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Abstract

The dissertation provides novel methods to process inertial sensor and
acoustic sensor data for road condition estimation and monitoring with ap-
plication in vehicles, which serve as sensor platforms. Furthermore, meth-
ods are introduced to combine the results from various vehicles for a more
reliable estimation.

A systematic, continuous, and comprehensive monitoring of existing
roads is becoming increasingly important. Yet, current practice is labo-
rious and time-consuming as most steps of the process are done manually.

A novel measuring device for vehicles is developed to autonomously ac-
quire a large set of real world data on public roads. In addition, an extended
simulation approach is presented to record data under controlled conditions
to investigate the impact of parameter variations. Furthermore, the meth-
ods for data processing are implemented in a user friendly Matlab toolbox
to allow an automatic evaluation.

The quantitative and visualized results show that the estimation of road
unevenness and roughness accord with the ground truth. The prediction
accuracy of road attributes, such as potholes, and road surfaces, such as
damaged concrete or asphalt, yield 81.0 % and 96.1 % on average. The
investigation of combination strategies shows that multiple vehicle fusion
incorporating the precision matrix from the vehicle classifiers increase the
confidence level of the final estimation. The normalized mean square error
of the regression function to estimate road roughness is 4.5 h on average.

Overall, the developed methods can improve or partially substitute the
current practice to evaluate the road infrastructure. This work contributes
concepts and methods to allow an automatic and comprehensive road condi-
tion monitoring. The data processing methods can run on electronic control
units of modern vehicles, which are equipped with corresponding sensors.
However, the presented system consisting of the developed measuring device
and Matlab toolbox can also be applied on vehicle fleets as it is.
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Kurzfassung

Diese Arbeit bietet neuartige Methoden zur Verarbeitung von
Inertialsensor- und akustischen Sensordaten für die Straßenzustands-
abschätzung und -überwachung mit Anwendung in Fahrzeugen, die als
Sensorplattform dienen. Darüber hinaus werden Methoden eingeführt,
um die Ergebnisse mehrerer Fahrzeuge für eine robuste Schätzung zu
kombinieren.

Eine systematische, kontinuierliche und umfassende Überwachung be-
stehender Straßen wird immer wichtiger. Die derzeitige Praxis ist jedoch
mühsam und zeitaufwendig, da die meisten Schritte des Prozesses manuell
durchgeführt werden.

Ein neuartiges Messgerät für Fahrzeuge wurde entwickelt, um autonom
eine große Menge an realen Daten auf öffentlichen Straßen zu erfassen.
Darüber hinaus wird ein Simulationsansatz vorgestellt, um Daten unter
kontrollierten Bedingungen aufzuzeichnen und die Auswirkungen von Para-
metervariationen zu untersuchen. Des Weiteren sind die Methoden zur Da-
tenverarbeitung in einer benutzerfreundlichen Matlab-Toolbox implemen-
tiert, um eine automatische Auswertung zu ermöglichen.

Die quantitativen und visualisierten Ergebnisse zeigen, dass die Ab-
schätzung von Straßenunebenheiten und -rauheiten mit den tatsächlichen
Gegebenheiten übereinstimmen. Die Vorhersagegenauigkeit von Attributen
der Straße wie Schlaglöchern und Straßenoberflächen wie beschädigtem Be-
ton oder Asphalt liegt im Durchschnitt bei 81,0 % bzw. 96,1 %. Die Unter-
suchung von Kombinationsstrategien zeigt, dass die Fusion mehrerer Fahr-
zeuge mit der Präzisionsmatrix der Fahrzeugklassifikatoren die Sicherheit
der endgültigen Schätzung erhöht. Der normalisierte mittlere quadratische
Fehler der Regressionsfunktion zur Schätzung der Straßenrauhigkeit beträgt
im Durchschnitt 4,5 h.

Insgesamt können die entwickelten Methoden die bisherigen Verfahren
zur Bewertung der Straßeninfrastruktur verbessern oder teilweise ersetzen.
Die vorliegende Arbeit trägt Konzepte und Methoden bei, um eine automa-
tische und umfassende Straßenzustandsüberwachung zu ermöglichen. Die
Datenverarbeitung kann auf elektronischen Steuergeräten moderner Fahr-
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Kurzfassung

zeuge erfolgen, die mit entsprechenden Sensoren ausgestattet sind. Das vor-
gestellte System, vor allem bestehend aus einem entwickelten Messgerät und
einer Matlab-Toolbox, kann aber auch problemlos in seiner jetzigen Form
auf Fahrzeugflotten angewendet werden.
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1 Introduction

Outline: This chapter gives the motivation in the first section. Section 1.2
explains the causes for a degradation of road condition, the effects of road
defects, and shows the necessity of a novel real-time road condition moni-
toring. The current process for road condition monitoring is described in
Section 1.3 and the following Section 1.4 reviews related literature of auto-
mated and mobile road condition monitoring. Based on these sections open
problems are deduced (Section 1.5) and the aim and research question of
this dissertation are given in Section 1.6

1.1 Motivation

The wealth pyramids of modern economies and studies show that the foun-
dation of prosperity, productivity, growth, and social wellbeing are infra-
structure and mobility [1].

In Germany, road transport is the main source of traffic volume and
the backbone of transport infrastructure for citizens and the economy [2].
However, the state of the road network deteriorates noticeably in many
regions of Germany [3]. The road infrastructure is subject to permanent
stress and needs to be repaired or renewed in order to ensure the substance
and utility value. The degradation of the roadway condition results in
a multitude of undesirable factors which burden vehicle users and third
parties.

Current practice of road condition monitoring is laborious and time-
consuming as most steps of the process are done manually [4]. The steps
involve the collection of data, the identification and assessment of defects
based on the collected data, and the calculation of a road condition index
for road segments with a specific length. Few countries have expensive spe-
cialized vehicles for an automated data collection whereas the monitoring is
only scheduled in fixed intervals of 1 to 4 years [5]. In most of the countries,
the data is collected manually by inspectors, who pass the road infrastruc-
ture and record road defects, their location, type of distress, and severity
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level, among others. The evaluation of the road segments and defects is
often subjective as it is based on the experience of the technician.

At current practice defects are unlikely to be comprehensively identified
in early stages, when repairs are more cost-efficient. Due to the decline in
building new roads and lack of financial resources, a systematic, continuous
and comprehensive monitoring of existing roads is becoming increasingly
important. With this approach, the functionality of the roads could be
maintained in an economical and environmentally compatible way.

1.2 Road condition

The road profile is mainly characterized by the texture wavelength λ [6].
The wavelengths physically illustrate the different lengths of periodically
repeating structures of the profile. The road texture is categorized as mi-
crotexture with a wavelength of less than 0.5 mm, as macrotexture with
wavelengths from 0.5 to 50 mm, and mega texture with wavelenghts from
50 mm to 0.5 m [6]. The profile texture with wavelengths from 0.5 m to
50 m is referred to as unevenness.

The road profile is overlaid by road discontinuities, which are inadvertent,
for example pavement failures, or due to pavement design, such as expansion
joints, railway, and tramway crossings, manholes or speed bumps [7].

Pavement failures can be summarized as cracks, surface deformations,
and surface defects [8]. Surface deformations mainly include ruts and shov-
ing, surface defects represent bleeding, raveling, and potholes. The repair
procedure is to determine the type of pavement failure, determine the cause,
fix the cause and to perform the repair [8].

1.2.1 Causes for road defects

The main criteria to be met by the road infrastructure are [9]
• evenness, tire road friction, and carrying capacity,
• brightness and reflectivity,
• drainage of water,
• low noise levels.
With a systematic maintenance, the life span of asphalt layers is 10 to 15

years and 15 to 20 years for binding layers. Concrete surfaces can last up
to 30 years and base layers 40 to 50 years [10].
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1.2 Road condition

The life span of a road is limited by either structural aspects and the
aging of the construction materials or by outside influences, such as the
weather condition and traffic load. For example, binders naturally lose
their binding and restoring force over time. Furthermore, the wear of the
road occurs due to tire road contact.

One of the most important external factors influencing the state of the
roads is heavy-load vehicle traffic and the axle load in particular. The axle
load is the proportion of the total weight attributed to one axle of a vehicle.
The total weight of the vehicle consists of its own and loaded weight. A
long-term test showed that a linear increase in axle load leads to a damage
of the road in fourth power [11]. Since 2002 the traffic volume of commercial
road haulage has increased by more than 50 % in Germany, from 1,454 to
2,245 million tonnes annually [3].

In addition to traffic loads, the season is the main factor, which influences
the road condition. Particularly long-lasting heat periods lead to damages
on asphalt and concrete roads. For example, the concrete plate stretches
due to solar radiation and reduces the transverse joints. The plates can
break if there is not enough space and cause a ripple, which is referred
to as blow up [12]. Asphalt has relaxation capacity because of bitumen
and expands with constant stress and increasing temperature and softer
bitumen. The results are deformations and cracks on the surface [12].

The condition of the road infrastructure can significantly deteriorate af-
ter a period of very cold weather. An aged or cracked road surface allows
the entry of water into pores and cracks. The water freezes by frost into ice
crystals, which enlarge the road damages. Repeated melting and solidifica-
tion and traffic loads result in the formation of potholes [12].

1.2.2 Effects of road defects

Many studies have investigated the influences of bad road conditions [13–
15], the increase of tire road noise was proven by the experiments of the
author [16]. The influences can be summarized as

• increase of tire road noise,
• decrease of driving comfort,
• decrease of driving safety, and
• increase of rolling resistance.
These influences result in even more undesired effects. For example, a

high level of tire road noise leads to general annoyance, sleep disturbances,
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or speech interference [17, 18]. Furthermore, it increases the costs for noise
abatement measures, such as sound-absorbing barriers [19]. Tire road noise
also yields to a decrease in value of houses and land close to noisy road
transport infrastructure [20–22].

Road defects not only decrease the driving comfort and affect the behavior
of the vehicle [23] but can also cause damage to the vehicle. A deep pothole
might deform the wheel rim and constant higher load impacts the wear of
the rubber mounts. Particularly bicycle riders are vulnerable from rough
surfaces, which increase the danger of fall or injury.

An increase of rolling resistance leads to higher carbon dioxide emission
and vehicle operational costs, such as the fuel consumption, and lower range
of electric vehicles [24]. Moreover, if the road condition exceeds a critical
value due to delayed detection of road defects, the erosion of the road sub-
stance accelerates. Subsequently, the road needs a complete renewal and
the costs increase over the life cycle of the road [25]. A renewal often yields
to a complete roadblock and to traffic jams. Overall, repairs result in high
economic costs due to the time spent in traffic jams and diversions.

1.3 State-of-the-art of road condition monitoring

The current applied processes for road condition monitoring were ana-
lyzed based on manuals from transportation departments around the world,
e.g. [26–32]. The condition monitoring process is often based on several
steps, which involve the data collection, defect identification, defect as-
sessment, and the calculation of a road condition index [4]. However, the
execution and details of each step differ from country to country.

The road infrastructure is often scaled in segments of a specific length,
which usually ranges from 10 to 100 meters among the countries.

The data collection is mainly performed either manually by accredited
surveyors, who either walk or drive along the roadway, or automatically
by specialized vehicles, which are equipped with various sensors. Latter
vehicles create high costs of purchase and maintenance and only few coun-
tries use such vehicles [33]. In Germany for example, the Federal Highway
Research Institute performs measurement campaigns with these specialized
vehicles on interurban roads in fixed intervals of multiple years. However,
their use is limited to the primary road network and a manual data acqui-
sition is performed in communes.
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The types of defects under consideration of most of the countries are
mainly different types of cracks, rutting, shoving, distorting, potholes, rav-
eling, and bleeding. The defects are assessed manually on site, are based
on pictures and data from measurement vehicles or through an index cal-
culated on the basis of the severity and type of defect. Finally, an overall
road condition index is calculated based on the defects and their severity or
density, which differs in weights and calculation across the transportation
departments.

The different equations for this index from various states in the USA
are evaluated in [34]. Based on the assessment of the quality of the road
segments, a priority rating for repair is assigned by the inspectors.

In many countries the international roughness index (IRI), a slope statis-
tic in m/km of road segments is calculated with road profilometers. There
are different International Quality Levels (IQL-1 up to IQL-3), but even the
most accurate IQL-1 systems typically report the roughness at 10 to 20 m
intervals, while IQL-3 systems only report at intervals greater than 100 m.
Hence, for the purpose of identifying defects the IRI is of limited use, as
further information would have to be collected in some other way, before
specific reconstruction planning can take place.

Interviews with experts were conducted to collect qualitative data and
information about the current status and development of road condition
monitoring that could not be found in the literature [198]. The focus of the
interviews was on the area of Karlsruhe, Germany. An expert should have
special knowledge which, in contrast to general knowledge, involves com-
plex, integrated knowledge and is also constitutively related to the pursuit
of a profession [35]. Three experts with the described special knowledge
were selected1.

They stated, that the costs for a specialised measurement vehicle are
approximately 120 Euro per kilometre [198]. A visual road condition as-
sessment is conducted from inspectors every two years in Karlsruhe and
the road segments are classified into five groups of quality [198]. However,
the approach in small municipalities is different. Thus there are communes,
which do not measure their state of the road at all [198]. There is a clear
need for a continuous monitoring system, since environmental influences can
cause short-term changes of the road state, especially after a strong winter

1 The experts are Univ.-Prof. Dr. h.c. Ralf Roos from Karlsruhe Instiute of Technology,
Prof. Dr.-Ing. Markus Stöckner from Karlsruhe University of Applied Sciences, and
Manfred Geiger from the civil engineering department of the city of Karlsruhe.
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or a hot summer [198]. A real time road condition monitoring system would
be a huge step forward [198].

1.4 Survey of related research

1.4.1 Overview

Researchers have addressed the problem of a manual, expensive, and dis-
continuous process to monitor the road infrastructure and present concepts
and methods for a mobile data acquisition and automated processing to
estimate the road roughness or to detect road hazards. Figure 1.1 gives an
overview and the structure of relevant research for this chapter.

automated and mobile RCM (>100)

RP (∼10)

other

attributes
and RI

C (>50)

other (<10)

attributes

ML (>40)

attributes

AS (∼5)

other

RI

IS (∼30)

PM (∼15)

RI

ML (∼15)

RI attributes

sensor

method

output

RCM: road condition monitoring
RP: road profilometers, C: camera, AS: acoustic sensor, IS: inertial sensor
ML: machine learning, PM: physical model
RI: roughness index

Figure 1.1: Automated and mobile road condition monitoring (RCM) research
structure and the amount of research papers in parentheses. The
first level indicates the sensor, the second level the method and the
third level the output. The output is mainly either road attributes,
e.g. defects, or a roughness index (RI), such as the IRI. Nodes anno-
tated with ’other’ for the data processing method level means, that
the method was not clearly specified in the paper or the method can
not be assigned to the classes PM or ML.

6



1.4 Survey of related research

The measurement sensors, which have been applied to monitor the road
infrastructure are mainly

• road profilometers,
• cameras,
• acoustic sensors,
• inertial sensors.

The numbers of research papers indicate, that there has been a lot of re-
search with cameras and mainly machine learning (ML) methods were ap-
plied. There only exists few studies which investigate acoustic sensors to
monitor the road infrastructure. More publications can be found for road
profilometers and inertial sensors.

With latter sensors, physical model or heuristic models with ML algo-
rithms can be applied to estimate the road condition. The majority of
studies, which use inertial sensors and ML, output a roughness index and
only few predict defects. The literature applying inertial sensors and ML is
reviewed in more detail in subsection 1.4.5 with focuses on specific subjects,
such as labeling of training data or feature selection.

The level of detail of the output for an automated road condition mon-
itoring can be distinguished into in three categories [36]. The categories
are

• presence: methods, which are only able to determine whether a defect
does or does not exist in the given data,

• detection: methods, which are capable of identifying the exact defect
position within the given data,

• measurement: methods, which are able to provide the spatial mea-
surements of a defect, such as the width, length, and depth.

Table 1.1 summarizes the sensors, considered defects, level of detail, invest-
ment, and operating costs and the effort to install the sensor and operate
the measurement system, based on the reviewed literature.

Table 1.1: Evaluation of sensors based on previous literature.
Sensor Defect Level of detail Cost Effort

Profilometer all defects measurement high high
Camera 2D surface defects detection medium medium
Camera 3D surface defects measurement medium medium
Acoustic sensor surface type - low low
Inertial sensor elevation defects presence low low
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1.4.2 Application of road profilometers for road condition monitoring

Mobile road profilometers can be distinguished in tactile and laser pro-
filometers. The longitudinal profile analyzer (LPA) serves as an example
for mobile tactile profilometers [37]. The measurement system consists of
one or two trailers with one suspension and wheel each, which is in con-
tinuous contact with the road. A movable transverse beam transmits the
vertical movement of the wheels to the data acquisition unit. The road pro-
file from this system is used as reference for other road condition methods,
for example in [37, 38].

3D laser road profiling systems were investigated in [39–41]. They are
able to identify most types of road defects and vehicles with such systems
can travel with speeds of up to 100 km/h [42]. Data processing techniques
are also of high standard and researchers were able to drastically reduce
computation times for 3D dynamic image optimization in recent years [43].
However, the costs of equipping one vehicle with laser line profiling tech-
nology are quoted up to 220,000 USD [44] and they have to be handled by
trained operators to ensure proper functionality [45]. Furthermore, objects
on the road, such as sand, gravel, salt or snow negatively influence the
results and lead the system to misidentify road defects.

1.4.3 Application of cameras for road condition monitoring

There has been a lot of research in using cameras for an automated road
condition monitoring. A recent literature review to camera road condi-
tion monitoring gives an overview of previous research focused on camera
systems [36].

Most of the proposed methods operate on 2D images, e.g. [5, 46–60],
while there are few 3D reconstruction methods that utilize the notion of
stereo-vision for detecting road defects or road markings [61–67]. 3D re-
construction methods offer the possibility to reconstruct the surface using
images from various video cameras. A stereo camera is utilized in the Magic
Body Control from Mercedes-Benz, first introduced in 2013. The camera
is located behind the windscreen just in front of the rear view mirror and
scans the road surface ahead to detect changes in the road elevation. With
this information, the suspension is actively adjusted to reduce vehicle body
movements [68].

Research with cameras was mainly performed to detect road hazards but
not to estimate the road roughness. Table 1.2 summarizes the most cited
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papers with the applied method, type of object recognition and level of de-
tail, focusing on road condition monitoring with camera and an automated
data processing.

Table 1.2: Overview of literature employing camera based methods.
Method Objects Level of detail Literature

3D reconstruction potholes measurement [60]
ANN cracks presence [46–48]
ANN cracks detection [49, 50, 52, 53]
STF cracks, patches, potholes detection [36]
SVM patches, potholes detection [59]

Machine learning multiclassifier algorithms nowadays are the most com-
mon methods for object detection in images. They allow simultaneous
segmentation and recognition of several objects in images [69–71]. Since
the defects can be seen in the image and labeled by an annotator, mainly
supervised learning with either artificial neural networks (ANNs) or sup-
port vector machines (SVMs) were applied. A semantic texton forest (STF)
was applied in [36], as it can use various features for segmentation, namely
texture, layout and context.

The results of the reviewed studies show, that cameras in combination
with machine learning methods are able to precisely detect and mark de-
fects within images. They are inexpensive and modern vehicles with special
packages are equipped with cameras ex works so that comprehensive cov-
erage of the road network can be achieved.

However, cameras have general features that present definite disadvan-
tages. Firstly, their use is limited to decent weather conditions, since rain,
fog, mist, or snow can make capturing images of sufficient quality impossi-
ble. A second limitation is given by the speed at which vehicles can travel
without the vibration and suspension movements affecting the sharpness
of the image. The authors of a recent paper conceded that they had to
drive at speeds between 10 and 15 km/h to keep unexpected vibrations of
their vehicle at a minimum to not affect the quality of their data [36]. One
solution is to use cameras that possess high enough resolution, frame rates,
and image stabilizing to warrant accurate measurement results at higher
speeds. However this leads to increasing costs for hardware and reveals the
trade-off between the quality of the picture and the corresponding amount
of data storage required.
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Throughout the corresponding literature, a general problem with ML is
the algorithm training phase. Even the most recent papers have to rely on
supervised training and manual labeling of training data. This is quite time-
inefficient and thus limits the amount of valuable training data available.
Hence ways to label data more efficiently, increasing the amount of training
data, and thus improving the accuracy of the algorithms or the application
of unsupervised learning should be of high interest for future research in
this field.

1.4.4 Application of acoustic sensors for road condition monitoring

One limitation of indirect methods to estimate the road roughness based
on accelerometer measurements is the limitation in frequency range. High-
frequency excitations from the road surface, for example the macrotexture,
are filtered by the tire and suspension, which act as a low-pass filter [45].
However, passing from smooth to coarse asphalt results in audible changes
in level and frequency distribution of sound, which can be captured by
microphones attached to the vehicle [45]. Results from previous research
indicate that methods based on sound have to compensate the current ve-
hicle velocity. Further limitation are the effect of snow and water on the
road on the sound measurements.

Microphones in or outside the vehicle body have the disadvantage that
noise from the environment, such as other vehicles and reflections, influence
the data. An alternative method to analyze the sound pressure in the tire
cavity was developed in [72]. The road surface oscillates the tire and the
vibrations generate sound waves in the tire cavity, which is a reverberation
room and insulated from the environment.

The measurements of the studies investigating tire road noise show a
good reproducibility. Moreover, they demonstrate the potential to distin-
guish between road surfaces with different characteristics, especially various
macrotextures [73–75]. However, an acoustic sensor in the tire cavity has
only been used under specific driving conditions and no automated data
processing has been developed.
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1.4.5 Application of inertial sensors for road condition monitoring

Inertial sensors and physical models

In computer simulation, researchers have investigated the possibility to es-
timate the road profile based on physical vehicle models but have not con-
sidered to detect road defects or other road features. The estimation in
computer simulation is mainly based on a half-car models with inertial sen-
sor data from the sprung and unsprung masses of the vehicle model [76,
77].

The inversion from the vehicle model, where usually the road profile
serves as input and the accelerations as output, is a common method to
derive the road profile [199]. The applied methods with real data are mainly
based on sliding mode observers [78, 79] or filters [38, 45, 80–83], such as
Kalman filters. The basis of these methods with real data is mainly a
quarter car model.

Overall, the results of these reviewed studies show that the methods
give a good estimation of the road profile. However, the accuracy of the
estimation is prone to changes in velocity. Moreover, the transportation
departments concentrate on detecting type of defects, which requires an
additional step in the data processing of the methods employing inertial
sensors and physical models. In contrast, methods using ML can directly
output the type of defect.

Inertial sensors and heuristic models

Machine learning approaches for road condition estimation have been
mainly applied for real driving rather than in computer simulation. The
methods can be distinguished in their output, which is either a roughness
index or defects. Table 1.3 gives an overview of recent literature employing
inertial sensors and a heuristic model.

In computer simulation, studies applied ANNs to estimate the road profile
with data obtained from vehicle dynamics models [84–88], mainly half-car
models.

A method to detect potholes based on acceleration sensors and global
position system (GPS) for localization is presented in [89]. Seven taxis were
equipped with the sensor system, which managed to cover 2,492 distinct
kilometers during ten days. Various signal processing filters were applied
for data analysis a misclassification rate of 0.2 % was reported. Research in
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Table 1.3: Overview of literature employing inertial sensors and heuristic mod-
els.

Method Output Level of detail Literature

ANN roughness [84–88]
filters potholes presence [44, 89]
RF roughness [88, 90, 91]

SVM roughness [88, 92]
SVM elevation defects presence [93–96]

this field with similar filters was extended by [44], who equipped 100 taxis in
the Shenzhen urban area with low-end accelerometers and GPS devices to
obtain vibration pattern, location, and vehicle velocity. The advantages of
machine learning approaches over physical models was pointed out by [85]:

• The use of neural networks does not require excessive system charac-
terization. In fact, ”all it requires is the road profile data represen-
tative of various degrees of road roughness as network targets, and
accelerations measured on the vehicle system as network inputs.”.

• They require relatively fewer analytical skills to create the network
than the physical model. The development of physical models still
demands high technical expertise even for computer simulation based
approaches and it requires the calculation of inverse models to deter-
mine road profiles from vehicle acceleration measurements.

A comparison of different machine learning models, namely ANN, SVM,
and random forest (RF) was performed by [88].

Research in road condition monitoring with inertial sensor data is becom-
ing increasingly popular. The main advantages are that modern vehicles
are equipped with inertial sensors and in contrast to camera systems, this
method is not limited to decent weather and daytime light conditions.

The limitations are that each vehicle has to be calibrated to compare the
results [80]. Moreover, tire road contact on the area to be measured has
to be ensured. In contrast, cameras can detect defects between or next to
the two vehicle lanes. However, a large number of surveying vehicles with
inertial sensors might diminish the disadvantage of the limited measured
area and collect data of the most interesting area of the road. The level of
detail is limited and the determination of the attributes of road defects has
not been presented.
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Another issue that arises is the labeling of training data acquired with
inertial sensor. In contrast, labeling methods for camera data presented
in research are mostly coherent and automated. The presented annotating
methods of inertial sensor data range from describing the road features into
a microphone while acquiring training data, or trying to match road images
with the corresponding inertial sensor data, which is performed offline.

Review of comprehensiveness and generalization Comprehensiveness and
generalization of a method are of utmost importance, as the aim of an
automated road condition monitoring is to be able to work in all driving
and environment conditions. To test the generalization, experiments have
to be comprehensive in the variation of vehicles they use, road segments
to be measured and the amount of kilometers of road network covered.
Many papers only use computer simulated data to test the accuracy of
their algorithm and others use only specific vehicles on fixed test tracks, a
few kilometers of selected road stretches, or consider only few and specific
outputs.

For example, Eriksson, Girod, Hull, et al. [89] equipped seven identical
taxis, which covered the road infrastructure in Boston over a ten day period.
Menant, Martin, Meignen, et al. [97] used 12 similar probe vehicles on a
1000 km road network in the north of France to measure the IRI and Chen,
Lu, Tan, et al. [44] deployed a road surface monitoring system on 100 taxis
in Shenzhen but did not provide information of the type of vehicle. Seraj,
Zwaag, Dilo, et al. [96] used 5 different vehicle types, including hatchbacks,
superminis, and an SUV and covered a total of 45.9 distinct kilometers in
the testing phase. However, they did not report if and how they combined
the measurement data from the different vehicles or if they trained each
vehicle separately.

Review of methods for feature selection Supervised ML approaches
mainly classify based on features rather than time series. Nitsche, Stütz,
Kammer, et al. [88] state, that ”In order to use the proposed machine
learning models effectively, one of the most important steps is to extract
expressive features from the collected data”.

Only few papers provide insight on their feature selection. Tai, Chan, and
Hsu [93] modify some of the 59 roughness parameters for measuring road
surfaces presented in [98]. Finally, they use a total of six distinct features
extracted from their input data, which includes the acceleration values in
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three axes, instantaneous speed, and position. The features are the mean
speed and the mean, range, standard deviation, maximum, and minimum
of the acceleration for each axis.

Perttunen, Mazhelis, Cong, et al. [94] use sliding windows of 2 s length
with a 0.5 s slide to extract features from the acceleration signals. They
utilize the backwards feature selection algorithm of PRTools [99] to select
optimal speed scaled and non-speed scaled feature sets.

Nitsche, Stütz, Kammer, et al. [88] used a total of 35 features as input for
the models, gained from the longitudinal, lateral and vertical acceleration
as well as the angular speed of each wheel. Among the selected features
were the mean, standard deviation, range, and the mean of the short time
energy as well as the power spectral densities of the accelerations, and
angular speed of both rear wheels, respectively.

To prepare data for the classification phase Seraj, Zwaag, Dilo, et al. [96]
compute features from time domain, transformation in frequency domain
and wavelet decomposition for a total of 18 different features.

Laubis, Simko, and Schuller [90] and Laubis, Simko, Schuller, et al. [91]
use the same features based on GPS, 3-axis accelerometer, and 3-axis gy-
roscope measurements for both papers to estimate road roughness. They
perform a continuous wavelet transformation to analyze the frequency con-
tent of the acceleration and gyroscope features. Other aggregation functions
used are the mean, range from minimum to maximum, standard deviation,
variance, and root mean square (RMS). Overall, most studies use 35 or even
more features for finally estimating the IRI or a similar roughness index.

Review of performance and stability of methods Amongst the different
machine learning methods, support vector machines (SVMs) have shown to
be most popular recently and outperform other methods, e.g. random forest
(RF) and artificial neural network (ANN) [88]. For example, Nitsche, Stütz,
Kammer, et al. [88] state that ”Choosing a set of representative features
is important for each model, but the RF and SVM are found to be more
stable than the ANN with respect to the quantity of features. For example,
a drastic reduction of features (from 35 to as low as 5) does not significantly
alter the results for the former two, while a neural network is not able to
capture the structure of the data efficiently in this case.”.

Review of methods for labeling training data An important step in ensur-
ing the accuracy of any selected machine learning algorithm is providing suf-
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ficient amounts of correctly labeled training data. Without a large enough
pool of training data to learn from, the performance of any algorithm is
severely hindered.

While some papers do not describe their labeling technique for real tests
and others rely entirely on computer simulations, where the data can be
automatically annotated, a couple of methods for labeling real world data
have been used with varying success.

Eriksson, Girod, Hull, et al. [89] have used a computer in the vehicle and
a trained annotator, who sits in the passenger seat of the vehicle, presses
keyboard keys corresponding to predefined defect classes when they occur.
However, they also used a set of loosely labeled data, where the types and
rough frequency is known but not the number and location of the defects.

