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Abstract

Oxide supported noble metal nanoparticles are commonly used as industrial heterogeneous catalysts, for example
in automotive exhaust-gas after-treatment systems. To improve their lifetime is highly important to reduce natural
resource exploitation. The catalyst lifetime is limited by catalyst deactivation, in particular through sintering.
In this thesis, both, the thermodynamic stability of supported nanoparticles as well as their deactivation kinetics
through sintering are investigated.
First, the thermodynamic stability of pure unsupported metal nanoparticles is studied. Density functional theory
(DFT) is used to examine cuboctahedral, octahedral and cubic nanoparticles of the late transition metals as well
as Al and Mg in order to identify their stability as a function of size. A simple model is developed that not only
includes the surface energies as in the commonly used Wulff construction but additionally accounts for energies
related to edges and corners. Importantly, this model only requires the bulk cohesive energy and the surface
energies of the fcc(111) and fcc(100) surfaces, which are used to extrapolate to lower coordination numbers. It is
found that the model estimates the stability of nanoparticles with a mean absolute error of only 0.09 eV/atom.
To understand how the support influences the stability of metal nanoparticles, numerous metal/oxide interfaces are
investigated using DFT. It is found that for a given oxide, variations in adhesion energies with different metals
can be described by the adsorption energy of atomic oxygen on the corresponding metal surfaces, thus forming
scaling relations similar to those used for adsorbates on metal surfaces. Variations between different oxides can be
analyzed through the number of interfacial oxygen atoms that form metal-oxygen bonds. This descriptor can often
be derived from the structure of the clean oxide surfaces. Adhesion of the studied interfaces, which is dominated
by metal-oxygen bonds, is thus well described by a single scaling relation, using two descriptors, one for the metal
and one for the oxide surface.
To describe the kinetics of sintering for particle migration and coalescence, a kinetic Monte Carlo (kMC) based
model is introduced that simulates migration of differently sized Pt nanoparticles on quartz with point defects.
Diffusion constants are taken from 3D-lattice DFT-based kMC from the literature. The effects of temperature,
particle-size, particle-concentration and support defects are studied. To investigate the competitive effects of the
two different sintering mechanisms, particle migration and coalescence and Ostwald ripening, the latter is simu-
lated through a mean-field model within the kMC model. Under elevated temperatures and oxygen in the gas phase,
Ostwald ripening, mediated by mass transfer of volatile PtO2 between Pt particles, is found to be the dominating
sintering mechanism for the investigated Pt supported on quartz catalyst.
The used mean-field model for gas phase mediated Ostwald ripening is based on assumptions for macroscopic dif-
fusion. Here, much smaller length scales are involved, because diffusion occurs between nanoparticles. Therefore,
a kMC model is developed that explicitly simulates the diffusion of single atoms or molecules in the gas phase
that result from collisions with a background gas. This model accurately reproduces ideal gas properties such as
the diffusion constant. In model applications, the gas phase mediated mass transfer is studied as a function of the
distance between the involved surfaces. If these distances are within the mean free path, typically a micrometer or
lower, continuum models based on Fick’s laws deviate from the explicit simulation. The gas phase kMC model is
adapted to simulate gas phase mediated Ostwald ripening to evaluate the used mean-field model and its limitations.
Generally the results obtained either using the mean-field model or the kMC model are similar. Only in limiting
cases, as equally sized nanoparticles, the models diverge.
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Kurzfassung

Edelmetall Nanopartikel auf Oxid-Trägern werden in der Industrie als heterogene Katalysatoren genutzt, zum
Beispiel in Auto-Abgaskatalysatoren. Es ist wichtig, die Lebenszeit dieser Nanopartikel zu erhöhen, um Umweltaus-
beutung zu verhindern. Die Katalysatorlebenszeit ist allerdings begrenzt, da durch Sintern eine Katalysator-
Deaktivierung hervorgerufen wird. In dieser Doktorarbeit wird sowohl die thermodynamische Stabilität der
Nanopartikel auf Trägern untersucht, als auch die Sinterungskinetik.
Im ersten Teil wird die thermodynamische Stabilität von reinen Edelmetall-Nanopartikeln untersucht. Um die
Stabilität von kuboktaedrischen, oktaedrischen und kubischen Nanopartikeln, bestehend aus Übergangsmetallen
und Al und Mg zu untersuchen, wird die Dichtefunktionaltheorie (DFT) genutzt. Es wird ein einfaches Modell
entwickelt, welches nicht nur die Beiträge der Oberflächen berücksichtigt, wie in Wulff’s Konstruktion, sondern
auch die von Ecken und Kanten. Besonders ist, dass nur die Kohäsionsenergie und die Oberflächenenergien der
fcc(111) und fcc(100) Oberflächen notwendig sind, um auch Oberflächenatome mit niedriger Koordinationszahl
zu beschreiben. Mit dem entwickelten Modell kann die Stabilität von Nanopartikeln mit einem mittleren absoluten
Fehler von 0.09 eV/Atom berechnet werden.
Um zu verstehen, wie die Stabilität der Nanopartikel zusätzlich durch den Oxid-Träger beeinflusst wird, wur-
den zahlreiche Metall/Oxid Grenzflächen mit Hilfe von DFT untersucht. Wird nur ein einzelnes Oxid betrach-
tet, so kann die Abweichung in der Adhäsionsenergie verschiedener Metalle mit der Adsorptionsenergie von
Sauerstoff auf den Metalloberflächen beschrieben werden. Dies ist ähnlich zu Skalierungsbeziehungen, welche
für die Beschreibung von Adsorbaten auf Metalloberflächen verwendet werden. Die verschiedenen Oxide un-
terscheiden sich in ihrer Sauerstoffatomanzahl auf der Oberfläche. Dies kann als Deskriptor genutzt und von
reinen Oxidoberflächen bestimmt werden. Insofern kann die Adhäsion der untersuchten Grenzflächen, welche von
Metall-Sauerstoff-Bindungen dominiert werden, durch eine universelle Skalierungsrelation beschrieben werden,
mit einem Deskriptor für das Oxid und einem für das Metall.
Um die Kinetik von Sinterung zu beschreiben, wurde ein auf Kinetik Monte Carlo (kMC) basierendes Mod-
ell entwickelt. Dieses beschreibt die Teilchenbewegung und -verschmelzung am Beispiel von Pt Nanopartikeln
auf Quarzoberflächen mit Defektstellen. Die notwendigen Diffusionskonstanten wurden aus der Literatur ent-
nommen und basieren auf einem 3D-Gitter DFT/kMC Modell. Untersucht wurde der Einfluss von Temperatur,
Teilchengröße, Teilchenkonzentration und Oberflächendefekten. Um die konkurrierenden Sinterungsmechanis-
men Teilchenbewegung und -verschmelzung sowie Ostwald-Reifung zu beschreiben, wurde ein adaptives kMC
Modell entwickelt, in dem die Ostwald-Reifung mittels eines Mean Field Modells beschrieben wird. Bei hohen
Temperaturen und Sauerstoff in der Gasphase ist Ostwald-Reifung, bei der über die Gasphase PtO2 zwischen den
Pt Nanopartikeln übertragen wird, der dominante Sinterungsmechanismus für das untersuchte Pt/Quarz System.
Das bisher genutzte Mean Field Modell für Ostwald-Reifung basiert auf Annahmen, welche für die makro-
skopische Diffusion gültig sind. Im Falle von Nanopartikeln ist die Längenskala allerdings deutlich kleiner. Daher
wurde ein kMC-Modell entwickelt, mit dessen Hilfe die Diffusion von einzelnen Atomen oder Molekülen in der
Gasphase unter Berücksichtigung von Kollisionen mit dem Hintergrundgas simuliert werden kann. Dieses Mo-
dell reproduziert die Eigenschaften eines idealen Gases, wie dessen Diffusionskonstante. Um das kMC-Modell
zu testen, wird die Diffusion zwischen zwei Oberflächen abhängig von deren Abstand untersucht. Ist der Ab-
stand kleiner als der mittlere freie Weg des untersuchten Atoms in der Gasphase, dann kommt es zu Unterschieden
zwischen dem kMC-Modell und Ergebnissen, berechnet mit Kontinuitätsgleichungen basierend auf den Fickschen
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Gesetzen. Im Anschluss wurde das kMC-Modell weiterentwickelt, um Ostwald-Reifung über die Gasphase zu
simulieren und um die Limitierungen des bisher genutzten Mean Field Modells einschätzen zu können. Im All-
gemeinen stimmen die Ergebnisse, welche mit den beiden Modellen erhalten werden überein. Nur in Grenzfällen
kommt es zu Abweichungen, zum Beispiel bei gleichgroßen Nanopartikeln.
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1 Introduction
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Figure 1.1: Reduction of activation energy Ea with catalyst
(blue) compared to Ea without catalyst (yellow).

A catalyst is defined as substance which ad-
vances a reaction by opening an additional re-
action path, which has a reduced activation en-
ergy, Ea. Two different types of catalysts are
distinguished, homogeneous, where the catalyst
is in the same phase as the reactants and hetero-
geneous, where they are in different phases.1

This thesis deals with heterogeneous catalysts.

1.1 Industrial importance of heterogeneous catalysts

Oxide supported metal nanoparticles are commonly used as heterogeneous catalysts in industrial processes and are
employed in more than 90% of chemical manufacturing processes2,3. Their advantage over homogeneous catalysts
is that they are easily separable from the reaction products. One important applications is exhaust-gas emission
control, of which a prominent example is automotive exhaust-gas after-treatment, but also coal-fired power plants4.
Figure 1.2a shows the CO and NOx emission of the last 30 years in Germany. Although the emission was reduced
substantially, in the last 10 years the reduction in emission stagnated. To reduce emission of gases harmful for
the environment, in exhaust-gas after-treatment there are mainly three important reactions: CO oxidation, NOx

reduction and hydrocarbon oxidation. Supported noble metal catalysts were found to be most active for these
reactions. Underlying the importance of these catalysts, at the moment more than 50% of platinum and palladium
and 80% of rhodium worlds annual demand5 is used for their production. Figure 1.2b visualizes a typical exhaust-
gas converter used in cars. Normally, the converter consists of a monolytic, alveolar ceramic or metal substrate
which carries the catalytic active substance. To increase the specific surface area of the catalytic active substances,
(noble metals, oxides and/or zeolites) they are impregnated on a washcoat6.
However, not only the activity and the selectivity towards the desired chemical reactions are significant to design
suitable catalysts. Deactivation of catalysts, meaning the loss of their catalytic activity and/or selectivity over time,
leads to challenging problems in their applications. The time scales of the deactivation processes are very different
and can reach from a few seconds in the case of cracking catalysts to several years in ammonia synthesis7,8. The
deficiency in catalyst lifetime for these catalysts in application is compensated by an increased loading of noble
metal material to ensure the desired catalyst performance9,10 over the whole lifetime. Thus, increasing the lifetime
of exhaust-gas after-treatment catalysts is highly desirable to reduce the high demand of noble metals7,11.
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Figure 1.2: (a) CO (black line, left axis) and NOx (red line, right axis) emission of Germany12. (b) Reproduction
from ref. 6, Copyright (2013), with permission from John Wiley and Sons: Composition of a typical
exhaust-gas catalysator.13

1.2 Catalyst deactivation

Catalyst deactivation is caused by various chemical, mechanical and thermal processes7,11,14 or a combination of
these. The advantage of using nanoparticles in heterogeneous catalysts is the increase in surface area per weight
compared to macroscopic particles with extended surfaces. At the same time, the high surface area causes that
smaller particles are less stable than larger ones. Sintering leads to the growth of larger nanoparticles by reducing
the number of small nanoparticles. There are two different mechanism resulting in the observed sintering behavior,
particle migration and coalescence, where entire nanoparticles diffuse over the support and form larger particles
upon collision and Ostwald ripening, where fragments (atoms or molecules) from a nanoparticle dissociate. These
fragments can either migrate over the gas phase or the support upon merging with another nanoparticle. These two
mechanism are visualized in Figure 1.3a and b respectively, in a schematic way.

a b

Figure 1.3: Schematic visualization of the two sintering mechanism: (a) particle migration and coalescence and
(b) Ostwald ripening.

The overall effect, the loss of surface area, of these two sintering mechanism is the same, but the understanding
which of these mechanism occurs in which catalytic system is important to develop strategies to prevent sintering.
Ostwald ripening and particle migration and coalescence can be described theoretically and observed experimen-
tally. Important results from the literature will be discussed in the following, with a focus on the exhaust-gas
catalyst platinum.
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1.2 Catalyst deactivation

1.2.1 Theoretical description of catalyst deactivation

Nanoparticle stability

Generally, the Gibbs-Thomson relationship is used to describe the particle size dependent stability. For the equi-
librium pressure of a droplet with radius r, pr follows:

pr = p0 exp
(

2γVm

rRT

)
, (1.1)

with p0, the equilibrium pressure of an extended surface, γ the surface energy, Vm the molar volume, T the temper-
ature and R the gas constant. For solid particles, it is assumed that the particle is in its equilibrium configuration
according to Wullfs construction15. From this follows the exponential function:

exp
(

γVm

RT
∂A
∂V

)
, (1.2)

where ∂A/∂V is the quotient of the change in surface to volume. Using the simplification of spherical crystals:

V =
4
3

πr3, A = 4πr2 (1.3)

gives:

∂A
∂V

=
2
r

(1.4)

which was used in eq. (1.1). Using an effective radius r = 2(∂V/∂A) for not dissociating compounds eq. (1.1)
can be written as the first part of eq. (1.5) with c0 the monomer concentration on the surface of an infinitely large
particle. Generally the exponent in eq. (1.5) is small towards 1 and can be expanded as series from which follows:

cr = c0 exp
(

2γVm

rRT

)
≈ c0

[
1+

2 · γVm

rRT

]
. (1.5)

The equilibrium concentration, cr is the monomer concentration on the surface of a particle, at which the particle
neither growths or shrinks. The approximation of the series expansion is not valid for particle sizes < 3 nm, but
Wagner16 states that this particle sizes are not relevant for the observed behavior.
Eq. (1.5) can be also written for the chemical potential µ(r) of a nanoparticle with radius r:

µ(r) = µbulk +
2γVm

r
, (1.6)

with µbulk, the chemical potential of the bulk material (r→∞). As already pointed out by Wagner16, also Campbell
and coworkers17–20 found that the Gibbs-Thomson equation is not a good approximation in the limit of small
particles.
Parker et al.19 analyze the limitations of the series expansion in eq. (1.5) in detail. They particularly question the
assumption of constant γ over all particle sizes, especially for r < 3 nm. It is suggest to use either a function
γ(r) or a different expression for the chemical potential. Nanoparticles with r < 3 nm have a larger fraction of
low coordinated surface atoms compared to larger nanoparticles. Thus γ is expected to increase strongly with
decreasing particle size.
To take into account metal/support adhesion, Eadh, Hemmingson and Campbell21 introduced a more accurate
formula:

µ(r) = µbulk +(3γ−Eadh)
Vm

r
. (1.7)

3



1 Introduction

Both, eq. (1.6) and (1.7) show that larger particles, with lower chemical potential are thermodynamically preferred
over smaller particles with higher chemical potential. In eq. (1.7), strong metal/support adhesion lead to an in-
crease of the chemical potential and thus a thermodynamic stabilization of the particles. Beside the metal/support
interaction, also local strain in the metal particles or different growth velocities depending on the crystal facets
might change this stability-size correlation.

Ostwald ripening

The classical ripening model was developed by Lifshitz and Slyozov22 and by Wagner16 motivated by the forma-
tion of grains in a super-saturated solution. They used the Gibbs-Thomson equation after which small droplets have
a higher vapor pressure or solubility in the surrounding medium than larger droplets. Thus, a transport of matter
from the small droplets towards the larger ones is observed. Assuming an initial particle size distribution (PSD)
of droplets in the form of a narrow Gaussian function, Lifshitz, Slyozov22 and Wagner16 derived equations that
describe the time development of the PSD function, the mean particle size and the total number of particles. They
assumed that the agglomeration of the droplets themselves and their spatial distribution is negligible. Eq. (1.5)
in the series expansion form was used. In the model, two limiting cases were identified. In the first case, mass
transport is diffusion limited and in the second case reaction limited. The change in molar number ṅ of one particle
with the surface A was defined as:

ṅ =−4πr2k(cr− c′r), (1.8)

with c′r the actual concentration on the particle surface and k the velocity constant of the mass transfer, which can
be either inhibited or not. In the case of kr̄� D (with r̄ the mean particle radius and D the diffusion constant) the
mass transport is diffusion limited and the time evolution of r̄(t) is proportional to:

r̄(t) ∝ t1/3 (1.9)

The case kr̄� D is reaction limited and the time evolution of r̄(t) is proportional to:

r̄(t) ∝ t1/2. (1.10)

Lifshitz, Slyozov22 and Wagner16 pointed out that because of the different powers in eq. (1.9) and eq. (1.10) the
growth mechanisms could be experimentally distinguished, but in principle both mechanisms could be equally rel-
evant, which was observed by Wynblatt and Gjostein23. They concluded that experimental results24 does not agree
with the proposed range of the exponent, because values larger than 4 were observed and also a time dependence
of the exponent.
Thus, Wynblatt and Gjostein23 revisited the Ostwald ripening model described previously. Instead of distinguish-
ing between diffusion and reaction limited Ostwald ripening, Wynblatt and Gjostein23 distinguished between three
different diffusion cases: vapor phase diffusion, substrate surface diffusion and substrate volume diffusion. Be-
cause the substrate volume diffusion is not likely to dominate the Ostwald ripening, they didn’t considered this
diffusion process further. Wynblatt and Gjostein23 found that in the case of vapor phase diffusion the time evolu-
tion of r̄(t) is proportional to:

r̄(t) ∝ t1/2 (1.11)

and in the case of substrate surface diffusion:

r̄(t) ∝ t1/4. (1.12)
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1.2 Catalyst deactivation

For sinter resistant exhaust-gas after-treatment catalysts, it is crucial to investigate the kinetics of Ostwald ripening
especially for platinum and to some extent rhodium, because they form volatile oxides25,26. The volatile oxides
are especially formed under high temperatures and oxidizing conditions as found in exhaust-gas converters. Thus
the diffusion of metal oxide molecules over the gas phase is a likely sinter mechanism.
In the case of platinum, PtO2 is a relatively stable volatile oxide26. To create PtO2, a metal atom in form of an
oxide has to be transferred into the gas phase. The required energy can be approximated from the reaction enthalpy
of:

Pt(s)+O2(g)→ PtO2(g). (1.13)

Thus the equilibrium pressure of PtO2 in the gas phase is given by the equilibrium constant K of eq. (1.13) and the
pressure of oxygen pO2 :

pPtO2 = K× pO2 . (1.14)

The equilibrium pressure peq can be used similarly to the equilibrium concentration cr in eq. (1.5). Plessow and
Abild-Pedersen27 investigated in detail Ostwald ripening of Pt nanoparticles via volatile PtO2 based on the model
derived by Wynblatt and Gjostein23. They assume that the number of PtO2 molecules hitting the particle surface A

follows from the ideal gas law:

J = A× p√
2πmkBT

(1.15)

and that the flux of O2(g) molecules is not limiting the formation of PtO2(g). In the model of Wynblatt and
Gjostein23, an uniform background pressure pb exists which is generally different from the equilibrium pressure
of a particle of radius r, peq(r). Plessow and Abild-Pedersen27 derive the total flux of PtO2 molecules of a particle
of radius r as:

J(r)tot =
S×A(r)√
2πmkBT

(
pb− peq(r)

)
. (1.16)

Steady-state conditions are assumed, meaning that the total flux between all particles and the gas phase is 0:

∑r J(r)tot = 0. Thus they define the general background pressure pb as:

pb =
∑r A(r)× peq(r)

∑r A(r)
, (1.17)

implying mass conversation of Pt. The described approach is used to simulate the evolution of PSDs with time for
different temperatures. It is not only applicable for the simulation of gas phase ripening of platinum, but can also
be used for other metals which form volatile oxides.

Particle migration

The simulation of migration and coalescence requires a diffusion constant for the whole nanoparticle on the sup-
port. In addition, experiments demonstrated that for example defects28 or differences in particle concentrations29,30

influence the sintering behavior. Because of different nanoparticle sizes, diffusion constants are generally size de-
pendent. Also, the shape of the nanoparticles, and the interaction between the support and the nanoparticle facet
on which the nanoparticle is supported varies depending on the exposed surface31,32. Thus, studies either employ
empirical or assumed diffusion constants or only study the trends in particle migration33–35. To investigate particle
migration with first principle methods as density functional theory (DFT) is limited to small particle sizes due to
the increasing complexity with increasing particle size.36–41

5



1 Introduction

The first approach was to use the Brownian motion42 of the adatoms of clusters to describe the motion of an entire
nanoparticle, because a small displacement of one adatom leads to a small shift in the center of mass of the entire
particle and thus multiple of this shifts lead to particle diffusion. This was first derived by Sutherland43, Smolu-
chowski44 and Einstein42, for which reason particle migration and coalescence is also referred to as Smoluchowski
ripening. Following the treatment of diffusion of adatoms by Morgenstern et al.45, Khare et al.46 and Jak et al.18

the diffusion constant of a hemispherical particle can be written as:

Dc(r) =
3V 2

mρadatomDadatom

πr4 (1.18)

with ρadatom, the adatom density of the particle surface and Dadatom the diffusion constant of the adatoms over the
cluster surface. With the assumptions that ρadatom is independent of r and in the case of hemispherical nanoparticles
the following power law can be found47,48 similar to the ones for Ostwald ripening:

r̄(t) ∝ t1/7. (1.19)

Based on single atom movements on nanoparticles, Li et al.49 proposed a kinetic Monte Carlo (kMC) model which
aims to understand the sintering behavior of individual platinum nanoparticles of various sizes, temperatures and
adhesion energies. They used DFT to derive rate constants to describe the particle migration implemented in a 3D
kMC model and a metal coordination based approach to describe the local diffusion of individual atoms. Their
observed diffusion process can be described by a lattice-hop model:

D = l2 kBT
h

exp(−Ga/kBT ) , (1.20)

in which the diffusion constant D can be expressed through a usually temperature dependent free energy of acti-
vation Ga. l is the lattice parameter (l=2.89 Å in the case of platinum), kB the Boltzmann constant and h Planck’s
constant. Li et al.49 observed that the size dependent activation energy for diffusion Ea(n) is temperature indepen-
dent. They fit the free energy of activation Ga(n) with the following expressions for particles of size n:

Ga(n) = c1 + c2× log(n) (1.21)

with c1 = 0.474 eV and c2 = 0.334 eV being constants. Li et al.49 observed an increase of the particle diffusion
constant with increasing temperature and an increase of the free energy of activation for the diffusion with particle
size. An increase in the adhesion energy between particle and support lead also to an increased free energy of
activation. Similar observations were made by Lai and Evans50. Additionally they observed local minima in the
size dependent diffusion constant, which they found to correspond to mainly closed-shell nanoparticles depending
on the adhesion energy.

1.2.2 Experimental detection

Experimentally it is difficult to study and distinguish Ostwald ripening and particle migration and coalescence.
Usually sintering is noticed by a reduction of catalyst activity. Easiest to probe is for particle migration and
coalescence and its absence by comparing images, from for example transmission electron microscopy (TEM),
during the experiment51,51–54. Examples for the direct observation of particle migration and coalescence are in
Pd on TiO2 observed with scanning tunneling microscopy (STM) by Jak et al.18 and Pt on Al2O3 by Sushumna
and Ruckenstein55. Although they clearly identify particle migration and coalescence, Ostwald ripening couldn’t
be excluded entirely, especially for very small clusters, consisting only of a few atoms. Also they state that it
is difficult to determine diffusion constants for modeling the studied systems, because the support structure is
complex. To reduce the complexity of real catalysts, typically model catalysts are used. Their advantage is the
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1.2 Catalyst deactivation

possibility to study the effect of different initial PSDs, supports and gas phase compositions in a well defined
environment. Typically TEM experiments are used to study the PSD of model catalysts.17,19,52,56,57 Advances
in in-situ TEM give the possibility to follow the evolution of the PSD under reaction conditions. This is also
demonstrated in Fig. 1.4a where in-situ TEM images are shown, taken from Simonsen et al.58 for a Pt/SiO2 model
catalyst at 650°C in 10 mbar air. Fig. 1.4b shows the corresponding evolution of the PSD. This time resolved
measurements give the possibility to study the growth and shrinking of nanoparticles individually and give good
opportunities to probe the developed kinetic models. Additionally to TEM, atomic force microscopy (AFM) and
STM can be used to analyze the height to diameter ratio of the probe nanoparticles or to measure the PSD.

a b

Figure 1.4: Reprinted from ref. 58, Copyright (2011), with permission from Elsevier: (a) (a–f) Time-lapsed
TEM images recorded in situ at the same area of the Pt/SiO2 model catalyst during exposure
to 10 mbar air at 650°C. The images are 50× 50 nm2 sections of the full TEM images of size
130× 130 nm2. The denoted times are relative to the time at which the temperature reached 650°C.
To guide the eye, arrows indicate examples of a growing and of a decaying particle. (b) (a–f) Time-
lapsed particle size distributions obtained from the static TEM images. The static TEM images were
recorded in situ of different areas of the Pt/SiO2 model catalyst during the exposure to 10 mbar air at
650°C. Prior to the static TEM image acquisition, the areas were unexposed to the electron beam.
The number of measured particles included in each distribution is (a) 1593, (b) 2059, (c) 1101,
(d) 1225, (e) 1095, and (f) 1134. The lines indicate histograms simulated based on the interface-
controlled (solid) and diffusion-controlled (dotted) ripening models.

In regard of exhaust-gas after-treatment catalysts, platinum supported on alumina51,59–64 or α-quartz28,51,58,65–68,
and palladium supported on alumina69–73 catalyst are extensively studied. In most cases no particle migration and
coalescence could be directly observed, leading to the conclusion that Ostwald ripening might be the dominating
sintering mechanism. To validate this conclusion usually kinetic models27,74,75 are used to simulate the measured
PSD. For Ostwald ripening a PSD with tail towards small particles is expected and for particle migration and
coalescence no small particles. Already Lifshitz, Slyozov22 and Wagner16 proposed that the shape of the PSD
implies the dominating sintering mechanism and to use this was long excepted. It is motivated by the different
time evolution exponents in eqs. (1.9), (1.10), (1.11), (1.12) and (1.19). To verify this method, Datye et al.76

performed a variety of experiments with Pd/Al2O3(silica) and Pt/Al2O3 model catalysts under conditions where
either Ostwald ripening or particle migration and coalescence might be expected and measured the PSD using
TEM. They concluded that in general the PSD can not be used to distinguish between the different sintering
mechanisms. Their observed PSDs for Ostwald ripening do not generally show tails towards small particles which
is justified with that very small particles might undergo particle migration and coalescence or are intrinsically
unstable18. In the case of high metal loading and broad PSDs, tails to larger particle sizes are observed which in
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the case of Ostwald ripening is not explainable with the theoretical models. Also Jak et al.18 concluded that it is
not possible to distinguish between the sintering mechanisms from measured growth laws.74,75

1.2.3 Concepts to improve catalyst stability

To improve catalyst lifetime, mainly two types of approaches can be chosen to hinder sintering: a physical or
a chemical approach. Goodman et al.14 define the chemical approach to hinder sinter by changing the catalyst
chemistry on an atomic scale. This implies modifying the structure of the catalyst and/or its environment. One
example would be to change the metal phase by alloying. This was demonstrated for example in PtRh supported
on barium-hexa-aluminate catalysts77 or Pt/Pd bimetallic materials78–80. To modify the electronic environment,
organic support functionalization81–83 or engineered metal-support interactions could be used. Oxide supports
affect the catalytic activity of metal particles in many ways, by changing their electronic structure84–86, by directly
participating in reactions at the metal-oxide interface87–94 or by enhancing deactivation through encapsulation in
the so-called strong metal support interaction (SMSI) effect95–98. The most basic effect, however, is the energetic
stabilization at the metal-oxide interface that determines the particle shape and is crucial in slowing down sintering
and thus maintaining the active state of the catalysts11,17,99–102. Here, the support can influence the stability
with respect to sintering in two ways. On one hand, the kinetics of Ostwald ripening and particle migration and
coalescence depend sensitively on the adsorption and diffusion of metal atoms on the support40,49,103–106. On the
other hand, metal-support interaction determines the stability of metal nanoparticles. This in turn modifies the
size-dependence of the chemical potential of the metal and therefore the driving force for sintering.20

The physical approach contains geometric modifications of the supporting materials or the introduction of physical
barriers to hinder sintering. Thus support materials with a high surface area increase the inter metal particle
distance107 and thus increase the time scale for particle migration and coalescence which was for example shown
for Pt/silica materials.108 Another possibility would be to use narrow PSDs to reduce Ostwald ripening.27 Also,
partially embedded nanoparticles or overlayers to protect the active phase are intensively investigated.109–112

1.3 Scope of this thesis

The aim of this thesis is to gain a deeper understanding of the thermodynamic stability of metal nanoparticles and
the stabilization effects of oxide supports in heterogeneous catalysts. Therefore DFT based kinetic modeling is
used to focus on the different contributions of particle migration and coalescence and Ostwald ripening.
Chapter 3 presents a detailed DFT study on the thermodynamic stability of metal nanoparticles. Anchoring
nanoparticles on a support leads to an increase in stability against sintering through particle migration. Ultimately,
the driving force for sintering is the thermodynamic stability of nanoparticles compared to the bulk structure.
A simple model which is based on DFT calculations is derived to predict the thermodynamic stability of metal
nanoparticles in general and is verified by comparison to DFT calculations of nanoparticles.
Chapter 4 investigates the adhesion energy between various transition metals and oxide supports commonly used
as catalytic systems using DFT. The adhesion energy characterizes the strength of interaction between a metal and
support and is therefore suitable to describe the possible effect of stabilization of the metal oxide on the metal
nanoparticles. The focus is on developing scaling relations to predict stabilities of unknown materials.
Chapter 5 presents a combined study of vapor phase Ostwald ripening and particle migration and coalescence
using an adaptive kMC scheme to combine the mean-field model for Ostwald ripening with the kMC model of
particle migration and coalescence. Using this combined sintering study for the example of platinum on quartz
gives detailed insights into the experimental conditions under which each sintering mechanism is dominating.

