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This work deals with the multiscale modeling of weave reinforced composite 
material. Three different subscales are investigated: the basic constituents  
(fibers and matrix), unidirectionally reinforced microstructures, and the full com-
posite of woven fiber structures embedded in a thermoplastic matrix. A closed 
multiscale chain to predict the material behavior of the macroscopic composite 
is introduced. This includes a geometrical evaluation of the different scales  
regarding their topology in order to virtually rebuild those structures and the 
mechanical assessment of their (anisotropic) behavior. The second part of this 
work defines the framework for the corresponding material models. Three con-
stitutive models are introduced according to the identified scales. The focus lies 
on the consideration of material non-linearities, i.e. plasticity and damage de-
velopment in all underlying material systems. All models presented are defined 
in the kinematic framework of large strains. The ability of the geometric and 
constitutive models to predict the deformation and failure behavior on their 
corresponding subscales is demonstrated by means of selected examples. 
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Abstract

This thesis deals with the multiscale investigation of a weave reinforced compos-
ite material with thermoplastic polypropylene matrix. Three different subscales
are investigated: the basic constituents (fibers and matrix), unidirectionally
reinforced microstructures, and the full composite of woven fiber structures
embedded in a thermoplastic matrix. The aim of the present work is the
introduction of a closed multiscale chain to predict the material behavior of
the macroscopic composite with respect to deformation and failure. First, the
experimental evaluation of the different scales of the present material system
is discussed. The basic idea throughout this thesis is to use fitted data as
input for microstructure level simulations only on the lowest scale, i.e. for
matrix and fibers. The parameters for the higher-scale models are calculated
using simulations and a suitable methodology for scale bridging. Moduli of
elasticity, plastic properties and material strengths as well as failure behavior
are evaluated on the basis of simple specimens, taking into account different
loading rates. For the simulation of the deformation behavior of the material
on different scales it is of great importance to consider the local orientation
and the relative position of the reinforcing fibers. For this reason, the geometry
of the structures is first measured. The emphasis of the mechanical tests lies
on the determination of the anisotropic influence on the deformation behavior
of the composite materials and the comparison of the observed failure types
with those from the literature. The measured stress-strain curves are used for
the validation of the model responses. The generation of virtual representa-
tive volume elements of the micro- and mesostructure based on the results of
the geometry measurement and the definition of suitable periodic boundary
conditions enables the computational analysis of the constitutive behavior of
composite materials. The second part of this thesis defines the theoretical
framework for the corresponding material models. Three constitutive models
are introduced in the course of this work according to the identified scales. In
addition to the prediction of deformation, the focus lies on the consideration
of material non-linearities such as plasticity in the matrix material and the
damage development in all underlying material systems. In order to ensure
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Abstract

thermodynamically consistent behavior, the models provided are derived from
the free energy and the dissipation functions. All models presented are defined
in the kinematic framework of large strains. The ability of the geometric
and constitutive models to predict the deformation and failure behavior of
fiber-reinforced composites is demonstrated by means of selected examples.
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Kurzfassung

Diese Arbeit beschäftigt sich mit der Multiskalenuntersuchung eines gewebe-
verstärkten Verbundwerkstoffs mit einer thermoplastischen Polypropylenma-
trix. Drei verschiedene Subskalen werden untersucht: die Basiskomponenten,
Fasern und Matrix, unidirektional verstärkte Mikrostrukturen und der voll-
ständige Verbund von gewebten Faserstrukturen in thermoplastischer Matrix.
Das Ziel der vorliegenden Arbeit ist die Einführung einer geschlossenen Multi-
skalenkette, um dasMaterialverhalten des makroskopischen Verbundwerkstoffs
in Bezug auf Verformung und Versagen rechnerisch vorherzusagen. Zunächst
wird die experimentelle Bewertung der verschiedenen Ebenen des vorliegenden
Materialsystems vorgenommen. Die grundlegende Idee dieser Arbeit ist es,
gefittete Daten als Input für die Simulationen auf Mikrostrukturebene lediglich
auf der untersten Skala, das heißt für Matrix und Fasern zuverwenden. Die Pa-
rameter für dieModelle höherer Ebenenwerdenmit Hilfe von Simulationen und
einer geeigneten Methodik zum Skalenübergang rechnerisch ermittelt. Unter
Berücksichtigung unterschiedlicher Belastungsraten werden Elastizitätsmoduli,
plastischeEigenschaften undMaterialfestigkeiten sowie dasVersagensverhalten
anhand von Probekörpern ausgewertet. Für die Simulation des Verformungsver-
haltens des Materials auf unterschiedlichen Skalen ist es von großer Bedeutung,
die lokale Orientierung und die relative Lage der Verstärkungsfasern zueinander
zu berücksichtigen. Aus diesem Grund werden die Geometrien der Strukturen
zunächst vermessen. Der Schwerpunkt der mechanischen Prüfungen liegt auf
der Bestimmung des anisotropen Einflusses auf das Verformungsverhalten der
Verbundwerkstoffe und dem Vergleich der beobachteten Versagensarten mit
denen aus der Literatur. Die gemessenen Spannungs-Dehnungs-Kurven wer-
den für die Validierung der Modellantworten verwendet. Die Generierung von
virtuellen repräsentativen Volumenelementen der Mikro- und Mesostrukturen
auf Basis der Ergebnisse aus der Geometrievermessung und die Definition
geeigneter periodischer Randbedingungen ermöglicht eine rechnerische Anal-
yse des konstitutiven Verhaltens von Verbundwerkstoffen. Der zweite Teil der
vorliegenden Arbeit definiert den theoretischen Rahmen für die verwendeten
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Kurzfassung

Materialmodelle. Drei Konstitutivmodelle werden entsprechend der identi-
fizierten Skalen im Laufe dieser Arbeit eingeführt. Neben der Vorhersage der
Verformung liegt der Schwerpunkt auf der Berücksichtigung materieller Nicht-
linearitäten wie Plastizität im Matrixmaterial und Schädigungsentwicklung in
allen zugrunde liegenden Materialsystemen. Um ein thermodynamisch kon-
sistentes Verhalten zu gewährleisten, werden die bereitgestellten Modelle aus
der freien Energie und den Dissipationsfunktionen abgeleitet. Alle vorgestell-
ten Modelle sind im kinematischen Rahmen großer Verformungen definiert.
Die Fähigkeit der geometrischen und konstitutiven Modelle das Verformungs-
und Versagensverhalten faserverstärkter Verbundwerkstoffe abzubilden, wird
anhand von ausgewählten Beispielen aufgezeigt.
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1 Introduction

1.1 Motivation

Requirements and needs for mobility solutions are constantly increasing. In
line with these developments, a major part of research and development tasks
in the upcoming years will be related to the complex of alternative energies
and an efficient usage of available resources. Especially in the automotive con-
text, a political rethinking takes place these days, resulting in stricter emission
regulatory and environmental specifications. In order to stay competitive in
such a regulatory framework, it is of immense importance to drive research
topics of resource efficient mobility. In this context, lightweight design of
structural parts plays an important role. The usage of fibrous composites has an
enormous potential to support the overcoming of the mentioned issues. Here,
textile composites gain an increasingly important position in structural engi-
neering, offering a reasonable ratio of performance and weight reduction over
classical structural materials when designed correctly. Although continuous
glass and carbon fiber composites mostly based on a thermoset matrix have
been extensively used in mobility related areas like aeronautic, automotive,
and transport applications, their potential regarding high-volume production,
repairs and recycle abilities and reliable designs is not yet fully exploited. Com-
posites based on thermoplastic matrix systems show significant advantages in
this regard, enabling considerably shorter production cycle times, an easier
handling during processing and an enhancement with regard to repairs and
recycling possibilities due to their different chemical character. In contrast
to these positive effects, the complex microstructure of fibrous composites in
general makes it very difficult to accurately predict deformation and damage
behavior. Especially the succession of failure processes and the identification
of responsible triggers have not been entirely clarified yet. In addition, failure
in woven fabric reinforced composites takes place on different scales, where
single phases with non-linear behavior interact. Consequently, these materials
are often used by means of exaggerated safety factors, based on empirical
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1 Introduction

data. A purely experimental approach to characterize failure in continuous
fiber composites results in high costs in terms of resources and time, necessary
because of the high testing effort due to anisotropic nature of such materials.
To overcome this drawback, numerical methods are used, supplying a valid
support. However, available numerical techniques regarding the overall behav-
ior of woven fabric composites including damage formulations have not yet
reached a sufficiently matured state. Multiscale analysis can help to provide
a better understanding of the interactions of the constituents on designated
geometrical levels, allowing the description of failure processes and finally
enable the formulation of macroscopic constitutive equations for woven fabric
reinforced composites. The advantage of such an approach is the transfer of
local material effects occurring on different length scales onto the macroscopic
component level.

1.2 Objectives and overview

The work at hand deals with the experimental investigation and consequent
modeling of the failure behavior under quasi-static loading of organo sheets.
The latter are fully impregnated and consolidated semi-finished products, where
a thermoplastic material is used as basic constituent. Here, polypropylene
serves as a coating matrix and embedded glass fibers form the inter-woven
reinforcement structure. The results of an optical analysis of the given material
system are depicted in Fig. 1.1, allowing a direct identification of intrinsic
hierarchical levels in a top-down manner. Hereby, global and local entities can
be defined on each scale, describing the interfaces of the adjacent geometrical
levels:

• Macroscopic level: The three-dimensional form defines the global be-
havior of the composite part. As a direct derivation of geometry by
means of local parameters of the material, the distribution of the local
reinforcements, fiber volume fraction, reinforcement orientation, etc., fol-
low. These entities finally describe the local composite stiffness, which
corresponds to the global level on the mesoscopic level.

• Mesoscopic level: This level describes the superordinate reinforcement
structure within the composite, defining the weave pattern, preferred
fiber directions and volume fractions of tows, shaped during processing.

2



1.2 Objectives and overview

On a local level, two phases can be distinguished, areas of pure matrix
and impregnated yarns. While the matrix is assumed to be isotropic,
the impregnated yarns yield an anisotropic material behavior due to the
principal directions of the aligned fibers. Here, local entities such as
fiber direction and volume fraction define the overall stiffness of the
impregnated yarn. Local variables can be determined as the global
behavior of the microscopic level.

• Microscopic level: The arrangement of fibers within the thermoplastic
matrix is described yielding the overall (global) material behavior of
impregnated yarns. Local properties are defined by the material behavior
of the basic constituents, fibers and matrix.

By inverting this analysis, the used multiscale approach that is pursued in
a two-track (experimental and numerical) manner is directly deduced. This
structure is also reflected in the structure of this work. Throughout the course
of this work a closed modeling chain over all scales is pursued, accompanied
by numerical calculations, using the finite element code Abaqus. By applying
suitable homogenized material formulations (cf. colored arrows in Fig. 1.2),
the given methodology allows the up-ward transfer of local failure mechanisms
occurring on the depicted scales. To this end, the definition of a newly proposed
macroscopic material model for fabric reinforced thermoplastics taking into

Figure 1.1: Optical analysis of a woven fabric reinforced component made of organic sheets.
Distinct hierarchical levels in the multiscale structure can be identified as: (a) Macroscopic level,
described in the dimensions of the component, (b) Mesoscopic level, resolving the woven structure
of the material, and (c) Microscopic level, on which the basic constituents are visible.
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1 Introduction

account local material orientations and relevant failuremechanisms is presented.
An overview of the structure of the presented thesis is given below.

Chapter 1 outlines the major research topics as well as goals and structure of
the present thesis.

Chapter 2 is devoted to the introduction of the fundamental continuummechani-
cal formulations necessary for the definition ofmaterialmodels (cf. Section 2.1).
Furthermore, the basic equations used during a multiscale analysis (cf. Sec-
tion 2.2) are presented. Hereby, both analytical and numerical homogenization
techniques are considered. Section 2.3 introduces major geometrical features
of the fabric reinforced subcomposites necessary for the virtual assessment of
the failure behavior associated with the mesoscopic structure and illustrates the
resulting physical failure behavior in the single rovings and fabric reinforced
composites. Available modeling techniques for all relevant geometrical scales
are shortly reviewed in Section 2.4.

Constituents 
(fibers + matrix)

Lamina Woven fabric 
reinforced component

Impregnated roving

Microscopic model
of impregnated roving

Mesoscopic model of 
woven material

Macroscopic model 
for component design

Characterization and 
modeling of input 
materials

FEA MODEL

FEA MODEL

FEA MODEL

FEA MODEL

Figure 1.2: Proposed multiscale modeling approach guided by the optical analysis from Fig. 1.1.
Definition of the distinct four scales of interest: constituent, microscopic, mesoscopic, and
macroscopic level. Scale-bridging, transferring information onto a superordinate scale, is achieved
by the definition of homogenized material models used within the finite element code Abaqus (cf.
colored arrows, labeled with Finite Element Analysis MODEL).
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1.2 Objectives and overview

Chapter 3 introduces the materials used for characterization and validation of
the developed material model and presents the experimental results. Section 3.1
gives an overview over strain and stress measures used for the presentation of
the results. A solid parallel validation of the proposed modeling techniques
necessitates adequate experimental characterization of the underlying damage
and failure processes on the identified scales and hierarchical levels. Consistent
with the stages of the multiscale analysis presented above, three material levels,
neat polypropylene matrix (PP, cf. Section 3.2), unidirectionally glass fiber-
reinforced composite (PP/GFUD, cf. Section 3.3), and woven fabric reinforced
polypropylene (PP/GF twill weave, cf. Section 3.4) have been tested under
quasi-static loading.

Referring to Fig. 1.2, the transfer from a lower to an upper scale (scale-
bridging) is accomplished by using suitable material models. These represent
the material behavior of the micro- and meso-structures in such a way, that all
relevant material effects in terms of damage are respected.

The development of the resulting three material models is presented in Chap-
ter 4. Section 4.1 focuses on the definition of a rate-dependent elastoplastic
material model including a thermodynamically consistent damage formulation
of the matrix material for isothermal conditions. After an initial definition
of additive plasticity using the small strain framework, the model is extended
towards a finite formulation using a formulation in the logarithmic strain space.
Incorporating the predominant occurring failure mechanisms, Section 4.2 in-
troduces a fully three-dimensional continuum damage model for impregnated
rovings (UD model), representing parallel fiber arrangement embedded in a
thermoplastic matrix. In order to consider large rotations of the reinforcement
structures in the mesoscopic fabric reinforced structure undergoing external
loads, the presented material model is defined in a finite strain framework. Suit-
able criteria for damage onset and a thermodynamically consistent derivation
of damage evolution complete the constitutive model.

Section 4.3 focuses on the composite formulation of a constitutive model taking
into account the combination of the aforementioned constitutive equations. For
the present material system, the preferred directions coincide with the principal
directions of the reinforcements which change continuously during loading
due to material deformation. Respecting these kinematic conditions by the
introduction of an intermediate configuration, separate damage formulations for
matrix and rovings are included from themodels introduced before. The present
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1 Introduction

work therefore provides a straightforward formulation of amacroscopicmaterial
model incorporating plastic and anisotropic damage effects for fabric reinforced
materials based on a combination of analytical and numerical homogenization
techniques. This procedure allows the transfer of dominant material effects
onto the macroscopic scale and the consideration of varying approximated
arrangement of reinforcement structures. Remarks on the algorithmic treatment
and implementation of the constitutive equations for all scales are presented
accordingly.

Chapter 5 deals with the numerical application of the presented material
models to realistic geometries. The results of numerical calculations obtained
using virtual micro- and mesoscopic structures support the interpretation of
experimental results and enhance a further understanding of occurring material
effects. An additional objective of such investigations is the assessment of the
usability of virtual characterization as a substitute for expensive experimental
testing of plastic composites. A major key to retrieve resilient results is the
correct reproduction of the microstructural conditions at hand. Section 5.1 is
devoted to the introduction of microstructure generation of unidirectionally and
woven composites, based on the results presented in Chapter 3 with regard to
the geometry of the composite. An extension of an available algorithm for the
generation of statistically representative volume elements (SRVE) is presented,
giving the possibility to respect variable fiber diameters as well as near-field
clustering of groups of fibers. For the generation of the virtual woven unit
cells an existing software package (TexGen) was used and embedded in the
preprocessing framework.

Section 5.2 demonstrates the results of virtual characterization calculations,
using the generated unidirectional microstructures. Hereby, the focus lies on the
calculation of the elastic bodies and the demonstration of plastic and damage
behavior of the composite using selected examples. Where possible, the
obtained results are compared to experimental results. Following the strategy
of the implemented multiscale analysis, the main objective of the presented
calculations on this scale is the determination of a failure envelope, that is used
to parametrize the homogenized UD model discussed in Section 4.2.

Using the UD model for the calculation of geometrical mesoscopic models
of the impregnated fabric structure (woven unit cell) in Section 5.3, enables
a up-transfer of the subordinate damage effects. On the basis of selected
loading cases, the kinematical and damage related behavior of woven fabric

6



1.2 Objectives and overview

reinforced composites is investigated. A comparison of numerically obtained
homogenized and available experimental results is given, with respect to
stiffness and the non-linear behavior of the stress-strain response.

The features of the newly proposed macroscopic material model are demon-
strated in Section 5.4. The model behavior with respect to the change of
material orientation under deformation as well as the representation of damage
evolution is reviewed in the course of exemplary virtual tests.

The thesis concludes in Chapter 6, summarizing the undertaken modeling steps
included in the proposed full-featured multiscale approach. Discussing the
obtained results, propositions for improvement of the used methodology and
remarks on possible future work are given.
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2 Fundamentals and state of the art

The objectives of this chapter are to introduce the fundamental formulations
of continuum mechanics (cf. Section 2.1) and basic equations necessary
for a multiscale analysis (cf. Section 2.2) using analytical and numerical
homogenization techniques. Furthermore, Section 2.3 summarizes the major
geometrical features of the woven subcomposites and illustrates the resulting
physical failure behavior in the single rovings andmulti-layer woven composites.
Finally, Section 2.4 reviews relevant available modeling activities on different
scales.

2.1 Fundamentals of continuum mechanics

The subsequent section introduces the basic equations of continuum mechanics
that are needed to describe arbitrary material response. Throughout this work
all quantities are expressed in terms of Cartesian coordinates. This section is
by no means complete, for a more detailed representation the interested reader
is referred to the work of Holzapfel [169] among others.

2.1.1 Kinematics

In an Euclidean space R3, an orthonormal base with its base vectors e8 and
origin O is defined. Within this domain a continuous body B containing any
point of this body % ∈ B can be described. The setting of B ∈ R3 is generally
called a configuration 6 (%, C), whereby Bs = 6 (B, C) and x = 6 (%, C). Bs
is the occupied region by B at time C, and x gives the spatial position of
% within R

3 as functions of time C. The initial undeformed configuration
60 = 6 (C0) is chosen as reference configuration with Bm = 60 (B, C0) and
^ = 60 (%, C0) and serves as the material (Langrangian) description of the
body with material coordinates ^. Deformed configurations are called spatial

9



2 Fundamentals and state of the art

(Eulerian) descriptions with spatial coordinates x. The uniquely invertible
map function > maps from reference to any spatial configuration by

x = > (^, C) and ^ = >−1 (x, C) (2.1)

All entities introduced so far are depicted in Fig. 2.1. Themotion of a continuum
is the change of the position of any material point % in time. With known
coordinates ^ and x of the undeformed and deformed material points the
displacement field reads

u = x (^, C) − ^ = x − ^ (x, C) . (2.2)

The velocity field v is obtained by the time derivative of the motion

v (^, C) =
d> (^, C)

dC
= v

(
>−1 (x, C) , C

)
= v (x, C) . (2.3)

In continuum mechanics the deformation gradient L as well as its inverse L−1

play the most important role. They are defined by

L (^, C) =
mx (^, C)
m^

and L−1 (x, C) =
m^ (x, C)
mx

(2.4)

ℝ3

𝜑

𝜒t𝜒0

𝒙𝑿

𝑃

𝒪

ℬm ℬs

ℬ

𝒆1

𝒆2

𝒆3

Figure 2.1: Configurations and motion of a continuous body B within R3. The reference
configuration is depicted by the undeformed body Bm and the current configuration is represented
by the deformed body Bs.
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2.1 Fundamentals of continuum mechanics

and are used to describe kinematic entities. The deformation gradient maps
line elements and is used to derive strain measures. In general, L and L−1 are
non-symmetric second-order tensors that relate two different configurations
and therefore are designated as two-point tensors. Due to the existence of the
inverse, � = det (L) 6= 0 must hold true for the Jacobian determinant. The
displacement gradients in material and spatial configuration can be introduced
analogously by

∇^u = L (^, C) − 1 and ∇xu = 1 − L−1 (x, C) . (2.5)

At this point, three frequently used decompositions of the deformation gradient

𝑿

ℬm

 ℬ

𝒪
𝒆1

𝒆2

𝒆3

ℬs

𝒙𝑭 = 𝑭𝑒𝑭𝑖

𝑭𝑖 𝑭𝑒

 𝑿

Reference 
configuration

Current
configuration

Intermediate 
configuration

Figure 2.2: Intermediate configuration Ω̄ and the corresponding decomposition of the deformation
gradient L = L4L8 in an elastic and in-elastic part within R3.

shall be mentioned. The first is the geometrical decomposition in volumetric
and isochoric deformations

L (^, C) = Lvol (^, C) Liso (^, C) . (2.6)

The second consists of an elastic and an in-elastic part, according to

L (^, C) = L4 (^, C) L8 (^, C) , (2.7)

as depicted in Fig. 2.2. The polar decomposition splits the deformation gradient
according to

L = X[ = \X, (2.8)
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2 Fundamentals and state of the art

where X is an orthogonal rotation tensor and [ and \ are the right and left
symmetric stretch tensors, corresponding to material and spatial configuration
respectively. By squaring the stretch tensor, the definition of the right and left
Cauchy-Green tensors follow

I = [2 = LTL and b = \2 = LLT (2.9)

being againmaterial and spatial tensors respectively. Note that X describes pure
rigid body rotations, hence, all information about volume change is contained
by[ and \. Therefore, we can rewrite the determinant of L simply by

� = det [[] = det [\] and �2 = det [I] = det [b] . (2.10)

The introduction of general, symmetric, positive definite and local deformation
measures can be derived directly from the stretch tensors. For the material
configuration the general Seth-Hill strain measures , are often found. They
can be written as

, =

{
1
<
[[< − 1] , if < 6= 0

ln [[] , if < = 0
(2.11)

with < ∈ R. Analogously strain measures corresponding to the spatial con-
figuration can be found. In the following, two cases which will be used
throughout this work are introduced in more detail. For < = 2 in Eq. 2.11 the
Green-Lagrange strain measure is obtained

K (^, C) =
1
2
[I (^, C) − 1] , (2.12)

whereas < = 0 yields the Hencky or logarithmic strain measure

9 (^, C) = ln [[ (^, C)] =
1
2

ln [I (^, C)] . (2.13)

Taking into account the decompositions in Eqs. 2.6 and 2.7, the additive
deviatoric-volumetric split as well as the elastic-inelastic split can be recovered

9 = 9E>; + 98B> and 9 = 94 + 98 , (2.14)

which have special significance throughout the course of this work.
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2.1 Fundamentals of continuum mechanics

Remark. For small deformation gradients, a simplified representation of
the motion can be found (cf. de Souza Neto et al. [296]). In general,
the Cauchy-Green deformation tensor can be rewritten in terms of the
displacement gradients (cf. Eq. 2.5) as

I = 1 + ∇^u + (∇^u)T + (∇^u)T ∇^u,
b = 1 + ∇xu + (∇xu)T + ∇xu (∇xu)T .

(2.15)

For considerably small displacement gradients ∇u ≈ ∇^u ≈ ∇xu, the
quadratic terms and the distinction between material and spatial configura-
tion vanish (I ≈ b ≈ 1 + ∇u + (∇u)T) and the infinitesimal or nominal strain
can be written as

& =
1
2

[
∇u + (∇u)T

]
= ∇Bu (2.16)

with ∇B being the symmetric gradient. Approximating the deformation by the
infinitesimal strain measure, the Green-Lagrange and logarithmic strains
are similar to the nominal representation (K ≈ 9 ≈ &). Furthermore it can be
shown that the available decompositions for the logarithmic strains apply in a
similar manner also for infinitesimal strains.

With the abbreviation for the total time derivative (¤·) := d(·)/dC, the rate form
of the deformation gradient can be introduced by the gradient of the material
velocity field

¤L (^, C) =
dL
dC

= ∇^ ¤> (^, C) = ∇^ v (^, C) . (2.17)

The spatial counterpart is defined analogously as

l (x, C) = ∇xv (x, C) = ¤LL−1 = d (x, C) + w (x, C) , (2.18)

where d (x, C) = 1
2

(
l + lT

)
and w (x, C) = 1

2

(
l − lT

)
with the symmetric part

d = dT as the rate of deformation tensor and the skew part w = −wT as
the rate of rotation tensor. The independence of the right Cauchy-Green

13



2 Fundamentals and state of the art

deformation tensor (cf. Eq. 2.91) from rotational components becomes visible
also in its rate form through

¤I = ¤LT
L + LT ¤L = 2LTd L. (2.19)

The same applies therefore for the Green-Lagrange strain measure (cf.
Eq. 2.12)

¤K = LTd L, (2.20)

using the standard pull-back operation of d in both cases. Inversion of the rela-
tion yield the definition of the standard push-forward operation, transforming
entities from the spatial to the material configuration.

2.1.2 Concept of stresses

Starting from the traction vector t on the surface mBB of the body BB in spatial
configuration, the application of the theorem of Cauchy such that

t = 2n (2.21)

and using the definition of an infinitesimal surface traction force td0 yields the
Cauchy stress tensor 2. Analogously, the introduction of the first Piola-
Kirchhoff stress tensor V enables the formulation of the current stress state
corresponding to the infinitesimal surface d� of the body B0 of the reference
configuration. Applying material cuts in accordance to the Euler principle,
every cut volume can be seen as a body Bs and hence the stress tensor 2 can
be defined in any material point x ∈ Bs as depicted in Fig. 2.3.

Equation 2.22 summarizes frequently used stress measures in literature.

2 Cauchy stress tensor
3 = �2 Kirchhoff stress tensor

V = �L−12 First Piola-Kirchhoff stress tensor

Y = �L−12L−1 Second Piola-Kirchhoff stress tensor

(2.22)
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𝒪 𝒆1

𝒆2

𝒆3

ℬ𝑚

𝜑

𝑑𝐴

𝑵
𝑻

ℬ𝑠

𝑑𝑎

𝒏𝒕

 𝒖  𝒖

𝑿
𝒙

Figure 2.3: Material Z and spatial traction vectors t of continuum body in the cutting plane. ū
denotes the displacement boundary conditions of Bm and Bs, respectively.

By performing standard push-forward and pull-back operations the description
of stresses in the referring configuration can again be changed. The same
applies for the strain measures accordingly.

2.1.3 Physical balance principles

In this section a short overview over the necessary balancing equations is
given. For a more detailed review the reader is referred to the extensive works
of Holzapfel [169], Truesdell [388], Truesdell & Noll [389],
Eringen [106], Doyle & Ericksen [100], Green & Adkins [130],
and others. The subsequent equations must be satisfied at all material points
within the volume at all times. For the modeling activities throughout this
work, the overview here is restricted to a purely mechanical context. Four basic
groups of equations regarding a spatial subregion Ps ⊂ Bs (Pm ⊂ Bm for the
material framework) can be identified.