Tai, Chan, and Hsu [93] use a voice recorder to label the training data
during collection with motorcycles in Taiwan. They chose to do this to min-
imize the required interaction of the motorcycle driver, but had to concede
high inaccuracy and subsequently had to develop a very elaborate relabeling
process to make their training data usable for the algorithm they used.

Perttunen, Mazhelis, Cong, et al. [94] covered 25 km of road in one drive
capturing video data next to the accelerometer and gyroscope readings.
They preprocessed global position system (GPS) and acceleration signals
and plotted a spectrogram of the sum of the band energies of accelerometer
signals, superimposing speed in the same figure.

Two independent annotators then produced two label files by analyzing
the video data obtained during the drive. This method of training data
labeling is rather complicated and even the authors concede that labeling
data from video is time consuming and error prone work.

In the work from Seraj, Zwaag, Dilo, et al. [96], labeling was performed
by one person sitting in the passenger seat using the microphone and the
camera of the smart phone. They took various drives over the same road
segment at different speeds and hitting the defect in different angles, with
the annotator loudly mentioning the type of defect as the vehicle approached
it. A software was used to transcript all voice labels with accuracy in the
order of milliseconds.

Problems arose when synchronizing the subtitle file with the smartphone
data timestamp and lags between the labeled segments of data and the
actual defect was noticed. As a result almost all labels had to be manually
corrected.

15



1 Introduction

Review of output metric As shown in Table 1.3, the most common output
metric is the road roughness, especially the international roughness index
(IRI). However, as mentioned in Section 1.3 the IRI can only give a generally
assessment of the quality of a road segment but the knowledge of the severity
and location of specific defects, such as potholes, is more important for a
road condition monitoring.

Few publications distinguish between different types of defects and only
consider three or less classes. Furthermore, no study investigates to differ-
entiate between different types of materials, such as concrete or asphalt.

1.5 Open questions

The presented literature shows, that road profilometers are too expensive
to equip various vehicles with and usually have to be attached outside the
vehicle. Hereby, they are prone to environmental disturbances, such as snow
or water.

Camera systems for road condition monitoring have been extensively
studied. Further improvements are to precisely measure the attributes of
defects and to estimate the road profile. With improvements of the hard-
ware, also this task will be solved soon. Furthermore, fundamental research
in unsupervised and reinforcement learning in computer vision might re-
place the time consuming labeling while using supervised learning.

Acoustic sensors are rarely investigated in terms of comprehensive and
automated road condition monitoring. However, they seem to be a good
option to monitor road infrastructure and even to estimate the macrotex-
ture of the road profile. Previous literature has used acoustic sensors to
measure the tire road noise, which is also dependent on the macrotexture.
An acoustic sensor outside of the vehicle has many disadvantages, mainly
the negative influence from background noise, reflections, among others.
However, a dynamic pressure sensor in the tire cavity is robust against dis-
turbing noises. So far, research investigated the tire cavity sound on test
benches or test vehicles under controlled conditions. Moreover, the focus
was on the correlation with conventional tire road noise measurement pro-
cedures, such as the close-proximity method. There is no concept or method
to comprehensively and automatically apply a tire cavity sound measure-
ment system for road condition monitoring. This implies the development
of a measuring device, which is inexpensive and can be installed on vehicles
without a special permit. Furthermore, a method is needed, which analyzes
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the data from the tire cavity sound sensor in all driving and environment
conditions.

Inertial sensors for road condition monitoring compensate for various
disadvantages of camera systems. They are robust against the environment
conditions and measure the ride comfort, which is mainly dependent on the
road roughness.

Previous presented methods to estimate the road roughness, e.g. the IRI,
have several disadvantages. Physical models use special vehicles with the
knowledge of the suspension characteristics to acquire the vehicle dynamic
data. The road roughness is then derived with an inverse vehicle model.
This method is prone to a change of the vehicle vibration behavior and needs
additional sensors at the unsprung masses besides an inertial sensor in the
vehicle body. Recent literature presents a machine learning (ML) approach
with one sensor in the vehicle body to train vehicles with ground truth data
acquired with profilometers. However, this method involves a costly training
process and is mostly limited to road surfaces, which have been trained. A
method to estimate the road roughness based on a vehicle inertial sensor,
which is not limited to specialized vehicles or does not involve a training
process, needs to be investigated.

The research on road object detection with inertial sensors has still room
for improvements. Studies using computer simulations mainly focus on the
estimate of road profiles and do not classify defects, which is an important
input for road condition monitoring. Furthermore, ML methods, which are
applied for real test drives should also be tested and verified in computer
simulations. A new simulation approach taking these points into account,
might be the basis for further research on this topic under controlled con-
ditions to analyze the influence of specific parameters or vehicle behavior
on the performance of ML methods.

For real drive measurements, the research gap involves the acquisition of
data, especially the process of labeling trainings data. Moreover, a method
to investigate and evaluate the features to enable a robust and computa-
tional efficient classification has to be introduced. Previous literature has
used many features, without giving more insight why they were selected.
Too many features increases the risk of over-fitting and decreases the gen-
eralization ability. The classification methods so far have been trained and
tested mainly under limited conditions, e.g. specific velocities, road condi-
tions, road areas, specific vehicles. Furthermore, a method to combine the
output from several vehicles has not been presented.

17



1 Introduction

1.6 Aim of this work and research objectives

The aim of this work is to induce methods to estimate the road infrastruc-
ture condition with vehicle based sensors and models for an efficient and
automatic data processing. It presents the development of a novel measure-
ment system for the acquisition of both tire cavity sound and inertial sensor
data of the vehicle body. Furthermore, a novel simulation approach is de-
veloped, which enables to test ML methods and vehicle dynamics models
with varying parameters.

The first research question is addressed to the inertial sensor: How can
we process the inertial sensor data in the vehicle body to provide a road
roughness index without training and special vehicles?

The second research question takes the acoustic sensor in the vehicle
tire into account: How can we estimate the road roughness with tire cavity
sound data under various driving and environment conditions from various
vehicles?

Besides estimating road roughness, the further research question arise:
How can we process inertial sensor data from the vehicle body to detect road
attributes, such as potholes?

Lastly, a research question is: How can we combine the output from var-
ious vehicles to improve the prediction accuracy?

To address these research questions this work aims to
• develop and verify a measurement system for a comprehensive and

automatic road condition monitoring with an inertial and acoustic
sensor attached to vehicles

• develop methods to automatically record adequate data sets
• develop a novel simulation approach to investigate the impact of pa-

rameter variation of road attributes, e.g. height of potholes, and of
the vehicle dynamics model, such as suspension stiffness.

• design a processing chain to evaluate road data based on measure-
ments of inertial and acoustic sensor

• develop methods to combine the output of various vehicles
• integrate the developed algorithms into a graphic user interface for

evaluation of data sets by non-experts.
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Outline: This chapter describes and explains existing methods, which are
necessary for the development of the new concept and fundamental for the
development of new methods for road condition monitoring with vehicle
based sensors in this work. Section 2.1 defines the coordinate axis and sys-
tems of the vehicle. Section 2.2 describes the vibration of the vehicle and
the tires and is important to comprehend the selection of vehicle sensors for
this work and the derivation of vehicle models. On-board vehicles sensors
are discussed in Section 2.3. Vehicle and road models, which are used for
the novel simulation approach, are described in Section 2.4 and data min-
ing methods for the developed data processing in Section 2.5. Section 2.6
describes performance indices for the validation of the developed measuring
devices in this work.

2.1 Coordinate systems

According to [100], an axis system has three mutually orthogonal directions,
to which the X, Y and Z axis are assigned. The standard is based on a
right-hand system. A coordinate system consists of an axis system and an
origin. The earth-fixed axis system XE , YE , ZE is connected to the location
and the plane spanned by XE and YE is perpendicularly to the direction
of gravity g. The road plane XR, YR, representative for the road surface,
is within the tire contact area. In the case of an uneven road there is a
different road plane for each tire contact area with a specific road profile.
The vehicle coordinate system is based on the vehicle axis system and the
origin lies in the vehicle reference point, as exemplarily shown in Figure 2.1.
The vehicle reference point is fixed in the frame work of the sprung mass of
the vehicle. In the vehicle axis system, the XV -axis is directed forward and
parallel to the vehicle longitudinal center plane, if the vehicle is at rest. The
YV -axis is perpendicular to the vehicle longitudinal center line and points
to the left, the ZV axis points upwards. The vehicle reference point can be
set at various points whereas the usual place is the center of gravity of the
sprung mass (CGV ). The longitudinal acceleration ax is the component of
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ZV

XV

YV

φV

θV

ψV

CGV

ZW

XW

YW

γW

θW

ψW

CGW

YR
XR

ZR

Figure 2.1: Vehicle with three translational and three rotational degrees of free-
dom. The reference point of the vehicle axis system XV , YV , ZV

with the angles ψV , φV , and θV is placed in the center of gravity of
the vehicle (CGV ). One of four wheel axis systems XW 4, YW 4, ZW 4
is defined with the angles θW 4, ψW 4, γW 4.

the vehicle acceleration in XV direction, the lateral acceleration ay in YV
direction and the az in ZV direction. The vehicle velocity vV is the velocity
of the vehicle reference point, with which the vehicle moves relative to the
earth-fixed coordinate system. The yaw angle ψV is around the ZV axis,
the pitch angle θV around the YV axis and the roll angle φV around the XV
axis. The pitch and roll angle is not measured relative to the road surface
but to the earth-fixed coordinate system. Accordingly, a vehicle in stand on
an inclined road surface also has a non-zero pitch angle. The roll velocity
ωx is the x-component of the vehicle angular velocity ω, the pitch velocity
ωy represents the y-component and the yaw velocity ωz the z-component.

The wheel axis system XW , YW , ZW for each of the four wheels act in
the wheel center of gravity CGW and they are defined according to the
vehicle axis system. The accelerations are denoted by aWx, aWy, and aWz

and the angles are defined as the wheel rotation angle θW , wheel position
angle ψW , and wheel camber angle γW .
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2.2 Vehicle vibration

2.2 Vehicle vibration

2.2.1 Overview

Resulting forces from road irregularities induce an excitation of the vehicle
oscillation system [101]. Since road irregularities occur as excitation with
different amplitude and wavelength at irregular intervals, the road can be
described as a stochastic vehicle excitation. Aside the road surface, dynamic
roll and pitch movements during longitudinal and lateral dynamic maneu-
vers as well as internal excitations from power train and wheel generate
forces [102].

Furthermore, environmental influences can have an impact on the vi-
bration behavior of the vehicle. For example, the eambient temperature
influences the viscoelasticity and rubber friction [103] and snow or water on
the road influences the tire road contact. Moreover, the aging and chemical
process of the materials of the vehicle change the vibration behavior [104,
105].

2.2.2 Tire road contact

The footprint of the tires is the only direct contact of a motor vehicle to the
roadway. They are responsible to carry the vehicle load, to ensure the trans-
mission of force between the vehicle and the road and to compensate road
irregularities. The two major physical effects responsible for tire road fric-
tion are adhesive friction and friction from hysteresis due to the viscoelastic
properties of the tire [102]. In addition, tire characteristics should ensure
safety in different weather conditions and driving situations, achieve a high
degree of economic efficiency due to a low rolling resistance and long service
life and be mechanically and acoustically comfortable with regard to noise,
vibration, and harshness (NVH). In order to meet these requirements, the
tire can be optimized through the tread pattern design, rubber compound,
contour, and construction, and taking into account possible interactions of
the components [106].

The tire belt behaves as a membrane and vibrates due to the excita-
tion from the road surface. Pavement defects, pavement facilities, such as
bridge joints, and rough road surfaces cause the tire profile to vibrate and
subsequently the tire belt and the tire sidewall [7]. These vibrations lead
to radiation of sound waves in the tire cavity and to the environment. In
addition, the sound is transmitted as structure-borne noise over the rim
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into the interior of the vehicle. The sound emission to the environment is
mainly responsible for the tire road sound, which has long been a problem
for industry and research to reduce [106].

2.2.3 Vehicle body vibration

The mass, stiffness and damping distribution in the structure and the vi-
bration excitation of the structure is responsible for vibration behavior of
a vehicle [107]. The vehicle is a multibody vertical dynamic system with
various degrees of freedoms (DOFs). The objectives of safe vertical dynamic
characteristics are mainly low vehicle body accelerations, low roll and pitch
motions, low dynamic wheel load fluctuations as well as a load indepen-
dent vehicle vibration behavior [108]. The vertical forces essentially consist
of spring and damper forces, which ensure the support of the vehicle body
relative to the suspension system and limit the movements of the vehicle rel-
ative to the roadway [102]. Today, usually coil and air springs are installed
in vehicles.

Table 2.1 shows several vibration phenomena that are caused by the road
surface [102]. Other vibration phenomena, such as bucking, are caused by
imbalance or power train.

Table 2.1: Influences of road surface on ride comfort [102].
Vibration phenomena Frequency (Hz)

from to

Vehicle body vibrations 0.5 5
Freeway-Hop 2 5
Shake 7 15
Bouncing 7 25
Axle vibration 10 15
Buz 30 70
Axle roughness 30 80
Roll motion 30 300

2.3 On-board vehicle sensors

Nowadays, vehicles are equipped and delivered ex factory with various sen-
sors [109]. Electronic control units (ECUs) and sensors exchange data
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through the controller area network (CAN) bus, which allows the micro-
controllers and other devices to communicate in almost real-time. The pur-
pose of the sensors and ECUs are mainly to increase the safety of the vehicle
passengers, the driving comfort, to improve the in-vehicle entertainment,
and to control the entire operation of the vehicle, such as engine control,
transmission control. Almost all vehicles today feature safety systems, such
as anti-lock braking system (ABS) and electronic stability control (ESC),
which require a yaw rate sensor, steering angle sensor, longitudinal and
lateral accelerometer, and wheel speed sensors. More sophisticated auto-
motive systems, such as adaptive cruise control (ACC), vehicle dynamics
control (VDC), magic body control (MBC), need information from addi-
tional sensors on-board, such as stereo camera, pitch and roll rate sensors,
vertical accelerometers, and radar.

Another evolution of car sensing technology is the vehicle-to-everything
(V2X) communication, which includes vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication among others. It allows applica-
tions, such as platooning, road works warning, or forward collision warning.

The availability of sensors on-board greatly depends on the automotive
packages. Since various sensors are already on-board in modern vehicles to
measure the operating state of the vehicle as well as its environment, novel
applications arise [109]. These are, for example weather and environmental
sensing to develop local micro-climate urban emission models [110, 111],
driver behavior characterization [112], or road safety to identify dangerous
road network portions from ABS or emergency braking or to estimate the
road quality, which is discussed in this work.

While the basic function of the systems of different original equipment
manufacturers (OEMs) are similar as well as the employed sensors, the
exact name of the automotive packages and the utilized sensors slightly vary
between OEMs. For example, the package for an active suspension is called
Active Body Control by Mercedes Benz. Continuously Controlled Chassis
Concept by Volvo and Dynamic Chassis Control by Volkswagen adjusts
the characteristics of the damping system. Furthermore, the details of the
sensors are often not publicly available due to the intellectual properties
policy of the companies and needs to be gathered through various press
releases about novel automotive packages.
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2.4 Vertical vehicle dynamics and road models

2.4.1 Overview of models for vertical vehicle dynamics

Models provide the possibility to investigate and analyze a specific behavior
under defined and controlled conditions. The characteristics of multibody
vertical dynamic systems can be determined by vehicle models, such as a
quarter car, bicycle or full car model [107]. Thereby, the road profile serves
as the input for the vehicle model and should be modeled as a real road
profile.

2.4.2 Vehicle models

The mechanical vibration is a more or less periodic motion of a mass,
which transforms kinetic energy to potential energy and vice versa. The
Lagrange method can be applied to find the equations of motion of the
vehicle model [107]. The Lagrange equation applied for vehicle models is

d

dt

δ(K−U)
δq̇i

− δ(K−U)
δqi

+ δD

δq̇i
= F i, i= 1,2, . . .n (2.1)

where K is the kinetic energy, U is the potential energy of system i, and D
is the dissipation function, which incorporates the damping of the system.
F i is the force, which is applied on the mass mi, qi are the generalized
coordinates, q̇i are the generalized velocities and n the number of DOFs.
The finite element method as an alternative to model a vehicle can be more
accurate but needs more computation time. It is mainly applied for specific
and complex parts of the vehicle, such as the tire.

A vertical dynamic model of a vehicle mainly consists of masses, springs
and dampers. Thereby, the mass stores kinetic energy and the spring poten-
tial energy. The damper serves as the dissipative element. The sprung mass
ms of the vehicle is the mass, which is supported by the suspension [100].
The suspension consists of springs, shock absorber, control arms, among
others. However, in vibration models often only springs and dampers are
considered. The unsprung mass mu is defined as the mass, which is not
supported by the suspension but by the tire [100]. At a specific working
point of the spring, the spring stiffness ks is defined as the change in force
to deflect the spring divided by the change in deflection q. In contrast, the
damping force is proportional to the velocity q̇.
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2.4 Vertical vehicle dynamics and road models

For vehicle models usually a constant spring stiffness and damping coef-
ficient is assumed. With these assumptions, the kinetic energy K, potential
energy U , and Rayleigh dissipation function D are

K = 1
2

n∑
i=1

n∑
j=1

ẋihij ẋj , (2.2a)

U = 1
2

n∑
i=1

n∑
j=1

xikijxj , (2.2b)

D = 1
2

n∑
i=1

n∑
j=1

ẋicij ẋj . (2.2c)

Figure 2.2 shows a quarter car model, which is most employed to inves-
tigate the vibration behavior of a vehicle [107]. Thereby, the tire stiffness
is represented by a spring with spring stiffness kt.

ks cs

ks cs

kt

kt

zs

zu

rR

ms

mu

ks cs

kt
rR

ms

mu

Figure 2.2: Quarter car model.

With (2.2a), (2.2b), and (2.2c) and employing (2.1), we get the differential
equations of the motion:

z̈sms =−cs(żs− żu)−ks(zs−zu),
z̈umu = cs(żs− żu) +ks(zs−zu) +kt(rR−zu).

2.4.3 Road models

A road profile for a quarter car model or various individual road profiles
for half car or full car models have to be modeled. Hereby, the road profile
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for simulation is supposed to represent a real road profile. In general, the
unevenness density of a real road profile decreases with an increase in spatial
frequency. The power spectral density (PSD) of a road profile is defined in
[113] as

Gd(Ω) =


Gd(Ω0) ·

( Ω
Ω0

)−n1
if Ω≤ 1

2π

Gd(Ω0) ·
( Ω

Ω0

)−n2
if Ω> 1

2π

, (2.4)

where Ω = 2π/lR is the angular spatial frequency and lR the wavelength
of the unevenness. Usually, n1 = 2, n2 = 1.5, Ω0 = 1 and the degree of
roughness Gd(Ω0) can be obtained from [113] and are shown in Table 2.2
for different road classes. The unit of Gd(Ω0) is 10−6m3 and the unit of Ω0
is rad/m. Figure 2.3 shows the power spectral density for four roads with
different values for degree of roughness. Hereby, road class F represents a
very uneven road and A a new asphalt in very high quality.

Table 2.2: Degrees of roughness [113].
Road
Class

Lower
limit

Upper
limit

A - 2
B 2 8
C 8 32
D 32 128
E 128 512
F 512 2048
G 2048 8192
H 8192 -

10−2 10−1 100

100

10−4

Ω = 1
2π

spatial frequency (cycle/m )

G
d

(Ω
)

A B D F

Figure 2.3: Power spectral density of
road profiles.

A periodic road profile can be generated with a Fourier series, the sum
of individual sine waves

rR(x) =
N∑
i=0

p̂i · sin(2π
lR
· i ·x+ei),
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2.4 Vertical vehicle dynamics and road models

where ei as a random phase angle uniformly distributed between 0 and 2π
and i the running index.

A random profile to fit a PSD described in (2.4) can be generated
with a setting from the literature, e.g. from [114, 115]. With p̂i =√

2π ·∆Ω ·Gd(Ω) and with the frequency resolution ∆Ω.

rR(x) =
N∑
i=0

√
2 ·∆Ω ·Gd(i ·∆Ω) · sin(2π · i ·x ·∆Ω +ei). (2.5)

Figure 2.4 shows road profiles generated with (2.5). The characteristics
of the PSD of these road profiles are similar to the PSD in Figure 2.3.
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Figure 2.4: Road profile generated with (2.5) with four different values for de-
grees of roughness.

2.4.4 State space

The differential equations of the motion from the vehicle model with the
road model as input can be transformed into a state-space representation,
which is often applied for multiple input multiple output systems. State-
space equations consists of a set of input, output and state variables. Latter
variables present the status of the system. The advantage is that

• the representation is compact,
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• it replaces n order linear differential equations with a first order matrix
differential equation,

• directly provides a time-domain solution,
• is computational efficient.

For a linear, time-invariant model with nu inputs, ny outputs, and nx
states, the state-space model is

ẋ=ASx+BIu,

y = COx+DFu,

where AS is the state matrix with dimension AS ∈Rnx×nx and BI is the in-
put matrix with BI ∈Rnx×nu , which describes the properties of the system.
The output is determined by CO as the output matrix with CO ∈ Rny×nx ,
and DF as the feedthrough matrix with DF ∈Rny×nu . u∈Rnu is the input
vector, x ∈ Rnu the state vector and y ∈ Rny the output vector.
nx is the minimum number of state variables needed to describe the

system, which responses to the initial condition x(0) and a set of inputs
u(t) for t ∈ R>0 .

For the state-space model of the quarter car model in Figure 2.2 with the
input u= rR and state vector and output vector

x=


zs

żs

zu

żu

 , y =

[
z̈s

z̈u

]
,

the corresponding matrices are

AS =


0 1 0 0

− ks
ms

− cs
ms

ks
ms

cs
ms

0 0 0 1
ks
mu

cs
mu

−kt+ksmu
− cs
mu

 , BI =


0
0
0

kt
mu

 ,

CO =

[
− ks
ms

− cs
ms

ks
ms

cs
ms

ks
mu

cs
mu

−kt+ksmu
− cs
mu

]
, DF =

[
0

kt
mu

]
.
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2.5 Data Mining

2.5.1 Overview

There are mainly three types of machine learning tasks, which are su-
pervised learning, unsupervised learning and reinforcement learning [116].
There is a lot of research and there are several approaches and algorithms
of all the three machine learning tasks. A detailed discussion and weighting
of all possible methods of machine learning and the combination of those is
beyond this work.

However, the main goal of this study is to classify and estimate the road
condition based on features extracted from sensor data, which are physically
comprehensible. Furthermore, it should be possible to evaluate the accuracy
of the classifier. These points lead us to apply a data mining method, which
is based on supervised learning. The advantages of supervised learning
are that less training data is needed and the output is comprehensible.
The main disadvantage is the costly labeling of data to train and test the
models. Latter drawback can be narrowed down by using data, which are
automatically acquired and labeled in a simulation.

The steps of the methods based on supervised learning, which are applied
in this work, are shown in Figure 2.5.

sensor data
acquisition

feature
extraction

feature
selection

feature
aggregation

classification
regressionoutput

trainingtesting

analog
data

time
series

n-dim. feat.
vector

ñ-dim. feat.
vect. (ñ≤ n)

n̊-dim. feat.
vect. (̊n≤ ñ)

class
metric

Figure 2.5: Overview of methods to predict classes or a metric based on time
series.

Features are extracted from time series acquired from sensors to re-
duce the dimension. The dimension of the feature vector can be reduced
through feature selection (subsection 2.5.4) and feature aggregation (sub-
section 2.5.5). The classification (subsection 2.5.2) and regression model
(subsection 2.5.3) needs a training phase to find a function to separate the
classes or to find the relationship between the dependent variable and the
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explanatory variables. From testing and training phases, performance mea-
sures can be calculated to estimate the generalization (subsection 2.5.6).

The input matrix for the classification or regression problem is matrix X
with X ∈ Rh×n, which consists of n various features and h feature vectors
xi with xi ∈ Rn. The input matrix X is defined as

X =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xh1 xh2 · · · xhn

=


xT1
xT2
...
xTh

 ,
and the output vector y with y ∈ Rh as

y = (y1,y2, . . . ,yh)T .

For regression, yi is the observed value, for classification, yi ∈ Kj , j =
1, . . . , l is the class corresponding to xi.

An example of an input matrix to classify road attributes in this study
is shown in Table 2.3. A road segment annotated with a specific class is
described by various features, e.g. standard deviation from vertical acceler-
ation, roll rate, and pitch rate. In case of a regression problem, the output
is a metric instead of a class.

Table 2.3: Example of an input matrix and output for classification.
Features

Road segment σ(az) σ(ωx) σ(ωy) · · · Class
(m/s2) (rad/s) (rad/s) · · ·

1 0.7 0.21 0.25 · · · pothole
2 0.3 0.11 0.13 · · · damaged surface
3 0.1 0.02 0.05 · · · smooth surface
...

...
...

... · · ·
...

h 0.4 0.12 0.10 · · · damaged surface

2.5.2 Classification

The goal of a classification problem is to find a function fX , which returns
a class based on features extracted from the sensor data. The classification
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function in this study, estimated with annotated data, is used to predict
road attributes based on vehicle inertial sensor data (Section 3.1). After
a training process, the model can be tested for generalization in a test-
ing process and afterwords the function can predict classes based on new
measurement data.

A support vector machine (SVM) is a model to find such a function [117].
It is known as a top performer and it finds a global optimum, maximizes
the generalization ability, is robust to outliers, and is geometrically expli-
cable [118]. The disadvantages are, that a SVM needs a training process
like all supervised learning methods and that it has to be extended for
a multiclass problem, since it uses a direct decision function [118]. The
one-against-one method can be used to classify various outputs, which was
introduced in [119] and firstly applied on SVMs in [120].

For a multiclass problem, l(l− 1)/2 classifiers are constructed to find
hyperplanes between each class. Each classifier is trained on data from two
classes p and q, notated as (p,q), which leads to the following classification
problem:

min
w(p,q),ξi(p,q)

1
2(w(p,q))Tw(p,q) +C

∑
i

ξi
(p,q)

subject to (w(p,q))Tφ(xi) + b(p,q) ≥ 1− ξi(p,q), if yi = p

(w(p,q))Tφ(xi) + b(p,q) ≤−1 + ξi
(p,q), if yi = q

ξi
(p,q) ≥ 0.

(2.6)

C
∑
i ξi

(p,q)is the penalty term with the penalty parameter C and slack
variables ξi. The goal is to find a balance between the training errors and
the regularization term 1

2 (w(p,q))Tw(p,q), where w is the orthogonal vector
of the hyperplane to separate the classes. b is the shift of the hyperplane.

The input xi can be mapped into a higher dimensional space with the
feature map φ. The minimization problem (2.6) can be transformed into a
dual problem and the classification rule for a binary classification problem
is then

f(xi) = sgn((w(p,q))Tφ(xi) + b(p,q)).

The instance is finally classified with a voting strategy, which is called
’Max Wins’ strategy [121]. The vote for class p is increased by one, if xi
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is predicted as class p. Otherwise one vote is added to class q. Finally the
class with the most votes determines the instance classification.

2.5.3 Regression

A linear regression function is defined as

f(xi) = xi
Tβ+ b,

where xi is the input, β the regression coefficients and b the error variable.
The regression coefficients can be estimated by minimizing the distance of
the ground truth yi and f(xi). Common estimation techniques for linear
regression are for example linear least squares.

A version of SVM was introduced in [122] to find such a function with
a set of training data. For this study, the regression function, estimated
with annotated data, is applied on acoustic sensor data acquired in the tire
cavity to estimate the road roughness. The goal of the SVM regression
is to minimize the distance ε of the upper and lower bounds to the true
value while being as flat as possible. Considering slack variables, ξ and ξ∗,
to allow regression errors with cost C, the optimization problem can be
formulated as:

min
β,ξ,ξ∗

1
2β

Tβ+C
∑
i

(ξi+ ξ∗i )

subject to yi− (xiTβ+ b)≤ ε+ ξi

(xiTβ+ b)−yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0.

The ε-intensive loss function describes the idea behind the SVM regres-
sion:

Lε =
{

0 if |yi−f(xi)| ≤ ε
|yi−f(xi)|− ε otherwise

Only estimated values with a distance greater ε to the observed value are
penalized.

Analogous to subsection 2.5.2, the input xi can be nonlinearly trans-
formed with the function φ. The optimization problem can be computa-
tionally simpler solved in its Lagrange dual formation.
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2.5.4 Feature selection

In order to evaluate the features and to select a number ñ of the most impor-
tant ones, the goal is to find a function Q, which describes the feasibility of
a combination of features to separate the classes [123]. The function should
find the index set I = {i1, · · · , iñ} from all possible index sets Icand with
all feature candidates, at which the function values of the measure Q are
maximized:

I = argmax
Icand

Q(Icand) with |Icand|= ñ.

The feature selection improves the model in terms of simplification for
an easier interpretation, shorter training times and avoids redundancy and
overfitting. Overfitting is a problem occurring when the statistical model
is too complex. It tends to describe random errors and noise instead of the
underlying relationships. If too many parameters are taken into account
during the training phase, the classifier will learn all data by heart and will
show a very good error on training data. On the other hand, the predictive
performance and the generalization usually degrade and the prediction error
increases.