Section 1.2.3 is partially reproduced from ref. 31.

8



1.3 Scope of this thesis

Chapter 6 is dedicated to the development of a kMC model to describe the diffusion of atoms and molecules through
the gas phase. In a second step, this model is used to benchmark the mean-field model for Ostwald ripening and to
investigate its limitations.
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2 Methods

2.1 Introduction

To understand multi-atomic systems, the electronic ground-state energy and structure can be investigated using
density functional theory (DFT). With DFT it is possible to calculate the atomic configurations resulting from
geometry optimizations, representing minima at 0 K. Using the harmonic approximation to describe the vibration
of atoms gives the possibility to calculate the Gibbs free energy. Thus equilibrium constants of reactions can be
obtained. To determine the barrier of a reaction, the transition state can be calculated using the nudged elastic
band113 or dimer method114,115. The obtained barriers for a reaction can be used to calculate rate constants. These
rate constants give the possibility to bridge from static DFT calculations to kinetic simulations. In this chapter, the
basic theory of the in this thesis employed methods DFT and kinetic Monte Carlo (kMC) is introduced.

2.2 Quantum mechanical treatment of nanoparticles and surfaces

The equation of motion used in quantum chemistry is the time-dependent Schrödinger equation:

Ĥ(rrr, t)Ψ(rrr, t) = ih̄
∂

∂ t
Ψ(rrr, t) (2.1)

with Ĥ the Hamilton operator which defines the particles the system consists of and how these particles interact
with each other and external potentials and their kinetic energy. Ψ is the wave function describing the state of the
system. If Ψ is known, all measurable properties of a system can be calculated. h̄ = h/2π is the reduced Planck
constant, t the time and rrr the position vector containing all positions of N particles in the system. Because the
main interest in quantum chemistry are stationary states instead of the explicit time development of a system, Ĥ

is assumed to be independent of t. Thus the Schrödinger equation can be separated in a time dependent and time
independent part:

Ψ(rrr, t) = Ψ(rrr) · exp
(−iEt

h̄

)
(2.2)

with E, the energy of the system.
The Hamilton operator contains the interactions of electrons (index: e) and nuclei (index: N) of a system in form
of contributions from the kinetic energy (T̂ ) and the potential interaction energy (V̂ ):

Ĥ = T̂e + T̂N +V̂ee +V̂eN +V̂NN (2.3)

Born-Oppenheimer-approximation

In the Born-Oppenheimer-approximation116 it is assumed that the electrons instantaneously react to changes of
the atomic positions. That is plausible, because nuclei are three order of magnitudes heavier than electrons, thus
in comparison to electrons very slow. Thus it is assumed that the wave function Ψ(RRR,rrr), depending on the nuclear
coordinates RRR and electron coordinates rrr, can be written as product of the nuclear and electron wave function:

Ψ(RRR,rrr) = Ψ
nuc(RRR) ·Ψelectron(rrr,{RRR}), (2.4)
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where the curly brackets indicate that Ψelectron depends parametrically on RRR. With T̂N = 0 and V̂NN =constant the
electronic Schrödinger equation can be written as:

[
T̂e +V̂ee +V̂eN

]
Ψ

electron(rrr,{RRR}) = EeΨ
electron(rrr,{RRR}) (2.5)

and

Etot = Ee + 〈V̂NN〉︸ ︷︷ ︸
constant

. (2.6)

Etot is the total energy.
Under the assumption that T̂N has no impact on Ψelectron, a Schrödinger equation for the nuclei can be formulated
which is solved to calculate vibration spectra:

[
T̂N +V̂NN +Ee(RRR)

]
Ψnuc(RRR) = EΨnuc(RRR). (2.7)

2.3 Density functional theory

DFT is not focusing on finding the wave function Ψ, but instead the electron density ρ(rrr). The basis of DFT is
the first theorem of Hohenberg and Kohn117 which states, that the external potential is an unique functionala of the
electron density, E[ρ(rrr)]. The external potential is here defined as the potential induced by the atomic nuclei. Thus
knowing the nuclei positions implies knowing all system properties. The number of electrons Ne can be calculated
as the integral of the electron density:

Ne =
∫

ρ(rrr)drrr. (2.8)

The second theorem of Hohenberg and Kohn117 says, that for any ansatz of the density ρ̃(rrr), the functional E[ρ̃(rrr)]

is larger or equal to the ground state energy:

E[ρ̃(rrr)]≥ E[ρ0(rrr)]. (2.9)

The central problem of DFT is that the exact functional E[ρ(rrr)] is unknown.
Kohn and Sham developed the so called Kohn-Sham (KS) theory118. Key is the introduction of a reference system
containing only non-interacting fermions (particles with half-integer spin, e.g. electrons), but with the same ground
state density as the interacting system. Non-interacting systems have the advantage that their ground state wave
function can be constructed exactly as Slater determinant. The Slater determinant is a special way of constructing
the wave function which full fills the Pauli principle. The Pauli principle defines that two or more identical fermions
can not occupy the same quantum state simultaneously. The kinetic energy TS[ρ] of the non-interacting system
can be calculated as the expectation value of the Slater determinant. It follows that the energy functional can be
split into two parts, one known, the other unknown. The known part consists of the kinetic energy TS[ρ] of non-
interacting electrons, the classical part of the Coulomb term J[ρ] and the attraction of the nuclei and electrons,
ENe[ρ]. The unknown part, the kinetic energy of interacting fermions is assumed to be small compared to TS[ρ].
It is summarized in the so called exchange-correlation term EXC[ρ] together with the exchange and correlation
contributions to the electron-electron interaction. The total DFT energy functional can be written as:

EDFT[ρ] = TS[ρ]+ENe[ρ]+ J[ρ]+EXC[ρ] (2.10)

a A functional is a function of a function, e.g. g[ f (x)].
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To use DFT in practice, EXC[ρ] is approximated.

Approximate exchange-correlation functionals

Usually, exchange-correlation functionals are constructed as sum of individual exchange and correlation function-
als (EX and EC):

EXC = EX +EC. (2.11)

The oldest and simplest approximation is the so-called local density approximation (LDA)119–121. It is derived
from the homogeneous electron gas which has a constant density. A homogeneous electron gas is a system with
an infinite number of electrons in an infinite extended uniform, positively charged background, which leads to a
overall neutral charge. In this case the exchange-correlation functional only depends on the local density:

ELDA
XC [ρ] =

∫
f [ρ(rrr)]d3rrr. (2.12)

It was calculated by Ceperley and Alder122 and analytically analyzed by Vosko, Wilk and Nusair123.
The generalized gradient approximation (GGA) was introduced to improve on LDA. Additionally, to the density
dependence of EXC it also includes the first derivative with respect to space of the density:

EGGA
XC [ρ] =

∫
f [ρ(rrr),∇ρ(rrr)]d3rrr. (2.13)

Typical functionals are BLYP124,125 and PBE126–128. In addition, also the second derivative with respect to space
can be included. This type of functionals is called meta-GGA (e.g. TPSS129). Another possibility is to include
Hartree-Fock (HF) exchange to reduce the self-interaction error. The self-interaction error is caused by the in-
teraction of an electron with itself, because the approximated exchange energy does not completely cancel the
self-interaction contribution in the Coulomb energy. So called hybrid functionals are for example B3LYP (20%
HF exchange)130–132 or PBE0 (25% HF exchange)133. To include dispersion corrections an additional term is
added to the energy. This is typically marked by “-D” or “-vdW” in the functional name, e.g. the Bayesian error
estimation functional (BEEF-vdW)134.

Van-der-Waals interaction

Van-der-Waals (vdW) interactions (also called London dispersion interactions) describe interactions between un-
charged, closed shell systems which are not directly bond135,136. Due to the motion of electrons, local dipoles are
created in an atom which can induce another dipole in the neighboring atoms. If two atoms are very close, vdW in-
teractions are repulsive because of the repelling forces between the negatively charged electrons. For intermediate
distances, the induced dipole-dipole interactions are attractive. Theoretically this attraction varies as the inverse
sixth power of the distance between two atoms. It becomes zero for very large distances. The general functional
form is:137

EvdW (rAB) = Erepulsion (rAB)−
CAB

(rAB)
6 (2.14)

with EvdW the vdW energy, rAB the distance between two atoms A and B, Erepulsion the repulsive energy and CAB

a constant.
There exist different possibilities to include dispersion corrections into DFT calculations. One is to use perturbation
theory to calculate the intra–molecule electron correlation based on the DFT calculation, so called DFT symmetry-
adapted perturbation theory (DFT-SAPT)138. Another possibility is to use vdW functionals, which directly include
dispersion corrections, like the ALL-functional139 or VV09-functional140.
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In this thesis, semi-empirical dispersion-corrected functionals are used, where a modification is added to e.g. GGA
functionals. In principle three levels of dispersion correction from the DFT-D (D1141, D2142 and D3143) kind exist,
of which DFT-D3 is used. The correction for the dispersion Edisp is added to the energy of the pure functional,
EKS−DFT:143

EDFT−D3 = EKS−DFT−Edisp, (2.15)

with Edisp = E(2)+E(3). The more important two body term E(2) is given by:143

E(2) = ∑
AB

∑
n=6,8

sn
CAB

n

rn
AB

fd,n(rAB). (2.16)

The first sum is over all atom pairs AB, CAB
n the dispersion coefficients of order n = 6,8 and sn scaling factors,

which are adjusted for n > 6 and equal unity for n = 6. In principle also higher orders could be included. The
coefficients CAB

n for the D3-correction were obtained by Grimme et al.143 using time-dependent KS-DFTb.
Damping functions fd,n are used to determine the range of the dispersion function and to avoid double-counting
effects for intermediate distances or singularities for small distances rAB. Commonly either, a so called zero-
damping function proposed by Chai and Head-Gordon145 or the Becke and Johnson (BJ)146,147 damping function
is used. In Figure 2.1 the dispersion correction for two argon atoms depending on the chosen damping function is
shown. It can be seen that zero-damping and BJ-damping mainly diverge for rAB→ 0. In the case of zero-damping
the dispersion correction approaches zero for rAB→ 0, but the BJ-damping leads to a constant contribution to the
total energy. Grimme et al.148 concluded that the choice of the damping function does not influence the results
significantly.

Figure 2.1: Reprinted from ref. 148, Copyright (2011), with permission from John Wiley and Sons: Dispersion
correction for two argon atoms (including sixth- and eight-order terms, dispersion coefficients from
ref. 143) with the zero-and BJ-damping methods in comparison the un-damped -C6 ·R−6 term.

b Time-dependent KS-DFT 144 is used to calculate the time-dependent response of a system to e.q. an electronic or magnetic field.
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Basis set

Atomic orbitals are approximated numerically using localized basis sets. In the linear-combination-of-atomic-
orbitals (LCAO) approach, an orbital ψi is described by a linear combination of one-electron basis functions φµ ,
of Slater149 or Gaussian150 type:

ψi(rrr j) = ∑
µ

Ciµ φµ(rrr j). (2.17)

To model extended systems like surfaces, usually a unit cell with periodic boundary conditions is used. To describe
the periodicity correctly it seems obvious to use functions of infinite range: plane waves. According to Bloch’s
theorem151, in a periodic potential, each electronic wave function can be written as a product of the lattice periodic
part: u(kkk,rrr+RRR) = u(kkk,rrr) and a plane wave: exp(ikkkrrr):

ψ(kkk,rrr) = exp(ikkkrrr) ·u(kkk,rrr). (2.18)

Expanding the lattice periodic part in plane waves with wave vectors GGG in reciprocal space gives:

ψ j(kkk,rrr) = ∑
GGG

c j,kkk,GGG · exp(i(kkk+GGG)rrr) . (2.19)

with c j,kkk,GGG expanding coefficients. In practice only a finite number of plane waves can be used. That is sufficient,
because there exist only discrete GGG because of the lattice periodicity and the coefficients of small kinetic energy
are usually most important.137 The cut-off energy of the plane waves corresponds to the highest kinetic energy of
all basis functions and determines the number of basis functions:

Ecut−off =
h̄2

2m
|GGGmax|2 (2.20)

Thus the convergence of the calculated total energy can be systematically investigated by increasing Ecut−off.

Pseudopotential method

The strength of plane waves is the description of delocalized electrons, but in the core region of an atom the wave
function is rapidly oscillating. To describe these rapid oscillations, a very high cut-off energy would be necessary,
implying that a large number of plane waves would have to be used. Because these core electrons usually do not
contribute to chemical bonds, especially for heavy elements in the periodic table, they are described using pseudo
potentials and only the valence electrons are modeled explicitly using plane waves.
In the so called projector augmented wave (PAW) method152,153, formally all electrons are considered. It is illus-
trated in Figure 2.2. Rapid oscillation of a function is shown within the atomic sphere and slow variation in the
interstitial region between two atoms.

interstitial region

atomic sphere atomic sphere

Figure 2.2: Schematic visualization of the separation in atomic sphere and interstitial region in the PAW.
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Formally, the PAW wave function is written as a valence term expanded in a plane wave basis plus a contribution
from the region with the core radius of each nucleus. The contribution from the core region is expanded as the
difference between two sets of densities, one arising from the atomic orbitals, the other a set of nodeless pseudo-
atomic orbitals. These are necessary to adjust the wave function of the core to different chemical environments.137

The PAW potentials used153, are constructed for isolated atoms, but in principle they could be adjusted during e.g.
DFT calculations.

2.4 Kinetic Monte Carlo

As mentioned in the introduction, kMC is employed to investigate the dynamics of a system using rate constants,
obtained for example with DFT. The Markov approximation154,155 is used, where a system in a stable configuration
i jumps into configuration j, independed of the configuration the system was in before i. The probability density
function Pi(t) to find the system in state i is evaluated over the time t.This time evolution can be described using a
master equation of the form156:

dPi(t)
dt

=−∑
j 6=i

ki jPi(t)+∑
i6= j

k jiPj(t), (2.21)

with the sums over all states j of the system. The first term of the equation describes the probability to jump from
state i into state j with the rate ki j, thus decreasing the probability to find the system in state i at time t. The second
term describes the probability to jump from j to i with rate k ji which increases Pi(t). It might be still possible to
find the analytical solution to the master equation of a two configurational system, but the complexity increases
with the number of configurations. Thus a numerical solution is found instead by calculating trajectories which
propagate the system forward in time. In the end, the average over the calculated trajectories has to yield the
probability density function Pi(t) for all states i fulfilling eq. (2.21)156. The trajectories consist of a sequence of
jumps between the possible system configurations. The master equation determines the random selection of the
next hopping step and the time, after which this step occurs. The time after which the next step occurs is called
escape time tescape and is mainly determined by the rate constants of the system. The system time is advanced by
t→ t + tescape. For a hop from state i to j with rate ki j, tescape would be calculated according to:

∆tescape =−
ln(ρ)

ki j
(2.22)

with ρ being a random number between 0 and 1.

First reaction method

In principle only one process (or jump) per time step is accessible. Thus it would be intuitive to calculate for every
possible process tescape and chose the one with smallest tescape. This method is called first reaction method and is
also known as discrete event simulation157. The disadvantage of this method is that at every time step, tescape has to
be recalculated and the list of processes searched for the minimum, which leads to a linear scaling of the algorithm
with the number of processes.158

Bortz-Kalos-Lebowitz method

A more efficient kMC algorithm is the conventionally used Bortz–Kalos–Lebowitz (BKL) algorithm. Also for this
algorithm all possible processes N of the system are first identified and the rate constants ki calculated for each
process. The sum over all rate constants gives the total rate constant ktot:
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2.4 Kinetic Monte Carlo

ktot =
N

∑
i=1

ki. (2.23)

But instead of calculating all tescape, the executed process q is chosen with a random number ρ1 ∈ (0,1] according
to:

q

∑
i=1

ki ≥ ρ1ktot ≥
q−1

∑
i=1

ki. (2.24)

The system time is advanced by:

∆t =− lnρ2

ktot
, (2.25)

with ρ2 ∈ (0,1] being a second random number. This reduces the number of random numbers from N (one per
process in the first reaction method) to two per time step. The BKL algorithm is visualized schematically in
Figure 2.3.

Start

Get all rate 
constants kp of all 
possible processes q

Get random number r1∈ (0,1] Find process q

Execute q

Get random number r2∈ (0,1]
Update 
clock

End

t > tend?

yes

no 0

R

0

r1R

Continuum of rate contstants

ktot

r1
. ktotq

Figure 2.3: Schematic visualization of the Bortz-Kalos-Lebowitz method, adapted from K. Reuter156. The inset
visualizes eq. (2.24) with different possible processes in different colors.

It can be imagined that from e.g. two processes the one dominantly chosen with eq. (2.24) is the one with the
higher rate constant. Also, although in eq. (2.25) the advancement of the system time is independent of tescape, it is
still dominated by the process with the highest rate constant, because the time is indirectly proportional to the rate
constants. In consequence the maximum time step length is limited by the fastest process.
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3 Thermodynamic stability of metal nanoparticles

3.1 Introduction

Supported Pt nanoparticles are used in a range of processes, with emission control being one of the most impor-
tant applications159,160, in which the size and shape of the particles not only influences the activity but also the
stability of the catalyst57,161–163. Therefore, the size and shape dependence of the thermodynamic stability of bare
Pt nanoparticles is investigated in detail first and results of the density functional theory (DFT) calculations are
compared to the widely used Wulff construction model (WC)15. The stability of nanoparticles that are typically
only a few nanometers in diameter is dictated by the kinetics of the sintering processes,14,68,108 and the stability can
be greatly improved through a stabilization of the nanoparticles on the support3,96. This can be achieved through
e.g. anchoring of the nanoparticles on defects of oxidic supports or changing the chemical environment of the
supports, for example with functionalized organic molecules68. Ultimately, however, the main driving force for
sintering is given by the thermodynamic stability of the nanoparticles, which increases with particle size since the
ratio of thermodynamically less stable surface atoms to bulk atoms decreases. In the literature, several models to
estimate the size-dependency of the thermodynamic stability of nanoparticles are proposed164–167, but a simple
model which is easily transferable to different metals is still missing. Therefore a simple model is introduced that
enables to derive the stability of metal particles. The model is verified through DFT calculations of mono metallic
nanoparticles of late transition metals as well as Al and Mg ranging from 0.5 nm to 3.3 nm in diameter.

3.2 Computational details

For all DFT calculations the PBE126 functional and the D3-dispersion correction143 implemented in the VASP168–171

program package in version 5.4.1 using the projector-augmented wave (PAW) method with standard PAW-
potentials153 were used. The PBE-D3 functional was chosen because it reproduces the experimental Pt(111)
surface energy (1.03 eV172), which is not the case for other functionals134. To demonstrate this, Figure 3.1 shows
an adoption of Fig. 8 of the paper of Wellendorf et al.134.
For all calculations a Γ-centered k-point sampling and Gaussian smearing with a width of 0.1 eV is used. Structures
were optimized until atomic forces were below 0.01 eV/Å.
For the bulk lattice parameter and the fit of the dependence of the bulk energy on the lattice parameter, a cut-off
of 800 eV was used for the plane wave basis set and a (16,16,16) Monkhorst-Pack grid. The obtained bulk lattice
parameter abulk

0 and bulk chemical potential µmetal
bulk relative to the gas phase atom are presented in Table 3.1. The

values for the lattice parameter dependent chemical potential are in Table 9.2. In Table 3.2 the parameters of the
quadratic equations are shown which are used for the stability model.
The gas phase atoms are obtained using an energy cut-off of 800 eV. The atoms are placed in a super cell, where
the periodic image is separated by 16 Å. Spin-polarization is used and the number of unpaired electrons given in
Table 3.1.

This chapter is based on the following publication: Dietze, E. M.; Plessow, P. N.; Studt, F., Modeling the Size-Dependency of the Stability of
Metal Nanoparticles. J. Phys. Chem. C 2019, 123, 41, 25464-25469.
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Figure 3.1: Reproduction of Fig. 8 of Wellendorf et al.134 PBE-D3 and RPBE-D3 calculations from this work
are shown as red symbols. The MGGA and RPA data is taken from Schimka et al.173 and the other
data points from Wellendorf et al.134 The experimental values are taken from liquid-metal data172

and chemisorption energies of CO/Pt(111) from Abild-Pedersen and Andersson174 and the refer-
ences therein.

Table 3.1: Bulk chemical potential µmetal
bulk [eV/atom] relative to the gas phase atom, fcc(111) surface energy γ111

[meV/Å2] and the corresponding surface area A111 [Å2] for all investigated metals. Similar data is
shown for the fcc(100) surface: γ100 and A100, as well as the lattice constant (abulk

0 [Å]). E tot
bulk in eV is

the total bulk energy, E tot
atom in eV is the total energy of the gas phase atom and Nue gives the number of

unpaired electrons. For Pt, values for PBE-D3 and RPBE-D3 are given. All other values are for PBE-
D3.

Metal µmetal
bulk γ111 A111 γ100 A100 abulk

0 E tot
bulk E tot

atom Nue

Ag -3.01 82.04 7.18 88.29 8.30 4.07 -3.21 -0.199 1
Au -3.70 92.15 7.28 98.29 8.40 4.10 -3.88 -0.185 1
Co -5.47 174.45 5.24 201.76 6.05 3.48 -7.36 -1.895 3
Cu -3.99 137.94 5.52 148.87 6.37 3.57 -4.24 -0.243 1
Ir -8.02 206.69 6.38 246.75 7.37 3.84 -9.55 -1.524 3
Ni -5.19 144.32 5.23 162.34 6.04 3.47 -5.87 -0.677 2
Os -8.76 227.14 6.35 282.80 7.33 3.83 -11.69 -2.930 4
Pd -4.32 135.92 6.54 135.92 7.55 3.89 -5.80 -1.476 0

Pt (PBE-D3) -6.26 151.65 6.65 174.29 7.49 3.92 -6.86 -0.608 2
Pt (RPBE-D3) -5.82 148.17 6.72 170.62 7.76 3.94 -6.48 -0.663 2

Rh -6.29 182.29 6.21 206.09 7.17 3.79 -7.85 -1.561 3
Ru -7.22 199.66 6.15 239.09 7.11 3.77 -9.69 -2.473 4
Al -3.60 68.64 6.95 74.87 8.03 4.01 -3.92 -0.315 1
Mg -1.69 43.14 8.62 56.21 9.95 4.46 -1.70 -0.001 0
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3.2 Computational details

Table 3.2: Parameters of the quadratic equations for γ111(a0) and µbulk(a0), fitted using the values in Table 9.1
and 9.2.

Metal a111 [eV/Å2] b111 [eV/Å] c111 [eV] abulk [eV/Å2] bbulk [eV/Å] cbulk [eV]

Ag -1.72 14.03 -28.05 4.13 -33.54 65.17
Au -2.22 18.58 -38.25 6.21 -50.81 100.22
Co -2.27 16.26 -28.16 7.19 -50.00 81.41
Cu -1.46 10.57 -18.41 5.24 -37.31 62.44
Ir 0.74 -4.24 6.56 12.66 -97.11 178.14
Ni -1.80 12.80 -21.89 6.37 -44.22 71.58
Os -4.13 33.17 -64.92 13.62 -104.22 190.63
Pd -2.16 17.07 -32.88 12.12 -66.63 87.24
Pt -4.16 33.36 -65.88 10.48 -81.95 153.89
Rh -2.09 16.38 -30.97 17.01 -91.10 115.67
Ru -4.03 31.50 -60.17 10.80 -81.30 145.83
Al -1.05 8.48 -16.65 2.81 -22.49 41.42
Mg -0.12 1.21 -2.55 1.28 -11.45 23.81

For the calculation of the CO adsorption energy, an energy cut-off of 400 eV and a (3,3,1) Monkhorst-Pack grid
was used. The periodic images of the surfaces are separated in z-direction by 30 Å. The CO is positioned on top
of a Pt atom of a 6 layer 4×4 slab, of which the three bottom layers are frozen. The total energies and adsorption
energies are given in Table 3.3 and the adsorption energy Eads is calculated according to:

Eads = ECO ontop Pt−ECO−EPt slab, (3.1)

with ECO ontop Pt the energy of the adsorbed CO, ECO the energy of the CO molecule and EPt slab the energy of the
bare Pt slab.

Table 3.3: Total energies in eV used to calculate the adsorption energy of CO on top Pt (last column) according
to eq. (3.1).

Functional ECO ontop Pt ECO EPt slab Eads

RPBE-D3 -523.52 -14.45 -507.60 -1.47
PBE-D3 -583.01 -14.80 -566.46 -1.75

The fcc(111) and fcc(100) surface energies are calculated from a series of slab calculation with a thickness between
8 and 13 layers. A cut-off energy of 400 eV and a (12,12,1) Monkhorst-Pack grid are employed. The periodic
images of the surfaces are separated in z-direction by 16 Å. To fit the dependence of the fcc(111) surface energy
on the lattice parameter, various slab calculations were carried out with fixed atom positions but varying lattice
parameter (see Table 3.1 for the fcc(111) and fcc(100) surface energy and Table 9.1 for the lattice parameter
dependent fcc(111) surface energy). In Table 3.2 the parameters of the quadratic equations are shown which are
used for the stability model.
For the nanoparticles, a cut-off energy of 300 eV and a (1,1,1) Monkhorst-Pack grid is used. A vacuum of 14 Å
is used in all three dimensions. The calculations were carried out non-spin-polarized, except for Co and Ni. In
Table 3.4, the total energy of spin-polarized and non-spin-polarized cuboctahedral clusters of Pt are compared. It
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3 Thermodynamic stability of metal nanoparticles

can be seen that spin-polarization has only minor effects, and for cluster with 55 and more atoms no magnetization
is observed. For that reason, spin-polarization is not included for metals which are not magnetic in the bulk.

Table 3.4: Comparison of the total energies in eV for spin-polarized and non-spin-polarized calculations for dif-
ferent cuboctahedral Pt cluster. The third column gives the magnetic moment per atom and the last
column the difference in the total energy in eV.

Natom Etot (spin-polarized) Magnetic moment µB Etot (non-spin-polarized) ∆Etot

13 -57.37 0.42 -56.11 -1.26
55 -295.96 0.00 -295.94 -0.01

147 -854.16 0.00 -854.15 -0.01
309 -1868.90 0.00 -1868.81 -0.09

For the case of Ni and Co in Table 3.5 are compared the magnetic moments of the crystal-phase in fcc structure
and of two nanoparticles with the literature. For the Co crystal the calculated magnetic moment (1.59 µB) does
not agree with Singh and Kroll175, (0.16 µB) but is in agreement with values of H. Ebert et al.176 (1.57 µB) and
Marcus and Moruzzi177 (1.56 µB) and also compares well with the magnetic moment per atom obtained for the
nanoparticles (Co55: 1.83 µB, Co147: 1.78 µB). This magnetic moments agree with those calculated by Singh and
Kroll175 (Co55: 1.84 µB, Co147: 1.73 µB) for the nanoparticles. In the case of Ni, the magnetic moments agree
with the results of Singh and Kroll175 for the crystal and the nanoparticles (crystal: 0.65 µB, Ni55: 0.73 µB,Ni147:
0.68 µB).

Table 3.5: Comparison of the magnetic moments calculated in this work for Co and Ni in the fcc structure and
the results of Singh and Kroll175, H. Ebert et al.176 and Marcus and Moruzzi177. In the case of the
clusters, the magnetic moments are given per atom.

