0.7 3.7±2.3 12.7±3.0 7.5±1.6 6.7±1.7 9.1±2.1 100 93
double Ack. 0.4±0.4 1.9±1.7 7.7±2.4 5.4±1.4 3.9±1.4 6.6±1.8 100 98

6.0
single Ack. 0.3±0.2 1.2±0.9 11.5±2.6 6.2±1.4 5.6±1.2 7.4±1.7 100 100
double Ack. 0.1±0.1 0.3±0.2 7.3±1.7 3.9±1.3 3.3±1.0 4.8±1.6 100 100

Sc
en

ar
io

II

3.8
single Ack. - - - - - - 0 0
double Ack. 0.9±1.1 2.1±2.0 9.5±1.7 5.2±1.9 3.8±0.8 7.2±2.2 100 99

4.0
single Ack. 7.9±1.8 - 30.0±3.0 - 14.0±0.0 - 2 0
double Ack. 0.3±0.4 0.7±0.7 7.7±1.5 4.3±1.6 2.7±1.0 5.9±1.6 100 100

4.2
single Ack. 6.5±1.4 9.2±0.0 24.2±5.5 9.0±0.0 12.5±2.8 11.0±0.0 23 1
double Ack. 0.1±0.2 0.3±0.3 7.5±1.4 4.2±1.4 2.5±0.9 5.6±1.6 100 100

4.4
single Ack. 4.5±2.4 5.9±2.7 16.5±5.0 7.5±1.8 7.9±2.8 9.5±2.6 76 22
double Ack. 0.1±0.1 0.2±0.2 7.7±1.6 3.8±1.2 2.5±0.9 5.0±1.3 100 100

5.5 6.0 6.5
ld [m]

0

2

4

6

8

av
g.

T
T

F
S

[s
]

RS

HC±±-RS

CC00-RS

(a) Scenario I.

4.0 4.5 5.0 5.5
ld [m]

0

2

4

6

8

av
g.

T
T

F
S

[s
]

RS

HC±±-RS

CC00-RS

(b) Scenario II.

Figure 5.7 Visualization of the average TTFS and the number of curvature discon-
tinuities (size of the circles) with respect to ld when double Ackermann steering is
enabled. For a better comparison, the transparent circles illustrate the results from
Fig. 5.4, where the vehicle is only allowed to turn its front wheels.

5.3 Experimental Results 151

can be decreased by at least 25 % and the success rates increased by up to
100 %. As double Ackermann steering improves all mean values in Tab. 5.4,
it can be concluded that the ability to steer all four wheels in such tight
environments is highly favorable from a motion planning perspective.

The sampling-based motion planner that has been so far benchmarked
in simulation is also integrated into the motion planning framework of the
Bosch Campus Shuttle. The underlying platform is an EasyMile EZ10 with
double Ackermann steering (see Fig. 5.1(b)), whose vehicle parameters are
listed in Tab. 5.1. Obstacles in the environment are perceived by a LiDAR
system and fused in an occupancy grid with a resolution of 15 cm and a size
of 50 m× 50 m. The reference pose of the vehicle is determined without GPS
using a simultaneous localization and mapping (SLAM) algorithm [186].

A demonstration of the planner’s capability in two real-world scenarios
can be found in Fig. 5.9 and Fig. 5.10. The first scenario requires the shuttle
to execute a turn at the end of a line while the second scenario requires an
autonomous parking maneuver at the shuttle’s depot. In both scenarios,
the maneuvers are computed online using BiRRT* and CC00-RS steer, whose
solution is then executed by a feedback linearizing motion controller [97].

It can be seen both in Fig. 5.9 and Fig. 5.10 that the computed motion
plans smoothly transition the vehicle from start to goal while avoiding the
surrounding obstacles. The visualization in Fig. 5.8 also shows that the
tracking error is generally small along the entire path.

−35 −30 −25 −20 −15 −10
−25

−20

−15

−10

−5

0

x [m]

y
[m

]

planned (BiRRT*)
executed (SLAM)

(a) Turn at the end of the line.

−35 −30 −25 −20 −15 −10
−25

−20

−15

−10

−5

0

x [m]

y
[m

]

planned (BiRRT*)
executed (SLAM)

(b) Parking at the depot.

Figure 5.8 Visualization of the planned and the executed path in the two shuttle
experiments shown in Fig. 5.9 and Fig. 5.10.

152 5 Sampling-Based Motion Planning in Dense Scenarios

(a) Real-world view. (b) Robot view.

Figure 5.9 Execution of a turn at the end of the line. The sequence on the left dis-
plays the executed maneuver while the one on the right illustrates the corresponding
robot view. After having executed the turn, the robot switches back to corridor
driving as shown in the image on the bottom right.

5.3 Experimental Results 153

(a) Real-world view. (b) Robot view.

Figure 5.10 Perpendicular parking after arriving at the shuttle’s depot followed by
a maneuver that moves the shuttle back to the start of the line.

154 5 Sampling-Based Motion Planning in Dense Scenarios

However, small deviations from the planned path can still be observed in
the real-world experiments mostly due to localization and control uncertainty
as well as due to the curvature rate discontinuities of theG2 continuous paths.
The latter is addressed in the next section by increasing the continuity of the
motion plans to G3.

5.3.3 G3 Continuous Motion Planning

The previous two sections have shown the planner’s capability to compute
G1 and G2 continuous paths in dense scenarios. Certain situations might
require, however, to plan even smoother motion plans that reduce lateral
jerk and improve the tracking performance in closed loop. For this purpose,
BiRRT* is combined with HCR and CCR steer to compute G3 continuous
paths in three challenging automated driving scenarios. A visualization of
all three scenarios including example paths and a sequence of their execution
is given in Fig. 5.11.

The first scenario illustrates a dead end, where the red ego-vehicle is
required to execute a multi-point turn due to the parked black transporter.
Multiple narrow passages have to be passed in the second scenario, which
represents a blocked driveway, and parking on a high density parking lot
has to be conducted in the third scenario. The three different environments
are represented by an occupancy grid with a resolution of 10 cm and a size
of 40 m× 40 m in Scenario I, 50 m× 20 m in Scenario II, and 40 m× 20 m
in Scenario III. The steering system is switched back to single Ackermann
steering, and the maximum curvature acceleration ρmax is set to 0.3905 m−3.

A summary of the motion planning experiments in the previously de-
scribed scenarios can be found in Tab. 5.5. As expected, the G1 continuous
steering functions RS and Dubins require on average the least computation
time to find an initial solution. Furthermore, the corresponding final paths
have on average the shortest length and a low number of direction switches.
However, an average of up to 14.2 curvature discontinuities makes it imprac-
tical to directly execute these paths. In contrast to that, curvature continuity
can be enforced with the G2 continuous steering functions, but the resulting
paths suffer from on average up to 24.7 curvature rate discontinuities. Re-
member that every curvature rate discontinuity implies an infinite steering
acceleration. In closed loop, this might lead to a jerky motion, a high mechan-
ical load on the steering system, or a potential deviation from the planned
path.

5.3 Experimental Results 155

(a) Scenario I. (b) Scenario II. (c) Scenario III.

Figure 5.11 G3 continuous motion planning in three distinct scenarios. The red
ego-vehicle is required to execute a multi-point turn at a dead end in Scenario I,
pass a blocked driveway in Scenario II, and park on a high density parking lot in
Scenario III. The illustrated motion plans are computed with BiRRT* and the steering
functions CCR00-RS in (a), CCR00-D in (b), and HCR00-RS in (c).

156 5 Sampling-Based Motion Planning in Dense Scenarios

Table 5.5 Benchmark of BiRRT* along with the G1, G2, and G3 continuous steering
functions in the three scenarios from Fig. 5.11. The metrics TTFS, number of cur-
vature and curvature rate discontinuities, number of cusps, and final path length
are given with mean and standard deviation. Note that for consistency with Foot-
note 5 (p. 82), every curvature discontinuity is also counted as a curvature rate
discontinuity.

scen. steer. fct. cont. TTFS [s] #curv. discont. [−] #curv. rate discont. [−] #cusps [−] length [m] succ. [%]

I
RS G

1 0.01±0.01 6.4±0.8 6.4±0.8 2.0±0.0 40.9±3.5 100
CC00-RS G

2 0.02±0.01 0.0±0.0 13.7±3.0 2.0±0.0 42.6±3.1 100
CCR00-RS G

3 0.03±0.03 0.0±0.0 0.0±0.0 2.3±0.7 47.2±4.1 100

II
Dubins G

1 0.17±0.13 14.2±1.8 14.2±1.8 0.0±0.0 34.8±0.1 100
CC00-D G

2 0.22±0.22 0.0±0.0 24.7±4.5 0.0±0.0 34.8±0.1 100
CCR00-D G

3 2.25±1.70 0.0±0.0 0.0±0.0 0.0±0.0 34.9±0.1 98

III
RS G

1 0.06±0.05 6.7±1.2 6.7±1.2 3.0±1.0 14.5±4.2 100
HC00-RS G

2• 0.27±0.28 1.8±0.9 10.6±2.6 2.9±1.3 15.7±4.4 100
HCR00-RS G

3• 0.77±0.65 2.1±1.1 2.1±1.1 4.2±1.9 20.7±6.6 100
•between direction switches

As shown in Tab. 5.5 and Fig. 5.12, the curvature rate discontinuities in the
path can be eliminated or significantly reduced by combining BiRRT* with the
G3 continuous steering functions. At least between direction switches, these

0 2 4 6 8 10 12 14

−0.2

−0.1

0

0.1

0.2

š [m]

κ̌
[m

−
1
]

RS
HC00-RS
HCR00-RS

Figure 5.12 Curvature profile of three example paths in Scenario III computed with
the steering functions RS, HC00-RS, and HCR00-RS. The smoothness increases from
discrete curvatures to a linear and a quadratic profile, where curvature discontinu-
ities are only allowed at cusps.

steering functions bound the maximum curvature, the maximum curvature
rate, and the maximum curvature acceleration. While this improves the
overall smoothness of the motion plans, two limitations can be observed
in Tab. 5.5: (1) the average TTFS increases significantly in highly complex

5.3 Experimental Results 157

scenarios, such as Scenario II, leading to a potential decline in success rate,
and (2) the length of the paths and the number of cusps might increase.
The reasons behind this are the higher computation time of a single G3

continuous steering procedure (see Tab. 2.7) and the typically higher path
length of the corresponding output (see Fig. 2.43(a)). While the former allows
BiRRT* to explore less states, the latter implies that theG3 continuous steering
procedures are more likely in collision with the environment than the G1 and
G2 continuous counterparts. Note, however, that the analyzed limitations
play only a minor role in less complex scenarios, such as in Scenario I, where
planning with the G3 continuous steering functions yields high quality paths
with only small computational overhead.

5.3.4 Motion Planning in Gaussian Belief Space

The previous three sections have shown a variety of experiments, where
motion plans are computed without explicitly considering the uncertainties
of the system. Especially in tight environments, however, neglecting pos-
sible disturbances might lead to dangerous situations with high collision
probabilities. Therefore, this section explores the benefits and the possible
drawbacks of planning in belief space by taking into account the localization
and control uncertainty. Note that the perception noise of the LiDAR system
is currently neglected, but could also be considered here, e.g. by switching to
a probabilistic occupancy grid.

Fig. 5.13 visualizes the three scenarios used to benchmark the belief space
planner against two nominal baselines. While Scenario I is already known
from the previous section, two novel situations are introduced in Scenario II
and III including an accident blocking the road and a circular parking lot.

The environment is represented by an occupancy grid with a resolution
of 10 cm and a size of 40 m× 40 m in Scenario I and III and 50 m× 10 m in
Scenario II. Motion planning in belief space is conducted here on the basis
of (5.4)–(5.5) using RRT*, the belief steering functions from Ch. 2, and the
concept of beliefprints from Ch. 3. Note that the latter is required to enforce
the chance constraint in (5.4i). To do so, the beliefprints are first computed
using an icosahedron and the unpadded footprint of the ego-vehicle and then
checked for collision with the surrounding obstacles.

An overview of the required parameters for planning in belief space in-
cluding the confidence P for the computation of the beliefprints can be found
in Tab. 5.6.

158 5 Sampling-Based Motion Planning in Dense Scenarios

(a) Scenario I. (b) Scenario II. (c) Scenario III.

Figure 5.13 Motion planning in Gaussian belief space. The red ego-vehicle is
required to execute a multi-point turn at a dead end in Scenario I, pass an accident at
the side of the road in Scenario II, and park on a circular parking lot in Scenario III.
The illustrated example paths are calculated with RRT* and the belief steering
functions BCC00-RS in (a), BCC00-D in (b), and BHC00-RS in (c).

5.3 Experimental Results 159

Table 5.6 Additional parameters required for belief space planning. Adapted
from [213], © 2018 IEEE.

parameter symbol value

controller gain k1, k2, k3 1.5, 0.36, 1.2
motion noise α1, α2, α3, α4 0.2, 0.1, 0.1, 0.3
measurement noise σx, σy, σθ 0.1 m, 0.1 m, 0.05 rad
confidence P 97.1 % (three-sigma in three dim.)