A multivariate analysis of variances (MANOVA) [124] can find the ob-
jective function Q. For the MANOVA method, each class of the output is
approximately described with a n-dimensional normal distribution of the
features x [125].

The goal of the method is to find a group I out of n features, in which
the means of feature values of the same class are concentrated and in which
the means of feature values of different classes are diffuse. In other words,
the means of the feature values of different classes are supposed to be apart
as much as possible, which is illustrated in Figure 2.6.

To find a measure of the described requirement, only the features from
the feature set I are selected from the input matrix X and the new input
matrix X̃ has the dimension (h, ñ).

The MANOVA method evaluates the feature sets based on the between
classes variance matrix VB and the within classes variance matrix VW with
l classes, which are defined as

VB =
l∑

j=1
hj ·
(
µj −µ

)
·
(
µj −µ

)T
,
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Figure 2.6: Illustration of MANOVA.

VW =
l∑

j=1
hj · Σ̂j ,

with
µT = 1

h
·J1,h · X̃,

µTj = 1
hj
·J1,hj · X̃j ,

Σ̂j = 1
hj
·
(
X̃j −

1
hj
·Jhj ,hj · X̃l

)T
·
(
X̃j −

1
hj
·Jhj ,hj · X̃j

)
,

where µT is the mean of all features of all classes, µTj is the mean of features
only describing the jth class, and Σ̂j is the estimated covariance matrix of
the jth class. The total variance matrix VT is defined as

VT = VW +VB .

The analysis of variance implies to maximize the between groups variance
VB and to minimize the group variance VW . The solution is an eigenvalue
problem, which can be converted into an ordinary eigenproblem

(VB−λiVW )vi = 0 (VW−1VB−λiE)vi = 0, (2.7)

with the identity matrix E and eigenvectors vi.
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2.5 Data Mining

With the sorted eigenvalues (λ1 ≥ λ2 ≥ ·· · ≥ λñ) from (2.7), different
statistics can be applied to find the objective function Q , such as the
Hotelling-Lawley Trace, Pillai-Bartlett Trace, Roy’s Largest Roots, Wilk’s
Lambda [126]. However, the quality and the question, which of the statistics
is the best one, is still in discussion, e.g. [127, 128]. Here, the Wilk’s
Lambda or likelihood ratio test is applied, which is widely used in recent
literature, e.g. [129, 130] and defined as

ΛI =
h∏
I=1

1
1 +λi

.

For a better interpretation of the test statistics, the test statistics is
defined as

QI = 1−ΛI = 1−
h∏
i=1

1
1 +Λi

= 1− det(VW )
det(VB +VW ) ,

where the best value is Q = 1, which indicates a good evaluation of the
feature set I and the worst value is Q= 0.

The number of features to be used is set by the user, and every possible
feature combination is tested. The best combination is selected by choosing
the quality criterion Q closest to one.

2.5.5 Feature aggregation

The feature aggregation is applied to reduce the size of the feature space in
order to compute the classification rules in a lower-dimensional space and
to save computation time. In opposition to feature selection, no features are
disregarded. There are several methods to perform feature aggregation as
described in e.g. [131, 132], one of them is the linear discriminant analysis
(LDA) [133].

The basic principle behind the linear aggregation is to use a projection
matrix A ∈ Rñ×n̊ to reduce the size of the feature space from the original
feature matrix X̃ into the aggregated feature matrix X̊.

X̊ = X̃A
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The goal of LDA is to maximize the ratio between the within classes
variance VW and the between classes variance VB after the projection using
the transformation matrix A.

The maximization problem can be written as the eigenproblem

(VB−λiVW )vi = 0 (VW−1VB−λiE)vi = 0. (2.8)

The solution of (2.8) is

A= (a1, · · · ,añ) with ai = vi,

where the eigenvectors vi belong to the n̊ largest eigenvalues (λ1 ≥ λ≥ ·· · ≥
λn̊ ≥ ·· · ≥ λñ) from VW

−1VB .

2.5.6 Performance measures

The output of a classifier from the training and testing process is a confusion
matrix M = (mij) ∈ Nl×l for classes Ki, i= 1, . . . , l, as shown in Table 2.4.
In the confusion matrix, mij presents the true positives for class i. The
other elements in column j are called false negatives, in row i false positives
and in the diagonal true negatives.

Table 2.4: Confusion matrix of a classifier from the training or testing process.
Output class

K1 K2 · · · Kl Total

T
ar

ge
t

cl
as

s K1 m11 m12 · · · m1l
∑l

j=1
m1j

K2 m21 m22 · · · m2l
∑l

j=1
m2j

...
...

...
...

...
...

Kl ml1 ml2 · · · mll

∑l

j=1
mlj

Total
∑l

j=1
mj1

∑l

j=1
mj2 · · ·

∑l

j=1
mjl

∑n

i=1

∑n

j=1
mij

An overview of various performance measures for different classification
problems to evaluate a classifier and to give proof for generalization is given
in [134]. The most important performance measures are precision, recall
and accuracy, which are derived from the confusion matrix from training or
testing and calculated as follows:

Precisioni = mii∑n
j=1mji

,
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Recalli = mii∑n
j=1mij

,

Accuracy =
∑n
i=1mii∑n

i=1
∑n
j=1mij

.

2.6 Performance indices for measurement validation

The goodness of fit between estimated values Ŷ and reference values Y can
be quantified using the coefficient of determination or R2 and the normal-
ized root mean square error (NRMSE).

The coefficient of determination R2 is defined as the square of the Pearson
correlation coefficient ρ [135].

ρ(Y , Ŷ ) = cov(Y , Ŷ )
σ(Y )σ(Ŷ )

,

R2 = ρ2.

R2 ranges from 0.0 to 1.0, with higher values indicating better goodness
of fit. However, this performance index only evaluates linear relationships
between the estimated and reference observations. Therefore, it is insen-
sitive to proportional differences of the two data sets and an additional
performance index to determine the true error is needed.

The root mean square error (RMSE) is a commonly used measure to
determine the goodness of fit [136] for n observations. The measure can
be normalized with the range of the reference data, which is referred to
as NRMSE. The values of these measures vary from 0.0 as perfect goodness
of fit to ∞ as bad goodness of fit.

RMSE = 1√
n

∥∥Y − Ŷ ∥∥,
NRMSE = 1√

n

∥∥Y − Ŷ ∥∥
Ymax−Ymin

.
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Since Ymax and Ymin are singe values, the measure is not robust for
signals with outliers. A more robust version is the division with the expected
value of Y :

NRMSE2 = 1√
n

∥∥Y − Ŷ ∥∥
Ȳ

.
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(a) NRMSE = 0.0000, R2 = 1.0000 (b) NRMSE = 0.2500, R2 = 1.0000

(c) NRMSE = 0.0706, R2 = 0.9615 (d) NRMSE = 1.8150, R2 = 0.2755

Figure 2.7: Performance indices for measurement validation.

Figure 2.7 shows the function sin(x) as reference data and variations of
the function as estimated observations. If the reference data and estima-
tion are identical, R2 and NRMSE show the best possible values (prettyref-
fig:performanceindicesa). As mentioned above, R2 indicates a perfect good-
ness of fit for a proportional variation of the two data series (Figure 2.7b).
The two time series in Figure 2.7c are very similar with a harmonic of the
reference observations. NRMSE indicate an almost perfect goodness of fit.
However, the variance of the two time series are identified by R2. The
values for Figure 2.7d are poor for both indices.
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3 Road condition monitoring with vehicle
based sensors

Outline: This chapter presents a novel concept to monitor the road in-
frastructure automatically, comprehensively, inexpensively, and almost in
real-time. Section 3.1 gives an overview of the concept, which is mainly
based on vehicle sensors. The following Section 3.2 analyzes the behav-
ior of the vehicle driving over road features and defects. Based on these
theoretical considerations, Section 3.3 evaluates available on-board vehicle
sensors and introduces the selected sensors for this work. Besides the se-
lected on-board sensors, this work also considers an acoustic sensor in the
tire cavity to estimate the road condition. Section 3.4 describes a novel
road condition monitoring system, which consists of an automated data
acquisition with the selected sensors and data transmission to a central
database. Section 3.5 introduces a novel extended simulation approach to
analyze the vehicle behavior and to investigate new data mining methods
under controlled conditions. Section 3.6 concludes this chapter.

3.1 Concept of a novel road condition monitoring
procedure

Figure 3.1 gives an overview of the proposed novel concept to monitor the
road infrastructure. The vehicle sensors measure the road infrastructure
directly, e.g. with cameras, or indirectly through the vehicle vibration due
to unevenness of the road infrastructure. Furthermore, they measure the
environment, such as the weather condition, which influences the sensors
itself, the vibration behavior of the vehicle and the road infrastructure.
Methods are developed and implemented to combine the collected sensor
data from various vehicles and to gain information of the road infrastruc-
ture. The information, such as the position of road hazards or dangerous
road segments, is provided for advanced driver assistance system (ADAS),
e.g. to warn the driver of road hazards or suggest an alternative route with
a smoother road surface. They are also visualized to allow road engineers to
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Figure 3.1: Overview of the data flow and participants of a novel concept for
road condition monitoring with on-board vehicle sensors.

structure and prioritize their maintenance and quickly react to dangerous
defects.

The novel concept allows to monitor the road infrastructure comprehen-
sively in short intervals and the road transportation departments to give an
overview of the recent road condition. It is mainly based on standard on-
board vehicle sensors to avoid the investment of additional sensors, which
often need a special permit, especially if they are mounted on the outside of
the vehicle. The data are available from the controller area network (CAN)
bus and they can be pre-processed with electronic control units (ECUs).
The required pre-processed data for road condition monitoring or already
extracted information can be sent to other vehicles or to a central data
bank via vehicular communication systems, which is referred to vehicle-to-
everything (V2X) communication.

The fundamental parts of the implementation of this concept are the se-
lection of the appropriate vehicle sensors, the development and application
of data mining methods to extract the favored information and to combine
the output of various vehicles as well as the output of each vehicle under
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3.2 Vehicle motion from road irregularities

different operating conditions, e.g. speed, wheel load, drive, or braking
torque, which overruns the same or an adjacent location. The following
sections in this chapter prepare for the presentation of the novel methods
in Chapter 4 and the implementation of fundamental parts of the concept
in Chapter 5.

3.2 Vehicle motion from road irregularities

Figure 3.2 shows the principal movement of a vehicle due to obstacles on
the road. The red colored coordinate system with its origin as the center
of gravity describes the orientation of the vehicle at rest, which changes its
position during passing the obstacle, indicated by the black colored coordi-
nate system. An extended obstacle on only one vehicle track mainly causes
a roll motion of the vehicle Figure 3.2a and the change of position of the
center of gravity in z and y direction. Examples for such obstacles are ruts
on only one side of the road or potholes. A wide obstacles over two tracks
of the vehicle are for example concrete joints, transverse cracks, or level
crossings, which mainly induce a pitch motion of the vehicle Figure 3.2b.
Furthermore, the original center of mass moves in x and z direction. The
two effects can overlap, for example when the right front wheel of a vehicle
firstly passes a pothole or the vehicle drives over beveled level crossings or
cracks.

ZV

YV

(a) single-lane obstacle

ZV

XV

(b) double-lane obstacle
Figure 3.2: Principal movement of vehicles due to road obstacles.

The vibrations of the vehicle body are damped due to the suspension
system (Section 2.2). The suspension compresses as the wheel moves up
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3 Road condition monitoring with vehicle based sensors

and extends as the wheel moves down to limit the movement of the vehicle
body. Since the tire and the suspension work as a low-pass filter, vibrations
due to very small obstacles or the macro texture of the road might not pass
through to the vehicle body. However, the road profile deforms the tire
structure, which creates sound waves in the tire cavity, which is illustrated
in Figure 3.3.

velocity v wheel rim
tire cavity

tire structure

road surface
λ

Figure 3.3: Vibration of the tire due to road irregularities.

3.3 Evaluation of on-board sensors

Vehicles today have various sensors on-board, which also measure the en-
vironment of the vehicle and the vehicle vibration and movement (Sec-
tion 2.3). For example, a stereo camera system is mounted to the inside of
the windshield to classify objects and determine distance mainly for ADASs
and autonomous driving [137]. The video frames can also be used to derive
objects on the road infrastructure (Section 1.4). However, the stereo cam-
era is currently not available with standard automotive packages and only
with a predictive active suspension system, such as the Magic Body Control
from Mercedes-Benz. A mono camera is available with less sophisticated
packages but the level of detail to detect road defects is lower compared to
the stereo camera (Section 1.4).

The motion of the vehicle due to road irregularities (Figure 3.2) can
be determined with an inertial sensor. Accelerometers in longitudinal and
lateral direction as well as a yaw rate sensor is available with standard
packages, such as electronic stability control (ESC) and anti-lock braking
system (ABS). The sensors, which are important to estimate the road qual-
ity, pitch and roll rate sensor and vertical accelerometers are available with

42



3.3 Evaluation of on-board sensors

vehicle dynamics control or active suspension packages. Hereby, the verti-
cal accelerometer can be placed in the vehicle body or at the front wheels.
Newer vehicles, such as the new Audi A7 is even equipped with an inertial
sensor with higher sample rate of up to 100 Hz as standard, whereas older
vehicles only have an longitudinal and lateral acceleration sensor with lower
sample rates to measure the driving dynamics.

The motion of the suspension can be mainly measured with a ride height
position sensor in chassis systems.

The steering angle sensor and lateral accelerometer might be helpful to
recognize evasive maneuver due to potholes.

The position of the vehicle is necessary to map road defects. Commonly,
vehicles have a navigation system, which provides the vehicle position as
well as the velocity. In modern vehicles, the GPS sensor signal is combined
with inertial sensor data to estimate the precise position with an accuracy
of less than 1 m through data fusion using Kalman filtering.

Latter can also be acquired through wheel speed sensors. An on-board
sensor to estimate the macro texture and to measure the vibration of the
tire (Figure 3.2b) is not delivered ex factory.

Table 3.1 summarizes selected available on-board sensors, the required
automotive package, the cost of the sensor, and their relevance to detect
road irregularities based on previous and current research (Section 1.4).
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Table 3.1: Relevance of on-board vehicle sensors for road infrastructure monitor-
ing.

Sensor Availability Cost Relevance1

Stereo camera Predictive active susp. high ++
Acoustic sensor - low ++
Pitch and roll rate sensor* Vehicle dynamics control low ++
Vertical Accelerometers2,* Active suspension low ++
Vehicle position and velocity* Navigation system med. ++
Mono Camera Lane assist, i.a. high +
Yaw rate sensor* Basic (ESC) low +
Height sensor chassis Active suspension med. +
Steering angle sensor Basic (ESC) low +
Longitudinal and lateral accel.* Basic (ESC) low ◦
Wheel speed Basic (ABS) low ◦
Radar/ultrasound Side assist, i.a. high –
1 ++ highly relevant

+ relevant
◦ relevant as covariate
– not relevant

2 at vehicle body and/or suspension system
* considered in this work

3.4 Novel road condition monitoring system

3.4.1 Sensors

The survey of related research (Section 1.4) shows that the stereo camera
has been extensively studied in previous literature and has several draw-
backs. Road profilometers are too expensive for data acquisition with a
vehicle fleet.

An inertial sensor in the vehicle body represents a promising sensor to
estimate the road quality, as it measures the movements of the vehicle due
to obstacles. An inertial sensor placed at the wheel carrier results in higher
measurable frequencies due to lower inertia. However, since series vehicles
are hardly equipped with inertial sensors at the wheel carrier, the focus
lies on inertial sensors positioned in the vehicle body. Section 1.4 showed
that research on inertial sensor for road infrastructure monitoring still has
room for improvements, especially in data processing and combination of
the output of various vehicles.

Acoustic sensors outside of the vehicle have various disadvantages. They
are prone to environmental influences, such as water, and suffer from acous-
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tical reflections from the environment, e.g. from noise protection walls or
houses, or noise, e.g. from passing vehicles. Acoustic sensors inside the
vehicle body suffer from noise inside the cabin, e.g. from radio and conver-
sations of the passengers.

An acoustic sensor in the tire cavity for broad application has been rarely
studied (Section 1.4). So far, only prototypes have been developed, which
are too expensive for fleet tests and which need a specific vehicle permit
due to their large constructed size and the modification of the rim for lead-
through of the sensors. Furthermore, the tire cavity acoustic sensor has
only been researched in the context of tire road noise. Therefore, this
work considers a tire cavity acoustic sensor with the aim to develop a new
measuring device for fleet tests and to estimate the road roughness or macro
texture.

The position of the vehicle and therefore global position system (GPS)
is necessary to visualize and map the estimated road quality or defects.
The accuracy of the positioning can be improved by sensor fusion of GPS
and inertial sensors, as shown in, which is implemented in modern series
vehicles.

Overall, based on the evaluation of previous research (Section 1.4) and
on-board sensors (Section 3.3), this work considers the following sensors for
road condition monitoring:

• inertial sensor in the vehicle body
• tire cavity acoustic sensor
The following sections investigate
• the principal graph of the raw data of the sensors,
• if the sensors are suitable to measure the vehicle or tire vibration due

to road damages practically and not only theoretically,
• the signal to noise ratio (SNR),
• the principal influences on the sensor data.

Inertial sensor in the vehicle body

A cleat test has been performed to investigate whether information from
inertial sensors in the vehicle body can be extracted to detect rough road
obstacles. For this purpose, a test vehicle BMW 116d (E87) was equipped
with an inertial sensor in the trunk above the center of the rear axle. In
addition, two inertial sensors were placed on the lower wishbone of the left
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and right wheel to investigate the acceleration at the unsprung masses for
further research.

Four cleats with heights of 5, 10.5, 13.0 and 19.5 mm were rolled over, with
both vehicle lanes and with either one. The test drives were repeated three
times with velocities of 20 and 40 km/h. The performance indices with R2

of 0.9210 and NRMSE of 0.04275 on average indicate a good reproducibility
of the test drives [200].

Figure 3.4 and Figure 3.5 show the vertical accelerations of the sprung
and unsprung masses as well as the roll and pitch velocity of the vehicle
body for the overrun of two cleats with different heights.

The accelerometer measures the gravity of approximately 9.81 m/s2 at
rest. The overrun for the rear axle of the cleat takes place at 2 s. The grayed
area for pitch and roll velocity of the body starts at 1.3 s, since the front
axle runs over the cleat at 1.5 s. Figure 3.4 indicates, that the cleat with
a height of 5 mm has a low impact on the acceleration of the body. The
standard deviation of the signal during the overrun of the cleat is 0.062 m/s2

compared to a standard deviation without the cleat of 0.016 m/s2. The
SNR defined as the ratio of the variance of the acceleration at the cleat and
without the cleat is 5.69. No significant change of the amplitude of the roll
rate can be detected. The SNR of the pitch rate is 6.76, of the unsprung
masses 6.36 on average.

Figure 3.5 shows the sensor signals for the overrun of a higher cleat of
13 mm with only the left vehicle lane. The SNR of the acceleration of the
sprung mass is higher with 9.95 as well as the acceleration of the rear left
unsprung mass with 30.76. Furthermore, the roll motion of the vehicle is
reflected by a SNR of 5.76 for the roll rate. The pitch rate shows a SNR of
4.84. Since the first vehicle axle passes the cleat at 1.5 s, the pitch and roll
rate show a higher amplitude at this point.

The analysis of all data during this test under controlled conditions with
simple road obstacles and two different velocities allow the following con-
clusion:

• The SNR for all sensor signals increase with the height of the cleat
(compare Figure 3.4 and Figure 3.5).

• The amplitudes of the roll rate give an indication, if the obstacle
effects both vehicle lanes, such as a speed bump, or only one, such as
a pothole.
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Figure 3.4: Vehicle and wheel response to cleat on both vehicle lanes with height
0.5 cm and with velocity 20 km/h. The relevant section is grayed.
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Figure 3.5: Vehicle and wheel response to cleat on left vehicle lane with height
1.3 cm and with velocity 20 km/h. The relevant section is grayed.
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• The vehicle body vibration due to obstacles with a height of less
than 20 mm, which are categorized as critical by road authoraties
(see Section 1.3), can be detected with an inertial sensor.

Acoustic sensor in the tire cavity

The time series of the tire cavity sound under vehicle operation with con-
stant velocity of 60 km/h is shown in Figure 3.6. The data were acquired
with a MB S-Class W220 model as test vehicle, a 255/60R16 tire, and the
acoustic measurement system described in [74], where the microphone is
placed inside the tire and rotates with the wheel. The tire is excited by the
surface texture, which is shown in the high-frequency wave representing the
first circumferential tire cavity mode.

Figure 3.7 shows the power spectral density (PSD) of the tire cavity
sound under vehicle operation with the same vehicle (BMW 116d (E87)
with 205/55R16 tire) on different surfaces (Figure 3.7a) and with different
vehicles and different tire sizes, a BMW 116d (E87) as vehicle 1 and MB
S-Class W220 with 255/60R16 tire as vehicle 2 (Figure 3.7b). The power
spectral density (PSD) was calculated with the Welch’s power spectral den-
sity estimate. The peaks in Figure 3.7a represent the tire cavity resonance
frequency and its harmonics (1 to 4), which can be calculated with

f(i) = i · csound
2π · rTC

,

where, i is the number of the harmonic, csound the sound velocity and rTC
the radius of the tire cavity on average.

Furthermore, the PSD level of both curves underline the theory that a
greater road surface roughness leads to greater tyre deformation and thus
to greater excitation of cavity modes within the tyre torus. The sound
pressure level (SPL) of the tire cavity sound for the rough surface is over
20 dB higher than for the smooth surface.

The difference of the resonance frequency of different vehicles is illustrated
in Figure 3.7b. The peaks are not at the same frequency due to the different
radii of the tire cavity, whereas vehicle 2 had tires with a greater radius.
Moreover, vehicle 2 had a higher velocity and a higher SPL compared to
vehicle 1.

From the analysis of tire cavity sound pretests the following points can
be conducted:
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Figure 3.6: Time series of tire cavity sound.
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Figure 3.7: Power spectral density (PSD) of tire cavity sound under different
conditions and with different vehicles.

• The macrotexture of the road surface has an influence on the tire
excitation and the SPL in the tire cavity.

• The frequencies of the tire cavity modes differ in the size of the tire.
• The influence of further parameters, such as velocity, tire temperature,

or tire pressure needs to be investigated,
• Features have to be individually calculated for each vehicle.

3.4.2 Data acquisition

To acquire data comprehensively on roads with various vehicles and to
enable a road infrastructure monitoring in short time intervals, a measuring
system must meet the following requirements:

• automatic data acquisition with no manual intervention,
• automatic data transmission to a central data base in short intervals,
• low investment per unit.
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Figure 3.8 shows the concept of a novel road condition monitoring system
based on the selected sensors (Section 3.4). The basis of the measuring
system is a data logger, which stores the data from various sensors during
the drive. The sensors are an inertial sensor and GPS receiver placed in
the vehicle body and directly connected to the data logger. A tire pressure
monitoring system (TPMS) controls the tire temperature and pressure and
transmits the data wireless to the data logger during vehicle operation. A
telemetry attached to the rim acquires the data from the tire cavity sound
sensor and transmits the data to the data logger as well.

The data stored on the data logger are transferred to a central database on
a server via an access point. Access points can be placed close to the parking
area of the vehicle. The upload starts, after the data logger is connected
to the access point. The data from the various sensors can then be fused
on the server, also with additional data, such as weather data. Afterwards,
the data is processed with methods developed to provide a comprehensive
and up to date overview of the condition of the infrastructure.

The data logger and sensors in the vehicle are activated and deactivated
with the ignition of the vehicle. The TPMS, telemetry, and tire cavity
sound sensor is activated or set in stand by, dependent on the centrifugal
force of the wheel.
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Figure 3.8: Concept of a novel road condition monitoring system.

3.4.3 Demonstration of novel measuring device

Modern vehicles are equipped with many sensors (Section 2.3) and the re-
spective data can be sampled from the CAN bus, especially the acceleration
of the vehicle. However, the data is encrypted and can usually only be ac-
cessed by original equipment manufacturers (OEMs) or automotive suppli-
ers. Researchers have used dedicated inertial measuring units (IMUs) [138]
or smartphones as multi sensor platforms [139, 140]. However, dedicated
IMUs are expensive and sophisticated to use and therefore not applicable
for automated data acquisition with various vehicles. It is difficult to equip
smartphones with additional sensors or to simultaneously acquire data from
different positions within or outside the vehicle. Furthermore, the hardware
can usually not be extended, e.g. with an antenna to improve the wireless
connection to sensors outside the vehicle, such as the acoustic sensor in the
tire cavity.

Therefore, a new measurement device is developed to meet the require-
ments of the novel road condition monitoring system, which is defined in
Section 3.4. The goal is to acquire data from various sensors, to enable an
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automatic data acquisition and data transmission to a central server, and
to have low cost of investments per unit for fleet use.

The core of the novel data acquisition method is a data logger in the
vehicle, which consists of a single-board computer (SBC), namely a Rasp-
berry Pi. The Raspberry Pi has input/outputs (I/Os) to connect additional
sensors. Moreover, WLAN and Bluetooth adapters can be plugged in to
receive or send data, as well as a memory card to store a large amount of
data. Periphery, e.g. buttons, can be installed to label the data live with
the desired output. The software can be self developed as open-source and
the processor can merge and preprocess the data from various sensors. Fur-
thermore, the SBC can be extended by additional boards, such as GPS or
a uninterruptible power supply (UPS).

Besides the data logger, a new telemetry system at the vehicle wheel has
to be developed to transmit the acoustic data of the tire cavity to the data
logger.

The sensors of the novel road condition system are selected and briefly
described in the following paragraphs. Furthermore, the new developed
telemetry system and the database to centrally store the data from all
vehicles are specified.

The accuracy of the selected sensors for the novel measurement device
are validated and the results are shown in Section 6.2. The signals of the
selected inertial sensor and acoustic sensor are compared with signals from
reference sensors, which are accurate but too expensive for fleet use. The
accuracy of the velocity from GPS is evaluated by comparing the data with
velocity acquired with on-board diagnostics (OBD).

Inertial sensor

Microelectromechanical systems (MEMS) sensors have a good performance,
and have advantages in size and power consumption compared to other
technologies. Therefore, a MEMS inertial sensor (LSM9DS1) is selected to
measure the motion of the vehicles. Furthermore, the sensors measures all
six directions of movements.

Acoustic sensor

In contrast to an inertial sensor, which is either available on-board via CAN
bus, in a smartphone or dedicated IMUs, an automated and inexpensive
data acquisition of tire cavity sound data has not yet been developed. The
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3.4 Novel road condition monitoring system

most recently developed prototype, presented in [74], to sample tire cavity
sound data is too expensive, the battery lasts only 10 hours, the vehicle
needs a special permit to participate in public road traffic, and it needs
manual interaction to start and stop the measurement.

The sensor in the tire cavity is exposed to extreme conditions. The SPL
in the tire cavity to be measured exceeds 150 dB and the static pressure
is approximately 2 bar above atmospheric pressure. The temperature in
the tire cavity varies between -10 and 70 ◦C and the weight of the sensor
influences the imbalance of the wheel. The frequency range to be analyzed
is 50 to 5,000 Hz.

A conventional electret microphone with low investment costs per unit
does normally not meet the described requirements, especially to measure
the high SPL in the tire cavity. However, a novel modification of conven-
tional electret microphones is proposed to measure higher SPL with less
total harmonic distortion (THD). For this purpose, the field effect transis-
tor (FET) is rewired from its common source configuration into a source
follower configuration [141]. With the new configuration, the microphone is
supposed to have a reduced sensitivity but an increased maximum output
voltage.

Different types of microphones were experimentally analyzed to identify
the sensor with the best ability to measure the tire cavity sound. The
following microphones were considered:

• INMP411, a MEMS microphone,
• CMA-4544pf-w std., a standard inexpensive electret condenser micro-

phone,
• CMA-4544pf-w mod., the modified electret condenser microphone

with the source follower configuration,
• PCB 103B02, an acoustic ICP pressure sensor as reference sensor,

which was used in [74] for tire cavity sound measurements.
To evaluate the acoustic sensors, the following experements were per-

formed:
• Measurement of THD by exciting the sensor in a closed cavity with a

sine wave with a frequency of 1 kHz and a SPL of 110 dB. The source
of the sine wave has a THD of less than -80 dB (≤ 0.01 %).

• Measurement of Maximum SPL by exciting a tire with the sensors
in the cavity with an impact hammer. The tire was mounted on a
seismic mass to avoid environmental influences and the tire pressure
was 2.5 bar.
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• Measurement under vehicle operation on different types of road sur-
faces with constant speed of 30 and 60 km/h to investigate the per-
formance of the sensors under the future application.

A novel telemetry device at the wheel, which transmits the sound data
to the data logger in the vehicle, has been developed to start and end
the measurement automatically [142]. A 3-axis ultra-low power MEMS ac-
celerometer is located on the battery-power telemetry and tracks the cen-
trifugal acceleration of the wheel. As soon as a predefined threshold of the
acceleration is exceeded, the accelerometer sends an interrupt to a micro-
controller, which then enables the power supply for the telemetry and sends
the telemetry back to stand-by if no acceleration is detected.

GPS

As GPS sensor the MTK3339 chipset is employed and connected to the
data logger via UART to acquire the position and velocity of the vehicles.