System
Magnetic moment µB

Singh and Kroll175 H. Ebert et al.176 Marcus and Moruzzi177 this work

Co fcc 0.16 1.57 1.56 1.59
Co55 1.84 1.83

Co147 1.73 1.78

Ni fcc 0.65 0.57 0.59
Ni55 0.73 0.71

Ni147 0.68 0.68

Accuracy of DFT parameters

To show the convergence of the calculated metal properties, the convergence of the lattice constant of Pt for
different cut-off energies Ecut−off and densities of the k-point sampling is shown in Fig. 3.2a and 3.2b respectively.
Plotted is the relative variation of the lattice constant in % with respect to the used parameters. It can be seen that for
a (16,16,16) k-point sampling the lattice constant is converged for Ecut−off ≥ 600 eV. Using Ecut−off = 800 eV for
different k-point samplings shows the convergence in the k-point density for (16,16,16) and higher. In Fig. 3.2c the
convergence of the total energy for two different cuboctahedral nanoparticles, Pt55 and Pt147, with the employed
vacuum size in all dimensions is shown. The difference in total energy of the calculations to the total energy
calculated with a vacuum of 14 Å converges for sizes of 12 Å.
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Figure 3.2: Relative change of the Pt lattice constant for (a) different cut-off energies with a (16,16,16) k-point
grid and (b) density of k-point sampling with a Ecut−off = 800 eV. (c) Convergence of the total energy
for Pt55 and Pt147 with the vacuum size in all dimensions. (d) Surface energy of various Pt (111) sur-
faces with different number of layers Nlayer with surface energy calculated from the linear fit for even
and odd numbers of layers.

Nanoparticle construction

The initial nanoparticle structures are constructed using the cluster module of the atomic simulation environment
(ASE) package178 and the PBE-D3 optimized bulk parameter (3.92 Å in the case of Pt). For the other transition
metals, the optimized structures of the Pt clusters were rescaled to the appropriate lattice constant (Table 3.1) and
then fully relaxed. The coordination numbers for the different nanoparticle surface atoms are given in Table 9.3.
For visualization, the diameter of the various clusters is derived from spherical particles: d = ((6VPt ·NPt)/π)1/3,
with VPt = 15.1 Å3, the volume179 per bulk atom.

Calculation of surface energy

As already mentioned, the surface energy of a metal surface is obtained by a serious of slab calculations with
varying thickness from Nlayer = 8 . . .13. The total energies, Etotal of the DFT calculations are used to plot the
surface energy of the slab: γslab = Etotal ·103/Aslab, with Aslab being the surface area of the slab. Using a linear fit
of the either even or odd Nlayer (see black and red points with line in Fig. 3.2d respectively), the surface energy is
obtained as intersection with the y-axis. Because the slabs have two surfaces (bottom and top), the obtained values
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3 Thermodynamic stability of metal nanoparticles

have to be divided by two. The surface energies used in this work are the mean of the ones obtained for even and
odd Nlayer separately.

3.3 Shape and size effect for the example of Pt

To investigate the influence of particle size and shape on the thermodynamic stability of Pt, cuboctahedral, octahe-
dral and cubic nanoparticles are chosen. While cubic nanoparticles consists only of (100) faces and octahedral only
of (111), cuboctahedral nanoparticles have both, (100) and (111) faces, as shown in Figure 3.3a. The investigated
sizes range from 0.72 nm (Pt13) to 2.99 nm (Pt923) for the cuboctahedral nanoparticles. Pt63 to Pt665 and Pt19 to
Pt670 were investigated in the cubic and octahedral form ranging from 1.22 nm to 2.68 nm and 0.82 nm to 2.68 nm,
respectively.

a

c 

Pt171 Pt146 Pt147 

b

dPt-Pt,bulk = 2.77 Å

cuboctahedral cubic octahedral

Pt13

Pt55

Pt147
Pt309

Pt561

Pt923

Figure 3.3: (a) Atomic structures of the cuboctahedral Pt147, the cubic Pt171 and the octahedral Pt146 cluster. The
colors correspond to the colors used for the symbols in (b) and (c). (b) Mean Pt-Pt distance 〈dPt−Pt〉
in Å of the relaxed nanoparticles, and (c) chemical potential µPt relative to the bulk chemical poten-
tial of Pt µbulk

Pt , both shown as a function of the number of Pt atoms per nanoparticle to the power
of -1/3, N−1/3

Pt (lower abscissa). The upper abscissa shows the corresponding number of Pt atoms
NPt. The hollow symbol represents Pt13, which is excluded from the fit for cuboctahedral clusters.
The black symbols in (b) of the cuboctahedral cluster are labeled with their corresponding number of
atoms.

All investigated structures were fully relaxed and the obtained structures are thus local minima. This resulted in a
contraction of the average nearest neighbor Pt-Pt distance for smaller clusters. Figure 3.3b shows the mean Pt-Pt
distance 〈dPt−Pt〉 as a function of particle size compared to the bulk distance (2.77 Å). As shown previously for
Pt180 and other transition metals181–189, it is found that 〈dPt−Pt〉 scales linearly when plotted against the number of
Pt atoms to the power of -1/3, N−1/3

Pt . The scaling is best for particles exhibiting the cuboctahedral shape (black
dots) with the exception of the smallest Pt13 cluster, which is attributed to quantum size effects. The chemical
potential, which is approximated as the average energy per atom, µPt = Etotal/NPt, is shown as a function of N−1/3

Pt
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3.4 Wulff construction

in Figure 3.3c and a linear trend is observed for all three particle shapes investigated here. The slight differences
in slope for the different shapes are due to the corresponding surface energies, with the fcc(111) surface having a
smaller surface energy than the fcc(100) facet (compare Table 3.1).
Importantly, using the linear trend shown in Figure 3.3c the stability of a nanoparticle normalized to its number of
atoms can be predicted using:

µPt−µ
bulk
Pt = ssurface ·N−1/3

Pt (3.2)

For the cuboctahedral nanoparticles, a slope of: scuboctahedral
surface = 5.57 eV is found (cubic: scubic

surface = 5.96 eV and
octahedral: soctahedral

surface = 5.33 eV). The steepest slope is obtained for cubic nanoparticles, which expose only (100)
faces, which are higher in energy than (111) faces. Thus the slope obtained for octahedral nanoparticles is the
flattest and the cuboctahedral case in between. Using this fit, the average stability per atom as a function of particle
size is predicted as shown in Figure 3.4a (cubic: Figure 3.4c and octahedral: Figure 3.4e). Figure 3.4b shows
the energy gained if two equally sized particles merge to form one larger particle. It can be seen that for small
nanoparticles the gain in energy and thus the driving force for sintering is much higher than for larger nanoparticles.
Similar images for the cubic and octahedral nanoparticles are shown in Figure 3.4d and Figure 3.4f respectively.
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Figure 3.4: (a),(c),(e) Calculated and predicted chemical potential µPt relative to the bulk chemical potential
µbulk

Pt for (a) cuboctahedral, (c) cubic and (e) octahedral nanoparticles. The filled circled are val-
ues calculated using DFT and the hollow ones using the linear fit with scuboctahedral

surface = 5.57 eV,
scubic

surface = 5.96 eV and soctahedral
surface = 5.33 eV according to eq. (3.2). All structures of the calculated

nanoclusters are shown as inset. (b),(d),(f) Gain in chemical potential due to sintering under the as-
sumption that two equally sized nanoclusters merge to form one larger particle for (b) cuboctahedral,
(d) cubic and (f) octahedral nanoparticles.

Generally it is desirable to be able to predict the stability and shape of nanoparticles as shown in Figure 3.3c with
simple models instead of performing explicit DFT calculations. The most widespread model for the prediction of
nanoparticle shapes is the Wulff construction15, which will be presented in the next section 3.4.

3.4 Wulff construction

The surface energies of the different faces can be used to predict the relative stability of the nanoclusters:15
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3 Thermodynamic stability of metal nanoparticles

γNP = ∑
i

γiAi, (3.3)

with γNP, the total surface energy of a nanoparticle, γi the surface energy of a crystal face in eV per surface atom
and Ai the surface area of the crystal face.
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Figure 3.5: Chemical potentials of differently sized and shaped Pt nanoparticles. The filled circles show the
chemical potential calculated with DFT and the open squares show the chemical potential according
to the WC. The different colors represent different nanoparticle shapes, black: cuboctahedral, blue:
cubic and red: octahedral.

The surface area of the (111) face and (100) face are calculated according to:

A111 = N111

√
3a2

0
4

and A100 = N100
a2

0
2
, (3.4)

with N111,100 being the number of atoms per (111) and (100) face respectively. Each cuboctahedral cluster consists
of 8 (111) faces and 6 (100) faces, the cubic cluster of 6 (100) faces and the octahedral cluster of 8 (111) faces.
The different energy contributions of the faces are listed in Table 9.4. Using eq. (3.3) to plot the chemical potential
of different sized and shaped nanoparticles in Fig. 3.5, it can be seen that the Wulff construction overestimates the
chemical potential of the nanoclusters, especially for small clusters. The reason is that for small nanoclusters the
relative contribution of the edges and corners to the total surface energy is high but not included if only the surface
energies are used. Therefore the WC will be extended to account also for the edges and corners by extrapolation
from surface energies, as presented in the next section 3.5.

3.5 Pure metal nanoparticle stability model

3.5.1 Formalism

The energy of a nanoparticle is approximated to be additive, so that:

µ
model = µ

bulk ·Natom +
Nsurf

∑
i

E(CNi), (3.5)

where µmodel is the total energy of a nanoparticle, Natom its total number of atoms, Nsurf its number of surface atoms
and µbulk is the metal chemical potential. E(CNi) is the energy of a surface atom i with coordination number CN.
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Figure 3.6: (a) Energy for surface atoms as a function of coordination number CN. The filled symbols were ob-
tained with DFT calculations, the hollow ones from extrapolation. The circles represent the energy
if the bulk lattice constant abulk

0 = 3.91 Å is used and the squares if the lattice constant derived from
the 〈dPt−Pt〉 of Pt309 is used, aPt309

0 = 3.77 Å. The insets show the fcc(111) and fcc(100) surface re-
spectively and the Pt309 cluster with its different possible CN numbers highlighted in colors (violet:
CN = 9, green: CN = 8, yellow: CN = 7, blue: CN = 5). (b) Quadratic fit of the fcc(111) surface en-
ergy per atom, γfit

111(a0) and (c) quadratic fit of µbulk(a0) for different lattice parameters of platinum.

As shown for the example of Pt in Figure 3.6a , the surface energies at the bulk lattice constant abulk
0 of the fcc(111)

and fcc(100) surfaces are used to determine the energy of 9-fold and 8-fold coordinated surface atoms relative to
that of a 12-fold coordinated bulk atom. Assuming a linear increase166 of the energy with the coordination number
CN of the atom results in the scaling shown in Figure 3.6a with the solid black line. Within this simple approxi-
mation, the chemical potential of a cluster can be predicted based on its number of atoms and their corresponding
coordination numbers. However, as shown in Figure 3.3b, the relaxation of the nanoparticles leads to a reduction
of the 〈dPt−Pt〉. In order to account for this effect, both, the surface energies and the cohesive energies are deter-
mined as a function of the lattice constant a0. Within the relevant range (-5%), the surface energy always decreases
when a0 is lowered with respect to the bulk lattice constant (Figure 3.6b). The bulk energy, on the other hand, will
increase (Figure 3.6c) whenever a0 deviates from its bulk value (abulk

0 ), thus counteracting the particle contraction
induced by the surface energy. This qualitatively explains the trends observed in Figure 3.3b: Smaller particles
with a larger fraction of surface atoms contract more since the decrease in surface energy outweighs the increase
in the cohesive energy. However, the contraction of the particles can also readily be predicted quantitatively since
γ111(a0) and µbulk(a0) as obtained from DFT calculations, are well described by quadratic functions, as can be
seen in Figures 3.6b and c. Explicitly, the lattice dependence of the surface energy is defined as:

E(CN) = c(abulk
0 ) ·CN +b(a0), (3.6)

with b(a0) = γfit
111(a0)−9 · c(abulk

0 ), giving:
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3 Thermodynamic stability of metal nanoparticles

E(CN) = c(abulk
0 )(CN−9)+ γ

fit
111(a0) (3.7)

where γfit
111(a0) is the surface energy of the (111) face per atom in eV depending on a0. Using the lattice constant

resulting from 〈dPt−Pt〉 of the Pt309 nanoparticle, a309
0 = 3.77 Å, and eq. (3.7) results into the red dotted line in

Figure 3.6a. Inserting eq. (3.7) into eq. (3.5) and dividing by the number of atoms gives:

µmodel(a0)

Natom
= µ

bulk(a0)+
Nsurf · γfit

111(a0)+∑CN NCN · c(abulk
0 )(CN−9)

Natom
. (3.8)

For a given cluster with known coordination numbers, this gives a simple, analytical expression for the chemical
potential as a function of the lattice constant, which can be minimized.

3.5.2 Results

As already mentioned, the trends described in Fig. 3.3 are not unique to Pt180, but have also been observed for
other transition metals, for example Pd181,182, Ru184 and Au185, but also main group metals like Al185 or alkaline
earth metals like Mg185,186. With this in mind transition metals of group 8, 9, 10 and 11 as well as Mg and Al were
investigated. Figure 3.7a shows the difference µmetal− µbulk

metal vs. N−1/3 for cuboctahedral nanoparticles with 55,
147, 309 and 561 atoms. As can be seen in Figure 3.7a, all metals follow the same behavior described in eq. (3.2),
but with different slopes. In Figure 3.7b, the slope obtained from Figure 3.7a with eq. (3.2), is plotted against the
bulk chemical potential of the corresponding metals as filled circles. The quality of the observed correlation can be
attributed to the fact that the surface and cohesive bulk energy are strongly correlated, as shown in Figure 3.7c. The
slopes predicted for these metals are compared in Figure 3.7b and Table 3.6 to the ones obtained directly from DFT
calculations. With the exception of Ir, all predicted slopes are higher than the results from the DFT calculations
with a MAE of 0.54 eV/atom. From the parity plot shown in Figure 3.7d it can be seen that the agreement between
DFT calculations and our model improves with increasing cluster size. For the predicted chemical potentials of
the different metals the agreement is very good and overall the MAE for the prediction of all clusters investigated
in this work is only 0.09 eV/atom with the maximum error being 0.32 eV/atom.

Table 3.6: Fitted slope sDFT
surface from plotting µDFT

metal − µbulk
metal vs. N−1/3

atoms of the values in column 4 of Table 9.5.
smodel

surface is the fitted slope of µmodel
metal − µbulk

metal vs. N−1/3
atoms for the values in column 5 of Table 9.5. The

mean absolute error of the slopes is MAE = 0.54 eV/atom.

Metal Slope DFT [eV] Slope Model [eV]

Ag 2.97 3.70
Au 3.42 3.91
Co 4.91 5.43
Cu 3.76 4.46
Ir 7.35 7.28
Ni 4.52 4.81
Os 8.18 8.81
Pd 4.49 5.35
Pt 5.57 5.86
Rh 6.01 6.72
Ru 6.75 7.55
Al 2.58 3.00
Mg 2.32 2.83
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3.5 Pure metal nanoparticle stability model
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Figure 3.7: (a) µmetal − µbulk
metal vs. N−1/3 for different metals. (b) Slope, obtained with eq. (3.2), vs. the bulk

chemical potential of the corresponding metal. The filled circles are fitted from (a) and the hollow
square symbols are the results of fitting the chemical potentials to nanoparticle sizes as shown in (a)
calculated with the stability model. The corresponding total energies and chemical potentials are
given in Table 9.5 and the slopes in Table 3.6. (c) Correlation of the γ111 and γ100 surface energies
in eV per surface atom with the bulk chemical potential of the investigated metals. (d) Parity plot of
the relative stability obtained using the stability model versus the values calculated with DFT. The
obtained MAE is 0.09 eV/atom. The color code is the same as shown in the inset of (a).
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3 Thermodynamic stability of metal nanoparticles

3.6 Conclusions

In summary, a simple model that is able to predict the stability of nanoparticles as a function of size and shape
based on the coordination numbers of the surface atoms and the lattice constant dependent γ111(a0) and µbulk(a0)

was described. The simple stability model is shown to be highly accurate and reproduces the results of DFT
calculations with a MAE of only 0.09 eV/atom for the symmetric and well-defined nanoparticles studied in this
work. Importantly, this allows to estimate the thermodynamic stability of a whole set of transition metal particles
of various sizes towards sintering. However, the thermodynamic stability of gas phase clusters is only one step in
the direction to understand the complex behavior of different heterogeneous catalysts. The influence of different
supports and adsorbates on the nanoparticle stability is an additional challenge as well as the kinetic sintering
processes.
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4 Support effects on nanoparticle stability

4.1 Introduction

Studying metal-oxide interfaces is generally difficult, both from the experimental and theoretical side. Experi-
mentally, a lot has been learned from secondary effects, e.g. how the support directly affects properties such as
catalytic activity or catalyst deactivation.14 Detailed information about the atomic structure and the strength of
metal-support interactions can be obtained from particle shape analysis and micro calorimetry.20,21,190,191 Compu-
tational investigations with density functional theory (DFT) either employ finite nanoparticles on extended supports
or periodic interfaces between metal- and oxide-surfaces. Both approaches are complimentary in that adhesion
between surfaces captures the intrinsic reactivity of these surfaces, whereas the adhesion of nanoparticles addi-
tionally includes finite size effects and averages over extended facets and under-coordinated atoms on edges and
corners.89,192–194 Adhesion energies of Au22-clusters have been found to be 2-3 times larger than those of extended
Au-surfaces for three studied oxide surfaces.195 There are relatively few systematic theoretical investigations of
adhesion of metal-support interfaces.92,196–199 Campbell and coworkers have recently analyzed experimental data
and identified trends, where experimental descriptors such as the heat of formation of bulk oxides have been used
to rationalize the observed variations in the adhesion energies.20 In this chapter, the interfaces between fcc(111)-
and fcc(100)-surfaces of common transition metals and several oxide supports are investigated using DFT at the
PBE-D3 level of theory. The goal is to find trends in adhesion energies and to identify computational descriptors
that allow to predict adhesion energies.

4.2 Computational details

4.2.1 Interface models

The main challenge in computing interface energies is that oxide and metal surfaces usually have incommensurate
unit cells. Small or medium sized clusters can be expected to adapt to the structure of the support more easily
than larger clusters.36,200,201 However, the focus is on the situation where the number of layers of both metal and
support are large compared to the area of the interface. In this limit, both metal and support will not deviate from
their respective bulk lattice constants.190,202 In calculations with periodic boundary conditions, either one or both
of the surfaces have to be stretched or compressed to be accommodated into the same unit cell. It was generally
found that oxides are less sensitive to a change of the lattice constants, while metals may reorganize to structures
that deviate significantly from their bulk crystal structure. Thus, all interface models constructed in this work
keep the metal surface in its equilibrium lattice constant and adjust the lattice constant of the oxide, with the goal
of introducing as little artificial strain on the oxide as possible. The lowest layers of the oxides are kept frozen
while all remaining atoms of the interface are fully relaxed. In the case of non-stoichiometric oxides, the dangling
bonds of the bottom side are saturated by hydrogen. Initial structures were constructed by placing the metal slab
approximately 2 Å above the oxide surface, which had before been scaled to match the lattice constants of the
metal. All structures were initially relaxed for the interface with Pt and the other interfaces were then obtained
from these structures by adjusting the lattice constants and replacing Pt by the respective metal. Table 4.1 lists the

This chapter is based on the following publication: Dietze, E. M.; Plessow, P. N., Predicting the Strength of Metal–Support Interaction with
Computational Descriptors for Adhesion Energies. J. Phys. Chem. C 2019, 123, 33, 20443-20450.
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Figure 4.1: Atomic structure of the surfaces used to construct the interfaces studied in this work and the dimen-
sion of the corresponding unit cells. (a) Hexagonal Pt(111) unit cells, the rectangular Pt(111) unit
cell abbreviated (1×

√
3) and quadratic Pt(100) unit cells. (b) Stoichiometric surfaces with the 110-

surface of rutile, the 101̄0-surface and 112̄0-surface of ZnO in wurtzite structure and the 101-surface
of tetragonal zirconia. (c) Hydroxylated surfaces with the fully hydroxylated 0001-surface of α-
quartz, the fully hydroxylated 0001-surface of α-alumina and the partially hydroxylated 110-surface
of γ-alumina including two and three adsorbed water molecules per unit cell.

considered super cells and in the last column the strain applied to the oxide to form the interface for the example
of Pt. The strain introduced by the interface formation for the other metals is given in Table 9.6 for the case of
symmetric strain and Table 9.7 for the unsymmetric case.
The metal surfaces considered are either in the fcc(111) or fcc(100) structure and are all transition metals: Ru, Os,
Rh, Ir, Ni, Pd, Pt, Cu, Ag and Au. It is noted that Ru and Os crystallize in hcp structure. The relevant unit cells are
shown in Figure 4.1a for the example of Pt.
The oxide surfaces considered in this work are shown in Figure 4.1b,c. Hydroxylated surfaces that can be de-
rived from α-SiO2(0001)32,203, α-Al2O3(0001)204–206 and γ-Al2O3(110) are studied. γ-Al2O3 is commonly used
experimentally and the crystalline Digne-model207–209 is studied, where two relevant hydroxylation stages are
employed with two and three water molecules per unit cell, abbreviated 2O-γ-Al2O3(110) and 3O-γ-Al2O3(110).
Only the oxidized surfaces resulting from full hydroxylation, denoted O-α-SiO2(0001) and O-α-Al2O3(0001),
were considered for these materials. The remaining oxide surfaces are all stoichiometric.
To demonstrate that using the oxide lattice constant instead of that of the metal lattice influences the results only
little, Figure 4.2 shows the difference in adhesion energy for various metal/oxide interfaces obtained with either
the oxide lattice constant or the metal lattice constant for the unit cell. The deviation in adhesion energy increases
with increasing strain, but for small strain (up to 5%) it remains below 30 meV/Å2. A detailed comparison of the
calculated adhesion energies is given in Table 9.12 and the corresponding total energies in Table 9.13.
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4.2 Computational details

Table 4.1: Supercells used in the calculation of adhesion energies are listed separately for metal and oxide sur-
faces. The first index of the oxide supercell refers to the horizontal lattice vector of the unit cells de-
picted in Figure 4.1. The type of termination (oxidized or stoichiometric) is listed along with the strain
applied to the oxide to form the interface for the example of Pt.

Oxide Metal Interface with Pt

Surface and termination Supercell Surface Supercell Straina[%]

O-α-SiO2(0001) ox. 1×1 fcc(111) 2×2 11.7 11.7
1×1 (

√
3×
√

3)R30◦ -3.3 -3.3
2×2 (

√
13×

√
13)R14◦ 0.7 0.7

O-α-Al2O3(0001) ox. 1×1 fcc(111) (
√

3×
√

3)R30◦ 0.3 0.3
2×2 (

√
13×

√
13)R14◦ 4.3 4.3

2O-γ-Al2O3(110) ox.b 1×1 fcc(100) 3×3 -0.5 3.4
3O-γ-Al2O3(110) ox.c 1×1 fcc(100) 3×3 -0.5 3.4

TiO2(110) stoich. 2×1 fcc(100) 5×1 5.4 -6.4
3×1 7×1 -1.6 -6.4
4×1 9×1 -5.1 -6.4
1×2 (

√
5×
√

5)R27◦ -5.7 4.6
3×5 fcc(111) 7×3

√
3 -1.6 -2.7

ZnO(101̄0) stoich. 4×1 fcc(100) 5×2 5.8 4.9
5×1 6×2 1.5 4.9
1×3 fcc(111) 2×2

√
3 4.9 -2.3

ZnO(112̄0) stoich. 1×1 fcc(100) 2×2 -2.3 4.9
2×3 (3

√
2×4

√
2)R45◦ 1.5 4.9

ZrO2(101) stoich. 3×3 fcc(100) 7×4 1.6 2.4

a The strain of the oxide with respect to the two lattice vectors of the surface is listed.
b Derived from the hydroxylated surface with two water per surface unit cell.
c Same as b but with three water per surface unit cell.

Convergence of adhesion energy with respect to the number of oxide layers

To show the convergence of the results against the number of oxide layers, the Pt/O-α- SiO2(0001) interface is used
as an example with various numbers of layers, ranging from 1 to 5. The first layer in the 1× 1 O-α-SiO2(0001)
unit cell consists of 4 SiO2 groups. The following layers each contain 3 SiO2 groups to have the same hydrogen
saturated oxygen atoms at the bottom of the slab. The complete structure is relaxed for the convergences test. It
is found that already after the first layer, the adhesion energy varies at most by 1.2 meV/Å2. The calculated total
energies and adhesion energies are given in Table 4.2.
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Figure 4.2: Absolute change in the adhesion energy when using either the metal lattice constant or the oxide lat-
tice constant as a function of the absolute maximum strain of the metal/oxide interface. The black
circles denote interfaces with symmetric strain (α-SiO2 and α-Al2O3) and the red, hollow circles
asymmetric strain on the unit cell. In the case of asymmetric strain the absolute maximum strain is
used. The corresponding interfaces and values are shown in Table 9.12.

Table 4.2: Convergence of the adhesion energy γadh in meV/Å2 (last column) with the number of SiO2 groups
per unit cell N(SiO2) using the example of the Pt/O-α-SiO2(0001) interface. The adhesion energy is
calculated according to eq. (4.4) with the interface energy EInterface, oxide energy EOxide, metal en-
ergy EMetal in eV and the stability difference between hydroxylated and oxidized surface per supercell
∆γox

ox−lat.

N(SiO2) EInterface EOxide EMetal ∆γox
ox−lat γadh

4 -192.75 -125.17 -76.28 272.03 -181.30
7 -264.77 -197.19 -76.28 272.03 -180.94

10 -336.84 -269.24 -76.28 272.03 -182.15
13 -408.90 -341.32 -76.28 272.03 -181.45
16 -480.96 -413.36 -76.28 272.03 -182.16

4.2.2 DFT parameters

All DFT-calculations were performed with the PBE126 functional and the D3-dispersion correction143 using the
VASP program package in version 5.4.1 and the projector-augmented-wave (PAW) method with standard PAW-
potentials.153 A cutoff of 400 eV was used for the expansion of the orbitals in plane-waves, along with Gaussian
smearing with a width of 0.1 eV and Γ-centered k-point sampling with k-point densities between 10× 10 and
16×16 per fcc(111)-(1×1) unit cell, depending on the specific interface. The used k-points for each surface are
listed in Table 4.3. Only surfaces involving Ni were computed with spin-polarized calculations. All structures were
optimized until atomic forces were below 0.01 eV/Å. The interface calculations are often very time consuming,
due to system size and sometimes slow SCF- and geometry convergence. It was therefore not possible to obtain
interfaces for all potential combinations of oxides and metal surfaces. Additionally, interfaces were discarded
when the strain on the oxide resulted in a visible deformation of the strained clean oxide surface.
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4.2 Computational details

Table 4.3: Surface dependent Γ-centered k-point sampling.

Oxide surface Metal surface Metal supercell K-points

O-α-SiO2(0001) fcc(111) 2×2 (8,8,1)
(
√

3×
√

3)R30◦ (8,8,1)
(
√

13×
√

13)R14◦ (3,3,1)
O-α-Al2O3(0001) fcc(111) (

√
3×
√

3)R30◦ (8,8,1)
(
√

13×
√

13)R14◦ (3,3,1)
2O-γ-Al2O3(110) fcc(100) 3×3 (4,4,1)
3O-γ-Al2O3(110) fcc(100) 3×3 (4,4,1)

TiO2(110) fcc(100) 5×1 (2,10,1)
7×1 (2,10,1)
9×1 (1,10,1)

(
√

5×
√

5)R27◦ (5,5,1)
fcc(111) 7×3

√
3 (2,2,1)

ZnO(101̄0) fcc(100) 5×2 (2,5,1)
6×2 (2,5,1)

fcc(111) 2
√

3×2 (3,6,1)
ZnO(112̄0) fcc(100) 2×2 (6,6,1)

3
√

2×4
√

2 (3,2,1)
ZrO2(101) fcc(100) 7×4 (2,3,1)

The optimized lattice constants for the metals are the same as presented in Table 3.1. The lattice parameters of the
oxide surfaces and their corresponding surface area are given in Table 4.4.

Table 4.4: Unit cell surface area in Å2 of the oxide surfaces and the surface lattice parameters in Å.

Oxide surface Surface area
Lattice parameter

a b

O-α-SiO2(0001) 21.33 4.962
O-α-Al2O3(0001) 19.85 4.787
2O-γ-Al2O3(110) 67.11 8.035 8.352
3O-γ-Al2O3(110) 67.11 8.035 8.352

TiO2(110) 19.45 6.569 2.960
ZnO(101̄0) 17.30 3.274 5.283
ZnO(112̄0) 29.96 5.671 5.283
ZrO2(101) 22.95 6.361 3.608

Adsorption energies of oxygen atoms were computed at a coverage of θ = 1/9 on fcc(111) and fcc(100) surfaces.
The surfaces consists of 4 layers of which the lower two are frozen to mimic the bulk metal and the upper two
relaxed. (4×4×1) Γ-centered k-points are used. The oxygen adsorption energies are summarized in Table 4.5.
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4 Support effects on nanoparticle stability

Table 4.5: Oxygen adsorption energy in eV on fcc(111) and fcc(100) metal surfaces with 1/9 oxygen coverage.
As oxygen reference 0.5 ·EO2 =−4.93 eV is chosen.