The two baselines used to benchmark the belief space planner solve the
scenarios above with BiRRT* and the nominal steering functions. While one
of the two baselines applies no footprint padding, the other one inflates the
footprint by 10 cm to every side serving as a hard safety buffer. Within this
context, it has to be noted that applying a constant footprint padding assumes
an evenly distributed two-dimensional covariance, which does not change
along the path.

A summary of the experimental results including the evaluation of six
metrics can be found in Tab. 5.7.

Table 5.7 Comparison of planning in belief space with the two nominal baselines.
The letter ’B’ is used to distinguish the belief steering functions from the nominal
ones. Values with a plus-minus sign are given with mean and standard deviation.
Adapted from [213], © 2018 IEEE.

scen. planner steer. fct. footprint TTFS [s] #vertices [−] #cusps [−] length [m] CP [%] succ. [%]

I
BiRRT* CC00-RS unpadded 0.01±0.01 117.0±3.3 2.0±0.0 42.0±3.4 3.6±8.2 100
BiRRT* CC00-RS padded 0.02±0.01 118.3±3.7 2.0±0.0 42.6±3.1 1.2±3.3 100
RRT* BCC00-RS unpadded 0.23±0.29 45.1±3.3 2.1±0.5 46.9±3.7 0.1±0.4 100

II
BiRRT* CC00-D unpadded 0.05±0.04 236.4±6.9 0.0±0.0 37.2±0.1 9.4±13.5 100
BiRRT* CC00-D padded 0.14±0.13 233.6±17.6 0.0±0.0 37.3±0.1 3.9±6.1 100
RRT* BCC00-D unpadded 3.22±2.43 71.4±9.5 0.0±0.0 37.3±0.2 0.9±1.1 88

III
BiRRT* HC00-RS unpadded 0.05±0.06 106.8±4.4 1.4±0.7 18.2±4.7 8.8±20.5 100
BiRRT* HC00-RS padded 0.06±0.09 107.6±4.9 1.5±0.9 18.2±5.0 3.6±9.8 100
RRT* BHC00-RS unpadded 0.93±1.16 50.1±4.2 2.2±1.7 19.1±4.7 0.1±0.4 100

Compared to the previous benchmarks, two additional metrics are com-
puted here, namely the number of vertices in the tree and the collision prob-
ability (CP). While the former helps to understand how well the different
approaches explore the state space, the latter evaluates the robustness of a

160 5 Sampling-Based Motion Planning in Dense Scenarios

motion plan. As such, the CP is defined as the relative number of 100 Monte
Carlo (MC) runs (see Sec. 2.5.1) that collide with the environment.

It can be seen in Tab. 5.7 that planning in Gaussian belief space increases
the TTFS and allows to explore on average up to 70 % less vertices than the
nominal approaches. The result is a possible increase in path length and in
the number of direction switches. Furthermore, the success rate might drop
when not enough states can be explored within the given sampling time.
The reasons behind these effects are threefold: (1) the belief propagation and
the computation of the beliefprints increase the complexity of the planning
process leading to less exploration, (2) planning in belief space can only be
tackled with the single-tree approach and not with the typically faster two-
tree version of the planner, and (3) the nominal baselines also add potentially
dangerous states to the tree, which are sorted out by the belief space planner.

The latter can be observed in Tab. 5.7, where only on average up to 0.9 %
of the 100 MC runs are in collision when planning was conducted in belief
space. Two aspects lead to this result: on the one hand, the chance constraint
in (5.4i) enforces a CP below 1− P for every vehicle state, and on the other
hand, the cost term in (5.5c) incentivizes the planner to increase the distance
to surrounding obstacles. On the contrary, the CP of the nominal motion
plans is up to an order of magnitude higher compared to the belief space
approach. For instance, the mean CP raises to up to 9.4 % in the nominal
case without footprint padding. Adding a hard safety buffer of 10 cm to
the footprint helps to reduce this number, but the corresponding CPs are on
average still as high as 3.9 %. The reason for this is that the actual covariance
is neither two-dimensional nor evenly distributed or constant along the path
as assumed by a static footprint padding.

The previous observations are qualitatively highlighted in Fig. 5.14, which
augments an example motion plan of the nominal and the belief space ap-
proach in Scenario II with 100 MC runs. It can be observed that in the nominal
case, up to 9 % of the runs collide with the upper wall or one of the traffic
cones although a footprint padding of 10 cm has been applied during plan-
ning. In contrast to that, none of the MC runs collide with the environment
in the second case when planning is conducted in Gaussian belief space.

In conclusion, belief space planning significantly increases the safety of the
motion plans while at the same time raising the computational complexity.
It has to be kept in mind that planning in belief space requires a profound
understanding of the system’s uncertainties as well as a model of the under-
lying noise. With respect to computation time, a significant speed-up could

5.3 Experimental Results 161

(a) Nominal motion plan. (b) Belief space motion plan.

Figure 5.14 Qualitative comparison of two example paths in Scenario II once
computed with the nominal baseline and a 10 cm footprint padding (a) and once
with the Gaussian belief space planner (b). Both solutions are augmented with
100 MC runs and the corresponding swaths of the robot (cyan). In the image on the
left, 9 % of the simulated runs collide with the environment (upper wall or third
traffic cone) while none of them are in collision on the right.

be achieved by switching to a non-uniform sampling distribution that adapts
to the environment as shown in the next section.

5.3.5 Guided Motion Planning

One of the major drawbacks of sampling-based motion planners are the
potentially high computation times and the low convergence rates due to
uninformed (uniform) sampling. Especially in narrow passages, such as
in Fig. 5.13(b), exhaustive sampling might be required to find one of the
relatively few samples that steer the robot towards the goal. In order to over-
come such problems, non-uniform sampling distributions can be used that
leverage the information about the environment to accelerate the planning
process. Within this context, this section evaluates the potential of guiding
the sampling-based motion planner BiRRT* with the pose predictions of the
CNN introduced in Ch. 4. The corresponding evaluations are conducted on
the three automated driving scenarios shown in Fig. 5.15.

The first scenario depicts a blocked intersection that requires the red ego-
vehicle to perform a multi-point turn. A narrow passage problem is given in
the second scenario, where an evasive maneuver has to be conducted in order

162 5 Sampling-Based Motion Planning in Dense Scenarios

(a) Scenario I. (b) Scenario II. (c) Scenario III.

Figure 5.15 Guided motion planning in three automated driving scenarios includ-
ing a blocked intersection (a), a blocked lane due to an accident (b), and a high
density parking lot (c). The visualized example paths are computed with HC00-RS
steer in (a) and (c) and with CC00-Dubins in (b). The gray arrows on the ground il-
lustrate 200 sampled vehicle poses from the output of the CNN. Adapted from [216],
© 2019 IEEE.

5.3 Experimental Results 163

to pass the accident at the side of the road. The third scenario finally shows
the already known high density parking lot with a perpendicular parking
task. Motion planning is carried out in all three scenarios using an occupancy
grid with a resolution of 10 cm and a size of 60 m× 60 m. Notice that the
CNN has not seen these environments before as they were barred from
the training dataset. Furthermore, they expose the CNN to novel artifacts
including traffic cones and various new vehicle shapes.

Guiding BiRRT* with the CNN from Ch. 4 is benchmarked in this section
against two baselines. The first one applies uniform sampling similar to the
experiments in the previous sections, and the second one uses the OSE heuris-
tic [30] as described in Sec. 4.4 to bias the planner towards the goal. In case
BiRRT* is combined with either the CNN or the OSE, non-uniform samples
are computed in batches of 100 at a frequency of 4 Hz. These samples are
then mixed evenly with uniform ones in order not to violate the theoretical
guarantees of the planner.

An overview of the experimental results generated with BiRRT* along with
the different sampling distributions can be found in Tab. 5.8.

Table 5.8 Guided motion planning benchmark. The results are obtained with
BiRRT* and the steering functions HC00-RS in Scenario I and III and CC00-Dubins
in Scenario II. Values with a plus-minus sign are given with mean and standard
deviation. Adapted from [216], © 2019 IEEE.

scen. heuristic pred. [ms] TTFS [s] #vertices [−] #cusps [−] length [m] costTTFS [−] costTTFS+3s [−] succ. [%]

I
- - 0.57±0.41 79.2±14.3 4.0±1.2 35.2±4.8 162.0±48.3 124.1±28.2 100

OSE 127.6 1.54±2.15 139.2±27.6 4.6±1.6 38.7±7.0 160.7±50.4 145.1±42.4 89
CNN 82.8 0.13±0.07 140.6±7.5 2.2±0.8 28.1±3.9 134.4±37.2 93.4±18.9 100

II
- - 3.51±2.31 127.0±12.6 0.0±0.0 25.7±0.2 63.4±16.4 60.6±15.9 82

OSE 17.4 0.12±0.14 187.2±12.0 0.0±0.0 25.7±0.1 50.1±11.2 37.4±2.9 100
CNN 82.4 0.11±0.03 221.2±8.0 0.0±0.0 25.7±0.1 43.7±9.4 33.6±1.9 100

III
- - 2.92±2.53 96.1±15.7 3.6±1.5 20.7±14.3 152.4±51.0 148.2±51.9 91

OSE 19.0 0.02±0.03 154.6±6.0 3.0±1.0 12.8±1.5 143.6±21.0 119.2±16.3 100
CNN 80.9 0.09±0.02 157.9±4.6 2.0±0.0 13.0±0.6 100.4±23.5 84.0±3.7 100

Three additional metrics are evaluated here, namely the prediction time to
generate the batch of heuristic samples, the cost of the initial solution costTTFS,
and the cost after 3 s of optimization costTTFS+3s. The last two metrics are
computed according to (5.2) and indicate the quality of the path at two
different time steps.

It can be seen in Tab. 5.8 that the samples from the CNN not only help
to compute paths with the initially lowest average cost, but also allow to

164 5 Sampling-Based Motion Planning in Dense Scenarios

converge to a lower-cost solution than the other two sampling distributions.
This can also be seen in Fig. 5.16, which illustrates the convergence rate in
Scenario I and II. The corresponding plot for Scenario III is omitted here for
brevity, but can be found in [216].

0 5 10

time [s]

100

150

200

co
st

[-
]

no heuristic

OSE

CNN
0

25

50

75

100

su
cc

es
s

ra
te

[%
]

(a) Scenario I.

0 5 10

time [s]

40

60

80

co
st

[-
]

no heuristic

OSE

CNN
0

25

50

75

100

su
cc

es
s

ra
te

[%
]

(b) Scenario II.

Figure 5.16 Convergence and success rate during planning. The solid lines indicate
the average cost of the three approaches, the error bars the respective standard devia-
tions, and the dotted lines the success rate over time, which is only visualized above
65 % for better readability. Notice that the cost of a single motion plan decreases
monotonically with respect to planning time, however, averaging over multiple runs
can result in a non-monotonic behavior. Adapted from [216], © 2019 IEEE.

Furthermore, it can be observed in Tab. 5.8 that the predictions of the
CNN stabilize the average TTFS to about 100 ms and reduce the correspond-
ing standard deviation to the lowest value of all three approaches. This is
highly beneficial from a practical point of view as low latencies allow to react
quickly to new situations leading to an overall improvement of the system’s
performance. Within this context, it has to be noted that the TTFS of the
CNN-guided BiRRT* could be further reduced by improving the prediction
time of the CNN. The latter currently takes about 81 ms to 83 ms (see Tab. 5.8)
and is therefore twice as high as in the benchmark conducted in Sec. 4.4.
This is due to the fact that the CNN runs here along with the simulation on
an Nvidia Quadro K2200 and not on an Nvidia Titan X as in the previous
evaluation.

In addition to low computation times, it is also required in practice to find
solutions, if any exist, with a high success rate. Tab. 5.8 shows that the only
approach that achieves a success rate of 100 % in all three scenarios is the

5.4 Summary 165

one that uses samples from the CNN. While BiRRT* combined with the OSE
heuristic also solves all simulation runs in Scenario II and III, its success
rate drops by 11 % in Scenario I. The reason for this is that the OSE heuristic
reduces the vehicle to a circular holonomic robot and only takes into account
the nonholonomic constraints using a cost term [30]. In Scenario I, this fact
leads to the problem that the heuristic proposes an immediate turn at the
current position. As such a maneuver can, however, not be realized due
to the obstacles on both sides (see Fig. 5.15(a)), many of the heuristically
generated samples do not help the planner to solve this situation. BiRRT*
must therefore rely on the other half of the samples (uniformly generated),
which are, however, not enough to solve all of the 100 runs.

5.4 Summary

The effectiveness of the developed methods in sampling-based motion plan-
ning is demonstrated in this chapter. A variety of experiments were con-
ducted both in simulation and in the real world on two distinct vehicles with
both single and double Ackermann steering. The benchmarks were carried
out on a broad set of challenging automated driving scenarios with a focus on
maneuvering at low speeds in tight environments. These scenarios require a
global solution to the motion planning problem, which in some situations
can only be solved by moving forwards and backwards.

In particular, the benchmark in Sec. 5.3.1 shows that the novel steering
function HC-RS steer allows to compute smoother paths than RS steer with a
higher success rate and less direction switches than CC-RS steer. As a result,
HC-RS steer yields a powerful approach for sampling-based motion planning
in tight environments by directly enforcing curvature continuity between
direction switches.