TPMS

The static pressure and temperature in the tire torus influence the tire torus
sound and needs to be recorded. Modern vehicles have a TPMS on-board
and direct TPMSs have a sensor usually at the valve in each tire to measure
the pressure and the temperature [201]. Similarly to the telemetry of the
acoustic sensor, the TPMS sensor is activated by an accelerometer. More-
over, a diagnostic device or the receiver of a high-line TPMS can request
the sensor for data. The sensor is calibrated under ambient air pressure to
take advantage of the better range of values for the analog digital converter
(ADC). The information of the sensor, the pressure, temperature, sensor ID
and received signal strength indicator (RSSI), is transmitted to the receiver
via the carrier frequency of the ISM band, which corresponds to 433 MHz
in Europe. The signal can be sampled via the CAN bus or intercepted
and decoded by an external data logger in vehicle, which is implemented in
this work. Figure 3.9 shows the time history of the tire temperature and
pressure acquired with a TPMS. Naturally, the first signal of the TPMS is
transmitted a few minutes after starting the drive. The initial conditions
were approximately 25 ◦C for the temperature outside and 2.4 bar for the
tire pressure.
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Figure 3.9: Tire temperature and pressure acquired with TPMS.

Database

The data transmission is realized via WLAN to avoid costs for mobile data
plans, which is usually implemented when using a smart phone as data
logger [139, 140]. The data logger connects to an access point, which is for
example close to the parking area of the vehicle, and uploads the data to a
server, where it is stored, merged and processed. Furthermore, the software
of the data logger can be automated updated, by pulling the software from
a web-based hosting service and version control system, where the source
code is managed.

Figure 3.10 summarizes the developed method to acquire and centrally
store the data from the sensors in the vehicle body and tire cavity.
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Figure 3.10: Functional diagram of the developed data acquisition method.

3.5 Extended simulation approach for road condition
estimation

3.5.1 Overview

Simulation has several advantages compared to real measuring drives, e.g.
a perfect reproducibility, low cost and effort, among others [143]. Further-
more, it is difficult to investigate a single influencing factor during real test
drives, while keeping all other dependent parameters constant. In a vehicle
simulation, the physical behavior of the vehicle dynamics can be precisely
investigated. Moreover, it is costly and time consuming to acquire and la-
bel real measurement data to apply supervised learning. Therefore, this
section describes the development of an extended simulation approach for
road condition estimation. Especially for the purpose of using the angular
rates and acceleration of the vehicle body to estimate the road condition,
the following examinations are considered:

• the optimal placement of the inertial sensor in the vehicle body,
• the optimal parameters for the data processing methods,
• the influence of vehicle velocity and vehicle load,

56



3.5 Extended simulation approach for road condition estimation

• the influence of the vehicle, suspension type, the SNR, and of the
sensor signals on the ability to detect road features.

The consideration of all influences, parameters and constructional ele-
ments in the simulation is not possible due to computational costs or be-
cause the values for the parameters are unknown and can not be deter-
mined. Therefore, the vehicle model for this study sets various simplifi-
cations, which are discussed in the following sections. A common full car
vehicle model, shown in Figure 3.11, is extended to sample the vehicle body
motion from different positions and different set-ups, such as an active sus-
pension or anti-roll bars. Furthermore, the road profile as input of the
simulation is extended compared to previous literature.

mu 3

ks3 cs3

kt 3

dr i dle

d f

dr

vV

ZV

ψV

XV

φV

YV

θV

ms

mu 2

ks2 cs2

kt 2

Zu2

Zs2

Xs2
Ys2 mu 4

ks4 cs4

kt 4
mu 1

ks1 cs1

kt 1
rR1 rR2

rR3 rR4

Figure 3.11: Full car model for vertical dynamics simulation.

Previous studies have focused on the behavior of the vehicle on roads with
different levels of roughness with road models presented in Section 2.4, e.g.
[144, 145]. However, these simulation approaches do not represent a real
road infrastructure. This study extends previous simulation approaches
not only by the vehicle model but also by the road model, e.g. by the
implementation of road features and obstacles.
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The models are transferred into a state-space model as introduced in
Section 2.4 to be simulated in Matlab. The simulation can run on any
modern computer without special hardware. The user can set the different
parameters, which are discussed in the following sections. The simulation
with a road length of 10 km takes around 5 min with standard processor
(Intel Core i5) and main memory (8 GB). The corresponding data file then
has a size of approximately 20 MB.

3.5.2 Extended road model

The developed novel simulation considers not only different degrees of sur-
face roughness, such as the international roughness index (IRI) as intro-
duced in subsection 2.4.3. Also the following road features are implemented,
such as defects and constructional obstacles:

• smooth asphalt road
• ralroad crossing
• manhole cover
• cobbled road
• porthole
• uneven asphal road
The basic road surface and different levels of roughness can be modeled

with (2.5). The implemented road features are described by continuously
differentiable functions with varies parameters for height, depth, and length
to avoid numerical issues in the time step integration process of the simula-
tion itself [146]. Thus, the transition part of the road features are smooth.
The implemented road model can be found in [202, 147].

3.5.3 Extended full car model

The basic full car model is extended by an anti-roll bar and an active
suspension. The anti-roll bar is a part of many automobile suspensions and
helps to reduce the body roll of a vehicle when the deflection of body and
tire between left and right side are different [144]. The implemented model
of anti-roll bar can be found in [144].

In addition to the passive suspension with basic springs and dampers,
active suspensions use actuators between the chassis and wheel assembly,
which can exert an independent force on the suspension in order to improve
the driving comfort. One quarter of the full car model with active suspen-
sion is shown in Figure 3.12. The force fi is applied between the body
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and wheel assembly. It is controlled by feedback and represents the active
component of the suspension system.

ms

mu i

controller

sensor

sensor

ks i cs i
fi

kt i
rR

z̈s

z̈u i

Figure 3.12: One quarter of the full car model with active suspension exemplar-
ily for wheel i. The force fi is controlled by feedback and represents
the active component of the vehicle model.

With this model the mathematical modeling for bouncing (3.1), pitching
(3.2), rolling (3.3) of the vehicle body and vertical motion of each wheel
(3.4) is derived as follows:

msz̈s =
4∑
i=1
−ksi(zsi−zui)− csi(żsi− żui) +fi, (3.1)

Jyy θ̈V =
∑
i=1,2

−df (ksi(zsi−zui) + csi(żsi− żui)−fi)

+
∑
i=3,4

dr(ksi(zsi−zui) + csi(żsi− żui)−fi),
(3.2)

Jxxφ̈V =
∑
i=1,3

dri(ksi(zsi−zui) + csi(żsi− żui)−fi)

+
∑
i=2,4

−dle(ksi(zsi−zui) + csi(żsi− żui)−fi),
(3.3)

muiz̈ui = ksi(zsi−zui) + csi(żsi− żui)−kti(zui− rRi)−fi.(3.4)

There has been a lot of research in the design of a suitable control strat-
egy for the active suspension. [148–150] compared and investigated different
advanced controllers, such as linear quadratic regulator (LQR), Fuzzy, Sky-
hook and H∞. Most often the H∞ based method achieves the best results
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with a good efficiency. Furthermore, it is widely used in the automotive
industry because of its low cost and simplicity [151]. Therefore, a H∞ con-
troller is implemented for this extended simulation approach. The main
control objectives are formulated in terms of passenger comfort and road
handling, which relates to body acceleration, pitch acceleration, roll accel-
eration and suspension deflections zdefi = zsi−zui. Hence, the feedback is

f = (z̈s, θ̈V , φ̈V ,zdef1,zdef2,zdef3,zdef4)T .

Other factors that influence the control design include the characteristics
of the road disturbance, the quality of the sensor measurements for feedback
and the characteristics of the available control force actuator.

Measurement position of vehicle body motion

The value of the acceleration is dependent on the measurement position in
the vehicle body [143]. It increases with a larger distance from the vehicle
center of gravity (CGV ) along the x-axis. In simulation, the accelerations
and rotation rates of the vehicle body are mainly measured in the CGV of
the vehicle body. To investigate, if the measurement position of the sensor
has in impact on the accuracy to classify the road condition, the simulation
is adapted. Specifically, different measurement positions at (xO,yO,zO) of
the vehicle body motion are implemented

The relation between vertical acceleration at the new measurement posi-
tion a′z and the acceleration at CGV az is approximately

a′z = az +a′′z = az− θ̈V ·xO + φ̈V ·yO, (3.5)

for small vertical distances from the CGV .
The vehicle body is regarded as a rigid body, hence the angle and motion

is shared among the entire rigid body

θ̈V
′ = θ̈V ,

φ̈V
′ = φ̈V .

With (3.5) the output of any position in the vehicle coordinate system can
be approximately derived and the influence of the position of the interial
sensor on the classification result can be analyzed.
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3.5.4 Comparison of computer-simulated and real measurement data

The data acquired in computer simulation with the presented vehicle model
are compared to real measurement data to prove the usability of the simu-
lation to predict road obstacles.

Firstly, the general behavior of the vehicle model is analyzed by overrun-
ning a cleat in simulation equivalent to the real world cleat test described
in subsection 3.4.1. Hereby, the vehicle, a BMW 116d, overruns a cleat
in computer-simulation and real world, which is 13 mm high and 70 mm
wide at the speed of 20 km/h. The inertial sensor is placed in the glove
compartment to be approximately vertical above the axle. In addition, in-
ertial sensors are placed at the control arms of the front axle to measure
the acceleration of the unsprung masses. These measurement points for
vertical acceleration and pitch and roll rate are identically reproduced in
simulation. Figure 3.13 shows the result of this test and indicates that the
general behavior of the simulation is correct, although the data from the
real measurement shows more noise.
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Figure 3.13: Comparison of the simulated and real vehicle response while pass-
ing a cleat.

Secondly, the vehicle model in simulation is validated by comparing the
vehicle vibration with real world measurement while traversing different
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obstacles with various velocities. During the real test drive six different
attributes at four different velocities are measured. All of the following
signals are acquired at the center of gravity. For each velocity and each
attribute measure, four runs are conducted and then the averaged value of
the parameter is reported. The error bars show the standard deviation of
the obtained values. The result of the measured data and the simulation are
shown in Figure 3.14. It is observed that the graph of the standard deviation
of vertical acceleration and roll rate for simulation follow the graph for real
measurements.
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Figure 3.14: Comparison of the standard deviation (SD) of vertical acceleration
and roll rate.

The relative differences of the standard deviation values from real mea-
surements and simulation are shown in Figure 3.15. For most of the values,
the differences are below 25 % for the SD of vertical acceleration and for
the SD of roll rate. The values for SD of vertical acceleration are higher
for real measurements for asphalt and cobbled road. The values for SD
of roll rate is higher in simulation for manhole cover for higher velocities.
Overall, the computer simulation describes the vibration of the vehicle well,
even for various velocities and road attributes. There are specific outliers
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Figure 3.15: Relative differences of real and simulation measurements.

in the relative differences (Figure 3.15). However, the order of the abso-
lute values for the different road attributes of simulation corresponds with
the real measurements (Figure 3.15). Therefore, the simulation is suitable
for the purpose of this study (subsection 3.5.1), e.g. to test various pa-
rameters of data processing methods and investigate influences of various
vehicle settings and parameters on the classification accuracy. However, the
simulation does not perfectly replicate the vibration of a vehicle under all
conditions. Therefore, the classifiers for real vehicles still have to be trained
with real world measurement data.

3.5.5 Variation of parameters for vehicle model data processing

There are many parameters influencing the classification results, including
the size and physical parameters of the vehicle, different loads on the vehicle,
and the type of suspension e.g. passive suspension, passive suspension with
anti-roll bar, and active suspension. This subsection describes the variation
of parameters, which are considered for the simulation. The results of the
investigations of varied parameters are shown in Section 6.4.

To determine whether a classifier can be generally used on another ve-
hicle, the tests of the classification with different variations are simulated.
Therefore, a BMW 116d is simulated with additional load of 200 kg and
400 kg. Furthermore, a vehicle model with parameters compared to a S-
Class W220 with active suspension is tested as well as with parameters
compared to a Sprinter.
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Besides the variation of parameters for the vehicle model, the influence
of the position of the inertial sensor in the vehicle body is analyzed. The
measurement position of the vehicle body motion in the simulation is the
center, axle, side, and corner of the vehicle, defined as S1, S2, S3, and S4.
The coordinates (xO,yO,0) of the four positions in the coordinate system
of the full car model are presented in Table 3.2.

Table 3.2: Parameters for the different positions of outputs.
(m) S1 S2 S3 S4
xO 0 1.345 0 1.345
yO 0 0 0.856 0.856

3.6 Conclusion of novel concepts for road condition
monitoring

This chapter introduces a novel concept to monitor the road infrastructure,
based on vehicle crowds and on-board sensors (Section 3.1). On-board
sensors, which measure the environment of the vehicle sensor (e.g. cameras)
or the vehicle motion due to road irregularities are evaluated (Section 3.2).
An inertial sensor in the vehicle body and an acoustic sensor in the tire
cavity are selected to be considered in this work (Section 3.3) and first
data of the sensors are discussed. A concept of a novel road condition
monitoring system and a simulation approach are introduced to acquire data
automatically and to investigate specific influencing factors (Section 3.4 and
3.5).

The concepts are the basis for novel methods to acquire sensor data,
which includes the selection and improvement of appropriate sensor models,
acquisition devices, and methods to transmit and store the data in a central
data base. As pointed out in Section 3.1, the core of the monitoring concept
is the development and application of novel methods to process the data
to estimate the condition of the road infrastructure. Furthermore, methods
have to be developed to combine the output of various vehicles to improve
the accuracy of the prediction of the ground truth. Finally, the developed
methods and novel measuring devices have to be implemented and verified.
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Outline: This chapter presents methods to process data, which are ac-
quired with the measuring device described in Section 3.4.3. First, the raw
data is preprocessed (Section 4.1). Section 4.2 describes methods how to
process data, which are either annotated with the desired output variable
or without a label. The application of the introduced supervised learning
methods for labeled data is presented in Section 4.3. For this application,
a benchmark data set is acquired under controlled conditions, e.g. one spe-
cific vehicle, four different velocities, and three different road attributes or
obstacles. Finally, methods are developed to find road sections, which are
passed through by various vehicles. Moreover, methods are presented to
combine the prediction of each vehicle with confidence π to gain a more ro-
bust overall estimation of the road condition (Section 4.4). This procedure
is only possible for the output of labeled data processing, since prediction
confidence π cannot be calculated from non-labeled data processing results.
The flow-chart of the data processing and methods are illustrated in Fig-
ure 4.1. Section 4.5 concludes this chapter.
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labeled data
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Figure 4.1: Overview of data flow.
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4.1 Sensor data preprocessing

Since supervised classification is applied in this study, time series needs
to be labeled with the desired output, namely the ground truth on the
road. This is implemented by two buttons, which annotate the data while
pressing. In contrast to previous studies [89, 93, 94, 96], which for example
label the data ex post with video material, the data can be annotated live.
However, if the annotator is not experienced, the label might not be aligned
with the data corresponding to the ground truth. Therefore, the first step
of the preprocessing is to align the label, which needs to be done manually
but can be performed fast since the original label gives the rough position
of the related time series. Figure 4.2 exemplarily shows the described step.
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Figure 4.2: Aligning of the original label.

The button was pressed later than the attribute started, which leads to
a delay of the label. This was manually adjusted and shifted to the correct
position.

The vehicle vibration is dependent on the velocity [152]. The velocity de-
pendency at least for the frequency shift can be minimized by transforming
the time series into space series [153]. Therefore, the distance increments
are calculated with the velocity and the time vector:

∆s= v ·∆t.

Afterwards, the space domain data is resampled to a new fixed rate, set
to 100 m−1, with a linear interpolation. The result of the resampling with
linear interpolation is shown in Figure 4.3a. The figure indicates, that the
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Figure 4.3: Application of different methods for resampling.

new resampled signal follows the original one. However, overfitting can arise
with different parameters for resampling, which is shown in Figure 4.3b.
Here, the new signal is interpolated with splines and removes peaks of the
original signal.

Furthermore, Halfmann and Holzmann [154] suggest to filter signals from
on-board sensors, which are subject to noise. For example, Figure 4.4a
shows the resampled pitch rate from the gyroscope sensor. Despite the
noise of a MEMS gyroscope, which is visible as spikes in the signal, it is
well known for its good accuracy in short term [155]. There are various
smoothing filters for different purposes, and the discussion of all possible
filters is beyond this study. However, a suitable filter for this purpose is
the median filter, which is robust against outliers and removes noise while
preserving high frequency content. A nth order one-dimensional median
filter for the signal x is defined as

y(t) = med
(
x(t− n−1

2 ) : x(t+ n−1
2 )

)
, for n= 2 ·k+ 1,k ∈ N.

Figure 4.4b shows the filtered signal with n = 50, which retained the
original shape without the spikes.

Since there are no such spikes in the data from the microelectromechanical
systems (MEMS) accelerometer but more noise [155], a Savitzky-Golay FIR
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Figure 4.4: Application of median filter.

smoothing filter is applied. The filter with the frame length n= 2 ·k+1,k≥
0 and order o < n is defined as

y(t) =

n−1
2∑

i=−n−1
2

Cix(t+ i),

with n convolution coefficients Ci, which are dependent on the frame length
and the order o. The derivation of the convolution coefficients is beyond
this study. However, corresponding coefficients can be looked up in tables,
e.g. in [156, 157]. The filter fits a polynomial of a specified degree to
frames of noisy data and minimizes the least-squares error [158]. Therefore,
the filter outperforms standard averaging FIR filters, which might remove
high frequency content with the noise. Figure 4.5 exemplarily shows the
unfiltered and filtered vertical acceleration with n= 135 and o= 3.
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Figure 4.5: Application of Savitzky-Golay filter.
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4.2 Sensor data processing

4.2.1 Overview

The goal of the applied methods is to process the sensor data to estimate
the road condition while incorporating effects, which cannot be explained by
the output variable. For example, the tire vibration does not only increase
with the roughness of the road but also with the vehicle velocity. The
advantage of supervised learning methods is that various classes, such as
road features or defects, can be defined and predicted by the model. Based
on the predictions from the training or testing phase of the supervised
model, a confusion matrix can be derived to estimate the accuracy and
generalization of the approach. The combination of several predictions at
one location is then possible based on the precision or confidence in the
model. The disadvantages are the computing time of the training and
manually annotation of the data.

Therefore, in addition to the supervised learning model an approach is
presented, which does not involve training and manual data labeling. This
section discusses the influencing effects and proposes methods to process
non-labeled data as well as labeled data.

4.2.2 Influencing effects

First, the principal influencing effects of the vehicle body vibration is dis-
cussed followed by the determination of important influencing effects of the
sound pressure level of tire cavity sound (SPL(TCS)).

Figure 4.6 shows the standard deviation of the vertical acceleration and
the roll rate of the vehicle body driving over various road features with
different velocities. The standard deviation is calculated for a frame length
of 5 m. The experiment was conducted four times for each velocity and
road feature. The marker in the error bar plot represents the mean of the
measurement values and the error bars show the standard deviation of the
four observations. The standard deviation for the figure is multiplied by
10 for a better visualization of the error bars. The error bars remain small
except for observations for pothole with velocities 40 and 50 km/h.

The trend of the observations indicate, that the vibration of the vehicle is
dependent on the velocity. The vibration due to a pothole remains constant
from 50 to 60 km/h since the wheel does not fully rebound. In contrast,
a manhole cover above surface level increases the vibration of the vehicle
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body with higher velocities. Furthermore, the vibration from the smooth
surface slightly increases with the velocity. Further influencing effects, such
as load or type of vehicle, are investigated with the extended simulation
approach in Section 3.5.
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Figure 4.6: Vehicle vibration (standard deviation (SD)) due to road features for
various velocities.

To determine and quantify the influence of the various variables on the
SPL(TCS), data from an experimental study [159] are analyzed. The exper-
iments were performed under controlled conditions with the internal drum
test bench from the Institute of Vehicle System Technology at Karlsruhe
Institute of Technology, which is described in various dissertations and pub-
lications, recently in [160]. Table 4.1 shows the full factorial variation of
the parameters of the considered variables for the experimental study.

The mean profile depth (MPD) of the selected asphalt is 0.56 mm and of
concrete 1.38 mm. The sound pressure level (SPL) of the tire cavity sound
ranges from 100 to 200 dB. The tire temperature was measured with a
sensor placed in the tire torus.

Table 4.1: Considered variables and variation of their parameters.
Surface Tire Surf. temp. Tire temp. Tire pres. Load Speed

(◦C) (◦C) (Pa) (N) (km/h)
asphalt summer 13 17 2 2400 30
concrete winter 23 27 2.5 3600 60

33 37 3 4800 90

Regression analysis is performed to estimate the relationship of the inde-
pendent variable (Table 4.1) and the dependent variable, SPL(TCS). Firstly,
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simple regressions are conducted and afterwards a multiple regression with
all considered independent variables.

Since the data is from experiments and subject to outliers, a robust regres-
sion instead of a standard least squares regression is applied. An overview
of robust estimators can be found in [161]. Here, a bisquare weight function
with default tuning constant of 4.685 is performed [162]. A t-test statistics
is used to test that the coefficient is not equal to zero but has significant
influence on the dependent variable.
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(c) Ȳ′ = 105.28∗∗∗ +2.72∗∗∗ · x (d) Ȳ′ = 105.56∗∗∗ +0.001∗∗∗ · x
Figure 4.7: Exemplary results from the investigation of the influence of various

variables on the SPL of the tire cavity sound. Ȳ ′ represents the aver-
age regression line.
(* p < 0.05, ** p < 0.01, *** p < 0.001)

Figure 4.7 shows the influence of various variables on the SPL of the tire
cavity sound and Figure 4.7a indicates that speed has the major impact
on the SPL. The regression lines indicate the influence of the variables,
whereas the data points in Figure 4.7b, c, and d are colored corresponding
to the velocity. The captions represent the average regression line. The
figure suggests that the surface in this experiment has the second strongest
impact.
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Table 4.2 shows the results from a multiple robust regression. For the
regression the values of the features are scaled into the range of 0 to 1 for
a better comparison of the regression coefficients.

A closer investigation of the influence of speed controlled for all other
described variables show, that it has a non-linear incluence on SPL(TCS).
Figure 4.8 shows the observations of the experiment [159] as well as the
lines of a robust linear and robust non-linear regression. The non linear re-
gression model better fits the observations, which confirms the mean square
error (MSE) of 2.04 for the residuals of the non linear and 2.85 of the linear
model. This finding corresponds to the results of many experimental inves-
tigations of the dependence of the rolling noise on the rolling speed and on
the temperature. These have even found their way into the standard de-
scribing the legal noise release testing of tires (ISO 13325:2003). The best
fit of the measured values results from a linear regression of the logarithm
of the speed. The non linear dependency needs to be kept in mind for the
development of a method to process the tire cavity sound data (Section 4.2).

Table 4.2: Variable and corresponding regression coefficient.
Surface Tire Surf. Temp. Tire Temp.
2.63*** -0.35* 0.06* -0.15*

Tire Pres. Load Speed
1.29*** 1.61*** 12.00***
(* p < 0.05, ** p < 0.01, *** p < 0.001)
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Figure 4.8: Observations and lines of a linear and non linear regression model
for SPL as dependent and velocity as independent variable with all
other variables constant.
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4.2.3 Road unevenness and roughness estimation with non-labeled
data

This section presents the developed and applied methods to process data
of inertial and acoustic sensor without a training process. The advantage is
that no labeling process is needed, which is time consuming and expensive.
So far, no approach has been presented, which does not involve a training
process or calibration of the vehicle. However, an absolute value for the
road condition, such as the international roughness index (IRI), can not be
estimated, and specific attributes, such as potholes, can not be detected
without a training process.

The aim of the methods is to estimate a road condition score based on the
intensity of the vehicle vibration and tire vibration. Moreover, influencing
effects on inertial sensor and acoustic sensor measurements, identified in
subsection 4.2.2, should be incorporated. The score of various vehicles for
identical road segments should be merged to reduce outliers of single vehi-
cles. Lastly, the results, namely the road condition score, is to be mapped
and potential road hazards are to be automatically labeled. Herefore, the
following data processing, summarized in Figure 4.9, is developed.

After preprocessing of data (Section 4.1), features are extracted for spe-
cific framelengths of the vehicle trajectory from the space series, which
represent the vibration of the vehicle or tire mainly due to road unevenness
or roughness. Based on these features, a road condition score is calculated
for each frame of all vehicles and all trajectories are divided into road seg-
ments. The scores from various vehicles in each road segment are merged
to one score. Afterwards, a double thresholding algorithm of the road seg-
ments is applied to suppress road segments in good road condition and to
combine road segments in bad road condition. In the next, the connected-
component labeling algorithm automatically detects and labels areas of the
map in bad road condition or with obstacles. Lastly, these areas are ex-
ported with various information, such as the severity and the size of the
obstacle, and the overall calculated scores, representing the road condition,
are visualized on a map.

Inertial sensor data

To describe and evaluate the vibration of the vehicle due to road obsta-
cles, the weighted root mean square (RMS) acceleration is extracted from
the inertial sensor data. The RMS acceleration is described in [163]. It
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Figure 4.9: Overview of methods to process non-labeled data.

is expressed in m/s2 for translational vibration and rad/s2 for rotational
vibration. The running weighted RMS takes occasional shocks and tran-
sient vibration into account, e.g. through potholes, and is in space domain
defined by

aWRMS(s0) =

√
1
τ

∫ s0

s0−τ
aW (s)2ds,

where aW (s) is the instantaneous frequency-weighted acceleration and τ is
the integration space for sliding average. Since the aim of this study is to
identify defects in the road surface, the acceleration is not weighted to keep
all information of the signal. However, for the identification of subjectively
disturbing defects, the signal can be multiplied with a weighting function.
In discrete form, the RMS is calculated with

aWRMS(s0) =

√√√√ 1
k

k∑
i=0

aW 2[(s0− i)],

with k as the numbers of data points in one frame.
To consider vibration due to overall road unevenness and single lane

obstacles like potholes, the sliding weighted RMS acceleration is iteratively
calculated from the vertical acceleration and the roll acceleration of the
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vehicle body. To reduce the influence of the velocity on the vibration of
the vehicle, a statistical data binning is applied and the running weighted
RMS acceleration is grouped into bins of velocity intervals. The velocity
bins can be freely defined. However, a good option is to define velocity bins
representing velocity intervals for 30 km/h zones, inner-city roads, rural
roads, and freeways.

Firstly, the maximum and minimum of both the RMS of the vertical
and roll acceleration are determined for each velocity bin i and vehicle
j (minj,i(azRMS),maxj,i(azRMS),minj,i(ω̇xRMS),maxj,i(ω̇xRMS)). Af-
ter having acquired a sufficient amount of data, reasonable values for the
maxima and minima are identified. However, the values of the extrema are
updated with new acquired data. Secondly, the scaled RMS for vertical and
roll acceleration for small segments of the trajectory and for each vehicle j
is calculated with

scaled azjRMS =
azRMS −minj,i(azRMS)

maxj,i(azRMS)−minj,i(azRMS) ,

scaled ω̇xjRMS =
ω̇xRMS −minj,i(ω̇xRMS)

maxj,i(ω̇xRMS)−minj,i(ω̇xRMS) .

Both scaled values are in the range of 0 to 1. To include the strongest
shock or vibration of the vehicle due to road obstacles, the maximum of the
scaled RMS for vertical and the RMS roll acceleration is calculated, which
is referred to as road unevenness index (RUI):

RUIj,i = max
(

azRMS −minj,i(azRMS)
maxj,i(azRMS)−minj,i(azRMS) ,

ω̇xRMS −minj,i(ω̇xRMS)
maxj,i(ω̇xRMS)−minj,i(ω̇xRMS)

)
.

The final score RUI for vehicle j ranges from 0 to 1 and represents the road
condition, whereas 1 is bad condition.

To reduce outliers of single vehicles, the RUIs of various vehicles for the
same road segment are merged. For this purpose, the road infrastructure
area to be analyzed is divided into regular quadrilaterals, as exemplary illus-
trated in Figure 4.10, and the frames of the vehicle trajectories are assigned
to the corresponding quadrilaterals. The resolution of the quadrilaterals,
referred to as road segments, can be individually defined. Lastly, the RUIs
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of various vehicles for each road segment are combined by the arithmetic
mean or maximum. Hereby, the arithmetic mean reduces outliers and the
maximum takes the worst calculated RUI of one vehicle into account. Fur-
thermore, the standard deviation of the RUIs can be calculated to evaluate
the variation of the score among vehicles or drives.
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Figure 4.10: Road infrastructure divided into segments.

To highlight road segments with a high excitement on the vehicle, which
indicates a road hazard, a double threshold algorithm and a connected
component labeling algorithm are applied.

The double threshold algorithm accounts for noise and variation of the
score and merges road segments with similar RUIs. The algorithm sup-
presses road segments with a score below a low threshold T1. Road segments
with a score above the high threshold T2 are marked as relevant segments.
If the score of road segments with a threshold above the low threshold and
below the high threshold is close to relevant segments, it is connected to
those segments, and otherwise suppressed. The procedure is illustrated in
Figure 4.11 and described with the following assignment procedure (4.1) for
RUI of road segment S(v,u), where (v,u) is the location expressed by the
longitude and latitude. S(v,u) is assigned to a region R0, which is of no in-
terest, or a region R2, which is of interest and contains only road segments
with a high RUI. S′(v′,u′) is any connected road segment to S(v,u). The
assignment procedure (4.1) ends if no more road segments can be assigned.
A is the the identifier of the attribute.