Metal fcc(111) fcc(100)

Ag -0.44 -0.90
Au -0.12 -0.06
Cu -1.49 -2.06
Ir -1.77 -2.17
Ni -2.40 -2.72
Pd -1.52 -1.34
Pt -1.13 -1.34
Os -2.63 -2.74
Rh -2.14 -2.32
Ru -2.92 -3.09

4.2.3 Role of van der Waals interactions

The zero-damping D3 approach developed by Grimme is used to compute van-der-Waals (vdW) interactions.143

The vdW-part of the adhesion energy can therefore be easily separated and is shown in Figure 4.3a for the
metal/oxide interfaces of TiO2(110), O-α-Al2O3 and O-α-SiO2 as example. Figure 9.1 shows the D3 correction of
the other considered surfaces. The vdW-interactions are relatively similar for all interfaces, typically around -60 to
-80 meV/Å2. They are notably weaker for α-SiO2, which can be explained by its low bulk density that also leads
to significantly reduced vdW-interactions of α-SiO2 with itself in the bulk oxide, compared to the other oxides
studied here, see Table 4.6. The vdW-interaction in γ-Al2O3 is also relatively weak, which is attributed to its corru-
gated surface. Since the vdW-interactions are generally similar for different metals, they do not significantly alter
the slope aox in the scaling relations, but mainly shift the offset box. The D3-correction with Becke-Jones-damping
leads generally to somewhat weaker adhesion with differences typically around 20 meV/Å2 see Figures 4.3b and
9.2.

Table 4.6: VdW-energy with zero damping per volume for bulk oxides and vdW-energy with zero damping per
atom of bulk metals.

Oxide EvdW/V [meV/Å3] Metal EvdW [eV]

α-SiO2 -7.509 Ag -0.505
α-Al2O3 -18.115 Au -0.670
γ-Al2O3 -15.773 Cu -0.525

TiO2 -16.581 Ir -0.719
ZnO -16.606 Ni -0.413
ZrO2 -16.127 Pd -0.592

Pt -0.783
Os -0.595
Rh -0.587
Ru -0.563
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Figure 4.3: Interfaces formed by oxygen-rich oxide surfaces that can be derived from hydroxylated surfaces and
stoichiometric oxide surfaces. VdW contributions with (a) D3-zero damping and (b) D3-BJ damping
of adhesion energies are shown as a function of oxygen adsorption energies on clean fcc(111) metal
surfaces. The vdW contributions of the adhesion energies were averaged over all computed super-
cells and the largest and smallest deviation within these individual calculations is indicated with error
bars.

4.2.4 Calculation of adhesion energies

The adhesion energy of stoichiometric interfaces was calculated as:

γ
stoich
adh = (E interf

M−lat−EM
M−lat−Eox

M−lat/AM−lat), (4.1)

where E denotes the total energy of a slab and A the area of a slab. The superscript denote interface (interf), metal
(M) or oxide (ox). The subscript signifies if the quantity is computed with the structure in the lattice constant of the
oxide (ox-lat) or of the metal (M-lat). It is found that using AM−lat results in somewhat better scaling relations for
the stoichiometric surfaces. For a small lattice mismatch, the difference between Aox−lat and AM−lat is small. This
calculation is illustrated in Figure 4.4a for Pt(111) supported on the (110) surface of rutile. Both surfaces, which
are first optimized separately using the same lattice constant, are then brought into contact. The gain in energy
(-24.1 eV) per area of the supercell (279 Å2) results in an adhesion energy per area of -86 meV/Å2.
For the adhesion energies of the oxidized surfaces, first the hydroxylated surface is used and the adhesion energies
calculated under the liberation of n/2 H2-molecules, where n is the number of hydroxyl groups per unit cell.

γ
hydrox
adh = (E interf

M−lat−EM
M−lat +n/2 ·E(H2)−Ehydrox

M−lat )/Aox−lat, (4.2)

Here Aox−lat is used, since in this way, different supercells have the same, correct concentration of hydroxyl groups
as in the ideal interface. Adhesion energies of oxidized interfaces were calculated by accounting for the difference
between hydroxylated and oxidized surface, as computed for the unstrained oxide surface:

γ
ox
adh = γ

hydrox
adh −∆γ

ox
ox−lat (4.3)
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4 Support effects on nanoparticle stability

where the stability difference between hydroxylated and oxidized surfaces is given by:

∆γ
ox
ox−lat = (Eox

ox−lat−Ehydrox
ox−lat +n/2 ·E(H2))/Aox−lat. (4.4)

This procedure was used since the hydroxylated surfaces are thermodynamically most stable under relevant con-
ditions for α-SiO2(0001), α-Al2O3(0001) and γ-Al2O3(110). The shifts ∆γox

ox−lat that allows to relate adhesion
energies referenced to the oxidized surface (γox

adh) to hydroxylated surfaces (γhydrox
adh ) are listed in Table 4.7. The

clean oxidized oxide surfaces derived from the hydroxylated surfaces by removing the surface hydrogen atoms (H)
were relaxed only for the unstrained oxide, using spin-polarized calculations. It is noted that the obtained struc-
tures are not very stable and partially react under the formation of peroxo structures, e.g. under the formation of
O-O bonds. However, the energetic difference between different oxidized structures using different supercells and
magnetic states turned out to be relatively small (30 meV/Å2) compared to ∆γox

ox−lat. These oxidized surfaces only
serve as an artificial reference to be able to directly compare the adhesion energies of oxidized surfaces to those of
stoichiometric surfaces, which is otherwise difficult since the formation of oxidized interfaces from hydroxylated
surfaces always depends on the chemical potential of hydrogen. Adhesion free energies for any temperature and
H2-pressure can be obtained by computing the free energy of H2 at those conditions, multiplying by the number
of formed hydrogen atoms per unit cell (n/2, see Table 4.7) and dividing by the unit cell area (Table 4.4). In this
way one can also easily compute the adhesion free energy in the presence of O2, if H2O is formed, by adding the
reaction free energy for the formation of H2O. As an example Figure 4.4b, shows the interface formation of the
non-stoichiometric interface formed between Pt(111) and α-SiO2(0001), where, compared to the bulk stoichiom-
etry of α-SiO2, the interface is oxidized. This interface can be derived from the fully hydroxylated surface of
α-SiO2(0001) from which hydrogen needs to be removed, for example as H2. In the presence of O2, hydrogen
may also be removed via the formation of H2O where an adhesion energy γ

hydrox
adh = −42 meV/Å2 at T = 0 K is

obtained.

Table 4.7: Surface energy difference between hydroxylated and oxidized surface, if H2 is liberated. ∆γox
ox−lat is

listed in meV/Å2. Additionally, the number of hydroxyl groups per unit cell is listed, see Table 4.4 for
the surface area of these unit cells.

Oxide ∆γox
ox−lat n/UC

O-α-SiO2(0001) 272.03 2
O-α-Al2O3(0001) 414.39 3
2O-γ-Al2O3(110) 142.76 4
3O-γ-Al2O3(110) 222.33 6

The values of all calculated adhesion energies are presented in detail in Table 9.8 and the corresponding total
energies used to calculate them in Table 9.11. The adhesion energies are plotted in Figure 4.6, 4.7 and 9.3 and
discussed in section 4.3.
The obtained adhesion energies are compared in detail with previously reported values in Table 4.8. The agreement
with a computed value204 for Ag(111) on O-α-Al2O3(0001) is very good with deviations of less than 10 meV/Å2.
Experimental21 and computed195 values for the interface of Au/TiO2(110) are around -40 meV/Å2, while in this
work roughly -60 meV/Å2 is found. This can be attributed to the approximate calculation of the van der Waals
interactions which dominate adhesion in this case, as shown in Figure 4.3.
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4.3 Effect of adhesion on nanoparticle stability
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Figure 4.4: Approach to compute adhesion energies. (a) Formation of the interface between Pt(111) and the
stoichiometric 110-surface of rutile in a (7× 3

√
3)/(3× 5) supercell. The adhesion energy is given

per supercell (E) and per area (γ). (b) Formation of the oxidized interface between Pt(111) and α-
SiO2(0001) in a (

√
13×

√
13)/(2× 2)R14◦ supercell. Eight hydrogen atoms from eight hydroxyl

groups are removed per supercell in the formation of the interface. The formation of the oxidized
surface is added as an intermediate step. The chemical potential of hydrogen, µH is given relative to
1/2H2 at T = 0 K. At 0 K, we consider H2 as a reference (µH = 0) and O2+H2O (µH =−1.28 eV).

Table 4.8: Comparison of adhesion energies from the literature for systems studied in this work with the values
obtained in this work.

Metal Oxide γadh (meV/Å2) Reference

Au TiO2(110) -34 to -44 ref. 21
-26 to -35 ref. 195

Au(111) TiO2(110) -61 to -62 this work, Table 9.8
Au(100) TiO2(110) -68 to -70 this work, Table 9.8
Ag(111) O-α-Al2O3(0001) -253 ref. 204

-252 to -258 this work, Table 9.8

4.3 Effect of adhesion on nanoparticle stability

The effect of adhesion on nanoparticles is illustrated in Figure 4.5 for Pt clusters, employing adhesion energies
computed in this work for the interfaces between Pt(111) and the (110)-surface of rutile and the (0001)-surface
of α-SiO2. Figure 4.5a shows how the chemical potential of platinum µPt varies as a function of particle size. It
can be seen that the stabilization due to adhesion leads to a less steep variation of µPt with size, thus reducing the
driving force for sintering and stabilizing the particles. To calculate the chemical potential µPt the formula derived
by Campbell and coworkers21:

µPt = µbulk +(3γPt− γadh)×
Vm

r
, (4.5)

is employed, with µ
exp
bulk = −5.82 eV, the experimental Pt bulk chemical potential179, γ

exp
Pt = 138 meV/Å2, the

surface energy of the Pt(111) surface and a volume per atom of Vm = 15.1 Å3 as obtained with PBE-D315,210, r

the nanoparticle radius and γadh the adhesion energy. Instead of the experimental values for µbulk and γPt also the
values obtained with DFT can be employed. Using µDFT

bulk = −6.26 eV from Table 3.1 and scuboctahedral
surface = 5.57 eV
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4 Support effects on nanoparticle stability
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Figure 4.5: Effect of adhesion on the properties of nanoparticles. (a) Size-dependent chemical potential of plat-
inum for different adhesion energies employing the formula derived by Campbell and coworkers21

and γPt = 138 meV/Å2 210 for the solid lines and scuboctahedral = 5.57 eV (section 3.3) for the dashed
lines. (b) Wulff constructions of supported Pt clusters with γ111

Pt = 138 meV/Å2, γ111
Pt /γ100

Pt = 0.73 and
a volume per atom of 15.1 Å3 as obtained with PBE-D3.15,179

from section 3.3 to describe the stability of Pt nanoparticles results in the dashed line of Figure 4.5a. Figure 4.5b
shows cluster shapes derived from a Wulff-construction employing the same adhesion energies. Adhesion changes
the ratio of facets and edges and also affects the perimeter of the particle that is exposed to the gas-particle-support
interface.
Figure 4.6a shows the adhesion energies of interfaces formed between O-α-SiO2(0001), O-α-Al2O3(0001) and
TiO2(110) and the fcc(111)- and fcc(100)-surfaces of various transition metals: Ru, Os, Rh, Ir, Ni, Pd, Pt, Cu,
Ag and Au, although it is noted that Ru and Os crystallize in the hcp-structure. Examples of the side-on view of
the interfaces between Pt and the mentioned oxides are shown in Fig. 4.6c. Typically, the strain on the oxide is
largest for supercells with Ni and Cu, which have the smallest lattice constants. The mean adhesion energies of
different supercells are shown, using error bars to indicate the maximum deviation between these supercells, which
is relatively small for α-SiO2(0001), despite the differences in orientation and lattice mismatch. The adhesion en-
ergies are plotted against the adsorption energy of oxygen, Ead(O), on the respective clean fcc(111) metal surfaces.
Excellent correlation is observed and Ead(O) can therefore be used as descriptor:

γadh ≈ Ead(O) ·aox +box (4.6)

as in scaling relations that have first been established for molecular adsorption on transition metal surfaces and
extended to other systems, including metal-supported thin oxide films.42,211–214 Here, aox and box are the scaling
parameters which depend on the oxide. The parameter aox thus describes how a change in oxygen adsorption
energy, when changing the metal, will affect the adhesion energy.
For α-Al2O3(0001) adhesion energies and the slope with respect to Ead(O) are larger than for α-SiO2(0001), which
is mainly due to the higher concentrations of hydroxyl groups on the hydroxylated surface, that ultimately leads
to a higher concentration of metal-oxygen bonds at the interface. For TiO2(110) the interfaces with both fcc(111)
and fcc(100) surfaces are studied. This allows the direct comparison of the adhesion energies of different metal
facets. The adhesion per metal atom is typically stronger for fcc(100), however, this is partially compensated by
the surface area per metal atom that is 12% higher for fcc(100). As a result, fcc(111) and fcc(100) surfaces are
expected to have comparable adhesion energies per area on oxides when they form an incommensurate over layer.
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4.4 Model to predict adhesion energies
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Figure 4.6: Trends in adhesion energies for metal-oxide interfaces. (a) Adhesion energies are shown as a
function of oxygen adsorption energies on clean fcc(111) metal surfaces. The adhesion energies
were averaged over all computed supercells (see Table 4.1) and the largest and smallest deviation
within these individual calculations is indicated with error bars. For O-α-SiO2(0001) and O-α-
Al2O3(0001), the adhesion energies are given relative to the oxidized surfaces. In addition, given
as dashed lines are the adhesion energies obtained with a hydroxylated oxide surface as the reference.
Here, the adhesion free energy depends on the chemical potential of hydrogen and µH = −1.28 eV
is used as reference. The shift between oxidized and hydroxylated reference is indicated as ∆γox. (b)
Adhesion energies of the fcc(100) metal surfaces with TiO2(110) as a function of oxygen adsorption
energies on clean fcc(100) metal surfaces. (c) Side-on views of the interfaces of Pt with the oxide
surfaces listed above. From left to right: Pt(111)/TiO2(110), Pt(100)/TiO2(110), Pt(111)/O-α-SiO2
and Pt(111)/O-α-Al2O3(0001).

For the sake of simplicity, E111
ad (O) obtained for fcc(111)-surfaces is used as a descriptor also for adhesion energies

of the fcc(100) facets, as no fundamentally different results are obtained with E100
ad (O), see Figure 4.6b and 9.3.

Additionally, interfaces formed with the stoichiometric (101̄0)- and (112̄0)-surface of ZnO in wurtzite-structure
and the (101)-surface of ZrO2 in tetragonal structure are studied. The adhesion energies are in the same range
(-160 to -70 meV/Å2) as those for TiO2(110) and are also well described by scaling relations (see Figure 4.7b, c).
The interfaces with oxidized γ-Al2O3(110) surfaces were also studied and lead to adhesion energies on the order
of -200 meV/Å2 and are therefore somewhat weaker than those of α-SiO2(0001), see Figure 4.7a. As expected,
the more oxidized surface, 3O-γ-Al2O3(110), leads to stronger adhesion than 2O-γ-Al2O3(110).

4.4 Model to predict adhesion energies

So far, it was studied how adhesion energies of metal-oxide interfaces vary with the metal for a given support.
Finding suitable descriptors for the comparison of the reactivity of different oxide surfaces is more challenging.
Surface energies of oxides and oxygen vacancy formation energies have been used to describe the reactivity of
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4 Support effects on nanoparticle stability
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Figure 4.7: Additional adhesion energy calculations. (a) Adhesion energies between fcc(100)-surfaces and the
oxidized γ-Al2O3(110) surfaces derived from hydroxylated surfaces with two and three adsorbed
water molecules per unit cell. (b) Adhesion energies for the (101̄0)- and (112̄0)-surfaces of ZnO
in wurtzite structure. Os is excluded from the fit in the case of ZnO(101̄0). (c) Adhesion energies
for the (101)-surface of tetragonal ZrO2. (d) Side-on views of the interfaces of Pt with the oxide
surfaces listed above. From left to right: Pt(100)/2O-γ-Al2O3(110), Pt(100)/3O-γ-Al2O3(110),
Pt(111)/ZnO(101̄0), Pt(100)/ZnO(101̄0), Pt(100)/ZnO(112̄0), Pt(100)/ZrO2(101).

oxides before.92,199,215 For the cases studied here, the best tested descriptor is the concentration of bonding oxygen
atoms at the metal-support interface, cO. No clear-cut definition for metal-oxide bonds at the interface can be
derived since the chemical bond itself is a concept rather than a directly measurable quantity. A distance-based
criterion is used to determine bonds, since this is based on a well-defined observable. Clearly, all surface oxygens
at the interfaces with O-α-Al2O3(0001) and O-α-SiO2(0001) engage in chemical bonding. The corresponding
bonds-lengths can therefore be used to determine distance-based criteria for cO. Generally, the shortest metal-
oxygen distance for a given oxygen is considered. For O-α-Al2O3(0001), the metal-oxygen bond lengths vary in
between 2.07 Å and 2.30 Å for Ag and in between 1.95 Å and 2.12 Å for Rh. A tolerance of 0.3 Å is added to the
largest bond lengths to arrive at metal-specific bonding criteria that are around 2.4 to 2.6 Å. The mentioned bond
lengths and criteria are listed in Table 9.9 and the obtained values for the number of interfacial oxygen atoms NO

in Table 9.10. The resulting scaling parameters and cO are all listed in Table 4.9. For the interfaces formed from
the hydroxylated α-Al2O3(0001) and α-SiO2(0001) surfaces, cO simply equals the concentration of the hydroxyl
groups of clean, hydroxylated surfaces. For TiO2(110), ZnO(112̄0) and ZnO(101̄0), cO can be deduced from the
number of surface oxygen atoms on the clean oxide surfaces. For the surfaces of γ-Al2O3(110) and ZrO2(101), cO

cannot easily be predicted from their hydroxylated and clean surfaces. One therefore needs to perform at least a
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Figure 4.8: Variation of adhesion energies with the type of oxide surface. (a) The slope aox obtained by fitting
adhesion energies for a given oxide as a function of oxygen adsorption energies is shown for differ-
ent oxides as a function of the number of interfacial oxygen atoms, cO. (b) Same as (a) for the offset
box. (c) Parity plot where the two fitted parameters α and β are used to predict adhesion energies
using eq. (4.7) and are compared to all values computed in this work.

single interface calculation to deduce the number of bonds from the atomic structure based on the distance criteria
noted above.

Table 4.9: Obtained scaling parameters aox and box and the mean absolute error (MAE) from Fig. 4.6 and
Fig. 4.7 and concentration of interfacial oxygen atoms cO, plotted in Fig. 4.8a, b. If cO cannot be
determined from the number of surface oxygens, the mean number of M-O bonds for all calculated
metal/oxide interfaces is used. A bond counts as an M-O bound if the M-O distance is smaller than the
criterion given in Table 9.9.

Oxide surface Metal
surface

Metal supercell aox

(10−3 Å−2)
box

(meV/Å2)
MAE
(meV/Å2)

cO

(nm−2)

O-α-SiO2(0001) fcc(111) (
√

13×
√

13)R14◦ 36.75 -161.72 10.41 9.38
O-α-Al2O3(0001) fcc(111) (

√
13×

√
13)R14◦ 70.54 -208.26 19.23 15.12

2O-γ-Al2O3(110) fcc(100) 3×3 28.95 -116.94 7.48 7.82
3O-γ-Al2O3(110) fcc(100) 3×3 33.46 -139.65 15.55 9.87

TiO2(110) fcc(100) 7×1 23.54 -68.33 3.91 7.71
fcc(111) 7×3 23.54 -60.30 3.91 5.14

ZnO(101̄0) fcc(100) 5×2 24.45 -92.96 6.27 5.78
fcc(111) 2×2 24.45 -92.93 8.92 5.78

ZnO(112̄0) fcc(100) 2×2 27.76 -78.18 7.03 6.68
ZrO2(101) fcc(100) 3×3 26.30 -68.32 7.52 6.64

Using the concentration of interfacial oxygen atoms, cO, the scaling parameters (slope aox and offset box) obtained
for the different oxides can be analyzed. Figure 4.8a and b show slope and offset, respectively, as a function of
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4 Support effects on nanoparticle stability

cO. If adhesion is dominated by binding through interfacial oxygen atoms, it is expected that in the absence of
interfacial oxygen (cO = 0), both aox and box are zero. In fact, aox and box are approximately proportional to cO

and can thus be relatively well described with two parameters (aox = α × cO and box = β × cO). The interface
energies of all interfaces can now be approximated using the simple formula:

γadh ≈ (Ead(O) ·α +β ) · cO. (4.7)

Figure 4.8c shows a parity plot, where the adhesion energies predicted using eq. (4.7) are compared with those
computed explicitly with DFT. The correlation is generally good, with some systematic deviations caused by the
underestimation of the slope of O-α-Al2O3(0001) and the errors in the offset of both α-SiO2(0001) and ZrO2(101).

4.5 Conclusions

A variety of metal-oxide interfaces were systematically studied using different supercells to minimize lattice mis-
match. Scaling relations can be used to analyze adhesion energies, where the adsorption energy of atomic oxygen
on clean metal surfaces Ead(O) serves as a descriptor. Variations between different oxides can be described by the
different concentration of interfacial oxygen atoms, cO. This concentration can in many cases be easily extracted
from the atomic structure of the clean oxide surfaces. A simple model is proposed that allows the prediction of
adhesion energies for a given metal-oxide based on these two descriptors (Ead(O), cO.). Consequently, properties
that depend on the adhesion energy, such as particle shape or metal chemical potential are also accessible through
this model.
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5 Combined simulation of Ostwald ripening and
particle migration

5.1 Introduction

A kinetic Monte Carlo (kMC) based model that can be used to simulate migration of different sized Pt nanoparti-
cles on supports with point defects is used to study the effects of temperature, particle-size, particle-concentration,
defect-concentration and defect-binding strength on sintering. Additionally, simulations are performed that com-
bine particle migration and coalescence (PM) with Ostwald ripening (OR), where the latter is simulated through a
mean-field model. This allows to assess the relative importance of PM and OR as well as their interaction.

5.2 Particle migration

In principle, where are two ways in which particles can migrate on the support: Concerted movement (translation)
and non-concerted movement.216 The model described here focuses on the non-concerted movement of particles,
which arises from multiple (typically more than 106) single-atom movements. Diffusion constants are taken from
ref. 49, where they have been determined for Pt particles of different sizes and different temperatures using adhe-
sion energies for Pt(111) on α-Quartz(001). Based on that data49, the following parameterization to describe all
activation energies required during the simulation is employed:

Ea/eV = c1 + c2 ·Nc3
Pt (5.1)

with NPt being the number of platinum atoms of the migrating nanoparticle and c1 = 9.07, c2 =−9.15 and
c3 =−0.05 being constants. In ref. 49, diffusion constants were determined only for crystalline particles larger
than 300 atoms, since it is unlikely that the fcc-parameterization will hold for smaller particles, the formula is ex-
pected to be valid only for sufficiently large particles. Therefore, a lower limit to the activation energy Ea,min = 2 eV
is introduced to prevent unrealistic activation barriers in the region for which the formula has not been parameter-
ized.
The diffusion constant can be expressed in terms of a lattice-hop model:

D = l2× kBT
h
× exp

(
− Ga

kBT

)
, (5.2)

where D is the diffusion constant, l = 289 pm is the experimental lattice parameter of Pt(111)179, T is the temper-
ature, kB is the Boltzmann constant, h is Planck’s constant and Ga is the activation free energy. It turns out that
the free energy of activation varies very little with temperature, so throughout Ea will be used instead of Ga. What
makes the lattice-hop model in eq. (5.2) convenient is the fact that it expresses the strongly temperature-dependent
diffusion constant through a single temperature-independent activation energy (eq. (5.1)). The only remaining
variable is the nanoparticle size and the interpolated activation energy, which is shown as a function of particle size
in Fig. 5.1a. It can be seen that the activation energy for diffusion is increasing the particle size.

This chapter is based on the following publication: Dietze, E. M.; Abild-Pedersen, F.; Plessow, P. N., Comparison of Sintering by Particle
Migration and Ripening through First-Principles-Based Simulations. J. Phys. Chem. C 2018, 122, 46, 26563-26569.
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5 Combined simulation of Ostwald ripening and particle migration

PM is simulated with a 2D-lattice Bortz–Kalos–Lebowitz (BKL)-kMC algorithm156,217,218 on the hexagonal lat-
tice derived from the Pt(111)-surface employing periodic boundary conditions. Size- and temperature-dependent
diffusion constants are computed using eq. (5.2) and activation energies using eq. (5.1), shown in Fig. 5.1a. The
particles are represented as hemispheres and coalescence occurs immediately when two particles collide. Fast
coalescence is supported by the 3D-lattice kMC simulations described in ref. 216, where coalescence is orders of
magnitude faster than diffusion.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Ea [eV]

1000

1100

1200

1300

1400

1500

T
[K

]
hti = 10 s

�6

�5

�4

�3

�2

�1

0

1

2

Particle diameter:

2 3 4 5 6 7 8 9 10

Particle diameter (hemisphere) [nm]

2.50

2.75

3.00

3.25

3.50

3.75

E
a

[e
V

]

300 1000 5000 10000 15000
Number of Pt atoms

�5

0

5

10

15

20

25

lo
g
1
0
(t

h
o
p
/
s)

a b

Ea

thop(T=500 K)

thop(T=1000 K)

thop(T=1500 K)

3 nm 6 nm
3 nm
@ defect

6 nm
@ defect

c d

initial TS final

Reaction coordinate for migration

E

‡

Ebind

Schematic Model for TS of Migration

lo
g 1

0(
t ho

p/s
)

E
[e

V
]

Ebind Ea + Ebind≈ Ea

Ea

‡ ‡

‡

Figure 5.1: (a) Activation energy Ea for migration as a function of particle size (left y-axis) and the correspond-
ing average time for a lattice hop log10(thop/s) (right y-axis). (b) Average time for lattice-hop as a
function of activation barrier: log10(〈t = 1/k〉/s). The color-map extends only to one hour. Ac-
tivation barriers for particles with a diameter of 3 and 5 nm bound and not bound to a defect with
Ebind = 1.6 eV are highlighted. (c) Illustration of the energetics for the migration processes in the
presence of defects with an activation barrier of Ea = 2.5 eV and a binding energy to the defect of
Ebind = 1.6 eV. (d) Illustration of the pillbox model. A cubic particle moves by one lattice constant
by transferring a layer of atoms from left to right. In the transition state the facets on left and right
side are equal. The energy is schematically shown. In case of the presence of a defect, the reaction
path is expected to deviate near the final state, leading to a less stable particle.

In the absence of defects, a particle with a size-specific activation energy for migration Ea (> 2.0 eV) migrates
between degenerate minima on the support. In Fig. 5.1b, the average time for one lattice-hop is shown as a
function of the activation energy. A higher Ea leads to an increase in time required for a lattice-hop. This is also
demonstrated for 3 different sample temperatures with the blue lines in Fig. 5.1a. In general, the migration of a
particle, which is in initial and final state in its minimum shape, requires an entire facet to be transferred from
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5.2 Particle migration

left to right (e.g. in the direction in which the particle moves), as is schematically shown in Fig. 5.1d. The least
stable state, the transition state, occurs when half of the facet is transferred, because the two half-facets have the
maximum edge lengths within this process and have therefore the largest number of under-coordinated atoms. This
is of course only a qualitative picture, whereas the real particle may also furthermore change its shape to minimize
the energetic cost of the transformation. Nevertheless, the simple model by Harris219, captures the underlying
physics of the process. Importantly, due to the adhesion energy, it is likely that the remaining half-facets are, in the
transition state, still in contact with the support. Within the simple pillbox model, these atoms would even be the
last to migrate to the other side of the particle.
In the presence of defects, a behavior as illustrated in Fig. 5.1c is expected. When bound to a defect, the particle
is stabilized by Ebind, which lowers the energy of the corresponding minima. In the picture of the pillbox model,
this means that the particle is still in contact with the defect during the transition state and that the last atoms will
detach from the defect only after the transition state. Consequently, the binding to the defect is not expected to
influence the barrier away from the lattice site significantly. Thus, PM is not influenced by the defect when it is two
lattice sites away and the particle can then be considered ‘fully dissociated’. The effective barrier for dissociation
from the defect is at least Ea +Ebind, which is the height of the second migration step relative to the defect-bound
position. The transition state for the initial dissociation is not known explicitly but can be expected to be in between
Ea (full interaction of the transition state with the defect as in the minimum) and Ea +Ebind (no interaction of the
transition state with the defect).
Therefore, all rate-constants for diffusion that lead to dissociation from a defect are derived from Ea+Ebind instead
of the usual Ea. In ref. 27, it has been shown that Pt particles are expected to bind to dangling Si-O groups with
a binding energy of Ebind = 1.6 eV. Generally Ebind is treated as an adjustable parameter to study its effect on
sintering. The effect of Ebind = 1.6 eV on the lattice-hopping time is shown in Fig. 5.1b.
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Figure 5.2: (a) Convergence of Ea,min for PM initialized with 10 different normal distributions with
〈dinit〉= 3.5 nm, σ = 1.0 nm and Npart = 2000 at T = 1000 K for t = 1 h and (b) as inset. (b) Il-
lustration of an unit cell of 400 3 nm Pt particles with an initial distance of 5 nm. 400 randomly dis-
tributed defects are shown as red dots. (c) Convergence of the fraction of sintered particles with the
number of particles npart initialized on a regular grid. (t = 1 h, initial distance = 20 nm, T = 1000 K,
dinit = 3 nm).