1. Conservation of mass: Neglecting transport into a subregion Ps and
production within Ps, the now constant mass can be described by a single
scalar value by

d
dC
< = 0 with < =

∫
Ps

d< =
∫
Ps
ddE =

∫
Pm

d0d+ (2.23)

in terms of the current density d and the reference density d0 = �d.
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2 Fundamentals and state of the art

2. Balance of linear and angular momentum: The balance of linear
momentum postulates the equality of the temporal change of the linear
momentum O of Bs and external force Lext

d
dC

O = Lext, (2.24)

with the definitions of the linear momentum

O =
∫
Ps
¤xd< =

∫
Ps
dvdE (2.25)

and the resulting external force

Lext =
∫
Ps
dbdE +

∫
mPs

td0 (2.26)

with b as a prescribed acceleration field. The surface integral can be
rewritten as volume integration, applying the Gauss divergence theorem∫

mPs
td0 =

∫
mPs

2nd0 =
∫
Ps
∇x · 2dE. (2.27)

Localization theorem finally yields the strong form of the balance of
linear momentum

d ¤v = ∇x · 2 + db. (2.28)

In a similar manner the balance of angular momentum can be formulated.
It states the equilibrium of the temporal change of the angular momentum
J0 with respect to an arbitrary point (usually the origin O of a fixed
coordinate system) and externally applied torque S0

ext

d
dC

J0 = S0
ext (2.29)

with

J0 =
∫
Ps

x × ¤xd< =
∫
Ps

x × dvdE (2.30)
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2.1 Fundamentals of continuum mechanics

being the angular moment. The sum of the applied moments resulting
from the body forces db and the surface tractions t yield the torque

S0
ext =

∫
Ps

x × dbdE +
∫
mPs

x × td0. (2.31)

Without showing the derivations, a direct conclusion is the symmetry of
the stresses 2 = 2T.

3. First law of thermodynamics - Balance of energy: The first law of
thermodynamics describes the equality of the change of total energy
Etot of a distinct subregion Ps and the sum of external mechanical and
thermal power (Pext and Qext)

d
dC
Etot = Pext + Qext. (2.32)

With regard to the context of purely mechanical problems, the specific
definition of the thermal power is neglected at this point andQext vanishes.
The mechanical power can be defined in spatial configuration by

Pext =
∫
Ps
db · v dE +

∫
mPs

t · v d0. (2.33)

The time derivative of the total energy being ¤Etot = ¤K + ¤U, consists of
the kinetic contribution

¤K =
d
dC

∫
Ps

1
2
¤x · ¤x d< =

d
dC

∫
Ps

1
2
dv · v dE (2.34)

and a part regarding internal energy storage mechanisms

¤U =
d
dC

∫
Ps
dD dE, (2.35)

based on the specific internal energy density per unit volume D. From
Eq. 2.32 the balance of kinetic energy can be derived

¤K = Pext − S (2.36)
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where S describes the stress power evaluated in the current configuration

S =
∫
Ps

2 : d dE. (2.37)

Hereby, d denotes the strain rate tensor. Alternative notations in a
material configuration reads

S =
∫
Pm

Fint d+ with Fint = �2 : d = V : ¤L = Y : ¤K (2.38)

giving the rate of internal mechanical work per unit reference volume
and defining work conjugated pairs. The balance of kinetic energy yields
directly the formulation for the balance of internal energy,

d
dC
U = S (2.39)

and the according local strong form in the spatial configuration can be
stated as

d ¤D = 2 : d. (2.40)

4. Second Law of thermodynamics - Entropy inequality Principle:
When a material returns in its initial state upon unloading then it behaves
reversibly. However, energy is usually dissipated in some kind, e.g.
through plastic or damage evolution. In order to quantify the extend of
this energy transfer, the state variable of entropy G(C) is introduced. It
is considered as a measure for the orderliness of an investigated system.
In general, the entropy inequality condition states a positive entropy
production at all times

Γ(C) =
d
dC
G(C) − Q ≥ 0 (2.41)

with

Γ =
∫
Ps
dW dE and G =

∫
Ps
d[ dE, (2.42)
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2.2 Multiscale modeling of fiber composites

where W is the local entropy production per unit mass and [ the local
entropy per unit mass. Q is the rate of entropy input in the system and is
governed by non-mechanical entities and therefore neglected here. The
above relation in Eq. 2.41 is called the second law of thermodynamics,
defining the direction of energy flow and ensuring the irreversibility
of thermodynamic processes. Coming back to the example mentioned
above, reversible processes are characterized by Γ(C) = 0, but are handled
as an idealized special case. The mechanical dissipation per unit volume
is introduced as

D = W\ ≥ 0. (2.43)

Neglecting convective contributions, the Clausius-Plank inequality
for internal dissipation is identified as

dDint = 2 : d − d ¤Ψ ≥ 0, (2.44)

with the Helmholtz free energy Ψ = D − \[ where \ denotes the
absolute temperature.

2.2 Multiscale modeling of fiber composites

Figure 1.1 shows the different levels of micro-structures in an organo sheet.
The qualitative and quantitative mechanical behavior on the macroscopic scale
of organo sheets are a direct consequence of the behavior of materials on the
subordinate scales, their microscopical setup, and corresponding interactions.
In many cases during the design process it is not necessary to know the exact
stress and strain states within the microstructure, but it is sufficient to describe
the overall behavior of the material adequately by means of macroscopic and
effective substitute models. The mapping of microscopic effects onto a macro-
scopic description is commonly referred to as homogenization. This contrasts
with the procedure of localization where distinct macroscopic measures are
distributed onto the microstructures (cf. Suquet [367]).
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2.2.1 Scale bridging techniques

Multiscale models and modeling of the micro- or meso structures are popular
approaches in order to assess the elastic and inelastic behavior of a material.
General methods are well described in Fish [113] and Spahn [360] among
others. The relation between a mesoscale and a microscale is described by
multiscale models, using homogenization laws. At the microscale, constitutive
models are implemented and the resulting stress and strain fields are transferred
to the upper scale via transformation field tensors (cf. Chacboche et al. [67],
Fish & Yu [114], Fish et al. [116], and Voyiadjis & Deliktas [407]) or
by solving a numerical problem (e.g. finite element problem, cf. Car et al. [50]
and Oller et al. [301]). In order to minimize computational effort, a certain
degree of periodicity in microstructures is assumed. Throughout this work
the microstructures of the material under consideration is taken into account
by representative volume elements (RVE). Only a few decades ago, such a
computational approach was not directly accessible due to the absence of suffi-
ciently performant computers. Therefore, starting in the framework of linear
elasticity, a number of analytical or semi-analytical approximation schemes
based on RVEs and mean-field homogenization were developed early on, pro-
viding efficient algorithms to estimate the overall stiffness and other properties.
Key models are the self-consistent-method by Hill [160] and Hill [161], its
extension towards the Halpin-Tsai equations (cf. Halpin & Cardos [146])
or procedures based on the Eshelby method by Eshelby [107–109], such as
the Mori-Tanaka method introduced by Mori & Tanaka [280] and many
others. For a more extensive review of existing homogenization schemes, the
interested reader is referred to the works of Tucker & Liang [394] and
Klusemann & Svendsen [194].

2.2.1.1 Average stress and strain

Carefully note, that the given models yield reasonable results only in defined
limits of volume fractions of the single phase U and furthermore special
attention has to be given on the symmetry properties of resulting stiffness or
compliance tensors for the case of elastic properties (cf. Benveniste [31],
Benveniste et al. [32]). The main goal and strategy of this modeling type
is to substitute and approximate a heterogeneous material by a homogenized
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2.2 Multiscale modeling of fiber composites

equivalent. As a main assumption, statistical heterogeneity is stated, i.e. the
homogenized material has the same (or at least comparable) overall properties
as the heterogeneous material. To this end, the following equation is fulfilled

2̄
( ¯̂ )

= C̄
( ¯̂ )

: 9̄
( ¯̂ )

(2.45)

defining C̄
( ¯̂ )

as the homogenized macroscopic (effective) stiffness tensor and

2̄
( ¯̂ )

=
1
+

∫
Bm

2 (^) d+ and 9̄ =
1
+

∫
Bm

9 (^) d+. (2.46)

¯̂ is the position vector of a macroscopic point within the material. Note
that (·̄) = 〈(·)〉 indicates the ensemble average and therefore a homogenized
macroscopic entity and ^ ∈ Bm denotes the position vector of any available
material point in the representative averaging volume + on the microscopic
scale. Figure 2.4 depicts the relation between macro and micro scale. For

𝒪
𝒆1

𝒆2

𝒆3

 𝑿

 ℬm

ℬm

𝑿

𝛼f
𝛼m

Figure 2.4: Relation between macro and micro scale. The material behavior of a macroscopic
material point at a distinct position ¯̂ ∈ B̄m is defined by its microstructure. Single phases are not
distinguishable on macroscopic level. The representative averaging volume Bm consists locally
of different phases U = U (^ ) , where Um corresponds to matrix material and Uf represents the
fibrous inclusions. Material points within the microstructure are denoted by ^ .

improved clarity, ¯̂ and ^ are not noted from now on. Formulating Eq. 2.46 in
words, 2̄ is defined as the volume average stress of the point-wise stress 2 over
the volume + . + has to be chosen big enough in order to guarantee statistical
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homogeneity of the results. Assuming a two-phase composite, consisting of
matrix and fibers, + can be decomposed by phase differentiation according to

+ = +m ++f, (2.47)

which leads further to the decomposition

2̄ = Em2̄< + Ef2̄f and 9̄ = Em9̄m + Ef9̄f (2.48)

with EU=+U/+ being the volume fractions for fibers (U=f) and matrix (U=m),
respectively.

Analogously, according to Hill [159] and Hashin [154], the homogenized
stiffness tensor C̄ can be calculated through the potential energy formulation

*̄ =
1

2+

∫
+

2 : 9̄d+ =
1
2
9̄ : C̄ : 9̄. (2.49)

2.2.1.2 Energy-based boundaries of elastic properties

The potential energy defined in Eq. 2.49 gives rise to the introduction of two
classical and rigorous bounds of elastic properties, the Voigt and Reuss
bounds (cf. Hill [158]). For the first it is assumed that all phases U see the
exact same uniform strain, 9̄∗. Applying the principle of minimum energy, the
following inequality is found

*̄ ≤ *∗ =
1

2+

∫
+

9̄∗ : C : 9̄∗d+ =
1

2+
9̄∗ :

∫
+

Cd+ : 9̄∗, (2.50)

where *̄ is the true energy and *∗ the approximated one. Comparing coeffi-
cients with those of Eq. 2.49 yields the estimation for the Voigt bound of the
elastic stiffness tensor (cf. Voigt [404] and Willis [418])

C̄ ≤
∫
+

Cd+ =
∑
U

EUCU = C̄V, (2.51)

which describes an upper bound of physically consistent elastic material prop-
erties. The lower bound, described by the Reuss bound, is therefore derived
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analogously by assuming uniform stresses 2̄∗ over all phases and approximating
the overall complementary energy

*̄2 =
1

2+

∫
+

2 : C−1 : 2d+, (2.52)

yielding

*̄2 ≤ *∗2 =
1

2+

∫
+

2̄∗ : C−1 : 2∗d+ =
1

2+
2̄∗ :

∫
+

C−1d+ : 2̄∗ (2.53)

and finally

C̄ ≥
[∫
+

C−1d+
]−1

=
[∑
U

EUC
−1
U

]−1
= C̄R. (2.54)

For a more detailed review on the boundary derivation it is referred to the work
of Wu & McCullough [421]. The above bounds provide stiffness tensors
in the range

C̄R ≤ C̄ ≤ C̄V. (2.55)

For the case of isotropic phases, an isotropic homogenized stiffness will yield.
Taking into account the geometry of the inclusions, Hashin & Shtrik-
man [152, 153] proposed a set of narrower bounds.

2.2.1.3 Mori-Tanaka model as an example for analytical homogenization

In what follows, the Mori-Tanaka scheme (cf. Mori & Tanaka [280]) is
introduced, that allows a straight forward implementation and respects the
microstructure in more detail. The basis for the derivations below is the
concept of localization, i.e. the mapping of macroscopic states onto the
microstructure. According to Hill [159], this is done by fourth-order strain-
and stress-concentration tensors, A and B, such that

9̄f = A : 9̄ and 2̄f = B : 2̄. (2.56)
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In general, the overall stiffness tensor can then be rewritten as

C̄ = Cm +
∑
U

EU (CU − Cm) : AU . (2.57)

An equivalent formulation for the compliance tensor can be formulated using
the stress localization tensor B. Equation 2.57 builds the basis for nearly
all available analytical homogenization schemes, differing in a varying spec-
ification of the localization tensors. The above introduced Voigt and Reuss
bounds of physically meaningful stiffness values are for instance recovered by
defining A = B = I. The fundamental basis of more elaborated models is the
Eshelby’s equivalent inclusion [107, 109], introducing the Eshelby tensor E.
This theory is assumed to be known at this point, for a detailed derivation it
is referred to the works of Mura [282], Taya et al. [377–380], and Tan-
don & Weng [373]. Applying the solution of Eshelby, it is possible to find
the stiffness of a composite with ellipsoidal fibers at dilute concentrations. The
resulting localization tensor can be identified as

AEshelby = [I + E : Sm : (Cf − Cm)]−1 . (2.58)

Assuming for a dilute composite the average strain being identical to the applied
strain (9̄ = 9�) yields the strain state in the fibers

9̄f = AEshelby : 9̄. (2.59)

In contrast, theMori-Tanaka scheme assumes that each particle of the composite
is subjected to a far-field strain equal to the average strain in the matrix,

9̄f = AEshelby9̄m. (2.60)

The basic equation for the implementation of a two-phase Mori-Tanaka model
reads

AMT = AEshelby [
(1 − Ef) I + 2fAEshelby]−1

, (2.61)

allowing an explicit computation of the composites stiffness tensors, according
to Eq. 2.57. A very comprehensive explanation of the Mori-Tanaka scheme is
provided by Benveniste [31].
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2.2.2 Numerical homogenization

The justification of homogenization of continua is that constitutive equations
for basic constituents and geometrical circumstances on a microscopical scale
are well, or at least better, understood compared to the macro-scale directly.
As described before, analytical homogenization schemes take into account the
geometry and the behavior of the single phases, however making assumptions
regarding their interactions. As a powerful alternative, the methodology of
numerical homogenization is commonly used, directly taking into account the
microstructure and using elaborated constitutive models for the constituents.
In practice, approaches based on representative volume elements (RVE) are
widespread and have attracted increasing scientific attention during the last
years. Respecting some requirements concerning the case-dependent size of
the RVE (cf. Trias [387]), these allow the computation of micro-stress and
-strain fields within a complex microstructure enabling for example examination
of micro-crack initiation, evolution and coalescence at distinct positions in the
material in the context of a failure assessment. In literature, the corresponding
numerical methods are often referred to as computational homogenization
methods, and basic works were published by Suquet [367], Sanchez-
Palencia [358], Hill [159], Willis [418], Guedes & Kikuchi [137],
Terada & Kikuchi [382], Matsui et al. [255], Ghosh et al. [123–125],
Miehe & Koch [271], Smit et al. [357], Kouznetsova et al. [197–199],
Geers et al. [121,122],Michel et al. [263,264], Yuan & Fish [429], just to
name a few. For the special case of fully periodic media, the RVE can be further
reduced to what is called a unit cell (UC), which by continuously repetition
yields the superordinate structure (s. Fig. 2.6b and c as examples for textile
unit cells). Equations 2.45 to 2.49 are also valid in the context of numerical
homogenization without any further restriction but of course in a discrete
way. The choice of correct boundary conditions has a major influence on the
plausibility of the results obtained by computational homogenization. With 2
and u being the active stress and displacement fields, the macroscopical work
2̄ : 9̄ and the average of the microscopic work 〈2 : 9(u)〉 must be identical,
giving the definition of the macro-homogeneity condition, also known as the
Hill condition

2̄ : 9̄ = 〈2 : 9〉. (2.62)
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Suquet [367] called this equation the equality of virtual work between the
micro and macro scales.

Similar to the formulation of localization tensors for single phases in Eq. 2.56,
the computation of microscopic tensor fields based on macroscopic fields is
possible by the introduction of a fourth-order localization tensor that yields

9 = PY : 9̄ and 2 = Pf : 2̄. (2.63)

Note, that the microscopic tensor field can be reformulated, according to

2 = Pf : 2̄ = I : 2̄ + P̃f : 2̄ with P̃f = Pf − I, (2.64)

identifying a constant part 2̄ and a fluctuating part 2̃ = P̃f : 2̄. The latter
represent residual stresses with vanishing average 〈2̃〉 = 0. The same applies
for the micro-field of the strain,

9 = PY : 9̄ = I : 9̄ + P̃Y : 9̄ with P̃Y = PY − I, (2.65)

and 〈9̃〉 = 0. Inserting the decomposition of the tensor fields in constant and
fluctuating terms in Hill’s condition and some simplification steps yield the
reduced form

2̄ : 9̄ = 2̄ : 9̄ + 〈2̃ : 9̃〉 (2.66)

which is only fulfilled in the case that the last summand is equal to zero. This
condition allows the formulation of three kinds of boundary conditions, valid
on mBm,

1. The approach of anti-periodic stress boundary conditions

2
(
^, ¯̂ )

n (^) = 2̄
( ¯̂ )

n (^) (2.67)

2. Assumption of linear displacement field

u
(
^, ¯̂ )

= 9̄
( ¯̂ )

^ (2.68)
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3. A coupled formulation of the above mentioned solution for the anti-
periodic stresses from Eq. 2.67 and

u (^) = 9̄
( ¯̂ )

^ + ũ (^) , (2.69)

in terms of the periodic function ũ.

Throughout this work, these periodic boundary conditions (PBC), were chosen
and implemented for the numerical simulation of the representative microstruc-
tures (cf. Chapter 5). For RVEs or UCs with rectangular cuboidal shape, the set
of equations that allow the application for a 3D representative volume element
are provided by Barbero [25, 26]. Melro [260] states a reduced set of
equations needed for the simulation of one-layer woven structures, where only
in-plane periodicity is assumed. Both sets of equations are introduced into the
simulation as node-wise kinematic constraints for the opposing nodes on the
boundaries in the form of additional equations.

2.3 Failure of weave reinforced structures

The microstructure of woven fabric reinforced composites is the decisive factor
when it comes to the derivation of macroscopic mechanical properties such
as stiffness and strength. Especially, effects related to damage progression
depend on the local geometrical topology on the micro- and mesoscopic level
of the composite. The following section gives a short introduction on the
geometrical topology and the technical terminology for the description of
woven composites. A summarizing glossary of important terms for textile
applications can be found in Pastore [309]. An extent description of the
variety of fiber reinforced composites as well as the corresponding processing
techniques can be found in Henning [156], Neitzel [295], Long [239]
and Ten Hompel [381]. Furthermore, a general description of relevant
damage evolution in unidirectional and woven composites is addressed.

2.3.1 Topology of woven fiber-reinforced plastics

The general definition of textile reinforced composites states that these fiber
reinforced composites are characterized by more than one preferred direction.
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On constituent level, fibers (or filaments) and a matrix system define the be-
havior of the composite. The fibers, as the basic unit of the textile material,
are converted into laminated tapes, yarns or direct formed fabrics (cf. Bog-
danovic & Pastore [38]). For the present case special attention is given on
the yarn, since they can be used to set up a variety of fabric structures. Either
carbon, glass, ceramic or polymeric fibers are used within the assembly of the
yarn, which can then directly be processed into the chosen fabric structure.
The terminologies of yarns, rovings and tows are used in an equivalent manner
throughout the present work. Regarding unidirectional or multi-directional
layups, several enhancements can be provided by combining interwoven tows.
Hereby, each tow consists of several thousand (ideally parallel) fibers. For
example, depending on the exact microstructure, a reduction of the tendency
of delamination during loading and a better handling during processing are
obtained. On the microscopic level woven and more advanced textile com-
posites, such as three-dimensional woven, braided, knitted or stitched textiles,
exhibit highly complex reinforcement geometries. By varying the assembling
pattern, a vast number of possible spatial arrangements of the curved yarns
can be achieved. To this end, the designer is able to tailor the material for a
specific requirement, apart from the choice of material systems. Usually, these
kinds of composites are manufactured on modern textile machinery. In an
industrial environment, fabrics with a high width to thickness ratio are named
two-dimensional fabrics. These fabrics are usually defined by a thickness that
is smaller than three yarn diameters, but widths of the order of magnitude
of meters. This definition allows the distinction of three-dimensional fabrics
with a much greater inherent thickness ratio. According to the material in-
vestigated in this work, the focus of this introduction lies on woven textile
composites. Bogdanovic & Pastore [38] give a historical summary of
the development of textile composites and more details on three-dimensional
textile composites. Clarke & Morales [74] and Ko & Pastore [196]
provide a comparative study of fabrics for composites. Figure 2.5 shows three
different types of fabric composites where the differences in the complexity of
reinforcement orientation is visible. A plain weave (Fig. 2.5a), as an example
for a woven textile is produced by initially orthogonal or triaxial interlacing
of yarns. Figure 2.5b shows a braided fabric which is set up by the intertwin-
ing of three or more strands of yarns. Finally, Fig. 2.5c represents a knitted
fiber architecture. It is formed by the interlooping of yarns along the vertical
direction and is therefore identified as a warp knit. In an analogous manner
weft knitted fabrics can be manufactured where the interloop runs horizontally.
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a b c
Figure 2.5: Three exemplary types of typical fabric composites: (a) Plain weave, (b) triaxially
braided fabric, and (c) warp knitted fabric. Images were taken from Gommers et al. [127].

In industry, woven fabrics are used most frequently. The most widely used
examples regarding such structures are plain, twill and satin (=-harness weaves)
patterns as depicted in Fig. 2.6. Here, the woven structures are set up by two

a b c
Figure 2.6: Three types of typical two-dimensional weave patterns in schematic form: (a) Plain
weave, (b) Twill weave, and (c) 5-harness satin weave. Weave patterns were created using the
software TexGen [350].

tows (weft and warp yarns) that are assumed to be identical in their mechanical
properties. However, the way of spatial arrangement differs for each type which
causes differences in the weaves appearance as well as the mechanical behavior.
Looking at the patterns in more detail, either inclined or straight passages
can be considered. Regarding plain weaves, all yarns are inclined over their
complete length, since they are floating constantly from bottom to top and vice
versa. In contrast, yarns in satin weaves show longer linear in-plane segments
before they float to the opposite side of the weave. Hereby, the length of the
linear parts passing over or under other yarns is dependent on =. Depending on
the number and size of linear parts, handling, manufacturing, and mechanics
related properties are effected. The area where yarns change sides within the

29



2 Fundamentals and state of the art

weave is of special interest and is labeled as crimp areas (cf. Fig. 2.7). The geo-
metric characteristics of the crimp areas influence the extent of the out-of-plane
fiber orientation, the volume fraction, the thickness, and therefore the overall
mechanical performance of the textile composite. The dimensions within the

a

b

c
Figure 2.7: Side view cut of (a) a plain weave, (b) a 2x2 twill weave, and (c) a 5-harness satin
weave as shown in Fig. 2.6. The crimp area, where the yarn floats from top to bottom side of the
textile is clearly visible. The side views were created using the software TexGen [350].

created textile composite are of particular interest regarding the mechanical
behavior. Due to the loose connection of single filaments within a dry yarn,
the individual fibers can move to a great extent against each other. While under
longitudinal tension they tend towards a circular cross-section minimizing both
cross-sectional lengths and longitudinal curvature, transverse compressive load
as applied during the thermoplastic processing leads to a narrow lenticular or
elliptical shape of the cross-sections (cf. Bogdanovic & Pastore [38],
Tang & Whitcomb [375], Zhou & Yang [433], Xu et al. [426]). Hereby
the minor axis is oriented along the direction of applied pressure. For the later

𝑔1 𝑔2

𝑝

𝑡𝑤 ℎ

𝜆

𝑡𝑓

weft

warp

matrix

Figure 2.8: Schematic display of a one-layer twill weave showing relevant dimensions. The
corresponding descriptions are given in Table 2.1.

modeling of the mesoscopic level of the woven composite in a geometrical
model it is imperative to respect the dimensions of the real specimen in order to
obtain sufficiently accurate results (cf. Lomov et al. [231], Green et al. [132]).
As shown in Fig. 2.8, the essential dimensions of an idealized one-layer twill
weave are the tow wavelength (_), weave height including the matrix domain
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(ℎ), tow width (?), tow heights (Cw and Cf) and the gaps between neighboring
tows (61 and 62). Furthermore, weaves are usually described by parameters
that describe the volume ratios of fiber and matrix rich areas and are applicable
in different ways. Etow describes the volume fraction of tows in the weave. ^
represents the fiber volume fraction in the single tow. With this the the total
fiber volume fraction in the weave (Efw) can be calculated according to

Efw = ^Etow. (2.70)

The relevant dimensions are summarized in Table 2.1. Beside the topology of

Table 2.1: Parameters used to define the dimensions within a one-layer twill weave.

Type Dimension Description

Geometry

_ Tow wavelength
ℎ Weave mat thickness
? Tow width
Cw Tow thickness (warp)
Cf Tow thickness (weft)
61 Distance of gap between

neighboring yarns
62 Distance of gap between

yarns in crimp area

Volume
fractions

Etow Tow volume fraction
^ Fiber volume fraction in

the tow
Efw Fiber volume fraction in

the weave

single weave layers, stacking plays a significant role when it comes to the me-
chanical properties of the synthesis of the composite. During themanufacturing
process the impregnated layers undergo high pressures in thickness direction,
yielding deformed yarn shapes and paths. Measurable local variations of the
section and fiber volume fractions are the result (cf. Olave et al. [300], Kara-
han et al. [188]). Furthermore, random shifts and nesting between the layers
occur, which favor the formation of complex contact regions between the yarns
(cf. Olave et al. [300], Chen et al. [70], Lomov et al. [238]). The relative
position of yarns within the stack and the degree of nesting has a pronounced
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influence on the local stress and strain distributions, and thus, on damage
initiation and propagation (cf. Daggumati et al. [85], Le Page et al. [212],
John et al. [181] and Doitrand et al. [99]).

2.3.2 Failure behavior of unidirectional fiber composites

For the successful modeling of damage propagation in woven fabric reinforced
composites a sound understanding and description of the related physical
phenomena in the microstructure of different scales and hierarchical levels
is mandatory. In the previous sections it has been mentioned that woven
composites consist of interwoven yarns which by themselves can be described
as subcomposites again. The damage phenomena observed in textile composites
consist partly but not exclusively of processes occurring in the curved but ideally
unidirectional reinforced yarns. In the following, an overview of the physical
failure patterns occurring in unidirectional is given.

The correct description of damage progression in continuous fiber reinforced
plastic composites is an ongoing topic of research. For the design of parts of
such materials Puck [319] provides an established methodology investigating
the structure in a layer-wise manner. Therefore it is necessary to understand and
describe the micro and macro processes occurring within the layer. Due to the
material symmetry of unidirectional composites, Puck introduces two types of
macroscopic failure occurring between the fibers (inter-fiber failure) as a matrix
dominated failure mode as well as an ultimate fiber failure. Both failure types
can be subdivided again, taking into account the sign of the corresponding stress
state, resulting in four distinct failure modes (modes I-IV). Additionally, Puck
describes delamination as an inter-laminar failure mechanism, i.e. a separation
between two adjacent layers. The evolution of damage depends on the local
strain states during loading. Failure in fiber composites is the final result of a
combination of very complex damage processes that occur on different length
scales within the material. Each failure mode can be seen as a distinct state in
the history of its damage progression, where a specified combination of stress
components on a designated possible fracture plane (action plane) reaches a
maximum, allowing the formulation of a set of failure criteria for the different
failure modes. The action plane is identified as the plane with the highest risk
of failure depending on the active stress state (cf. Puck [319]). The stresses
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on an arbitrary action plane, inclined by an angle K around the fiber axis (G1),
are depicted in Fig. 2.9.

Figure 2.9: Definition of stresses on an arbitrary action plane. {G1, G2, G3 } correspond to the
coordinate system of the lamina with the corresponding stresses {f1, f2, f3, g12, g13, g23 }.
The action plane is inclined by the angle K around the fiber axis (G1). The normal stresses
{f1, f= , fC } as well as shear stresses {g1= , g1C , g=C } can be identified. Image was taken from
Puck [319].