The benefits of not only steering the front but also the rear wheels is
highlighted in Sec. 5.3.2. It is shown that double Ackermann steering is highly
beneficial from a motion planning perspective as it improves the overall
quality of the computed paths. Furthermore, two real-world experiments are
included in this section that demonstrate the effectiveness of the developed
motion planner on a vehicle with double Ackermann steering.

Increasing the smoothness of the motion plans to curvature rate continuity
using the novel G3 continuous steering functions is conducted in Sec. 5.3.3.
The analysis reveals that this can be realized with only little computational

166 5 Sampling-Based Motion Planning in Dense Scenarios

overhead in less complex scenarios. In extremely tight environments, how-
ever, problem-specific sampling distributions would be required to com-
pensate for the increase in computation time and the deterioration in path
quality.

The results in Sec. 5.3.4 highlight that planning in Gaussian belief space
significantly increases the robustness of the motion plans by bounding the
collision probability of every vehicle state. This was realized with the ex-
tension of the steering functions to Gaussian belief space along with the
novel concept of beliefprints. The additional computational complexity, how-
ever, requires heuristics that speed-up the planning process and improve the
convergence rate towards a cost-minimizing solution.

An example of such an approach, where a CNN generates proposals for
the sampling-based motion planner, was finally benchmarked in Sec. 5.3.5. It
is demonstrated that the CNN adapts to various driving situations and helps
to stabilize the average TTFS to about 100 ms in the conducted experiments.
In comparison to uniform sampling and an A*-based heuristic, the CNN
not only enables the generation of motion plans with an initially lower cost,
but also improves the convergence to a better solution. It can therefore
be concluded that the resulting approach is particularly suitable for global
motion planning with real-time constraints.

6 Conclusion and Outlook

This thesis addresses the motion planning problem in automated driving
and focuses on the computation of global motion plans in complex tight en-
vironments. Although first results in this field date back to at least 1986 [110],
coming up with a generic approach that computes high quality solutions
in arbitrary scenarios still remains a challenging task. However, such an
approach is required for level 4/5 automated driving [185] in order to ensure
autonomy in all possible scenarios.

6.1 Conclusion

Motivated by the research questions in Sec. 1.3, several modular components
were developed, analyzed, and benchmarked within this thesis in order
to improve the effectiveness of existing global motion planners. The key
contributions were made in three different fields and are briefly summarized
in the following paragraphs.

Steering functions The state of the art, as reviewed in Sec. 1.2.1, shows
that steering functions are an important concept in both search-based and
sampling-based motion planning. Many of the existing approaches rely on
the well-known steering functions Dubins and Reeds-Shepp whose paths are
only discrete in curvature and hence typically require a post-smoothening
step. An alternative to this is CC steer that enforces curvature continuity
along the entire path. The experimental results in Sec. 5.3.1 have demon-
strated, however, that planning with CC steer is impractical in tight environ-
ments as zero curvature is always enforced at direction switches. Therefore,
the novel steering function HC steer was introduced in Sec. 2.3.2 that enforces
curvature continuity as the vehicle is moving either forwards or backwards,
but allows curvature discontinuities at direction switches. This leads to the
fact that HC steer computes smoother paths than RS steer and outperforms
CC steer in terms of path length. Especially in tight environments, HC steer

168 6 Conclusion and Outlook

is thus an effective tool to compute directly executable paths with curvature
continuity between direction switches (see Sec. 5.3.1 and Sec. 5.3.2).

Even higher degrees of smoothness can be realized by not only enforcing
curvature but also curvature rate continuity. For this purpose, the two novel
steering functions CCR and HCR steer were introduced in Sec. 2.4.1 and
Sec. 2.4.2. In comparison to CC and HC steer, these two steering functions
additionally constrain the maximum curvature acceleration along the path
allowing to (1) improve the closed-loop tracking performance of the motion
controller, (2) reduce the mechanical stress on the steering system, and (3) in-
crease the comfort due to a reduction in lateral jerk. However, enforcing
curvature rate continuity increases both the computation time and the path
length making it more challenging to find feasible motion plans in tight
environments (see Sec. 5.3.3).

Planning under uncertainty Due to the complexity of the motion planning
problem, many state-of-the-art approaches neglect the uncertainties of the
system. However, safety-critical systems, such as automated vehicles, have
to consider these uncertainties in order to guarantee a bounded collision
probability. To achieve this, two contributions were made: (1) the previously
mentioned steering functions were extended to belief space in which every
state of the vehicle is associated with its uncertainty arising from imperfect
localization and control (see Sec. 2.5), and (2) two algorithms were proposed
that allow to assess whether the collision probability of a Gaussian distributed
vehicle state exceeds a user-defined threshold (see Sec. 3.2). Combining
both contributions in a motion planner allows to significantly increase the
robustness of the motion plans by bounding the collision probability along the
computed vehicle motion (see Sec. 5.3.4). However, the additional complexity
of planning in belief space requires heuristics that accelerate the planning
process and improve the convergence rate.

Sampling distributions Sampling-based motion planners generally provide
stronger theoretical guarantees with respect to optimality and completeness
than search-based approaches. However, sampling-based planners typically
suffer from slow convergence rates if samples are only drawn from a uniform
distribution. Therefore, problem-specific sampling distributions are often
required in order to guide the motion planner efficiently towards the goal. For
this purpose, a data-driven approach was realized in Ch. 4, where a CNN is
trained to predict a distribution over future vehicle poses given observations
of the environment. Interfacing the CNN with the motion planner BiRRT*

6.1 Conclusion 169

allows to stabilize the time-to-first-solution to about 100 ms in the conducted
experiments and additionally improves the convergence rate in comparison
to uniform sampling and an A*-based heuristic (see Sec. 5.3.5). Hence, the
presented approach is particularly suitable for real-time motion planning in
complex tight environments.

All key contributions were not only evaluated individually, but also in com-
bination with the sampling-based motion planner RRT* and its bidirectional
extension BiRRT* (see Ch. 5). Finally, it has to be answered whether such
an approach can satisfy the initially derived requirements for global motion
planning. This question is addressed in Tab. 6.1, where the satisfaction of
each of the eight requirements from Sec. 1.1 is qualitatively evaluated with a
filled circle. The reasons for the respective choices are briefly discussed in

Table 6.1 Evaluation of the developed motion planner on the basis of the require-
ments from Tab. 1.1. The filled circles visualize the degree to which each requirement
is satisfied.

The motion planner is: The motion plan is:
generic
complete
optimal
efficient

collision-free
smooth
robust
true-to-contour

0 % 25 % 50 % 75 % 100 %

the following paragraphs starting with the requirements that are completely
satisfied followed by the ones that are (not yet) 100 % fulfilled.

From the broad set of scenarios that were tested in Ch. 5, it can be concluded
that the developed motion planner is generic and thus capable to solve
arbitrary planning problems. Furthermore, the computed motion plans are
collision-free and take into account the actual shape (and not just a rough
bounding box) of all objects in the scene. Smoothness is realized by enforcing
curvature and curvature rate continuity during planning resulting in directly
executable motion plans.

Although RRT* and BiRRT* provide theoretical guarantees with respect to
completeness and optimality, both properties can only be guaranteed with
an infinite number of samples. Therefore, the two respective requirements in
Tab. 6.1 are only considered as partially fulfilled. Furthermore, the efficiency
of these two planners (e.g. their convergence rate) highly depends on the

170 6 Conclusion and Outlook

underlying sampling distribution. While uniform sampling has proven to
be fairly inefficient, guiding the motion planner with the CNN significantly
improves the planning performance. As the CNN, however, contains approx-
imately 2.5 million parameters (resulting in a non-negligible inference time),
the efficiency aspect in Tab. 6.1 is only considered as mostly satisfied. Apart
from that, the motion planner currently neglects the perception uncertainty,
but allows to consider both the localization and the control errors in the
computation of motion plans. As the latter two are typically larger than
the perception uncertainty (assuming a LiDAR sensor set), the robustness
requirement in Tab. 6.1 is classified as mostly but not completely fulfilled.

Nevertheless, it has to be emphasized that the presented implementation is
a powerful approach that noticeably advances the state of the art and allows
to solve a large variety of challenging motion planning problems.

6.2 Outlook

Based on the previous chapters, four possible future research directions are
identified below:

(1) Currently, the motion planner decomposes the planning problem into
path planning (spatial dimension) and velocity profiling (temporal di-
mension), which is also known as path-velocity decomposition [91].
Although this approach has been widely used in the robotics community
over the last decades, it is known that such a decomposition can lead
to suboptimal solutions especially in (highly) dynamic environments.
In order to resolve this problem, planning must be directly conducted
in space and time. With the current approach, this could be achieved
by extending the presented steering functions from paths to trajectories,
where every vehicle state contains both spatial and temporal information.
A first step into this direction could be the computation of time-optimal
rather than length-optimal solutions to the steering problem in (2.1). In
case of the Dubins car, for example, the time-optimal solution is trivial
for a start and goal state with zero velocity (shortest path augmented
with a longitudinal bang-bang input), but more challenging to compute
if arbitrary velocities are allowed at both states.

(2) In order to tackle the complexity of planning simultaneously in space
and time, problem-specific sampling distributions are required that also

6.2 Outlook 171

take into account the temporal dimension of the underlying problem.
While [5] shows a possible solution for local motion planning with a
fixed time horizon, the duration of the global motion plan is typically
not known a priori making novel techniques necessary.

(3) The steering functions in Ch. 2 satisfy the dynamic actuator limits ge-
ometrically with the maximum curvature rate σmax and the maximum
curvature acceleration ρmax. As these parameters are, however, functions
of various variables including the steering angle and the longitudinal
velocity, worst case assumptions must be made to satisfy the actuator
constraints along the entire path [53, 128]. As a result, the computed
solutions in Ch. 2 are longer than the shortest path that can be realized by
a system with bounded steering rate and bounded steering acceleration.
It remains an open question how this limitation can be resolved without
significantly increasing the computation time of the steering functions.

(4) The concept of beliefprints presented in Ch. 3 is currently applied to
the ego-vehicle whose footprint is precisely known in advance. In order
to transfer this concept to the computation of an obstacle’s beliefprint,
the presented algorithms must be extended such that the perception
uncertainty of the obstacle’s shape can be taken into account as well.

Finally, the necessity of a benchmark suite for motion planning cannot
be stressed enough here. Similar to [2], a framework is required that al-
lows researchers to objectively compare the performance of different (global)
motion planners in predefined automated driving scenarios. Along with a
strong open-source culture, such a framework would very likely enable the
community to make faster progress in the complex field of motion planning
for automated vehicles.

A Appendix

A.1 Robot Motion

The following sections describe the robot’s equations of motion on a straight
line (Sec. A.1.1), on a circular arc (Sec. A.1.2), on a clothoid (Sec. A.1.3), and
on a cubic spiral (Sec. A.1.4). The required partial derivatives for linearization
are also listed in the respective sections below.

A.1.1 Straight Line

Given a robot with state x̌k =
(
x̌k y̌k θ̌k

)ᵀ
and input ǔk =

(
∆šk κ̌k

)ᵀ,
where ∆šk denotes the signed arc length and κ̌k the curvature at

(
x̌k y̌k

)
.