As periodic boundary conditions are employed in all simulations, the size of the supercell is the main parameter
that controls the convergence of the simulation results with respect to system size. When the number of particles
per unit cell is small (obviously the case if only a single particle is present) the sintering simulations will not be
meaningful. The system size (super cell size) is measured, for a given concentration of particles on the support, in
terms of the number of particle per unit cell. For pure PM simulations, particle size distribution (PSD)s are used
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5 Combined simulation of Ostwald ripening and particle migration

where all particles have an initial diameter of dinitial ≥ 2 nm and due to the mechanism the particles can only grow
in size, so that variations of the value of the lower limit Ea,min = 2 eV have no effect. In the case of simulations that
combine PM and OR, initial PSDs also include particles with dinitial < 2 nm and small particles are also created
through OR. In Fig. 5.2a, the PM simulation is initialized with a normal PSD that includes also particles smaller
than 2 nm, as shown in Fig. 5.6a in grey. It can be seen that the simulation result, measured in fraction of sintered
particles, is not influenced as long Ea,min < 2.5 eV. The convergence of the kMC simulations with respect to the
size of the unit cell is shown in Fig. 5.2c. It is found that an ensemble of 400 particles per unit cell is sufficient to
reach an accuracy of 5% in terms of sintered particles and 2000 particles per unit cell for an accuracy of less than
1%. For PM all ensembles are initialized on a regular grid, as depicted in Fig. 5.2b. The particle distance refers to
the smallest distance between the outer spheres of the nanoparticles.
The results from sintering simulations are compared after an elapsed time of one hour, which is a realistic time-
frame also for lab-scale experiments. The extent of sintering is quantified through the fraction of sintered particles
given by 1− Nt

N0
, where N0 is the initial number of particles and Nt the number of particles after an elapsed time

t. This definition of sintering is very well defined computationally, such that 0 means no sintering and close to 1
means full sintering. Experimentally, the extent of sintering is often measured through the evolution of the PSD,
in particular the average diameter. These measures are usually correlated as shown in the Figure 5.6d and one can
therefore always transform between these representations thus enabling a direct comparison to experiments.

5.2.1 Particles on defect-free support

First it will be studied how sintering depends on the initial particle distance and the initial particle diameter dinitial.
Fig. 5.3a shows how the fraction of sintered particles after 1 h decreases roughly linearly with inter-particle distance
and that the rate of decrease increases with particle size. This is the result of a complex relation between activation
energy vs. size and mean particle displacement from its initial position. At larger inter-particle distances, sintering
within 1 h is suppressed for the larger particles and hence the fraction of sintered particles remains constant at
essentially zero. Thus at T = 1000 K particles larger then dinitial = 5 nm are stable to sintering within one hour.

a b

Figure 5.3: (a) Fraction of sintered particles after one hour of sintering as a function of the initial distance with
dinitial = 3, 4 and 5 nm at T =1000 K. (b) Temperature and size dependence of sintering at a fixed inter
particle distance of 5 nm. White dashed lines illustrate constant diffusion coefficients at different
sizes and temperatures.

Fig. 5.3b shows the extent of sintering as a function of temperature and particle size for an initial distance of
5 nm. As one would expect, for a given particle diameter the fraction of sintered particles increases with increasing
temperature and decreases with increasing particle size. The white lines in Fig. 5.3b illustrate a constant diffusion
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5.2 Particle migration

a b

Figure 5.4: (a) Fraction of sintered particles depending on the defect energy and number of defects per particle
for T = 1000 K, initial particle size dinitial = 3 nm and initial distance of 10 nm. (b) Relative decrease
in sintering as a function of Edefect for different number of defects per particle. The initial particle
size is dinitial = 3 nm with an initial distance of 10 nm. The relative decrease in sintering is defined
as the fraction of sintered particles on the support with defects divided by the fraction of sintering on
the defect free surface.

coefficient for different temperatures and particle diameters. It can be seen that constant sintering is well-described
by constant diffusion coefficients.

5.2.2 Effect of defects

Defects are initialized in random positions on the kMC-lattice (Fig. 5.2b, red circles) with an adjustable number of
defects Ndefect per particle. The defect binding energy, Edefect, is variable to investigate how it affects the fraction
of sintered particles. The relative decrease in sintering with increasing number of defects per particle for constant
Edefect is shown in Fig. 5.4a. Here, a relative decrease in sintering < 1 means that the fraction of sintered particles
has decreased by the given amount. In Fig. 5.4b two different temperatures (T = 900 and 1000 K) and three
different defect concentrations are studied. Generally, sintering decreases rapidly with increasing Edefect until
it levels off and remains constant after a certain value of Edefect. This characteristic value, Emax

defect, is found to
be independent of defect concentration but depends sensitively on the temperature. As shown in Fig. 5.4b with
vertical bars, Emax

defect can be estimated accurately by using the average time to escape tesc from the defect, which is
the inverse of the rates constant computed through eq. (5.2):

Edefect =−kBT ln

( √
2h

tesckBT

)
−Ea. (5.3)

Here, the factor
√

2 is due to the use of a hexagonal lattice. As expected, more defects and, up to a certain
value Emax

defect, stronger binding suppress sintering. The simulations thus show that the defect binding energy Emax
defect

required to trap a particle with a given diffusion constant for a given time ∆t can be estimated using the rate-constant
derived from the lattice-hop model. The defect binding energy Edefect = 1.6 eV given in ref. 32 is therefore more
than sufficient to trap the particles under the conditions studied here.
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5.3 Combined simulation

Gas phase mediated Ostwald ripening is modeled through the mean-field model described in ref. 27, which is
based on the Wynblatt-Gjostein model23 as described in detail in section 1.2.1. In short, PtO2-emission from the
particles is determined based on a sticking coefficient (S = 1) and a particle-size dependent chemical potential
of Pt that is derived from a Wulff-construction with a surface energy fitted to reproduce experimental kinetics.
No diffusion limitations and only redeposition of Pt in between existing particles is assumed. This determines a
spatially constant (albeit time-dependent) background pressure of PtO2.

5.3.1 Extension of the kMC algorithm for particle migration

The combined simulation of PM and OR is best understood as a modification of the kMC simulation that is used
to model PM. Within the employed model, migration does not influence the ripening process unless coalescence
occurs, which turns two particle into a single, larger particle. Ripening however, within the mean-field model,
continuously changes the size of all particles and therefore their diffusion constants. Such a continuous change is
of course impractical numerically and OR-steps are performed after certain discrete time-steps, ∆tmax, and after
coalescence. ∆tmax is set to the time after which the first particle has experienced a change in particle size that
exceeds two predefined thresholds. These thresholds are defined with respect to a change in the number of atoms (or
volume) of the particle: A relative threshold (default 10%) and an absolute threshold (default 100 atoms). Fig. 5.5b
shows that the fraction of sintered particles varies within the simulation error bars for an absolute threshold between
50 and 800 atoms, corresponding to a relative threshold of 5% to 80%. The numerical accuracy with which the two
models are combined is thus defined by these two thresholds. PM-kMC steps (diffusion steps) are performed until
coalescence occurs or ∆tmax is exceeded, after which an OR-step is performed. After each OR-step, particle-sizes
and diffusion constants are updated. A flow chart of the described simulation steps is shown in Fig. 5.5a.
In principle, nanoparticles consist of an integer number of atoms. This property can be conserved in simulations of
pure PM since any initial PSD that consists only of particles with an integer number of atoms will through particle
migration and coalescence only result in other PSDs with integer-number particles.
On the contrary, mean-field models for ripening continuously transfer fractional numbers of Pt atoms in between
nanoparticles and it is not clear how this can be avoided in a physically meaningful way. Since the interpolated
activation energies can be readily used for particles with fractional numbers of Pt atoms, the cluster are treated
with a continuous number of Pt atoms, since this allows the combination of OR and PM and conserves the total
number of Pt atoms at all times.
For the combined PM and OR simulation, the simulations are initialized with randomly distributed particles with
a PSD given by a normal distribution with an initial mean diameter 〈dinitial〉 = 3.5 nm and standard deviation
σ = 1.0 nm28,51,58,66. The calculation contains at least 2000 particles to smoothly represent the normal distribu-
tion. Additionally, each simulation for a given first and second moment of the normal distribution is randomly
initialized as described in ref. 27 to reduce artificial effects from the discretization of the ideally continuous nor-
mal distribution. Since the positions of particles of different sizes on a regular grid is ambitious, the particles are
initialized with fully randomized positions, requiring only that they do not overlap. Each simulation was repeated
five times and the fraction of sintered particles deviate by ±1%, showing only insignificant fluctuations between
simulations.
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Figure 5.5: (a) Flow chart for the combined kMC-model of PM and the continuum model for OR. (b) Conver-
gence of the fraction of sintered particles with the relative and absolute threshold. (t = 1 h, T =
1100 K, pO2 = 0.2 mbar, number of employed particles: 2000, 〈dinitial〉 = 3.5 nm and σ = 1.0 nm,
Number of simulations: 96).

5.3.2 Results and Discussion

To study the relative importance of the different sintering mechanisms, simulations on PM and OR are performed
separately as well as on PM and OR combined, (PM◦OR). Fig. 5.6a shows the evolution of the initial PSD after
1 h simulation time at T = 1200 K and an oxygen background pressure pO2 = 0.1 mbar for the three different
scenarios, PM, OR, and PM◦OR. All three sintering models visibly shift the PSD towards larger diameters, thus
signifying sintering. As expected76,219, the PSD resulting from PM shows no tail towards lower diameters whereas
this is clearly the case for both OR and PM◦OR, which also show broader PSDs. Beside these observations, no
characteristic features can be extracted from the PSDs.
Figure 5.6b shows the dependence of the fraction of sintered particles on the width of the used PSD, σ , for
different initial mean diameters 〈dinit〉. With increasing 〈dinit〉 the fraction of sintered particles reduces, as could
be also seen in Fig. 5.3a. Increasing σ has only a minor effect for the pure PM. For OR the fraction of sintered
particles increases with increasing σ and for 〈dinit〉= 1.5 nm it becomes identical with the results of PM◦OR. The
same would be expected for the larger 〈dinit〉, if σ would be increased further. For PM◦OR the fraction of sintered
particles is not strongly dependent on σ , but for σ < 0.2 nm and 〈dinit〉 = 2.5 nm the sintering is larger than the
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Figure 5.6: (a) Particle size distributions for PM (black), OR (blue) and PM◦OR (red) at T = 1200 K and
pO2 = 0.1 mbar. The grey PSD shows the initial distribution. (b) Fraction of sintered particles for
PM, OR and PM◦OR for different PSD widths σ and initial mean diameter 〈dinit〉. The simulations
employed 2000 particles, T = 873 K, pO2 = 0.3 mbar and t = 6 h. (c) Fraction of sintered particles
and (d) final mean diameter 〈dfinal〉 for PM, OR and PM◦OR for different oxygen pressures and tem-
peratures. The simulations employed 2000 particles, 〈dinit〉= 3.5 nm and σ = 1.0 nm.

sum of PM and OR together. This can be explained as follows: PM of the still relatively mobile nanoparticles leads
to an increase in the width of the PSD in the beginning of the simulation, which enhances OR in the combined
simulation compared to the pure OR. For the case of 〈dinit〉= 1.5 nm this is not observed, because the fraction of
sintered particles is very high anyway and also not for 〈dinit〉= 3.5 nm, because under these conditions the fraction
of sintered particles is low, implying that the change in the PSD due to PM is low.
Fig. 5.6c shows the dependence of the fraction of sintered particles on different oxygen pressures pO2 for different
temperatures. This behavior with temperature was already seen in Fig. 5.3b, where the fraction of sintered particles
increases with increasing temperature. Also observed is that PM is independent of pO2 , which is expected for the
model used. With increasing pO2 the fraction of sintered particles increases for OR and PM◦OR. For PM◦OR,
PM constitutes the lower limit for sintering and is identical at low pO2 . With increasing pO2 , OR becomes more
dominant and at even higher O2 pressures OR is identical to PM◦OR. Thus PM dominates for pO2 < 0.1 mbar,
but for experimentally more relevant pressures, such as 40 mbar, OR is the more important sintering process.
Interestingly, the crossover between OR and PM occurs at lower pO2 with increasing temperature, indicating that
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OR increases somewhat faster with increasing temperature. Fig. 5.6d shows the results of the same simulations
as in Fig. 5.6c but the mean final diameter 〈dfinal〉 is measured instead of the fraction of sintered particles. It can
be seen that both properties lead to exactly the same observations demonstrating the possible transferability of the
experimentally measured change in mean diameter and simulated fraction of sintered particles.
It is apparent from Fig. 5.6b and 5.6c that the effect of PM and OR is not additive. Generally, the fraction of sintered
particles via both PM and OR (PM◦OR) is less than the sum of the fraction of sintered particles in the individual
calculations. Simple additivity of both sintering mechanisms would be expected if they acted independently on
different particles. In practice, the smallest particles are removed first, both through PM and OR since they are most
mobile and least stable. Therefore, when comparing combined sintering (PM◦OR) with the separate mechanisms,
sintering is often less than the sum of the individual, isolated sintering mechanisms, as any given particle can of
course only be removed once.

5.4 Conclusions

Sintering through particle migration and coalescence was investigated with a kMC-model employing diffusion
constants obtained from first principles calculations. Generally, the extent of sintering is well-described through the
diffusion constant, a function of both temperature and particle size. As expected, the extent of sintering increases
with increasing particle concentration. Additionally, the effect of point defects on sintering has been studied
explicitly. Generally, more and stronger binding defects lead to less sintering. However, beyond a certain binding
strength, stronger binding does not further decrease sintering. The binding strength necessary to completely trap
a particle for a certain time can be well estimated through the average escape using a lattice hop model and the
diffusion constant of the given particle.
The kMC model for PM was combined with a mean-field model for OR which allows the simultaneous study of
both processes. For experimentally relevant conditions (pO2 > 1 mbar), it was found that OR is more important
than PM. If both OR and PM are relevant, their combined effect (PM◦OR) is usually smaller than the sum of the
effects of the individual processes. This is likely due to the fact that only the smallest particles are mobile enough
for PM. However, these particles are also the ones most readily annihilated through OR.
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6 Gas phase diffusion model for Ostwald ripening

6.1 Introduction

First a kinetic Monte Carlo (kMC) model of gas phase diffusion will be described and tested by reproducing ideal
gas parameters for 40Ar. As second step, two model systems are investigated to compare the kMC model with
analytical solutions of Fick’s laws, then the kMC model will be extended to simulate the conditions assumed for
the mean-field model of Ostwald ripening (OR) to study the limitations of that method.

6.2 Gas phase diffusion model

Here, a kMC model that describes the collision of an explicitly simulated molecule within a uniform background
of ideal gas is developed. Similar models were developed to describe high power impulse magnetron sputtering
and direct current sputtering.220 To calculate the flow of dilute gases often the Direct Simulation Monte Carlo
(DSMC) method of G.A. Bird221 is used. The DSMC is a probabilistic approach, where the number of simulated
particles is not equal to the number of real particles. In consequence, it is not suitable to model the pathway of a
single molecule influenced by a background gas.
In this approach, the background gas is not explicitly simulated but interacts with the molecule through collisions
that follow from the temperature, its mass distribution, collision cross section and collective gas-flow.
First the kMC model of gas phase diffusion will be described and tested by reproducing ideal gas parameters
for 40Ar. As a second step, two model systems are investigated to compare the gas phase diffusion model with
analytical solutions of Fick’s laws.

6.2.1 Method

To simulate the diffusion of a particle through an ideal gas, the kMC approach with a Bortz–Kalos–Lebowitz (BKL)
algorithm222 is used, which is descriped in section 2.4. In an ideal gas, particles interact only through collisions
and otherwise move linearly at constant velocity. The simulation approach contains explicitly simulated particles
Mp (from now on simply referred to as particles) and a background gas, Mb. The particles do not interact with each
other and do not change the properties of the background gas. This is expected to be a good approximation when
the particles are present at very low concentration. This will be the case in the applications of interest, where mass
transport between solid particles is mediated by species with low vapor pressure, while the gas phase is mainly
composed of inert gas, air, or a reactive atmosphere. It is also a valid approach for the simulation of pure gas phase
properties, where only a single type of particle is simulated. This will be the validation case for this model, the
diffusion of 40Ar in 40Ar.
The only kMC processes are collisions between particles and the background gas, in between collision events the
particles move with constant velocity. Initially, particles are supplied with certain velocities and from there on
move until collisions change both direction and magnitude of the velocity.

Section 6.2 of this chapter is based on the following publication: Dietze, E. M.; Plessow, P. N., Kinetic Monte Carlo Model for Gas Phase
Diffusion in Nanoscopic Systems. J. Phys. Chem. C 2018, 122, 21, 11524-11531. The other sections are unpublished.
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Figure 6.1: (a) Velocities v1 and v2 of the molecules M1 and M2 with the collision angle θ and their relative ve-
locity vr. (b) Inverted probability function of vb(ρvb(vp)) for two different example velocities vp.

In the moment of the collision, the distance between the centers of Mp and one molecule of Mb is dav = 1/2(dp+db)

with dp and db being the diameters of Mp and Mb. In consequence, only molecules from the background can collide
with Mp, which pass Mp with a distance less than dav. The collision cross section follows as:

σ = πd2
av. (6.1)

Generally, the number of scattered molecules is proportional to the number of scattering events, Nscatter, per time
and unit volume:

Zp = Nscatterσv. (6.2)

In an ideal gas mixture with a molecule Mp with velocity vp and a different kind of molecule Mb, which has a
randomly oriented velocity vb, the collision probability of Mp will be given by eq. (6.2), where v is replaced by the
average relative velocity between Mp and Mb, v̄r:

Zpb = nbσ v̄r, (6.3)

with nb being the molecular density of Mb.
In consequence, the problem of finding Zpb reduces to the calculation of v̄r. vp relative to vb varies only with the
angle θ between the directions of motions (compare Fig. 6.1a). Because of the random orientation of the velocities,
a fraction of 1/2 sinθdθ will move in directions with an angle θ with vp.
The average value v̄r of vr is:

v̄r =
1
2

∫
π

0
vr sinθdθ . (6.4)

With v2
r = v2

p + v2
b−2vpvb cosθ , it follows:

v̄r =
1
2

∫
π

0
(v2

p + v2
b−2vpvb cosθ)1/2 sinθdθ , (6.5)

which can be solved analytically:

v̄r =
1

6vpvb

[
(v2

p + v2
b−2vpvb cosθ)3/2

]θ=π

θ=0

=
1

6vpvb
[(vp + vb)

3−|vp− vb|3]. (6.6)
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Depending on the ratio of vp and vb, v̄r is determined according to:

v̄r = vp +
v2

b
3vp

if vp > vb, (6.7a)

v̄r = vb +
v2

p

3vb
if vp < vb. (6.7b)

The velocities of the background gas are assumed to follow the Maxwell-Boltzmann distribution:

f (vb) = 4π

(
mb

2πkBT

)3/2

· v2
b · e−mbv2

b/2kBT , (6.8)

with mb being the mass of the background gas, T the temperature and kB the Boltzmann constant.
To obtain the total rate of collision between Mp and Mb in the velocity range vdv eqs. (6.3) and (6.6) are used:

z(vp,vb)dvb = f (vb)nbσ v̄rdvb. (6.9)

Hence the total rate of collision of Mp is:

z(vp) =
∫

∞

0
z(vp,vb)dvb. (6.10)

The probability function for collision with a molecule with velocity ≤ vb is:

ρvp(vb) =

∫ vb
0 z(vp,v′)dv′

z(vp)
(6.11)

This expression already includes all possible orientations of vp and vb. The inverted probability function is shown
in Fig. 6.1b, where vb is plotted against ρvb(vp). In contrast to usual kMC algorithms, which have a finite number of
processes, here are an infinite number of possible processes. This is due to the continuum nature of the background
gas, where at any time all velocities follow the Maxwell-Boltzmann distribution. Fig. 6.2a illustrates ρvb(vp), which
is a smooth function (right side), whereas a finite number of rate constants would lead to a step-like curve (left
side).
The direction of the velocity vb, can be described with two angles θ and φ , using polar coordinates. As already
mentioned, the angle between vp and vb is given by θ (see Figure 6.1a), while φ describes different orientations of
vb with respect to the direction of vr. In the absence of an external field, all values of φ have an equal probability.
Therefore, φ is chosen randomly in the range [0,2π].
Due to the proportionality between the probability function of θ and vr, vr can be used to calculate θ in the
following way:

ρvr(θ) =

∫
θ

0 dθ ′vr(θ
′)∫

π

0 dθ ′vr(θ ′)
. (6.12)

The denominator of eq. (6.12) is equal to v̄r and the numerator similar to eq. (6.6):

vr(θ
′) =

1
6vpvb

(v2
p + v2

b−2vpvb cosθ
′)3/2

=
(2vpvb)

3/2

6vpvb︸ ︷︷ ︸
nvpvb




v12 + v2
b

2vpvb︸ ︷︷ ︸
vs

−cosθ
′




︸ ︷︷ ︸
f̃ (θ ′)

. (6.13)
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a b 

Figure 6.2: (a) Visualization of the transition from a finite number of processes (left side) to a continuum of
processes (right side).(b) Dependence of v on dmin for different Nint over a large distance range.
(Nvp = 2000, NkMC = 3 · 103, Ntraj = 4 · 105, vmax = 10 · v̄ (apart from the black marked values),
Number of calculations per point: 10)

Because the first term in eq. (6.13), nvpvb is independent of θ , eq. (6.12) reduces to:

ρvs(θ) =

∫
θ

0 dθ ′ f̃ (θ ′)∫
π

0 dθ ′ f̃ (θ ′))

=
(vs− cosθ)3/2− (vs−1)3/2

(vs +1)3/2− (vs−1)3/2 , (6.14)

in terms of the dimensionless parameter vs:

vs =
v2

p + v2
b

2vpvb
. (6.15)

The outcome of the scattering process depends on vb and the angle θ . Due to its complicated functional form,
vb(ρvb(vp)) was precomputed before the kMC simulation. The velocity is discretised on an evenly spaced grid
from 0 to vmax = 10 · v̄b. v̄b is calculated according to eq. (6.22), below.
The integral in the numerator of eq. (6.11) is calculated numerically using the trapezoidal rule. The inverse of
eq. (6.11), vb(ρvp), is interpolated. Since ρvp(vb) varies very slowly for small v, where ρvp is essentially 0 and for
very large v, where ρvp is essentially 1, it is the other way around for vb(ρvp). Here, vb(ρvp) varies most strongly
when ρvp is close to 0 or 1. While the points were chosen to be evenly spaced in v, they are generally unevenly
spaced in ρvp and are very dense in the region, where ρvp is close to 0 or 1. This may cause problems in the
interpolation of vb(ρvp). Therefore, it was chosen to use only a subset of the computed points for interpolation.
Thus, a minimum distance dmin between the calculated points is introduced, which will generally lead to a more
evenly spaced discretisation by removing points from the regions where they are very dense. As shown in Fig. 6.2b,
the interpolation procedure is very stable when the parameter dmin is varied in the range of 10−6 to 10−15. Thus
dmin = 10−10 is chosen, because it lies in the center of this range. The total number of points used to discretise
v, Nint, determines how dense points are in the middle region. The convergence of the computed velocity and
diffusion constant with Nvp and Nint is shown Figure 6.3.
During the kMC calculation, for a given vp and a random number ρ1a, vb was obtained by quadratic interpolation
of vb(ρvb(vp) = ρ1a) using the three closest vp-values of the precomputed grid. As shown in eq. (6.14), θ only
depends on vs and the probability ρvs . Eq. (6.14) can therefore be solved for θ :
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θ = arccos
([
−ρvs(θ)

(
(vs +1)3/2− (vs−1)3/2

)
+(vs−1)3/2

]2/3
+ vs

)
. (6.16)

The collision process with a background molecule with a certain velocity and orientation is then chosen according
to:

vb = vb(ρvp = ρ1a), (6.17a)

θ = θ(ρvs = ρ1b), (6.17b)

with ρ1a,1b ∈ (0,1] being random numbers. The resulting particle velocity after the collision process is determined
according to a hard-sphere elastic collision.
The change in time ∆t is calculated according to eq. (2.25) and the position of the particles in space up to the
collision process is updated:

∆xxx = ∆t · vvvp. (6.18)

As already mentioned, the precision of a kMC simulation depends on the interpolation procedure. Here, the
precision depends on the number of points Nvp to precompute the probability distribution of vb and Nint, the number
of points to precompute the integral in eq. (6.11). To investigate the precision of the simulations, gas phase
properties such as the diffusion coefficient D and the mean velocity v̄ := 〈|vvv|〉 were studied.
The kMC simulation, with NkMC steps, is repeated Ntraj times. The particle is initialized with the velocity which
has the highest probability according to the Boltzmann distribution. To allow the system to equilibrate, Dsample and
v̄sample are calculated as follows for each trajectory after 100 initial steps (n > 100):

v̄sample =
∑n vn ·∆tn

tkMC
, (6.19)

Dsample =

〈
∑

3
i=1 x2

n,i

3 ·2 ·∑n
k=1 ∆tk

〉
, (6.20)

n being the current step and tkMC the elapsed time excluding the 100 initial steps. vn, ∆tn and xn,i are the mean
velocity, change in time and the ith-component of the particle position of each step n of the simulation. Dsim and
v̄sim are calculated as the average over all simulated samples.

6.2.2 Parameter convergence for the example of self diffusion of Ar

As a model system, the self diffusion of 40Ar is studied at a temperature of T = 500 K and a pressure of p = 1 bar.

Calculation of the diffusion coefficient

Following Kennard223, the diffusion coefficient is defined for a mixture of two ideal gases. The molecules are
modeled as hard spheres.
The diffusion coefficient after the method of Maxwell224 and Chapman225 is:

D12 =
3
8

√
π

2
1

nσ

[
m1 +m2

m1m2
kBT

]1/2

(6.21a)

and for the self-diffusion:
D11 =

3π

16
√

2
v̄

nσ
, (6.21b)
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with n the total number of molecules per unit volume, m1 and m2 the atomic masses. The mean velocity v̄ within
the self-diffusion equation is:

v̄ =

√
8kBT
πm

. (6.22)

According to the result of eq. (6.21a) the diffusion in a gas mixture is independent of the proportions of the mixture,
because only n occurs in the formula. Regarding the fully theory as worked out by Chapman225 and by Enskog226

the variation of D12 with the proportions of the gas mixture is small. In general, eq. (6.21a) and eq. (6.21b) can be
rewritten as:

D12 = (1+λ12)
3
8

√
π

2
1

nσ

[
m1 +m2

m1m2
kBT

]1/2

(6.23a)

D11 = (1+λ11)
3π

16
√

2
v̄

nσ
. (6.23b)

The exact theory gives for λ11 = 0.017 in the case of hard elastic spheres. λ12 has a maximum at 32/9 ·π−1= 0.132
in the case of hard spheres with significantly different mass. Generally λ12 varies with the composition: the
diffusion coefficient increases if the amount of the lighter molecules decreases.
In more common textbooks such as Atkins and de Paula1 the diffusion coefficient for an ideal gas is defined as:

D11 =
1
3

v̄√
2nσ

, (6.24)

which is equivalent to the equation derived from Landau and Lifschitz227 for the diffusion coefficient of a light gas
in a heavy gas. Comparing eq. (6.24) and eq. (6.21b) the prefactor changes from 1/3 to 3π/16. Another example
are the equations introduced by Wedler228:

D11 =
1
2

v̄√
2nσ

, (6.25a)

D12 =
1
2

n1λ2v̄2 +n2λ1v̄1

n1 +n2
, (6.25b)

with λ = v̄/z as the mean-free path and z the collision frequency. In this case the prefactor is 1/2 instead of
3π/16 for D11. Thus approximations in common textbooks deviate by 44% (Atkins and de Paula1) or by 17%
(Wedler228).