2.3.2.1 Fiber fracture

The fibers are the actual load-bearing elements, which should be utilized to
the limit of strength before other structures are destroyed. Tensile fiber failure
(FF+), is thus the only desired type of failure. Due to their high strength, the
fibers are able to withstand very high longitudinal stresses in the composite. In
the transverse direction, the strength of the fibers is virtually never achieved,
since the yield of the matrix is smaller by several orders of magnitude. In
other words, the transverse fracture behavior is not (primarily) influenced by
the fibers themselves. In this sense, fiber failure does not mean the breakage of
individual fibers, but rather the breaking of a large number of fibers or entire
fiber bundles. The load-bearing capacity of the laminate is greatly reduced
over a large width. However, while the term fiber breakage appears to be
justified in the case of tensile stress (mode I), where a "breaking" or "tearing"
of the fibers actually occurs, the damage caused by compressive stress (mode
II) does not necessarily correspond to this term. Here the degradation of the
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fiber bearing capacity is caused by a lack of elastic support by the surrounding
matrix material, which can be seen through a buckling motion (microbuckling,
internal buckling, kinking) (cf. Fig. 2.10a). Several of such areas can grow

a b
Figure 2.10: (a) Representation of the kinking as a precursor to fiber fracture under compression
and (b) Compressive fiber fracture in a unidirectional laminate, images taken from Puck [319].

and merge, yielding finally a compression fracture (cf. Fig. 2.10b). Stochastic
effects play a major role in fiber breakage. It can be observed that at about
70-80% of the maximum achievable failure load, the first fractures of both
single fibers and fiber bundles occur (cf. Puck [319]). When fracture occurs,
the material cohesion of matrix and fiber is almost completely degenerated due
to high energy releases. This leaves a strongly disjointed, brush-like fracture
pattern. Degradation models that leave the bond with a residual stiffness or
strength across the grain after fiber failure are considered unrealistic according
to Puck [319]. Fiber breakage affects not only the layer in which it was
initially formed. It often has a devastating effect on the neighboring layers. In
this way, it is possible to trigger the delamination processes in layers that are
already on the edge of fiber breakage more easily. This renders failure detection
a difficult task and the resolution of damage progression during the breaking
process becomes almost impossible.
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2.3.2.2 Inter-fiber fracture

In the case of transverse loading, the stresses acting perpendicular to the fibers
are transmitted through both matrix and reinforcements. Inter-fiber fracture
(IFF) describes the crack opening taking place in the plane perpendicular to
the fibers. Regarding the damage effects, the cracks grow in the matrix-rich
areas, while the initiation occurs mostly in the boundary layer of fiber and
matrix (interface). Depending on the sign of the normal stresses in the action
plane, different forms of inter-fiber failure occur.

Normal tensional load on the action plane (2n>0)

This failure mode (mode III) is caused by a transverse tensile stress f+
= and/or

transverse shear stress g1=/1C . The resulting damage patterns are cracks in

a b
Figure 2.11: Mode III crack under horizontal tensional loading. a) Initial cracking and
debonding of the fiber/matrix interface and b) coalescence into micro-cracks, image taken from
Praud et al. [317].

thickness direction, i.e. on the active plane of the damaging stresses, as shown
in Fig. 2.11. The load was applied in horizontal direction. It is observed
that the crack opens further the higher the corresponding load f+

= becomes
compared to the shear loads g1=/1C . The cracking observed after the appearance
of the first inter-fiber fracture expresses itself through intensive noise emission
(cf. Deuschle [90]). The weakening of the material, due to the affected
layer being free of force in the cracked areas and only gradually carrying the
load again, is noticeable externally as a reduced overall stiffness of the layer.
The stiffness will gradually decrease further with increasing crack density.
This behavior is used for modeling the post-damage behavior (post-failure-
degradation). While the matrix material is heavily stressed under such loads,
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the fibers integrity is hardly affected by inter-fiber fracture, which can be shown
by constant longitudinal stiffness and strength as shown by Deuschle [90] and
Puck [319]. The damage processes in the matrix during loading, causing inter-
fiber fracture at its end are depicted in Fig. 2.12. Starting from reaching about

Figure 2.12: Schematic representation of the progressing damage based on increasing f+
= transver-

sal tensional load, image taken and modified from Deuschle [90].

50% of the ultimate load, which causes pure inter-fiber fracture, one can observe
beginning micro-damage in the material (cf. Fig. 2.12b, Deuschle [90]).
From this threshold, existing micro defects - microscopic cracks in the matrix -
begin to grow and new ones are included in the matrix. This effect explains the
loss of stiffness, which leads to non-linearities in the stress-strain curve before
the ultimate failure exhibiting an anisotropic character. The increase in the
number and growth of defects depends on the type of loading. Hereby, strains
perpendicular to the fiber (out-of-plane) produce and promote more and faster
growing defects than in-plane strains (cf. Deuschle [90]). If the load on the
layer becomes too high, the micro cracks coalesce and macroscopic, visible
cracks are formed. If, under certain circumstances, only a single layer had
been considered, it would lose its complete load-bearing capacity at this point,
since a material separation would occur. However, Puck’s theory considers
the single layer as a compound. Although the destroyed layer can no longer
carry an immediate load, it still contributes to the load-bearing capacity of
the entire system by redistributing the load into the neighboring layers. As a
result, further load can be applied until other cracks occur. This process will be
repeated until a layer saturated with cracks is present. The description of the
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loss of stiffness due to such crack growth is the subject of post-failure modeling
(post failure degradation).

Normal compressional load on the action plane (2n>0)

The defining characteristic of this type of failure (mode IV) is that the resulting
cracks do not proceed in the thickness direction, i.e. the common plane of
action of the stresses f2 and g21, but in an inclined fracture plane around the
fiber axis by an angleK . The fracture angleK depends on the ratio f2/g21 and
lies in a range ofK ∈ [−90◦, +90◦]. Atmode III and at the transition frommode
III to IV the angle takes the value of K = 0◦. It increases with growing ratio
until it assumes the approximate value of K ≈ ±53◦ at pure compressive stress
depending on the chosen fiber/matrix composite and fiber volume fraction. In
the fracture plane, now not only an overlay of f−= - and g1=/1C -stresses, but an
additional cross/transverse stress g=C is active. An important characteristic
that distinguishes the intermediate fiber fractures by pressure from those under
tension is the fact that the former can no longer be described as harmless.
The wedge effect, caused by the oblique breakage in the laminate, causes an
explosive force acting in the direction of thickness, resulting in sudden and
devastating failure (cf. Fig. 2.13). The resulting fracture angle cannot be

Figure 2.13: Mode IV failure, transverse compression yields an inclined fracture plane (K)
accompanied by high out-of-plane forces due to the wedge effect, image taken from Puck [319].

specified a priori for the modes III and IV, but must be calculated. In general,
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the different fracture modes can only be characterized in the general case by
the stress combinations acting on the fracture plane (cf. Puck [319]).

2.3.2.3 Delamination

The interfaces of single laminae are distinct weak points due to the absence of
reinforcements. Delamination is defined as a separation of laminae possible
through the application of out-of-plane normal stresses or in-plane shear stresses.
These phenomena are caused by f+

3 , g32, and g31 in a general 3D stress state,
so-called inter-laminar stresses. Extensive delamination occurs mostly, if a
crack, caused by inter-fiber damage, reaches the laminate interface. Such
cracks enhance the formation of delamination due to the concentrated, but
inhomogeneous stress states in the crack tip area (cf. Deuschle [90] and
Puck [319]). It is observed that layer separations grow with increasing
monotonous load as well as with cyclic load of constant amplitude. The
extreme case is the complete detachment of whole unidirectional layers, as
described in Schreiber [347]. However, delamination is a form of failure
occurring in the laminate and not in the lamina and is therefore not respected
in the homogenized description of unidirectional composites.

2.3.3 Failure behavior of woven fiber composites

Interwoven composites (especially more advanced textile composites, e.g. 3D
woven, braided, knitted, stitched) show improved impact resistance and damage
tolerance in comparison to traditional laminates (cf. Bogdanovic & Pa-
store [38]). They are able to withstand a higher number of matrix cracks
and fiber debondings before reaching ultimate failure. In the case of three-
dimensional fiber scaffolds, the material does not contain predefined delamina-
tion paths due to the absence of planar interfaces. The undulation of the fiber
tows yields a rather random distribution of crack orientations within the tow.
Thus, there are typically no obvious and clear weak directions. Therefore, the
formation of extensive crack propagation which would lead to direct ultimate
failure of the structural part is prevented. The internal micro- and mesoscopic
topology is hereby the key factor when it comes to damage progression in
textile composites.
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To this end, the biggest difficulty regarding the understanding of such compos-
ites is that the damage processes have to be considered on different scales and
hierarchical levels. This circumstance makes the analysis more complicated
than it is the case for classical unidirectional laminates. Furthermore, chang-
ing the weave architecture has a significant effect on the appearing damage
modes within the composite but even specimens that belong to the same ar-
chitecture showed varying damage features (cf. John et al. [181]). Finally,
the in-plane properties of multilayer woven composites are affected by the
misalignment of the fibers, resin rich areas due to the weave design, pre-
damage in the fiber tows due to the weaving process (cf. Farley et al. [112],
Ding et al. [97], Arendts et al. [9], Norman [298], Byun & Chou [45],
Guess et al. [138]) or pre-damage induced by composite processing, e.g. due
to thermal or cure stresses (cf. Lomov et al. [237]). All these influences on
the mechanical performance of a certain material system in combination with a
chosen weave architecture necessitate the detailed examination of the damage
processes for each textile composite. Looking at existing works dealing with the
description of failure in woven fiber composites, it is immediately noticeable,
that compared to their laminated unidirectional counterparts much less general
literature is available. Publications concentrate on certain weave architectures
or material systems as a consequence of the above mentioned reasons.

Important similarities can be found in the methodology of the monitoring and
characterization of damage during (online) and after (post-mortem) testing.
Lomov et al. [237] proposes the usage of a variety of analytical techniques
in order to systematically study failure phenomena during tensile deformation,
consisting of

1. Online acoustic emission (AE)

2. Online full-field strain mapping (SM)

3. X-ray/CT and ultrasonic C-scan examination (online and post-mortem)

4. Cross-sectioning and optical microscopy (post-mortem).

The several steps of this sequence complement each other in an upward direction
in order to identify both locus and mode of occurring failure. Acoustic
emission analysis as defined by Wevers & Surgeon [410] detects transient
stress waves propagating in a material as a result of fast release of strain
energy. It is a widely used method, to gain information about the damage

39



2 Fundamentals and state of the art

processes, its mode, and location in the specimen without interrupting the
test. The damage thresholds can be identified by analyzing the curves of
cumulative energy, as described in Truong et al. [391], Lomov et al. [234,
237], Daggumati et al. [84], and Carvelli et al. [57]. This technique
becomes interesting when combined with the cluster analysis of AE events
as performed by Lomov et al. [231], John et al. [181], El Hage [105],
Benmedakhene et al. [30] in glass/epoxy and carbon/epoxy two- and three-
dimensional woven composites and by Carvelli et al. [56] for a thermoplastic
PPS carbon woven composite. Taking into account not only the acoustic energy
thresholds registered by the AE sensors but furthermore other descriptors of
AE events such as the frequency of the emitted signal (cf. Gutkin et al. [140],
Sause et al. [342], Baker et al. [23], Maillet et al. [243]) allows a
precise identification and distinction of the appearing damage modes after
calibration. The found clusters correspond to damage events originated from
transverse matrix cracks (events with low frequency and low amplitude), local
delaminations (low frequencies and high amplitude), and fiber breakage (high
frequencies). Together with the technique of strain mapping, where strains
on the stress-free surface are measured, the failure locations and types can be
identified in a non-destructive manner, helping to identify characteristic strain
levels for damage onset or change of damagemodes. The specimen tensioned up
to a certain critical strain level, identified by the aforementioned techniques, are
then to be examined further by the usage of X-ray and ultrasonic C-scanning
technologies. While X-ray investigations allow the precise presentation of
cracks within thematerial, C-scan tests, as applied in Truong Chi et al. [391],
give a rougher picture of damage in the specimen and are hence more suitable
to give an impression of the overall damage extend, periodicity and to observe
more widespread damage patterns, related to the underlying textile architecture
(cf. Lomov et al. [237]). Both techniques can be used while the specimen
is loaded and, in case of a tensional load, the cracks are opened and hence
nicely visible. To enhance visibility, contrast agents are often used in the
case of X-ray analyses. Cross-sectioning the identified locations of the cracks
and their adjacent areas with the help of the recorded X-ray and C-scan data
allows further studying the damage behavior on a microscopic level. In some
cases further investigation of the fiber-matrix interface is needed, which can be
inquired by using a scanning electron microscope (SEM). The proposed suite
of tests presented here result in a complex and time-consuming test preparation
and execution.
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As one of the first authors in recent history, John et al. [181] introduce
a systematic "taxonomy" of damage processes in three-dimensional woven
E-Glass vinyl ester composites using an alternative approach to analyze dam-
age processes in woven composites. By investigating the stiffness during
tensile tests in measured stress-strain relationships (cf. Fig. 2.14) and an-
alyzing the step-wise softening behavior of the material, different levels of
damage onset were detected. By using solely post-mortem optical analyses,

Figure 2.14: Stress-strain relation of a woven composite tested under tensile load in warp direction.
The arrows indicate the identified failure modes by analysis of the secant stiffness and optical
microscopy. Image taken from John et al. [181].

the essential failure modes appearing under applied load in weft and warp
yarns could be identified by the authors. They describe the damage pro-
cesses as a complex combination of transverse and longitudinal cracks in the
fiber tows followed by consecutive debonding on the boundaries of the im-
pregnated yarn-matrix and delamination finally yielding to ultimate failure.
Other works confirmed the results with regard to the sequence of damage
processes in both three-dimensional woven carbon/epoxy composites (cf. El
Hage [105]) and also for two-dimensional woven composites as demonstrated
in the works of Tang & Whitcomb [375], Kurashiki et al. [209], and
Uetsuji et al. [397], where the authors used optical analysis techniques for
the detection and investigation of damage. Carvelli et al. [56] and Sugi-
moto et al. [364] used acoustic emission for the identification of characteristic
strain levels at which damage initiation of different modes commences. Results
of damage investigations of composites with varying fiber architecture indi-
cate that the same basic mechanisms are responsible for the ultimate damage.
Using the broad spectrum of possible analysis techniques presented above,
Lomov et al. [231], Masters & Ifju [254], and Ivanov et al. [176, 178]
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focused on the damage evolution in braided composites, and Greve & Pick-
ett [134], Edgren et al. [103], Truong Chi et al. [390,391], Asp et al. [16],
Mattson et al. [256], Mikhaluk et al. [278] studied appearing patterns
in non-crimp fabrics, all of them with the resulting conclusion that the same
sequence of damage event governs the failure behavior of such composites.
Carvelli et al. [56] proposed the sequence of damage events appearing

Figure 2.15: Typical sequence of damage events appearing under tensile loading according to
Carvelli et al. [56]. t: transverse cracking, tm: transverse cracking in resin pockets, l: local
delamination of impregnated yarns, sp: splitting in longitudinal yarns, L: inter-ply delaminations,
f fiber failure in longitudinal yarns. Identification of characteristic strain levels where certain
damage modes are triggered. Y1: Onset of t-cracks, and Y2: onset of local delaminations (l) and
the formation of large transverse cracks (tm).

in textile composites under tensional loading in warp direction as depicted
schematically in Fig. 2.15. The initial underlying mechanism that triggers the
damage evolution in woven composites is the local micro debonding of single
fibers of the transverse tow from their surround matrix. Coalescing micro
cracks form larger transverse cracks (t) as depicted in Fig. 2.16. While initially

Figure 2.16: Transverse cracks (t) in weft yarns (out-of-plane) after a tensile loading in warp
direction (horizontal). Image taken from John et al. [181].

only a few cracks exist in the weft tows, which furthermore do not span the
whole width of the yarn, the number, size, and length increases upon further
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loading, until eventually reaching a state of saturation. The characteristic strain
level Y1 indicates thereby the onset of t-cracks. The experimental characteriza-
tion of the processes occurring by increasing the load further indicate a parallel
development of resulting damage modes. Originating inside the weft yarns,
transverse cracks propagate inside the matrix rich areas between the fiber tows
(tm). Reaching the interface of other, not aligned reinforcement structures, e.g.
longitudinal (warp) yarns or sheared weft yarns, the transverse cracks cause the
appearance of local delaminations (l). The main responsibility for that forma-
tion lies in the active inhomogeneous stress states at the crack tip and especially
the shear components. Figure 2.17 shows local delamination phenomenon due
to t-crack grown out of a weft yarn. Other experimental investigations indicate

Figure 2.17: Starting local delamination (l) initiated by a t-crack. Image taken and modified from
Lomov et al. [237].

that local delaminations (l) can also appear without being initiated by t-cracks
(cf. Lomov et al. [237] and El Hage [105]). The formation of tm- and
l-cracks are identified by AE events happening at a characteristic strain level, Y2.
Looking at the warp fiber tows oriented in loading direction, the damage mode
of splitting (sp) can be identified. The initially undulated longitudinal yarns
straighten under tensile load. Especially in the crimp areas this deformation
is suppressed by the adjacent reinforcements and surrounding matrix. Further-
more, being subjected to the Poisson contraction, the transversal deformation
of warp yarns is constrained, yielding internal transverse stresses. For the case
that these stresses exceed the transversal strength, inter-fiber fracture occurs
in the longitudinal yarns. Figure 2.18 shows a view of a micro cut of such a
damage behavior. As local delaminations (l-cracks) grow due to increasing
loading, they eventually coalesce to larger delaminated areas (L-cracks). These
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Figure 2.18: Transversal cracks in the longitudinal yarns (warp), oriented perpendicular to the
image plane here, due to the damage mode splitting (sp) indicated by arrows. Image taken from
John et al. [181].

preferably form in the interface between single plies, effecting their separation,
and are therefore often described as an inter-ply failure, depending mainly on
the inter-laminar fracture toughness of the composite. The ultimate failure of
the specimen is defined by fiber failure (f ). Lomov et al. [237] state, that fiber
failure starts at locations of delaminations. Experimental observations show
a reduced failure strain in warp direction for textile composites compared to
their non-crimped counterparts. Carvelli et al. [56] explain this reduction
by the prohibited stress transfer inside the fiber bundles due to the adjacent
micro damage. This effect is intensified by the off-axis orientation of the fiber
bundle due to the undulation.

2.4 Constitutive modeling approaches on
different scales

Increasing attention has been given to composites with textile reinforcement
in the recent years with the purpose to close the gap between "high tech"
unidirectional laminates and "high volume" composites consisting of short-
fibers or particulates (cf. Gommers et al. [127]). While the idea of multiscale
analysis of woven textile composites is relatively old, there has been some
recent progresses in the modeling of the material behavior on the different
scales. The focus of the following section lies on the review of already existing
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modeling approaches of the thermoplastic constituent (matrix), subcomposites
and macroscopic formulation of impregnated weaves. The structure of this
presentation is based on the intrinsic hierarchy of the woven composite material
at hand.

2.4.1 Plasticity and damage in isotropic matrix material

The last decades have been marked by many developments in the field of
describing elastic and inelastic behavior of a large number of different material
classes, such as metals, ceramics, plastics, natural materials, or tissues, just
to name a few. They cover a wide range of the most diverse applications and
disciplines, such as classical stress analysis, soil mechanics in civil engineering,
deformation analysis duringmanufacturing, food processing, mining operations
or tissue engineering in biomedical applications (cf. de Souza Neto [296]).
The following short review of available models is exclusively carried out in
the framework of continuum mechanics. In the context of the presented work,
formulations of viscoplasticity and failure in plastics and plastic composites are
of primary interest. Looking at the performed material tests of the pure matrix
in Section 3.2, those were the predominant phenomenologically observable
effects occurring under monotonous loading.

2.4.1.1 Plasticity

Concerning the inelasticities associated to plasticity in a ductile metal, i.e. the
remaining of permanent deformation upon unloading during a uniaxial tension
test, de Souza Neto [296] summarized the visible effects as follows:

1. The domain of stresses, where no permanent (plastic) strain evolution is
occurring and the material response can be assumed to be purely elastic,
is called the elastic domain. In the easiest isotropic case, it can be
characterized by one scalar value, the yield stress.

2. If the applied stress exceeds the yield stress, plastic yielding or plastic
flow, thus the evolution of remaining strains upon unloading, takes place.

3. Simultaneously, a change of the yield stress is observed, which is denoted
as hardening in the following.
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These observations are valid analogously for plastic materials. Additionally,
most of the observable behavior is dependent on the rate of application of
loads and/or the timescale of the problems considered (crash vs. creep or
relaxation). Generally, plastic materials show both viscoelastic and viscoplastic
behavior. The former shall be neglected in the current study since no significant
expression was observed in the experimental results. However, the interested
reader is referred to Chaboche [64], Lemaître & Chaboche [224], or
the textbook of Bergström [33], among many others for basic works on
this topic. Self-evidently, the respective characteristics of these effects depend
strongly on the material to be considered and the micromechanical processes
occurring in it, depending on the actual rate, time and temperature. Therefore it
is a common approach to investigate the processes on the micro scale, since they
are particularly important for the understanding of the material behavior under
more complex rate/time dependent loading scenarios, including thermal effects,
the influence of hydrostatic pressure or multi-axial loading. To describe the
observed behavior qualitatively and quantitatively (either phenomenologically
or via micromechanical motivations) is the purpose of the mathematical theory
of plasticity using continuum constitutive models (cf. de Souza Neto [296]).
Hereby, a multitude of modeling possibilities is given in the literature. In an
effort to establish a general model, the basic elements denoted in Box 2.1 have
to be defined by the constitutive plasticity model.

Box 2.1: General formalism for a definition of a constitutive plasticity model.

1. Definition of the kinematic framework and elastoplastic
strain decomposition.

2. Formulation of the ground-state elasticity.

3. Determination of a suitable yield criterion describing
the elastic domain.

4. Construction of the plastic flow rule defining the
evolution of inelastic strains.

5. Definition of a hardening law, characterizing the
evolution of the elastic domain.
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Each of these elements were the topic of research for more than four decades,
and efforts are still ongoing. In Section 2.1.1 the major kinematic frame-
works have been introduced, distinguishing infinitesimal (cf. Eq. 2.16) and
finite deformation (cf. Seth-Hill strain measures, Eq. 2.11). According to
Miehe et al. [269], no canonical kinematic framework has been found so far
concerning finite plasticity. At this point, it is referred to Naghdi [286] and
Xiao et al. [425] for a discussion and a critical review of available approaches.
Besides hypoelastic rate formulations, which are neglected in this present work,
and the decomposition of strain in the logarithmic framework (cf. Eq. 2.141),
basically two kinematical approaches to finite plasticity are available: (a)
Multiplicative decomposition of the deformation gradient into the elastic and
inelastic parts L = L4L8 (cf. Eq. 2.7) referred as the Kröner-Lee decomposi-
tion (cf. Kröner [207], Lee [216], and Mandel [250]). (b) A framework
according to the Green-Naghdi theory (cf. Green & Naghdi [131]) that
introduces the notion of an additional primitive Lagrangean pastic strain K ? .
Building on this work, Miehe [273,274] developed a third framework based
on the evolving reference plastic metric M ? . This framework is of particular
interest, since it allows the transfer from a plasticity model initially defined
as a function of logarithmic strains to a finite setting (cf. Miehe et al. [268],
Papadopoulos & Lu [306, 307], Miehe & Apelt [275]). The elastic
part 94 of the Hencky strain 9 (cf. Eq. 2.13) can be defined by

94 = 9 − 1
2

ln (M ?) = 9 − 9? . (2.71)

A comparative study was performed by Miehe et al. [268] showing the
closeness of multiplicative approach with the newly designed additive finite
plasticity framework. According to the authors, another advantage is the
easy algorithmic implementation of the proposed setting. The basic constitu-
tive equations for geometrically linear theory of elastoplasticity is presented
for example in Hill [163], Reckling [331], Backhaus [21], among
others. A detailed description of the theory and remark on the numerical
implementation, especially in the framework of large deformations, is given by
Simo & Hughes [352], and Miehe [272]. Within these works, the concept
of hyperelasticity, i.e. the free energy function as the starting point for the defi-
nition of constitutive laws for stress is also presented. de Souza Neto [296]
provides hyperelastic models for both frameworks, including corresponding
comprehensive derivations. Examples for non-isotropic free energy functions
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leading to more complex symmetry classes can be studied in Schröder [346].
To some extent interconnected, the remaining elements (3-5) of box 2.1 can be
used to introduce time dependency in terms of viscoplasticity, using different
methods. The following statements apply analogously to both small and large
strain frameworks. In the literature, a vast number of yield criteria is available.
The formulations for the elastic domain according to Tresca [385], von
Mises [405], or the pressure dependent criteria by Mohr-Coulomb, de-
scribed in Christensen [73], and Drucker-Prager [102] are the most
classical examples. Graphical depictions of the yield surface in the stress space
are provided by de Souza Neto [296].

Focusing on yield behavior of polymers, a serious effort to experimentally
characterize the three-dimensional yielding behavior and cast the observations
in a general mathematical formulation of an elastic domain has been made over
the years. As a result, the data indicates the necessity of pressure dependency
and asymmetry of yield strength under tension and compression loading for a
sensible yield criterion for plastics (cf. Raghava [328]). Modified von Mises
yield criteria are often used for this purpose, as provided by Meldahl [258],
Schleicher [345], Stassi D’Alia [362], or Tschoegl [393] among
many others. For a more extensive state-of-art review on available yield criteria,
please refer to Altenbach et al. [3]. The borders of the elastic domain are
described in terms of strength values, which can be formulated as functions
of rate/time in order to introduce a viscoplastic formulation, thus directly
influencing the formulation of hardening (cf. de Souza Neto [296]). A
detailed review on modeling possibilities concerning hardening is neglected at
this point of the work and it is referred to de Souza Neto [296]. While the
existence of a yield surface is essential for the definition of rate-independent
plasticity models, this is not required for some viscoplasticity models. This
means, that the model yields plastic deformation whenever stress occurs (cf.
Lemaître & Chaboche [223], Skzypek [356], and others). Examples
for such models are widely used, concerning the analysis of creep (cf. Norton’s
creep model, Lemaître-Chaboche law, and others). The most intuitive way to
adapt a rate-independent plasticity model towards a viscoplastic formulation is
done via the plastic flow rule. In general, the evolution equation for the plastic
strain in a small strain framework can be written as

¤9? = ¤WT, (2.72)
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where ¤W is the plastic multiplier and T denotes the direction of plastic flow.
The latter is described in general by a flow potential Ψ? (non-associative flow
rule). In the case that yield function (Φ) and the potential for plastic flow
are chosen to be identical, Ψ? ≡ Φ, a associative (or associated) plasticity
model is defined. Numerically speaking, for time-independent models an
elastic predictor/plastic corrector algorithm is usually applied in order to
find the solution of elastic and plastic strains, as a function of the plastic
multiplier ¤W (cf. de Souza Neto [296]) in an iterative manner. Viscoplastic
formulations, however, use an explicit function of ¤W, in order to model how the
rate of plastic straining varies with the level of stress. In the literature many
approaches for such a definition are available (cf. Peric [311]), such as the
Bingham model (cf. de Souza Neto [296]) or the Perzyna model provided
by Perzyna [313,314]. Chaboche [66] provides another extensive review
on plasticity and viscoplasticity models for small strain settings.