For κ̌k = 0, the robot moves on a straight line, which can be described as

x̌k+1 = x̌k + ∆šk cos(θ̌k), (A.1a)

y̌k+1 = y̌k + ∆šk sin(θ̌k), (A.1b)

θ̌k+1 = θ̌k + κ̌k∆šk. (A.1c)

The corresponding partial derivatives with respect to the robot’s state x̌k are
given as

∂x̌k+1

∂x̌k
= 1, (A.2a)

∂y̌k+1

∂x̌k
= 0, (A.2b)

∂θ̌k+1

∂x̌k
= 0, (A.2c)

∂x̌k+1

∂y̌k
= 0, (A.3a)

∂y̌k+1

∂y̌k
= 1, (A.3b)

174 A Appendix

∂θ̌k+1

∂y̌k
= 0, (A.3c)

∂x̌k+1

∂θ̌k
= −∆šk sin(θ̌k), (A.4a)

∂y̌k+1

∂θ̌k
= ∆šk cos(θ̌k), (A.4b)

∂θ̌k+1

∂θ̌k
= 1. (A.4c)

The partial derivatives with respect to the input ǔk are derived as

∂x̌k+1

∂∆šk
= cos(θ̌k), (A.5a)

∂y̌k+1

∂∆šk
= sin(θ̌k), (A.5b)

∂θ̌k+1

∂∆šk
= κ̌k, (A.5c)

∂x̌k+1

∂κ̌k
= 0, (A.6a)

∂y̌k+1

∂κ̌k
= 0, (A.6b)

∂θ̌k+1

∂κ̌k
= ∆šk. (A.6c)

A.1.2 Circular Arc

Considering the same state x̌k and input ǔk as in Sec. A.1.1, the robot moves
on a circular arc if κ̌k 6= 0. The corresponding equations of motion are given
as

x̌k+1 = x̌k +
1

κ̌k
(− sin(θ̌k) + sin(θ̌k + ∆škκ̌k)), (A.7a)

y̌k+1 = y̌k +
1

κ̌k
(+ cos(θ̌k)− cos(θ̌k + ∆škκ̌k)), (A.7b)

θ̌k+1 = θ̌k + κ̌k∆šk. (A.7c)

A.1 Robot Motion 175

The partial derivatives with respect to the robot’s state x̌k can be computed
as

∂x̌k+1

∂x̌k
= 1, (A.8a)

∂y̌k+1

∂x̌k
= 0, (A.8b)

∂θ̌k+1

∂x̌k
= 0, (A.8c)

∂x̌k+1

∂y̌k
= 0, (A.9a)

∂y̌k+1

∂y̌k
= 1, (A.9b)

∂θ̌k+1

∂y̌k
= 0, (A.9c)

∂x̌k+1

∂θ̌k
=

1

κ̌k
(− cos(θ̌k) + cos(θ̌k + ∆škκ̌k)), (A.10a)

∂y̌k+1

∂θ̌k
=

1

κ̌k
(− sin(θ̌k) + sin(θ̌k + ∆škκ̌k)), (A.10b)

∂θ̌k+1

∂θ̌k
= 1. (A.10c)

Deriving the equations of motion with respect to the input ǔk leads to
∂x̌k+1

∂∆šk
= cos(θ̌k + ∆škκ̌k), (A.11a)

∂y̌k+1

∂∆šk
= sin(θ̌k + ∆škκ̌k), (A.11b)

∂θ̌k+1

∂∆šk
= κ̌k, (A.11c)

∂x̌k+1

∂κ̌k
=

+ sin(θ̌k)− sin(θ̌k + ∆škκ̌k)

κ̌2
k

+
∆šk cos(θ̌k + ∆škκ̌k)

κ̌k
, (A.12a)

∂y̌k+1

∂κ̌k
=
− cos(θ̌k) + cos(θ̌k + ∆škκ̌k)

κ̌2
k

+
∆šk sin(θ̌k + ∆škκ̌k)

κ̌k
, (A.12b)

∂θ̌k+1

∂κ̌k
= ∆šk. (A.12c)

176 A Appendix

A.1.3 Clothoid

Moving on a clothoid requires to expand the state of the robot to x̌k =(
x̌k y̌k θ̌k κ̌k

)ᵀ
. The input changes to ǔk =

(
∆šk σ̌k

)ᵀ, where σ̌k describes
the curvature rate of the clothoid. The equations of motion can be derived as

x̌k+1 = x̌k +

√
π

|σ̌k|
(+ sgn(∆šk) cos(k1)(Cf(k2)− Cf(k3))

− sgn(σ̌k) sin(k1)(Sf(k2)− Sf(k3))),

(A.13a)

y̌k+1 = y̌k +

√
π

|σ̌k|
(+ sgn(∆šk) sin(k1)(Cf(k2)− Cf(k3))

+ sgn(σ̌k) cos(k1)(Sf(k2)− Sf(k3))),

(A.13b)

θ̌k+1 = θ̌k + κ̌k∆šk +
1

2
sgn(∆šk)σ̌k∆š

2
k, (A.13c)

κ̌k+1 = κ̌k + σ̌k |∆šk| , (A.13d)

where the Fresnel integrals [1] are given as

Cf(t) =

ˆ t

0
cos(

π

2
u2) du, (A.14a)

Sf(t) =

ˆ t

0
sin(

π

2
u2) du. (A.14b)

Note that (A.14) can be efficiently approximated using e.g. Chebyshev poly-
nomials [122]. The arguments of the Fresnel integrals k1, k2, and k3 in (A.13)
are described by

k1 = θ̌k − sgn(∆šk)
κ̌2
k

2σ̌k
, (A.15a)

k2 = sgn(σ̌k)
κ̌k + σ̌k |∆šk|√

π |σ̌k|
, (A.15b)

k3 = sgn(σ̌k)
κ̌k√
π |σ̌k|

. (A.15c)

The partial derivatives of (A.13) with respect to the state x̌k can now be
calculated according to

∂x̌k+1

∂x̌k
= 1, (A.16a)

A.1 Robot Motion 177

∂y̌k+1

∂x̌k
= 0, (A.16b)

∂θ̌k+1

∂x̌k
= 0, (A.16c)

∂κ̌k+1

∂x̌k
= 0, (A.16d)

∂x̌k+1

∂y̌k
= 0, (A.17a)

∂y̌k+1

∂y̌k
= 1, (A.17b)

∂θ̌k+1

∂y̌k
= 0, (A.17c)

∂κ̌k+1

∂y̌k
= 0, (A.17d)

(A.17e)

∂x̌k+1

∂θ̌k
=

√
π

|σ̌k|
(− sgn(∆šk) sin(k1)(Cf(k2)− Cf(k3))

− sgn(σ̌k) cos(k1)(Sf(k2)− Sf(k3))),

(A.18a)

∂y̌k+1

∂θ̌k
=

√
π

|σ̌k|
(+ sgn(∆šk) cos(k1)(Cf(k2)− Cf(k3))

− sgn(σ̌k) sin(k1)(Sf(k2)− Sf(k3))),

(A.18b)

∂θ̌k+1

∂θ̌k
= 1, (A.18c)

∂κ̌k+1

∂θ̌k
= 0, (A.18d)

∂x̌k+1

∂κ̌k
=

√
π

|σ̌k|
κ̌k
|σ̌k|

(+ sgn(σ̌k) sin(k1)(Cf(k2)− Cf(k3))

+ sgn(∆šk) cos(k1)(Sf(k2)− Sf(k3)))

+ sgn(∆šk)
1

σ̌k
(cos(k4)− cos(k5)),

(A.19a)

178 A Appendix

∂y̌k+1

∂κ̌k
=

√
π

|σ̌k|
κ̌k
|σ̌k|

(− sgn(σ̌k) cos(k1)(Cf(k2)− Cf(k3))

+ sgn(∆šk) sin(k1)(Sf(k2)− Sf(k3)))

+ sgn(∆šk)
1

σ̌k
(sin(k4)− sin(k5)),

(A.19b)

∂θ̌k+1

∂κ̌k
= ∆šk, (A.19c)

∂κ̌k+1

∂κ̌k
= 1, (A.19d)

where k4 and k5 are given as

k4 = k1 + sgn(∆šk) sgn(σ̌k)
π

2
k2

2, (A.20a)

k5 = k1 + sgn(∆šk) sgn(σ̌k)
π

2
k2

3. (A.20b)

The derivation of the equations of motion in (A.13) with respect to the in-
put ǔk results in

∂x̌k+1

∂∆šk
= cos(k4), (A.21a)

∂y̌k+1

∂∆šk
= sin(k4), (A.21b)

∂θ̌k+1

∂∆šk
= κ̌k + σ̌k |∆šk| , (A.21c)

∂κ̌k+1

∂∆šk
= sgn(∆šk)σ̌k, (A.21d)

∂x̌k+1

∂σ̌k
=

√
π

|σ̌k|
(− sgn(∆šk)(

1

2σ̌k
cos(k1) + k6 sin(k1))(Cf(k2)− Cf(k3))

+ sgn(σ̌k)(
1

2σ̌k
sin(k1)− k6 cos(k1))(Sf(k2)− Sf(k3))

+ sgn(∆šk)(k7 cos(k4)− k8 cos(k5))),

(A.22a)

A.1 Robot Motion 179

∂y̌k+1

∂σ̌k
=

√
π

|σ̌k|
(− sgn(∆šk)(

1

2σ̌k
sin(k1)− k6 cos(k1))(Cf(k2)− Cf(k3))

− sgn(σ̌k)(
1

2σ̌k
cos(k1) + k6 sin(k1))(Sf(k2)− Sf(k3))

+ sgn(∆šk)(k7 sin(k4)− k8 sin(k5))),

(A.22b)

∂θ̌k+1

∂σ̌k
=

1

2
sgn(∆šk)∆š

2
k, (A.22c)

∂κ̌k+1

∂σ̌k
= |∆šk| , (A.22d)

where k6, k7, and k8 are given as

k6 =
∂k1

∂σ̌k
= sgn(∆šk)

κ̌2
k

2σ̌2
k

, (A.23a)

k7 =
∂k2

∂σ̌k
= − 1

2
√
π |σ̌k|

(
κ̌k
|σ̌k|
− sgn(σ̌k) |∆šk|

)
, (A.23b)

k8 =
∂k3

∂σ̌k
= − 1

2
√
π |σ̌k|

κ̌k
|σ̌k|

. (A.23c)

A.1.4 Cubic Spiral

The robot’s state on a cubic spiral is described by x̌k =
(
x̌k y̌k θ̌k κ̌k σ̌k

)ᵀ
.

Its input is given by ǔk =
(
∆šk ρ̌k

)ᵀ, where ρ̌k denotes the second derivative
of curvature at the current position

(
x̌k y̌k

)
. The equations of motion can be

derived as

x̌k+1 = x̌k +

ˆ ∆šk

0
cos(θ̌k+1) ds, (A.24a)

y̌k+1 = y̌k +

ˆ ∆šk

0
sin(θ̌k+1) ds, (A.24b)

θ̌k+1 = θ̌k + κ̌k∆šk +
1

2
sgn(∆šk)σ̌k∆š

2
k +

1

6
ρ̌k∆š

3
k, (A.24c)

κ̌k+1 = κ̌k + σ̌k |∆šk|+
1

2
ρ̌k∆š

2
k, (A.24d)

σ̌k+1 = σ̌k + ρ̌k |∆šk| . (A.24e)

Efficient techniques, such as Gauss-Legendre quadrature [1], exist in order
to evaluate the integrals in (A.24a)–(A.24b). The partial derivatives of (A.24)
with respect to x̌k and ǔk are omitted here for brevity.

180 A Appendix

A.2 Hybrid Curvature Candidate Paths

This section details the computation of the candidate paths for HC00-RS steer
on the basis of the families given in Tab. 2.3. The focus lies on the illustration
of the tangency conditions as well as on the existence conditions of every
family. The notation is adopted from Sec. 2.3.2, where i ∈ {1, 2, 3, 4} and
j ∈ {5, 6, 7, 8} correspond to one of the four circles at the start and at the goal
state, respectively (see Fig. 2.19). Furthermore, the variable d is used below
to describe the Euclidean distance between the centers of the visualized
start and goal circles. Notice that an implementation of the candidate paths
presented in this section can be found in [208].

A.2.1 Family CSC

The family CSC has to be divided into the two subfamilies CeSC and CiSC .
The difference lies in the position of the tangent, which once runs parallel
to the line connecting both circle centers (external tangent) and once crosses
that line (internal tangent).

A.2.1.1 CeSC

x̌s x̌g

xc,2
xc,8

Figure A.1 CeSC candidate path.

The existence conditions of the family CeSC are given as

gi · gj !
= −1, (A.25a)

ti · tj !
= +1, (A.25b)∥∥xc,j − xc,i

∥∥
2

!
≥ 2r sin(µ). (A.25c)

A.2 Hybrid Curvature Candidate Paths 181

x̌s

x̌g

xc,2

xc,7α

Figure A.2 CiSC candidate path.

A.2.1.2 CiSC

The angle α in Fig. A.2 is obtained by

α = arcsin

(
r cos(µ)

d/2

)
, (A.26)

and the existence conditions of the family CiSC are given as

gi · gj !
= −1, (A.27a)

ti · tj !
= −1, (A.27b)∥∥xc,j − xc,i

∥∥
2

!
≥ 2r. (A.27c)

A.2.2 Family CCC

The height h in Fig. A.3 is computed using the Pythagorean theorem as

h =

√
4r2 − d2/4, (A.28)

and the existence conditions of the family CCC can be derived as

gi · gj !
= −1, (A.29a)

ti · tj !
= +1, (A.29b)∥∥xc,j − xc,i

∥∥
2

!
≤ 4r. (A.29c)

182 A Appendix

x̌s
x̌g

xc,3 xc,7

xc,9

h

Figure A.3 CCC candidate path.

x̌s

x̌g

xc,2

xc,6

xc,9

α

Figure A.4 CC|C candidate path.

A.2.3 Family CC|C
The angle α in Fig. A.4 is obtained using the law of cosines by

α = arccos

(
4(κ−2

max − r2) + d2

4κ−1
maxd

)
, (A.30)

and the existence conditions of the family CC|C are given as

gi · gj !
= +1, (A.31a)

ti · tj !
= +1, (A.31b)

A.2 Hybrid Curvature Candidate Paths 183

2(r − κ−1
max)

!
≤
∥∥xc,j − xc,i

∥∥
2

!
≤ 2(r + κ−1

max). (A.31c)

A.2.4 Family C|CC

x̌s

x̌g

xc,3

xc,9

xc,7

α

Figure A.5 C|CC candidate path.

The angle α in Fig. A.5 is computed according to (A.30) and the existence
conditions of the family C|CC are identical to the ones in (A.31).

A.2.5 Family C|C|C

x̌s x̌g

xc,1 xc,7

xc,9

h

Figure A.6 C|C|C candidate path.