Convergence results

The diffusion coefficient Dref(
40Ar) = 3.388 · 10−5 ± 4 · 10−8 m2/s was calculated according to eq. (6.23b).

v̄ref(
40Ar) = 514.69 m/s follows from the ideal gas law.

Fig. 6.3 shows the decreasing deviation of Dsim and v̄sim from the reference values with increasing Nint (a) and
Nvp (b) respectively. Taking the value of the last data point in Fig. 6.3b, the simulated diffusion coefficient is
Dsim = 3.3853 ·10−5 m2/s which deviates by 0.09% from Dref and is within the error range mentioned by Kennard.
The simulated velocity is v̄sim = 514.70 m/s, which deviates by 0.002% from v̄ref. The deviation is expected to be
sufficient for sintering calculations and could be further reduced by increasing Nint and Nvp .
Fig. 6.4a shows the differential scattering cross section of 40Ar for a constant collision energy of 0.062 eV at
T = 500 K and p = 1 bar which qualitatively agrees with Phelps et al.229. The probability to have either small or
high scattering angles is increased whereas the probability to find scattering angles between 20◦ and 160◦ is orders
of magnitude smaller. Numerical noise is due to poor sampling in the range where collisions are less likely.
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a b 

Figure 6.3: (a) Deviation of Dsim and v̄sim from Dref and v̄ref with respect to Nint and constant Nvp = 2000
(NkMC = 3 ·103, Ntraj = 4 ·106, Number of calculations per point: 10, the error bars show the standard
deviation of the simulated data with respect to the mean value). (b) Deviation of Dsim and v̄sim from
Dref and v̄ref with respect to Nvp and constant Nint = 2 · 105 (NkMC = 3 · 103, Ntraj = 4 · 106, Number
of calculations per point: 10, the error bars show the standard deviation of the simulated data with
respect to the mean value).

a b 

Figure 6.4: (a) Differential scattering cross section for a collision energy of 0.062 eV. (Nvp = 2000, Nint = 2 ·105,
NkMC = 3 · 103, Ntraj = 106). (b) Comparison of Dsim (black circles) and Dref (black line) and v̄sim
(blue squares) and v̄ref (blue line) for different temperatures at p = 1 bar. (Nvp = 2000, Nint = 2 ·105,
NkMC = 3 ·103, Ntraj = 105, Number of calculations per point: 20).
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Fig. 6.4b shows Dsim and Dref and the corresponding v̄sim and v̄ref for different temperatures at a constant pressure
p = 1 bar. Both graphs are in excellent agreement over the whole temperature range. This shows that ideal
gas properties can be simulated accurately using the presented kMC model with the parameters Nvp = 2000 and
Nint = 2 ·105, reproducing the mean velocity and the diffusion coefficient over a wide range of temperatures.

6.2.3 Diffusion between parallel walls

The first example is the diffusion of single atoms between two parallel surfaces with a surface area A and a distance
∆z along the z-axis. The system is infinitely large in two dimensions and is described with a square unit cell with
the surface area A. Ultimately A does not affect the outcome of the simulation (per a given surface area). However,
A controls the rate constant for emission and adsorption for a given surface area. Choosing a very small surface
area of A = 10−16 m2 results in a very small gas phase volume in the unit cell. This in turn means that during the
simulation generally only one particle is present in the gas phase which greatly simplifies the analysis of the flux,
as opposed to a situation with a larger volume and a larger number of particles in the gas phase.
Atoms can be emitted from both surfaces with rate constants K1,2 according to their chemical potentials µ1,2. In
the case of surface collisions, atoms are adsorbed with a probability that is given by the sticking coefficient S. The
diffusion of Pt(g) in between clean Pt-surfaces and in a pure 40Ar gas phase will be studied. In this model S = 1 is
chosen as is appropriate for Pt(g). More complex surface-gas interactions could be incorporated through an angle-
and velocity-dependent sticking coefficient. The rate equation for atom emission is defined27 as:

K1,2 =
A ·S√

2π ·m · kBT
p◦ exp

µ1,2−∆G◦

kBT
(6.26)

with p◦ the standard pressure and ∆G◦ the standard Gibbs free energy in the gas phase.
The atoms are emitted with a velocity distribution for vz corresponding to that for collision of the ideal gas with
a surface with a normal vector in z-direction, so that emission and collision are in equilibrium at the interface.
Importantly, this velocity distribution is not the 1D Maxwell-Boltzmann (MB)-distribution, ρ(vz), but proportional
to vz ·ρ(vz) (Fig. 6.5a)230–232. vx and vy are chosen according to the 1D MB-distribution.

a b 

Figure 6.5: (a) Probability distribution vz · ρ(vz) at T = 2000 K for Pt atoms. (b) Bars: Simulated particle den-
sity for ∆µ = 0. Red line: Particle density in thermodynamic equilibrium. Blue line with symbols:
Deviation of the simulated mean squared velocity from vref

rms,z = 291.40 m/s. (kMC parameters:
∆z = 10−4 m, Nvp = 2000, Nint = 105, NkMC = 2 ·107, Ntraj = 25, T = 2000 K, p = 1 bar).

For a system in equilibrium, the potential difference of the walls is ∆µ = 0 eV. In consequence all gas proper-
ties should be constant throughout the system. In Fig. 6.5b the calculated mean squared velocity vrms,z of the
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6.2 Gas phase diffusion model

z-component is plotted and is in good agreement with the theoretical value vref
rms,z = 291.40 m/s at T = 2000 K. The

calculated particle density remains constant over the whole range, in agreement with the one given by thermody-
namic equilibrium.
For all calculations, the chemical potential µ1 =−5.82 eV179 of the left surface was kept constant at the value of
solid Pt. µ2 was chosen to be variable with the condition µ2 > µ1, causing a flux from the right surface to the left.

Solution for the particle flux from Fick’s laws

With eq. (6.26), the outward flux Jout of either surface is:

Jout =
S ·A√

2π ·m · kBT︸ ︷︷ ︸
α̃

p◦exp
(

µ1,2−∆G◦

kBT

)

︸ ︷︷ ︸
peq

(6.27)

and the inward flux Jin:
Jin = α̃ · pin. (6.28)

The total flux follows as:

Jtot = Jout− Jin = α̃ · (peq− pin),

= α̃ · kBT︸ ︷︷ ︸
α

(neq−nin︸ ︷︷ ︸
∆n

), (6.29)

with p = nkBT from the ideal gas law and n being the number of particles per unit volume.
Fick’s laws are used to calculate the change in the number of particles per unit volume ∆n for the stationary case:

1st law: Jtot =−D ·∇n, (6.30)

⇒ dn
dz

=−Jtot

D
, (6.31)

2nd law:
d2n
dz2 D =

dn
dt

!
= 0. (6.32)

Because of the one dimensional diffusion along the z-axis, ∇n reduces to dn/dz. In the stationary case (eq. (6.32))
the total flux at the reservoirs has to be preserved:

Jr=0
1 =−Jr=z

2 , (6.33)

α(n0
eq−n0) = α(nz−nz

eq), (6.34)

⇒ ∆n = n0
eq−n0 = nz−nz

eq. (6.35)

From eq. (6.30) it follows:

dn
dz

=
nz−n0

∆z
=

nz
eq−n0

eq +2∆n
∆z

,

⇒ ∆n =
−D∆neq

α∆z+2D
, (6.36)

with ∆neq = nz
eq−n0

eq. For large ∆z the limit is: lim∆z→∞ Jtot = 0.
Thus, the total flux Jtotal = Jout− Jin, which generally consists of the out-coming and in-coming particle flux, is:

Jtotal = ∆n ·α =
−D∆neq

α∆z+2D
·α, (6.37)
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with α = kBT (2π ·mkBT )−1/2 and ∆neq = (p2,eq− p1,eq)/kBT , pi,eq being the equilibrium pressure at which surface
i would be in equilibrium with the gas phase.

Extension of the kMC model

In addition to the gas phase scattering, the emission of an atom and the adsorption/reflection on the surfaces are
considered as kMC processes. In the absence of gas phase collisions, the atoms move linearly with constant
velocity until they collide with a surface and are either adsorbed or reflected. In the presence of an external
potential (not considered in this work), the trajectory could be modified accordingly. The time to collision with
a background-gas particle, ∆t is computed first according to eq. (2.25) and is used to check if any atom in the
gas phase collides with one of the surfaces before gas phase collision. In the case of a collision with the surface
within ∆t, ∆t is changed to the actual collision time ∆tcol and the atom is adsorbed or reflected, depending on S.
The positions of all other atoms in the gas phase are then updated using ∆t. Formally, this kMC approach can be
considered as a first-reaction method233, where possible processes are collision with the surfaces, collision in the
gas phase and emission from the surfaces. Here, the wall-collision processes are deterministic. The probability
for any other process to occur follows from the BKL-algorithm described in section 2.4, e.g. from the total rate
constants of these processes and eq. (2.25).
From the kMC simulations, the total flux of platinum atoms Jnum

total is calculated as:

Jnum
total =

(NE1−NC1)− (NE2−NC2)

2 ·A · tkMC
, (6.38)

NE(1,2) and NC(1,2) being the number of emitted and adsorbed particles on the surfaces.

Simulation results

T = 2000 K was chosen as a temperature at which the formation of Pt(g) is relevant. The total flux for different
pressures and distances at T = 2000 K is shown in Fig. 6.6a. The solid lines represent the solution of eq. (6.37) and
the lines with point symbols the simulated values. The general behavior of both curves is similar and so is the effect
of the background pressure. For distances ∆z > 10−4 m for p = 10 bar or increased ∆z for smaller pressures, both
models give the same result and converge to zero for large distances, due to a negligible concentration gradient. For
distances ∆z < 10−4 m, the kMC model shows a higher flux than the continuum model. In this case, the simulated
flux is twice the flux given by the continuum model for ∆z < 5 ·10−9 m. On this length scale, there is an increased
probability for particles to be emitted and adsorbed on the other wall without scattering processes.
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a b 

Figure 6.6: (a) Total flux between two parallel surfaces for different pressures and surface distances at
T = 2000 K and ∆µ = 100 meV. Solid lines with symbols: Simulated flux. Solid lines: Flux accord-
ing to eq. (6.37). (kMC parameters: Nvp = 2000, Nint = 105, NkMC = 109, Ntraj = 10). (b) Convergence
of the ratio of the calculated velocity vx to the applied drift velocity vdrift,x at T = 2000 K, p = 1 bar,
∆z = 10−4 m and ∆µ = 0 eV, vdrift,x = 10 100 and 1000 m/s. (kMC parameters: Nvp = 2000,
Nint = 105, NkMC = 2 ·107, Ntraj = 50).

Carrillo et al.79 investigated experimentally how flowing air reduces the amount of Pt in a Pt/SiO2 sample, by
studying the Pt particle size distribution (PSD). They concluded that the flowing air sweeps volatile PtO2(g) off the
surface. In this kMC model, the flowing air can be simulated by applying a drift velocity vdrift to the background
gas. Thus simulates how volatile Pt(g) is swept off the surface. In order to achieve significant pressures of Pt(g)
again T = 2000 K is employed, e.g. higher temperatures than necessary to cause emission of PtO2(g), and a drift
velocity in x-direction vdrift,x applied. To find out for which distance range from a surface the Pt particles adapt to
the drift velocity, Fig. 6.6b shows the ratio of vx to vdrift,x for vdrift,x = 10 100 and 1000 m/s. It can be seen that vx

converges within 5 · 10−6 m to the applied drift velocity, independent of its magnitude. In Fig. 6.7 the simulated
particle density (PD) is shown as bars, in good agreement with the PD according to Fick’s law.
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Figure 6.7: Bars: Simulated particle density for different distances from the emitting surface, Red line: Particle
density according to Fick’s law at T = 2000 K, p = 1 bar, ∆z = 10−4 m and ∆µ = 4 eV (kMC param-
eters: Nvp = 2000, Nint = 105, NkMC = 2 ·107, Ntraj = 50).
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6.2.4 Diffusion between two spheres

As a second example, the diffusion of single particles between two concentric spheres is studied. Again, Pt is the
surface material and 40Ar constitutes the gas phase. The chemical potential of the outer sphere is kept constant at
µ2 =−5.82 eV and the inner one, µ1 =−1.82 eV chosen. The high ∆µ increases the ratio of the probabilities of
emissions from the inner sphere and outer sphere. This reduces the computational cost as the fraction of attempted
processes that are relevant for diffusion increases. The radius r1 of the inner sphere is 1 nm. In general, the
Gibbs-Thomson-equation234 could be used to calculate a radius dependent chemical potential. The emission rate
is calculated according to eq. (6.26). As before, the velocity distribution is chosen to be in equilibrium with the
gas phase. In contrast to the parallel surfaces, the surface areas of the spheres are not equal but depend on the radius.

Solution for the particle flux from Fick’s laws

Diffusion occurs through the gas phase between the inner sphere with radius r1 and the outer sphere with radius
r2. The spheres are centered at the same origin. The distance ∆z is defined as ∆z = r2− r1 and the surface area
A1,2 = 4πr2

1,2. Because of the spherical system, Fick’s laws are transformed into spherical coordinates. It follows
analogously to eq. (6.30) and (6.32):

1st law: Jtot =−D ·
(

dn
dr

+
1
r

dn
dθ

+
1

r · sinθ

dn
dφ

)
, (6.39)

2nd law:
1
r2

d
dr

(
r2 dn

dr

)
D =

dn
dt

, (6.40)

⇒ steady state: 0 =
d2n
dr2 +

2
r

dn
dr

. (6.41)

Because of the spherical symmetry, the flux from the surface is the same in each direction. The solution of the
differential equation eq. (6.41) has the following general form for the steady state:

n(r) = c1/r+ c2, (6.42)

with c1 and c2 being constants. According to the conditions:

J(r1) = α(nr1
eq−nr1), (6.43)

J(r1) = −D
dnr1

dr1
, (6.44)

J(r2) = α(−nr2
eq +nr2), (6.45)

J(r2) = D
dnr2

dr2
, (6.46)

with n(r = r1) = nr1 , n(r = r2) = nr2 and α = kBT/
√

2π ·m · kBT . Using eq. (6.42) for nr1 and nr2 , c1 can be
expressed as:

nr1 −nr2 =
c1

r1
− c1

r2
= c1

(
1
r1
− 1

r2

)
, (6.47)

c1 =
nr1 −nr2

1
r1
− 1

r2

. (6.48)
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The first derivative of eq. (6.42) is:

dn(r)
dr

= −c1

r2 , (6.49)

=
nr2 −nr1

r2
(

1
r1
− 1

r2

) , (6.50)

dn(r)
dr

∣∣∣∣
r=r1

=
nr2 −nr1

r2
1

(
1
r1
− 1

r2

) . (6.51)

With eq. (6.51) and a similar one for dn(r)
dr

∣∣∣
r=r2

two equations for nr2 can be found giving nr1 by comparison as

shown:

α · (nr1
eq−nr1) =−D

dn(r)
dr

∣∣∣∣
r=r1

, (6.52)

nr2 = nr1 −
α · r2

1 · (n
r1
eq−nr1)

(
1
r1
− 1

r2

)

D
, (6.53)

α · (nr2 −nr2
eq) =−D

dn(r)
dr

∣∣∣∣
r=r2

, (6.54)

nr2 =
α · r2

2

(
1
r1
− 1

r2

)
nr2

eq +D ·nr1

α · r2
2

(
1
r1
− 1

r2

)
+D

, (6.55)

⇒ nr1 =
nr1

eqαr2
1r2−nr1

eqαr1r2
2−Dnr1

eqr2
1−Dnr2

eqr2
2

αr2
1r2−αr1r2

2−Dr2
1−Dr2

2
. (6.56)

The first and second derivative of eq. (6.43) are:

dJ(∆z)
d∆z

= (nr2
eq−nr1

eq)(α(r1 +∆z)−2D), (6.57)

d2J(∆z)
d∆z2 = (nr2

eq−nr1
eq)α. (6.58)

Thus a maximum can be found for pressures p <= 4.7 · 108 Pa at T = 2000 K. The extremum is a maximum
because nr2

eq > nr1
eq for all pressures and thus d2J(∆z)

d∆z2 < 0. The maximum is small and thus doesn’t influence the
general comparison between the results of the kMC simulations and of eq. (6.43).
When the volume between the spheres becomes small, the gas phase consists in reality only of a small discrete
number of molecules. The implicit background model does not provide an accurate description of this situation.
However, since the number of collisions is small in this case anyway, this shouldn’t be a significant problem.

Simulation results

In analogy to a system involving real nanoparticles, the flux from the inner sphere J(r1), eq. (6.43), is studied,
mimicking a sintering nanoparticle. Eq. (6.43) shows that J(r1) not only depends on r1 and µ1 but also r2 and
µ2. With increasing r2, the surface area of the outer sphere increases quadratically. This generally leads to a
faster adsorption of particles emitted from the inner sphere. Eventually, at large r2 the system resembles an open
system where the background pressure of Pt(g) is determined by the outer sphere, e.g. it follows from the chemical
potential of solid platinum. The limit given by the open system is plotted as a dashed black line in Fig. 6.8.
A competing effect is that, with increasing r2, diffusion limitations, which depend on the pressure, become more
important. Fig. 6.8 shows the flux from a sphere with r1 = 1 nm at T = 2000 K, different pressures and surface
distances. The solid lines show the flux according to eq. (6.43). For 1 bar the flux increases with increasing ∆z and
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Figure 6.8: Total flux between two centered spheres for different pressures and surface distances at T = 2000 K,
r1 = 1 nm and µ1 =−1.82 eV (kMC parameters: Nvp = 2000, Nint = 105, NkMC = 4 ·108,
Ntraj = 20).

converges to the flux of an open system, which is also the case for smaller pressures. For 50 bar and 100 bar, the
flux according to Fick’s laws increases and converges to a constant value for ∆z > 10−7 m which is smaller than
the flux of the open system. From the kMC simulations, the flux of the inner sphere is calculated as:

Jnum(r1) =
(NE1−NC1)

A · tkMC
. (6.59)

The simulated flux is shown in Fig. 6.8 as point symbols. For 1 bar, the simulated flux is constant with increasing
surface distance and agrees with the value of an open system. For 50 bar and 100 bar the flux is smaller than the
one given by an open system but larger than the flux according to eq. (6.43). The calculations show only a small
dependence on the pressure. Similar to the parallel surfaces, it is expected that the calculated flux will converge to
the flux of Fick’s laws for high ∆z.

6.2.5 Conclusions

It was shown that ideal gas properties, in particular the diffusion constant, can be simulated accurately using the
developed kMC model. The model describes the collisions of an explicitly simulated molecule in a background
gas. This approach can furthermore be used to simulate mass-transport through the gas phase between surfaces.
For model systems, it was found that solutions based on Fick’s laws underestimate mass transport if the systems
are on the nanometer scale. This can be explained by the long mean free path in the gas phase that leads to a sizable
number of trajectories where particles are not scattered by the background gas. Such an effect can not be predicted
by standard continuum models and it is expected that this is important in systems where gas phase diffusion occurs
on the nanoscale. In the following sections the gas phase transport between nanoparticles will be studied.

6.3 Explicit modeling of Ostwald ripening

Using the gas phase diffusion model, Ostwald ripening can be simulated explicitly in a simulation box with periodic
boundary conditions in x- and y-directions. The surface, at z = 0, is assumed not to be interacting with the gas
phase, thus molecules striking the surface are reflected elastic. The surface supports nanoparticles, which are
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characterized by their number of atoms NPt, from which an effective diameter deff can be calculated under the
assumption that the nanoparticle is represented as half-sphere:

deff =

(
3 ·VPt ·NPt

2 ·π

)1/3

(6.60)

with VPt = 15.1 Å3, the volume per bulk atom179. The simulation box can contain several nanoparticle, which
do not overlap. The nanoparticles consist of Pt atoms and emit volatile PtO2(g)26. Depending on the gas phase
composition and pressure, the rate for atom emission is similar to eq. (6.26):

KNP =
S ·A

2 ·π ·mPtO2 ·T · kB
pO2 exp

(−∆Gform(PtO2)+µNP−µbulk
Pt

T · kB

)
, (6.61)

with pO2 , the partial pressure of Oxygen in the gas phase, ∆Gform(PtO2) = 1.69 eV27, the free energy of formation
of PtO2, which is assumed to be temperature independent, mPtO2 = 227.077 u235, the mass of PtO2, µNP = µbulk

Pt +

(2 · 6.613)/deff
27, the chemical potential of a nanoparticle, depending on its diameter and µbulk

Pt =−5.82 eV179,
the experimental bulk chemical potential of Pt. For the adsorption of PtO2 and the following dissociation on the
nanoparticle, it is assumed that the dissociation is fast compared to the redesorption for coverages below θ 0

O = 2/9
as shown by Plessow and Abild-Pedersen27.
During the calculation units are defined which are similar to those often used in theoretical chemistry, known as
atomic units236: for the length unit: 1 Å, the mass unit: 1 u, the time unit: 1 ps. The energy E0, the temperature T0

and pressure p0 are a combination of these:

E0 = m0 ·
(

x0

s0

)2

T0 = E0/kB

p0 =
m0

x0s2
0

kB = 1

Similar to the diffusion between two walls, the emission of a molecule and the adsorption/reflection of it are
considered as kMC processes, but in this case the molecule adsorbs on the nanoparticle and is reflected from the
surface which is not covered by the nanoparticle. The height of the simulation box is defined as z = zbox. At zbox

the molecule is either reflected or absorbed. The first case is discussed in the following section 6.3.1 for Ostwald
ripening of a closed system. The second case could be used to resemble an open system. In the closed system the
total number of atoms/molecules of the system remains constant over time. In the open system the number would
decrease, because those molecules adsorbed at zbox are not considered further during the simulation.

Implications of periodic boundary conditions

Periodic boundary conditions applied in the x- and y-directions, are such that molecules in the gas phase which
leave the simulation box in +x-direction reenter the simulation box at −x. The direction of the velocity of the gas
phase molecule is not altered. In Figure 6.9a the situation with periodic boundary conditions in 2D is illustrated to
show the determination of the collision between the molecule and the nanoparticles. The parameters used in the
following are visualized in Fig. 6.9b in a side-view of one supported nanoparticle with one molecule in the gas
phase.
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Figure 6.9: (a) 2D projection of the periodically repeated simulation box containing one nanoparticle (light blue
circle) and one molecule (black point). The velocity of the particle vvvp is indicated with a black arrow.
(b) Side-view of one supported nanoparticle with one molecule in the gas phase. All the parameters
described in the text are indicated.

The molecule is characterized by its position xxxp = (px, py, pz) and velocity vvvp = (vx,vy,vz). The nanoparticle on
the surface is characterized by its radius reff = deff/2 and general position within the periodic boundary conditions:

NNNPPP =


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0


 , (6.62)

with xNP,yNP the position of the nanoparticle in reduced length units, abox, bbox the size of the simulation box in x

and y direction respectively and na (nb) the number of periodically repeated simulation boxes in x (y).
A possible collision between the molecule and the nanoparticle is determined by calculating the minimal distance
between NNNPPP and the trajectory of the molecule gggp = xxxp + tmdvvvp. The general point closest to the position of the
nanoparticle is:

FFFg =




px + tmdvx

py + tmdvy

pz + tmdvz


 (6.63)

The distance between the nanoparticle and the general point is:

FFFg−NNNPPP =




px + tmd · vx−abox · (xNP +na)

py + tmd · vy−bbox · (yNP +nb)

pz + tmd · vz


= GGGNP (6.64)

The distance is minimal if GGGNP · vvv = 0:

0 = pxvx + tmdv2
x−a(x+na)vx + pyvy + tmdv2

y−b(y+nb)vy + pzvz + tmdv2
z

= vvvp · xxxp + t|vvvp|2−NNNPPP · vvvp (6.65)

tmd =
NNNPPP · vvvp− vvvp · xxxp

|vvvp|2
. (6.66)
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tmd is the time of flight to the point minimal in distance with NNNPPP. To calculate the time of flight tflight, of the particle
to the border of the nanoparticle, the time in the sphere tsphere is calculated based on the Pythagorean theorem:

|FFF(tmd)HHH|2 = r2
eff−|FFF(tmd)NNNPPP|2 = |lllsphere|2

= (Fx− lx)2 +(Fy− ly)2 +(Fz− lz)2

= (Fx− (Fx− tspherevx))
2 +(Fy− (Fy− tspherevy))

2 +(Fz− (Fz− tspherevz))
2

= t2
spherev2

x + t2
spherev2

y + t2
spherev2

z

tsphere =

√
|lllsphere|2
|vvvp|2

(6.67)

with HHH the crossing point of the molecule and the sphere of the nanoparticle and lllsphere the distance traveled in the
sphere by the molecule to FFFg. The time for a collision between molecule and nanoparticle is:

tflight = tmd− tsphere. (6.68)

6.3.1 Ostwald ripening in a closed system

To test the kMC model for OR, the case of a closed simulation box is considered. This means that all molecules
hitting zbox are reflected back into the simulation box. Thus the total number of Pt atoms is constant during
the simulation, which is comparable to the assumption of the mean-field model for OR of no mass loss (see
section 1.2.1). The difference is that with the kMC model the influence of the distance between the nanoparticles
can be studied, as well as the case of very narrow nanoparticle size distributions or equally sized nanoparticles.

a b 

Figure 6.10: (a) Emitted (black) and adsorbed (red) particle flux from and to the nanoparticle with NPt = 468
(deff = 3 nm) at T = 1000 K and pO2 = 500 Pa. The distance to the next periodic image of the
nanoparticle is 10 nm. The blue dotted line is the rate expected from the mean-field OR model. (b)
Mean pressure of PtO2(g). The blue dotted line is the calculated equilibrium pressure peq (kMC
parameters: NkMC = 2 ·108, Ntraj = 10, Nvp = 2000, Nint = 105).

Figure 6.10a shows the emitted and adsorbed particle flux from and to a nanoparticle centered in the simulation
cell, with an effective radius deff = 3 nm. The blue dotted line shows the flux which would be expected from
eq. (6.61). With increasing simulation box size zbox, the standard deviation of the simulated fluxes increases, but
the mean value is equal to the flux expected from eq. (6.61). In Fig. 6.10b the corresponding mean pressure of
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6 Gas phase diffusion model for Ostwald ripening

PtO2(g), averaged over the simulation time, is shown. In both plots deviations from the expected value can be only
seen for zbox ≥ 5 · 10−2 m, where the standard deviation is largest. Thus it is expected that with an increase in
Ntraj and NkMC the simulation would converge to the expected value. To summarize, the size of the simulation box
shows no difference between simulated data and eq. (6.61).

a b 

Figure 6.11: (a) Emitted (black) and adsorbed (red) particle flux from and to the nanoparticle with NPt = 468
(deff = 3 nm) at T = 1000 K, pO2 = 500 Pa and zbox = 10−3 m. The blue dotted line is the rate
expected from the mean-field OR model. (b) Mean pressure of PtO2(g). The blue dotted line is the
calculated equilibrium pressure peq (kMC parameters: NkMC = 5 · 108, Ntraj = 50, Nvp = 2000,
Nint = 105).