As already mentioned, similar developments were undertaken also in the frame-
work of finite strain. In the context of polymeric materials, phenomenological
models date back to the works of Eyring [110]. Although the parameters
of this model have a physical meaning, their physical significance remains
dubious, according to Miehe et al. [269], Bowden [40], and Crist [80].
Therefore, early on models based on thermally activated inter- and intramolec-
ular mechanism were developed (cf. Marschall & Thompson [252],
Haward & Thackray [155], Rider & Hargreaves [335], Vin-
cent [403], Robertson [337]). The basis for a multitude of actual models
is the work of Argon [10], who introduced the double-kink model.

With regard to the extension toward a viscoplastic formulation of (mainly
glassy) polymers, many contributions were provided in the last years. Hereby,
the essential foundations were laid by works of Boyce and Argon among
others (Boyce et al. [41], Arruda & Boyce [11], Arruda et al. [13],
Hasan & Boyce [150]). Extensions of these models are provided by
Wu & van der Giessen [422–424], Tomita & Tanaka [384], Gov-
aert et al. [128], Anand & Gurtin [4], Bardenhagen et al. [27],
Miehe et al. [269], and many more. The eight-chain-model by Ar-
ruda & Boyce [12] and the non-affine microsphere model by Miehe [267]
are particularly popular in this respect. Most of the named models are for-
mulated in the Kröner-Lee decomposition. The automatic outcome of this
approach is the existence of the hypothetical intermediate plastic configuration
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(see Fig. 2.2). An important assumption for the upcoming developments in
the course of this work, is the suggestion made by Boyce et al. [42], that the
elastic part of the deformation gradient has to be symmetric. A comprehensive
review on available viscoplastic models for polymers and their numerical
implementation is given in Bergström [33].

2.4.1.2 Damage and failure

Failure describes the complete loss of load-carrying capability of the material.
Ahead of the ultimate failure event, progressive internal damage processes
occur in the material, which correspond to the formation of cracks and cavities
at the microscopic level. The theory of Continuum Damage Mechanics (CDM)
as a branch of continuum solid mechanics, formulates constitutive models, in
the best case taking into account these micromechanical effects with the aim of
a reliable life time prediction (cf. Kachanov [184], Krajčinović [204]
and Lemaître & Chaboche [223]). The phenomena in the material
leading to damage evolution and failure are for most materials essentially dif-
ferent from those characterizing deformation (cf. de Souza Neto [296]).
A direct consequence thereof is the introduction of state variables that are
connected to damage processes additional to the standard variables for elasto-
plasticity (e.g. (plastic) strain). Thus, the new state variables represent the
density and/or distribution of microscopic effects characterizing directly or
indirectly the damage state within the material (cf. de Souza Neto [296]).
Kachanov [184] proposed the first continuum damage model in the litera-
ture, by means of a scalar internal variable in order to model creep damage
for metals under uniaxial loading scenarios. Despite the lack of any physi-
cal meaning of the damage variable, this pioneer work marks the beginning
of a series of many important publications. Early on, Rabotnov [327]
interpreted the physical meaning of a scalar damage variable as the reduc-
tion of the net area of the loaded material due to microcracking as a suitable
measure of internal damage. In the following years and in the context of
creep modeling, processes were made based on these original developments
regarding the generalization towards three-dimensional descriptions of dam-
age (e.g. Leckie & Hayhurst [213]). Murakami & Ohno [285] and
Murakami [284] made noteworthy developments regarding the anisotropic
formulation of damage states, presented therefore by second-order tensors.
Chaboche [61–63, 65] developed a new phenomenological approach for the
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description of creep-damage evolution based on thermodynamic considerations
and proposed the existence of mechanically equivalent ficticious undamaged
configurations, also known as stress/strain equivalence. This hypothesis is
also used in contexts other than creep (e.g. damage due to monotonous load-
ing). Further developments were provided by Lemaître [219, 221, 222]
and Gurson [139] for ductile damage. Anisotropic damage as well as
unilateral damage effects due to the asymmetry of the damage effect during
tensile and compressive load was provided by Lemaître et al. [225]. A
discussion of the separation of CDM theories into two categories, microme-
chanical and phenomenological models, is presented in Basista et al. [28].
In their work, Simo & Ju [353, 354] give very comprehensible derivations
of generally anisotropic strain- and stress-based damage models, consistent
with the theory of Lemaître’s work. The usage of this hypothesis generally
leads to a non-symmetric tangent operator. To overcome this problem Corde-
bois & Sidoroff [77] published an elastoplastic damage model based on the
assumption of energy equivalence and using second-order tensors to describe
the damage state. Leckie & Onat [214] and Onat [302] show in their
work, that distribution of voids in metallic material can be mathematically pre-
sented best by tensors of an even rank. Apparently unaware of this statements,
in literature a number of damage models based on a vectorial definition of
the damage state are available (cf. Krajčinović & Fonseka [203], Fon-
seka & Krajčinović [117], or Krajčinović [201], among many others).
Krajčinović [202] furthermore introduced a model which is able to distinct
between a set of active and passive systems of microcracks. Kachanov [182]
and Mitchell [279] provide an overview over available vector-based damage
models. Very extensive reviews of available modeling techniques concerning
damage is given in Chaboche [60, 61], Lemaître & Chaboche [223],
Peerlings [310] and Lemaître & Desmorat [226] among others. Here,
also formulations for other loading scenarios, such as fatigue, are addressed.
Based on the above mentioned concepts, constitutive models of the type of
Lemaître & Chaboche [223] make use of the degradation of the elastic
moduli, hence using the stiffness as themacroscopical measure of damage.Their
derivation based on thermodynamical consistent assumptions for hyperelastic
materials is presented very comprehensively in de Souza Neto [296] within
the framework of small strains. Hyperelastic damage models in the context of fi-
nite strain available in the literature are introduced mainly by the example of the
Mullins effect in rubber materials. Description of the occurring damage effects
as well as (general) derivations for the thermodynamically consistent derivation
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of the isotropic damage model are given in Holzapfel [169]. Further work
concerning this topic is provided by Lion [230] and Miehe & Keck [270].

Representative volume elements are one of the main remedies in order to per-
form numerical studies of the microstructure of unidirectional fiber reinforced
composites with the aim of computing and characterizing macroscopic behav-
ior (i.e. stiffness, plastic behavior, failure and many more). For further reading
please refer to the works of Melro et al. [260], Wongsto & Li [419],
Li & Wongsto [228] or Trias et al. [386]. These investigations showed
furthermore, that it is necessary to model the microstructure of UD material
by means of statistically representative volume elements (SRVE) when the
characterization of plasticity and damage evolution is the intended goal. The
arrangement of the fibers has a significant influence on the stress and strain
distribution on micro level. Works by Pyrz [323, 324], Sørensen & Tal-
reja [361], and Brockenbrough [43] are just a few examples that under-
line the importance of a random spatial arrangement of the reinforcement. For
a very extensive review on available as well as a presentation of an intuitive and
easy to implement method to generate virtual unidirectional microstructures
for the use in finite element applications, please refer to Melro [260].

A review of the state of the art concerning the modeling of thermoplastic
composites with a unidirectional fiber reinforcement shows that viscoplastic
behavior is neglected in a large number of publications for the analytical and
numerical characterization of the macroscopic behavior. One partial objective
of this work is therefore the derivation of a elasto-viscoplastic damagemodel for
the thermoplastic matrix material. It will be used as a basic constitutive model
during the meso-modeling of the subsequent microstructures and, thus, can
be used to investigate the viscoplastic portion of deformation in the respective
composites virtually.

2.4.2 FE-Modeling approaches of textile composites

This section deals with meso-level analysis of mechanical behavior of impreg-
nated textile composites. The simulation of dry composites as well as forming
simulation will not be addressed directly and is out of scope here. A short
review of available literature is given, that concentrates on the meso-modeling
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with the aim of maximum detail level with regard to the reinforcement geom-
etry consequently in a very accurate prediction of stress-strain states, using
finite element modeling. These analyses allow further investigation of damage
initiation and development. When it comes to modeling the mesoscopic level
of woven fiber composites regarding deformation and failure onset/progres-
sion, engineers have to face a two-fold problem, apart from current issues
of the numerical and conceptual framework of multiscale analysis within an
FE environment (consideration of symmetry, correct formulation of boundary
conditions, application of numerical homogenization techniques, pre-/post-
processing of the FE model). It consists of (a) the consideration of geometrical
effects in multi-layered woven composites and (b) the necessity of reliable
constitutive modeling of the single phases (rovings and embedding matrix).
Lomov et al. [231] presented a wide-ranging review of the implementation
of progressive damage modeling for different kinds of textile composites. Fur-
thermore, they propose a "road map" in order to set up a multiscale analysis
of textile composites, containing the aforementioned issues with focus on the
implementation of a closed process chain, starting at the generation of the
meso-structure up to the evaluation of damage initiation criteria and damage
development.

2.4.2.1 Virtual geometric modeling of weave reinforced composites

The geometrical modeling of woven composites in a finite element context is
very challenging. The interlacing of the yarns yields complex microstructures,
which have to be accurately rendered in its virtual counterpart. The main
difficulties here is the correct definition of the geometry of the single yarns
embedded in the composite. Therefore, neighboring yarns and crimp regions,
where yarns with different directions meander to the opposite side of the weave
layer, are of special interest. In the literature, a large number of authors deal
with the FE-meso modeling of textile fabrics (cf. Carvelli & Poggi [54],
King [192], Zako et al. [430], Barbero et al. [24], and many others,
e.g. [22, 35, 36, 54, 55, 58, 81, 82, 86, 103, 116, 142,165, 179,209,215, 232,235,
236, 297, 325, 348, 368, 371, 374, 375, 397, 411–413, 416, 420, 431, 433]) with
variations in the fiber architecture and resolution of the inner structures. Please
see Crookston et al. [81] and Lomov et al. [231] for a detailed overview
of available modeling approaches. Overall, mostly woven composites are
addressed. Given a sufficiently accurate geometry representation including
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an adequate FE-mesh, it was shown that the computation of elastic proper-
ties can be performed on a very reliable level. The success of these basic
investigations and the promising results obtained, encouraged researchers to
approach more complex problems such as the investigation of nesting effects (cf.
Hale & Villa [142], Kurashiki et al. [209], Le Page et al. [212]) and
damage progression (cf. Nicoletto & Riva [297], Edgren et al. [103],
Zako et al. [430], Daggumati et al. [85], or Wang et al. [408]). An
important step, yielding to a significant simplification and enhancing model
possibilities, was the development of microstructure generators for textile com-
posites. The two most prominent representatives are the software packages
WiseTex (cf. Lomov et al. [231] and Verpoest & Lomov [402]) and
developments from researchers of the University of Nottingham, who provide
the open-source solution TexGen (cf. Sherburn [350]). Both software so-
lutions deliver accurate representations of both dry and impregnated textile
microstructures. In combination with finite element meshers, e.g. meshTex or
TetGen (cf. Lomov et al. [231] or Sherburn [350] respectively), an easy
transfer to commercial FE programs like Ansys or Abaqus (cf. Simulia [355],
Cadfem [47]) is possible, distinguishing between matrix rich areas (matrix
pockets) and weft/warp tows. Due to given information about the element-wise
fiber orientation and fiber volume fraction, it is possible to accurately assign the
local stiffness properties of the single phases. Using this technique, the majority
of the current works deal with the investigation of the local structural behavior
of unit cells using FE simulations. Three-dimensional formulations of periodic
boundary conditions are mainly used, exploiting the idea of the unit cell under
investigation originating from the center of a laminate (cf. Lomov et al. [231],
Whitcomb [414], Whitcomb [415], Bogdanovich [37]). However,
recent studies show the influence of free surfaces and edges on the local stress
behavior of shell-like structures (cf. Ivanov et al. [177], Owens et al. [305],
Lomov et al. [238]), therefore motivating the usage of in-plane periodic bound-
ary conditions (see a definition in Melro [260]). The resulting virtual model
on the mesoscopic scale contains two phases: (a) the impregnating matrix
and (b) the undulated rovings. For the approach taken here, a homogenized
substitute model is needed for the latter that takes into account the anisotropic
nature of elasticity as well as all relevant damage modes. In the following, an
overview of some already known models and the requirements for the formula-
tion of damage within the framework of the CDM that were derived from such
is given.
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2.4.2.2 Constitutive damage modeling of impregnated rovings

An intuitive way for simulating damage in composites is the theory of fracture
mechanics, thus, introducing discrete cracks in the FE model. In general, it is
however difficult in a computational sense, to create free boundaries in a com-
plex microstructure. Furthermore, the crack path has to be known and well de-
fined beforehand, which is normally the only case during delamination of yarns
from the surroundingmatrix, as reported by Camanho et al. [49]. Hence, only
simplified two-dimensional or abstracted geometries were evaluated using clas-
sical fracture mechanics (cf. Edgren et al. [103], Le Page et al. [212]). As a
consequence, in the context of continuum damage mechanics, models based on
internal damage variables are widely used. The advantage here is the possibility
of considering a stiffness degradation without introducing cracks directly in
the mesh. It does not necessitate mesh refinement, is therefore computationally
simple (cf. Lomov et al. [231]), and hence an important tool for modeling
damage evolution in fiber composites. With regard to textile composites, it
is widely used (cf. Carvelli & Poggi [58], Tang & Whitcomb [375],
Whitcomb & Srirengan [411], Fish & Yu [115], Zako et al. [430],
Hamelin & Bigaud [147] just to name a few). In the majority of available
works it is assumed, that the matrix behaves isotropic, impregnated tows locally
behave like unidirectional composites, showing an initially transversal isotropy
and corresponding failure modes. Wang et al. [408] state the importance
of further investigations on the exact failure behavior of tows, especially in
crimped areas, based on their virtual assessment of the failure behavior of 2D
twill woven composites. Most of the damage models used, follow a local for-
mulation. In other words, the damage initiation and progression depends solely
on the deformation of the element where the damage criterion is evaluated. In
contrast to that, other formulations like phase-field approaches exist, where
damage is an additional field (for example to stress, strain or temperature field)
that is solved simultaneously (cf. Fish et al. [116]). These concepts are not
taken into consideration throughout this work. In order to relate stresses and ex-
perimentally determined material strengths to the onset of failure, stress-based
failure criteria are commonly used and a large number of available criteria are
available in the literature (see e.g. Soden et al. [359] or Paris [308]). As
a further development of the von Mises criterion, Hill [157] proposed the
first anisotropic failure criterion, named the Tsai-Hill criterion. Criteria of
Tsai & Wu [392] (Tsai-Wu criterion) and Hoffman [168] followed, but
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all three were unable to distinguish the occurring failure modes. To overcome
this weakness, Hashin [151] published the Hashin criterion. Intention-
ally formulated for fatigue failure, it is formulated depending on tensile or
compressive loads in combination with shear and distinguishes furthermore
between longitudinal (fiber) and transversal (matrix) direction, therefore cor-
responding directly to the nature of unidirectional plies. Sun et al. [366] and
Puck et al. [320, 321] take into account a detailed investigation of failure
modes, appearing during different loading scenarios. More recently, a criterion
was presented by Davila et al. [88], named LaRC03, corresponding to a
plain-stress problem. Extending this formulation towards a general stress state,
the criterion called LaRC04 was developed (cf. Pinho et al. [315], see also
for a review on failure criteria). Additionally, Catalanotti et al. [59]
proposed another three-dimensional failure criterion for plastic fiber compos-
ites, taking special attention to the effect of ply thickness. The extensive
work of Hinton et al. [164] evaluated common damage initiation criteria
in their world wide failure exercise. The reviewed criteria were then adopted
by most researchers towards the usage in textile fabrics and build the basis of
the assessment of damage evolution. Hereby, the composite lamina (here, this
corresponds exclusively to the impregnated yarns) are assumed to be a homoge-
neous, albeit anisotropic material. The effect of delamination of plies, is usually
addressed by methods of linear-elastic fracture mechanics. Here, mostly the
virtual crack closure technique (cf. Krueger et al. [208]) or cohesive formu-
lations (cf. Alfano & Crisfield [1], Allix & Corigliano [2], Ca-
manho et al. [48], Turon et al. [395], de Borst [89], Jansson & Lars-
son [180], Li et al. [229]) are used. Maimí et al. [244–246] published
a two-dimensional continuum ply damage model for composite laminates,
presenting both the theoretical framework as well as the numerical implemen-
tation. To ensure thermodynamical consistency during damage evolution, the
crack band model of Baz̆ant [19] is employed. In the context of standard
dissipative material theory, a failure model including an anisotropic damage
formulation to describe fiber-reinforced composites was proposed by Matzen-
miller et al. [257]. The corresponding rate-equations for damage evolution
are consistent with the laws of thermodynamics. A three-dimensional gener-
alized damage model was presented by Govindjee [129] in the context of
anisotropic brittle damage of concrete, shows however similarities to a model
suitable also for fibrous composites. The appeal of this model is the usage of
thermodynamic forces in order to specify the damage evolution. As a result of
the hyperelastic theory, these forces are a direct product of the energy potential,
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which is hence specifying the whole model. The difficulty is however the lack
of physical meaning and the therefore non-intuitive usage of such formulations.
Based on their previous works, Maimí et al. [247] published an extended
damage model to consider general three-dimensional stress states intending to
incorporate damage effects due to delamination. The presented constitutive
models account for crack closure and passive damage effects under load reversal.
In his work, Melro [260] used this model to evaluate damage evolution in the
yarns of a 5-harness stain weave unit cell micro structure under uni- and biaxial
loading in combination with a thermodynamically correct elastoplastic damage
formulation for the matrix (cf. Melro et al. [261]). Elastoplasticity in fiber-
reinforced composites is investigated and modeled by Chen et al. [71]. Taking
into account RVEs based on measurements of real geometries, Bahei-El -
Din et al. [22] presented a damage progression model for three-dimensional
weaves, predicting the overall behavior under general, multi-axial stress states.
Special attention was paid on the compressive behavior of three-dimensional
braided composites by Fang et al. [111]. Other non-linear numerical material
models for the prediction of textile composites under damage were provided
by Cousigné et al. [78] and Martín-Santos [253]. More recently,
Zhong et al. [432] published a study, in which the prediction of the damage
initiation and the development in a three-dimensional woven composite is
addressed. Therefore, the authors provide another continuum damage model,
covering the predominant failure modes in fiber and in transverse direction
as well as matrix failure separately. Damage onset was predicted by using
the Puck failure criteria. Wang et al. [408] present a progressive damage
modeling strategy based on a multiscale approach to investigate the damage
and failure behavior of tow-dimensional woven composites. An anisotropic
damage model based on the Murakami-Ohno damage tensor is provided. A
slightly different approach was presented by Thieme et al. [383], who de-
veloped a probabilistic approach to assess failure in glass fiber reinforced
weft-knitted thermoplastics. This summary is not intended to be exhaustive
and should serve as an introduction. Please note, that the presented damage
model used the framework of geometrically linear formulations. A major
lesson that can be drawn from the literature review is that the prediction
of damage evolution in fibrous composite materials necessitate the captur-
ing of the anisotropic nature of damage. Consequently, with regard to the
mathematical representation of directional damage, an at least second or
higher order tensor is needed (see e.g. Carol [51–53], Simo & Ju [353,
354]). For the case of higher order tensors many damage models for several
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kind of material classes are available (see e.g. Dragon & Mróz [101],
Kachanov [185], Chaboche [62], Murakami & Ohno [285], Or-
tiz [303], Chow & Wang [72], Murakami [283], Suaris [363],
Yazdani & Schreyer [428], Wei et al. [409], Valanis [398], Le-
maître & Chaboche [223], Hansen & Schreyer [148], Betten [34],
Oda [299], Lubarda & Krajc̆ inović [240], Voyiadjis & Park [406],
among many others ). Carol et al. [52, 53] presented a standardized formu-
lation of important concepts in the context of continuum damage mechanics
(e.g. effective stress and strain and energy equivalence) and provided a very
comprehensive description of damage models using second-order damage
tensors at small strains, following the theory of Murakami & Ohno [285],
Cordebois & Sidoroff [77], and Murakami [283]. This notation will
also be used throughout the present work. Menzel & Steinmann [262]
provide the formulation of anisotropic continuum damage mechanics at large
strains and also deal with the algorithmic treatment.

Literature research has shown a large number of available works when it
comes to meso modeling of textile composites. Techniques to reliably model
the geometry of meso structures based on real geometrical data exist and
are widely used. In terms of damage modeling of such composites, many
constitutive models are available in numerous variations and were applied
in many studies. This high variety and the concomitant discrepancies in
notations makes it difficult to compare the single models. Works with the
effort of standardization of formulations have been mentioned in the above
review. For the purpose of finite element analysis of the mesostructure of
two-dimensional woven composites, which will be carried out throughout this
work, a homogenized constitutive model representing the impregnated and
undulated rovings is needed. This model has to take into consideration the
occurring physical failure modes, their effects on the stiffness tensor and has
to be able to predict post-failure behavior. To this end, an anisotropic and
thermodynamically consistent damage model based on hyperelasticity will
be presented in this thesis. Experimentally observed large rotations of the
reinforcement structures are hereby described within the framework of finite
strains.
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2.4.3 Homogenized material models for woven composites

Taking into account the level of detail and the corresponding intensive compu-
tational effort necessary by the methods introduced in Section 2.4.2, a homoge-
nized material formulation is needed in order to calculate the deformation and
failure behavior of entire structural parts consisting of layered textile compos-
ites. Hereby, the knowledge of both, in-plane and through-thickness properties
are essential. To address this problem, reliable three-dimensional homoge-
nization methods implemented in material models for the usage in industrial
applications (cf. Hu [170], Mouritz et al. [281], Ayranci & Carey [18])
are needed, respecting all geometrical factors, such as fiber architecture (woven,
braided or knitted) as well as properties of the subcomponents (mechanical
properties, volume fractions, orientations, etc.).

2.4.3.1 Analytical modeling approaches for the computation of the
elastic stiffness tensor for textile composites with a specifically
defined topology

In analogy to short fiber composites, first analytical homogenization techniques
to model the elastic behavior of textile composites were developed. Two-
step homogenization procedures, executed on meso- and macro-levels set up
the general scheme of these techniques. The idea here is to first predict the
elastic properties of a sub-volume of a subdivided unit cell or RVE, taking
into account realistic geometrical conditions, where the reinforcements can be
assumed to be piecewise unidirectional lamina with long fibers. By calculating
the homogenized stiffness of the sub-volumes at micro-level (usually within
the local {123} coordinate system, where the 1-direction corresponds always to
the direction of the local reinforcement) and transforming them into the global
coordinate system {XYZ} with respect to the RVE, the second homogenization
step can be performed. Applying a particular homogenization technique the
results from the single sub-volumes are assembled, yielding a prediction of the
overall global stiffnessmatrix of the complete RVE. Hallal et al. [144] cluster
available analytical methods in five categories based on the corresponding
homogenization method used at meso- and macro-levels: Classical Laminate
Theory (CLT), iso-strain assumption, mixed iso-strain/iso-stress assumptions,
inclusion methods and the methods of cells (MOC).
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Classical Laminate Theory

Well known from applications with 2D laminated composites, models based
on CLT yield good results in comparison with experimental and FE results.
In the studied literature, this technique was mostly used on 2D woven tex-
tile composites, supported by the relatively simple fiber architecture, such
as plain weaves, twill weaves, satin weaves, etc. The advantage of such
structures is, that the RVE geometries can be decomposed into layers along
the thickness direction rather easily, enabling a straight forward usage of
CLT. Ishikawa & Chou [171–175] provide fundamental and basic work
on modeling textile composites using CLT as homogenization technique.
Ishikawa & Chou [173] derive two approaches, iso-strain and iso-stress
condition, yielding finally upper and lower bounds of the in-plane elastic
properties. In the course of the just quoted works, three basic models were
introduced, the mosaic, the undulation, and the bridging model. Figure 2.19
shows the used ways of microstructure abstraction. Starting point of their
developments was the mosaic model, where the RVE is idealized as a asymmet-
rical cross-ply laminate as depicted in Fig. 2.19a. Further development lead
to a one-dimensional crimp model, the fiber undulation model, that described
the undulation of the yarn under loading using a sinusoidal function, whereas
transverse yarns were assumed to be straight (cf. Fig. 2.19b). This extension
of the mosaic model makes use of the iso-stress assumption. Of particular
interest applying this model is the subdivision of the undulated sections of the
fabric composite, where the stiffness matrices are calculated locally and then
assembled under iso-stress condition using CLT. The authors state that this
modeling technique works best for two-dimensional plain weave composites (cf.
Ishikawa & Chou [173]). Finally, they also proposed the bridging model,
where the unit cell is further decomposed in five sub-regions (cf. Fig. 2.19c),
where region III corresponds to the crimp region. All sub-regions are then
assembled using iso-stress conditions in series and iso-strain condition in par-
allel. The authors state, that this model is best used for satin fabrics with
long straight regions. The models just introduced were the starting point for
further developments, with increasing complexity regarding the abstraction of
the microstructure as well as the sequence of homogenization using different
assumptions. Yang et al. [427] presented an extension of the fiber undula-
tion model, called fiber inclination model, where the unit cell is assumed to
consist of inclined yarns. Using CLT together with the iso-stress condition,
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a b c
Figure 2.19: Schematic representations of assumptions used by analytical homogenization tech-
niques by Ishikawa & Chou [173]. Approximation of the weave geometry and definition of
sub-regions by (a) mosaic model, (b) undulation model, and (c) bridging model. Images taken
from Hallal et al. [144].

the effective elastic properties for a three-dimensional braided composite are
derived. In a similar manner, Whitney & Chou [417] provide a model
for the prediction of in-plane thermo-elastic properties of a three-dimensional
angle interlock composite. Attempting to combine the iso-strain and iso-stress
conditions, Byun et al. [46] introduce a micro-cell model in combination
with CLT. Comparison of the model response with experimental results show
an improved prediction of the axial Young’s modulus as well as in-plane
Poisson’s ratio, whereas less accurate results for the axial shear stiffnesses are
obtained. With the cross-over model, Ramakrishna [330] proposed another
two-dimensional analytical model for the prediction of the elastic behavior of
plain knitted composites. Using CLT together with an iso-strain condition, the
calculation of elastic entities in sub-volumes of the curved yarns was carried
out in four symmetric sub-regions of the RVE. In the second homogenization
step a micromechanical model defined by Uemara et al. [396] was used to
assemble the elastic properties of the yarns and the surrounding resin matrix
in order to obtain the stiffness matrix of the RVE.