The height h in Fig. A.6 is computed using the Pythagorean theorem as

h =

√
4κ−2

max − d2/4, (A.32)

184 A Appendix

and the existence conditions of the family C|C|C are given as

gi · gj !
= −1, (A.33a)

ti · tj !
= +1, (A.33b)∥∥xc,j − xc,i

∥∥
2

!
≤ 4κ−1

max. (A.33c)

A.2.6 Family CSC|C
The family CSC|C has to be divided into the two subfamilies CeSC|C and
CiSC|C similar to CSC in Sec. A.2.1.

A.2.6.1 CeSC|C

x̌s

x̌g

xc,3 xc,8
xc,9

Figure A.7 CeSC|C candidate path.

The existence conditions of the family CeSC|C can be derived as

gi · gj !
= +1, (A.34a)

ti · tj !
= −1, (A.34b)∥∥xc,j − xc,i

∥∥
2

!
≥ 2(κ−1

max + r sin(µ)). (A.34c)

A.2.6.2 CiSC|C
The angle α in Fig. A.8 is obtained by

α = arcsin

(
2r cos(µ)

d

)
, (A.35)

and the height h by

h = 2κ−1
max sin(α). (A.36)

A.2 Hybrid Curvature Candidate Paths 185

x̌s

x̌g
xc,4

xc,8

xc,9

α

h

Figure A.8 CiSC|C candidate path.

The existence conditions of the family CiSC|C can be derived as

gi · gj !
= +1, (A.37a)

ti · tj !
= +1, (A.37b)∥∥xc,j − xc,i

∥∥
2

!
≥
√

(2r cos(µ))2 + (2(r sin(µ) + κ−1
max))2. (A.37c)

A.2.7 Family C|CSC
The family C|CSC has to be divided into the two subfamilies C|CeSC and
C|CiSC similar to CSC in Sec. A.2.1.

A.2.7.1 C|CeSC

x̌s
x̌g

xc,2

xc,5xc,9

Figure A.9 C|CeSC candidate path.

The existence conditions of the family C|CeSC are identical to the ones
in (A.34).

186 A Appendix

A.2.7.2 C|CiSC

x̌s
x̌g

xc,3

xc,7

xc,9

α

h

Figure A.10 C|CiSC candidate path.

The variables α and h in Fig. A.10 are computed according to (A.35)–(A.36),
and the existence conditions of the family C|CiSC are identical to the ones
in (A.37).

A.2.8 Family CC|CC
The family CC|CC also has to be divided into two cases as illustrated below.

A.2.8.1 Case 1

x̌s

x̌g

xc,2

xc,9

xc,10

xc,5
h

Figure A.11 CC|CC candidate path (first case).

A.2 Hybrid Curvature Candidate Paths 187

The height h in Fig. A.11 can be computed by

h =

√
4r2 − (d/2− κ−1

max)2, (A.38)

and the corresponding existence conditions are given as

gi · gj !
= +1, (A.39a)

ti · tj !
= −1, (A.39b)∥∥xc,j − xc,i

∥∥
2

!
≤ 4r + 2κ−1

max. (A.39c)

A.2.8.2 Case 2

x̌s x̌g
xc,2

xc,9xc,10

xc,5

h

Figure A.12 CC|CC candidate path (second case).

The height h in Fig. A.12, which goes all the way from the line connecting
xc,2 and xc,5 to the line connecting xc,9 and xc,10, can be derived as

h =

√
4r2 − (d/2 + κ−1

max)2, (A.40)

and the corresponding existence conditions are given by

gi · gj !
= +1, (A.41a)

ti · tj !
= −1, (A.41b)∥∥xc,j − xc,i

∥∥
2

!
≤ 4r − 2κ−1

max. (A.41c)

188 A Appendix

A.2.9 Family C|CC|C

x̌s

x̌g

xc,1

xc,9

xc,10

xc,8

α
α

Figure A.13 C|CC|C candidate path.

The angle α in Fig. A.13 is obtained using the law of cosines by

α = arccos

(
−r2 + 4κ−2

max + d2/4

2κ−1
maxd

)
, (A.42)

and the existence conditions of the family C|CC|C can be derived as

gi · gj !
= −1, (A.43a)

ti · tj !
= −1, (A.43b)

−2r + 4κ−1
max

!
≤
∥∥xc,j − xc,i

∥∥
2

!
≤ 2r + 4κ−1

max. (A.43c)

A.2.10 Family C|CSC|C
The family C|CSC|C has to be divided into the two subfamilies C|CeSC|C
and C|CiSC|C similar to CSC in Sec. A.2.1.

A.2.10.1 C|CeSC|C
The existence conditions of the family C|CeSC|C are given as

gi · gj !
= −1, (A.44a)

ti · tj !
= +1, (A.44b)∥∥xc,j − xc,i

∥∥
2

!
≥ 2r sin(µ) + 4κ−1

max. (A.44c)

A.2 Hybrid Curvature Candidate Paths 189

x̌s

x̌g

xc,2 xc,9 xc,10 xc,8

Figure A.14 C|CeSC|C candidate path.

A.2.10.2 C|CiSC|C

x̌s

x̌g

xc,1

xc,9

xc,10
xc,8

α

α

h

h

Figure A.15 C|CiSC|C candidate path.

The variables α and h in Fig. A.15 are computed according to (A.35)–(A.36),
and the existence conditions of the family C|CiSC|C are given as

gi · gj !
= −1, (A.45a)

ti · tj !
= −1, (A.45b)∥∥xc,j − xc,i

∥∥
2

!
≥
√

(2r cos(µ))2 + (2r sin(µ) + 4κ−1
max)2. (A.45c)

A.2.11 Family CS|C
The family CS|C has to be divided into the two subfamilies CeS|C and
CiS|C similar to CSC in Sec. A.2.1.

190 A Appendix

A.2.11.1 CeS|C

x̌s

x̌g

xc,3
xc,7

α

Figure A.16 CeS|C candidate path.

The angle α in Fig. A.16 is obtained by

α = arcsin

(
r cos(µ)− κ−1

max

d

)
, (A.46)

and the existence conditions of the family CeS|C can be derived as

gi · gj !
= +1, (A.47a)

ti · tj !
= +1, (A.47b)

d
!
≥
√

(r sin(µ))2 + (r cos(µ)− κ−1
max)2. (A.47c)

A.2.11.2 CiS|C

x̌s
x̌g

xc,4 xc,7α

Figure A.17 CiS|C candidate path.

The angle α in Fig. A.17 is given by

α = arcsin

(
r cos(µ) + κ−1

max

d

)
, (A.48)

A.2 Hybrid Curvature Candidate Paths 191

and the existence conditions of the family CiS|C by

gi · gj !
= +1, (A.49a)

ti · tj !
= −1, (A.49b)

d
!
≥
√

(r sin(µ))2 + (r cos(µ) + κ−1
max)2. (A.49c)

A.2.12 Family C|SC
The family C|SC has to be divided into the two subfamilies C|eSC and
C|iSC similar to CSC in Sec. A.2.1.

A.2.12.1 C|eSC

x̌s
x̌g

xc,1 xc,5α

Figure A.18 C|eSC candidate path.

The variable α in Fig. A.18 is computed according to (A.46), and the existence
conditions of the family C|eSC are identical to the ones in (A.47).

A.2.12.2 C|iSC

x̌s
x̌g

xc,1
xc,7

α

Figure A.19 C|iSC candidate path.

192 A Appendix

The variable α in Fig. A.19 is computed according to (A.48), and the existence
conditions of the family C|iSC are identical to the ones in (A.49).

A.2.13 Family C|S|C
The family C|S|C has to be divided into the two subfamilies C|eS|C and
C|iS|C similar to CSC in Sec. A.2.1.

A.2.13.1 C|eS|C

x̌s x̌g

xc,4 xc,6

Figure A.20 C|eS|C candidate path.

The existence conditions of the family C|eS|C are given as

gi · gj !
= −1, (A.50a)

ti · tj !
= +1, (A.50b)∥∥xc,j − xc,i

∥∥
2

!
≥ 0. (A.50c)

A.2.13.2 C|iS|C

x̌s

x̌g
xc,2

xc,7
α

Figure A.21 C|iS|C candidate path.

A.2 Hybrid Curvature Candidate Paths 193

The angle α in Fig. A.21 is obtained by

α = arcsin

(
κ−1

max

d/2

)
, (A.51)

and the existence conditions of the family C|iS|C are given as

gi · gj !
= −1, (A.52a)

ti · tj !
= −1, (A.52b)∥∥xc,j − xc,i

∥∥
2

!
> 2κ−1

max. (A.52c)

Bibliography

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions With Formu-
las, Graphs, and Mathematical Tables. Applied Mathematics Series. U.S. Dept. of
Commerce, National Bureau of Standards, 1972.

[2] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable Bench-
marks for Motion Planning on Roads. In: IEEE Intelligent Vehicles Symposium.
IEEE. 2017, pp. 719–726.

[3] B. Axelrod, L. P. Kaelbling, and T. Lozano-Pérez. Provably Safe Robot Naviga-
tion with Obstacle Uncertainty. In: Robotics: Science and Systems XIII. 2017.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation. In: arXiv preprint
arXiv:1511.00561 (2015).

[5] M. Bansal, A. Krizhevsky, and A. Ogale. ChauffeurNet: Learning to Drive by
Imitating the Best and Synthesizing the Worst. In: arXiv preprint arXiv:1812.03079
(2018).

[6] R. H. Bartels, J. C. Beatty, and B. A. Barsky. An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1995.

[7] U. Baumann et al. Predicting Ego-Vehicle Paths from Environmental Observations
with a Deep Neural Network. In: IEEE International Conference on Robotics and
Automation. IEEE. 2018, pp. 4709–4716.

[8] J. van den Berg et al. LQG-MP: Optimized path planning for robots with motion
uncertainty and imperfect state information. In: The International Journal of Robotics
Research 30.7 (2011), pp. 895–913.

[9] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena
Scientific, 1997.

[10] C. G. L. Bianco, A. Piazzi, and M. Romano. Smooth Motion Generation for
Unicycle Mobile Robots Via Dynamic Path Inversion. In: IEEE Transactions on
Robotics 20.5 (2004), pp. 884–891.

[11] M. Bilodeau and D. Brenner. Theory of Multivariate Statistics. Springer, 1999.

[12] L. Blackmore, H. Li, and B. Williams. A Probabilistic Approach to Optimal Ro-
bust Path Planning with Obstacles. In: American Control Conference. IEEE. 2006,
pp. 2831–2837.

196 Bibliography

[13] A. Blake et al. Efficient Computation of Collision Probabilities for Safe Motion
Planning. In: arXiv preprint arXiv:1804.05384 (2018).

[14] J.-D. Boissonnat, A. Cerezo, and J. Leblond. A note on shortest paths in the
plane subject to a constraint on the derivative of the curvature. Tech. rep. 2160.
Institut National de Recherche en Informatique et en Automatique, 1994.

[15] M. Bojarski et al. End to End Learning for Self-Driving Cars. In: arXiv preprint
arXiv:1604.07316 (2016).

[16] M. Bolle et al. Early level 4/5 automation by restriction of the use-case. In: 17. In-
ternationales Stuttgarter Symposium. 2017, pp. 531–545.

[17] S. D. Bopardikar et al. Robust belief space planning under intermittent sensing
via a maximum eigenvalue-based bound. In: The International Journal of Robotics
Research 35.13 (2016), pp. 1609–1626.

[18] Bosch and Daimler: San José targeted to become pilot city for an automated on-demand
ride-hailing service. Robert Bosch GmbH. 2018. URL: https://www.bosch-
presse.de/pressportal/de/en/. (visited on 2019/03/12).

[19] H.-H. Braess. The Intelligent Vehicle on the Intelligent Road – What did
PROMETHEUS Achieve? In: 5. Internationales Stuttgarter Symposium. 2003,
pp. 608–627.

[20] J. E. Bresenham. Algorithm for computer control of a digital plotter. In: IBM
Systems Journal 4.1 (1965), pp. 25–30.

[21] R. W. Brockett. Control Theory and Singular Riemannian Geometry. In: New
Directions in Applied Mathematics. Springer, 1982, pp. 11–27.

[22] A. Broggi et al. The ARGO Autonomous Vehicle’s Vision and Control Systems. In:
International Journal of Intelligent Control and Systems 3.4 (1999), pp. 409–441.

[23] A. Bry and N. Roy. Rapidly-exploring Random Belief Trees for Motion Planning
Under Uncertainty. In: IEEE International Conference on Robotics and Automation.
IEEE. 2011, pp. 723–730.

[24] M. Buehler, K. Iagnemma, and S. Singh. The DARPA Urban Challenge: Au-
tonomous Vehicles in City Traffic. Springer, 2009.

[25] G. Calafiore and M. C. Campi. Sampled Convex Programs and Probabilistically
Robust Design. In: Probabilistic and Randomized Methods for Design under Uncer-
tainty. Springer, 2006, pp. 161–188.

[26] L. Caltagirone et al. LIDAR-based Driving Path Generation Using Fully Convo-
lutional Neural Networks. In: IEEE International Conference on Intelligent Trans-
portation Systems. IEEE. 2017, pp. 573–578.