AS(v,u) :=R0, if RUIS(v,u) ≤ T1,
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AS(v,u) :=R2, if T1 < RUIS(v,u) ≤ T2 and RUIS′(v′,u′) > T2,(4.1)
AS(v,u) :=R2, if RUIS(v,u) > T2.

(a) three different seg-
ment classes

(b) connect similar seg-
ments

Figure 4.11: Double thresholding method. Black segments ≤ T1, T1 < red seg-
ments ≤ T2, blue segments > T2.

Algorithmus 4.1 : Connected component labeling.
Input : Structure with i columns and j rows of road

segments S(v,u)
Output : Matrix L with labeled clusters

1 k = 1 // count variable and temporary label
2 L= 0i,j // zero matrix with i columns and j rows
3 for u← 1 to i do
4 for v← 1 to j do
5 if S(v,u) has neighbors with similar score values

then
6 if similar neighbors of L(v,u) has labels then
7 l = list of similar neighbor labels
8 L(v,u) and labels of neighbors = min(l)
9 else

10 L(v,u) := k
11 k = k+ 1

The connected component labeling algorithm (Algorithm 4.1), firstly pre-
sented by Rosenfeld and Pfaltz [164], clusters and labels the connected road
segments with a high score obtained from double thresholding. Finally, the
scores of the road segments can be visualized and the clusters from con-
nected component labeling represent the road hazards.
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The identified areas with road hazards can be summarized in a list with
the position of the center of the cluster, the radius of the cluster and ad-
ditional statistics, such as the minimum, average, maximum and standard
deviation of the score over the trajectories, the number of drives through
the road hazard, and the mean and standard deviation of the velocity.

Acoustic sensor data

The data from the acoustic sensor in the tire cavity is processed with the
same method as described for the inertial sensor except for the feature
extraction. Hereby, the SPL of the tire cavity sound is calculated to estimate
the roughness of the road. The estimation is referred to as road roughness
index (RRI).

The SPL feature is more sensitive to the velocity and therefore finer ve-
locity intervals with 7.2 km/h steps are used. Furthermore, the data set
to be investigated is reduced by data, for which the tire temperature, tire
pressure and load is out of a specific defined range to have comparable data
and to avoid data acquired under extreme conditions. For example, dur-
ing parking of the vehicle, the tire cavity adopts a similar temperature of
the environment, which can range from -10 ◦C in the winter to 40 ◦C in
the summer. However, various drives in different environment conditions
have shown that the temperature stays approximately constant at 35 to
40 ◦C after 10 min drive. Consequently, the beginning of a drive and longer
stops when tire temperature decreases again are filtered out analogous to
the tire pressure, which approximately follows the tire temperature (Fig-
ure 3.9). The remaining data is then processed according to the flow chart
in Figure 4.9.

Trend identification

A trend over time of the estimated RUI or RRI can be identified by ap-
plying a regression over time. A robust regression is applied with the same
parameters as described in subsection 4.2.2 for the RUI or RRI merged over
all vehicles for each road segment. Figure 4.12 shows two scatter plots of
the score of RUI over time for two road segments from the same vehicle. On
the x-axis, day 0 corresponds to 8th December 2016. Figure 4.12a indicates,
that the score for the road segment increases, which suggests a degradation
the road condition.
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This indication is underlined by the estimated regression function with a
highly significant positive regressor. Figure 4.12b shows a slightly decrease
of the score. This method presented here can be applied to a large data
set. The trend can be visualized on a map and the road segments can be
colored accordingly to the value of the calculates regressor.
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(a) Y′ = 0.3020∗∗∗ +0.00015∗∗∗ · x (b) Y′ = 0.3199∗∗∗ −0.00007∗ · x
Figure 4.12: Examples for trend identification.

(* p < 0.05, ** p < 0.01, *** p < 0.001)

4.2.4 Road attribute and surface estimation with labeled data

Labeled data allow the detection of specific objects or road surfaces with
specific characteristics via supervised classification. The road roughness
is estimated with supervised regression. The most important part of the
processing of labeled data is to find features, which can separate the desired
classes in the feature space. Firstly, candidates of features are extracted
based on theoretical and physical considerations or the analysis of data
from pretests, which is referred to as feature engineering. Another option
is to use feature learning techniques, to automatically find representations
of the raw data for classification [165, 166]. However, the latter approach
is not considered in this work.

The feature candidates are automatically evaluated with multivariate
analysis of variances (MANOVA) (subsection 2.5.4) and the best features to
separate the classes are selected to reduce the dimension of the feature vec-
tor and to avoid overfitting. Overfitted models have a poor generalization
with too many parameters compared to the number of observations. Then,
the model rather describes random effects than the underlying relationship.

It is difficult to illustrate the high dimensional feature space. Therefore,
the dimensions can be further reduced by feature aggregation, for example,
with discriminant function analysis (subsection 2.5.5). Therewith, the ag-
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gregated feature space with for example two dimensions, can be visualized.
The disadvantage of this method is a decrease of accuracy of the classifi-
cation and the difficult interpretation of the aggregated features. Finally,
the regression or classification is performed with a support vector machine
(SVM) (subsection 2.5.2 and 2.5.3).

This work differentiates between the classification of road attributes, such
as potholes, and the estimation of the road roughness within the macro tex-
ture. The object detection is based on the vibration of the vehicle body
measured by the inertial sensor while the road roughness estimation is based
on the tire vibration captured by the tire cavity sound (Section 3.4). There-
fore, the first data set consists of the acceleration and angular rates of the
vehicle in three directions and the second of sound pressure in the tire cav-
ity. Both data sets are extended by influencing parameters, such as the
vehicle velocity (subsection 4.2.2).

The methods to process labeled data are summarized in Figure 4.13.
The raw data is preprocessed and transformed into space domain to extract
suitable features. Afterwards, the best features are selected with MANOVA
and aggregated with discriminant function analysis. To finally estimate the
road type or attributes, a SVM classification is applied and a regression to
estimate the road roughness.

distance
series data

feature ex-
traction feature selection

feature ag-
gregation

classification/
regressionoutput

(1) a,ω, vV , . . .
(2) pTC , vV , . . .

feature engineering MANOVA

discriminant
function analysisSVM

(1) road type,
attributes
(2) road roughness

Figure 4.13: Overview of methods to process labeled data.
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Inertial sensor data

For the feature extraction of inertial sensor data the following data streams
are considered:

• vertical acceleration az ,
• roll rate ωx,
• pitch rate ωy.
Furthermore, the roll and pitch acceleration as well as the jerk are devi-

ated in time domain of the above data streams. The jerk ȧz for step t is
calculated with

ȧz(t) = az(t)−az(t−1)
t

.

The time series is transformed into space domain, as discussed in subsec-
tion 4.2.2. Furthermore, the data is transformed into spatial frequency
domain, which contains the short-term, space-localized frequency content
of the signal [167]. The spectrogram for a signal x with window function
w(s), spatial frequency ω and space index τ is expressed in the discrete
path case as

spec{x(s)}(τ,ω) =
∞∑

k=−∞
x[k]w[k− τ ]e−jωk.

Hereby, features based on specific frequency bands can be investigated. In
addition, the spectral centroid from the spectrograms of signal x for each
time index τ is calculated with

centr{x(s)}(τ) =
∑N
k=1m(k)ω(k)∑K
k=1m(k)

,

where m(k) is the magnitude of frequency bin number k, ω(n) the repre-
senting frequency, and K the number of frequency bins [168]. The spectral
centroid is a quantification of the power distribution of the signal [169].
Overall, the three data streams are extended by the following data streams,
which leads us to 10 data streams in total:

• vertical acceleration: az (1),
• roll acceleration: ω̇x (2),
• pitch acceleration: ω̇y (3),
• jerk: ȧz (4),
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• Fourier transformed vertical acceleration: spec{az} (5),
• Fourier transformed roll acceleration: spec{ω̇y} (6).
• Fourier transformed pitch acceleration: spec{ω̇x} (7),
• centroid of spec{az} (8),
• centroid of spec{ω̇y} (9),
• centroid of spec{ω̇x} (10),
The features are calculated for frames with a specific length in spatial

domain and a specific overlap. If a longer frame length is chosen, short
peaks for example due to potholes have a weaker impact on the value of
features, which incorporate the overall signal, such as standard deviation.
These short amplitudes can be captured by shortening the frame length or
using features, which calculate extrema.

From the data streams (1) - (4), the following features are calculated
• average: x̄,
• standard deviation: σ,
• peak-to-peak value: p,
with

x̄= 1
N

N∑
i=1

x[i],

σ(x) =

√∑N
i=1 (x[i]− x̄)2

N −1 ,

p(x) = max(x)−min(x),

where x is a data frame of the corresponding data stream (1) - (4) and N
the framelength.

The effective value or RMS (x̄RMS(spec)) is calculated for the short-time
Fourier transformed data streams (5) - (7) for the following spatial frequency
bands (1/m)

[0.1, 0.5] [0.5, 15] [15, 20] [0.1, 25] [0.1, 50].

Afterwards, the following features are extracted for each frame of the
vehicle trajectory from x̄RMS(spec) of each frequency band and from the
spectral centroids (8) - (10).

• average: x̄RMS(spec) and x̄centr,
• standard deviation: σRMS(spec) and σcentr,
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• maximum: maxRMS(spec) and maxcentr.
Subsection 4.2.2 discusses the strong influence of velocity on the vehicle

vibration. Previous research suggests to perform a linear regression with
each feature as the dependent variable and the velocity as the independent
variable [94]. The velocity dependency is then reduced by subtracting the
estimated linear equation from the corresponding feature. However, the
vehicle vibration and the extracted features are not linear dependent on
the velocity (subsection 4.2.2).

In this work, the dependent parameters are incorporated in the classifica-
tion and therefore, mean velocity is calculated for each window as additional
feature. To allow non-linear relationships a polynomial kernel function of
higher order is applied on the classification (subsection 2.5.2), which is de-
fined as

k(x,y) = (xT y)d, (4.2)

where x and y are features and d the degree of the polynomial.

Acoustic sensor data

The described data processing method for the inertial sensor data is anal-
ogous applied for the tire cavity sound data. Road surfaces with various
characteristics especially with different grain size distributions can be clas-
sified based on power features of different frequency bands, as we have
already shown in [170, 171]. This work pursues to estimate the road rough-
ness based on the tire vibration represented by the SPL of the tire cavity
sound and applies a SVM regression. Subsection 4.2.2 shows that the ve-
locity has also a strong influence on the tire cavity sound pressure and is
incorporated as a feature for this regression. Furthermore, the tire pres-
sure, tire temperature, and vehicle load is included although the influence
is weaker compared to the velocity. Overall, the RRI can be estimated for
each window with the following regression function

RRI = β1 ·SPL(TCS) +β2 · v̄+β3 · p̄+β4 · T̄ +β5 · P̄ +β0,

with the following features:
• SPL(TCS): sound pressure level of the tire cavity sound,
• v̄: mean of the velocity,
• p̄: mean of the tire air pressure,
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• T̄ : mean of the tire air temperature, and
• P̄ : mean of the vehicle load.
The features are scaled to the range of 0 to 1 with

x′ = x−min(x)
max(x)−min(x) ,

where x is the feature and x′ the scaled feature. Furthermore, a polyno-
mial kernel function of higher order as presented in (4.2) accounts for the
non-linear relationship of velocity and SPL(TCS). Further features can be
integrated, such as the type of tire, temperature of the environment, if water
or snow is on the road, among others.

4.3 Exemplarily application of methods on benchmark
data set

A benchmark data set is used to exemplarily show the data processing
with the introduced supervised learning methods (Section 4.2) with inertial
sensor data of the vehicle body. Moreover, the influence of classification
parameters, such as the kernel trick or feature aggregation, and the per-
formance measures are explained with this data set. The benchmark data
set is designed for good illustration and less complexity. Therefore, only
three features are extracted to separate three classes, which are potholes,
surface with light damages, and smooth surface. The extracted features are
standard deviation of the vertical acceleration, roll and pitch rate, which
represent the principle vibration of the vehicle. The data was acquired on
different road segments consisting of the mentioned road features with a
BMW 116d. To further reduce the complexity of the benchmark data set,
the road features were overrun with specific velocities, which are 30, 40,
50, and 60 km/h. The distribution of the values of these features and the
velocity for the acquired data is shown in Figure 4.14. The histograms
indicate, that the number of data points per velocity is approximately uni-
formly distributed (Figure 4.14a). The values for data points corresponding
to potholes are mainly larger over all features compared to other data points
(Figure 4.14b, c, and d). The standard deviations for damaged and smooth
surface overlap for some data points. Therefore, we can expect wrong pre-
dictions from the classification of these features.

Figure 4.15 illustrates the classes in features space. Potholes are separable
from the other classes, whereas damaged and smooth surface overlap.
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Figure 4.14: Distribution of feature and velocity values of benchmark data set.

Table 4.3 shows the confusion matrix of the classifier, a standard linear
SVM with penalty term C = 1000 and ε= 1. Wrong predictions occur only
between the classes damaged and smooth surface. Performance measures of
the training process and 5-fold cross-validation, derived from the confusion
matrix as explained in subsection 2.5.6 are listed in Table 4.4. Overall the
accuracy of the cross-validation is 99.0 %.

Table 4.3: Confusion matrix from single feature classification.
Output

1 2 3

T
ar

ge
t 1: Smooth surf. 820 10 0 830

2: Damaged surf. 2 1021 0 1023
3: Potholes 0 0 34 34

822 1031 34 1887

The high dimensional feature space is reduced to two dimensions with
two features aggregated with linear discriminant analysis (LDA) function
(subsection 2.5.5). Figure 4.16 shows the two-dimensional feature space.
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Figure 4.15: Single feature space of benchmark data set.

Table 4.4: Performance measures of single feature classification.
Training Crossvalidation

Precision Recall Precision Recall
(%) (%) (%) (%)

1 99.8 98.8 99.3 98.4
2 99.0 99.8 98.8 99.4
3 100.0 100.0 100.0 100.0

Average 99.6 99.5 99.3 99.3
Accuracy 99.2 99.0

The solid lines represent the hyperplane to separate the classes and the
dashed line shows exemplarily the maximum margin of the support vec-
tors and the hyperplane. Figure 4.16a shows the hyperplane for the linear
SVM and Figure 4.16b for the nonlinear SVM with polynomial kernel for
degree-2 polynomials. For this example, the nonlinear SVM creates no big
advantage. However, for a larger data set with various classes and features,
it might be necessary to increase the accuracy of the classifier.

Table 4.5 and 4.6 indicate that the values of the performance measures
decrease with the aggregation of the features. Therefore, if computation
time of classification is not critical, a feature aggregation should be avoided.
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Figure 4.16: Aggregated feature space of benchmark data set.

Table 4.5: Confusion matrix from aggregated feature classification.
Output

1 2 3

T
ar

ge
t 1: Smooth surf. 819 11 0 830

2: Damaged surf. 14 1009 0 1023
3: Potholes 0 0 34 34

833 1020 34 1887

Table 4.6: Performance measures of aggregated feature classification.
Training Crossvalidation

Precision Recall Precision Recall
(%) (%) (%) (%)

1 98.3 98.7 98.5 98.7
2 98.9 98.6 98.9 98.7
3 100 100 96.9 100.0

Average 99.1 99.1 98.1 99.1
Accuracy 98.7 98.7
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4.4 Multiple vehicle fusion

4.4.1 Overview

The vibration behavior of various vehicles differ greatly due to the structure,
suspension system characteristics of the vehicle, and the position of the
measuring system. Each vehicle might have an individual classifier based
on different feature spaces. This section addresses two problems, which are
published in [172, 173].

Firstly, trajectories or trajectory frames from various vehicles through
the identical road segments are found based on distance algorithms. Four
distance algorithms are presented in subsection 4.4.2 and the results and
computing time of the algorithms are compared. In contrast to other meth-
ods, such as R2, the distance algorithms find similar trajectory frames more
precisely. Hereby, trajectories pointing in other directions are not consid-
ered as similar. This is essential to ensure accurate training data for new
vehicles, which can be acquired automatically by labeling the data based
on the label of the road segment from ground truth data of other vehicles.

Secondly, the classification results from different vehicles for one identical
road segment can be merged with different methods to achieve a combina-
tion with the highest confidence. For this purpose, different combination
strategies are presented and investigated in various scenarios, which are
outlined in subsection 4.4.3.

4.4.2 Identification of road segments with trajectories from different
vehicles

To find identical road segments, which are overrun by various vehicles,
the trajectories from those vehicles are compared. Firstly, a range search
algorithm finds the trajectories from vehicles, which are close to a reference
trajectory. Trajectories AT and BT of the same length are time series of
global position system (GPS) coordinates in the form [174]

AT =((ax1 ,ay1),(ax2 ,ay2), ...,(axn,ayn)),
BT =((bx1 , by1),(bx2 , by2), ...,(bxn, byn)),

where ax and bx represents the longitude coordinate, ay and by the lat-
itude coordinate and n the number of GPS coordinates representing the
trajectory.

88



4.4 Multiple vehicle fusion

To find trajectories, which are close to each other, a range search algo-
rithm is applied to reduce the computing time of the overall procedure. The
range search algorithm, which is based on a k-nearest-neighbor (knn) algo-
rithm, is to find all points Pq within a radius around a point Pp [175]. A
k-dimensional (kd) tree is constructed out of all points with Algorithm 4.2,
which assigns each point to a node to have an equal distribution of number
of points in each node, d represents the depth of the tree. Figure 4.17 ex-
emplary shows a 2d tree with 100 points and 8 nodes, each consists of 12 to
13 points on average and the application on trajectories, where the points
are represented by GPS coordinates.
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Figure 4.17: Illustration and application of the range search algorithm.

After the construction of the tree, the points can be identified, that lie
within a circle of radius r around a new point Pp. The corresponding
algorithms are explained in more detail in our paper [172]. The basic idea
is to find all nodes, which share an area within the circle around point Pp.
In the second step, only these nodes are searched for points, that have an
Euclidean distance smaller than r to the point Pp. With this method the
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time complexity in big O notation can be reduced from O(n) for common
search algorithms to O(logn).

Algorithmus 4.2 : Build kd tree.
1 [ht] Input : A set of points P, current depth d, maximum

number of points in node n
Output : The root of the kd-tree storing P.

2 if P contains only less than k points then
3 Return a leaf v storing this point
4 else
5 if d is even then
6 dim← x
7 else
8 dim← y

9 l←median(Pdim) // l is the line, that splits the set of
points at the median in dimension dim.

10 for All points pi in P do
11 if pi,dim ≤ l then
12 add pi to P1
13 else
14 add pi to P2

15 vleft← buildKdTree(P1, d+1)
16 vright← buildKdTree(P2, d+1)
17 Create a node v storing l, make vleft the left child of v,

and make vright the right child of v.
18 Return v

However, as Figure 4.17b indicates, also coordinates from trajectories that
run in a different direction as the reference trajectory are recognized as close
points. The transferring of labels or fusion of classification outputs lead to
wrong results. Therefore, further algorithms must process the trajectories
to narrow the candidates of GPS coordinates belonging to the identical road
segment and road lane.

Methods, which can follow the range search algorithm and eliminate
wrong points are the Euclidean distance, principal component analysis
(PCA), hausdorff distance, and dynamic time warping (DTW) distance.

The Euclidean distance is defined as

D1 = 1
N

N∑
n=1

((axn− bxn)2 + (ayn− byn)2)
1
2 ,

where the length of the compared segments of trajectories AT and BT
needs to be equal. With the Euclidean distance, only segments of trajecto-
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ries with the same driving direction and therefore on the same driving lane
are determined, as shown in Figure 4.18a.
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Figure 4.18: Application of range search algorithm with Euclidean distance and
PCA algorithm.

The PCA converts the points into a set of points of linearly uncorrelated
principal components ack and bck of trajectory AT and BT respectively. Af-
terwards, the Euclidean distance of the coefficients is calculated, whereas a
smaller distance indicates a greater similarity of the two trajectories [176]:

D2 = (
2∑
k=1

(ack− b
c
k)2)

1
2

Figure 4.18b shows the green colored trajectory segments, which were
identified by the D2 function as close to the red trajectory.

After the application of the PCA algorithm, the trajectory segments that
turn on the interaction and point into the orthogonal direction of the red
trajectory are not detected as close. However, the trajectory segments with
an opposite direction are incorrectly detected.

To address this problem Algorithm 4.3 is applied to consider the driving
direction of trajectory AT and trajectory BT and to get same results as for
function D1.
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Algorithmus 4.3 : Consider direction.
Input : x,y, Type: section of trajectory
Output : sameDirection, Type: boolean

1 latitudeFactor ← (x(end)latitude−x(start)latitude)∗
(y(end)latitude−y(start)latitude)

2 longitudeFactor ← (x(end)longitude−x(start)longitude)∗
(y(end)longitude−y(start)longitude)

3 if latitudeFactor ≥ 0 AND longitudeFactor ≥ 0 then
4 return true
5 else
6 return false

The Hausdorff distance calculates the spatial distance between two tra-
jectories as [177]

D3 = max{d(AT ,BT ),d(BT ,AT )},

where d(AT ,BT ) = maxa∈AT minb∈BT ||a− b||.
The application of the Hausdorff distance shows similar results to the

PCA distance, where trajectory segments with an other direction could not
be filtered (Figure 4.18b).

The DTW algorithm finds the minimum comprehensive path between
two trajectories, which minimizes the cost of the warping. The distance is
defined as [178]

D4 = min{ 1
N

(
N∑
n=1

wn)
1
2 },

where wn is the nth element of the warping path. The DTW algorithm
returns similar results as the Euclidean distance (Figure 4.18b).

Calculation time of distance algorithms

Since all distance algorithms, partly by applying the direction Algo-
rithm 4.3, produce similar results, the algorithm is selected based on run-
time. Table 4.7 shows a comparison of the algorithms with respect to the
measured time per 1,000 calculations. The Euclidean distance is outper-
forming the other algorithms due to its simple computation.
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Table 4.7: Average run time of the algorithms for 1,000 trajectories with a
length of 50 or 200 m.

Algorithm Time (s)
50 m 200 m

Euclidean distance 0.0050 0.0105
PCA distance 1.0170 1.1600
Hausdorff distance 1.1612 4.8872
DTW distance 0.0598 0.0708

Calculation times with and without range search algorithm

The range search algorithm function is intended to accelerate the algorithm,
since all nearby points can also be found using the algorithms discussed in
subsection 4.4.2. A test is performed with a data set of 215 km travel
distance and 251,177 data points that are up to 70 km apart from each
other. The method to find close trajectories is applied with and without
the range search algorithm. The results in Table 4.8 show, that the use of
the range search algorithm is indispensable. The calculation time with this
algorithm is almost 500 times faster than the Euclidean distance algorithm
alone.

Table 4.8: Run times with and without range search algorithm (RSA) for a trav-
eled distance of 215 km.

Time RSA (s) Time Euclidean (s) Sum (s)

Without RSA - 590.1277 590.1277
With RSA 0.4607 0.6290 1.2358

The performance of the Euclidean distance algorithm with and without
range search algorithm is also tested with a high density of trajectories in a
small area. Therefore, the intersection data, which has been used in Subsec-
tion 4.4.2, is multiplied 50 times. Consequently, there are 1,050 trajectories
with a total of 48,350 data points in a small area. A test with many vehi-
cles can therefore be simulated. If each car passes an intersection twice a
day, the data set corresponds to approximately 18 vessels, which navigate
the crossing in 30 days. The results in Table 4.9 show that the Euclidean
distance algorithm performs well even at a high density of trajectories. The
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calculation time is even smaller including range search algorithm in the
pre-processing.

Table 4.9: Calculation times in a dense area.
Time RSA (s) Time Euclidean (s) Sum (s)

Without RSA - 1.8578 1.8578
With RSA 0.0675 0.3853 0.4528

Accuracy of the transfer of ground truth data

The goal is to communicate locations together with the corresponding road
attribute, where an other vehicle has recognized road attributes. Thus, the
second vehicle has training data to learn a correct classification of the char-
acteristics based on its own measurements. To test the method to transfer
ground truth data to train a new vehicle, an intersection with trajectories
from the BMW 116d test vehicle is used. A single road infrastructure at-
tribute, namely a railway crossing, is approximately at position (8.4465,
49.0365). The corresponding data from the BMW test vehicle are anno-
tated with railway crossing. To show the functionality and accuracy of the
method to transfer ground truth data, railway crossing is overrun multiple
times with a new test vehicle, a Smart.

Figure 4.19 shows the result of this test. The green sections are the ac-
tual railway crossings from the ride with the Smart and the blue sections
represent data with the automatically transferred label railway crossings
from already existing BMW 116d data. The figure shows that the label
railway crossing is successfully transferred except for one case. The unsuc-
cessful transfer is due to bad GPS signal and consequently the route is too
far away from the previously traveled routes. However, this underlines the
motivation to only transfer ground truth data, if the conditions, e.g. the
GPS signal, are well and if there actually was an anomaly in vibration of
the vehicle.

With the described method in subsection 4.4.2, the label of already ex-
isting training data can be transferred to data from a new vehicle with a
different suspension system to develop a new individual classifier. Labels
are only transferred if a certain amount of labels from different vehicles
and classifiers exist. Furthermore, labels of road hazards, e.g. potholes, are
only transferred if the signal of the new vehicle actually shows an anomaly.
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Figure 4.19: The result of the test to transfer ground truth data to new vehicles
to train a new classifier.

Therefore, the amount of labels, which are wrongly transferred, decreases.
Without the mentioned conditions, the transferred label might not be cor-
rect in the following situations:

• Drivers of an untrained vehicle might avoid to drive over a specific
hazard, e.g. a pothole. However, the road segment with this hazard
was already labeled as pothole, since earlier drivers overran this at-
tribute. Therefore, the data of the untrained vehicle corresponding to
this road segment might automatically be labeled as pothole although
the signal shows no anomaly.

• Road hazards, such as potholes, might be repaired meanwhile and are
not present anymore.

• The previous collected label for training data is wrong or the classifi-
cation algorithm predicts a wrong attribute.

4.4.3 Multiple vehicle combination

Since functions D1 to D4 find similar trajectories on the same road lane, the
output for a specific road segment form various vehicles can be combined
with the following method. The precision presents the fraction of retrieved
instances that are relevant and can be seen as the probability πij of the
classifier to predict class i as class j for i, j = 1, . . . , l.
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A precision matrix Π can be derived from the confusion matrix for each
vehicle m with k overruns as shown in Table 4.10.

Table 4.10: Precision matrix derived from the confusion matrix.
Output class

K1 K2 · · · Kl−1 Kl Total

T
ar

ge
t

cl
as

s K1 π11 π12 · · · π1(l−1) π1l 1
K2 π21 π22 · · · π2(l−1) π2l 1
...

...
...

. . .
...

...
...

Kl−1 π(l−1)1 π(l−1)2 · · · π(l−1)(l−1)π(l−1)l 1
Kl πl1 πl2 · · · πl(l−1) πll 1

The precision vector for class Kj for vehicle m is then defined as

π
(k)
j = (π1j , . . . ,πlj)(m).

The approach, illustrated in Figure 4.20, is to combine the prediction from
various vehicles or overruns with prediction probability πj for a specific road
segment with the median position (long., lat.). The goal is to get a robust
and more precise estimation of the corresponding ground truth, in contrast
to consider the output of only one vehicle or a simple maximum vote.

Vehicles might have different classifiers with different precision vectors.
Also, the actual precision vector of a vehicle might be unknown but can be
approximately estimated through the testing process of the classifier.

Combination strategies

Since the prediction of a vehicle usually has an uncertainty, multiple vehicles
can be combined to increase the confidence of the prediction compared to
only one vehicle, which is regarded as multiple expert problem. The final
decision for each road segment can then be made by the combination of
the individual predictions [179]. The classifier predicts one out of l possible
classes and from the precision matrix π, the confidence of the corresponding
classification be be derived.

The collected predictions for one road segment, named observation o∈Rl,
are distributed according to a multinomial distribution. The observation
o ∈ Rl counts the number of predictions per class.
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Figure 4.20: Approach to combine the predictions of the condition of road seg-
ments from various vehicles. The final prediction has the highest
confidence by incorporating the confidence π of the predictions of
each vehicle.

The following methods provide a final estimation of the condition of one
road segment. One possibility is to count how often each attribute is pre-
dicted, which is referred to as majority vote. The one with most votes is
assumed to be the ground truth

Vmajority = arg max
i∈1,...,l

oi.

An extension to the majority vote approach is the vote with the diagonal
vector from the precision matrix, which is referred to as vote with precision
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diagonal matrix. Here, the counts for the predictions are weighted with the
precision vector:

wπ = (π11,π22, . . . ,πll).

That leads to an adapted observation o′:

o′ = owπ
T .

As before, the final decision is class with the most votes:

Vdiagonal = arg max
i∈1,...,l

o′.

Each of the n vehicles might use an individually optimized classifier. This
leads to a precision matrix Π(k) and observation o(k) for vehicle k. Due to
the assumption of independent predictions, the probability that class i is
the ground truth, is calculated as

pO|i =
∏n
k=1

∏l
j=1(π(k)

ij )o
(k)
j∑l

q=1
∏n
k=1

∏l
j=1(π(k)

qj )o
(k)
j

,

with O = {o(k)} for k = 1, . . . ,n [179].
As final estimate, the class with highest probability is selected with

Vmatrix = arg max
i∈1,...,l

pO|i.

The latter vote is referred to as vote with precision matrix.