Iso-strain models

In literature it is reported about all above presented models, that the application
of CLT is considerably more difficult when it comes to the modeling of three-
dimensional woven, braided or knitted composites, with a more complex yarn
structure. In such cases it is more reasonable to adopt a simpler homogenization
method. Analytical models using the iso-strain method allow a straightforward
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and easy calculation of homogenized stiffness properties by only using a dis-
cretization of curved or undulated yarns in sub-volumes, with the fiber volume
fraction and orientation in each sub-volume and a subsequent averaging over
the volume of the yarns and matrix under an iso-strain assumption. Promi-
nent works were published early on by Tarnopol’ski i et al. [376] and
Kreger & Melbardis [205], who introduce the analogous formulation of
the rule of mixture for textile composites, called the orientation average model.
Similar to the models using CLT, the microstructure is idealized and decom-
posed into piecewise unidirectional sub-structures and are then averaged using
either iso-stress (compliance average model) or iso-strain (stiffness average
model) assumptions, defining the upper and lower bounds of the elastic proper-
ties respectively. Modifications were made by Cox & Dadkhah [79] for the
application on three-dimensional interlock composites. Further developments
were presented by Hahn & Pandey [141], where all yarns were assumed to
be undulated and the overall stiffness can be computed in a three-dimensional
model. Modifications of this model for the usage on tri-axially braided com-
posites are given by Shokrieh & Mazloomi [351]. Other examples for
the application on different scaffold types are presented by Chang et al. [69]
for the calculation of the stiffness of three-dimensional angle interlock woven
ceramic composites. El Hage [105] and El Hage et al. [104] applied a
similar model to predict the elastic properties of orthogonal and angle interlock
woven composites. For the former, the authors state a good agreement of
the model with experimental data, especially when it is applied on the RVE
instead of just a unit cell. Hallal et al. [145] predict the properties of a three-
dimensional angle interlock composite where especially transverse properties
are in good agreement with experimental results. Treating three-dimensional
braided fabrics, the iso-strainmodel shows equally good agreement as presented
in Li et al. [227]. By its nature, the iso-strain model yields elastic properties
in both in-plane as well as out-of-plane directions, which makes it an effective
model for almost all advanced textile composites (cf. Shokrieh & Ma-
zloomi [351], Quek et al. [326], Li et al. [227] and El Hage et al. [104]).
However, this simplicity of using only an iso-strain condition is the major draw-
back concurrently, since it is to be assumed, that such assumption will yield less
accurate predictions of ultimate strength and fatigue (cf. Hallal et al. [144]).
It should also be noted that at this time there is not enough experimental data
available to confirm the validity of the prediction of out-of-plane properties.
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Mixed iso-strain / iso-stress assumptions

With the compliance and stiffness average models being the limiters of phys-
ically reasonable results, further developments were focused on finding a
model taking into account iso-strain and iso-stress assumptions in a super-
imposed way. To that end, the intention is to respect the stress-strain fields
in the RVE better than it is the case with pure iso-strain models while pre-
dicting the mechanical behavior of textile composites. By applying the CLT
method and using different assembling approaches in series or parallel the
total stiffness of the composite is computed, taking into account the actual
geometry of the microstructure, i.e. architecture and yarn cross-sections.
Naik & Ganesh [288, 290], Naik & Shembekar [292, 293], Shem-
bekar & Naik [349] and Ganesh & Naik [118, 119] provide early on
work, resulting in a two-dimensional woven fabric model (2DWF) predict-
ing the in-plane elastic properties of woven composites. More recently, this
methodology was extended to a three-dimensional model in order to com-
pute also the out-of-plane behavior of two- and three-dimensional weaves (cf.
Naik et al. [287], Naik & Kuchibhotla [291], Naik & Sridevi [289]).
The results for 3D orthogonal and angle interlock woven composites were found
to be in good agreement with experimental data. Moreover, modifications to-
wards the prediction of thermoelastic properties of textile composites were
provided by Sankar & Marrey [341] by their selective averaging method
(SAM). Tan et al. [369–372] developed models in order to address the esti-
mation of thermal expansion coefficients of three-dimensional orthogonal and
angle interlock woven fabrics. A model to predict anisotropic elastic stiffness
of three-dimensional textiles was presented by Pochiraju & Chou [316].
Here, the macroscopic stiffness is computed using an effective response com-
parison (ERC) technique, based on the decomposition of the RVE in small
elements. The authors compared calculated and measured results of angle
interlock composites and found good agreement. A very simple and intuitive
way of combining iso-strain and iso-stress was the model of Kalidindi
&Abusafieh [186] and Kalidindi & Franco [187]. Introducing a
factor U, giving the weight of the different shares of the two single solutions
according to

C = UC Ȳ + (1 − U)S−1
f̄ , (2.73)
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where C Ȳ and S−1
f̄ = Cf̄ are the stiffness solutions coming from iso-strain

and iso-stress assumptions respectively. However, difficulties in the physical
motivation and the finding of a generalized form of such a factor arise.

2.4.3.2 Analytical modeling approaches for the computation of the
stiffness tensor for textile composites with an arbitrary topology

The commonality of all approaches so far, was the complex discretization of
the RVE, restricting the models to certain kinds of textiles. A slightly different
and more flexible approach was pursued by the now following authors. While
so far the RVE had to be fully discretized in sub-volumes, which then had to
be assembled in parallel or series along their loading directions, according to
their relative positions, the following approach is based on the assemblage by
components. In other words, first sub-volumes of curved parts of the yarns are
assembled and in a second step complete homogenized yarns and matrix are
combined to estimate the overall stiffness of the RVE. An example for such
a procedure is the model of Vandeurzen et al. [400, 401], who presented
an improved fabric geometrical model, based on thorough geometrical and
mechanical study on two-dimensional woven fabrics. The stiffness of combi-
cells, which consist of a pure yarn and a matrix layer, is computed using the
complementary variational principle. The assembly is then carried out by
applying either iso-strain or iso-stress models. Other examples are given by the
mixed iso-strain/iso-stress model of Ruan & Chou [340] for weft-knitted
composites, the three-dimensional model proposed by Lee et al. [217] for
the calculation of the elastic properties of plain weave composites or the three
stages homogenization method (3SHM) first used on three-dimensional angle
interlock composites (cf. Hallal et al. [145]) and later on braided and knitted
composites (cf. Hallal [143]). The nature of the second type of models
allow a more general usage and applications on different kinds of architectures.

Inclusion models

To promote further generalization, theMori-Tanaka scheme (MT)was employed
by Gommers et al. [127] and applied on many types of textile composites,
including woven, braided and knitted scaffolds. Comparing the Mori-Tanaka
scheme with other frequently used analytical homogenization schemes, it shows
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the advantage of delivering an explicit formulation for the effective stiffness
tensor, regarding local stresses and strains. The general approach of MT
is to approximate the inclusion shape as ellipsoidal, resulting in a constant
stress and strain field in each inclusion. In the case of textile composites, the
inclusions correspond to curved yarns and can be approximated by a set of
ellipsoids with circular or elliptical cross-section in such a way that the fiber
orientation distribution is not altered. Gommers et al. [127] state that textile
composites have to be modeled using a non-trivial fiber orientation distribution,
i.e. not aligned nor random, of non-spherical, anisotropic inclusions. The yarns
are therefore partitioned into sub-volumes, which are then treated as single
inclusions with elliptical cross-sections at an infinite length. Good agreement
with experimental and Finite Element results was found by Lomov et al. [233]
for three-dimensionally woven composites. Perie et al. [312] reports good
agreement for 3D angle interlock composites with the remark that the accuracy
of the geometrical modeling has a high influence on the validity of inclusion
models.

Methods of cells

One of the most recent developments in modeling the elastic behavior is done
by Prodromou et al. [318], who presented the method of cells (MOC) in
the context of analytical modeling of woven composites, while analyzing a
wide range of two- and three-dimensional woven fabrics. For the application
of this model, a full discretization of the microstructure into smaller cells
containing yarn and matrix layers is necessary. Therefore, the authors used
the software Wisetex. While the stiffness of the yarn layers is computed
using Chamis’ micromechanical model [68], the assembly of the sub-cells and
homogenization of block-cells is done by using the complementary energy
minimization method. Analyses of results from MOC show an improvement
with respect to the MT model for a wide range of two- and three-dimensional
woven composites (cf. Prodromou et al. [318]). However, the authors
state as well that the computation time is significantly higher compared to
that of other analytical models, but yet less than Finite Element solutions (cf.
Prodromou et al. [318]).

For a more detailed review of available homogenization approaches using the
different categories, the interested reader is referred to the very extensive and
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comprehensive reviews of Hallal et al. [144] and Dixit [98]. Furthermore,
these authors performed a study, in order to compare the elastic results of par-
ticular homogenization techniques and point out substantial differences. They
report that some models were designed to predict properties for some specific
kind of composite whereas others show a more universal character, whereas
only few studies focus on the development of generalized models. Moreover, it
can be stated that the modeling of three-dimensional fiber architectures pose a
major challenge due to their more complexmicrostructure. Hallal et al. [144]
show in their comparative study that the considered analytical models are quite
capable of delivering reliable results and are at the same time easy to use.

2.4.3.3 Damage modeling in homogenized material models
for textile composites

With the emphasis of the presented thesis on modeling the failure behavior
of textile composites on structural level, the next logical step is to look at
damage initiation, progression and ultimate strength. On the macroscopic
level rather few works have been published on this matter. In terms of
analytical models, Naik [294] presented a study for woven and braided
fabric composites where he used the iso-strain assumption together with
different failure criteria for yarns and matrix respectively. According to
Doitrand et al. [99], macroscopic models that predict damage evolution and
failure in textile composites have been published more recently for two- and
three-dimensional textile composites respectively (cf. Hochard et al. [166],
Hochard et al. [167], Marie & Chaboche [248], Marcin [251], and
Rakotoarisoa et al. [329]). With the focus lying on woven composites, the
two-dimensional model of Hochard et al. [166] is presented in more detail
in the following. To the knowledge of the author, this model is the only one of
its kind. Based on themeso scalemodel presented by Aubourg [17], a model
to describe the non-linear degradations with progressive damage and inelastic
strains was presented. Hereby, a thermodynamic consistent, generalized for-
mulation for the progression of internal variables (31, 32, and 312) associated
with the decrease of elastic moduli is used, which are directly related to the
brittle fiber fracture in warp and weft direction as well as the decreasing shear
stiffness, respectively. The development of 312, as the progressive damage
variable for shear, depends on the shear load as well as traction loads, which
yield micro-cracks at the fiber/matrix interfaces in the warp and weft yarns
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and are supposed to be oriented in parallel. The complementary free energy
potential of woven plies can therefore be written as

Λ� =
1
2

[
〈f1〉2+

�0
1 (1 − 31)

+
〈f1〉2−
�0

1
− 2

a0
12

�0
1
f1f2

+
〈f2〉2+

�0
2 (1 − 32)

+
〈f2〉2−
�0

2
+

f12

�0
12(1 − 312)

]
,

(2.74)

assuming plain stress and small strains. 〈·〉± denote the positive or negative
Macaulay brackets which distinguish between tensile and compressive loads.
In such a way the unilateral feature of damage is included in the model. The
derivation of the strain energy with respect to the damage variables yield the
thermodynamic driving forces _ associated with the damage variables for
tension and shear 38 where 8 = 1, 2 and 312 according to
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The values of the timely maximum of the thermodynamic forces drive the
development of the internal variables. In the underlying model, it was assumed
that failure corresponding to 31 and 32 is instantaneous in order to represent
the brittle characteristics of fiber failure. An equivalent thermodynamic force
. for the development of 312 was formulated by

. = U1.31 + U2.32 + .312 with . (C) = sup
g≤C
(. (g)) (2.76)

in order to take into account the traction/shear coupling. U8 denote the coupling
coefficients which are treated as material parameters. The damage formulation
closes with the definition of the damage evolution law
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+

, 31 = 0 and 32 = 0 (2.77)
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if 312 < 1 and .31 < .1 5 and .32 < .2 5 or else

31 = 32 = 312 = 1. (2.78)

.0 and .2 are constant parameters, corresponding to the threshold and critical
value of the development of 312. .1 5 and .2 5 define the thermodynamic
forces at which ultimate failure in the warp and weft yarns occur. Besides
the development of damage, Hochard et al. [166] considered inelastic
strains that were observed in [45]8 laminates, as a consequence of slipping
phenomena between damaged fiber bundles/matrix interfaces during shear
loading. They considered occurring significant inelastic strains only under shear
since the stiff fiber bundles prevent the formation in fiber direction. In order to
describe these strains, a plastic-hardeningmodel provided by Ladevèze & Le
Dantec [211] was used. Taking into account the formulations for effective
stress 2̃ and strain 9̃ (cf. Ladevèze [210]) the coupling of damage and
plasticity was obtained. The elastic domain was modeled by
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(2.79)

with '0 being the initial threshold for inelastic strain and '
(
Y
?
acc

)
describes

the hardening as a function of the accumulated plastic strain Y?acc as described
by Hochard et al. [166]. In the underlying work, a power law was chosen
for ' and associative flow was assumed. The combination of inelasticity and
damage evolution shows good agreement with experimental results for several
laminate stackings.

It is important to mention that throughout the complete loading path the woven
plies are regarded as homogeneous orthotropic, thus, not taking into account
reorientations of reinforcements due to off-axis loadings. Non-linearities in the
loading/unloading hysteresis, due to slipping/friction effects onmicro level were
neglected. Furthermore, it has to be underlined at this point that all presented
models concerning the prediction of the behavior of textile composite so far
are formulated in the framework of infinitesimal strains.

The lack of an existing three-dimensional macroscopic failure model taking
into account the damage mechanisms taking place in the single reinforcement
structures as well as in the adjacent matrix and furthermore respects the local
material re-orientations due to deformation motivates the formulations carried
out in the following chapters. With the suggested approach, the aim is to
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address the need of the industry for a failure model for textile composites at the
structural level.
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3 Experimental investigations

This chapter introduces the materials used for characterization and validation of
the developedmaterialmodels and presents the experimental results. Compliant
with the suggested multiscale approach, the following distinct scales have been
under investigation in particular:

1. Neat polypropylene (PP) matrix

2. Unidirectionally glass fiber-reinforced composite (PP/GF-UD)

3. Fabric reinforced composite (organo sheets)

All mechanical and micro-optical investigations presented in the following
were conducted in the in-house laboratory at Robert Bosch GmbH where a
standard 200 kN universal testing machine of the manufacturer Zwick was used.
For the mechanical testing of the unreinforced matrix, an alternative 20 kN
load cell was installed. Longitudinal expansion was captured by an integrated
multiXtens extensometer, whereas transversal deformation was measured by a
digital image correlation technique (Aramis) for some specific cases. The
tests were executed by applying different strain rates in a normed environment,
i.e. at an ambient temperature of) = 23◦C and a relative humidity of q = 50%.
In what follows experimental data in forms of stress-strain relationships will
be presented. Thereby, recorded raw experimental data will be displayed using
gray lines, whereas the colored lines depict an average of the grouped curves
up to the minimal fracture strain of respective velocity set. The used strain
rates are equally spaced in a logarithmic scaling.

3.1 Experimental strain and stress measures

The determination of mechanical properties for the subsequent use in a material
model is only possible by conclusive preceding material testing. Due to very
large numbers of possible varieties and combinations of loading states (e.g.
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stress states, loading rates, or environmental influences like temperature or
humidity) in real parts, the relevant influencing factors have to be identified.
For the experimental campaign presented in this work, environmental influences
were not considered. Mechanical quasi-static loads taking into account time-
dependent effects were investigated only. Therefore, one fundamental aspect of
material characterization becomes the assessment of stress and strain response
of thematerial. In order to avoid superposition of differentmaterialmechanisms,
a first approach concentrates on macroscopically uniaxial loading states. In
contrast to multi-axial experiments, these types of tests are easier to conduct
on standard testing equipment with regard to the required testing technology.
With the stress and strain states being not directly accessible from the specimen,
they have to be calculated from measured forces and displacements.

To correlate stress and deformation, it is necessary to define an appropriate
strain measure. In Eq. 2.11 the general Seth-Hill strain measurements
have been introduced. For the one-dimensional case, they relate the state of
current deformation ! to a defined initial length !0. For large deformations
or non-linear processes it is recommended to use the Green or logarithmic
(Henky) strain measures (cf. Grellmann & Seidler [133]). The latter
was used throughout this work and is explicitly defined by

Y =
∫!
!0

1
!
d! = ln

(
!

!0

)
∈ [−∞,∞] . (3.1)

Deformations that appear in transversal direction (Y⊥) are related to those
appearing in the principal loading direction (Y ‖) by the Poisson’s ratio a via

a = −Y⊥
Y ‖

(3.2)

or in terms of relative changes of these quantities

a = − JY⊥
JY ‖

. (3.3)

The Poisson’s ratio can be calculated in all three spatial directions. For
isotropic materials all ratios assume the same values defined in the range of
a ∈ [−1, 0.5], where a = 0.5 stands for incompressible material behavior.
For composites with complex microstructure, this domain does not apply in
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general. Becker [29] presents an overview of standard values for the Poisson’s
ratio of a selection of pure plastics. For polypropylene, Poisson’s ratios of
a = [0.3, 0.45] are reached (cf. Dassow [87], Schenkel [343]) but are not
generally assumed to be constant during deformation. Due to their particular
molecular structure, plastics exhibit a rate dependent deformation behavior. In
order to describe this time-dependency, the entity of strain rate is introduced
here. Analogously to the strain itself, the strain rate is a dimensionless measure
to describe the velocity during the deformation process, defined by

¤Y =
dY
dC
. (3.4)

For a local measurement of the strain rate it can be written alternatively as

¤Y =
ET(C)
!(C)

, (3.5)

where ET(C) is the velocity measured by the extensometer. In general, ¤Y can
change locally in the course of the experiment, e.g. due to localization effects,
and can therefore not be considered as constant. In analogy to Eq. 3.5, a
technical strain rate can be defined as

¤YC =
ET(C)
!0

, (3.6)

in terms of the initial free measurement length !0. The true stresses are defined
by

f(C) =
�(C)
�(C)

, (3.7)

where � is the measured force and � is the current cross-sectional area of the
test sample. If the loading direction and the normal of � coincide, the stress is
defined as a normal stress f otherwise as a shear stress g. In general, for the
computation of the stresses from experimental observations, the current forces
are related to the initial cross-sectional area �0. In this case, the corresponding
stress measure is called technical stress

%(C) =
�(C)
�0

. (3.8)
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For the sake of reducing the experimental effort, the change of cross sectional
area is not taken into account. The experimental results are given in terms of
the technical stresses.

3.2 Neat polypropylene matrix

3.2.1 Specimen preparation

The unreinforced polymeric polypropylene matrix (PP) builds the basic con-
stituent of all considered composites on upper scales. In order to operate on
consistent material systems throughout the scales it is required to use the same
materials on all scales, ranging from the purematrixmaterial to the organo sheet.
This concept holds true for the basic polypropylene matrix. In addition to the
readily assembled sheet material, neat matrix raw material could be provided
by the material supplier in the original composition, i.e. containing additives as
used in the final woven composite. The preparation of injection moulded speci-
mens was carried out by SKZ - KFE gGmbH inWürzburg, Germany. Since the
matrix material is to be tested under tensile and compressive conditions three
specimen geometries were generated. For tensile testing under moderate strain
rates the specimen geometry according to Din En Iso 3167 [93] is proposed
as displayed in Fig. 3.1. For compressive tests, specimens were cut by water

4

30 80

170

R25

10 20

Figure 3.1: Dimensions of the Campus A1 specimen (in mm), cf. Din En Iso 3167 [93].

jet from the middle part of the tensile dumbbells in two ways according to
Din En Iso 604 [96]. Both, tensile and compressive tests are performed to
determine the modulus of elasticity and the stress at rupture. The dimensions
of the prismatic specimens are summarized in Table 3.1. The measurement
of density according to Din En Iso 1183-1:2012 [91] of the unreinforced
matrix revealed an average value of d̄ = 0.907 g/cm3, which lies in good
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3.2 Neat polypropylene matrix

accordance with literature values for polypropylene. More detailed results are
presented in Table 3.2. The glass transition temperature ()g) was determined
to )g = 281.7K by using dynamic mechanical analysis (DMA). Hence, the
amorphous phase of the material is in rubber-like state at testing temperature
of ) = 296K.

Table 3.1: Dimensions of specimen used for compression testing according to the testing standard
Din En Iso 604 [96] (in mm).

Type Measurement Length Width Thickness

A Modulus 50 ± 0.2 10 ± 0.2 4 ± 0.2B Strength 10 ± 0.2

For the subsequent material tests the above geometries were used. The mea-
suring length for tensile specimen was !0 = 50mm and was measured in the
lean centered part of the specimen. Change in length during compressive defor-
mation was recorded by a flat extensometer with a gauge of !0 = 20mm for
specimen type A. In case of a type B specimen, the direct displacement of the
machines cross beam was evaluated. In order to characterize the deformation
behavior of the thermoplastic polypropylene matrix, quasi-static tensile and
compressive tests with and without unloading were performed.

Table 3.2: Density measurements of neat polypropylene matrix. Average value of density d̄ and
the standard deviation B.

ID Density (g/cm3)

1 0.90734
2 0.90705
3 0.90708
4 0.90709
5 0.90723

d̄ 0.907158
B 1.1·10−4
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3.2.2 Tensile tests

As shown in Table 3.3, tensile tests were performed at six different position-
controlled cross beam velocities. With this test the material stiffness and

Table 3.3: Cross beam velocities and corresponding strain rates for tensile tests of pure matrix
(measurement length !0 = 50mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
1.6 5.33·10−4

5 1.67·10−3

16 5.33·10−3

50 1.67·10−2

160 5.33·10−2

500 1.67·10−1

strength as well as the stress-strain relation at different strain rates are identi-
fied. The specimens were loaded monotonously under tension up to failure,
characterized by a sudden drop of force and the formation of separation fronts
in the material. Contrary to first expectations, the material failed in a very
brittle manner without pronounced necking. Figure 3.2 shows a series of
matrix specimens exhibiting brittle failure. Figure 3.3 displays the measured
stress-strain relations. The detailed information for each velocity set of spec-
imens, the material stiffness � t

m, the material strength 't
m, and the fracture

strain YtF were determined and are summarized in Figs. A.1 to A.6. The initial
stiffness was measured in the strain range of 0.05 ≤ Y ≤ 0.25% according to
Din En Iso 527-1 [94]. Strain at failure YtF is identified as the strain where
the tensile material strength, hence the maximum value of stress, is reached.
The stress-strain relation in the post-failure regime is not displayed. By compar-
ing the averaged curves, the influence of the external strain rate on the material
behavior becomes apparent. With increasing loading rate, the specimens ex-
hibit an increasing initial stiffness and material strength as well as decreasing
strain values at fracture. Figure 3.4 displays the correlation of strain rate and
material strength. Poisson’s ratio was measured to am = 0.42 by using a
digital image correlation (DIC) via the optical analysis tool Aramis, applying
three different loading rates (ET = [5mm/min, 50mm/min, and 500mm/min]).
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3.2 Neat polypropylene matrix

Figure 3.2: Campus A1 matrix specimens after being tested under tension at different loading
rates. All specimens exhibit brittle failure.

However, no significant dependency on the loading rate was detected and am
stayed constant in the course of the quasi-static tests. The optically deter-
mined parameters stiffness � t

m, strength 't
m, and failure strain YtF were in good

agreement with the conventionally determined values.
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Figure 3.3: Stress-strain relations of quasi-
static tension test of pure matrix at different
loading rates.
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Figure 3.4: Matrix tensile strengths at dif-
ferent strain rates.
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3.2.3 Compression tests

Compression tests were performed at four different position-controlled cross
beam velocities for two different specimen geometries respectively (cf. Ta-
ble 3.1). For type A specimens, Table 3.4 shows the corresponding strain
rates with a measurement length of !0 = 20mm. The following experiments

Table 3.4: Cross beam velocities and corresponding strain rates for compression tests of pure
matrix (measurement length !0 = 20mm).

Cross beam velocity Strain rate ¤̄Yc
(1/s)

Cross beam velocity
for type A specimen for type B specimen
ET (mm/min) ET (mm/min)

0.5 4.16·10−4 0.25
5 4.16·10−3 2.5
50 4.16·10−2 25.0
500 4.16·10−1 250.0

identify the material stiffness and strength as well as the stress-strain relation at
different loading rates. Therefore, the material was loaded monotonously under
uniaxial compression. The upper and lower specimen flanks were covered with
grease prior mounting into the testing machine in order to reduce friction effects
between specimen and steel blocks. Figure 3.5 shows a schematic stress-strain
response of a type B specimen under compression. For all conducted experi-
ments the characteristic local stress minimum in a strain range Y > 12% could
be observed after exceeding a precursory local stress maximum, accompanied
by the formation of shear bands. In the following, the local maximum was
used for the definition of the the material strength 'c

m. Strain at failure YcF is
identified as the strain where the compressive material strength 'c

m is reached.
Figure 3.6 displays the measured stress-strain relations of type B specimens
loaded with the defined strain rates to determine the compressive strength. The
initial stiffness �c was measured in the strain range of 0.05% ≤ Y ≤ 0.25%
according to Din En Iso 604 [96] using specimen type A. The stress-strain
pathway beyond the defined failure point is not displayed. A more detailed
overview of the measured results is given in Figs. A.7 to A.10. Analogously
to the behavior under tension, compressive loading yields a time-dependent
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Figure 3.5: Schematic stress-strain relation of quasi-static compression test of pure matrix.

material response. Confronting the averaged curves, the influence of the ex-
ternal strain rate on the material behavior becomes visible. Again, specimens
with increasing loading rate show an increasingly higher initial stiffness and
higher material strength. The correlation of strain rate and material strength is
displayed in more detail in Fig. 3.7. Regarding the stiffness values, a unimodal
behavior can be observed. However, in contrast to the before presented results
under tensile loading, the value of strain YcF at reached material strength 'c

m
increases with rising loading rates.
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Figure 3.6: Stress-strain relations of quasi-
static compression tests of pure matrix at
different loading rates.
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Figure 3.7: Measured matrix compressive
strengths at different strain rates.
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3.2.4 Tensile loading and unloading experiments

Figures 3.8, 3.9 and 3.12 show the stress-strain relations of the tensile test with
12 loading and unloading cycles for two strain rates. The experiments were
conducted up to a maximum strain of Y = 5%. In addition, the respective
quasi-static material response is displayed as an envelope in gray. For each
loading rate five specimens were tested. However, to enhance visibility, only
one representative curve is displayed here. In a consistent manner to the
already presented behavior under tensile loading, increasing loading rates yield
higher stresses at the same values of strain. The diagrams show that hysteresis
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Figure 3.8: Stress-strain relation of the ten-
sile test of pure matrix with 12 loading and
unloading cycles at ET = 5mm/min up to
Y = 6%. The gray curves mark the quasi-
static envelopes at the corresponding loading
rate.
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Figure 3.9: Stress-strain relation of the ten-
sile test of pure matrix with 12 loading and
unloading cycles at ET = 50mm/min up to
Y = 6%. The gray curves mark the quasi-
static envelopes at the corresponding loading
rate.

phenomena appear already at very low strain levels. It is assumed that for small
deformations, the residual strain upon unloading is completely recovered if the
material is given time for relaxation. This implies that the material shows a
viscoelastic behavior first. For higher strains, the residual strains after unloading
are only partly recovered in time, hence introducing a viscoplastic component.
Brusselle et al. [44] conducted a thorough study to further investigate these
effects. To assess the development of material stiffness over loading cycles,
the secant between the two extreme values in the half-cycle during unloading
was investigated (cf. Figs. 3.10 and 3.11).The full line in Fig. 3.13 shows the
calculated slopes of the secants over strain. With increasing deformation, the
secant stiffness decreases continuously. The degradation seems to converge

80



3.2 Neat polypropylene matrix

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Strain

0

5

10

15

20

25

30

35

St
re

ss
in

M
Pa

Figure 3.10: Stress-strain relation of the ten-
sile test of pure matrix with 12 loading and
unloading cycles at ET = 5mm/min up to
Y = 6%. The gray dashed lines depict the
decreasing secant stiffness during unloading.
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Figure 3.11: Stress-strain relation of the ten-
sile test of pure matrix with 12 loading and
unloading cycles at ET = 50mm/min up to
Y = 6%. The gray dashed lines depict the
decreasing secant stiffness during unloading.
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Figure 3.12: Stress-strain relations of cyclic
loading and unloading tension tests of pure
matrix at different loading rates.
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Figure 3.13: Change of secant stiffness
over loading cycles. The full lines rep-
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against a limit value for both strain rates. The dashed lines in Fig. 3.13 represent
the normalized secants with respect to their initial value. Both sets of curves
are plotted over the number of cycles. Since the two curves nearly coincide,
it can be stated that the loading rates have no significant influence on the
secant degradation. Figure 3.14 shows a fractured matrix specimen after cyclic
loading and unloading. Small cracks in the vicinity of the edges as well as a
whitened core are visible in the matrix specimen under transmitted light. It is
assumed that the formation of this micro defects is mainly responsible for the
deterioration of the material stiffness.

Figure 3.14: Microcracks formed during cyclic loading/unloading in a neat matrix specimen made
visible by transmitted light.