[27] J. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

https://www.bosch-presse.de/pressportal/de/en/
https://www.bosch-presse.de/pressportal/de/en/

197

[28] C. Chen. Motion Planning for Nonholonomic Vehicles with Space Exploration
Guided Heuristic Search. PhD thesis. Technische Universität München, 2016.

[29] C. Chen. Optimal Path for a Car-like Robot to Reach a Given Straight Line. In:
IEEE International Conference on Intelligent Transportation Systems. IEEE. 2018,
pp. 2270–2276.

[30] C. Chen et al. Path Planning with Orientation-Aware Space Exploration Guided
Heuristic Search for Autonomous Parking and Maneuvering. In: IEEE Intelligent
Vehicles Symposium. IEEE. 2015, pp. 1148–1153.

[31] C. Chen et al. Motion Planning under Perception and Control Uncertainties with
Space Exploration Guided Heuristic Search. In: IEEE Intelligent Vehicles Symposium.
IEEE. 2017, pp. 712–718.

[32] H. Chernoff. Locally Optimal Designs for Estimating Parameters. In: The Annals
of Mathematical Statistics 24.4 (1953), pp. 586–602.

[33] M. Chester et al. Parking Infrastructure: A Constraint on or Opportunity for Urban
Redevelopment? A Study of Los Angeles County Parking Supply and Growth. In:
Journal of the American Planning Association 81.4 (2015), pp. 268–286.

[34] S. Choudhury et al. Data-driven planning via imitation learning. In: The Interna-
tional Journal of Robotics Research 37.13-14 (2018), pp. 1632–1672.

[35] T. Christopher. Analysis of Dynamic Scenes: Application to Driving Assistance.
PhD thesis. Institut National Polytechnique de Grenoble, 2009.

[36] F. Codevilla et al. End-to-end Driving via Conditional Imitation Learning. In: IEEE
International Conference on Robotics and Automation. IEEE. 2018, pp. 4693–4700.

[37] H. Coxeter. Regular Polytopes. Courier Corporation, 2012.

[38] E. Degtiariova-Kostova and V. Kostov. Irregularity of Optimal Trajectories in
a Control Problem for a Car-like Robot. Tech. rep. 3411. Institut National de
Recherche en Informatique et en Automatique, 1998.

[39] F. Dillen. The Classification of Hypersurfaces of a Euclidean Space with Paral-
lel Higher Order Fundamental Form. In: Mathematische Zeitschrift 203.1 (1990),
pp. 635–643.

[40] D. Dolgov et al. Path Planning for Autonomous Vehicles in Unknown Semi-
structured Environments. In: The International Journal of Robotics Research 29.5
(2010), pp. 485–501.

[41] Driverless Auto, Guided By Radio, Navigates Street. The Washington Herald.
Aug. 6, 1921, p. 5.

[42] N. E. Du Toit and J. W. Burdick. Probabilistic Collision Checking With Chance
Constraints. In: IEEE Transactions on Robotics 27.4 (2011), pp. 809–815.

198 Bibliography

[43] L. E. Dubins. On Curves of Minimal Length with a Constraint on Average Curva-
ture, and with Prescribed Initial and Terminal Positions and Tangents. In: American
Journal of Mathematics 79.3 (1957), pp. 497–516.

[44] A. Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation. In:
Computer 22.6 (1989), pp. 46–57.

[45] C. Ericson. Real-Time Collision Detection. CRC Press, 2004.

[46] D. Fassbender, B. C. Heinrich, and H.-J. Wuensche. Motion Planning for Au-
tonomous Vehicles in Highly Constrained Urban Environments. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE. 2016, pp. 4708–
4713.

[47] D. Ferguson and M. Likhachev. Efficiently Using Cost Maps For Planning Com-
plex Maneuvers. In: IEEE International Conference on Robotics and Automation,
Workshop on Planning with Cost Maps. IEEE. 2008.

[48] D. Ferguson, M. Likhachev, and A. Stentz. A Guide to Heuristic-based Path
Planning. In: International Conference on Automated Planning and Scheduling,
Workshop on Planning under Uncertainty for Autonomous Systems. 2005.

[49] C. Fernandes, L. Gurvits, and Z. X. Li. A Variational Approach to Optimal
Nonholonomic Motion Planning. In: IEEE International Conference on Robotics and
Automation. IEEE. 1991, pp. 680–685.

[50] M. Fliess et al. Flatness and Defect of Nonlinear Systems: Introductory Theory and
Examples. In: International Journal of Control 61.6 (1995), pp. 1327–1361.

[51] J. D. Foley et al. Computer Graphics: Principles and Practice. Addison-Wesley,
1996.

[52] T. Fraichard and J.-M. Ahuactzin. Smooth Path Planning for Cars. In: IEEE
International Conference on Robotics and Automation. IEEE. 2001, pp. 3722–3727.

[53] T. Fraichard and A. Scheuer. From Reeds and Shepp’s to Continuous-Curvature
Paths. In: IEEE Transactions on Robotics 20.6 (2004), pp. 1025–1035.

[54] C. Fulgenzi et al. Risk based motion planning and navigation in uncertain dynamic
environment. Tech. rep. Institut National de Recherche en Informatique et en
Automatique, 2010.

[55] J. D. Gammell et al. Batch Informed Trees (BIT*): Sampling-based Optimal Plan-
ning via the Heuristically Guided Search of Implicit Random Geometric Graphs. In:
IEEE International Conference on Robotics and Automation. IEEE. 2015, pp. 3067–
3074.

[56] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*: Optimal
Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellip-
soidal Heuristic. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2014, pp. 2997–3004.

199

[57] T. Gawron and M. Michałek. A G3-Continuous Extend Procedure for Path Plan-
ning of Mobile Robots with Limited Motion Curvature and State Constraints. In:
Applied Sciences 8.11 (2018).

[58] Gazebo. Open Source Robotics Foundation. URL: http : / / gazebosim . org.
(visited on 2018/12/30).

[59] J. E. Gentle. Computational Statistics. Springer, 2009.

[60] F. Ghilardelli, G. Lini, and A. Piazzi. Path Generation Using η4-Splines for a Truck
and Trailer Vehicle. In: IEEE Transactions on Automation Science and Engineering
11.1 (2014), pp. 187–203.

[61] P. K. Ghosh. A Unified Computational Framework for Minkowski Operations. In:
Computers & Graphics 17.4 (1993), pp. 357–378.

[62] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A Fast Procedure for Comput-
ing the Distance Between Complex Objects in Three-Dimensional Space. In: IEEE
Journal on Robotics and Automation 4.2 (1988), pp. 193–203.

[63] C. Gläser et al. Environment Perception for Inner-City Driver Assistance and
Highly-Automated Driving. In: IEEE Intelligent Vehicles Symposium. IEEE. 2014,
pp. 1270–1275.

[64] Global Status Report on Road Safety 2018. World Health Organization. 2018.

[65] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, 1996.

[66] D. González et al. A Review of Motion Planning Techniques for Automated Vehicles.
In: IEEE Transactions on Intelligent Transportation Systems 17.4 (2016), pp. 1135–
1145.

[67] I. Goodfellow et al. Generative Adversarial Nets. In: Advances in Neural Informa-
tion Processing Systems. 2014, pp. 2672–2680.

[68] S. Grodde. Ein lokaler Trajektorienplaner für das automatische Einparken. Tech.
rep. Universität Erlangen-Nürnberg, Lehrstuhl für Regelungstechnik, 2005.

[69] G. Guennebaud, B. Jacob, et al. Eigen v3. 2010. URL: http://eigen.tuxfamily.
org. (visited on 2019/01/17).

[70] B. Gutjahr, L. Gröll, and M. Werling. Lateral Vehicle Trajectory Optimization
Using Constrained Linear Time-Varying MPC. In: IEEE Transactions on Intelligent
Transportation Systems 18.6 (2017), pp. 1586–1595.

[71] J. Hardy and M. Campbell. Contingency Planning Over Probabilistic Obstacle
Predictions for Autonomous Road Vehicles. In: IEEE Transactions on Robotics 29.4
(2013), pp. 913–929.

http://gazebosim.org
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

200 Bibliography

[72] P. E. Hart et al. A Formal Basis for the Heuristic Determination of Minimum
Cost Paths. In: IEEE Transactions on Systems Science and Cybernetics 4.2 (1968),
pp. 100–107.

[73] T. M. Howard and A. Kelly. Optimal Rough Terrain Trajectory Generation for
Wheeled Mobile Robots. In: The International Journal of Robotics Research 26.2
(2007), pp. 141–166.

[74] C. Hubschneider et al. Adding Navigation to the Equation: Turning Decisions
for End-to-End Vehicle Control. In: IEEE International Conference on Intelligent
Transportation Systems. IEEE. 2017, pp. 307–314.

[75] C. Hubschneider et al. Integrating End-to-End Learned Steering into Probabilistic
Autonomous Driving. In: IEEE International Conference on Intelligent Transporta-
tion Systems. IEEE. 2017, pp. 2109–2115.

[76] B. Ichter et al. Real-Time Stochastic Kinodynamic Motion Planning via Multiobjec-
tive Search on GPUs. In: IEEE International Conference on Robotics and Automation.
IEEE. 2017, pp. 5019–5026.

[77] B. Ichter, J. Harrison, and M. Pavone. Learning Sampling Distributions for Robot
Motion Planning. In: IEEE International Conference on Robotics and Automation.
IEEE. 2018, pp. 7087–7094.

[78] B. Ichter and M. Pavone. Robot Motion Planning in Learned Latent Spaces. In:
IEEE Robotics and Automation Letters 4.3 (2019), pp. 2407–2414.

[79] Intra-Logistics with Integrated Automatic Deployment (ILIAD) Project. 2018. URL:
https://twitter.com/iliad_project. (visited on 2018/12/05).

[80] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: International Conference on Machine
Learning. 2015, pp. 448–456.

[81] S. R. Jammalamadaka and A. Sengupta. Topics in Circular Statistics. Vol. 5.
World Scientific Publishing, 2001.

[82] L. Janson et al. Fast marching tree: A fast marching sampling-based method for
optimal motion planning in many dimensions. In: The International Journal of
Robotics Research 34.7 (2015), pp. 883–921.

[83] L. Janson, B. Ichter, and M. Pavone. Deterministic sampling-based motion plan-
ning: Optimality, complexity, and performance. In: The International Journal of
Robotics Research 37.1 (2018), pp. 46–61.

[84] L. Janson, E. Schmerling, and M. Pavone. Monte Carlo Motion Planning for
Robot Trajectory Optimization Under Uncertainty. In: Robotics Research. Springer,
2018, pp. 343–361.

https://twitter.com/iliad_project

201

[85] P. Jeevan et al. Realizing Autonomous Valet Parking with Automotive Grade
Sensors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2010, pp. 3824–3829.

[86] M. Jordan and A. Perez. Optimal Bidirectional Rapidly-Exploring Random Trees.
Tech. rep. 2013-021. Massachusetts Institute of Technology, 2013.

[87] S. J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear Estimation.
In: Proceedings of the IEEE 92.3 (2004), pp. 401–422.

[88] T. Kanade, C. Thorpe, and W. Whittaker. Autonomous Land Vehicle Project at
CMU. In: ACM Conference on Computer Science. ACM. 1986, pp. 71–80.

[89] Y. Kanayama and B. I. Hartman. Smooth Local Path Planning for Autonomous
Vehicles. In: IEEE International Conference on Robotics and Automation. IEEE.
1989, pp. 1265–1270.

[90] H. Kano and H. Fujioka. B-Spline Trajectory Planning with Curvature Constraint.
In: American Control Conference. IEEE. 2018, pp. 1963–1968.

[91] K. Kant and S. W. Zucker. Toward Efficient Trajectory Planning: The Path-Velocity
Decomposition. In: The International Journal of Robotics Research 5.3 (1986), pp. 72–
89.

[92] S. Karaman et al. Anytime Motion Planning using the RRT*. In: IEEE Interna-
tional Conference on Robotics and Automation. IEEE. 2011, pp. 1478–1483.

[93] S. Karaman and E. Frazzoli. Incremental Sampling-based Algorithms for Optimal
Motion Planning. In: Robotics Science and Systems VI. 2010.

[94] S. Karaman and E. Frazzoli. Optimal Kinodynamic Motion Planning using In-
cremental Sampling-based Methods. In: IEEE Conference on Decision and Control.
IEEE. 2010, pp. 7681–7687.

[95] C. Katrakazas et al. Real-time motion planning methods for autonomous on-road
driving: State-of-the-art and future research directions. In: Transportation Research
Part C: Emerging Technologies 60 (2015), pp. 416–442.

[96] A. Kelly and B. Nagy. Reactive Nonholonomic Trajectory Generation via Parametric
Optimal Control. In: The International Journal of Robotics Research 22.7-8 (2003),
pp. 583–601.

[97] H. K. Khalil. Nonlinear Systems. Vol. 3. Prentice Hall, 2002.

[98] B. Kim, L. P. Kaelbling, and T. Lozano-Pérez. Guiding Search in Continuous
State-Action Spaces by Learning an Action Sampler from Off-target Search Ex-
perience. In: AAAI Conference on Artificial Intelligence. AAAI. 2018, pp. 6509–
6516.