Scenarios

The presented methods to estimate the condition of a road segment are eval-
uated by simulating different scenarios. The proposed scenarios considers
various situations, e.g. that the road condition changes after maintenance
or that a classifier of one vehicle is over-fitted and outputs random predic-
tions. The point of interest is how many vehicles or overruns are necessary
to reach a very small proportion of misclassifications for the prediction of
the road segment and how to react to latter described scenarios.

Scenario 1: Classification with one global precision matrix In
Scenario 1, one global precision matrix Πb for all vehicles is considered. For
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simulation, a road with a specific number of segments, each segment having
a different attribute, is assumed. The outputs of various vehicles lead to
the evaluation of the different fusion strategies. Additionally, the prediction
quality of the different classes is analyzed.

Scenario 2: Classification with unknown vehicle precision ma-
trices In reality, not all vehicles use the same distribution for prediction
and the real precision matrix is unknown, since it might be different to the
precision matrix calculated during training or testing. Therefore, in the
second scenario each vehicle classifies the road segments by its own classi-
fier while the final decision is made based on the global precision matrix
πb. Hereby the vehicle precision matrix π(k)

v is an slightly adapted version
of the global one. In the simulation, vehicle k generates a random number
to classify the road segments. For segment having property i, it follows the
multinomial distribution described by the entries πij(k), j = 1, . . . , l from
the adapted precision matrix π(k)

v .
Scenario 3: Classification with equally distributed precision ma-

trix Another scenario under consideration is the classification by a vehicle
totally independent of the ground truth. An example in real life is a vehi-
cle with a classifier, which is over-fitted, a change of the vehicle vibration
behavior or a broken sensor. For this scenario, the effect on the fusion
strategies, the possibilities to identify the vehicle making trouble, and to
react with adjustments of the combination method are analyzed.

Scenario 4: Change of the road condition As last scenario the
change of the ground truth from one time to another is simulated. It char-
acterizes situations like a pothole that gets repaired, or a hard winter that
destructs the road. It is investigated if rules of forgetting or less weighting
the past can improve the outcomes.

The calculations and investigation of multiple vehicle fusion with 10 dif-
ferent vehicles are implemented in Matlab. In the calculation, the road con-
sists of s segments and each segment represents one of l classes as ground
truth with l= 5 for all scenarios. In reality, theses classes could correspond
to types of damages, such as potholes. Therefore, the number of wrong pre-
dictions ranges from 0 to s for the created road. The values of the global
precision matrix are set as shown in Table 4.11. This precision matrix is
calculated from a confusion matrix based on a testing process from a real
vehicle.

Each vehicle drives over the road and classifies the segments with its
individual precision matrix, which is unknown to the back-end.
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Table 4.11: Global precision matrix for simulation.
Output class

K1 K2 K3 K4 K5 Total

T
ar

ge
t

cl
as

s K1 0.9 0.02 0.03 0.01 0.04 1
K2 0.1 0.8 0.05 0.02 0.03 1
K3 0.07 0.03 0.82 0.04 0.04 1
K4 0.001 0.067 0.023 0.822 0.087 1
K5 0.13 0.02 0.03 0.09 0.73 1

For Scenario 1 to 3, 5 segments are simulated and 10,000 iterations of
the drives are performed to reduce stochastic effects. In Scenario 1 the
precision matrix of the vehicles correspond to the global precision matrix.
The total number of wrong predictions are counted and the proportion
of wrong classifications of all classes are analyzed as well as the wrong
predictions of each class and number of vehicles. The wrong predictions
in scenario 1 are calculated with the combination method based on simple
vote, vote with precision diagonal matrix, and vote with precision matrix
(subsection 4.4.3).

In Scenario 2, each vehicle has an unknown precision matrix, which
simulates e.g. different vibration characteristics. However, the combination
of the predictions made by all vehicles is still performed with precision ma-
trix used for scenario 1. The difference of the vehicle and global precision
matrix could correspond to differences in the vehicle mass or various envi-
ronment conditions and therefore a slightly different vibration behavior of
the vehicles.

For the simulation of the further scenarios the output fusion is performed
only with the method vote with precision matrix since the results of the pre-
vious scenarios have demonstrated the highest accuracy with this method.

In Scenario 3, one vehicle with a problem of the classifier is simulated,
which is referred to vehicle with broken sensor. It classifies the segments
totally random and the question is, how much impact it has on the final
prediction. To decrease the negative impact of such a scenario, the following
method is applied.

After 5,000 overrun segments and at least 3 vehicles, the simulation com-
pares the output of one vehicle with the output of the other vehicles, which
are fused with the system precision matrix as explained in earlier scenarios.
Lines 8 to 16 in Algorithm 4.4 show the pseudo-code of this method, which
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is embedded in the simulation algorithm. Based on these comparisons, the
precision matrix of the one vehicle is estimated and checked if the values
differ greatly from the back-end precision matrix.

If the difference exceeds a value, which is set to 0.15 in this simulation, the
vehicle with the equally distributed precision matrix and wrong predictions
is identified. Furthermore, the estimated vehicle precision matrix is used
for further calculations to reduce the confidence of the output of this vehicle
and therefore reduce the overall number of misclassifications.

For the simulation of this method and for Scenario 4, the number of
segments is set to s = 10,000 and one run of the simulation per vehicle is
performed. The properties of the segments, representing one of the five
classes, are nearly uniformly distributed.

In the simulation, the ground truth changes after 5 runs for every third
road segment. It depicts situations like the fix of road damages or the
formation of new ones over time. The scenario should clarify that the
back-end needs a forgetfulness of previous classifications to guarantee a fast
reaction to the change. As benchmark it is counted how many of the s =
10,000 segments are wrongly classified when using the vote with precision
matrix without forgetting. Additionally, a modified version is implemented,
which has the ability to forget. Therefore, the vehicle observations o(k),
with k = 1, . . . ,3, are scaled down. E.g. the classification of vehicle k from
time step t− i has only the weight f i in time step t with f ∈ [0,1]. A
forgetting factor of f = 0.5 is used for the simulation. A higher factor
means less forgetting because the observations are weighted stronger.
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Algorithmus 4.4 : Estimate and adjust precision matrix.
Input : n is number of vehicles, s is number of road

segments, Π(k)
v is precision matrix of vehicle

k ∈ 1, . . . ,n, Πb is precision matrix stored in the
back-end, l is number of classes, t is threshold for
using Π(k)

e instead of Πb
Output : number of misclassifications with adjusted

precision matrix of vehicle k
1 for v← 1 to n do
2 for i← 1 to s do
3 for 1 to v do
4 vehicles drive over road segment (ground truth)

with Πv
5 combine predictions of all vehicles with Πb
6 count number of misclassifications from combined

predictions
7 if i mod 5,000 = 0 and v ≥ 3 then
8 combine predictions from vehicles 1 . . .v with Πb

without vehicle k from last 5,000 road
segments

9 estimate precision matrix Π(k)
e from the

comparison of predictions of vehicle k with
combined predictions

10 d=
∑∑

|Π(k)
e −Πb|

l2
11 if d≥ t then
12 use Π(k)

e for vehicle k instead of Πb for
further calculations

13 display: ’confusion matrix for vehicle k
was adjusted, d, Π(k)

e ’

4.5 Conclusion of novel methods for road condition
estimation

This chapters describes the developed and applied methods to process in-
ertial and acoustic sensor data for road condition estimation. Firstly, pre-
processing is applied to align the labels, the desired output, with the raw
data. Furthermore, the data in time domain is transformed in space domain
by velocity and time vector. The data is linearly resampled to a uniform
sample rate of 100 m−1. The rate sensor data is smoothed with a median
filter and the vehicle velocity and acceleration data with a Savitzky-Golay
filter.
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Before presenting methods to process the data, influencing effects on the
sensor data or the output variable are experimentally identified. Besides the
road condition, the velocity is the main influencing effect of vehicle body
vibration. The main parameter influencing the sound pressure in the tire
cavity is also velocity besides the road roughness or obstacles. The type
of tire, surface temperature, tire temperature, tire pressure, and load have
minor impact on the sound pressure.

Incorporating these effects, methods to estimate the road unevenness
and roughness with non-labeled data are presented. The output of the
road condition estimation is a colored map. Moreover, obstacles are deter-
mined, highlighted, and listed in a table with information, such as number
of drivers, size, average velocity. Furthermore, a trend identification is de-
veloped based on regression of the road condition over time. For data, which
are labeled with the desired output variable, methods are presented to pre-
dict road attributes based on inertial sensor data. Moreover, a regression of
sound pressure level in the tire cavity and influencing factors, such as veloc-
ity, is introduced to estimate the road roughness. The classification process,
possible parameter variations, and performance measures are exemplarily
demonstrated and discussed with a benchmark data set, which incorporates
three classes and three features, representing the vehicle vibration.

To combine the prediction from the classification of various vehicles, the
following procedure is developed. Firstly, similar trajectories are identi-
fied with range search and distance algorithms to combine the classification
results of only those trajectories. Secondly, methods to combine these clas-
sification results are presented, which are referred to as majority vote, vote
with precision diagonal, and vote with precision matrix.

Overall, the presented methods cover the whole data processing chain to
estimate the road condition with vehicles as sensor platform, from prepro-
cessing to visualization and multiple vehicle combination.
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Outline: This chapter describes the developed measuring devices as well as
the software to acquire, transmit, and centrally store the data (Section 5.2).
The presented methods to estimate the road condition are implemented in a
Matlab toolbox, which is introduced in Section 5.3. Overall, the measuring
devices and the software to acquire and analyze the data are developed
and implemented under the following aspects, also to allow the application
of a large number of measuring devices: automation, low-cost, no manual
intervention, only few different computing environments and programming
languages to allow a continuous data processing flow. The software for the
measuring device to acquire the data is written in Python with bash scripts
for routines, the data processing methods are implemented in Matlab.

5.1 Overview

The vertical vehicle dynamics simulation to vary parameters and to in-
vestigate their influence on road condition estimation with data mining,
described in Section 3.5 is implemented in Matlab. The corresponding code
and description to perform the analysis can be found in [147].

The methods to combine the classifications derived by various vehicles of
an identical road segment are also implemented in Matlab. The developed
toolbox is published in [180].

The following sections focus on the implementation of data acquisition
and a Matlab toolbox to process the acquired sensor data. The complex-
ity of the selection and combination of hardware, especially the sensors and
data logger in the vehicle and the acoustic sensor in the tire cavity, as well as
the requirements of the measuring device are outlined in Section 3.4. This
chapter mainly presents the final result and application of the implementa-
tions and describes the most important steps of the set-up and operation
of the measuring devices. The detailed instructions for setting up and op-
erating the measuring device to acquire data can be found in [181]. The
instruction includes the self-developed software and installation file, files to
3D-print the cases, files for the self-developed printed circuit board (PCB)
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and software for the microcontroller. The developed toolbox in Matlab,
named Vehicle Learner Toolbox, consisting of the implementation of the
data processing methods, presented in Section 4.1 and 4.2 is published in
[182].

Overall, the measuring devices and the toolbox are developed to enable
an automatic data acquisition as well as processing. For the set-up and
installation of the measuring devices, only few manual interventions are
needed. The measurements run automatically and the toolbox only needs
the desired parameters as input.

5.2 Data acquisition

The developed methods and described sensors for acquiring sensor data
automatically (Section 3.4.3) are the basis for the measuring devices devel-
oped in this work. The measurement system for acquiring inertial sensor
data, vehicle position, and velocity and to transmit the data to a central
data base is shown in Figure 5.1. To annotate the raw data with the la-
bel of the ground truth, two buttons are installed. For every measurement
drive, data describing a certain type of surface (e.g. if asphalt 1, otherwise
0) and an attribute (e.g. if pothole 1, otherwise 0) are recorded. After
the measurement drives, binary coding of the data of the respective files is
transformed into the coding given in Table 5.1. The unix time t, ID for
the sensor, speed vV , position and time stamp of the GPS lat, lon, and
tGPS , accelerations a and rotation rates ω along all three axes, and the two
labels for the attribute e and surface type m are recorded and stored in a
csv-table on the measurement system (Figure 5.1).

Table 5.1: Label and name of the classes for road surface and road attribute.
m - Road surface e - Road attribute
0 - Unknown 0 - Unknown
1 - Smooth surface 1 - Good
2 - Damaged asphalt 2 - Light damages
3 - Damaged concrete 3 - Pothole
4 - Cobblestone 4 - Manhole cover

5 - Railway crossing
6 - Speed bump
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5.2 Data acquisition

Figure 5.1: Measurement unit, consisting of Raspberry Pi, inertial sensor,
Adafruit ultimate GPS Hat, UPS Hat, and two buttons for labeling
the data. In service, the inertial sensor is fixed under the Raspberry
Pi on the bottom of the case. The case is cut open for visualization
purposes.

The sound pressure in the tire cavity is acquired with a self-developed
telemetry system incorporating the novel methods described in Sec-
tion 3.4.3, which is attached to the wheel (Figure 5.2). The audio data
are transmitted via Bluetooth to the measurement system in the vehicle,
along with the state of charge (SOC) of the battery, and saved as a wav-
file. The tire pressure monitoring system (TPMS) data is transmitted on
the radio frequency 433 MHz and fused with the inertial sensor data among
others in the csv-table.

To enable an automatic installation of the self-developed software, the SD
card for the Raspberry Pi needs to be written with a self-developed image
analogous to a normal Raspian OS image. The basis as Raspian OS of the
self-developed image is Jessies. Alternatively, a new self-developed image
can be created with the script kernel img push-to-SDCard.sh on Linux. To
download and install the software on the Raspberry Pi, it needs to be
connected to the internet via LAN cable to automatically download the self-
developed software from a Git-repository on a web-based hosting service.
For the installation process, there is no manual interaction needed. If the
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(a) telemetry system without
wheel (b) telemetry system attached to the wheel

Figure 5.2: Telemetry system, consisting of an acoustic sensor and TPMS in
the tire cavity, a self-developed y-valve for cable entry and air, and
the wireless transmitter in a case (without cover for visualization
purposes).

Raspberry Pi is to be coupled with the telemetry system and the software is
to be installed on the Bluetooth module of the board, the Bluetooth antenna
needs to be plugged in and the Raspberry Pi needs to be connected to the
telemetry via UART. The credentials for the access point and the remote
data storage to transmit the data can be adjusted in the repository in the
file rpi config.cfg in the sections ’WLAN’ and ’Samba’ or directly on the
Raspberry Pi.

The micro-controller of the telemetry system, which is responsible for
activating the PCB by rotating vehicle wheels, needs to be flashed with
the self-developed software. Furthermore, the firmware of the Bluetooth
module on the board needs to be updated. The software of the Bluetooth
module is automatically installed during the installation of the Raspbeery
Pi.

The software for the measurement system in the vehicle is mainly devel-
oped in Python, routines for automation are implemented as bash scripts.
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5.2 Data acquisition

The sensorrecorder.py is the main measurement collection service of the
software. The collection service runs the processing task of every sensor in
a separate thread, as illustrated in Figure 5.3. The threads are responsible
to acquire data from global position system (GPS), inertial sensor referred
to as IMU, TPMS, and on-board diagnostics (OBD) and are divided into
initializing and running. On program start, the threads initialize the re-
quired libraries for the sensors, which are initialized and set up. For GPS
the gps3 and for IMU the rtimu library are imported. Furthermore, the
settings, such as orientation, and the poll interval are set for IMU. For
TPMS and OBD, the serial connection to the receivers are started. More-
over, the pin configuration for the buttons is initialized. Afterwards, the
sensor threads get data. In addition, the GPS thread generates data dic-
tionary and the IMU thread log the sample rate. OBD and TPMS thread
decode the received data. In this work, only the data for vehicle velocity
and wheel revolutions per minute are acquired. However, it is possible to
sample other sensor data from OBD. The button thread checks the states
of the pins. While running, the service collects the data from all sensors,
combines and tags them with a timestamp and queues the data for writing
them to an output file. The write-out task then will write the measure-
ment data from all tasks into a file, creates a new one after five minutes
and compresses the old one. If a sensor or receiver is not connected to the
measurement system, the data from the others are still acquired.

The audiorecorder.py to acquire the audio data from the telemetry sys-
tem at wheel runs separately from the main collection service. It starts
automatically triggered by userspace /dev (udev), a device manager for the
Linux kernel, as soon as a bluetooth connection between the Raspberry Pi
and the telemetry system is established. The telemetry system is config-
ured as master and actively tries to connect to the Raspberry Pi. If the
connection is successful, the recorder starts the audio transmission via a
remote console on the bluetooth module of the telemetry system and the
audio data is acquired and saved as wav-file.

New files are created every 5 minutes to avoid large data files for the
upload to a remote file storage. The file names contain an ascending ID
and the timestamp to allow merging the audio data with data from the
other sensors.

The wifiupload.py script is triggered by the uninterruptible power sup-
ply (UPS) module, which manages the power outages and shutdown of the
measurement system. The script assumes, that the vehicle’s engine is pow-
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GPS
Init:
– gps3lib

Run:
– get data
– generate
data dictionary

IMU
Init:
– rtimulib
– set settings
– set poll interval
Run:
– get data
– get data sample
rate

TPMS
Init:
– start serial

Run:
– get serial data
from TPMS
receiver

– decode TPMS
data

OBD
Init:
– start serial

Run:
– get serial data
from OBD
receiver

– decode velocity
and rpm data

QUEUE

csv-writer
Init:
– open file for writing data

Run:
– request queue for new data
– write measurement data to the file
– create new data file every 5 min

Unix Timestamp Button
Init:
– pin configuration

Run:
– check pin state

Figure 5.3: Structure of the main da ta collection service sensorrecorder.py with
processing tasks for each sensor as separate, independent threads.
The data is combined and tagged with a timestamp in a csv-table.

ered off and a proper WIFI link is available. If these conditions are valid,
the script will update the Git repository and transmit the files to a remote
file storage. Afterward, it will switch off the measurement system or restart
the recording software, if power is available again.

During the data recording, one can connect to the measurement system
via LAN to monitor the recording and, if necessary, to save the data files.
On a Windows PC, the programs ’Putty’ and ’WinSCP’ are suitable for this
purpose. The IP address of the measurement system is set to 192.168.111.3
and the data is located in the folder /home/pi/logging data.

Overall, the measurement device runs mainly autonomously. The mea-
surements of the sensors in the vehicle body start and stop with the ignition
of the vehicle and the measurements of the sensors at the wheel with its ro-
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tation. After the measurement is finished and the data logger is connected
to a known access point, all data is automatically transferred to server.
From there, the data can be processed with the toolbox, which is presented
in the following section. The only manual intervention needed is to charge
the battery of the telemetry system at the wheel via mini USB with output
voltage of 5V after more than 150 h of measurement time..

5.3 Data processing

5.3.1 Overview and import

To facilitate operation by non-experts, the methods presented in this work
to preprocess and process the data (Section 4.1 and 4.2) are implemented
in a graphical user interface called Vehicle Learner Toolbox. It is based on
Matlab and implements several machine learning operations of the freely
available toolbox SciXMiner [183] (formerly, Gait-CAD [184]). The Vehicle
Learner Toolbox provides the possibility to

• import vehicle sensor data in different file formats,
• process the imported data and automatically extract various features,
• train a classifier model with a wide-ranging set of options,
• test the trained classifier with a test set, and
• visualize the results with the help of plots and maps.
A project folder can be selected and sensor data can be imported in the

corresponding menu element Data (Figure 5.4). There is the option to as-
sign the sensor data to specific vehicles, since they vary in suspensions,
damping, and other parameters, which has an impact on the vibration be-
havior. Therefore, supervised learning data processing, described in subsec-
tion 5.3.3, can be performed for data dependent on the vehicle. The data
from various vehicles can be merged for the unsupervised learning data pro-
cessing. The import allows .csv and .xlsx file format with the following
column headers:

• timestamp (unix timestamp),
• x-, y-, z-accel (the acceleration values in each direction),
• x-, y-, z-gyro (the gyroscope values in each direction),
• gps-timestamp (format: YYYY-MM-DDThh:mm:ss,000Z),
• lat, lon (position in latitude and longitude),
• speed (in m/s), and
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Figure 5.4: The import data frame of the Vehicle Learner Toolbox. Different
vehicles can be chosen and the data type can be set.

• m, e (surface type m and attribute e labeling, if the data is not labeled,
these columns should only contain zeros).

Furthermore, csv files along with wav files can be imported, if tire cavity
sound pressure was acquired. The sensor data from the csv and wav files
are aligned and merged based on the unix timestamp.

The data is imported and preprocessed with the methods presented in
Section 4.1. Moreover, the imported data set can be categorized as training,
testing, or unlabeled data.

Furthermore, the parameters for the length of road segments and over-
lapping of these segments as well as the resampling frequency can be de-
termined. The standard window profiles are surface type with a window
length of 50 m and attribute with a window length of 5 m.
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5.3.2 Non-labeled data processing

The sections of the toolbox for the non-labeled data processing for inertial
sensor and acoustic sensor data automatically apply the methods presented
in subsection 4.2.3. Figure 5.5 shows the frame of the toolbox for the
processing of inertial sensor data. The frame for the process of acoustic
data is similar except for the possibility to filter the data for the range
of the tire pressure and tire temperature. The data of various vehicles
can be combined and the time interval as well as the area of interest can
be chosen. Furthermore, the lower threshold and upper threshold as well
as the resolution for the algorithms needs to be selected. Furthermore,
the maximum, mean or the standard deviation of the score for each road
segment can be calculated. The output of this data processing can be a
map based on open street map (OSM) format with the road state scores,
a csv file with the most damaged road segments and an OSM colored with
the trend of the road state score.
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Figure 5.5: The non-labeled data processing frame of the toolbox.

5.3.3 Labeled data processing

After the import and preprocess of the data, new data streams are cal-
culated and features are automatically extracted, as proposed in subsec-
tion 4.2.4. Any code to calculate new data series or features can be easily
added in the corresponding Matlab function. The in Section 4.2 proposed
data mining methods are implemented in the toolbox. The user can select
and use the methods under the menu element Supervised Learning (Fig-
ure 5.6). Furthermore, the toolbox contains additional data mining meth-
ods from the SciXMiner toolbox, introduced in subsection 5.3.1, which the
user can select to process data. However, this work concentrates on the data
mining methods described in Section 4.2. These methods showed the best
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Figure 5.6: The train classifier frame of the Vehicle Learner Toolbox. Various
classifiers can be trained with a wide range of options.

performance compared to other methods from SciXMiner, as investigated
in [203].

From the training or testing data set, labels are encoded according to
Table 5.1 and data annotated with specific labels can be excluded from the
classification. Another option is to thin out classes with significant more
data points than other classes to allow an approximately uniform distri-
bution of data points among the classes to prevent over-fitting of specific
classes. Furthermore, systematic errors during labeling the data can be re-
moved, e.g. if the button to annotate the data live was activated too early
or too late the annotation can be shifted or data points with the wrong
annotation can be excluded. After the generation of the data set to be
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processed, the settings for the classifier can be determined under the tab
Train Classifier, shown inFigure 5.6.

A new classifier model can be created with a training data set or an
existing model can be selected to test on new data. The next part contains
the settings of feature selection (e.g. multivariate analysis of variances
(MANOVA)) and aggregation (e.g. discriminant analysis), as proposed in
subsection 4.2.4. Reducing the amount of features highly influences the
classification result by reducing the chances for over-fitting. It is possible
to cross-validate the training process by setting the k-fold-cross-validation
value to higher than 1. The last section offers a variety of settings for the
classifier, e.g. for a support vector machine (SVM), including the kernel
function and penalty term. Afterwards, the classifier can be trained and
data can be plotted on OSMs. Furthermore, the confusion matrix and the
total loss is shown in the Matlab console.

Similar to training the classifier with features from inertial sensor data,
a new regression model can be trained with various variations under the
menu Supervised Learning and Train Regression (Figure 5.7). For example,
the vehicle can be chosen and the time interval and area to be investigated
can be set. Furthermore, the independent variables of the regression as well
as the dependent variable have to be determined. Lastly, the size of the
dataset can be automatically reduced to avoid long calculation time and
the number of folders for the cross-validation can be entered. The output
is a plot with the regression function and the measured observations as well
as performance measures. Analogous to the classification, new data can be
tested as well as plotted on OSMs.

For testing new data, a data set with modifications in time range and area
to be analyzed can be generated as described for training, and a trained
classifier needs to be selected. If the test data set is labeled, the output of
the prediction is again a confusion matrix and the classification error. More-
over, the results can be visualized and plotted on OSMs. The trajectories
will be cut into segments of different color referring to the corresponding
classes, which are predicted.
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Figure 5.7: The train regression frame of the Vehicle Learner Toolbox. Various
regressions can be trained with a wide range of options.

5.4 Conclusion of implementation

This chapter demonstrates the developed measuring device to acquire data
from inertial sensors, acoustic sensors in the tire cavity, GPS, OBD, and
TPMS. The instructions for setting up and operating the measuring devices,
including the software, technical drawings of the cases, the developed PCB,
and a list of the required hardware, is available in [181]. The measuring
device is designed for an automated installation and autonomous operation
and therefore for mass production and comprehensive data acquisition with
various vehicles.

The methods to process the acquired data are implemented in a user
friendly Matlab toolbox, which is available in [182]. With this toolbox, the
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data processing is automated, from importing and storing data to combi-
nation and visualization of the road condition estimates. The user only has
to set the parameters for the data processing methods.
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6 Results and discussion

Outline: This chapter presents the results of the validation of the devel-
oped measurement device (Section 6.2) and the estimation of the road con-
dition with non-labeled and labeled data from inertial and acoustic sensor
(Section 6.3). The visualization of the road condition estimation is imple-
mented in the developed Matlab toolbox. Matlab provides maps based on
open street map (OSM), on which the estimations can be visualized. These
maps are only available colored and the investigation of the results works
on monitors. However, for this work, the estimations are mapped with
the open-source application QGIS, which provides Stamen’s toner maps
as basemap layer that are black and white and more suitable to read. The
results of the investigation of the influence of different parameters and vehi-
cles on the classification accuracy in simulation are presented in Section 6.4.
Furthermore, the methods to combine the prediction of various vehicles are
evaluated in Section 6.5. Each presentation of results is followed by a dis-
cussion. In particular, the developed measuring device is discussed and
contrasted with vehicle on-board sensors. Moreover, the results of the road
condition estimation (subsection 6.3.3) and the implementation of the pre-
sented methods on an electronic control unit (ECU) of the vehicle to run
online (subsection 6.3.4) are discussed. Furthermore, the extended simu-
lation approach is concluded and the application and results are discussed
(subsection 6.4.3). Lastly, each section in this chapter includes open prob-
lems and suggestions for succeeding works with the topic of road condition
estimation using vehicles as sensor platforms.

6.1 Overview

For the validation of the development measurement device, which is pre-
sented in Section 3.4, data were acquired with a BMW 116d driving specific
maneuvers. In addition to data from the developed measurement device,
reference data from established measurement devices, which are too expen-
sive for fleet use, were simultaneously acquired. Based on the comparisons
of the data, the developed measurement device is evaluated in Section 6.2.
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Data for road condition estimation were acquired over a period of three
years with different vehicles, different drives and under different conditions,
such as temperature and weather. The measurement device in the vehicle
body with the GPS and inertial sensor was always placed between the
driver and co-driver seat, glued on the armrest behind the hand brake. The
acoustic sensor was attached to a free-rolling wheel.

For the estimation of road unevenness and roughness with the methods
presented in subsection 4.2.3, the time consuming process of data labeling
is not necessary. Therefore, data were constantly acquired over the period
of three years, mainly with a Ford Galaxy. In addition, a BMW 116d, VW
Golf, Smart and Mercedes-Benz S-Class were used to acquire data to test
the methods for different vehicles. Overall, over 300 h of data were gath-
ered for the estimation of road unevenness and roughness with non-labeled
data. Subsection 6.3.1 shows results of the application of the methods from
subsection 4.2.3 on the mentioned data set. Furthermore, the estimation
accuracy is compared for two different vehicles on the same track and the
influence of the combination of multiple estimation results is identified.

To apply the supervised learning methods, explained in subsection 4.2.4,
the data need to be manually annotated with the desired output variable,
which is time consuming. Therefore, less data were acquired compared to
the data set for non-labeled data processing. To ensure a generalization
of the presented methods, measurement data were recorded on randomly
selected roads in the Karlsruhe area. The velocity, the road conditions, and
the environmental conditions of the data set vary in a wide range. In total,
reference data are recorded over a distance of 250 km over a period of 6
months. The data were recorded on 14 days by three different drivers. The
acquisition of reference data is a lengthy process, as individual attributes,
such as potholes, need to be overrun several times with varying approach
angles, vehicle lanes and velocities. The results of applying the methods
from subsection 4.2.3 on the described labeled data set are shown in sub-
section 6.3.2.

The variation of vehicle parameters and the influence of this variation is
investigated in the extended simulation approach, presented in Section 3.5.
Vehicles used for real measurement data acquisition, are replicated in sim-
ulation to generate a larger data set. The results and the robustness of the
application of the methods from subsection 4.2.3 on the data set generated
with simulation and varied paramaters are presented in Section 6.4.
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The basis for the multiple vehicle combination, such as the precision
matrix, is derived from real measurement data. However, the calculations
to combine the classification results are performed offline and results and
evaluation of the combination strategies are shown in Section 6.5.