3.2.5 Discussion

The preceding section has shown that the basic constituent polypropylene, that
is used throughout this work, exhibits a significant time-dependent material
behavior. This results in differing stress-strain relations, stiffness, and strengths
all depending on the strain-rate. The reasons for this viscoelastoplastic behavior
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can be affiliated to time-dependent processes occurring in the semi-crystalline
molecular structure of polypropylene. Shear yielding is assumed to be the
main deformation mechanism of unmodified polypropylene (cf. Kinloch et
al. [193], Oswald & Menges [304]). In polypropylene as an example of a
semi-crystalline polymer, this effect appears near to crystalline areas, as depicted
in fig. 10.21 in Oswald & Menges [304]. Amorphous regions around
crystalline zones allow crystals to exhibit positional distortions (e.g. shear and
intra-lamellar slipping and rotation). If the deformations inducing this motion
are considerably small, these processes are reversible. Otherwise they lead to an
irreversible break-up of lamellar aggregates and rearrangement of the polymer
chains. In an extreme case both amorphous and crystalline zones are oriented
along the loading direction leading to quasi-fibrous stretched characteristics (cf.
Arencon et al. [5], Arencon & Velasco [8]). Subjecting the material to
small loading rates, polymeric chains can glide, slip, or rotate past each other
more easily, allowing higher strains upon failure. With the secondary bounds
being primarily subjected to load, the achievable forces are lower than during
loading with high loading rates. Here mainly the polymeric backbone is on
load, yielding lower stiffness and strengths. Gliding processes on the molecular
level become visible by earlier appearance of non-linearity in the stress-strain
relations under low loading rates.

The stress-strain relations under cyclic tensile loading show a degradation
of secant stiffness. It is assumed here that the degradation itself has several
origins. Elasticity in the energy-elastic range in plastic materials relates to
intra-molecular secondary bonds. Again, increasing elastic deformation causes
a deflection of neighboring atoms from their equilibrium position. In an ideal
case, the necessary energy is equivalent to the stored elastic energy in the
material that allows fully reversible back-deformation upon unloading. How-
ever, deflected atoms result in deteriorated secondary bond forces as well as a
lower effective stiffness of the covalent primary bonds (cf. Roesner [339]).
Hence, the overall material stiffness reduces. By increasing the deformation,
the degradation of the material stiffness is decelerated. This effect is related to
reorientation processes of crystalline areas (spherulites) in the direction of the
active load. In general, this is accompanied by significant plastic shares. Due to
the additional plastic contribution at higher strains with Y > 3%, a decreasing
amount of the deformation is to be endured by elasticity. The effect of the distur-
bance of the equilibrium position of the chains is reduced, since larger parts of
the deformation can be described by rotation of spherulites, see e.g. Rösler
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et al. [338], leading to a diminished change of secant stiffness. Moreover,
microscopical investigations have shown a noticeable formation of microcracks.
It is assumed that these microvoids are created mainly due to an effect called
stress whitening as described by Osswald & Menges [304]. Here, micro-
cracks form in the interface between neighboring spherulites. According to
Arencon [8], the degradation process is accompanied by the formation of
crazes. Both processes are irreversible, causing permanent deformation in the
polymer. If these microvoids coalesce, macroscopic visible cracks form, finally
leading to ultimate fracture. Due to the relatively high percentage of crystalline
areas, the damage processes take place in such a high extent that brittle failure
through coalescence of microvoids is reached before the typical necking be-
havior of polypropylene at room temperature appears. The reason for the high
percentage of crystalline areas can be found in the manufacturing process of
the specimens or in the exact composition of additives in the polymer causing a
higher tendency towards crystallinity. A further discussion of these two effects
is not part of the present work. However, besides processing-induced structures
and the molecular characteristics of polypropylene (e.g. molecular mass), the
micro/nanostructural morphology has a particularly strong influence on the
fracture behavior (cf. Arencon et al. [6, 7]).

3.3 Unidirectional fiber reinforced polypropylene

The full experimental assessment of all scales addressed within the multiscale
approach of organo sheets requires specimens with unidirectional reinforce-
ments. It is important that in the material only one preferred direction exists
and no perpendicular structures are present that have falsifying effects. The
material provider of the organo sheet does not offer materials complying with
such conditions. Therefore, unidirectional glass fiber reinforced tape material
(PP/GF UD) of the type CELSTRAN®CFR-TP PP GF70-13-PP with a fiber
volume content of Ef = 45.3% from the material supplier TICONA is used for
characterization (cf. B.1 for the data sheet). One major uncertainty that arises
is the mismatch of the matrix material of this supplier and the material that is
used later in the weaves. Therefore, a consistent usage of the same materials
throughout the scales is violated at this stage. The material is delivered as a
coiled 0.25mm-thick tape. Several trimmed layers of these tapes have been
stacked manually and consolidated in an industrial press under the influence of
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temperature. The manufacturing was realized by the Fraunhofer Institute for
Chemical Technology in Pfinztal (Fraunhofer ICT), Germany. The compres-
sion force was �P = 186 kN with a temperature of )P = 200◦C for a time of
C = 200 s. The dimensions of the resulting plates was 380 x 380 x 3mm3, where
3 differs for tensile and compressive specimens. In addition to the unidirectional
sheets, plates with a [0/90]B stacking order were produced. Figure 3.15 shows a

Figure 3.15: Microstructure obtained from a cross-section transverse to fiber direction in unidi-
rectional composites.

dark-field section of the microstructures perpendicular to the fibers. The actual
volume fraction of the fibers was determined to Ef = 43% by using image
segmentation on multiple microsections and evaluating the surface areas of
matrix and fiber regions. Figure 3.16 depicts a detailed view of the microstruc-

Figure 3.16: Detailed microscopy of a UD specimen showing non-constant fiber diameters.

ture. In addition to the statistically dispersed fibers, a significant distribution
of the fiber diameter can be observed. The average diameter was determined
to 3̄f = 13 `m with a standard deviation of Bf = 2.4 `m. Furthermore, no
indications of voids were found and the sections showed an unmitigated im-
pregnation of the fibers. The conducted experiments presented in the following
enhance the understanding of the overall anisotropic failure processes occurring

85



3 Experimental investigations

in the unidirectional composite during quasi-static loading and further allows a
comparison with failure behavior in unidirectionally reinforced plastics as de-
scribed in literature. Hence, quasi-static tension and compression tests as well
as ±45◦ off-axis (shear) tests under tension were performed at various strain
rates. The dimensions of the specimens were chosen according to relevant
norms as 250 x 25 x 2mm3 for tension (cf. Din En Iso 527-4 [95]) and type
B2 with 125 x 25 x 10mm3 for compression (cf. Din En Iso 14126 [92]).
For the tensile cases a measurement length !0 = 50mm was chosen, while the
displacement during compression was recorded directly by slim extensometers
with a distance of !0 = 20mm. All specimens were cut out of the corre-
sponding plates by waterjetting taking into consideration the direction of the
reinforcements.

3.3.1 Longitudinal tensile tests

Tensile tests in fiber direction were performed at three different position-
controlled cross beam velocities. Table 3.5 shows the corresponding strain
rates. In Fig. 3.17 the resulting material responses are displayed. After a

Table 3.5: Cross beam velocities and corresponding strain rates for tensile tests of unidirectional
specimens (measurement length !0 = 50mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
5 1.67·10−3

50 1.67·10−2

500 1.67·10−1

linear regime the material fails instantaneously for all cases. Figures A.11
to A.13 show more detailed results and summarize the stiffness � t

‖ , material
strength 't

‖ , and strain at failure Y
t
‖ . Investigating the confronted stress-strain

curves for longitudinal tension tests, small but present viscous effects can be
observed. This is due to slight fiber undulations occurring in the specimen,
hence, introducing viscous effects dominated by the matrix. The fracture strain
lies at about Yt‖ = 3% and the corresponding stiffness is 't

‖ = 900MPa, which
agrees with the indicated values from the data sheet. Figure 3.18 shows a
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Figure 3.17: Stress-strain relations of quasi-static tensile test in fiber direction of UD specimen at
different loading rates.

side view of a UD specimen that failed under longitudinal tension loading. It
can be seen that, as soon as failure occurs, the integrity of the material is lost
completely. No sharp failure zone can be identified, but the whole specimen
gets destroyed to a large extent.

3.3.2 Transversal tension tests

Tensile tests transverse to the fiber direction were performed at three different
position-controlled cross beam velocities, see Table 3.5. Figure 3.19 shows
the respective material responses. After a degressive stress-strain relation,
brittle failure terminates the experiment. In Figs. A.14 to A.16 more detailed
results together with the correspondingmeasured stiffness � t

⊥, material strength
't
⊥ and strain at failure Yt⊥ can be found. Confronting the single curves, no

significant strain rate effect could be observed regarding initial stiffness and

Figure 3.18: Side view of a UD specimen failed under longitudinal tension.
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failure strength. However, the degree of non-linearity seems to be affected
by the rate of external loading, since the material fails at larger strains given
a slow loading rate (Yt⊥(ET=5mm/min) = 0.65%) compared to high loading
(Yt⊥(ET=500mm/min) = 0.48%). Even though the deformation behavior is
matrix dominated in this direction, a brittle behavior like in fiber direction is
observed. The strength lies at about 't

⊥ = 22MPa, which is significantly lower
compared to the tensile strengths of the pure matrix specimens as discussed in
Section 3.2.2. Figures 3.20 and 3.21 show views of a UD specimen that failed
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Figure 3.19:Stress-strain relations of quasi-static tensile test in transverse direction ofUD specimen
at different loading rates.

under transversal tensile loading. A clear fracture plane can be identified that
lies perpendicular to the loading direction. Microsections show that the crack
grows in the matrix material around the fibers.

3.3.3 Longitudinal compression tests

Compression tests in fiber direction were performed at three different position-
controlled cross beam velocities. Table 3.6 states the corresponding strain rates.
Figure 3.22 shows the respective material responses. After a linear regime
the material fails instantaneously for all cases. More detailed results and a
summary of the corresponding measured stiffness �c

‖ , material strength 'c
‖ , and

strain at failure Yc‖ are given in Figs. A.17 to A.19. Again, no significant strain
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3.3 Unidirectional fiber reinforced polypropylene

Figure 3.20: View of a UD specimen failed
under transversal tension. The failure plane
lies perpendicular to the loading direction.

Figure 3.21: Microsection of a UD speci-
men failed under transversal tension. Load
was applied horizontally.

Table 3.6: Cross beam velocities and corresponding strain rates for compression tests of unidirec-
tional specimens (measurement length !0 = 20mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
0.5 4.16·10−4

5 4.16·10−3

50 4.16·10−2
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Figure 3.22: Stress-strain relations of quasi-static compression test in longitudinal direction of
UD specimen at different loading rates.
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rate effect could be observed regarding stiffness, strength, or failure strain when
confronting the single curves. The fracture strain lies at about Yc‖ = 0.8% and
the corresponding strength is about 'c

‖ = 280MPa. Failure under compression
is mainly induced by fiber buckling representing a local material instability.
A further investigation on the influence of an initial fiber misalignment and
process-induced undulations on the stability failure is not part of the present
work.

3.3.4 Transversal compression tests

Compression tests transverse to the fiber direction were performed at three
different position-controlled cross beam velocities. For the resulting strain
rates see Table 3.6. Figure 3.23 shows the material responses. Figures A.20
to A.22 state more detailed results and summarize the measured stiffness �c

⊥,
material strength 'c

⊥, and strain at failure Yc⊥. As expected, the material
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Figure 3.23: Stress-strain relations of quasi-static compression test in transversal direction of UD
specimen at different loading rates.

behavior in this material direction is matrix dominated and shows a high degree
of non-linearity in the stress-strain relation. Confronting the single curves, no
significant strain rate effect could be observed regarding initial stiffness and
failure strain. Material strength however, shows a dependency on the strain
rate. The material fails at about Yc⊥ = 2%. Figure 3.24 shows a view of a UD
specimen that failed under transversal compressive loading. Looking at the
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3.3 Unidirectional fiber reinforced polypropylene

failure image, a shear failure can be seen, expressed by a clearly identifiable
fracture plane that is inclined by about Θfp = ±50◦ with respect to the loading
direction. The microsection shows that the crack grows in the matrix material

Figure 3.24: Microsection of a specimen failed under transversal compression.

around the fibers. Due to the fracture plane angle that deviates significantly
from zero, it is assumed that a critical shear load leads to failure in one distinct
plane. This behavior lies in good agreement with the behavior reported in
relevant literature, e.g. Puck [319].

3.3.5 Tensile tests of off-axis specimens

Tensile tests on ±45◦ off-axis specimens were performed at three different
position-controlled cross beam velocities, resulting in the effective strain rates
as summarized in Table 3.5. For each strain rate three specimens were tested.
Figure 3.25 shows the respective material responses. Due to the relatively
high ductility in the thermoplastic matrix during shear loading, the specimens
show large deformations and a pronounced non-linear behavior in this loading
direction. For more detailed results the reader is referred to Figs. A.23 to A.25,
where the single material responses together with the corresponding measured
initial stiffness �s, material strength 's, and strain at failure Ys are documented.
The reason for reaching such high strain values of more than 25% lies in the
ability of the fibers to re-orientate along the loading direction, see Fig. 3.26.
This is possible due to the ductility of the surrounding matrix. The motion
within the material yields a significant change in cross-sectional area and
therefore the true stresses in the material differ from the measured tensions.
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Figure 3.25: Stress-strain relations of quasi-static shear test of a UD ±45◦ off-axis specimen at
different loading rates.

Even though this material direction activates matrix dominant processes, no
significant strain rate effect could be observed regarding initial stiffness and
failure strength and strain. Figure 3.27 shows the fracture area of a ±45◦ off-
axis UD specimen that failed under tensile loading. Delamination of the single
layers is the dominant failure mode, leading to a separation of the specimen.

3.3.6 Discussion

The quasi-static experiments presented here summarize the basic deformation
behavior of unidirectionally glass fiber reinforced thermoplastics. It has been
shown that those materials show a significant dependency on the loading di-
rection with respect to their fiber direction as well as a pronounced asymmetry

Figure 3.26: Development of fiber angle with increasing strain.
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Figure 3.27: Failed ±45◦ off-axis specimen after tensile test. Close-up view of fracture area.

under tensile and compressive loading. Furthermore, especially directions
that are matrix dominated show an influence on the loading rate. The fibers
introduce a heterogeneity in the composite with local stress concentrations
when the material is deformed. The morphology of the fibers (e.g. mean
diameter and orientation), their mechanical properties, and the characteristics
of the inter-facial adhesion have significant influence on the deformation be-
havior, failure dynamics, and hence on the overall behavior of the composite
(cf. Kowalewski et al. [200]). Since the matrix around the fibers cannot
move freely and its motion is constrained by the adjacent fibers, the process
of plasticity, crack propagation and fracture are highly influenced by the given
micro-structural circumstances. The macroscopic permanent deformation can
be explained by processes happening on the micro level, namely plastic flow
and debonding damage processes of the matrix between inclusions. In liter-
ature, several authors claim that debonding processes between fibers and the
thermoplastic matrix are the main initial damage mechanisms, finally leading to
failure. Especially composites consisting of matrix material with a low polarity,
as it is the case for polypropylene, inter-facial adhesion is usually weak and sep-
aration of matrix and fiber takes place more easily. Hence, several approaches
to address the issue of fiber matrix debonding are proposed in literature (cf.
Pukanszky et al. [322], Zhuk et al. [434], Van Hartingsveldt &
van Aartsen [399]). In order to estimate the influence of the interface
debonding for the present composite, the fracture surfaces of unidirectional
specimens were investigated, using a scanning electron microscope (SEM). Fig-
ure 3.28 shows a series of representative micro scans of specimens subjected to
cryo-fracture using a high magnification. In contrast to the expected results, no
clear interface debonding between matrix and fiber is observed, but the fibers
are impregnated with a thin layer of matrix. It is assumed here, that additives
are responsible for the improved adherence. As expected, tension loading in
fiber direction results in a linear stress-strain relation. In this material direction,
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a b

c d
Figure 3.28: Series of SEM scans of unidirectional specimens subjected to cryo-fracture. (a) Frac-
ture plane at a magnification of 100. (b)-(d) Detailed views of single fibers (1000x magnification).
All examined fibers show pronounced matrix adhesion.

the fibers are the constituents which mainly carry the load. Failure occurs
in an abrupt manner and the integrity of the specimen is completely lost and
no distinct fracture plane is recognizable. Just before the final failure of the
specimen, a series of sound emissions is perceptible, indicating a successive
failure of single fibers up to the point that the active load exceeds the remaining
load-bearing capacity and the specimen fails catastrophically. The average
failure strain is slightly below Yt‖ = 3%. Even though unexpected, a slightly
rate-dependent material behavior was observed. Due to the processing, fibers
were not aligned perfectly parallel and a certain effect of the viscoelastic be-
havior of the matrix could be observed. Compressive loading in fiber direction
leads to a matrix dominated failure behavior, even though no significant de-
pendency on the loading rate was detected. Slight initial misalignments in the
fibers lead to buckling which consequently yields to shear load exposure and
finally to failure in the adjacent matrix regions followed by fiber fracture due
to excessive bending. Transverse to the fiber direction, the material shows very
brittle behavior under tension forming a macroscopic crack perpendicular to
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the loading direction. The composite failed under tension at about Yt⊥ = 0.5%,
even though a thermoplastic matrix is present between the single fibers, that
however failed in a brittle manner but reached relatively high failure strains
as shown in Section 3.2.2. It is assumed that due to the high stiffness of
the glass fibers, the macroscopic deformation accumulates in the softer ma-
trix. Locally, the material is strained to a larger extent compared to uniaxial
test in unreinforced matrix. It is noticeable that the values for the material
strengths of the UD materials are lower than in the neat matrix. Due to the
fibrous inclusions, the stress state in the material as a result of external uniaxial
loading gets disturbed and hence becomes multi-axial on a microscopic level
with high volumetric shares. Especially under tension, these favor damage
initiation and inhibit plastic deformation (cf. Asp et al. [15], Kim et al. [191]).
Therefore, the fibers introduce a local notch effect, disturbing a smooth strain
field. Compressive loading induces the typical failure patterns known from
thermoset composites, being reproducible also within the thermoplastic matrix.
A macroscopically planar but inclined fracture plane characterizes a shear fail-
ure in the matrix around the fibers. In contrast to the very brittle deformation
behavior in longitudinal and transverse direction, loading in a ±45◦-direction
allows the material to develop high strains. The pronounced non-linearity of
the stress-strain relation indicates a high mobility of the matrix. This allows the
fibers to re-orientate in the load direction during the course of loading, leading
to a successive stiffening in the material response, visible towards the end of
the experiment. The reached high strains of more than Ys ≥ 25% allow for the
assumption that the deformation in the matrix is accompanied by high plastic
shares. Regarding the application of such materials in structural parts, this
large deformation is not expected due to mixed stackings of UD layers. In a
similar manner, in woven structures large deformations will be inhibited by the
interweaving of the rovings. Even though the deformation behavior is assumed
to be matrix-dominated, no strain rate dependency was observed. In general,
the viscous behavior in the UD composite becomes less visible than in the neat
matrix due to multi-axial strain and stress states in the matrix phase.
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3.4 Woven fabric reinforced polypropylene

This section is concerned with the characterization of the full composite,
consisting of a polypropylene matrix and a glass fiber twill weave as rein-
forcement structure (PP/GF twill weave). The organo sheet with the typecast
TEPEX®dynalite 104-RG600(=)/47%, where = specifies the number of layers,
was purchased from Bond Laminates (cf. B.2 for the data sheet). It is suitable
for further processing supported by the application of temperature and pressure.
The overall fiber content in the material is Efw = 47% and the interwoven

a b
Figure 3.29: Twill weave pattern. (a) Schematic display of twill weave from TexGen
(Sherburn [350]) and (b) Depiction of twill weave pattern in real specimen taken from `CT
scan.

rovings are assembled in a balanced twill weave pattern. Figure 3.29 shows a
schematic and a real view taken from `CT data of the weave. In both cases the
matrix phase is masked out and only the roving structures are visible for a better
presentation of the weave pattern. The procedure to measure the fiber volume
fracture inside the UD material was also applied here, using microsections as
depicted in Fig. 3.30. Image segmentation yields an average volume fraction of
^ = 63% within the rovings. According to Etow = Efw/^ this yields a tow vol-
ume fraction of Etow = 74.6%. Analyses of the fiber diameters were performed
subsequently and an average of 3̄� = 13 `m could be confirmed here. The
relevant dimensions introduced and summarized in Fig. 2.8 and Table 2.1 were
determined and are given in Table 3.7. Semi-finished sheet material with a
dimension of 620 x 1300 x 3mm3 was delivered. With a thickness per layer of
30 = 0.5mm, the variable amount of = layers defines the complete thickness
of the compound 3. In the case of stacked layers, single lamina were arranged
with aligning preferred directions. Even if the preferred directions of the single
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a b
Figure 3.30: Microsections of multi-layer weave. (a) Exemplary microsection that was used for
the determination of out-of-plane weave geometries and (b) detailed view on single rovings.

lamina coincide, the mesoscopical geometrical conditions within a laminate can
severely differ. Describing the undulation of a roving according to a sinusoidal
curve, top and bottom turning points (peak % and valley +) can be identified.
The relative positioning of the local extrema of the undulated fiber rovings
is known as nesting behavior and has significant influence on the mechanical
behavior of the laminate. Figure 3.31 depicts some possible nesting configu-
rations in a four-layer laminate. The middle sections illustrated in Fig. 3.31a
and b show the two extreme examples of nesting, namely the combinations of
peaks (%) and valleys (+) in the setting [%, + , %, +] for section (a) and [+ ,
+ , + , +] followed by [%, %, %, %] in section (b). These configurations are
identified as symmetric and simple stacking. In general, more or less expressed
intermediate states of nesting can be found (cf. Fig. 3.31 c and d). The analysis
of micro sections of the composite showed no microvoids in matrix rich areas

Table 3.7: Measured average dimensions of one-layer twill weaves (cf. Fig. 2.8 and Table 2.1).

Dimension Value

Geometrical (mm)

_ 15.667 ± 0.723
ℎ 0.543 ± 0.014
? 3.264 ± 0.141
Cw 0.256 ± 0.019
Cf 0.255 ± 0.024
61 0.596 ± 0.221
62 0.573 ± 0.237

Volume fraction (-)
^ 0.631
Efw 0.471
Etow = Efw

^
0.746
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a

b

c

d
Figure 3.31: Microsections of woven specimens in warp direction. Various characteristics of
layer phase shift are recognizable. (a) Symmetric stacking configuration: peaks % and valleys +
are opposing, (b) Simple stacking configuration: peaks and valleys are in-phase, and (c) and (d)
intermediate topologies of the two extreme states.

between the impregnated rovings and a complete coverage of the fibers with
plastic matrix. In the following, all specimens were cut by waterjetting from
the corresponding plates taking into consideration the direction of the reinforce-
ments. Ruler specimens with the dimensions of 250 x 25 x 2mm3 were used
for the tensile quasi-static experiments according to Din En Iso 527-4 [95].
The measurement length was set to !0 = 50mm. For the experiments with a
loading under an angle of 45◦, additional specimens with one layer with thick-
ness 3 = 0.5mmwere manufactured. Compression tests were conducted using
specimens with a dimension of 100 x 15 x 4mm3 and a measurement length of
!0 = 20mm in a similar fashion to Din En Iso 14126 [92]. In order to
understand the deformation behavior and the influence of the loading rate, it is
necessary to investigate the glass fiber woven fabric reinforced thermoplastic
experimentally. The experimental results are summarized in the following
subsections.

3.4.1 Longitudinal tensile tests

Tensile tests in fiber direction were performed at three different position-
controlled cross beam velocities. Table 3.8 shows the corresponding strain
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Table 3.8:Cross beam velocities and corresponding strain rates for tensile tests of woven specimens
(measurement length !0 = 50mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
5 1.67·10−3

50 1.67·10−2

500 1.67·10−1

rates. Figure 3.32 shows the respective material responses. The presented
results were obtained from a ruler specimen with one layer = = 1. After a
linear pathway, the material fails instantaneously for all cases. Figures A.26

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Strain

0

100

200

300

400

St
re

ss
in

M
Pa

Mean (5 mm/min)
Mean (50 mm/min)
Mean (500 mm/min)

Figure 3.32: Stress-strain relations of quasi-static tensile test in fiber direction of UD specimen at
different loading rates.

to A.28 give more detailed results and summarize the corresponding measured
stiffness � t

‖ , material strength 't
‖ and strain at failure Yt‖ . No significant strain

rate effect could be observed regarding stiffness, strength, or failure strain when
comparing the single curves for the two higher velocities. Merely, the tensile
test at ET = 5mm/min indicates, that the time-dependent properties of the
matrix and thewoven structure and geometry of the composite have an influence.
Under quasi-static loading, the stress-strain response is approximately linear
elastic up to the maximum bearable stress followed by abrupt failure. The
fracture strain lies at about Yt‖ = 2.5% and the corresponding strength is in
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the range 't
‖ = 350MPa to 't

‖ = 390MPa, which agrees approximately with
the indicated values in the data sheet. The expected progressive stiffening of
the material due to straightening of the undulated rovings was not observed.
Figure 3.33 shows a top view of a one-layer woven specimen that failed under

Figure 3.33: Top view of a one-layer woven specimen failed under longitudinal tension.

longitudinal tension loading. The damagemechanisms generally includematrix
cracking, localized warp fiber fracture, weft fiber pull-out, and in case of a
multilayer specimen, delamination along the middle plies. Matrix cracking
was observed dominantly in the weft fiber rovings, oriented perpendicular to
the loading direction. These cracks propagate in an opening mode due to
the normal stresses acting in the load direction. When reaching the roving
interfaces, they can cause interfacial debonding within the lamina or interply
delamination. The tensile test in fiber direction has been conducted in both
warp and weft direction. However, for both directions comparable results could
be achieved. No significant differences were observed when testing layered
specimens.

3.4.2 Longitudinal compression tests

Compression tests in longitudinal fiber direction were performed at three differ-
ent position-controlled cross beam velocities. The corresponding strain rates
are given in Table 3.9. Figure 3.34 shows the respective material responses.
In Figs. A.29 to A.31 more detailed results together with the corresponding
measured stiffness �c

‖ , material strength 'c
‖ , and strain at failure Y

c
‖ are given.

Under compression, the material response is approximately linear elastic up
to the point of instantaneous failure. Comparing the stiffness values in lon-
gitudinal direction obtained under tension, a less stiff response is observed
under compression. This behavior can be explained by the geometrical fact that
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Table 3.9: Cross beam velocities and corresponding strain rates for compression tests of woven
specimens (measurement length !0 = 20mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
1 8.33·10−4

10 8.33·10−3

100 8.33·10−2

the fiber rovings are impregnated in the thermoplastic matrix in an undulated
way. Loaded under compression, the main deformation is not carried by the
fibers in longitudinal direction directly, but leads to a buckling motion of the
already deflected bundles. Consequently, not the entire stiffness of the fibers
becomes effective but rather a combination of flexural (bending) modulus of
the undulated rovings and matrix, yielding a more compliant material response.
Due to the high shares of matrix being loaded, time-dependent behavior can be
observed with regard to the stiffness values. With increasing loading rate, the
material responds in a stiffer manner. The averaged strengths 'c

‖ = 125MPa
and failure strains Yc‖ = 1% are similar for the different compressive loading
rates. High scattering of the material strength could be an indication of the
influence of nesting effects. Under compression, the material fails at strains
that are significantly lower compared to tensile tests. This behavior has already
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Figure 3.34: Stress-strain relations of quasi-static compression test in fiber direction of woven
specimens at different loading rates.
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a

b

c d

b
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d

Figure 3.35: Typical failure manifestation under compressive load in a woven fabric reinforced
composite. (a) Side view photograph of a woven specimen failed under longitudinal compression,
(b) Detailed section of a woven specimen failed under longitudinal compression, (c) detailed
microscopy of section of a woven specimen failed under longitudinal compression showing fiber
kinking and (d) fiber shear fracture.
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been observed in the UD matrix and is accredited again to the brittle matrix
failure, which is responsible for the failure behavior. Figure 3.35a and a more
detailed view in Fig. 3.35b show a typical failure of woven composite specimens
that failed under longitudinal compressive loading. The whole specimen failed
under the formation of a localized through thickness shear band that becomes
macroscopically visible. The shear failure bands range from 30◦ to 57◦ for all
specimens, with an average of about 45◦. Failure in the form of a shear band
can be explained by the woven nature of the material, especially the preexisting
deflections in the undulated rovings, as suggested by Harding [149]. Taking
a closer look on the micrograph of the damaged area in Fig. 3.35b, several
failure modes become visible. In general, fiber micro-buckling leads to fiber
kinking followed by failure of the fibers and matrix through the thickness of
the specimen along the distinct shear band. As a result of the buckling motion
of the tows within the material, matrix areas positioned in between two rovings
are sheared locally to a high extent. This results in high volumetric strain and
hence failing prematurely in a brittle manner (cf. Groves et al. [135]). Re-
ducing locally the stabilizing effect of the matrix surrounding the fiber bundles,
micro-buckling is caused. Subsequently fiber kinking (cf. Fig. 3.35c) and fiber
breakage (cf. Fig. 3.35d) favor the formation of the macroscopic shear band.