[99] D. P. Kingma and J. L. Ba. Adam: A Method for Stochastic Optimization. In:
International Conference on Learning Representations. 2015.

202 Bibliography

[100] S. Klemm et al. RRT*-Connect: Faster, Asymptotically Optimal Motion Plan-
ning. In: IEEE International Conference on Robotics and Biomimetics. IEEE. 2015,
pp. 1670–1677.

[101] S. Koenig and M. Likhachev. D* Lite. In: AAAI Conference on Artificial Intelli-
gence. AAAI. 2002, pp. 476–483.

[102] K. Komoriya and K. Tanie. Trajectory Design and Control of a Wheel-type Mobile
Robot Using B-spline Curve. In: IEEE/RSJ International Workshop on Intelligent
Robots and Systems. IEEE. 1989, pp. 398–405.

[103] J. Krafcik. Waymo One: The next step on our self-driving journey. Waymo. 2018.
URL: https://medium.com/waymo. (visited on 2019/03/19).

[104] T. Kunz, A. Thomaz, and H. Christensen. Hierarchical Rejection Sampling for In-
formed Kinodynamic Planning in High-Dimensional Spaces. In: IEEE International
Conference on Robotics and Automation. IEEE. 2016, pp. 89–96.

[105] Y.-L. Kuo, A. Barbu, and B. Katz. Deep sequential models for sampling-based
planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2018, pp. 6490–6497.

[106] A. Kushleyev and M. Likhachev. Time-bounded Lattice for Efficient Planning
in Dynamic Environments. In: IEEE International Conference on Robotics and
Automation. IEEE. 2009, pp. 1662–1668.

[107] R. Kusumoto et al. Informed Information Theoretic Model Predictive Control. In:
IEEE International Conference on Robotics and Automation. IEEE. 2019.

[108] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-
Interscience, 1972.

[109] A. Lambert et al. A Fast Monte Carlo Algorithm for Collision Probability Esti-
mation. In: IEEE International Conference on Control, Automation, Robotics and
Vision. IEEE. 2008, pp. 406–411.

[110] J.-P. Laumond. Feasible Trajectories for Mobile Robots with Kinematic and Environ-
ment Constraints. In: International Conference on Intelligent Autonomous Systems.
1986, pp. 346–354.

[111] J.-P. Laumond et al. A Motion Planner for Nonholonomic Mobile Robots. In: IEEE
Transactions on Robotics and Automation 10.5 (1994), pp. 577–593.

[112] J.-P. Laumond et al. Robot Motion Planning and Control. Springer, 1998.

[113] J.-P. Laumond, S. Sekhavat, and F. Lamiraux. Guidelines in Nonholonomic Mo-
tion Planning for Mobile Robots. In: Robot Motion Planning and Control. Springer,
1998, pp. 1–53.

[114] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning.
Tech. rep. 98-11. Iowa State University, 1998.

https://medium.com/waymo

203

[115] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[116] S. M. LaValle and J. J. Kuffner Jr. Randomized Kinodynamic Planning. In: The
International Journal of Robotics Research 20.5 (2001), pp. 378–400.

[117] A. Lee et al. Sigma Hulls for Gaussian Belief Space Planning for Imprecise Articu-
lated Robots amid Obstacles. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2013, pp. 5660–5667.

[118] Y. Li, Z. Littlefield, and K. E. Bekris. Asymptotically optimal sampling-based
kinodynamic planning. In: The International Journal of Robotics Research 35.5
(2016), pp. 528–564.

[119] M. Likhachev et al. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In:
International Conference on Automated Planning and Scheduling. 2005, pp. 262–
271.

[120] M. Likhachev and D. Ferguson. Planning Long Dynamically-Feasible Maneuvers
for Autonomous Vehicles. In: The International Journal of Robotics Research 28.8
(2009), pp. 933–945.

[121] B. D. Luders, S. Karaman, and J. P. How. Robust Sampling-based Motion Plan-
ning with Asymptotic Optimality Guarantees. In: AIAA Guidance, Navigation, and
Control Conference. AIAA. 2013.

[122] Y. L. Luke. Mathematical Functions and their Approximations. Academic Press,
1975.

[123] R. Madaan et al. Learning Adaptive Sampling Distributions for Motion Planning
by Self-Imitation. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, Workshop on Machine Learning in Robot Motion Planning. IEEE. 2018.

[124] E. Marder-Eppstein, D. V. Lu, and D. Hershberger. costmap_2d. 2012. URL:
https://wiki.ros.org/costmap_2d. (visited on 2019/10/03).

[125] M. McNaughton. Parallel Algorithms for Real-time Motion Planning. PhD thesis.
Carnegie Mellon University, 2011.

[126] I. Miller et al. Cornell University’s 2005 DARPA Grand Challenge Entry. In: Journal
of Field Robotics 23.8 (2006), pp. 625–652.

[127] M. Montemerlo et al. Junior: The Stanford Entry in the Urban Challenge. In:
Journal of Field Robotics 25.9 (2008), pp. 569–597.

[128] B. Müller, J. Deutscher, and S. Grodde. Continuous Curvature Trajectory Design
and Feedforward Control for Parking a Car. In: IEEE Transactions on Control
Systems Technology 15.3 (2007), pp. 541–553.

[129] R. M. Murray and S. S. Sastry. Nonholonomic Motion Planning: Steering Using
Sinusoids. In: IEEE Transactions on Automatic Control 38.5 (1993), pp. 700–716.

https://wiki.ros.org/costmap_2d

204 Bibliography

[130] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. In: International Conference on Machine Learning. 2010, pp. 807–814.

[131] R. Oliveira et al. Trajectory Generation using Sharpness Continuous Dubins-like
Paths with Applications in Control of Heavy Duty Vehicles. In: arXiv preprint
arXiv:1801.08995v1 (2018).

[132] R. Oliveira et al. Trajectory Generation using Sharpness Continuous Dubins-like
Paths with Applications in Control of Heavy Duty Vehicles. In: European Control
Conference. IEEE. 2018, pp. 935–940.

[133] B. Paden et al. A Survey of Motion Planning and Control Techniques for Self-
Driving Urban Vehicles. In: IEEE Transactions on Intelligent Vehicles 1.1 (2016),
pp. 33–55.

[134] C. Park, J. S. Park, and D. Manocha. Fast and Bounded Probabilistic Collision
Detection for High-DOF Trajectory Planning in Dynamic Environments. In: IEEE
Transactions on Automation Science and Engineering 15.3 (2018), pp. 980–991.

[135] J. S. Park, C. Park, and D. Manocha. Efficient Probabilistic Collision Detection for
Non-Convex Shapes. In: IEEE International Conference on Robotics and Automation.
IEEE. 2017, pp. 1944–1951.

[136] G. Parlangeli and G. Indiveri. Dubins inspired 2D smooth paths with bounded
curvature and curvature derivative. In: IFAC Symposium on Intelligent Autonomous
Vehicles. IFAC. 2010, pp. 252–257.

[137] S. Patil, J. van den Berg, and R. Alterovitz. Estimating Probability of Collision
for Safe Motion Planning under Gaussian Motion and Sensing Uncertainty. In:
IEEE International Conference on Robotics and Automation. IEEE. 2012, pp. 3238–
3244.

[138] N. Pérez-Higueras, F. Caballero, and L. Merino. Learning Human-Aware Path
Planning with Fully Convolutional Networks. In: IEEE International Conference on
Robotics and Automation. IEEE. 2018, pp. 5897–5902.

[139] J. Petereit. Adaptive State × Time Lattices: A Contribution to Mobile Robot Motion
Planning in Unstructured Dynamic Environments. PhD thesis. Karlsruher Institut
für Technologie, 2017.

[140] J. Petereit, T. Emter, and C. W. Frey. Safe Mobile Robot Motion Planning for
Waypoint Sequences in a Dynamic Environment. In: IEEE International Conference
on Industrial Technology. IEEE. 2013, pp. 181–186.

[141] A. Piazzi et al. Quintic G2-Splines for the Iterative Steering of Vision-Based Au-
tonomous Vehicles. In: IEEE Transactions on Intelligent Transportation Systems 3.1
(2002), pp. 27–36.

[142] A. Piazzi et al. η3-Splines for the Smooth Path Generation of Wheeled Mobile Robots.
In: IEEE Transactions on Robotics 23.5 (2007), pp. 1089–1095.

205

[143] M. Pivtoraiko et al. Differentially Constrained Mobile Robot Motion Planning in
State Lattices. In: Journal of Field Robotics 26.3 (2009), pp. 308–333.

[144] M. Pivtoraiko and A. Kelly. Generating Near Minimal Spanning Control Sets for
Constrained Motion Planning in Discrete State Spaces. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. 2005, pp. 3231–3237.

[145] R. Platt Jr. et al. Belief space planning assuming maximum likelihood observations.
In: Robotics: Science and Systems VI. 2010.

[146] P. Polack et al. The Kinematic Bicycle Model: a Consistent Model for Planning Fea-
sible Trajectories for Autonomous Vehicles? In: IEEE Intelligent Vehicles Symposium.
IEEE. 2017, pp. 812–818.

[147] D. A. Pomerleau. ALVINN: An Autonomous Land Vehicle In a Neural Network.
In: Advances in Neural Information Processing Systems. 1989, pp. 305–313.

[148] F. P. Preparata and S. J. Hong. Convex Hulls of Finite Sets of Points in Two and
Three Dimensions. In: Communications of the ACM 20.2 (1977), pp. 87–93.

[149] A. H. Qureshi, M. J. Bency, and M. C. Yip. Motion Planning Networks. In: arXiv
preprint arXiv:1806.05767 (2018).

[150] A. H. Qureshi and M. C. Yip. Deeply Informed Neural Sampling for Robot Motion
Planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2018, pp. 6582–6588.

[151] R. Rajamani. Vehicle Dynamics and Control. Springer, 2006.

[152] J. Reeds and L. Shepp. Optimal paths for a car that goes both forwards and
backwards. In: Pacific Journal of Mathematics 145.2 (1990), pp. 367–393.

[153] J. H. Reif. Complexity of the Mover’s Problem and Generalizations. In: IEEE Annual
Symposium on Foundations of Computer Science. IEEE. 1979, pp. 421–427.

[154] J. Reuter. Mobile Robots Trajectories with Continuously Differentiable Curvature:
An Optimal Control Approach. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 1998, pp. 38–43.

[155] Robot Operating System (ROS). Open Source Robotics Foundation. URL: https:
//ros.org. (visited on 2018/12/30).

[156] C. Rösmann, F. Hoffmann, and T. Bertram. Kinodynamic Trajectory Optimiza-
tion and Control for Car-Like Robots. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE. 2017, pp. 5681–5686.

[157] M. Rufli and R. Siegwart. On the Application of the D* Search Algorithm to Time-
Based Planning on Lattice Graphs. In: European Conference on Mobile Robotics.
2009, pp. 105–110.

[158] A. Scheuer. Planification de chemins à courbure continue pour robot mobile non-
holonome. PhD thesis. Institut National Polytechnique de Grenoble, 1998.

https://ros.org
https://ros.org

206 Bibliography

[159] A. Scheuer and T. Fraichard. Planning Continuous-Curvature Paths for Car-Like
Robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 1996, pp. 1304–1311.

[160] A. Scheuer and T. Fraichard. Collision-Free and Continuous-Curvature Path
Planning for Car-Like Robots. In: IEEE International Conference on Robotics and
Automation. IEEE. 1997, pp. 867–873.

[161] A. Scheuer and T. Fraichard. Continuous-Curvature Path Planning for Car-Like
Vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 1997, pp. 997–1003.

[162] A. Scheuer and C. Laugier. Planning Sub-Optimal and Continuous-Curvature
Paths for Car-Like Robots. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 1998, pp. 25–31.

[163] G. Schildbach and F. Borrelli. A Dynamic Programming Approach for Nonholo-
nomic Vehicle Maneuvering in Tight Environments. In: IEEE Intelligent Vehicles
Symposium. IEEE. 2016, pp. 151–156.

[164] E. Schmerling, L. Janson, and M. Pavone. Optimal Sampling-Based Motion
Planning under Differential Constraints: the Driftless Case. In: IEEE International
Conference on Robotics and Automation. IEEE. 2015, pp. 2368–2375.

[165] E. Schmerling and M. Pavone. Evaluating Trajectory Collision Probability
through Adaptive Importance Sampling for Safe Motion Planning. In: Robotics:
Science and Systems VIII. 2017.

[166] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory. Cambridge Uni-
versity Press, 1993.

[167] W. Schwarting, J. Alonso-Mora, and D. Rus. Planning and Decision-Making for
Autonomous Vehicles. In: Annual Review of Control, Robotics, and Autonomous
Systems 1 (2018), pp. 187–210.

[168] U. Schwesinger et al. Automated Valet Parking and Charging for e-Mobility -
Results of the V-Charge Project. In: IEEE Intelligent Vehicles Symposium. IEEE.
2016, pp. 157–164.

[169] Science: Radio Auto. Time Magazine. Aug. 10, 1925.