6.2 Verification of the developed measurement device

Inertial sensor

The performance of the microelectromechanical systems (MEMS) inertial
sensor is compared to a dedicated inertial measuring unit (IMU) (OXTS-
RT2502 from Oxford Technologies Soluations Ltd.), which is accurate but
too expensive for fleet use. Figure 6.1 shows the comparison of the signal
of the MEMS inertial sensor and from OXTS-RT2502, which is referred
to as reference, for various maneuvers, including slalom, acceleration and
deceleration, and a cleat test. The filtered signals are smoothed with a
Savitzky-Golay filter with parameters k = 7 and f = 21 for the vertical
acceleration and with k = 3 and f = 51 for others. Although the vertical
acceleration show higher noise (0.1921 m/s2) compared to the reference sen-
sor (0.1428 m/s2), Figure 6.1 indicates that the MEMS sensor is suitable to
measure the vehicle motion with a similar accuracy like the dedicated data
logger. Table 6.1 shows performance measures for signals of the maneuvers
and proves this suggestion.

Table 6.1: Summary of statistics for reference and MEMS inertial sensor signal.

Maneuver
Statistics

R2 NRMSE

Start and braking
Longitudinal acc. (unfiltered) 0.99 2.09
Longitudinal acc. (filtered) 1.00 0.53
Slalom
Lateral acc. (unfiltered) 0.99 2.35
Lateral acc. (filtered) 1.00 0.86
Yaw rate (unfiltered) 1.00 0.55
Yaw rate (filtered) 1.00 0.22
Cleat test
Vertical acc. (unfiltered) 0.84 4.10
Vertical acc. (filtered) 0.93 2.52
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Figure 6.1: Comparison of signals from MEMS and reference inertial sensor.

Acoustic sensor

Figure 6.2a exemplarily shows the power spectrum from the CMA-4544pf-
4w std. from the THD test, which is the basis to calculate the THD value of
the sensor. Figure 6.2b shows the SPL for the microphone INMP411 from
the excitation of the tire with an impulse hammer. The maximum SPL in
the tire cavity was 165 dB. However, the microphone INMP411 shows a
plateau with a SPL of 132 dB, which corresponds to the acoustic overload
point of 131 dB specified by the manufacturer.

Figure 6.3 shows the frequency response of all microphones during vehicle
operation. The figure indicates that the frequency response of the modified
conventional electret microphone (CMA-4544pf-w mod.) approximates the
response from the reference sensor (PCB 103B02) best.

Table 6.2 lists quantitative criteria of all sensors and tests. The table un-
derlines, that the modified electret microphone measures almost the same
sound pressure level (SPL) as the reference microphone. Furthermore, it has
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Figure 6.3: SPL with a 1/12 octave band smoothing of all microphones during
vehicle operation with constant speed of 60 km/h.

a similar total harmonic distortion (THD) value and power spectral density
(PSD) values for the test runs with 30 and 60 km/h compared to the refer-
ence microphone. Lastly, R2 between the reference and each microphone is
highest for the modified electret microphone.

The results of the experiments suggest, that the microphone
CMA4544PF-w a modified configuration is a good alternative to the ex-
pensive PCB 103B02 to perform acoustic measurements of the tire cavity
sound.

GPS

The accuracy of the GPS was determined by stopping a test vehicle five
times at the same position. The orthodromic distance, the shortest dis-

123



6 Results and discussion

Table 6.2: Summary of acoustic and statistics of the experimental examinations.
Measures

Microphone
Max.
input
SPL

THD
(110 dB,
1 kHz)

Max.
PSD,

30 km/h

Max.
PSD,
60 km/h

R2

(dB) (dB) (dB) (dB)

PCB 103B02 ≥ 165 -65.9 25.1 32.6 -
INMP411 132 -50.7 19.7 24.4 0.77
CMA4544PF-w std. 140 -37.0 22.0 26.4 0.83
CMA4544PF-w mod. 161 -63.4 25.20 33.1 0.96

tance between two points in the surface of a sphere, from the five acquired
positions is illustrated in Figure 6.4a and the standard deviation of the
distances is 1.12 m. Figure 6.4b shows the comparison of the vehicle veloc-
ity obtained from on-board diagnostics (OBD) and global position system
(GPS). The signals have a similar graph, the R2 is 1.00 and NRMSE is
1.90. Overall, the GPS sensor has a good accuracy in velocity as well as in
position.
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Figure 6.4: Orthodromic distance from five GPS signals at the same position
and velocity from GPS and OBD .

Discussion

A novel measurement device for acquiring GPS, inertial sensor, and acoustic
sensor data is presented in this work. It works autonomously and any vehicle
can be equipped with this device.
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6.3 Road condition estimation

However, inertial sensors are even partly integrated in the standard equip-
ment of new vehicles for fusion with GPS for a more precise position de-
termination. The data from the measuring device used in this work are
compared with inertial sensor data from an Audi A7. The sliding standard
deviation of the rolling rate, pitch rate and vertical acceleration of both
sensors proved to be almost identical with coefficient of determination of
0.9577 on average and a normalized root mean square error (NRMSE) of
0.0416 on average, which we have showed in [185]. Therefore, the devel-
oped methods for the inertial sensor can be applied on modern vehicles
without the employment of an external measuring device. The advantage
of the inertial sensor is that it is inexpensive and already on-board in many
new vehicles. In comparison to a camera, inertial sensors can only be used
to evaluate the directly traversed lane area. However, data of the inertial
sensor already contain information about minor unevenness which causes
the vehicle to vibrate, which might be mistaken by the camera. Moreover,
road condition estimation with cameras is problematic under varying con-
ditions, such as darkness and moist on the road surface. All in all, a system
consisting of inertial sensor is a cost-effective and computationally efficient
alternative to cameras to monitor the condition of the road infrastructure.
The fusion of the two systems represents a possibility to optimize mobile
condition estimation.

6.3 Road condition estimation

6.3.1 Road unevenness estimation and trend identification with
non-labeled data

Figure 6.5 shows the estimation of the road unevenness index (RUI) based
on the data processing methods presented in subsection 4.2.3. The frame
length for the road unevenness index (RUI) estimation is 5 m. The road con-
dition estimation for the highway B10 in Niefern, Germany, in the figure
are based on inertial sensor data acquired with a VW Golf. The estimation
shows areas with severe unevenness, colored red. These locations are au-
tomatically detected and tagged with a circle with the double thresholding
and connected-component labeling algorithms (subsection 4.2.3). The tags
are shown in Figure 6.5 and labeled with number 1 to 4. The estimations are
compared to the officially determined condition assessment and evaluation
2015 (ZEB).
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Figure 6.5: Continous road uneveness estimation in Niefern, Germany.

Label 1 and 2 are bridge gaps, which have a strong excitation of vibration
of the vehicle, and Label 3 and 4 are severe road surface defects. Overall, the
coefficient of determination for the estimated RUI compared to the ground
truth for the whole test drive around Niefern is 54 % and for the unweighted
aggregation of various drives 63 %, which we have showed in [185]. The
coefficient of determination for a different vehicle, a BMW 116d, for the
same test track is 50 % [185]. The coefficient of determinations show, that
the estimation can explain a large portion of the ground truth and that the
aggregation of various drives improves the estimation result. Furthermore,
the estimation seems to be stable for different types of vehicles. The R2 of
RUI estimation of the autobahn (A6) close to Niefern with the VW Golf
yields 45 %, which corresponds to the estimation accuracies for highway
B10. The estimation accuracy based on a camera is higher for B10 with
76 % and similar for A6 with 47 %[185].

Table 6.3 exemplarily shows the output of the toolbox with the automat-
ically detected severe unevenness hotspots. In addition to maximum and
on average estimated RUI, max(RUI) and µ(RUI), of the corresponding
hotspot, the coordinates of the midpoint of the hotspot, long. and lat.,
are displayed. Furthermore, the radius of the hotspots r and the average
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6.3 Road condition estimation

Table 6.3: Automatically detected hotspots with severe unevenness.
max(RUI) µ(RUI) long. lat. r µ(velocity) σ(velocity) drives

(m) (m/s) (m/s)
· · ·

1.00 0.71 8.77 48.92 1.6 13.59 3.38 11
0.97 0.73 8.44 48.98 2.3 22.32 0.04 2
0.83 0.69 8.65 48.91 1.0 24.29 0.04 4
0.75 0.68 8.65 48.91 1.0 23.61 0.04 4

· · ·

and standard deviation of the velocity of vehicles driven over the hotspots,
µ(velocity) and σ(velocity), and the amount of drives are automatically
calculated.

Figure 6.6 exemplarily shows the estimation of the RUI for a greater road
network based on data acquired with Ford Galaxy between 2016 and 2017.
The Labels 1 to 3 show road segments with severe unevenness, which are
confirmed by the driver.

The former examples show the advantage of the developed methods and
toolbox. The data are automatically acquired, processed, and visualized.
The maps with the colored estimation of the road condition and the ta-
ble with hotspots give a comprehensive overview of the road condition.
However, the output is only an unevenness index, without knowledge of the
actual attribute on the road. The results of the prediction of such attributes
are shown in subsection 6.3.2.

Figure 6.7 shows the results of the trend identification method for RUI
for Karlsruhe, Germany, and surrounding area. The trend identification
method, which is presented in Subsection 11, estimates if the condition of
a road segment decreased or increased over time. The figure indicates, that
the quality of the road infrastructure remained constant except for small
road segments in the city and larger areas marked with Label 1 and 2. With
such an output, road infrastructure engineers can identify road segments,
where the condition greatly decreases in short time intervals to identify
the reason and to take countermeasures. The reasons for such decreases in
road condition might be a high portion of heavy goods vehicles or mistakes
during the construction of the road.
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Figure 6.6: Continous road uneveness estimation in Karlsruhe, Germany.
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Figure 6.7: Trend identification in and around Karlsruhe, Germany.
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6.3.2 Road attributes and surface estimation with labeled data

This work distinguishes between the classification of attributes and road
surfaces. The classification of road surfaces aims to give a rough overview
of the condition of the road network. Hereby, the length of each road
segment to be classified is longer, 50 to 100 m, compared to the segment
length for attribute classification, where it is 5 to 10 m long.

Road surface classification separates the classes smooth asphalt and con-
crete, damaged asphalt, damaged concrete, cobblestones/off-road. Road at-
tribute classification incorporates the classes potholes, manhole covers, rail-
ways crossings, speed bumps, light damages, good condition.

Figure 6.8 illustrates the classification results of both approaches in ag-
gregated features space. Table 6.4 shows the performance measures (sub-
section 2.5.6) of the classification.
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Figure 6.8: Classification results with two aggregated features and borders of the
classifier in black.

The results, including Figure 6.8, and visualized examples for both ex-
amples are explained in more detail in Subsection 6.3.2, as well as the
regression and visualization of the roughness estimation of road surfaces
based on sound data of tire cavity.
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Table 6.4: Results of single features classification.

surface type Precision Recall Attribute Precision Recall
(%) (%) (%) (%)

smooth surf. 95.8 97.6 good 83.9 92.4
damag. asph. 97.3 94.9 light dam. 78.5 70.8
damag. con. 95.6 92.9 pothole 85.3 77.4
cobblestones 99.1 100.0 manhole 40.9 29.1

railway cro. 61.6 57.0
speed bump 94.9 91.0

Average 96.4 96.4 74.2 69.6
Accuracy 96.1 81.0

Attribute classification

The cross-validated accuracy of classifying attributes yields 81 % on average
without feature aggregation. The most important features to separate the
classes, determined with multivariate analysis of variances (MANOVA) are:

• peak-to-peak pitch acceleration
• peak-to-peak roll acceleration
• maximum of jerk in vertical direction
• average root mean square (RMS) of the vertical acceleration
• average velocity

Previous analysis have shown that the vehicle velocity has a high influence
on the sensor data and is therefore selected as an important feature for
the classification. The aggregated feature space, aggregated with linear
discriminant analysis, and the lines of the function to classify the attributes
are shown in Figure 6.8b.

The illustration of the classification shows, that road segments in good
condition, with light damages, speed bumps, and potholes can be separated
well. This indication is proofed by the quantitative results, listed in Ta-
ble 6.4. The precision and recall for good condition, light damages, speed
bumps, and potholes is above 70 %, whereas the performance measures for
manhole cover and railway crossing is below 62 % on average.

By comparing each class with each other, it emerges that the peak-to-
peak values of pitch and roll acceleration are mainly responsible to separate
attributes, which occur on

• both vehicle lanes (railway crossing, speed bump),
• on only one side of the vehicle (manhole cover, pothole),
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• or have only little impact on the vehicle vibration (light damages,
road segments in good condition).

In addition, the average RMS of the vertical acceleration is important to
separate light damages and road segments in good condition. Furthermore,
potholes and manhole covers are dividable by the maximum RMS of the roll
acceleration in the frequency range 15 to 25 m−1. However, latter attributes
are often misclassified as segments in good condition or light damages. Speed
bumps and railways crossings are separable by the value of the peek-to-peek
of the pitch rate, whereas railways crossings are also often misclassified as
light damages.

2
1

good

light damages

potholes

railway crossing

Figure 6.9: Attribute classification results of two high speed roads in the south
west of Karlsruhe, Germany.

To test the classifier, a data set of more than 200 km of real data is
classified and plotted on maps based on open street map (OSM). The results
are promising and represent the actual street condition in many occasions.
A few examples of classified areas are shown below.

The first example shows the attribute classification results on two differ-
ent high speed roads (Figure 6.9). The upper one with Label 1 is a freshly
renovated asphalt highway with close to no damages and the lower one with
Label 2 is a poorly patched asphalt road with a lot of medium and severe
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damages. The classification successfully predicted the upper roadway as
good street. Most parts of the lower street were predicted as light damage
and some points even as potholes. The results conform to the actual road
condition.
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good

light damages

potholes

speed bump

Figure 6.10: Attribute classification results for road segments in the city of Karl-
sruhe, Germany.

The second example presents data acquired in an urban area in Karlsruhe,
the predictions are shown in Figure 6.10. The roads in this area are poorly
preserved and there is a speed bump at a pedestrian crossing (Label 1).
The classification model correctly predicts the speed bump (Label 1) for all
overruns and a pothole (Label 2).

The third interesting sector is shown in Figure 6.11. Potholes (Label 2
and 3), which were at the edge of the driving line, were overrun multiple
times and the classifier predicts the severe damage accordingly. Sometimes
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Figure 6.11: Attribute classification results of road segments outside of Karl-
sruhe, Germany, for the events potholes and railways crossing.

the output at the road segments is not pothole but light damages or even
good road condition. The reason might be that the pothole was avoided by
the driver.

The railway crossing (Label 1) is more elevated than other crossings and
misclassified as speed bump in few cases.

Road surface classification

When classifying road surfaces, cross-validation yields 96.1 % accuracy on
average without aggregation of features. The three best individual features
for the classification of road surface according to MANOVA are:

• RMS of the roll acceleration for frequency range from 5 to 15 m−1 on
average

• standard deviation of the pitch rate
• stand deviation of the RMS of the vertical acceleration for frequency

range 15 to 25 m−1

The aggregated feature space is shown in Figure 6.8a. The figure indicates,
that the biggest portion of misclassifications results from asphalt classified
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as damaged asphalt or damaged concrete and vice versa. The illustrated
results are underlined by Table 6.4, where the precision and recall for cob-
blestone is above 99.0 %, whereas the performance measures for asphalt,
damaged asphalt, and damaged concrete are between 92.0 and 97.6 %.

The values of RMS of the roll acceleration and vertical acceleration sep-
arate the classes smooth surfaces, damaged asphalt and cobblestone. The
values are highest for cobblestone and low for smooth surface. Standard de-
viation of pitch rate separates the classes damaged concrete from all other
classes. The reason is probably poor and aged concrete joints.

The surface classifier was applied on the same data set described for at-
tribute classification. The classifier was able to reflect the road surface
precisely. The following figures display the performance on different sur-
faces. Analogous to the attribute classification shown in Figure 6.9, the
surface classifier could distinguish between both pavements and correctly
classified them as smooth surface and damaged asphalt, respectively.

1

2

3 smooth surface

damaged asphalt

damaged concrete

cobblestone

Figure 6.12: Road surface classification of road segments in urban area.

The classification results from data acquired in the urban area of Karl-
sruhe (Figure 6.12) show two correctly predicted areas of cobblestone (Label
1 and 2). The remaining road segments are correctly classified as segments
with light damages or in good condition. Especially the latter class was cor-
rectly predicted for a road segment, which was recently renewed (Label 3).
One misclassification of cobblestone can be found close to Label 1. However,
this road segment is highly damaged with various potholes, which have a
high impact on the vehicle vibration similar to cobblestone.
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Figure 6.13 shows highway segments with aged concrete and distinctive
concrete joints (Label 1 and 2), which have to be maintained shortly. Except
for one short segment, which was classified as smooth surface, the road state
was correctly predicted.
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cobblestone

Figure 6.13: Road surface classification of Karlsruhe, Germany, and highways
with different surface types.
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Road roughness estimation
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Figure 6.14: Estimated regression function for road roughness index (RRI).

Figure 6.14 shows the observations and estimated regression function for a
portion of the acquired data. The regression error, expressed as normalized
mean square error, of a five fold cross-validation of all acquired data is
4.54 h on average and the standard deviation is 0.15 h.The figure and the
calculated error indicate that the regression function is able to reproduce
the actual observations very well and it can also be used for the estimation
of road surface roughness for future measurements.

For example, Figure 6.15 and 6.16 show the estimated roughness based on
acoustic data acquired with BMW 116d with varied velocities. Figure 6.15
shows the roughness on a highway from Karlsruhe to Niefern, Germany.
Changes of road roughness (Label 1 and 2) are visible along the highway,
which correspond to the actual roughness condition.

Figure 6.16 indicates, that the roughness at the crossover in Niefern (La-
bel 1), at which traffic is very heavy, is coarser compared to other road seg-
ments in Niefern, Germany. Furthermore, the highway leading to Niefern
(Label 2) is new, which is represented by the results of this analysis.
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Figure 6.15: Road roughness estimation on highway from Karlsruhe to Niefern,
Germany.
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Figure 6.16: Road roughness estimation in Niefern, Germany.
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6.3.3 Discussion of road condition estimation

The results (Section 6.3) of the non-labeled data processing of the vehicle
body vibration and the tire vibration give a good estimation of the degree
of the road unevenness and road roughness. The achieved coefficient of
determination for two different vehicles is even comparable to results from
recent studies, but those involve a training process, e.g. [90]. The output
of the data processing, e.g. the maps or tables with hotspots, provide a
comprehensive overview of the condition of the road infrastructure. Road
inspectors can identify road segments in poor conditions and can structure
and prioritize the maintenance of the infrastructure.

In contrast to supervised learning methods, a costly labeling process for
this approach is not needed. However, the method can not differentiate, if
the vibration of the vehicle or the tire originate from road defects or from
structural obstacles. But if the vibration of the vehicle is high and the RUI
accordingly close to 1 due to a striking structural obstacle, a maintenance
might be necessary even it is not a defect. Examples are railway crossings
or bridge expansion joints, which are corrupted.

Moreover, the thresholds for the algorithm to identify road segments with
severe excitation on the vehicle are adjustable based on the purpose of the
road inspector. The estimator of the RUI is dependent on the vehicle, since
different vehicles have various suspension systems and vibration character-
istics. However, the estimates can be merged across different vehicles and
trajectories.

An extension or specification dependent on the vehicle of the feature set
might improve the estimator. For example, the features based on the pitch
rate can be considered. Moreover, the lower and higher frequency thresholds
for the calculation of the RMS with can be specified for vehicles to decrease
the portion of frequencies not relevant of road unevenness. However, this
requires an extensive study of the vehicle vibration characteristic due to
obstacles and a defined test track with various defects.

The results of the data processing for the inertial sensor data show that
both, road materials and attributes can be classified. The features auto-
matically selected by MANOVA are in agreement with the theory of vehicle
excitation. Surface type classification performs well according to the results
of the cross-validation and the test data.

There are various misclassifications among the prediction of attributes,
especially for structural obstacles, such as manhole covers and railway cross-
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ing. However, these attributes might be marked on a map and excluded
from classification and investigation, as the main objective is to detect road
damage.

One reason for misclassifications of the attributes good condition, light
damages, and potholes might be false manual annotating, since there is
sometimes only a fine line between the degree of damages, or the events
were not fully overrun, especially for potholes.

The inertial sensor and the developed data processing flow can be adapted
to detect other road features, which might be interesting for transportation
authorities. Road features, which might be classified with a good accuracy,
are wavelike deformations in longitudinal direction.

Other road infrastructure information, such as road slope or radius of
curves, can also be estimated solely based on inertial sensor data, as we
showed in [112, 186]. For this purpose, features from other time series, such
as yaw rate, longitudinal and lateral acceleration of the vehicle, are more
important than time series used for the estimation of road condition.

The data processing of acoustic sensor data can be extended to estimate
the tire road noise. In general, the degree of road roughness is positive
correlated with tire road noise. However, there are exceptions, such as a
open-pored road surface, which absorbs sound and reduces the tire road
noise. Moreover, the microphone inside the tire cavity might also be useful
to detect extended water residues on the road surface.

Overall, the methods can be tuned and the results can be improved with
novel demonstration, examination, and reference areas, such as duraBASt.
Ground truth data for different surface textures for the estimation of the
RRI and of different longitudinal unevenness for the estimation of RUI
can be obtained with lower effort under controlled conditions. Moreover,
ground truth data for defined road defects, which can be modified over
time, can be acquired under defined environment conditions, such as rain
and temperature.

6.3.4 Discussion of online estimation

The data processing presented in this work can probably run on electronic
control units (ECUs) of modern vehicles. However, the ECU has lim-
its in computational resources, such as working memory. The results of
MANOVA of the labeled inertial sensor data processing show that the most
important features are peak-to-peak or standard deviation of specific space
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series data. The major task is to avoid the calculation of features for win-
dows, since it is costly to keep all values. There exist online algorithms,
especially for the calculation of mean and variances [187, 188], which can
be applied to run the data processing on ECUs. Algorithms for the online
calculation of other features such as peaks, can be adjusted from ECG sig-
nal analysis, e.g. [189]. Furthermore, there exist approaches for real-time
frequency and harmonic evaluation, e.g. [190, 191].

6.4 Influences on classification performance

6.4.1 Variation of vehicle parameters

The classifier is trained with data, which is simulated from the BMW 116d
passive full car model driving on a 4 km-long road with fixed size of at-
tributes. Figure 6.17 shows the classes in feature space, described by two
aggregated features from 15 single features. The class pothole has two clus-
ters because two different sizes of potholes, each with smaller variations
in dimensions, are simulated, which have different impacts on the vehicle
vibration. The figure indicates, that the road features pothole and cob-
blestone are clearly separable to the other classes. Unevenness is close to
the road features railway crossing and cobblestone but still good dividable.
However, railway crossing, manhole cover and smooth surface are very close
and show some misclassifications. The reason is that the vehicle vibrations
due to these road features in simulation are similar.

The results of testing the classifier for different types of vehicles and
vehicle set-ups are shown in Table 6.5. Overall, the generalization error
remain good with a maximum of 10.2 % for S-Class.

Table 6.5: Performance of classifiers for different vehicles.

Vehicle Precision Recall Accuracy General.
error

(%) (%) (%) (%)
BWM 116d testing 90.4 90.8 90.6 7.6
S-Class W220 testing 86.1 89.0 87.6 10.2
Sprinter testing 94.9 94.9 94.9 5.0
BMW 116d act. susp. testing 90.8 91.6 91.2 8.5

The classifier from BMW 116d is used to predict unseen data, which are
simulated from models of different vehicles, loads and suspensions driving
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Figure 6.17: Classes separated by two aggregated features from 15 single fea-
tures.

over a 2 km-long road with random size of attributes. The testing results
are shown in Table 6.6. It is obvious that the classifier performs good with
the same vehicle model. However, the accuracy of the classifier declines
from 90% to 81% with the increasing load on the vehicle. For other vehicles
and set-ups, the performance measures decline greatly, which means the
mass, size and parameters of spring and damping have an individual effect
on the accuracy of the classifier. The results indicate, that the classifier,
which is trained with BMW 116d, is not robust and the performance for
the application on other vehicle set-ups greatly declines.

Table 6.6: Performance of the classifier for BMW 116d applied on different vehi-
cle set-ups and vehicles.

Vehicle Precision Recall Accuracy General.
error

(%) (%) (%) (%)
BMW 116d 200 kg loaded 87.1 88.3 87.7 10.5
BMW 116d 400 kg loaded 81.2 80.8 81.0 17.2
S-Class W220 77.2 68.4 72.8 25.4
Sprinter 75.6 68.5 72.1 26.1
BMW 116d act. susp. 42.7 38.0 40.4 57.8
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The performance measures improve, if the original classifier is trained
incorporating the parameters and set-ups of the vehicles as features. There-
fore, three vehicle model variations are considered as features, the load of
the vehicle, the model of the vehicle and the type of suspension. The new
classifier is trained on a road of length 180 km with a wide variation of
vehicle loads, models, and type of suspension. Analogous to above, this
classifier is tested on the presented vehicle models. The results (Table 6.7)
suggest that this classifier is more robust against different vehicle models
compared to the classifier solely based on data from one specific vehicle.
However, the performance measures for slightly changes of the set-up, e.g.
the increase of load, decrease compared to results shown in Table 6.6. Over-
all, the lowest value for performance measures is 73.0 and the highest value
for generalization error is 24.5 %.

Table 6.7: Performance of the classifier for various vehicle models applied on
different vehicle set-ups and vehicles.

Vehicle Precision Recall Accuracy General.
error

(%) (%) (%) (%)
BMW 116d 200 kg loaded 73.5 75.9 74.7 24.5
BMW 116d 400 kg loaded 82.2 79.4 80.8 18.4
BMW 116d act. susp. 80.4 78.0 79.2 20.0
S-Class W220 81.4 74.0 77.7 21.5
Sprinter 73.8 76.2 75.0 22.2

6.4.2 Variation of classification parameters

The influence of the position of the inertial sensor in the vehicle body in
the simulation is shown in Figure 6.18. The best accuracy can be achieved
with output obtaining from position S2, namely in the middle above the
front or rear axle.

Moreover, the number of selected features and the order of the polynomial
kernel also have an effect on the classification. In the practical application
on the vehicle, the classifier should at least maintain at a high level no
matter how the load of the vehicle changes. Thus each data flow contains
the output simulated by a selected vehicle model driving across different
road attributes with a series of loads from 0 kg to 400 kg. The features are
selected with MANOVA and the number of features is set from 10 to 30.

143



6 Results and discussion

S1 S2 S3 S4
0
5

10
15
20

position

w
ro

ng
pr

ed
ic

tio
ns

( %
) training data testing data

generalization error

Figure 6.18: Influence of the sensor position on the accuracy of the classification.

The classification is performed with support vector machine (SVM) with
a polynomial kernel with orders 1 to 5. The results, respectively for the
BMW 116d with anti-roll bar, are shown in Table 6.8. The results suggest
that the maximum accuracy can be achieved with a kernel order of 2 and
25 road features, which leads to 13.85 % misclassification. Using 25 features
and kernel order 3 is the second best option with 14.38 % misclassification.
The results indicate that the classes are better separable with nonlinear
classification functions. Furthermore, a higher amount of features, e.g. 30,
seems to lead to over-fitting.

Table 6.8: Misclassifications in % of classifier with varying kernel order and
number of features.

number of selected features
kernel order 10 15 20 25 30

1 23.00 19.77 21.31 15.62 19.38
2 21.92 18.23 17.54 13.85 17.46
3 22.77 17.62 16.62 14.38 15.92
4 23.08 18.08 16.62 16.08 16.62
5 23.31 18.54 17.72 17.23 17.15

6.4.3 Discussion of extended simulation approach

The proposed extended simulation approach enables to investigate the in-
fluence of parameter variation of vehicles on the classification performance.
The simulation consists of a full car model with 10 degrees of freedom
(DOF), various extensions, such as active suspension, a modified point con-
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tact tire model, dependent on vehicle velocity and length of obstacles, and
road models including road features and defects. It is shown that it matches
actual measured data, and therefore is a good representation of the real-
world. Supervised machine learning techniques involve a costly and labo-
riously collection of labeled data for training and testing. The simulation
reduces these costs, and it can be used to investigate and quantify the im-
pact of specific vehicle parameters and settings on the classification results.
Furthermore, the best parameters for the data processing and classification
can be determined or tested.

Further improvements are to incorporate additional elements of a real
vehicle into the vehicle model to the point of a commercial complex simu-
lation, such as CarMaker [192]. With the exact set up and behavior of real
vehicles in the simulation, classifiers can be trained in simulation before
assigning the classifier to real vehicles.

6.5 Multiple vehicle combination

The performance results of the proposed combination strategies for different
scenarios, which are described in subsection 4.4.3, are shown and discussed
in this section. Figure 6.19a shows the difference between the estimators
for Scenario 1, where the precision matrix for the combination strategy
and for all vehicles is identical. The vote with precision matrix, which in-
corporates the precision derived from the confusion matrix for all classes, is
the one with fewest wrong predictions. Already with one vehicle, the pro-
portion of wrong predictions is below 20 %, which means that each segment
is classified correctly on average. With increasing number of vehicles, the
number of wrong predictions for vote with precision matrix decreases faster
compared to majority vote or diagonal vote. Between latter two estimates
no big difference can be identified. Figure 6.19b represents the results of
the prediction based on the vote with precision matrix split into the classes.
The result shows a high impact of the class 5, C5, on the number of wrong
predictions because the precision of the vehicles to predict class 5, π55, is
only 0.73 and lower compared to other classes (Table 4.11).