In Figure 6.11a and 6.11b the effect of the distance of the nanoparticle to its next periodic image is studied
at a constant box height, zboz = 10−3 m for the emitted/adsorbed particle flux and mean pressure of PtO2(g)
respectively. With increasing nanoparticle distance the standard deviation increases, but all mean values are close
to the results from eq. (6.61). Thus the distance, starting from 1 nm to 100 nm does not influence the measured
properties. This is especially remarkable for very small distances < 5 nm, for which a direct transfer of PtO2

between the nanoparticle and its images without scattering in the gas phase and thus an increase in the particle flux
could be expected.
Figure 6.12a shows the time tanh to annihilation of one of two nanoparticles in the simulation cell. tanh is the time
in which the first nanoparticle is evaporated. The size of nanoparticle d1 = 2 nm is not varied, but the size of the
second to simulate the case of nanoparticles similar in size. From the mean-field model (red line), it is expected
that for ∆d→ 0, tanh→ ∞. That implies that nanoparticles exactly equal in size would show no change in particle
size. The kMC simulation shows that also nanoparticles of equal size have a finite tanh and that for ∆d < 0.05 nm,
tanh is constant. Although the probability to emit a molecule into the gas phase is the same for equally sized
nanoparticles, in the kMC model one of the nanoparticles is chosen at random. After the first scattering processes
of the gas phase molecule, the origin of the molecule is oblivious and it is adsorbed by chance on either of the
nanoparticles. In the beginning of the simulation this leads to only small variations in the nanoparticle sizes, but
that is sufficient to drive the sintering of the nanoparticles. Even if particles could be experimentally produced
being perfectly equal in size, fluctuations237 would lead to a small variation in particle size and drive sintering.
It can be seen in Fig. 6.12a that with decreasing ∆d, the standard deviation increases. To demonstrate the con-
vergence of the standard deviation with the number of trajectories, in Fig. 6.12b, the convergence of the standard
deviation is shown with increasing number of trajectories. It can be seen that for equally sized nanoparticles and
nanoparticles with ∆d = 0.1 nm, the convergence is reached with 400 trajectories and that an increase in number
of trajectories does not lead to a decrease of the standard deviation.
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Figure 6.12: (a) Annihilation time tanh to evaporate one of two nanoparticles with difference in diameter ∆d, cal-
culated with the kMC model (black line with circles, errorbars: standard deviation) and using the
mean-field model27. The size of one nanoparticle is kept constant to d1 = 2 nm, T = 1000 K and
pO2 = 500 Pa. (b) Convergence of the standard deviation of the calculated tanh with the number of
trajectories for the examples of equal particles (black, ∆d = 0) and different sized particles (red),
∆d = 0.1 nm. (kMC parameters: NkMC = 2 ·108, Ntraj = 500, Nvp = 2000, Nint = 105)

6.3.2 Conclusions

The gas phase kMC model was extended to simulate OR using the same assumptions as for the mean-field model.
It was demonstrated that the size of the simulation box and the distance between the nanoparticles have no effect
on the modeled particle flux and mean background pressure of PtO2(g). For the limit of narrow PSDs it was shown
that a finite time for sintering exists, which is not covered by the mean-field model. Thus the mean-field model is
limited to nanoparticles with a difference in diameter of 0.05 nm. To go beyond the mean-field model, the effect
of Platinum loss ought to be studied.
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7 Final conclusions and outlook

In this thesis, density functional theory (DFT) was used to investigate the thermodynamic stability of pure nanopar-
ticles and the influence of different supports on their stability. The kinetics of the sintering processes were studied
for the example of Pt/quartz which is a model for exhaust-gas after-treatment catalysts.
To study the stability of pure nanoparticles, a simple model was described that is able to predict the stability of
nanoparticles as a function of size and shape based on the coordination numbers of their surface atoms and lattice
constant dependent γ111(a0) and µbulk(a0). Importantly, it was found that the energy of a surface termination can
be directly calculated based on the corresponding coordination numbers of the surface atoms. The derived stability
model was shown to be highly accurate and reproduced the results of DFT calculations with a mean absolute error
of only 0.09 eV/atom for the symmetric and well-defined nanoparticles studied in this thesis. Importantly, this
allows to estimate the thermodynamic stability of a whole set of transition metal particles of various sizes towards
sintering. However, the thermodynamic stability of gas phase clusters is only one step in the direction to understand
the complex behavior of different heterogeneous catalysts. The influence of different supports and adsorbates on
the nanoparticle stability is an additional challenge.
To investigate the influence of different supports, a variety of metal/oxide interfaces were systematically studied
using different supercells to minimize lattice mismatch. Scaling relations could be identified to analyze adhesion
energies, where the adsorption energy of atomic oxygen on clean metal surfaces Ead(O) serves as a descriptor.
Variations between different oxides could be described by the different concentrations of interfacial oxygen atoms
cO. These concentrations can in many cases be easily extracted from the atomic structure of the clean oxide
surfaces. A simple model was proposed that allows the prediction of adhesion energies for a given metal-oxide
based on these two descriptors (Ead(O), cO). Consequently, properties that depend on the adhesion energy, such as
particle shape or metal chemical potential are also accessible through this model.
The kinetics of sintering were investigated for the example of platinum on quartz through particle migration and
coalescence with a kinetic Monte Carlo (kMC)-model employing diffusion constants obtained from first principles
calculations. Generally, the extent of particle migration and coalescence is well-described through the diffusion
constant, D, a function of both, temperature and particle size. As expected, the extent of sintering increased with
increasing particle concentration. The effect that point defects have on sintering has also been studied extensively.
Generally, more and stronger binding defects lead to less sintering. However, beyond a certain binding strength,
stronger binding does not further decrease sintering. The binding strength necessary to completely trap a particle
for a certain time could be estimated through the average escape time using a lattice hop model and the diffusion
constant of the given particle.
The kMC model for particle migration and coalescence was combined with a mean-field model for gas phase
Ostwald ripening of Pt via volatile PtO2(g) which allowed to study both processes simultaneously. For experi-
mentally relevant conditions (pO2 > 1 mbar), it was found that ripening is more important than particle migration.
If both, gas phase Ostwald ripening and particle migration and coalescence are relevant, their combined effect is
usually smaller than the sum of the effects of the individual processes. This is likely due to the fact that only the
smallest particles are mobile enough for particle migration. However, these particles are also the ones most readily
annihilated through ripening.

This chapter is based on the conclusions in refs. 31,101,102,238.
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To investigate the accuracy of the employed mean-field model for Ostwald ripening, a gas phase diffusion kMC
model was developed. It could be shown that ideal gas properties, in particular the diffusion constant, could
be simulated accurately using this developed kMC model. The model describes the collisions of an explicitly
simulated molecule in a background gas. This approach could furthermore be used to simulate mass transport
through the gas phase between surfaces. For model systems, it was found that solutions based on Fick’s laws
underestimate mass transport if the systems were on the nanometer scale. This could be explained by the long
mean free path in the gas phase that leads to a sizable number of trajectories where particles were not scattered by
the background gas. Such an effect can not be predicted by standard continuum models and it is expected that this
is important in systems where gas phase diffusion occurs on the nanoscale. Finally, this kMC approach is applied
to model gas phase mediated Ostwald ripening of Pt. It could be demonstrated that the mean-field model and the
kMC model agree in the case of varying particle sizes but that for the limit of equally sized particles the mean-field
model predicts no sintering whereas the kMC model predicts vaporization of the nanoparticles. With the kMC
model it could be shown that the effect of nanoparticle distance up to 100 nm is negligible.
The investigated aspects of catalyst stability and deactivation are only small steps in the direction of a full un-
derstanding of these processes. A next step to investigate the shape of stable supported nanoparticles could be to
use the developed stability model for metal nanoparticles to describe the size dependent stability of nanoparticles
more accurately than with the commonly employed Gibbs-Thomson equation. Different supports can be taken into
account based on the computed adhesion energies. Thus, the accuracy of models for the sintering kinetics can be
improved and the simulations can be adapted to specific applications.
A remaining challenge is the limited accuracy of DFT, which limits the reliability of kinetic models based on DFT
calculations. Industrial catalysts are often based on amorphous supports, for example SiO2 or Al2O3, of which the
actual structure is not only unknown but may also contains defects. Additionally, catalysts can be functionalized
using dopants, leading to a complex composition and surface structure. These complexities of real catalysts pose
additional challenges for simulations that are typically based on idealized structures.
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9 Appendix

9.1 Extended data of thermodynamic stability of nanoparticles

Table 9.1: Lattice parameter a0 in Å and surface energy γ111(a0) in eV per surface atom used to parameterize the
quadratic equation for γ111(a0).

Ag Au Co Cu Ir Ni Os

a0 γ111 a0 γ111 a0 γ111 a0 γ111 a0 γ111 a0 γ111 a0 γ111

3.98 0.60 4.02 0.62 3.34 0.81 3.47 0.73 3.74 1.08 3.40 0.85 3.74 1.32
4.00 0.61 4.04 0.64 3.37 0.84 3.49 0.74 3.76 1.13 3.42 0.86 3.76 1.36
4.02 0.61 4.06 0.65 3.40 0.86 3.51 0.75 3.78 1.17 3.44 0.87 3.78 1.40
4.04 0.61 4.08 0.66 3.43 0.88 3.53 0.75 3.80 1.21 3.46 0.88 3.80 1.43
4.06 0.62 4.10 0.67 3.46 0.90 3.55 0.76 3.82 1.00 3.48 0.89 3.82 1.47
4.08 0.62 4.12 0.68 3.49 0.92 3.57 0.76 3.84 1.30 3.50 0.89 3.84 1.50

Pd Pt Rh Ru Al Mg

a0 γ111 a0 γ111 a0 γ111 a0 γ111 a0 γ111 a0 γ111

3.82 0.86 3.68 0.62 3.69 1.05 3.66 1.11 3.90 0.46 4.39 0.37
3.84 0.87 3.75 0.79 3.71 1.07 3.68 1.15 3.92 0.47 4.41 0.37
3.86 0.88 3.82 0.91 3.73 1.09 3.70 1.18 3.94 0.47 4.43 0.37
3.88 0.89 3.89 1.00 3.75 1.10 3.72 1.21 3.96 0.48 4.45 0.37
3.90 0.90 3.96 1.05 3.79 1.13 3.74 1.24 3.98 0.48 4.47 0.37
3.92 0.90 4.03 1.09 3.81 1.14 3.76 1.27 4.00 0.48 4.49 0.38
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Table 9.2: Lattice parameter a0 in Å and bulk chemical potential µbulk(a0) in eV/atom used to parameterize the
quadratic equation for µbulk(a0). µbulk(a0) is given relative to the gas phase atom.

Ag Au Co Cu Ir Ni Os

a0 µbulk a0 µbulk a0 µbulk a0 µbulk a0 µbulk a0 µbulk a0 µbulk

3.98 -2.979 4.02 -3.661 3.34 -5.341 3.47 -3.950 3.74 -7.912 3.40 -5.162 3.74 -8.669
4.00 -2.991 4.04 -3.675 3.37 -5.394 3.49 -3.966 3.76 -7.954 3.42 -5.177 3.76 -8.710
4.02 -3.000 4.06 -3.684 3.40 -5.433 3.51 -3.979 3.78 -7.986 3.44 -5.187 3.78 -8.739
4.04 -3.005 4.08 -3.690 3.43 -5.458 3.53 -3.987 3.80 -8.008 3.46 -5.192 3.80 -8.759
4.06 -3.008 4.10 -3.691 3.46 -5.470 3.55 -3.992 3.82 -8.020 3.48 -5.193 3.82 -8.768
4.08 -3.009 4.12 -3.689 3.49 -5.472 3.57 -3.994 3.84 -8.024 3.50 -5.190 3.84 -8.768

Pd Pt Rh Ru Al Mg

a0 µbulk a0 µbulk a0 µbulk a0 µbulk a0 µbulk a0 µbulk

3.82 -4.293 3.81 -6.149 3.71 -6.244 3.67 -7.122 3.90 -3.572 4.39 -1.688
3.84 -4.306 3.83 -6.185 3.73 -6.266 3.69 -7.158 3.92 -3.582 4.41 -1.691
3.86 -4.314 3.85 -6.213 3.75 -6.281 3.71 -7.185 3.94 -3.590 4.43 -1.693
3.88 -4.318 3.87 -6.233 3.77 -6.289 3.73 -7.204 3.96 -3.596 4.45 -1.694
3.90 -4.317 3.89 -6.245 3.79 -6.291 3.75 -7.215 3.98 -3.600 4.47 -1.694
3.92 -4.312 3.91 -6.251 3.81 -6.287 3.77 -7.219 4.00 -3.602 4.49 -1.693

Table 9.3: Coordination numbers of the surface atoms of the different nanoparticles. The first 6 rows correspond
to cuboctahedral, the following 4 to cubic and the last 8 rows to octahedral clusters.

Natom CN = 3 CN = 4 CN = 5 CN = 7 CN = 8 CN = 9

13 0 0 12 0 0 0
55 0 0 12 24 6 0

147 0 0 12 48 24 8
309 0 0 12 72 54 24
561 0 0 12 96 96 48
923 0 0 12 120 150 80

63 8 0 12 0 30 0
171 0 0 36 0 72 0
365 8 0 36 0 150 0
665 0 0 60 0 240 0

19 0 6 0 12 0 0
44 0 6 0 24 0 8
85 0 6 0 36 0 24

146 0 6 0 48 0 48
231 0 6 0 60 0 80
344 0 6 0 72 0 120
489 0 6 0 84 0 168
670 0 6 0 96 0 224
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Table 9.4: Surface energy contributions of the (111) and (100) faces in eV for cuboctahedral, cubic and octahe-
dral nanoclusters.

Natom (111) (100)

13 0.0 16.05
55 16.13 32.10

147 36.28 72.22
309 64.50 128.40
561 100.78 200.62
923 145.13 288.89

63 0.0 64.20
171 0.0 144.45
365 0.0 256.79
665 0.0 401.24

19 16.13 0.0
44 36.28 0.0
85 64.50 0.0

146 100.78 0.0
231 145.13 0.0
344 197.53 0.0
489 258.00 0.0
670 326.54 0.0

Table 9.5: Total energies calculated with DFT, corresponding chemical potentials relative to the bulk chemical
potential and chemical potentials predicted with the stability model for all nanoparticles. The mean
absolute error is 0.09 eV/atom, excluding Pt13 and Pt19. The maximum error is 0.32 eV/atom.

Metal Natom Etotal [eV] µmetal [eV/atom] µmodel [eV/atom]

Ag 55 -133.67 0.78 1.03
Ag 147 -387.95 0.57 0.68
Ag 309 -854.20 0.44 0.51
Ag 561 -1599.29 0.36 0.41
Au 55 -164.04 0.90 1.07
Au 147 -475.27 0.65 0.72
Au 309 -1042.80 0.51 0.55
Au 561 -1949.97 0.41 0.44
Co 55 -334.04 1.29 1.48
Co 147 -944.75 0.94 1.00
Co 309 -2051.29 0.72 0.76
Cu 55 -180.97 0.95 1.22
Cu 147 -513.85 0.74 0.82
Cu 309 -1129.84 0.58 0.63
Cu 561 -2112.62 0.47 0.51
Ir 55 -417.02 1.96 1.98
Ir 147 -1202.23 1.37 1.35
Ir 309 -2618.22 1.07 1.03
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Metal Natom Etotal [eV] µmetal [eV/atom] µmodel [eV/atom]

Ir 561 -4864.30 0.88 0.83
Ni 55 -258.84 1.16 1.29
Ni 147 -733.41 0.88 0.89
Ni 309 -1602.59 0.68 0.69
Os 55 -525.61 2.13 2.42
Os 147 -1488.33 1.57 1.63
Os 309 -3235.44 1.22 1.23
Os 561 -5999.71 1.00 0.99
Pd 55 -254.11 1.18 1.48
Pd 147 -727.07 0.85 0.98
Pd 309 -1585.96 0.67 0.74
Pd 561 -2945.42 0.55 0.60
Pt 13 -56.11 2.55 3.01
Pt 55 -295.94 1.48 1.60
Pt 147 -854.15 1.05 1.09
Pt 309 -1868.81 0.82 0.83
Pt 561 -3477.16 0.67 0.68
Pt 923 -5817.75 0.56 0.57
Pt 19 -91.42 2.05 2.42
Pt 44 -237.31 1.47 1.66
Pt 85 -480.95 1.21 1.27
Pt 146 -855.70 1.00 1.04
Pt 231 -1387.70 0.86 0.88
Pt 344 -2104.11 0.75 0.77
Pt 670 -4198.94 0.60 0.61
Pt 63 -339.13 1.48 1.72
Pt 171 -989.15 1.08 1.16
Pt 365 -2197.59 0.84 0.90
Pt 489 -3032.10 0.66 0.72
Pt 665 -4100.90 0.70 0.73
Rh 55 -344.53 1.59 1.85
Rh 147 -988.42 1.13 1.24
Rh 309 -2152.20 0.89 0.94
Rh 561 -3997.66 0.73 0.76
Ru 55 -436.55 1.75 2.08
Ru 147 -1233.83 1.30 1.39
Ru 309 -2683.12 1.01 1.05
Ru 561 -4975.59 0.82 0.85
Al 55 -177.80 0.68 0.84
Al 147 -505.10 0.48 0.55
Al 309 -1091.77 0.38 0.41
Al 561 -2022.23 0.31 0.33
Mg 55 -59.36 0.62 0.83
Mg 147 -185.41 0.43 0.51
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Metal Natom Etotal [eV] µmetal [eV/atom] µmodel [eV/atom]

Mg 309 -418.89 0.34 0.36
Mg 561 -795.43 0.28 0.28

9.2 Extended data for adhesion energy calculation

Table 9.6: Strain of symmetric metal/oxide interfaces in %.

Surface O-α-SiO2(0001) O-α-Al2O3(0001)

Metal fcc(111) fcc(111)

Metal supercell 2×2 (
√

3×
√

3)R30◦ (
√

13×
√

13)R14◦ (
√

3×
√

3)R30◦ (
√

13×
√

13)R14◦

Ag 16.12 0.54 4.66 4.22 8.48
Au 16.85 1.19 5.32 4.89 9.17
Cu 1.73 -11.91 -8.30 -8.69 -4.95

Ir 9.43 -5.22 -1.36 -1.75 2.25
Ni -1.09 -14.35 -10.84 -11.22 -7.58
Pd 10.76 -4.07 -0.16 -0.56 3.49
Pt 11.65 -3.28 0.65 0.25 4.33

Os 9.15 -5.46 -1.60 -2.01 1.99
Rh 7.94 -6.53 -2.72 -3.11 0.84
Ru 7.46 -6.93 -3.13 -3.53 0.41

ZnO(1010) and ZnO(1120)

fcc(111)
fcc(100)
fcc(100)

ZrO2(101)

Ru

Pt
Pd

Rh

Os

Rh

Ni
Cu

Pd

b c
2O-g-Al2O3(110) and 3O-g-Al2O3(110)

Pt

Os

Rh

a

Ag

Pd

Cu

Ru

Ir

Au

Ru

Ir

Pt

Ag
Au

Ir

Cu Ag

fcc(100)
fcc(100)
fcc(100)

Ni

Figure 9.1: VdW–contribution to adhesion energies. (a) VdW–contribution with D3–zero damping to adhesion
energies for the fcc(100)–surface of the hydroxylated γ-Al2O3 surfaces with two and three adsorbed
water molecules per unit cell. (b) VdW–contribution with D3–zero damping contribution of adhesion
energies for the (101̄1) and (112̄0)-surfaces of ZnO in wurtzite structure. (c) VdW–contribution with
D3–zero damping of adhesion energies for the (101)-surface of tetragonal ZrO2.
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ZnO(1010) and ZnO(1120)

fcc(111)
fcc(100)
fcc(100)

ZrO2(101)

Ru
Pt

Pd

Rh
Os Rh

Ni

Cu

Pd

b c

Pt

Os

Rh

a

Ag

Pd

Cu

Ru

Ir

Au

Ru

Ir Pt

Ag Au

Ir
Cu

Ag

fcc(100)
fcc(100)
fcc(100)

2O-g-Al2O3(110) and 3O-g-Al2O3(110)

Ni

Figure 9.2: VdW–contribution to adhesion energies. (a) VdW–contribution with D3–BJ damping to adhesion
energies for the fcc(100)–surface of the hydroxylated γ-Al2O3 surfaces with two and three adsorbed
water molecules per unit cell. (b) VdW–contribution with D3–BJ damping contribution of adhesion
energies for the (101̄1) and (112̄0)-surfaces of ZnO in wurtzite structure. (c) VdW–contribution with
D3–BJ damping of adhesion energies for the (101)-surface of tetragonal ZrO2.

ZnO(1010) and ZnO(1120) ZrO2(101)2O-g-Al2O3(110) and 3O-g-Al2O3(110) a b c

fcc(100)
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fcc(100)
fcc(100)

fcc(100)

Ru
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Pd

Rh
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Ag

Os
Rh

Ni

Cu
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Ru Ir
Pt

Ag

AuPt
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Pd

Cu

Ru

Ir
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Figure 9.3: Adhesion energies as a function of oxygen adsorption energies on clean fcc(100) metal surfaces. (a)
Adhesion energies between fcc(100)-surfaces and the oxidized γ-Al2O3(110) surfaces derived from
hydroxylated surfaces with two and three adsorbed water molecules per unit cell. (b) Adhesion ener-
gies for the (101̄0)- and (112̄0)-surfaces of ZnO in wurtzite structure. (c) Adhesion energies for the
(101)-surface of tetragonal ZrO2.
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Table 9.7: Strain of unsymmetric metal/oxide interfaces in %.

Surface 2O-γ-Al2O3(110) 3O-γ-Al2O3(110) ZrO2(101)
Metal fcc(100) fcc(100) fcc(100)

Metal supercell 3×3 3×3 7×4
a b a b a b

Ag 3.48 7.57 3.48 7.57 5.68 6.47
Au 4.13 8.24 4.13 8.24 6.34 7.13
Cu -9.34 -5.76 -9.34 -5.76 -7.41 -6.73

Ir -2.48 1.37 -2.48 1.37 -0.41 0.33
Ni -11.85 -8.38 -11.85 -8.38 -9.98 -9.31
Pd -1.29 2.60 -1.29 2.60 0.80 1.55
Pt -0.50 3.42 -0.50 3.42 1.61 2.37

Os -2.73 1.11 -2.73 1.11 -0.67 0.07
Rh -3.81 -0.01 -3.81 -0.01 -1.77 -1.03
Ru -4.24 -0.46 -4.24 -0.46 -2.21 -1.48

Surface TiO2
Metal fcc(100) fcc(111)
Oxide
supercell

2×1 3×1 4×1 1×2 3×5

Metal
supercell

5×1 7×1 9×1 (
√

5×
√

5)R27◦ 7×3
√

3

a b a b a b a b a b
Ag 9.64 -2.67 2.33 -2.67 -1.32 -2.67 -1.95 8.80 2.33 1.13
Au 10.33 -2.06 2.97 -2.06 -0.70 -2.06 -1.33 9.49 2.97 1.78
Cu -3.94 -14.73 -10.35 -14.73 -13.55 -14.73 -14.09 -4.67 -10.35 -11.40
Ir 3.33 -8.28 -3.56 -8.28 -7.01 -8.28 -7.58 2.55 -3.56 -4.67
Ni -6.61 -17.09 -12.83 -17.09 -15.95 -17.09 -16.47 -7.31 -12.83 -13.85
Pd 4.58 -7.16 -2.39 -7.16 -5.88 -7.16 -6.46 3.80 -2.39 -3.51
Pt 5.42 -6.42 -1.61 -6.42 -5.12 -6.42 -5.69 4.64 -1.61 -2.72
Os 3.06 -8.51 -3.81 -8.51 -7.25 -8.51 -7.81 2.30 -3.81 -4.91
Rh 1.92 -9.53 -4.88 -9.53 -8.27 -9.53 -8.85 1.14 -4.88 -5.99
Ru 1.46 -9.93 -5.30 -9.93 -8.68 -9.93 -9.24 0.71 -5.30 -6.39

Surface ZnO(101̄0) ZnO(112̄0)
Metal fcc(100) fcc(111) fcc(100)
Oxide
supercell

4×1 5×1 3×1 1×1 2×3

Metal
supercell

5×2 6×2 2
√

3×2 2×2 3
√

2×4
√

2

a b a b a b a b a b
Ag 10.00 9.07 5.60 9.07 1.59 9.07 1.60 9.07 7.77 2.83
Au 10.68 9.75 6.26 9.75 2.24 9.75 2.24 9.75 8.44 3.47
Cu -3.63 -4.45 -7.49 -4.45 -11.00 -4.45 -10.99 -4.45 -5.59 -9.91
Ir 3.66 2.78 -0.49 2.78 -4.24 2.78 -4.25 2.78 1.56 -3.10
Ni -6.31 -7.10 -10.05 -7.10 -13.46 -7.10 -13.45 -7.10 -8.20 -12.41
Pd 4.92 4.03 0.72 4.03 -3.07 4.03 -3.09 4.03 2.79 -1.92
Pt 5.76 4.86 1.53 4.86 -2.28 4.86 -2.31 4.86 3.62 -1.13
Os 3.39 2.52 -0.75 2.52 -4.48 2.52 -4.50 2.52 1.30 -3.35
Rh 2.24 1.38 -1.84 1.38 -5.56 1.38 -5.55 1.38 0.17 -4.42
Ru 1.79 0.93 -2.28 0.93 -5.97 0.93 -5.98 0.93 -0.27 -4.84
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Table 9.8: Calculated adhesion energies of the metal/oxide interfaces in meV/Å2.

Surface O-α-SiO2(0001) 3O-γ-Al2O3(110)
Metal fcc(111) fcc(111)

Metal supercell 2×2 (
√

3×
√

3)R30◦ (
√

13×
√

13)R14◦ (
√

3×
√

3)R30◦ (
√

13×
√

13)R14◦

Ag -219.96 -190.41 -195.88 -251.77 -258.07
Au -164.07 -146.90 -149.18 -196.95 -216.91
Cu -243.12 -215.14 -228.33 -282.91 -308.28

Ir -235.13 -224.36 -235.70 -398.92 -348.53
Ni -248.07 -224.90 - -340.84 -
Pd -211.86 -181.82 -198.75 -281.49 -286.48
Pt -202.76 -184.00 -195.98 -315.45 -289.45

Os -281.74 -249.65 -245.78 -460.47 -373.82
Rh -255.89 -219.46 -234.45 -372.25 -345.01
Ru -298.01 -268.43 -251.79 -441.62 -392.24

Surface TiO2 2O-γ-Al2O3 3O-γ-Al2O3
Metal fcc(100) fcc(111) fcc(100) fcc(100)
Oxide
supercell

2×1 3×1 4×1 1×2 3×5 1×1 1×1

Metal
supercell

5×1 7×1 9×1 (
√

5×
√

5)R27◦ 7×3
√

3 3×3 3×3

Ag -75.95 -81.19 -81.67 -84.61 -73.52 -143.69 -177.48
Au -64.74 -68.64 -69.07 -70.45 -61.48 -117.01 -142.27
Cu -110.29 - - - - -164.76 -208.34
Ir -108.99 -105.88 -126.74 -125.37 -93.54 -163.51 -192.80
Ni - - - - - - -234.17
Pd -97.69 -98.26 - -103.32 -99.01 -153.71 -160.46
Pt -89.86 -91.93 -86.25 -94.24 -86.49 -145.02 -164.71
Os -111.34 -107.72 - -128.57 -81.45 -215.22 -240.84
Rh -115.12 -105.62 - -126.47 -118.41 -168.96 -191.66
Ru -136.08 - - -187.68 -126.09 -212.72 -251.07

Surface ZnO(101̄0) ZnO(112̄0) ZrO2(101)
Metal fcc(100) fcc(111) fcc(100) fcc(100)

Oxide supercell 4×1 5×1 3×1 1×1 2×3 3×3
Metal supercell 5×2 6×2 2

√
3×2 2×2 3

√
2×4

√
2 7×4

Ag -93.35 -93.10 -91.34 -85.92 -81.91 -67.37
Au -93.23 -94.43 -89.60 -82.65 - -
Cu -120.27 -130.51 -136.76 -110.43 -110.27 -78.35

Ir -143.79 -150.27 -141.63 -140.96 -138.81 -121.29
Ni -151.16 - -161.54 -131.61 - -
Pd -124.26 -128.70 -133.31 -115.21 -117.43 -111.85
Pt -132.58 -137.24 -137.33 -118.03 -130.35 -110.72

Os -139.51 -147.65 -121.79 -152.48 - -
Rh -142.27 -148.34 -148.25 -134.02 -136.27 -119.60
Ru -155.10 -163.96 -147.29 -165.09 - -139.93
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9.2 Extended data for adhesion energy calculation

Table 9.9: Minimum and maximum M-O distance in Å for fcc(111)(
√

13×
√

13R14◦)/O-α-SiO2(0001) and
fcc(111)(

√
13×

√
13R14◦)/O-α-Al2O3(0001) and the derived, employed cutoff criterion in Å.

Metal O-α-SiO2(0001) O-α-Al2O3(0001) Employed cut-off criterion
dmin dmax dmin dmax

Ag 2.15 2.22 2.07 2.30 2.60
Au 2.07 2.23 2.02 2.19 2.49
Cu 1.85 2.05 1.85 2.01 2.31
Ir 1.95 2.13 1.96 2.23 2.53
Ni 1.85 1.91 1.80 1.89 2.19
Pd 1.97 2.10 1.97 2.14 2.44
Pt 1.99 2.12 1.95 2.12 2.42
Os 1.95 2.15 1.97 2.20 2.50
Rh 1.94 2.07 1.94 2.11 2.41
Ru 1.94 2.10 1.95 2.12 2.42

Table 9.10: Obtained number of interfacial oxygen atoms NO per supercell for all metal/interface combina-
tions with the criterion mentioned in Table 9.9. fcc(111)(

√
13×

√
13R14◦)/O-α-SiO2(0001) and

fcc(111)(
√

13×
√

13R14◦)/O-α-Al2O3(0001) are used. The column labeled ideal, gives the number
of oxygen atoms that one could derive from the number of surface oxygen atoms of the clean oxide
surface. Where this number is close to the actual number, it was used as the actual concentration (last
column).