[170] S. Sekhavat and J.-P. Laumond. Topological Property for Collision-Free Nonholo-
nomic Motion Planning: The Case of Sinusoidal Inputs for Chained Form Systems.
In: IEEE Transactions on Robotics and Automation 14.5 (1998), pp. 671–680.

[171] T. Shan and B. Englot. Belief Roadmap Search: Advances in Optimal and Efficient
Planning Under Uncertainty. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2017, pp. 5318–5325.

[172] D. H. Shin and S. Singh. Path Generation for Robot Vehicles Using Composite
Clothoid Segments. Tech. rep. 90-312. Canergie Mellon University, 1990.

207

[173] D. C. Shoup. Cruising for parking. In: Transport Policy 13.6 (2006), pp. 479–486.

[174] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer, 2016.

[175] C. Siedentop et al. Path-Planning for Autonomous Parking with Dubins Curves.
In: Uni-DAS e.V. Workshop Fahrerassistenzsysteme. 2015, pp. 11–18.

[176] D. Silver et al. The Predictron: End-To-End Learning and Planning. In: Interna-
tional Conference on Machine Learning. 2017, pp. 3191–3199.

[177] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control: Analysis and
design. Vol. 2. Wiley, 2001.

[178] A. Srinivas et al. Universal Planning Networks. In: International Conference on
Machine Learning. 2018, pp. 4739–4748.

[179] I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. In:
IEEE Robotics & Automation Magazine 19.4 (2012), pp. 72–82. http://ompl.
kavrakilab.org.

[180] W. Sun et al. Safe Motion Planning for Imprecise Robotic Manipulators by Min-
imizing Probability of Collision. In: Robotics Research. Springer, 2016, pp. 685–
701.

[181] H. J. Sussmann. The Markov-Dubins problem with angular acceleration control.
In: IEEE Conference on Decision and Control. IEEE. 1997, pp. 2639–2643.

[182] H. J. Sussmann and G. Tang. Shortest paths for the Reeds-Shepp car: A worked
out example of the use of geometric techniques in nonlinear optimal control. Tech. rep.
91-10. Rutgers University, 1991.

[183] A. Tamar et al. Learning from the Hindsight Plan - Episodic MPC Improvement. In:
IEEE International Conference on Robotics and Automation. IEEE. 2017, pp. 336–
343.

[184] G. Tanzmeister et al. Efficient Evaluation of Collisions and Costs on Grid Maps
for Autonomous Vehicle Motion Planning. In: IEEE Transactions on Intelligent
Transportation Systems 15.5 (2014), pp. 2249–2260.

[185] Taxonomy and Definitions for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles. SAE International. Standard J3016_201806. 2018.

[186] S. Thrun et al. Probabilistic Robotics. MIT Press, 2005.

[187] D. Tilbury, R. M. Murray, and S. S. Sastry. Trajectory Generation for the N-
Trailer Problem Using Goursat Normal Form. In: IEEE Transactions on Automatic
Control 40.5 (1995), pp. 802–819.

[188] C. Urmson et al. Autonomous Driving in Urban Environments: Boss and the
Urban Challenge. In: Journal of Field Robotics 25.8 (2008), pp. 425–466.

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org

208 Bibliography

[189] A. Vatavu et al. Environment Estimation with Dynamic Grid Maps and Self-
Localizing Tracklets. In: IEEE International Conference on Intelligent Transportation
Systems. IEEE. 2018, pp. 3370–3377.

[190] Vision Zero on the move. The Swedish Transport Administration. 2015.

[191] M. P. Vitus and C. J. Tomlin. Closed-Loop Belief Space Planning for Linear, Gaus-
sian Systems. In: IEEE International Conference on Robotics and Automation. IEEE.
2011, pp. 2152–2159.

[192] H. Vorobieva et al. Automatic Parallel Parking in Tiny Spots: Path Planning and
Control. In: IEEE Transactions on Intelligent Transportation Systems 16.1 (2015),
pp. 396–410.

[193] M. Werling et al. Optimal trajectories for time-critical street scenarios using dis-
cretized terminal manifolds. In: The International Journal of Robotics Research 31.3
(2012), pp. 346–359.

[194] S. Wirges et al. Object Detection and Classification in Occupancy Grid Maps using
Deep Convolutional Networks. In: IEEE International Conference on Intelligent
Transportation Systems. IEEE. 2018, pp. 3530–3535.

[195] C. Xie et al. Toward Asymptotically Optimal Motion Planning for Kinodynamic
Systems using a Two-Point Boundary Value Problem Solver. In: IEEE International
Conference on Robotics and Automation. IEEE. 2015, pp. 4187–4194.

[196] W. Xu et al. Motion Planning under Uncertainty for On-Road Autonomous Driv-
ing. In: IEEE International Conference on Robotics and Automation. IEEE. 2014,
pp. 2507–2512.

[197] Y. Yang and O. Brock. Adapting the Sampling Distribution in PRM Planners
Based on an Approximated Medial Axis. In: IEEE International Conference on
Robotics and Automation. IEEE. 2004, pp. 4405–4410.

[198] A. Yershova et al. Dynamic-Domain RRTs: Efficient Exploration by Controlling the
Sampling Domain. In: IEEE International Conference on Robotics and Automation.
IEEE. 2005, pp. 3856–3861.

[199] D. Yi et al. Generalizing Informed Sampling for Asymptotically-Optimal Sampling-
Based Kinodynamic Planning via Markov Chain Monte Carlo. In: IEEE International
Conference on Robotics and Automation. IEEE. 2018, pp. 7063–7070.

[200] C. Zhang, J. Huh, and D. D. Lee. Learning Implicit Sampling Distributions for
Motion Planning. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2018, pp. 3654–3661.

[201] X. Zhang et al. Autonomous Parking using Optimization-Based Collision Avoid-
ance. In: IEEE Conference on Decision and Control. IEEE. 2018, pp. 4327–4332.

[202] X. Zhang, A. Liniger, and F. Borrelli. Optimization-Based Collision Avoidance.
In: arXiv preprint arXiv:1711.03449 (2017).

List of Publications 209

[203] J. Ziegler et al. Making Bertha Drive – An Autonomous Journey on a Historic
Route. In: IEEE Intelligent Transportation Systems Magazine 6.2 (2014), pp. 8–20.

[204] J. Ziegler et al. Trajectory Planning for Bertha - a Local, Continuous Method. In:
IEEE Intelligent Vehicles Symposium. IEEE. 2014, pp. 450–457.

[205] J. Ziegler and C. Stiller. Fast Collision Checking for Intelligent Vehicle Motion
Planning. In: IEEE Intelligent Vehicles Symposium. IEEE. 2010, pp. 518–522.

[206] J. Ziegler, M. Werling, and J. Schröder. Navigating car-like Robots in unstruc-
tured Environments using an Obstacle sensitive Cost Function. In: IEEE Intelligent
Vehicles Symposium. IEEE. 2008, pp. 787–791.

[207] M. Zucker, J. Kuffner, and J. A. Bagnell. Adaptive workspace biasing for sampling
based planners. In: IEEE International Conference on Robotics and Automation.
IEEE. 2008, pp. 3757–3762.

List of Publications

[208] H. Banzhaf. Steering Functions for Car-Like Robots. 2017. URL: https://github.
com/hbanzhaf/steering_functions. (visited on 2018/08/22).

[209] H. Banzhaf, F. Niewels, and J. M. Zöllner. Automated Driving in Dense Scenarios
– A Motion Planning Perspective. In: International VDI Conference on Automated
Driving. VDI. 2018.

[210] H. Banzhaf, F. Quedenfeld, D. Nienhüser, S. Knoop, and J. M. Zöllner. High
Density Valet Parking Using k-Deques in Driveways. In: IEEE Intelligent Vehicles
Symposium. IEEE. 2017, pp. 1413–1420. © 2017 IEEE.

[211] H. Banzhaf, L. Palmieri, D. Nienhüser, T. Schamm, S. Knoop, and J. M. Zöll-
ner. Hybrid Curvature Steer: A Novel Extend Function for Sampling-Based Nonholo-
nomic Motion Planning in Tight Environments. In: IEEE International Conference
on Intelligent Transportation Systems. IEEE. 2017, pp. 2239–2246. © 2017 IEEE.

[212] H. Banzhaf, D. Nienhüser, S. Knoop, and J. M. Zöllner. The Future of Parking:
A Survey on Automated Valet Parking with an Outlook on High Density Parking. In:
IEEE Intelligent Vehicles Symposium. IEEE. 2017, pp. 1827–1834. © 2017 IEEE.

[213] H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zöllner. From Footprints to Belief-
prints: Motion Planning under Uncertainty for Maneuvering Automated Vehicles
in Dense Scenarios. In: IEEE International Conference on Intelligent Transportation
Systems. IEEE. 2018, pp. 1680–1687. © 2018 IEEE.

[214] H. Banzhaf, N. Berinpanathan, D. Nienhüser, and J. M. Zöllner. From G2 to
G3 Continuity: Continuous Curvature Rate Steering Functions for Sampling-Based
Nonholonomic Motion Planning. In: IEEE Intelligent Vehicles Symposium. IEEE.
2018, pp. 326–333. © 2018 IEEE.

https://github.com/hbanzhaf/steering_functions
https://github.com/hbanzhaf/steering_functions

210 Bibliography

[215] H. Banzhaf, P. Sanzenbacher, U. Baumann, and J. M. Zöllner. Learning to
Predict Ego-Vehicle Poses for Sampling-Based Nonholonomic Motion Planning. In:
arXiv preprint arXiv:1812.01127 (2018).

[216] H. Banzhaf, P. Sanzenbacher, U. Baumann, and J. M. Zöllner. Learning to
Predict Ego-Vehicle Poses for Sampling-Based Nonholonomic Motion Planning. In:
IEEE Robotics and Automation Letters 4.2 (2019), pp. 1053–1060. © 2019 IEEE.

[217] U. Baumann, Y.-Y. Huang, C. Gläser, M. Herman, H. Banzhaf, and J. M. Zöll-
ner. Classifying Road Intersections using Transfer-Learning on a Deep Neural
Network. In: IEEE International Conference on Intelligent Transportation Systems.
IEEE. 2018, pp. 683–690. © 2018 IEEE.

[218] M. Dolgov and H. Banzhaf. Verfahren und Vorrichtung zum Prüfen einer Trajek-
torie für ein Fahrzeug. Patent Application No. DE102018220581. Nov. 2018.

List of Awards

[219] H. Banzhaf, M. Dolgov, J. Stellet, and J. M. Zöllner. From Footprints to Belief-
prints: Motion Planning under Uncertainty for Maneuvering Automated Vehicles
in Dense Scenarios. In: IEEE International Conference on Intelligent Transportation
Systems. Best Paper Award. 2018.

[220] H. Banzhaf, N. Berinpanathan, D. Nienhüser, and J. M. Zöllner. From G2 to
G3 Continuity: Continuous Curvature Rate Steering Functions for Sampling-Based
Nonholonomic Motion Planning. In: IEEE Intelligent Vehicles Symposium. Third
Prize Best Application Paper Award. 2018.

	Nomenclature
	Introduction
	Problem Statement
	State of the Art
	Search-Based Planners
	Sampling-Based Planners
	Other Approaches
	Open Problems

	Research Questions and Key Contributions
	Outline

	Steering Functions for Car-Like Robots
	State of the Art
	G1 Continuous Steering Functions
	Dubins Steer
	Reeds-Shepp Steer

	G2 Continuous Steering Functions
	Continuous Curvature Steer
	Hybrid Curvature Steer
	Arbitrary Start and Goal Curvatures
	Experimental Evaluation

	G3 Continuous Steering Functions
	Continuous Curvature Rate Steer
	Hybrid Curvature Rate Steer
	Experimental Evaluation

	Steering Functions in Belief Space
	Monte Carlo Simulation
	Extended Kalman Filter for Motion Planning

	Summary

	From Footprints to Beliefprints: Probabilistic Collision Checking
	State of the Art
	Beliefprint Computation
	Approximate Beliefprint
	Robust Beliefprint

	Summary

	Learning Pose Predictions for Guided Motion Planning
	State of the Art
	Data Generation
	Learning Ego-Vehicle Pose Predictions
	Model
	Vehicle Pose Sampling
	Training and Metrics
	Hyperparameter Optimization

	Experimental Evaluation
	Summary

	Sampling-Based Motion Planning in Dense Scenarios
	Problem Formulation
	Platforms and Setups
	Experimental Results
	Maneuvering in Tight Parking Space
	From Single to Double Ackermann Steering
	G3 Continuous Motion Planning
	Motion Planning in Gaussian Belief Space
	Guided Motion Planning

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix
	Robot Motion
	Straight Line
	Circular Arc
	Clothoid
	Cubic Spiral

	Hybrid Curvature Candidate Paths
	Family CSC
	Family CCC
	Family CC|C
	Family C|CC
	Family C|C|C
	Family CSC|C
	Family C|CSC
	Family CC|CC
	Family C|CC|C
	Family C|CSC|C
	Family CS|C
	Family C|SC
	Family C|S|C

	Bibliography
	List of Publications
	List of Awards