In Scenario 2, each vehicle has an unknown precision matrix but the
combination of the classifications is still performed with the global preci-
sion matrix (Table 4.11). As shown in Figure 6.20, again vote with preci-
sion matrix is the most promising estimate. When comparing one vehicle,
which drives multiple times over the road and classifies the segments (Fig-
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Figure 6.19: Results of vehicle combination: Scenario 1. Each vehicle predicts
the ground truth based on the global precision matrix.

ure 6.20a), and multiple vehicles (Figure 6.20b), the latter one achieves
better results. The reason is that the fixed precision matrix of only one
vehicle can not compensate the difference to the global one and the propor-
tion of wrong predictions converges towards 10 %. However, five or more
different vehicles perform better and surpass 10 % (Figure 6.20b).
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Figure 6.20: Results of vehicle combination: Scenario 2. Unknown distribution
of classification due to different precision matrices for vehicles.

Figure 6.21 shows the influence of a vehicle with broken sensor from
Scenario 3 on the number of wrong predictions. In Figure 6.21a, the first
vehicle has or has not an equally distributed precision matrix and therefore
randomly predicts the classes. Above five vehicles, in average less than
10 % of the road is classified wrongly. Above ten vehicles the impact of the
bad precision matrix can be ignored. Figure 6.21b shows the results of a
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6.5 Multiple vehicle combination

simulation, in which the third vehicle has an equally distributed precision
matrix, which is referred to as broken sensor. The blue line shows the
proportion of misclassifications with the third vehicle with a broken sensor
and no adjustments. As soon as the output of the third vehicle is included
in the simulation, the number of wrong classifications increases greatly.
With increasing the number of vehicles with good precision matrices, the
number of wrong predictions converges again to 0. The green line shows the
results of the simulation with the identification of the vehicle with the bad
precision matrix and the adjustment of the precision matrix in the back-end
for this vehicle with the proposed Algorithm 4.4 in subsection 4.4.3. With
this adjustment, the increase of number of wrong predictions is not as high
as without adjustment and the number of misclassifications faster converges
to 0. Summarized, this method improves the results of our multiple vehicle
fusion and can identify vehicles with bad classification outputs.
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Figure 6.21: Results of vehicle combination: Scenario 3. Classification with and
without broken sensor. a: 1st vehicle with and without broken sen-
sor. b: 3rd vehicle with broken sensor with and without automated
adjusting precision matrix for this vehicle.

The results of Scenario 4, where the ground truth changes at one time
sample, can be seen in Figure 6.22. After the change of the ground truth at
time sample t= 5, the vote with precision matrix without forgetting needs
4 more time stamps to reduce the proportion of wrong classified segments
below 10 %. When using the forget factor, already in the next time stamp an
error rate below 2 % can be reached. In contrast, also correct classifications
and good results are forgotten by the algorithm. However, the impact is
small, which shows the results at time sample t = 2,3,4, where the green
line is only slightly above the blue line.
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Figure 6.22: Results of vehicle combination: Scenario 4. Change of the road con-
ditions and simulated with and without forgetting of previous clas-
sifications.

Conclusion and discussion

With the presented methods to identify trajectories from different vehicles
for each road road segment, an automatic annotating of sensor data with
the label of the ground truth is possible. Hereby, the label of road segments,
known or predicted from already trained vehicles, is transferred to new and
untrained vehicles. For this purpose, the trajectories of multiple vehicles
are compared and road segments, driven by various vehicles, are identified.
Problems can occur with poor GPS signal. However, this can be avoided
by applying an integrated navigation system, which is based on the sensor
data fusion of GPS and MEMS-IMU to provide an accurate position of the
vehicle [193, 194]. Modern vehicles are already equipped with integrated
navigation systems. Furthermore, the difference of the time duration for
obtaining the ground truth of a specific road segment and the time when a
new vehicle drives this road segments and receives the label should be small.
In the meantime, the ground truth could be changed, e.g. the condition of
the road segment is significantly decreased or maintained. The investiga-
tion of methods to combine the prediction of various vehicles for specific
road segments show, that the combination based on the precision matrix of
the classifier outperforms the combination based on majority vote. Various
extreme scenarios are simulated, e.g. a sudden change of the ground truth
or wrong predictions of a vehicle, to quantify the impact on the classifi-
cation results. Moreover, methods to overcome these extreme situations
are presented. The combined processing is mainly performed in simulation.
The next steps are to apply these methods on a fleet of vehicles.
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7 Conclusion

This work presents novel methods to comprehensively and automatically
estimate the road condition with vehicle based sensors. To acquire the data
from the sensors, a novel measurement system was developed [195]. The
installation and operating process of the measurement system requires al-
most no manual intervention and the data can be automatically transferred
to a central data base. A road unevenness index (RUI) is estimated with an
inertial sensor in the vehicle body and road roughness index (RRI) with an
acoustic sensor in the tire cavity. The estimation of the indices are based on
the measurement of the vibration of the vehicle and tire with the mentioned
sensors. It was shown from experiments under controlled conditions, that
the vibrations are not only dependent on road roughness or unevenness but
also on influences from the environment or vehicle operation, especially ve-
locity. To decrease the effect of these influences, the indices are estimated
for specific bins or intervals, which are constructed based on the main influ-
ences. The comparison with ground truth data suggest that the estimators
conform with the actual road condition. The estimators of various vehicles
can be combined and visualized on maps. Furthermore, the trend of the
road condition can be identified with a robust regression over time for each
road segment to be investigated.

Supervised learning data processing is introduced for the inertial and
acoustic sensor to classify road features and road roughness. The major
novelties include a feature selection with multivariate analysis of variances
(MANOVA) to reduce the complexity and avoid over-fitting of the classifier.
Two classifiers for the inertial sensor data are developed to estimate both,
road surface type and road attributes. The prediction of the methods were
observed and the results suggest a good performance.

Moreover, methods are introduced to realize an automatic transmission
of labels to new measurement vehicles to train their classifier. With the
same methods, road segments and lanes can be identified which are driven
by various vehicles and methods to combine the output of these vehicles
are investigated to improve the prediction rate. Overall, the methods are
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combined in a Matlab toolbox and graphic user interface for evaluation of
data sets with alternative parametrization by non-experts.

Summarized, this work achieves the following goals
• demonstration of current practice and state-of-the-art to monitor the

road condition,
• comprehensive literature review of research in automatic and mobile

road condition monitoring,
• development of a novel concept to monitor the road condition, which

incorporates an inertial sensor and acoustic sensor,
• development of an extended simulation approach to collect data with

a great variety of vehicle parameters for road condition estimation,
• investigation of effects, which influence the measuring data,
• investigation of vehicle and data processing parameters, which influ-

ence the classification results,
• development of a novel data processing chain to process inertial sensor

and acoustic sensor data for road condition estimation,
• development of a method to combine estimations from different vehi-

cles and to automatically train new vehicles,
• acquisition of data sets to test the data processing methods,
• implementation of all concepts and methods, which results in a novel

measuring device and a user friendly toolbox to process the acquired
data.

The developed methods can improve or partially substitute the current
practice for road infrastructure evaluation to increase the automation rate
and to reduce the costs and response rate. The results of the developed
methods show that the inertial sensor and acoustic sensor represent a very
good option to collect information of the tire road contact at low costs
and over wide area. The data processing methods can run on electronic
control units (ECUs) of modern vehicles, which serve as sensor platforms.
Moreover, as the developed system is of modular design, the number and
type of sensors and sensor modality can be varied. Lastly, a vehicle fleet
can be equipped with the presented system as it is to estimate the condition
of the road infrastructure. For example, the German Federal Environment
Agency currently deploys seven measuring devices, developed in this work,
and applies the presented methods, to automatically and comprehensively
monitor the road condition.
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haltung in den Gemeinden. Köln, Germany: Forschungsgesellschaft für
Strassen- und Verkehrswesen, 2004, vol. 986, 18 pp., isbn: 978-3-937356-
38-9.

[26] Wyoming Department of Transportation, “Data Collection Manual”, 2016.
[Online]. Available: http://www.dot.state.wy.us/home/engineering_
technical_programs/photos_and_surveys/Data_Collection_Manual.
html (visited on 11/01/2017).

[27] British Columbia Ministry of Transportation and Infrastructure, “Pave-
ment Surface Condition Rating Manual”, Aug. 2016. [Online]. Avail-
able: https : / / www2 . gov . bc . ca / assets / gov / driving - and -
transportation / transportation - infrastructure / highway - bridge -
maintenance/pavement-marking/pavement-surface-condition-rating-
manual.pdf (visited on 11/01/2017).

[28] Queensland Government - Transport and Main Roads, “Pavement Rehabil-
itation Manual”, 2012. [Online]. Available: http://www.tmr.qld.gov.au/-
/media / busind / techstdpubs / Pavements / Pavement - Rehabilitation -
Manual / Pavement _ Rehabilitation _ Manual . pdf ? la = en (visited on
11/01/2017).

[29] Florida Department of Transportation, “Flexible Pavement Condition Sur-
vey Handbook”, 2012. [Online]. Available: http : / / www . myflorida .
com/apps/vbs/adoc/F30239_Flexible_HandbookPart1.pdf (visited on
11/01/2017).

[30] Delaware Center for Transportation, “Pavement Condition Surveys -
Overview of Current Practices”, 2013. [Online]. Available: https://cpb-
us-w2.wpmucdn.com/sites.udel.edu/dist/1/1139/files/2013/10/Rpt-
245- Pavement- Condition- Okine- DCTR422232- 1pzk0uz.pdf (visited on
11/01/2017).

[31] Ireland Department of Transport, Tourism and Sport, “Rural Flexible
Roads Manual”, 2013. [Online]. Available: http://www.rmo.ie/uploads/8/
2/1/0/821068/psci_manual_rural_flexibleroads_04112013_lowres.pdf
(visited on 11/01/2017).

[32] Texas Department of Transportation, “Pavement Management Informa-
tion System”, 2015. [Online]. Available: https://texashistory.unt.edu/
ark:/67531/metapth838699/ (visited on 11/01/2017).

161

https://doi.org/10.4271/2008-01-0154
https://doi.org/10.4271/2008-01-0154
http://www.dot.state.wy.us/home/engineering_technical_programs/photos_and_surveys/Data_Collection_Manual.html
http://www.dot.state.wy.us/home/engineering_technical_programs/photos_and_surveys/Data_Collection_Manual.html
http://www.dot.state.wy.us/home/engineering_technical_programs/photos_and_surveys/Data_Collection_Manual.html
https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/highway-bridge-maintenance/pavement-marking/pavement-surface-condition-rating-manual.pdf
https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/highway-bridge-maintenance/pavement-marking/pavement-surface-condition-rating-manual.pdf
https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/highway-bridge-maintenance/pavement-marking/pavement-surface-condition-rating-manual.pdf
https://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/highway-bridge-maintenance/pavement-marking/pavement-surface-condition-rating-manual.pdf
http://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Pavements/Pavement-Rehabilitation-Manual/Pavement_Rehabilitation_Manual.pdf?la=en
http://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Pavements/Pavement-Rehabilitation-Manual/Pavement_Rehabilitation_Manual.pdf?la=en
http://www.tmr.qld.gov.au/-/media/busind/techstdpubs/Pavements/Pavement-Rehabilitation-Manual/Pavement_Rehabilitation_Manual.pdf?la=en
http://www.myflorida.com/apps/vbs/adoc/F30239_Flexible_HandbookPart1.pdf
http://www.myflorida.com/apps/vbs/adoc/F30239_Flexible_HandbookPart1.pdf
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/1/1139/files/2013/10/Rpt-245-Pavement-Condition-Okine-DCTR422232-1pzk0uz.pdf
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/1/1139/files/2013/10/Rpt-245-Pavement-Condition-Okine-DCTR422232-1pzk0uz.pdf
https://cpb-us-w2.wpmucdn.com/sites.udel.edu/dist/1/1139/files/2013/10/Rpt-245-Pavement-Condition-Okine-DCTR422232-1pzk0uz.pdf
http://www.rmo.ie/uploads/8/2/1/0/821068/psci_manual_rural_flexibleroads_04112013_lowres.pdf
http://www.rmo.ie/uploads/8/2/1/0/821068/psci_manual_rural_flexibleroads_04112013_lowres.pdf
https://texashistory.unt.edu/ark:/67531/metapth838699/
https://texashistory.unt.edu/ark:/67531/metapth838699/


Bibliography

[33] Department for Transport, UK, “Scanner Surveys for Local Roads”,
2011. [Online]. Available: http : / / www . ukroadsliaisongroup . org /
download.cfm/docid/B6174E19- AF7D- 48C4- 9557C93F5D19C598 (visited
on 11/01/2017).

[34] F. Bektas, O. Smadi, and M. Al-Zoubi, “Pavement Management Perfor-
mance Modeling: Evaluating the Existing PCI Equations”, Institute for
Transportation Iowa State University, Ames, Iowa, USA, InTrans Project
13 - 455, 2014.

[35] A. Bogner and W. Menz, “Das theoriegenerierende Experteninterview”, in
Das Experteninterview, Wiesbaden: VS Verlag für Sozialwissenschaften,
2002, pp. 33–70, isbn: 978-3-8100-3200-3.

[36] S. C. Radopoulou and I. Brilakis, “Automated Detection of Multiple Pave-
ment Defects”, Journal of Computing in Civil Engineering, vol. 31, no. 22,
2016. doi: 10.1061/(ASCE)CP.1943-5487.0000623.

[37] M. Doumiati, S. Erhart, J. Martinez, O. Sename, and L. Dugard, “Adap-
tive control scheme for road profile estimation: Application to vehicle dy-
namics”, IFAC Proceedings Volumes, 19th IFAC World Congress, vol. 47,
no. 3, pp. 8445–8450, 2014. doi: 10.3182/20140824-6-ZA-1003.00986.

[38] M. Doumiati, A. Victorino, A. Charara, and D. Lechner, “Estimation
of Road Profile for Vehicle Dynamics Motion: Experimental Validation”,
in American Control Conference (ACC), Piscataway, New Jersey, USA:
IEEE, 2011, pp. 5237–5242. doi: 10.1109/ACC.2011.5991595.

[39] J. Laurent, M. Talbot, and M. Doucet, “Road Surface Inspection Using
Laser Scanners Adapted for the High Precision 3D Measurements of Large
Flat Surfaces”, in International Conference on Recent Advances in 3-D
Digital Imaging and Modeling, Piscataway, New Jersey, USA: IEEE, 1997,
pp. 303–310. doi: 10.1109/IM.1997.603880.

[40] J.-F. Hebert and J. Laurent, “High Performance 3D Sensors for the Charac-
terization of Road Surface Defects”, in IAPR Workshop on Machine Vision
Applications, Nara, Japan: Machine Vision Applications, 2002, pp. 388–
391.

[41] Q. Li, M. Yao, X. Yao, and B. Xu, “A Real-Time 3D Scanning System for
Pavement Distortion Inspection”, Measurement Science and Technology,
vol. 21, no. 1, 2010. doi: 10.1088/0957-0233/21/1/015702.

[42] J. Laurent, J.-F. Hebert, D. Lefebvre, and Y. Savard, “Using 3D Laser
Profiling Sensors for the Automated Measurement of Road Surface Con-
ditions”, in RILEM Bookseries, vol. 4, Dordrecht, Netherlands: Springer,
2012, pp. 157–167. doi: 10.1007/978-94-007-4566-7_16.

[43] C. Jiang and Y. J. Tsai, “Enhanced Crack Segmentation Algorithm Using
3D Pavement Data”, Journal of Computing in Civil Engineering, vol. 30,
no. 3, pp. 1–10, 2015. doi: 10.1061/(ASCE)CP.1943-5487.0000526.

162

http://www.ukroadsliaisongroup.org/download.cfm/docid/B6174E19-AF7D-48C4-9557C93F5D19C598
http://www.ukroadsliaisongroup.org/download.cfm/docid/B6174E19-AF7D-48C4-9557C93F5D19C598
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000623
https://doi.org/10.3182/20140824-6-ZA-1003.00986
https://doi.org/10.1109/ACC.2011.5991595
https://doi.org/10.1109/IM.1997.603880
https://doi.org/10.1088/0957-0233/21/1/015702
https://doi.org/10.1007/978-94-007-4566-7_16
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000526


Bibliography

[44] K. Chen, M. Lu, G. Tan, and J. Wu, “CRSM: Crowdsourcing Based Road
Surface Monitoring”, in IEEE 10th International Conference on High Per-
formance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing (HPCCEUC), Pis-
cataway, New Jersey, USA: IEEE, 2013, pp. 2151–2158. doi: 10.1109/
HPCC.and.EUC.2013.308.

[45] R. Johnsson and J. Odelius, “Methods for Road Texture Estimation Us-
ing Vehicle Measurements”, in International Conference on Uncertainty
in Structural Dynamics, Leuven, Belgium: Katholieke Universitat, 2012,
pp. 1573–1582, isbn: 978-90-73802-89-6.

[46] J. Zhou, P. S. Huang, and F.-P. Chiang, “Wavelet-Based Pavement Dis-
tress Detection and Evaluation”, Optical Engineering, vol. 45, no. 2, pp. 1–
10, 2006. doi: 10.1117/1.2172917.

[47] F. M. Nejad and H. Zakeri, “An Optimum Feature Extraction Method
Based on Wavelet–Radon Transform and Dynamic Neural Network for
Pavement Distress Classification”, Expert Systems with Applications,
vol. 38, no. 8, pp. 9442–9460, 2011. doi: 10.1016/j.eswa.2011.01.089.

[48] L. Ying and E. Salari, “Beamlet Transform-Based Technique for Pavement
Crack Detection and Classification”, Computer-Aided Civil and Infrastruc-
ture Engineering, vol. 25, no. 8, pp. 572–580, Nov. 2010, issn: 1467-8667.
doi: 10.1111/j.1467-8667.2010.00674.x.

[49] T. S. Nguyen, M. Avila, and S. Begot, “Automatic Detection and Classi-
fication of Defect on Road Pavement Using Anisotropy Measure”, in 2009
17th European Signal Conference,, IEEE, 2009, pp. 617–621.

[50] A. Cord and S. Chambon, “Automatic Road Defect Detection by Tex-
tural Pattern Recognition Based on AdaBoost”, Computer-Aided Civil
and Infrastructure Engineering, vol. 27, no. 4, pp. 244–259, 2012. doi:
10.1111/j.1467-8667.2011.00736.x.

[51] Y.-C. Tsai, V. Kaul, and R. M. Mersereau, “Critical Assessment of Pave-
ment Distress Segmentation Methods”, Journal of Transportation Engi-
neering, vol. 136, no. 1, pp. 11–19, 2009. doi: 10.1061/(ASCE)TE.1943-
5436.0000051.

[52] M. Gunaratne, S. Sarkar, and S. Amarasiri, “Modeling of Crack Depths
in Digital Images of Concrete Pavements Using Optical Reflection Proper-
ties”, Journal of Transportation Engineering, vol. 136, no. 6, pp. 489–499,
2010. doi: 10.1061/(ASCE)TE.1943-5436.0000095.

[53] Y. S. Kim, H. S. Yoo, J. H. Lee, and S. W. Han, “Chronological Develop-
ment History of X–Y Table Based Pavement Crack Sealers and Research
Findings for Practical Use in the Field”, Automation in Construction,
vol. 18, no. 5, pp. 513–524, 2009. doi: 10.1016/j.autcon.2009.02.007.

163

https://doi.org/10.1109/HPCC.and.EUC.2013.308
https://doi.org/10.1109/HPCC.and.EUC.2013.308
https://doi.org/10.1117/1.2172917
https://doi.org/10.1016/j.eswa.2011.01.089
https://doi.org/10.1111/j.1467-8667.2010.00674.x
https://doi.org/10.1111/j.1467-8667.2011.00736.x
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000051
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000051
https://doi.org/10.1061/(ASCE)TE.1943-5436.0000095
https://doi.org/10.1016/j.autcon.2009.02.007


Bibliography

[54] E. Salari and G. Bao, “Pavement Distress Detection and Severity Anal-
ysis”, in SPIE - Image Processing: Machine Vision Applications IV,
vol. 7877, Bellingham, Washington, USA: The Society for Imaging Science
and Technology, 2011, pp. 1–10. doi: 10.1117/12.876724.

[55] M. Kamaliardakani, L. Sun, and M. K. Ardakani, “Sealed-Crack Detection
Algorithm Using Heuristic Thresholding Approach”, Journal of Comput-
ing in Civil Engineering, vol. 30, no. 1, pp. 1–10, 2014. doi: 10.1061/
(ASCE)CP.1943-5487.0000447.

[56] S. C. Radopoulou and I. Brilakis, “Patch Detection for Pavement Assess-
ment”, Automation in Construction, vol. 53, no. 6, pp. 95–104, 2015. doi:
10.1016/j.autcon.2015.03.010.

[57] S. Battiato, F. Stanco, S. Cafiso, and A. D. Graziano, “Adaptive Imaging
Techniques for Pavement Surface Distress Analysis”, Communications to
SIMAI Congress, vol. 2, 2007. doi: 10.1685/CSC06016.

[58] X. Yao, M. Yao, and B. Xu, “Automated Detection and Identification of
Area-Based Distress in Concrete Pavements”, in 7th International Confer-
ence on Managing Pavement Assets, Washington, DC, USA: Transporta-
tion Research Board, 2008, pp. 1–11.

[59] J. Lin and Y. Liu, “Potholes Detection Based on SVM in the Pavement
Distress Image”, in Ninth International Symposium on Distributed Com-
puting and Applications to Business Engineering and Science (DCABES),
Piscataway, New Jersey, USA: IEEE, 2010, pp. 544–547. doi: 10.1109/
DCABES.2010.115.

[60] G. M. Jog, C. Koch, M. Golparvar-Fard, and I. Brilakis, “Pothole Proper-
ties Measurement through Visual 2D Recognition and 3D Reconstruction”,
in International Conference on Computing in Civil Engineering, Reston,
Virginia, USA: American Society of Civil Engineers, 2012, pp. 553–560.
doi: 10.1061/9780784412343.0070.

[61] Z. Hou, K. C. Wang, and W. Gong, “Experimentation of 3D Pavement
Imaging through Stereovision”, in International Conference on Trans-
portation Engineering 2007, Reston, Virginia, USA: American Society of
Civil Engineers, 2012, pp. 376–381. doi: 10.1061/40932(246)62.

[62] K. C. Wang, “Positioning and Imaging Sensors for Automated Asset Man-
agement of Transportation Facilities”, in International Conference on
Transportation Engineering 2007, Reston, Virginia, USA: American So-
ciety of Civil Engineers, 2012, pp. 19–24. doi: 10.1061/40932(246)4.

[63] B. Uslu, M. Golparvar-Fard, and J. M. de la Garza, “Image-Based 3D
Reconstruction and Recognition for Enhanced Highway Condition Assess-
ment”, in International Workshop on Computing in Civil Engineering
2011, Reston, Virginia, USA: American Society of Civil Engineers, 2012,
pp. 67–76. doi: 10.1061/41182(416)9.

164

https://doi.org/10.1117/12.876724
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000447
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000447
https://doi.org/10.1016/j.autcon.2015.03.010
https://doi.org/10.1685/CSC06016
https://doi.org/10.1109/DCABES.2010.115
https://doi.org/10.1109/DCABES.2010.115
https://doi.org/10.1061/9780784412343.0070
https://doi.org/10.1061/40932(246)62
https://doi.org/10.1061/40932(246)4
https://doi.org/10.1061/41182(416)9


Bibliography

[64] V. Balali and M. Golparvar-Fard, “Segmentation and Recognition of Road-
way Assets from Car-Mounted Camera Video Streams Using a Scalable
Non-Parametric Image Parsing Method”, Automation in Construction,
vol. 49, Part A, pp. 27–39, 2015. doi: 10.1016/j.autcon.2014.09.007.

[65] J. L. Vilacca, J. C. Fonseca, A. C. M. Pinho, and E. Freitas, “3D Surface
Profile Equipment for the Characterization of the Pavement Texture –
TexScan”, Mechatronics, vol. 20, no. 6, pp. 674–685, 2010. doi: 10.1016/
j.mechatronics.2010.07.008.

[66] K. T. Chang, J. R. Chang, and J. K. Liu, “Detection of Pavement Dis-
tresses Using 3D Laser Scanning Technology”, in International Conference
on Computing in Civil Engineering 2005, Reston, Virginia, USA: Ameri-
can Society of Civil Engineers, 2012, pp. 1–11. doi: 10.1061/40794(179)
103.

[67] S.-J. Yu, S. R. Sukumar, A. F. Koschan, D. L. Page, and M. A. Abidi,
“3D Reconstruction of Road Surfaces Using an Integrated Multi-Sensory
Approach”, Optics and Lasers in Engineering, vol. 45, no. 7, pp. 808–818,
2007. doi: 10.1016/j.optlaseng.2006.12.007.

[68] Daimler AG. (). Mercedes-Benz TechCenter: Magic Body Control, [Online].
Available: http://techcenter.mercedes-benz.com/de_DE/magic_body_
control/detail.html (visited on 05/16/2017).

[69] G. P. Zhang, “Neural Networks for Classification: A Survey”, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), vol. 30, no. 4, pp. 451–462, 2000. doi: 10.1109/5326.897072.

[70] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “TextonBoost for Im-
age Understanding: Multi-Class Object Recognition and Segmentation by
Jointly Modeling Texture, Layout, and Context”, International Journal of
Computer Vision, vol. 81, no. 1, pp. 2–23, 2009. doi: 10.1007/s11263-
007-0109-1.

[71] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha, “Real-Time
Visual Concept Classification”, IEEE Transactions on Multimedia, vol. 12,
no. 7, pp. 665–681, 2010. doi: 10.1109/TMM.2010.2052027.

[72] O. Bschorr, A. Wolf, and J. Mittmann, “Theoretische und experi-
mentelle Untersuchungen zur Abstrahlung von Reifenlärm”, Zentrale
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Schmidt-Sautter, and J. Masino, “Real-time Measurement of Road Quality
Using On-Board Vehicle Sensors”, Straße und Autobahn, vol. 69, no. 4,
pp. 294–302, 2018.

182

https://doi.org/10.1109/ICIT.2017.7915497
https://doi.org/10.1109/ICIT.2017.7915497
https://doi.org/10.1109/SYSCON.2016.7490624
https://doi.org/10.1109/ISISS.2017.7935649
https://doi.org/10.1109/ISISS.2017.7935649
https://doi.org/10.1109/ISISS.2016.7435548
https://doi.org/10.1109/ISISS.2016.7435548
https://doi.org/10.5281/zenodo.1216192
https://doi.org/10.5281/zenodo.1187068
https://doi.org/10.5281/zenodo.1216212
https://doi.org/10.5281/zenodo.1216187


Scholarships

I am grateful for the scholarships from Karlsruhe House of Young Scien-
tists (KHYS), KIT, and German Academic Exchange Service (DAAD) to
support my research abroad with over 10,000 Euro and to get in touch
with international researchers. The following list gives an overview of my
received scholarships during my PhD studies:

• internship grant from KHYS to invite a research student from India
for an internship from July till September 2015,

• networking grant from KHYS to visit the Machine Learning Institute
at ETH Zurich, Switzerland, in May 2016,

• research travel grant from KHYS to visit the Construction Informa-
tion Technology (CIT) Laboratory at University of Cambridge, UK,
from April till July 2017,

• short-term scholarship for doctoral students from DAAD for visiting
University of Cambridge, UK.

• visiting scholar of Berkeley Deep Drive at University of California,
Berkeley, USA

183


	Introduction
	Motivation
	Road condition
	Causes for road defects
	Effects of road defects

	State-of-the-art of road condition monitoring
	Survey of related research
	Overview
	Application of road profilometers for road condition monitoring
	Application of cameras for road condition monitoring
	Application of acoustic sensors for road condition monitoring
	Application of inertial sensors for road condition monitoring

	Open questions
	Aim of this work and research objectives

	Fundamentals
	Coordinate systems
	Vehicle vibration
	Overview
	Tire road contact
	Vehicle body vibration

	On-board vehicle sensors
	Vertical vehicle dynamics and road models
	Overview of models for vertical vehicle dynamics
	Vehicle models
	Road models
	State space

	Data Mining
	Overview
	Classification
	Regression
	Feature selection
	Feature aggregation
	Performance measures

	Performance indices for measurement validation

	Road condition monitoring with vehicle based sensors
	Concept of a novel road condition monitoring procedure
	Vehicle motion from road irregularities
	Evaluation of on-board sensors
	Novel road condition monitoring system
	Sensors
	Data acquisition
	Demonstration of novel measuring device

	Extended simulation approach for road condition estimation
	Overview
	Extended road model
	Extended full car model
	Comparison of computer-simulated and real measurement data
	Variation of parameters

	Conclusion of novel concepts for road condition monitoring

	Novel methods for road condition estimation
	Sensor data preprocessing
	Sensor data processing
	Overview
	Influencing effects
	Road unevenness and roughness estimation
	Road attribute and surface estimation

	Exemplarily application of methods on benchmark data set
	Multiple vehicle fusion
	Overview
	Identification of road segments with trajectories from different vehicles
	Multiple vehicle combination

	Conclusion of novel methods for road condition estimation

	Implementation
	Overview
	Data acquisition
	Data processing
	Overview and import
	Non-labeled data processing
	Labeled data processing

	Conclusion of implementation

	Results and discussion
	Overview
	Verification of the developed measurement device
	Road condition estimation
	Road unevenness estimation and trend identification
	Road attributes and surface estimation
	Discussion of road condition estimation
	Discussion of online estimation

	Influences on classification performance
	Variation of vehicle parameters
	Variation of classification parameters
	Discussion of extended simulation approach

	Multiple vehicle combination

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