Oxide surface Metal
surface

Metal
supercell

Ag Au Cu Ir Ni Pd Pt Os Rh Ru ideal used
value

O-α-SiO2(0001) fcc(111)
√

13 8 8 8 8 8 8 8 8 8 8 8 8
O-α-Al2O3(0001) fcc(111)

√
13 12 12 12 12 12 12 12 12 12 12 12 12

2O-γ-Al2O3(110) fcc(100) 3×3 5 5 5 5 - 5 5 - 5 7 2 5.250
3O-γ-Al2O3(110) fcc(100) 3×3 8 - 8 6 7 6 6 - 6 6 3 6.625

TiO2(110) fcc(100) 7×1 3 2 - 3 - 3 3 3 3 3 3 3
fcc(111) 7×3 15 8 - 15 - 15 14 15 15 16 15 15

ZnO(101̄0) fcc(100) 5×2 4 2 4 4 4 4 4 4 4 4 4 4
fcc(111) 2×2 3 1 3 3 3 3 3 3 3 3 3 3

ZnO(112̄0) fcc(100) 2×2 2 0 2 2 2 2 2 2 2 2 2 2
ZrO2(101) fcc(100) 3×3 11 - 9 16 - 14 14 - 14 18 9 13.714

Table 9.11: Interface energy, oxide energy, metal energy in eV and surface area in Å2 for all calculated
metal/oxide structures. In the case of the hydroxylated oxide, the surface area of the strain-free oxide
surface is used and the number of hydroxyl groups per supercell and the stability difference between
hydroxylated and oxidized surfaces per supercell given. For the stoichiometric interfaces the surface
area depending on the metal lattice constant is given.

Surface EInterface EOxide EMetal Area NOH ∆γox
ox−lat

2O-γ-Al2O3(110)/fcc(100)3x3/Ag -805.82 -687.91 -131.37 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Au -830.71 -686.26 -159.70 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Cu -840.04 -678.10 -173.98 67.11 4 142.76
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Surface EInterface EOxide EMetal Area NOH ∆γox
ox−lat

2O-γ-Al2O3(110)/fcc(100)3x3/Ir -1080.43 -694.35 -398.21 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Os -1173.77 -694.27 -488.16 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Pd -922.69 -694.33 -241.15 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Pt -965.33 -693.87 -284.83 67.11 4 142.76

2O-γ-Al2O3(110)/fcc(100)3x3/Rh -1008.84 -693.48 -327.12 67.11 4 142.76
2O-γ-Al2O3(110)/fcc(100)3x3/Ru -1089.56 -693.02 -405.37 67.11 4 142.76
3O-γ-Al2O3(110)/fcc(100)3x3/Ag -813.09 -705.01 -131.37 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Au -837.54 -703.49 -159.70 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Cu -846.80 -694.04 -173.98 67.11 6 222.33

3O-γ-Al2O3(110)/fcc(100)3x3/Ir -1086.75 -710.81 -398.21 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Ni -904.77 -680.24 -244.02 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Os -1179.85 -710.73 -488.16 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Pd -927.59 -710.87 -241.15 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Pt -971.15 -710.47 -284.83 67.11 6 222.33

3O-γ-Al2O3(110)/fcc(100)3x3/Rh -1014.65 -709.87 -327.12 67.11 6 222.33
3O-γ-Al2O3(110)/fcc(100)3x3/Ru -1096.39 -709.37 -405.37 67.11 6 222.33

O-α-Al2O3(0001)/fcc(111)sqrt13/Ag -1127.44 -1070.81 -109.60 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Au -1145.77 -1067.55 -134.45 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Cu -1173.06 -1076.28 -145.76 79.38 12 414.39

O-α-Al2O3(0001)/fcc(111)sqrt13/Ir -1382.47 -1089.65 -338.61 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Os -1466.95 -1089.91 -420.82 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Pd -1240.33 -1087.75 -203.29 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Pt -1276.08 -1085.67 -240.88 79.38 12 414.39

O-α-Al2O3(0001)/fcc(111)sqrt13/Rh -1321.69 -1090.47 -277.28 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Ru -1395.04 -1090.45 -346.90 79.38 12 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Ag -293.12 -271.55 -34.93 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Au -299.26 -271.08 -42.64 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Cu -295.38 -261.80 -46.32 19.85 3 414.39

O-α-Al2O3(0001)/fcc(111)sqrt3/Ir -368.48 -271.99 -106.94 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Ni -307.72 -254.10 -65.22 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Os -394.30 -271.86 -131.66 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Pd -323.97 -272.45 -64.30 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Pt -336.78 -272.61 -76.28 19.85 3 414.39

O-α-Al2O3(0001)/fcc(111)sqrt3/Rh -347.52 -271.06 -87.44 19.85 3 414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Ru -369.79 -270.68 -108.71 19.85 3 414.39

O-α-SiO2(0001)/fcc(111)2x2/Ag -249.94 -211.27 -46.54 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Au -258.28 -210.46 -56.89 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Cu -275.46 -221.10 -61.74 21.33 2 272.03

O-α-SiO2(0001)/fcc(111)2x2/Ir -352.48 -217.47 -142.55 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Ni -300.99 -221.27 -86.99 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Os -386.66 -217.67 -175.54 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Pd -294.18 -216.42 -85.79 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)2x2/Pt -309.08 -215.66 -101.66 21.33 2 272.03

O-α-SiO2(0001)/fcc(111)2x2/Rh -327.95 -218.52 -116.54 21.33 2 272.03
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9.2 Extended data for adhesion energy calculation

Surface EInterface EOxide EMetal Area NOH ∆γox
ox−lat

O-α-SiO2(0001)/fcc(111)2x2/Ru -357.54 -218.81 -144.93 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Ag -956.92 -880.85 -109.60 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Au -976.78 -879.85 -134.45 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Cu -983.28 -868.28 -145.76 85.3 8 272.03

O-α-SiO2(0001)/fcc(111)sqrt13/Ir -1192.90 -884.43 -338.61 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Os -1275.85 -884.31 -420.82 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Pd -1054.86 -884.86 -203.29 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Pt -1092.00 -884.64 -240.88 85.3 8 272.03

O-α-SiO2(0001)/fcc(111)sqrt13/Rh -1130.26 -883.23 -277.28 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt13/Ru -1200.83 -882.69 -346.90 85.3 8 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Ag -247.64 -221.21 -34.93 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Au -254.31 -221.10 -42.64 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Cu -250.37 -212.02 -46.32 21.33 2 272.03

O-α-SiO2(0001)/fcc(111)sqrt3/Ir -318.84 -219.67 -106.94 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Ni -264.58 -207.13 -65.22 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Os -343.95 -219.52 -131.66 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Pd -275.90 -220.29 -64.30 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Pt -288.26 -220.62 -76.28 21.33 2 272.03

O-α-SiO2(0001)/fcc(111)sqrt3/Rh -298.29 -218.74 -87.44 21.33 2 272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Ru -320.28 -218.41 -108.71 21.33 2 272.03

TiO2(110)/fcc(100)5x1/Ag -466.67 -422.60 -40.92 41.49
TiO2(110)/fcc(100)5x1/Au -474.99 -422.25 -50.01 42.01
TiO2(110)/fcc(100)5x1/Cu -457.77 -399.84 -54.42 31.85

TiO2(110)/fcc(100)5x1/Ir -550.78 -420.85 -125.91 36.86
TiO2(110)/fcc(100)5x1/Os -579.13 -420.51 -154.53 36.68
TiO2(110)/fcc(100)5x1/Pd -501.99 -422.11 -76.19 37.76
TiO2(110)/fcc(100)5x1/Pt -515.71 -422.65 -89.61 38.38

TiO2(110)/fcc(100)5x1/Rh -526.42 -418.68 -103.62 35.85
TiO2(110)/fcc(100)5x1/Ru -550.78 -417.83 -128.11 35.54
TiO2(110)/fcc(100)7x1/Ag -699.77 -637.94 -57.12 58.08
TiO2(110)/fcc(100)7x1/Au -711.88 -637.91 -69.94 58.82

TiO2(110)/fcc(100)7x1/Ir -807.52 -625.88 -176.17 51.60
TiO2(110)/fcc(100)7x1/Os -846.60 -624.87 -216.20 51.35
TiO2(110)/fcc(100)7x1/Pd -742.09 -630.28 -106.61 52.86
TiO2(110)/fcc(100)7x1/Pt -763.08 -632.69 -125.45 53.73

TiO2(110)/fcc(100)7x1/Rh -769.98 -619.60 -145.07 50.19
TiO2(110)/fcc(100)9x1/Ag -929.64 -849.85 -73.68 74.68
TiO2(110)/fcc(100)9x1/Au -945.98 -850.71 -90.05 75.62

TiO2(110)/fcc(100)9x1/Ir -1059.35 -824.69 -226.25 66.34
TiO2(110)/fcc(100)9x1/Pt -1004.17 -836.70 -161.51 69.08

TiO2(110)/fcc(100)sqrt5/Ag -465.16 -420.72 -40.93 41.49
TiO2(110)/fcc(100)sqrt5/Au -473.10 -420.24 -49.91 42.01

TiO2(110)/fcc(100)sqrt5/Ir -551.41 -421.10 -125.69 36.86
TiO2(110)/fcc(100)sqrt5/Os -579.98 -420.81 -154.46 36.68
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Surface EInterface EOxide EMetal Area NOH ∆γox
ox−lat

TiO2(110)/fcc(100)sqrt5/Pd -502.18 -422.16 -76.11 37.76
TiO2(110)/fcc(100)sqrt5/Pt -515.73 -422.54 -89.58 38.38

TiO2(110)/fcc(100)sqrt5/Rh -527.18 -419.13 -103.52 35.85
TiO2(110)/fcc(100)sqrt5/Ru -553.20 -418.37 -128.16 35.54

TiO2(110)/fcc(111)7x3sqrt3/Ag -3564.15 -3187.96 -354.01 301.80
TiO2(110)/fcc(111)7x3sqrt3/Au -3637.90 -3184.56 -434.55 305.63

TiO2(110)/fcc(111)7x3sqrt3/Ir -4285.48 -3165.96 -1094.43 268.13
TiO2(110)/fcc(111)7x3sqrt3/Os -4543.25 -3162.50 -1359.01 266.81
TiO2(110)/fcc(111)7x3sqrt3/Pd -3863.22 -3179.69 -656.33 274.67
TiO2(110)/fcc(111)7x3sqrt3/Pt -3988.05 -3186.11 -777.80 279.18

TiO2(110)/fcc(111)7x3sqrt3/Rh -4071.31 -3144.78 -895.65 260.79
TiO2(110)/fcc(111)7x3sqrt3/Ru -4291.52 -3137.02 -1121.89 258.56

ZnO(101̄0)/fcc(100)5x2/Ag -367.49 -277.91 -81.83 82.97
ZnO(101̄0)/fcc(100)5x2/Au -384.44 -276.58 -100.03 84.03
ZnO(101̄0)/fcc(100)5x2/Cu -402.20 -285.70 -108.84 63.69

ZnO(101̄0)/fcc(100)5x2/Ir -548.95 -286.52 -251.83 73.72
ZnO(101̄0)/fcc(100)5x2/Ni -445.00 -281.83 -154.07 60.21
ZnO(101̄0)/fcc(100)5x2/Os -606.01 -286.72 -309.06 73.36
ZnO(101̄0)/fcc(100)5x2/Pd -447.18 -285.42 -152.37 75.51
ZnO(101̄0)/fcc(100)5x2/Pt -473.85 -284.47 -179.21 76.75

ZnO(101̄0)/fcc(100)5x2/Rh -504.81 -287.39 -207.22 71.70
ZnO(101̄0)/fcc(100)5x2/Ru -554.80 -287.55 -256.22 71.09
ZnO(101̄0)/fcc(100)6x2/Ag -459.13 -351.82 -98.04 99.57
ZnO(101̄0)/fcc(100)6x2/Au -480.03 -350.47 -120.04 100.83
ZnO(101̄0)/fcc(100)6x2/Cu -493.82 -353.44 -130.40 76.43

ZnO(101̄0)/fcc(100)6x2/Ir -674.34 -359.15 -301.89 88.46
ZnO(101̄0)/fcc(100)6x2/Os -742.71 -359.22 -370.49 88.03
ZnO(101̄0)/fcc(100)6x2/Pd -552.88 -358.47 -182.74 90.62
ZnO(101̄0)/fcc(100)6x2/Pt -585.62 -357.78 -215.20 92.10

ZnO(101̄0)/fcc(100)6x2/Rh -620.74 -359.36 -248.62 86.04
ZnO(101̄0)/fcc(100)6x2/Ru -680.65 -359.29 -307.38 85.30

ZnO(101̄0)/fcc(111)2sqrt3x2/Ag -285.25 -212.60 -67.40 57.49
ZnO(101̄0)/fcc(111)2sqrt3x2/Au -300.07 -211.99 -82.86 58.22
ZnO(101̄0)/fcc(111)2sqrt3x2/Cu -304.39 -208.72 -89.64 44.13

ZnO(101̄0)/fcc(111)2sqrt3x2/Ir -430.54 -214.91 -208.40 51.07
ZnO(101̄0)/fcc(111)2sqrt3x2/Ni -337.23 -203.49 -127.00 41.72
ZnO(101̄0)/fcc(111)2sqrt3x2/Os -480.01 -214.87 -258.95 50.82
ZnO(101̄0)/fcc(111)2sqrt3x2/Pd -346.99 -214.96 -125.06 52.32
ZnO(101̄0)/fcc(111)2sqrt3x2/Pt -370.39 -214.85 -148.24 53.18

ZnO(101̄0)/fcc(111)2sqrt3x2/Rh -392.49 -214.53 -170.59 49.67
ZnO(101̄0)/fcc(111)2sqrt3x2/Ru -435.37 -214.33 -213.79 49.25

ZnO(112̄0)/fcc(100)2x2/Ag -104.18 -68.67 -32.66 33.19
ZnO(112̄0)/fcc(100)2x2/Au -111.21 -68.47 -39.96 33.61
ZnO(112̄0)/fcc(100)2x2/Cu -114.67 -68.38 -43.48 25.48
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9.2 Extended data for adhesion energy calculation

Surface EInterface EOxide EMetal Area NOH ∆γox
ox−lat

ZnO(112̄0)/fcc(100)2x2/Ir -174.30 -69.60 -100.54 29.49
ZnO(112̄0)/fcc(100)2x2/Ni -131.89 -67.14 -61.58 24.09
ZnO(112̄0)/fcc(100)2x2/Os -197.50 -69.61 -123.42 29.34
ZnO(112̄0)/fcc(100)2x2/Pd -133.93 -69.55 -60.90 30.21
ZnO(112̄0)/fcc(100)2x2/Pt -144.85 -69.47 -71.76 30.70

ZnO(112̄0)/fcc(100)2x2/Rh -156.27 -69.58 -82.85 28.68
ZnO(112̄0)/fcc(100)2x2/Ru -176.72 -69.55 -102.47 28.43

ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Ag -626.06 -413.22 -196.53 199.14
ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Cu -687.49 -409.67 -260.97 152.87

ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Ir -1046.37 -418.15 -603.66 176.92
ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Pd -804.54 -417.95 -365.31 181.23
ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Pt -871.45 -417.57 -429.87 184.21

ZnO(112̄0)/fcc(100)3sqrt2x4sqrt2/Rh -938.57 -417.82 -497.30 172.08
ZrO2(101)/fcc(100)7x4/Ag -2288.87 -2044.13 -229.09 232.33
ZrO2(101)/fcc(100)7x4/Cu -2376.37 -2057.80 -304.59 178.34

ZrO2(101)/fcc(100)7x4/Ir -2799.18 -2070.05 -704.09 206.40
ZrO2(101)/fcc(100)7x4/Pd -2517.29 -2067.45 -426.20 211.44
ZrO2(101)/fcc(100)7x4/Pt -2590.35 -2064.62 -501.94 214.91

ZrO2(101)/fcc(100)7x4/Rh -2676.26 -2072.10 -580.15 200.76
ZrO2(101)/fcc(100)7x4/Ru -2817.53 -2072.29 -717.39 199.04

Table 9.12: Adhesion energies in meV/Å2 with adjusting the metal to the oxide lattice constant γ
oxide−lattice
adh for

selected metal/oxide interfaces and comparison to the corresponding interfaces in the metal lat-
tice constant γ

metal−lattice
adh . The change in the adhesion energy ∆γadh = γ

metal−lattice
adh − γ

oxide−lattice
adh in

meV/Å2. The strain in % is the absolute maximum strain of the metal/oxide interface.
Surface γ

oxide−lattice
adh γ

metal−lattice
adh ∆γadh Strain

O-α-Al2O3(0001)/fcc(111)sqrt3/Ag -238.68 -251.77 -13.09 4.22
O-α-Al2O3(0001)/fcc(111)sqrt3/Au -173.60 -196.95 -23.35 4.89
O-α-Al2O3(0001)/fcc(111)sqrt3/Cu -289.54 -282.91 6.63 8.69

O-α-Al2O3(0001)/fcc(111)sqrt3/Ir -406.39 -398.92 7.46 1.75
O-α-Al2O3(0001)/fcc(111)sqrt3/Ni -358.36 -340.84 17.52 11.22
O-α-Al2O3(0001)/fcc(111)sqrt3/Os -469.88 -460.47 9.41 0.56

O-α-Al2O3(0001)/fcc(111)sqrt13/Os -368.46 -373.82 -5.36 1.99
O-α-Al2O3(0001)/fcc(111)sqrt3/Pd -282.85 -281.49 1.35 0.25
O-α-Al2O3(0001)/fcc(111)sqrt3/Pt -313.24 -315.45 -2.21 2.01

O-α-Al2O3(0001)/fcc(111)sqrt3/Rh -379.49 -372.25 7.24 3.11
O-α-Al2O3(0001)/fcc(111)sqrt13/Rh -339.59 -345.02 -5.43 0.84

O-α-Al2O3(0001)/fcc(111)sqrt3/Ru -451.45 -441.62 9.83 3.53
O-α-Al2O3(0001)/fcc(111)sqrt13/Ru -390.18 -392.25 -2.06 0.41

O-α-SiO2(0001)/fcc(111)sqrt3/Ag -189.01 -190.41 -1.41 0.54
O-α-SiO2(0001)/fcc(111)sqrt3/Au -142.31 -146.90 -4.59 1.19
O-α-SiO2(0001)/fcc(111)sqrt3/Cu -267.85 -215.14 52.71 11.91

O-α-SiO2(0001)/fcc(111)2x2/Cu -238.28 -243.12 -4.84 1.73
O-α-SiO2(0001)/fcc(111)sqrt3/Ir -250.41 -224.36 26.06 5.22
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Surface γ
oxide−lattice
adh γ

metal−lattice
adh ∆γadh Strain

O-α-SiO2(0001)/fcc(111)sqrt3/Ni -273.43 -224.61 48.82 14.35
O-α-SiO2(0001)/fcc(111)2x2/Ni -258.00 -248.07 9.93 1.09

O-α-SiO2(0001)/fcc(111)sqrt3/Os -277.51 -249.65 27.86 4.07
O-α-SiO2(0001)/fcc(111)sqrt3/Pd -203.19 -181.82 21.37 3.28
O-α-SiO2(0001)/fcc(111)sqrt3/Pt -201.32 -184.00 17.32 5.46

O-α-SiO2(0001)/fcc(111)sqrt3/Rh -244.23 -219.46 24.77 6.53
O-α-SiO2(0001)/fcc(111)sqrt3/Ru -293.16 -268.43 24.73 6.93

ZnO(112̄0)/fcc(100)2x2/Ag -79.59 -85.92 -6.33 9.07
ZnO(112̄0)/fcc(100)2x2/Au -79.26 -82.65 -3.39 9.75
ZnO(112̄0)/fcc(100)2x2/Cu -118.22 -110.43 7.78 10.99

ZnO(112̄0)/fcc(100)2x2/Ir -142.76 -140.96 1.80 4.25
ZnO(112̄0)/fcc(100)2x2/Ni -184.49 -131.61 52.88 13.45
ZnO(112̄0)/fcc(100)2x2/Os -166.92 -152.48 14.44 4.03
ZnO(112̄0)/fcc(100)2x2/Pd -114.15 -115.21 -1.06 4.86
ZnO(112̄0)/fcc(100)2x2/Pt -117.38 -118.03 -0.65 4.50

ZnO(112̄0)/fcc(100)2x2/Rh -136.27 -134.02 2.25 5.55
ZnO(112̄0)/fcc(100)2x2/Ru -172.83 -165.09 7.75 5.98

ZnO(101̄0)/fcc(111)2sqrt3x2/Ag -71.94 -91.34 -19.39 9.07
ZnO(101̄0)/fcc(111)2sqrt3x2/Au -55.25 -89.60 -34.35 9.75
ZnO(101̄0)/fcc(111)2sqrt3x2/Cu -106.29 -136.76 -30.47 11.00

ZnO(101̄0)/fcc(111)2sqrt3x2/Ir -94.15 -141.63 -47.49 4.24
ZnO(101̄0)/fcc(111)2sqrt3x2/Ni -111.98 -161.54 -49.56 13.46
ZnO(101̄0)/fcc(111)2sqrt3x2/Os -90.46 -121.79 -31.33 4.03
ZnO(101̄0)/fcc(111)2sqrt3x2/Pd -83.81 -133.31 -49.50 4.86
ZnO(101̄0)/fcc(111)2sqrt3x2/Pt -77.60 -137.33 -59.73 4.48

ZnO(101̄0)/fcc(111)2sqrt3x2/Rh -102.56 -148.25 -45.69 5.56
ZnO(101̄0)/fcc(111)2sqrt3x2/Ru -109.82 -147.29 -37.47 5.97

TiO2(110)/fcc(100)sqrt5/Ag -75.94 -84.61 -8.67 8.80
TiO2(110)/fcc(100)sqrt5/Au -62.31 -70.45 -8.15 9.49

TiO2(110)/fcc(100)sqrt5/Ir -116.99 -125.37 -8.38 14.09
TiO2(110)/fcc(100)sqrt5/Os -130.07 -128.57 1.50 16.47
TiO2(110)/fcc(100)sqrt5/Pd -98.31 -103.32 -5.01 5.69
TiO2(110)/fcc(100)sqrt5/Pt -88.63 -94.24 -5.61 7.81

TiO2(110)/fcc(100)sqrt5/Rh -119.96 -126.47 -6.51 8.85
TiO2(110)/fcc(100)sqrt5/Ru -144.88 -187.68 -42.80 9.24

Table 9.13: Interface energy, oxide energy, metal energy in eV and surface area in Å2 for all calculated
metal/oxide structures of Table 9.12 with adjusting the metal to the oxide lattice constant. In the case
of the hydroxylated oxide, the surface area of the strain-free oxide surface is used and the number of
hydroxyl groups per supercell and the stability difference between hydroxylated and oxidized sur-
faces per supercell given. For the stoichiometric interfaces the surface area depending on the metal
lattice constant is given.

Surface Einterface EOxide EMetal Area NOH ∆γox
ox−lat

O-α-Al2O3(0001)/fcc(111)sqrt3/Ag -293.51 -272.58 -34.56 19.85 3 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Au -300.47 -272.58 -42.81 19.85 3 -414.39
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9.2 Extended data for adhesion energy calculation

Surface Einterface EOxide EMetal Area NOH ∆γox
ox−lat

O-α-Al2O3(0001)/fcc(111)sqrt3/Cu -304.23 -272.58 -44.27 19.85 3 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Ir -368.58 -272.58 -106.30 19.85 3 -414.39

O-α-Al2O3(0001)/fcc(111)sqrt3/Ni -322.51 -272.58 -60.44 19.85 3 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Os -394.46 -272.58 -130.92 19.85 3 -414.39

O-α-Al2O3(0001)/fcc(111)sqrt13/Os -1467.20 -1090.38 -421.02 79.38 12 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Pd -324.04 -272.58 -64.21 19.85 3 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Pt -336.78 -272.58 -76.34 19.85 3 -414.39

O-α-Al2O3(0001)/fcc(111)sqrt3/Rh -348.31 -272.58 -86.57 19.85 3 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt13/Rh -1321.39 -1090.38 -277.51 79.38 12 -414.39
O-α-Al2O3(0001)/fcc(111)sqrt3/Ru -370.68 -272.58 -107.50 19.85 3 -414.39

O-α-Al2O3(0001)/fcc(111)sqrt13/Ru -1394.97 -1090.38 -347.07 79.38 12 -414.39
O-α-SiO2(0001)/fcc(111)sqrt3/Ag -247.62 -221.22 -34.94 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Au -254.48 -221.22 -42.79 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Cu -257.36 -221.22 -42.99 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)2x2/Cu -275.51 -221.22 -61.77 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Ir -317.82 -221.22 -103.83 21.33 2 -272.03

O-α-SiO2(0001)/fcc(111)sqrt3/Ni -274.32 -221.22 -59.83 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)2x2/Ni -301.02 -221.22 -86.86 21.33 2 -272.03

O-α-SiO2(0001)/fcc(111)sqrt3/Os -342.84 -221.22 -128.27 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Pd -276.32 -221.22 -63.34 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Pt -288.03 -221.22 -75.08 21.33 2 -272.03

O-α-SiO2(0001)/fcc(111)sqrt3/Rh -298.46 -221.22 -84.60 21.33 2 -272.03
O-α-SiO2(0001)/fcc(111)sqrt3/Ru -320.11 -221.22 -105.20 21.33 2 -272.03

ZnO(1120)/fcc(100)2x2/Ag -105.78 -69.76 -33.38 33.19
ZnO(1120)/fcc(100)2x2/Au -113.44 -69.76 -41.02 33.61
ZnO(1120)/fcc(100)2x2/Cu -114.70 -69.76 -41.93 25.48

ZnO(1120)/fcc(100)2x2/Ir -173.81 -69.76 -99.84 29.49
ZnO(1120)/fcc(100)2x2/Ni -132.29 -69.76 -57.05 24.09
ZnO(1120)/fcc(100)2x2/Os -197.41 -69.76 -122.76 29.34
ZnO(1120)/fcc(100)2x2/Pd -133.92 -69.76 -60.72 30.21
ZnO(1120)/fcc(100)2x2/Pt -145.08 -69.76 -71.71 30.70

ZnO(1120)/fcc(100)2x2/Rh -155.72 -69.76 -82.05 28.68
ZnO(1120)/fcc(100)2x2/Ru -176.00 -69.76 -101.32 28.43

ZnO(1010)/fcc(111)2sqrt3x2/Ag -143.49 -105.72 -33.63 57.49
ZnO(1010)/fcc(111)2sqrt3x2/Au -150.78 -105.72 -41.84 58.22
ZnO(1010)/fcc(111)2sqrt3x2/Cu -152.09 -105.72 -41.68 44.13

ZnO(1010)/fcc(111)2sqrt3x2/Ir -212.39 -105.72 -101.86 51.07
ZnO(1010)/fcc(111)2sqrt3x2/Ni -168.68 -105.72 -57.54 41.72
ZnO(1010)/fcc(111)2sqrt3x2/Os -237.14 -105.72 -126.82 50.82
ZnO(1010)/fcc(111)2sqrt3x2/Pd -171.82 -105.72 -61.71 52.32
ZnO(1010)/fcc(111)2sqrt3x2/Pt -182.89 -105.72 -73.05 53.18

ZnO(1010)/fcc(111)2sqrt3x2/Rh -193.88 -105.72 -83.07 49.67
ZnO(1010)/fcc(111)2sqrt3x2/Ru -215.04 -105.72 -103.92 49.25

TiO2(110)/fcc(100)sqrt5/Ag -469.62 -425.61 -40.86 41.49

105



9 Appendix

Surface Einterface EOxide EMetal Area NOH ∆γox
ox−lat

TiO2(110)/fcc(100)sqrt5/Au -478.73 -425.61 -50.49 42.01
TiO2(110)/fcc(100)sqrt5/Ir -553.47 -425.61 -123.54 36.86

TiO2(110)/fcc(100)sqrt5/Os -583.47 -425.61 -153.09 36.68
TiO2(110)/fcc(100)sqrt5/Pd -504.84 -425.61 -75.52 37.76
TiO2(110)/fcc(100)sqrt5/Pt -518.07 -425.61 -89.06 38.38

TiO2(110)/fcc(100)sqrt5/Rh -531.39 -425.61 -101.48 35.85
TiO2(110)/fcc(100)sqrt5/Ru -556.89 -425.61 -126.13 35.54
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List of Abbreviations

List of Abbreviations

AFM atomic force microscopy

BKL Bortz–Kalos–Lebowitz

DFT density functional theory

DFT-SAPT DFT symmetry-adapted perturbation theory

DSMC Direct Simulation Monte Carlo

GGA generalized gradient approximation

HF Hartree-Fock

kMC kinetic Monte Carlo

KS Kohn-Sham

LCAO linear-combination-of-atomic-orbitals

LDA local density approximation

MB Maxwell-Boltzmann

OR Ostwald ripening

PAW projector augmented wave

PD particle density

PM particle migration and coalescence

PSD particle size distribution

SMSI strong metal support interaction

STM scanning tunneling microscopy

TEM transmission electron microscopy

vdW van-der-Waals

WC Wulff construction model
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