3.4.3 Tensile tests of off-axis specimens

Off-axis ±45◦ tensile tests were performed at three different position-controlled
cross beam velocities. The corresponding strain rates are given in Table 3.10.
Figure 3.36 shows the respective material responses. The single material

Table 3.10: Cross beam velocities and corresponding strain rates for tension tests of woven ±45◦
off-axis specimens (measurement length !0 = 20mm).

Cross beam velocity Strain rate
ET (mm/min) ¤̄Y (1/s)
5 1.67·10−3

50 1.67·10−2

500 1.67·10−1

responses as well as the corresponding measured stiffness �s, material strength
's, and strain at failure Ys as extracted from the experimental results are
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summarized in more detail in Figs. A.32 to A.34. The shear stress-strain
behavior is dominated by the matrix material and exhibits significant non-
linearity over a large strain range. Analyzing the stress-strain response in
terms of strain rate dependency, several conclusions can be drawn. The initial
stiffness is independent of the loading rate, however, the non-linear pathway
changes with the strain rate. The results are inconclusive regarding a valid
statement for the failure strain, showing high scatter within the single velocity
sets. Merely the shear strength shows an increasing trend for increasing shear
rates. Such a behavior is also reported in Bonnet [39]. Photographs of
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Figure 3.36: Stress-strain relations of quasi-static ±45◦ off-axis tension tests of woven specimens
at different loading rates.

the post-test in-plane shear specimens are depicted in Fig. 3.37. The major

a b
Figure 3.37: Detailed views of (a) one-layer and (b) multi-layer ±45◦ off-axis woven specimen
failed under tension. Roving/Fiber pullout in conjunction with matrix cracking is identified as the
dominant failure mode in both cases.

macroscopic failure modes were matrix cracking, fiber pull-out, fiber bundle
pull-out and delamination. Similar to the ±45◦ off-axis UD specimen before,
also in the weave, fiber reorientation (scissoring) in the direction of the external
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load direction was observed. According to Kellas et al. [190] this process
induces interlaminar stresses at the ply interfaces resulting in delamination. The
final failure is accompanied by the formation of a V-shaped in-plane fracture
surface (±45◦ to fiber axis). This plane indicates at the same time the plane
where the critical shear load is active.

3.4.4 Discussion

The previous sections presented the experimental results obtained from woven
fabric reinforced polypropylene subjected to tension and compression load. Ad-
ditionally, ±45◦ off-axis tension tests have been performed. Special attention
was paid to the influence of time-dependent viscous behavior of the composite,
taking into consideration the anisotropic structure. It could be shown that
tensile tests in fiber direction of the woven composite yield a slightly time-
dependent behavior. Hence, the strain rate effects in the material are influenced
primarily by the matrix viscoelasticity, fiber-matrix interfacial properties, the
composite woven reinforcement architecture, and the time-dependent nature
of damage accumulation. Mainly the matrix component, which takes a high
volume fraction in the composite, is responsible for this behavior. The share
of the matrix with regard to the overall stiffness can therefore not be neglected.
Due to the undulation of the reinforcement structures, matrix-related effects are
measured in all directions of the composite. Guagliano & Riva [136] and
Nicoletto & Riva [297] showed that nesting effects within the stacking
of a woven composite have significant influence on the mechanical behavior
in terms of stiffness and strength. Comparing the compression and tension
tests in fiber direction, a tension/compression asymmetry could be observed
with respect to stiffness and strength. Both entities yielded considerably lower
values under compression, which was entirely related to effects happening
in the thermoplastic matrix, stabilizing the impregnated tows. Undulation
triggers first local matrix failure and therefore a disturbance on the stabilizing
effect, leading to matrix damage. The continuous fibers tend to be prone for
kinking due to their high aspect ratio and are hence highly dependent on the
supporting effect of the surrounding matrix. Increasing undulation results in
decreasing strength and stiffness, as reported in Guagliano & Riva [136],
Nicoletto & Riva [297] as well as Garnich & Karami [120] and
Karami & Garnich [189]. Losing this support, the fibers fail collectively
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within the roving, accompanied by concurrent formation of matrix failure and
delamination. The final failure becomes visible in the form of a macroscopical
shear band. Off-axis ±45◦ specimen loaded under tension showed a significant
non-linearity, leading to large deformations within the material. Scissoring
effects within the material enable a reorientation of the reinforcement struc-
tures with the external loading direction. The specimen finally failed due to
delamination caused by foregone matrix cracking and fiber pullout. Large
rotations of the fibers yield high inter-ply shear loads which finally lead to
delamination and separation of the crack fronts. However, taking into account
the results obtained by Roesner [339], the measured strength values are
dependent on the specimen dimensions and are therefore not to be taken as
material parameters. Regarding the appearance of failure within the woven
specimen as well as the determination of material parameters, no difference
concerning the loading in warp or weft direction could be observed. This is
due to the fact that a balanced weave under waiver of the use of binders was
investigated.

In this chapter, experimental results have been presented for the constituents and
subcomposites appearing in organo sheets. The assessment of the deformation
behavior, especially of anisotropic materials, is very challenging and an urgent
issue in current research. Due to their complex inner structure and hence
direction-dependent behavior, many tests have to be conducted in order to
understand the processes taking place internally. However, superimposed
loading states are often hard or impossible to achieve. Therefore, computer
aided techniques deliver significant benefits. Microstructures can be generated
virtually and loaded in arbitrary loading combinations. In the upcoming
chapters a procedure is presented that enables a virtual characterization of
organo sheets on different levels of geometrical resolution, introducing both
generation of microstructures and necessary material models.
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4 Constitutive modeling of
constituents and composites

This chapter demonstrates the derivations of the three required constitutive
models in order to run the multiscale approach presented in Fig. 1.2. Section 4.1
addresses the rate-dependent definition of the elastoplastic and damage behav-
ior of the neat thermoplastic matrix, characterized in Section 3.2. With regard
to later developments, the initially defined small strain framework is extended
towards a finite setting formulated with the help of logarithmic strains. The
transition is done by purely geometrical operations applied on the strain tensor.
In order to perform the first scale-bridging step, a fully three-dimensional,
transversely isotropic continuum damage model is introduced in Section 4.2.
Representing the impregnated rovings, this constitutive model is used in the
virtual unit cell, i.e. the mesoscopic model. Incorporating the anisotropic
nature of unidirectionally reinforced materials, a transversely isotropic ground-
state elasticity law is presented in a finite strain framework in order to consider
large rotations that can occur in weave reinforced composites. The preferred
direction is therefore characterized by one vector. Depending on the orien-
tation, experimentally observed predominant emerging failure mechanisms
are integrated by the definition of suitable criteria for damage onset. Further
evolution of directional damage parameters is driven by a thermodynamically
consistent formulation using the theory of maximum dissipation. The last
constitutive model presented here enables the transition from a mesoscopic to
a macroscopic formulation, hence representing the weave reinforced material
on part level. Section 4.3 demonstrates the composition of the two aforemen-
tioned material models, creating a new straightforward formulation for the
macroscopic material behavior, incorporating plastic and anisotropic damage
effects by combining analytical and numerical homogenization steps. In the
present case of a twill weave reinforced composite, the preferred directions
of the woven composite coincide conveniently with the principal directions of
the reinforcing systems. However, due to external loading, the initially known
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4 Constitutive modeling of constituents and composites

preferred directions change as the material deforms. Therefore, an interme-
diate configuration based on the plastic share of the deformation gradient is
introduced in order to take these kinematic particularity into consideration. By
extending the given definitions by separate damage formulations for matrix and
rovings, the transfer of dominant material effects onto the macroscopic scale is
enabled. While Chapter 4 is limited entirely to the theoretical derivation of the
constitutive models including some remarks on the algorithmic treatment and
implementation of the governing equations of all scales, Chapter 5 presents the
numerical application and results.

4.1 Constitutive modeling of polypropylene

This section focuses on the modeling of the rate-dependent elastoplastic and
damage behavior of the matrix material for isothermal conditions. The formu-
lation of elastoplasticity in a finite framework has been worked on extensively
during the last decades. For a thorough overview, the interested reader is
referred to the works of Naghdi [286], or Xiao et al. [425]. Basically,
two main approaches exist for modeling large-strain inelastic material models.
The first approach bases on a multiplicative decomposition of the deformation
gradient into elastic and plastic contributions L = LeLp, also referred to as
Kröner-Lee decomposition (cf. Kröner [207], Lee [216], Mandel [250]).
The origin of this definition can be found in the micromechanical descrip-
tion of plasticity in crystalline materials, but is frequently used for the phe-
nomenological description of plasticity. The second approach bases on the
Green-Naghdi theory and uses the Lagrangean plastic deformation measure
Kp (cf. Green & Naghdi [131]). For the present work, the formulation
introduced by Miehe [273, 274] together with the additive framework for the
plastic strains (cf. Miehe et al. [268], Papadopoulos & Lu [306, 307],
Miehe & Apel [275]) is used to set up the constitutive model in the logarith-
mic strain space. This framework allows for the formulation of a geometrically
linear plasticity model in the core that is embedded into a purely geometric
pre- and post-processing algorithm, rendering the model geometrically non-
linear. In the present work, first a material model for the thermoplastic matrix
is derived in the context of a geometrically linear frame using the additive
decomposition of the strains which is then embedded into the aforementioned
logarithmic framework. The experimental behavior under quasi-static tension
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4.1 Constitutive modeling of polypropylene

and compression at different strain rates of the present thermoplastic polypropy-
lene matrix is demonstrated in Section 3.2. For the model here it is assumed
that the time-dependency arises purely due to time-dependent plastic effects in
the matrix. In this section, we first introduce the overall constitutive equations
of the elasto-viscoplastic material model, including an isotropic formulation
for damage. A second part describes in more detail the modular structure of
the kinematic approach required for the implementation in Abaqus.

4.1.1 Basic kinematics and state variables

Aiming at a continuum mechanical description of a non-associative elasto-
plasticity coupled to continuum damage mechanics at small strain, the basic
kinematics need to be defined. The macroscopic strain 9 = ∇su can be
decomposed into elastic and inelastic parts, which allows for the introduction
of the stress producing elastic strains.

9e = 9 − 9p (4.1)

The elastic strain is used to described energy storagemechanisms that are related
to elastic macroscopic distortions of the material. In addition, hardening effects
are captured by the hardening variables Uc and Ut taking into account hardening
effects under compression and tension, respectively. For modeling damage
effects, i.e. a softening of the material, a scalar damage variable 3 is introduced,
modeling a gradual degradation of the material. Thus, the total constitutive
state can be summarized by

{9; 9p, Uc, Ut, 3} (4.2)

which builds the kinematic framework for the formulation of the constitutive
equations. Regarding the later implementation, the coupled plasticity and
damage partition will not be treated monolithically. In a typical loading phase,
the material will be loaded plastically up to a critical state with the damage
partition not being active. After the turning point, the plastic state of the
material is frozen and damage evolves.
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4 Constitutive modeling of constituents and composites

4.1.2 Non-associative elasto-plasticity

4.1.2.1 Energy storage mechanisms and stresses

The energy storage mechanism is determined by the free energy function of the
specific form

Ψ = Ψ(9; 9p, Uc, Ut, 3)
= (1 − 3)Ψ0(9, 9p, Uc, Ut)

= (1 − 3)
[
Ψe

0(9e (9; 9p)) + Ψ
p,c
0 (Uc) + Ψ

p,t
0 (Ut)

]
.

(4.3)

In this representation, damage effects enter the free energy by a classical (1−3)-
ansatz which reduces the stiffness in the material. Focusing on a decoupled
plasticity and damage formulation, the latter is not active during plastic loading
of the material. Thus, evaluation of the Clausius-Plank inequality for the
internal dissipation with ¤3 = 0 takes the form

D = 20 : ¤9 − ¤Ψ0 ≥ 0 (4.4)

in the isothermal case. From Eq. 4.3 we obtain by application of the chain rule

¤Ψ0 =
mΨe

m9e
: ¤9e +

mΨ
p,c
0

mUc
¤Uc +

mΨ
p,t
0

mUt
¤Ut. (4.5)

Insertion into the dissipation inequality gives

D =
[
20 −

mΨe
0

m9e

]
: ¤9 +

mΨe
0

m9e
: ¤9p −

mΨ
p,c
0

mUc
¤Uc −

mΨ
p,t
0

mUt
¤Ut ≥ 0. (4.6)

Standard arguments, see e.g. Coleman & Gurtin [75] or Lubliner [241],
give the definition of stresses

20 =
mΨe

0
m9e

(4.7)

and the reduced dissipation inequality

Dred = 20 : ¤9p + .c ¤Uc + .t ¤Ut ≥ 0 (4.8)
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in terms of the driving forces

.c = −
mΨ

p,c
0

mUc
and .t = −

mΨ
p,t
0

mUt
(4.9)

for hardening mechanisms under compression and tension, respectively. In
what follows, the quadratic form of the free energy function is chosen

Ψe
0 (9

e) =
1
2
^tr2 [9e] + `‖dev [9e] ‖2 (4.10)

in terms of the compression modulus ^ and the shear modulus `. Equation 4.7
yields the stresses

20 = ^tr [9e] 1 + 2`dev [9e] = C0 : 9e (4.11)

expressed by the isotropic elastic stiffness tensorC0 = ^1⊗1+2`Psym in terms
of the fourth-order deviatoric projection tensor Psym = Isym − 1

31 ⊗ 1. The
hardening mechanisms are taken into account by the energetic contributions

Ψ
p,c
0 (Uc) =

(
f∞c − f0

c

) (
Uc +

1
lc

exp [−lcUc]
)

Ψ
p,t
0 (Ut) =

(
f∞t − f0

t

) (
Ut +

1
lt

exp [−ltUt]
) (4.12)

for compressive and tensile response. Equation 4.9 gives the driving forces

.c = −
(
f∞c − f0

c

)
(1 − exp [−lcUc])

.t = −
(
f∞t − f0

t

)
(1 − exp [−ltUt]) .

(4.13)

4.1.2.2 Non-associative plastic flow

For the present material, the elastic domain E in stress-space is a smooth
domain

E := {(20, .c, .t) |Φ (20, .c, .t) ≤ 0} (4.14)
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4 Constitutive modeling of constituents and composites

bounded by the yield functionΦ. An associative form of the evolution equations
for the plastic strain 9p and the hardening variables Uc/t follow from the principal
of maximum dissipation

(
20 − 2∗0

)
: ¤9p −

(
.c − . ∗c

)
¤Uc −

(
.t − . ∗t

)
¤Ut ≥ 0 for

all
(
2∗0, .

∗
c , .

∗
t
)
∈ E. See also Hill [162], Drucker [102], and others. It

directly induces the associative evolution equations

¤9p = ¤Wm20Φ and ¤Uc = ¤Wm.cΦ and ¤Ut = ¤Wm.tΦ (4.15)

along with the loading/unloading conditions (Karush-Kuhn-Tucker conditions)

¤W ≥ 0 and Φ ≤ 0 and ¤WΦ = 0 (4.16)

where ¤W denotes the plastic multiplier. Carefully note that within the associative
theory, the yield function Φ plays the role of a so-called plastic potential which
governs the flow rule. The generalization towards a non-associative flow
response bases on the introduction of independent flow directions T

¤9p = ¤WT and ¤Uc = ¤W#c and ¤Ut = ¤W#t. (4.17)

The flow directions are assumed to be derived from a plastic potential function
Ξ (20, .c, .t) in the sense

T :=
mΞ

m20
and #c = #t =

√
: ‖T‖. (4.18)

The variable : , controlling the hardening mechanism, depends on the used
yield criterion but can generally be defined by

: =
1

1 + 2a2
p

(4.19)

using the plastic pendant of the Poisson’s ratio ap. Clearly, definition Eq. 4.182
identifies the internal variables Uc and Ut with the accumulated plastic strain
with the evolution equation

¤Uc = ¤Ut =
√
: ‖ ¤9p‖=: ¤Ypacc. (4.20)
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4.1 Constitutive modeling of polypropylene

To be specific, for the present material model, the pressure dependent yield
function according to Tschoegl [393] is chosen and reads

Φ (20, .c, .t) = 6�2(20)

+ 2 [fc (.c) − ft (.t)] �1(20)

− 2fc (.c) ft (.t)

(4.21)

in terms of the yielding parameters fc and ft and the invariants

�2 =
1
2
‖dev [20] ‖2 and �1 = tr [20] . (4.22)

A graphical representation of the yield function in the stress space is depicted
in Fig. 4.1. The hardening mechanisms under compression and tension take

𝜎3

𝜎2

-𝜎1

𝜎1

-𝜎3

-𝜎2

𝜎1 = 𝜎2 = 𝜎3

Figure 4.1: Paraboloidal yield surface Φ. Image taken and modified from Tschoegl [393].

the form

fc (.c) := f0
c − .c and ft (.t) := f0

t − .t (4.23)

in terms of the driving forces Eq. 4.13. The flow direction from Eq. 4.18 is
characterized by the plastic potential which, according to Melro [260], reads

Ξ (20) = 3�2 (20) +
1
9
U�2

1 (20) (4.24)
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again in terms of the invariants from Eq. 4.22. Making use of equations
Eq. 4.18, the flow direction can be identified as

T = Tiso + Tvol = 3dev [20] +
2
9
Utr [20] 1 (4.25)

in terms of a variable controlling the volumetric plastic flow

U =
9
2

1 − 2ap
1 + ap

. (4.26)

4.1.3 Modeling ultimate damage

This section serves to extend the introduced elasto-plastic response by a stress-
based damage formulation. Physically speaking, damage is interpreted as the
result, growth and coalescence of microcracks (cf. Simo & Ju [353, 354]).
Introducing a material model within the framework of continuum mechanics,
damage is often treated as an evolving internal variable which can be a scalar
or tensorial entity. In the following, a scalar damage variable is assumed which
does not take into account tension/compression asymmetry and is independent
of the loading direction. Hence, damage is defined as completely isotropic. In
this work, the hypothesis of strain equivalence is applied (cf. Lemaitre [218,
220]). This method favors the implication that the evolution of damage is
directly linked to the history of total strain, as stated by Simo & Ju [353,354].
In order to derive the model in a thermodynamically consistent manner, the
complementary free energy potential, the Gibb’s potential written as

Λ(2, 9p, .c, .t, 3f) = 3fΛ0(20) + 2 : 9p − Λp(.c, .t, 9p) (4.27)

is introduced. Hereby, the stress based damage variable 3f = (1 − 3)−1, the
thermodynamic driving forces for hardening .c and .t, together with the elastic
contribution

Λ0(2) =
1
2
2T

0 : H0 : 20 (4.28)

and complementary plastic potentialΛp, analogously to the general formulation
of Simo & Ju [353, 354] are used. H0 = (C0)−1 denotes the undamaged
compliance tensor, that can be expressed in an analogous way to the pristine
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4.1 Constitutive modeling of polypropylene

stiffness tensor C0 in terms of the isotropic stiffness parameters � and a. Con-
sequently, the subsequent focus lies on the damage mechanisms solely. For an
isothermal case the Clausius-Duhem inequality (cf. Coleman & Noll [76],
Coleman & Gurtin [75]) takes the form

D = ¤Λ − ¤2 : 9 ≥ 0. (4.29)

with
¤Λ = ¤Λ(2, 9p, q, 3f) (4.30)

for any admissible process. For a decoupled plastic and damage formulation
with frozen plastic state variables during damage loading, the application of
the chain rule of Eq. 4.29 takes a simplified form

mΛ

m2
: ¤2 +

mΛ

m3f
¤3f − ¤2 : 9 ≥ 0. (4.31)

With standard arguments together with the additional assumption that unloading
processes are always elastic we obtain

9 =
mΛ

m2
= 3f

mΛ0
m2

+ 9p (4.32)

along with the dissipative inequality

Dred = Λ0(20) ¤3f ≥ 0 (4.33)

for dissipative contributions during the evolution of damage. Malvern [249]
states, that the positiveness of the dissipated energy is required by any constitu-
tive model, since it represents the second law of thermodynamics. Carefully
note, that the additive decomposition for the strains is recovered from Eq. 4.32.
It follows from Eq. 4.27 and Eq. 4.33 that

. =
mΛ(2, 3f)
m3f

= −Λ0(20). (4.34)

Therefore, the initial elastic complimentary energy Λ0(20) is the thermody-
namic force−. conjugate to the damage variable 3f , which intrinsically fulfills
the condition of irreversibility of damage ¤3 ≥ 0. Note that for the linear case
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Λ0(20) = 1
22

T
0 : H0 : 20, where H0 is the undamaged compliance matrix. It

follows from Eq. 4.32 and

Λ0(0) = 0 and
mΛ0(20)
m2

����
20=0

= 0 (4.35)

that the plastic strain 9p is precisely the residual strain obtained upon (local)
unloading. Thus, identifying the elastic strain with recoverable strain after
unloading, i.e. 9e = 9 − 9p, from 4.32

9e ≡ 3f
mΛ0
m2
⇒ 9̃e = (1 − 3)9e =

mΛ0
m2

(4.36)

is obtained with 9̃e being the effective elastic strain. Therefore, the updated
damaged stiffness tensor

C = (1 − 3)C0 =
[
3f

m2Λ0

m22

]−1

(4.37)

follows, since from the concept of stress equivalence ("the stress associated with
a damaged state under the applied strain is equivalent to the stress associated
with its undamaged state under the effective strain" cf. Simo & Ju [353,354])
follows

2 = C0 : 9̃e != C : 9e = (1 − 3)C0 : 9e. (4.38)

An equivalent derivation based on the equivalence of the Helmholtz free energy
yields the same results due to the special position of damage in the respective
potentials as well as the assumption of independence between the evolution of
the damage variable 3 from plastic processes. In the following, the hypothesis
of strain equivalence is used, introducing the relation

2̃ = M−1 : 2 (4.39)

with 2 as the homogenized stress tensor and 2̃ denoting the effective stress
tensor (cf. Carol et al. [52, 53]). The fourth-order tensorM characterizing
the damage state, simplifies for the present isotropic case toM = (1 − 3)Isym,
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with Isym being the rank four identity tensor and a formulation for the stresses
equivalent to the one in Eq. 4.38 is valid,

2 = C : 9e = (1 − 3)C0 : 9e. (4.40)

The evolution of damage in the material is characterized by means of a stress-
based damage criterion and a damage rule. Here, a similar criterion as for the
presented plasticity formulation from earlier is used (cf. Tschoegl [393],
Melro [260]), whereby the yield strengths are replaced by failure strengths.
The damage activation function �d defines the elastic domain under a general
stress state, using the tensile and compressive strengths of the material

�d = qd − A =

{
< 0, elastic domain
= 0, damage criterion activated

(4.41)

where A is the internal variable controlled by the damage evolution law (thresh-
old variable) and qd is the loading function defined by

qd =
3

-c-t
�̃2 +

(-c − -t)
-c-t

�̃1 (4.42)

with -c as the materials compressive and -t as tensile strength, respectively.
The definitions for the invariants here are given analogously to Eq. 4.22 but as
functions of the effective stress 2̃. The Karush-Kuhn-Tucker conditions for the
evolution of damage are given as

¤A ≥ 0 and �d ≤ 0 and ¤A�d = 0. (4.43)

In order to distinguish loading from unloading situations and determine if
damage evolution takes place, the rate of the loading function ¤qd must be
evaluated. If ¤qd ≤ 0 the state is one of unloading, otherwise damage evolution
is taking place and the following consistency condition is valid

¤�d = ¤qd − ¤A = 0 (4.44)

under the condition that (a) the internal variable A depends only on the damage
variable and (b) the loading function is defined in terms of the strain tensor. If
these conditions hold true, the constitutive model can be integrated explicitly
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(cf. Simo & Ju [353, 354]). From the consistency condition (�d = ¤�d = 0)
we get

A = max
{
A0,max

C→∞

{
qdt

}}
. (4.45)

For the described model, the initial internal threshold parameter is set to A0 = 1.
The missing constitutive relation describes the mapping of A ∈ [1,∞] on a
discrete damage variable 3 ∈ [0, 1]. In a general approach it is easily found that
damage states can basically be divided in three stages that formulate boundary
conditions for a valid choice of the damage evolution law:

1. Pristine state: Material is undamaged A = 1→ 3 = 0.

2. Damage progress: The change rate of damage is greater than zero
( ¤A ≥ 0→ ¤3 ≥ 0). This is fulfilled if the damage evolution law satisfies
the condition

m3

mA
≥ 0

since
¤3 =

m3

mA
¤A ≥ 0.

3. Fully damaged material: The threshold variable strives towards A →∞
and the damage variable takes the value 3 = 1.

The ansatz for damage evolution law is therefore chosen as

3 = 1 − 1
A

exp (�m(1 − A)) (4.46)

fulfilling all required conditions. Figure 4.2 shows the evolution of the damage
variable with increasing threshold variable A > 1. To integrate a development of
a suitable strain localization limiter that minimizes mesh-sensibility associated
with strain-softening, Baz̆ant’s crack band model (cf. Baz̆ant & Oh [19])
has been applied and integrated in the definitions of the damage evolution
law. Hereby, �m is the adjustment parameter, dependent on the characteristic
length of the particular observed element ;e, that will be determined under the
assumption of a uniaxial tensile load. Without that, damage would localize
in a narrow band with the same thickness as the element where damage was
activated. This would cause a dependency of the structural response on the
mesh size. The smaller the element in the band of localized damage, the less
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Figure 4.2: Mapping function of the damage variable 3 ∈ [0, 1] as a function of the threshold
variable A ∈ [1,∞] and exemplary adjustment parameters �m accounting for the element size.

the computed dissipated energy. The solution for this localization problem
lies in a regularization of the computed dissipated energy by the characteristic
length ;e of each element obtaining the dissipative energy density

kD =
∫∞

0
−. ¤3fdC =

∫∞
1
Λ0 (2)

m3f

mA
dA =

�f
;e

(4.47)

where �f is the critical energy release rate. Solving Eq. 4.47 for �m enables
the subsequent damage update. Remarks on the numerical implementation are
given in Appendix C. From here the damaged stresses can be computed. The
approach of strain equivalence states that

2 = C : 9e and 20 = C0 : 9e. (4.48)

Simply plugging the above equations together, yields

2 = C : (C0)−1 : 2̃ = (1 − 3)20 (4.49)

in terms of the undamaged elastic stresses defined in Eq. 4.11 and the damage
variable 3.
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4.1.4 Extension towards rate-dependency

Recollecting the experimental results for the thermoplastic matrix from Sec-
tion 3.2 suggests that the material exhibits a pronounced rate sensitivity in terms
of both plastic and damage response. A simple phenomenological approach
to cover this behavior in terms of plasticity is obtained by means of a viscous
regularization of the evolution parameters of the presented rate-independent
strain-based plasticity as presented by Perzyna [313]. This method has the
property of introducing a viscosity coefficient [vp as one additional parameter
for a rate-dependent plasticity. Depending on its value, the non-linearity during
plastic evolution becomes rate-dependent in the sense that plastic effects are
decelerated at higher strain rates. The governing rate equations for viscous plas-
ticity are different from their inviscid counterparts and, following the arguments
of Perzyna, can be explicitly rewritten

¤W =
1
[vp
〈Φ(2)〉+. (4.50)

However, an alternative approach is chosen, introducing rate-dependent hard-
ening terms, yield strengths, and failure strengths. For all cases, a similar
exponential formulation as for the hardening is chosen (cf. Eq. 4.23), in-
troducing the time-dependent definition for the corresponding parameters
P ∈

{
f0
c,t, f

∞
c,t, lc,t, -c,t

}
of the form

P = P0 + (P∞ − P0)
(
1 − exp

(
−[Pv ‖ ¤9‖U

))
, (4.51)

where P0 corresponds to the parameter at low and P∞ at high strain rates
respectively. The viscous parameter [Pv controls the transition from P0 to P∞.

4.1.5 Algorithmic treatment of constitutive equations

The upcoming section will describe the algorithmic setting that is necessary
for a numerical implementation of the visco-plasticity and damage formu-
lation defined above. For the present case, the model is implemented in
a user-defined material subroutine (UMAT) for the implicit solver Abaqus
(cf. Simulia [355]). In Fig. 4.3, the proposed model is visualized in a

120



4.1 Constitutive modeling of polypropylene

one-dimensional rheological system, consisting of a series of one spring, re-
sponsible for ground-state elasticity, and a parallel setting of a friction element
and a damper, representing the viscoplastic part. Affecting the material stiff-

𝜺e 𝜺p

𝝈 𝝈

Figure 4.3: One-dimensional representation of the proposed matrix material model, depicting the
strain split into elastic (black) and plastic (red) contributions. The stiffness is degraded by the
progressive damage variable (blue).

ness, the damage variable is responsible for the ultimate damage representation.
Plasticity and damage related terms are rate-dependent. This model induces
the calculation of stresses according to

2 = (1 − 3 (9, ¤9)) C0 : 9e (9, 9p (9, ¤9)) . (4.52)

For the following derivations it is assumed however, that (a) one constant strain
rate ¤9 is active and (b) plasticity and damage evolution are not inter-dependent
and will therefore be calculated in a staggered manner, i.e. consecutively. In
other words, plasticity will evolve ( ¤W > 0) only as long as macro damage has
not started to evolve (3 = 0). As soon as the material strength in terms of
failure is reached, plastic strains will be frozen. That is the reason why the
algorithmic setting of plastic evolution and damage can be looked at separately.
In this setting, the plastic strain rate defined in Eq. 4.171 is integrated yielding

9p = 9
p
n +

∫ t

Cn
¤9pdC = 9

p
n +

∫ t

Cn
¤WTdC. (4.53)

Application of implicit backward Euler gives

9p = 9
p
n + ¤WΔCT = 9

p
n + ΔWT. (4.54)

By definition the elastic trial strains are introduced by

9tr = 9 − 9pn. (4.55)
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The assumption that the complete strain increment Δ9 made in the current time
increment is purely elastic for the moment holds. Based on this trial state we
obtain an alternative representation of the current elastic strains, namely

dev [9e] = dev
[
9tr

]
− ΔWTiso

1
3
tr [9e] =

1
3
tr

[
9tr

]
− ΔWTvol

(4.56)

With these current strains, the current (undamaged) stresses can be determined
according to Eq. 4.11 yielding

dev [20] = 2`dev
[
9tr

]
− 2`ΔWTiso

1
3
tr [20] = ^tr

[
9tr

]
− 3^ΔWTvol.

(4.57)

Combining equations 4.571 and 4.572 the classical formulation for an elastic
predictor/plastic corrector algorithm can be recovered, which reads

20 = C0 :
(
9en + Δ9

)
− ΔWC0 : T. (4.58)

The first part of the equation is called elastic predictor 2tr=C0 :
(
9en + Δ9

)
which estimates the stresses at the end of each loading increment Cn+1 assuming
the step to be purely elastic, and the second part plastic corrector. Latter is zero
if the step is elastic and greater than zero in the case of plastic flow in the time
increment, thereby correcting the elastic predictor. To determine the plastic
corrector, the set of equations in Box 4.1 has to be solved simultaneously in
the return mapping scheme. Taking into consideration the definitions from
Eq. 4.25 and performing a stress split into deviatoric and volumetric parts, it is
possible to rewrite the stresses as

dev [20] = 2`dev
[
9tr

]
− 6`ΔWdev [20]

1
3
tr(20) = ^tr(9tr) − 2

3
^UΔWtr(20)

(4.59)

and hence, solving for the current stress

dev [20] =
2`
Zs

dev
[
9tr

]
and

1
3
tr(20) =

^

Zp
tr

[
9tr

]
(4.60)
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4.1 Constitutive modeling of polypropylene

with the two coefficients Zs = 1 + 6`ΔW and Zp = 1 + 2^UΔW as the plastic
corrector terms which reduce the elastic predictor stresses (cf. Melro [260]).
Note that these two terms depend on the plastic multiplier solely. Having
formulated all the above information, it is now possible to formulate the radial
return mapping scheme in order to identify the plastic multiplier ΔW.

Box 4.1: Evolution equations necessary for the definition of the plastic return mapping algorithm.

Δ9p = ΔWT(20, q)

ΔUc = ΔUt = ΔY%acc =
√
: ‖Δ9p‖

20 = 2tr − C0 : Δ9p

Φ(20, .c, .t) = 0

4.1.5.1 Return mapping algorithm for update of plastic strains

The starting point of the return mapping algorithm is the stress split described
in Eq. 4.58 where the current stresses can be written as a combination of
an elastic predictor and a plastic corrector that becomes active depending on
the current loading situation. In the case of plastic loading, the consistency
condition needs to be evaluated in order to find the correct plastic multiplier
ΔW which yields the correct plastic material response. From the definition for
the yield function 4.21 and the substituting formulations for the stresses from
Eq. 4.60, we obtain the nonlinear equation

Φ (ΔW) = 3
(

2`
Zs (ΔW)

)2
‖dev

[
9tr

]
‖2

+
6^(fc (ΔW) − ft (ΔW))

Zp (ΔW)
tr

[
9tr

]
− 2fc (ΔW) ft (ΔW)

!= 0

(4.61)

that has to be solved for the plastic multiplier ΔW. This is done, using a local
Newton iteration scheme taking into consideration the other equations from
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4 Constitutive modeling of constituents and composites

Box 4.1. Coming back to the elastic-plastic stress split (cf. Eq. 4.58), the most
apparent relation is the definition of the increment of plastic strain that can be
read as

Δ9p = ΔW

(
3
dev

[
2tr]
Zs

+
2
9
U
tr(2tr)
Zp

1

)
(4.62)

using the definition for the plastic flow direction T (cf. Eq. 4.25). With this, the
increment of the accumulated plastic strains that have been initially introduced
in rate form (cf. Eq. 4.20), can now be written as

ΔY%acc =
√
: ‖Δ9p‖ (4.63)

The above formulation is important later to describe the materials hardening
behavior. Note that so far all quantities are only dependent on the trial strain
9tr and the plastic multiplier ΔW. Thus, since the trial strains are constant over
one increment and there exists no closed form solution for ΔW, a local Newton-
Raphson iterative update scheme has to be devised. Following the reasoning
of the return mapping algorithm, where the equilibrium state Φ(ΔW) = 0 is in
demand, we define for the present case the residual AΦ for a frozen deformation
state 9 at time Cn+1 as

AΦ = Φ(ΔW) != 0 (4.64)

The basis for a Newton iteration is the linearization of the residual function

Lin {AΦ} (ΔW, JΔW) = AΦ(ΔW) + cJΔW
!= 0. (4.65)

where the local tangent of the Newton iteration is defined as

c =
mAΦ (ΔW, fc (ΔW) , ft (ΔW))

mΔW
. (4.66)

The plastic multiplier is then updated according to

ΔW ⇐ ΔW + ΔΔW = ΔW − AΦ(ΔW)c−1 (4.67)

until convergence is obtained, i.e. ‖AΦ(ΔW)‖≤ Ytol.
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4.1 Constitutive modeling of polypropylene

4.1.5.2 Update of macroscopic damage variable

Parallely to the update of the plastic evolution, the damage activation criterion
from Eq. 4.41 is checked in each increment. Since plasticity and damage
are assumed not to be coupled in terms of dissipative processes, the material
point is evaluated in an elastic-plastic-damage order. As soon as damage has
been activated, the calculation of plastic evolution is skipped and the plastic
strain remains constant. Up to that point, the material behaves purely elasto-
viscoplastic. Analogously to the return mapping algorithm for plastic strain,
an update of elastic strain

9e = 9n + J9 − 9p (ΔW) (4.68)

and resulting new trial stress

20 = C0 : 9e (4.69)

is performed, that is used to evaluate damage evolution. In the case of active
damage propagation, the internal variables A and consequently 3 are updated
according to Eqs. 4.45 and 4.46. For a geometrically non-linear analyses the
mesh adjustment parameter �m has to be calculated in every time increment. A
more detailed description of the integrationmethod is not given at this point, but
it is referred to the implementation presented in the work of Maimí et al. [245]
(cf. also Appendix C). With the damage variable being known, the damaged
stiffness tensor can be updated according to Eq. 4.37 and finally the damaged
stresses are computed by Eq. 4.49.

4.1.5.3 Determination of the consistent algorithmic tangent operator

In order to obtain a robust convergence behavior in the commercial software
package Abaqus, the global Newton-type iterative scheme requires a proper
definition of the global algorithmic tangent. With the definition of the tangent
being the sensitivity of the stresses with respect to the strains the operator can
be defined by

Ct = Δ92 =
d2
d9
. (4.70)
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4 Constitutive modeling of constituents and composites

In terms of the stresses defined in Eq. 4.52 the tangent can be rewritten as

Ct = (1 − 3)C0 : (Isym − m9
p

m9
) − (C0 : 9e) ⊗ m3

m9
(4.71)

being able to separate again plastic and damage effects. Knowing that the
plastic strains defined in Eq. 4.54 are a function of the plastic multiplier and
the flow direction, we can extend the derivation

m9p

m9
=
m [9p (ΔW, T)]

m9
=
m9p

mΔW︸︷︷︸
(i)

⊗ mΔW
m9︸︷︷︸
(iv)

+
m9p

mT︸︷︷︸
(ii)

:
mT

m9︸︷︷︸
(iii)

. (4.72)

From here it becomes clear that Eq. 4.72(i-iii) are rather easy to find

m9p

mΔW
= T + ΔW

mT

mΔW

m9p

mT
= ΔWIsym

mT

m9
= C0 :

(
3Psym +

2
9
U (1 ⊗ 1)

) (4.73)

with Psym being the symmetric deviatoric projection tensor, whereas the de-
termination of 4.72(iv) is problematic since ΔW is solved iteratively in the
Newton-Raphson scheme described in Section 4.1.5.1 and thus no analytical
formulations for the plastic multiplier and its derivations exists. Exploiting
however the persistence condition implying the steady fulfillment of vanishing
residuum defined in Eq. 4.64, this situation can be alleviated by applying the
implicit functional theorem (in analogy to Goektepe [126]). Therefore, the
total derivative of the residuum must also be zero at any given instant of the
deformation,

d9AΦ
!= 0. (4.74)

Extending the formulation of Eq. 4.74

d9Φ =
mΦ

m9
+
mΦ

mΔW

mΔW

m9
!= 0 (4.75)
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a substitute for the wanted expression

mΔW

m9
= −mΦ

m9

[
mΦ

mΔW

]−1
(4.76)

is obtained. This can be inserted into Eq. 4.72. The derivation of the yield
surface Φ being defined in Eq. 4.61 with respect to the total strain 9 reads

mΦ

m9
=

6
Z2
s (ΔW)

m� tr2 (9tr)
m9

+ 2
� tr1 (9tr)
Zp(ΔW)

(
mfc(9tr,ΔW)

m9
− mft(9

tr,ΔW)
m9

)
+ 2

(
fc

(
9tr,ΔW

)
− ft

(
9tr,ΔW

) )
Zp (ΔW)

m� tr1
(
9tr

)
m9

− 2
(
fc

(
9tr,ΔW

) mft (9tr,ΔW)
m9

+
mfc

(
9tr,ΔW

)
m9

ft
(
9tr,ΔW

) )
(4.77)

where

m� tr2
m9

= 4`2dev
[
Ytr

]
and

m� tr1
m9

= 3^1. (4.78)

The derivation of the yield strengths (fc,t) with respect to total strain 9 are
based on the definition for hardening, which is a function of the increment of
accumulated plastic strain (cf. Eq. 4.63). The part of the tangent concerning
macro damage has to be further investigated. The total derivations of 3 with
respect to total strains can be rewritten as

m3

m9
=
m3

mA

mA

m9
. (4.79)

In the case of active damage evolution (�d = 0) it becomes obvious from
equation 4.41 and the definition of the threshold parameter A (cf. Eq. 4.45) that

A = Φd(9e). (4.80)
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Therefore, the missing derivation m9A can be determined as

mA

m9
=

3
-c-t

m� tr2
m9

+
(-c − -t)
-c-t

m� tr1
m9

(4.81)

4.1.6 Transformation to a large deformation setting

Decomposing total strains additively into elastic and plastic parts is a typical
feature of the geometrically linear theory of plasticity. The classical approach
using the Lee-Kröner decomposition of the deformation gradient yields a
stress-free relaxed intermediate configuration described by its metric tensor
M̄. Consistent with this multiplicative decomposition, Miehe et al. [268]
propose an additive definition of total strains in the logarithmic strain space,
hence giving a possibility to transfer material definitions given in Hencky
strains to a logarithmic setting. A comparison shows the closeness of solutions
obtained by the additive finite plasticity in the logarithmic strain space and the
results given by classic multiplicative approaches. Hereby, both isotropic and
anisotropic cases have been investigated. With the assumption that total and
plastic deformations are coaxial, i.e. I and Mp commute, this approximation
yields close results to a fully multiplicative form 9e ≈ 9̄e= 1

2 ln[Lp-TILp−1]
with the right Cauchy-Green strain measure I=LTgL and the plastic part of
the deformation gradient Lp. The framework defined in the following was
used throughout this work, extending the original form by its application in the
context of viscoplastic material as shown in Miehe [277]. For the present
case, the logarithmic Lagrangian elastic strain split can be defined by

9e =
1
2

ln [I] − 9p with 9 =
1
2

ln [I] . (4.82)

The internal variable of plastic strains is defined as

9p =
1
2

ln [Mp] (4.83)

where Mp=LpTM̄Lp is the plastic metric equivalent to the Cauchy-Green strain
measure and within this framework the primary variable for plastic deformation.
M̄ is the metric tensor on the intermediate plastic configuration. The major
characteristics of the proposed logarithmic framework is its modular structure:
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4.1 Constitutive modeling of polypropylene

1. Geometric pre-processor: Strain measures for total and plastic defor-
mations are defined in the logarithmic space according to Eqs. 4.82
and 4.83.

2. Constitutive model: Here, constitutive equations in accordance to the
geometric linear theory as described above are defined. The strain
measure 9 and the set of internal variables q are used as input for the
proposed model, yielding finally stress and tangent moduli entities in the
logarithmic space.

3. Geometric post-processor: After the computation of the relevant objects
in the logarithmic domain, a mapping to their desired stress measures and
tangent moduli is required. This is made possible by purely geometrical
considerations and taking into account the consistency of local stress
powers

Fint = g : V : ¤L = 2 : ¤9. (4.84)

Miehe & Lambrecht [276] show that by applying the chain rule for
the time derivation

¤9 =
m9

mL
: ¤L = P : ¤L (4.85)

a fourth order stress projection tensor P=mL9 can be identified. A de
novo time derivation of the projection tensor

¤P = L : ¤L (4.86)

yields the sixth order projection tensor L=mLL9 such that the tangent
moduli from the logarithmic domain Ct are projected by

C = PT : Ct : P + 2 : L. (4.87)

Miehe & Lambrecht [276] provide a thorough presentation of the
necessary algorithms to determine the projectors P and L.
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4 Constitutive modeling of constituents and composites

4.2 Material model for unidirectional fiber
reinforced plastics

Woven materials consist of two basic constituents, fibers and matrix. A main
issue in modeling these kind of materials is the incomplete set of test data due
to deformation modes not accessible through experiments. To overcome this
problem, a virtual material characterization framework is set up, taking into
account the microstructure of the materials (cf. Fig. 1.1). For the upcoming
steps in the multi-scale analysis, a homogenized material model considering
anisotropic damage initiation and progression is necessary to predict the be-
havior of the impregnated rovings within the woven composite. By definition,
the embedded fiber yarn is considered to be initially transversely isotropic
with the preferred direction along the fiber axes. However, the symmetry class
changes due to introduction of anisotropic damage. The relevant failure modes
found in literature and during the experimental analysis are considered via
direction-dependent failure criteria. This formulation allows furthermore the
distinction of tensile/compressive asymmetric failure behavior. This section
introduces therefore a fully three-dimensional continuum damage model for
impregnated rovings, representing parallel fiber arrangement embedded in a
thermoplastic matrix. Since on the macroscopic level the woven structure ex-
periences large deformations, especially in the form of rotations, these motions
have to be accounted for and reasonably described on the mesoscopic scale. To
this end, a thermodynamically consistent constitutive model in the finite strain
setting with the capability of predicting damage onset and evolution is derived
here. A general framework to formulate elastic degradation and damage at
small strain was presented by Carol et al. [51] as an example. Extensions
towards a formulation of large strains in a Lagrangian setting is presented
in the following section. Assuming an initially transversal isotropic material
behavior while being undamaged, an elastic constitutive formulation for large
strain deformations is derived.

4.2.1 Transverse isotropic ground-state elasticity

Transversal isotropy is defined by the invariance of constitutive equations
describing a material as a result of rotations around a principal symmetry axis
G acting as the normal of the transversely isotropic plane. For the present case,
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4.2 Material model for unidirectional fiber reinforced plastics

this direction can conveniently be identified by the fiber axis. The principal
symmetry axis in the reference configuration Bm is described by a normed
contra-variant vector G = {�� }�=1,2,3; ‖G‖= 1. Its deformed counterpart
in the current configuration Bs(B0) can be written as a contra-variant vector
a = {08}8=1,2,3. The two representations are connected via the deformation
gradient L by the tangent map

a = LG. (4.88)

Figure 4.4 depicts the valid kinematics of the principal symmetry axis of a
transversal isotropic material in the framework of large deformations. The

𝒙𝑿

𝒪
𝒆1

𝒆2

𝒆3

𝑨

𝒂

𝑭

𝜑(𝑿, 𝑡)ℬm

ℬs

Figure 4.4: Kinematics of transversal isotropy at large deformations. Due to a deformation, the
initial fiber direction G is transformed to a direction a in the current configuration. The deformation
is described by the tangent map with the deformation gradient L.

knowledge of the direction of local reinforcements allows the formulation of
the (transversal isotropic) structural tensors

S = G ⊗ G or m = a ⊗ a (4.89)

which are in general a function of the chosen coordinate system and the
symmetry properties of the material under investigation. In a general formu-
lation, the purely elastic free energy function Ψ0 is introduced as a function
of the right Cauchy-Green deformation tensor I and the structural tensor S,
thus directly containing the information about the materials orientation (cf.
Schröder [346]). The requirement of objectivity states, that the free energy
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4 Constitutive modeling of constituents and composites

function is invariant with regard to orthonormal transformations X and there-
fore has to fulfill the condition (cf. Truesdell & Noll [389], Lurie [242],
Suhubi [365], Rivlin & Ericksen [336])

Ψ0 (I,S) = Ψ0 (X ∗ I, X ∗ S) ∀ X ∈ R3 (4.90)

where the operator ∗ denotes the Rayleigh product. The first step in order to
obtain a geometrically non-linear transversely isotropic material formulation
is to substitute the deformation tensor of a linear formulation by the Green
deformation tensor K = 1

2 (I − M). M denotes the metric tensor of the
underlying base system. For an isotropic case, this corresponds to the St.
Venant material, according to Schroeder [346]. Furthermore, the author
provides the extended formulation of the free energy function for a transversal
isotropic material in a Lagrangian setting as a function of the Cauchy-Green
strain

Ψ0 (I,S) = Ψ0
iso (I) + Ψ0

aniso (I,S) (4.91)

where the isotropic and anisotropic contributions can be written as

Ψ0
iso (I) =

1
8
_ (tr [I] − 3)2 +

1
4
`)

(
tr

[
I2] − 2tr [I] + 3

)
Ψ0

aniso (I,S) =
1
4
U (GIG − 1) (tr [I] − 3)

+
1
8
V (GIG − 1)2

+
1
2
(`! − `) )

(
GI2G − 2GIG + 1

)
.

(4.92)
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4.2 Material model for unidirectional fiber reinforced plastics

The five independent material parameters _, `) , `! , U and V hereby completely
describe transversal isotropy. Applying Coleman’s method, the second Piola-
Kirchhoff stresses Y0 can be identified following the standard arguments by

Y0 = 2
mΨ (I,S)

mI

= 2
mΨ0

iso (I)
mI

+ 2
mΨ0

aniso (I,S)
mI

= Y0
iso + Y0

aniso.

(4.93)

The contributions in the reference configuration read then

Y0
iso =

1
2
_ (tr [I] − 3)

(
M−1

)
+ `)

((
M−1

)
I

(
M−1

)
−

(
M−1

))
Y0
aniso =

[
1
2
U (tr [I] − 3) − (`! − `) ) +

1
2
V (GIG − 1)

]
G ⊗ G

+
1
2
U (GIG − 1)

(
M−1

)
+

1
2

(`! − `) )�S (4.94)

with

Ξ��S =
(
��

(
�−1

)��
+ ��

(
�−1

)�� )
����

�

+ �A���

((
�−1

)��
�� +

(
�−1

)��
��

)
.

(4.95)

The Kirchhoff stresses are obtained by a push-forward operation (�) of Y onto
the current configuration

30 (b,m) = L � Y0 (I,S)

= LY0 (I,S) LT

= 30
iso (b) + 30

aniso (b,m) .

(4.96)

A detailed notation of 30
iso and 30

aniso as a function of the finger tensor b and
the deformed principal symmetry axis a is given in Schröder [346] and
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is not repeated here. Further differentiation of Eq. 4.93 with respect to the
deformation measure gives the transversal isotropic elasticity tensor

C0 = 4
m2Ψ0 (I,S)

mI2 = C0
iso + C0

aniso. (4.97)

The contributions can be written as

C0
iso = _

(
M−1

)
⊗

(
M−1

)
+ 2`) Isym

C0
aniso (S) = U

(
G ⊗ G ⊗

(
M−1

)
+

(
M−1

)
⊗ G ⊗ G

)
+ VG ⊗ G ⊗ G ⊗ G +

1
2
(`! − `) )X

(4.98)

with

(Isym)���� =
1
2

((
�−1

)�� (
�−1

)��
+

(
�−1

)�� (
�−1

)�� )
(4.99)

and

-���� = ��
(
�−1

)��
�� + ��

(
�−1

)��
��

+ ��
(
�−1

)��
�� + ��

(
�−1

)��
��

+ ��
(
�−1

)��
�� + ��

(
�−1

)��
��

+ ��
(
�−1

)��
�� + ��

(
�−1

)��
�� .

(4.100)

The spatial counterparts are again obtained by performing a push-forward
operation according to Schröder [346] as

c (b,m) = L � C0 (I,S) = ciso + caniso. (4.101)

The formulation of the elastic moduli according to Eq. 4.97 yields a structure
known from Hooke’s law at small deformations

Y0 = C0 (S) : K . (4.102)
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4.2 Material model for unidirectional fiber reinforced plastics

Equation 4.102 allows the computation of the linear elastic material behavior
in a geometrically non-linear framework. C0 (S) depicts the standard repre-
sentation of a pristine transversely isotropic stiffness tensor, specified by the
five independent material parameters and the structural tensor S. Written in
Nye notation, and assuming the preferred direction to be �� = [1, 0, 0]T, the
symmetry properties become apparent

�0 =



_ + V − 2 (`) + U + 2`!) _ + U _ + U 0 0 0
_ + U _ + 2`) _ 0 0 0
_ + U _ _ + 2`) 0 0 0

0 0 0 `! 0 0
0 0 0 0 `! 0
0 0 0 0 0 `)


.

(4.103)

A comparison of the coefficients with the stiffness tensor consisting of engi-
neering constants (� ‖ = �1, �⊥ = �2 = �3, � ‖ = �12 = �13, �⊥ = �23,
and the in-plane Poisson’s ratio a = a12 = a13 and the isotropy assumption
a⊥ = a23 = a32) yields the following relations

U = −
2

((
1 +
(a − 1)
2�⊥

)
� ‖ − �⊥a2

)
�⊥(

1
2
�⊥

�⊥
− 2

)
� ‖ + 2�⊥a2

V =
2�⊥V∗((

1
2
�⊥

�⊥
− 2

)
� ‖ + 2�⊥a2

)
�⊥

_ =

2

(
�⊥a2 + � ‖

(
1
2
�⊥

�⊥
− 1

))
�⊥(

1
2
�⊥

�⊥
− 2

)
� ‖ + 2�⊥a2

`! = � ‖ , `) = �⊥.

(4.104)
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with

V∗ =
(
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�2
⊥
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�2
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1 − 4
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−
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�2
⊥
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�2
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4
� ‖
�⊥
− 1

)
�⊥

)
� ‖ .

(4.105)

With the elastic moduli, the corresponding stresses can be computed.

4.2.2 Failure mechanisms and 3D failure criteria

The evolution of damage depends on the strain states during loading and is
therefore a continuous process. The onset of this progression is determined by
the evaluation of failure criteria, which indicate a single event of failure in the
material. Such formulations allow the extension towards a progressive damage
formulation, thus introducing corresponding damage modes. The mechanical
failure behavior of unidirectional composites and major failure modes have
been described in Section 2.3.2. As a result taken from these observations,
it can be concluded that failure occurs in different forms and sizes, strongly
depending on the active loading condition and the loading direction. One of
the major issues for the homogenized modeling of the onset and propagation
of damage in fiber reinforced plastics is the setup of constitutive equations
that capture the materials microstructural behavior and associated anisotropic
failure behavior. The main task of a realistic computational model is therefore
to establish if, when and how damage occurs and to give a sound prediction
of how the material behavior changes with further damage evolution. For the
present case the anisotropic manner of failure has to be respected and reflected
in the choice of relevant failure criteria. Hereby, four different failure modes
are considered which are summarized in Table 4.1. The manifestation of each
mode has to be predictable for any given three-dimensional loading case and
is treated as a distinct state in the load history, where a certain combination of
stress components reaches a maximum. Therefore, in analogy to the procedure
already introduced in Section 4.1, scalar functions (criteria) are formulated
for each failure mode. Due to their predominant importance, a combination
of the three-dimensional failure criteria by Puck [319] and the LaRC04
criterion (cf. Pinho [315]), modified according to Maimí et al. [247], has
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4.2 Material model for unidirectional fiber reinforced plastics

Table 4.1: Considered failure modes in the material model for unidirectional fiber-reinforced
composite. Display of nomenclature used throughout this work as well as a model representation
of the failure manifestation. Images taken and modified from Knops [195].

Notation Failure mode Manifestation

��+ Tensile fiber failure

��− Compressive fiber failure

���+ Tensile inter-fiber failure

���− Compressive inter-fiber failure

been chosen. In order to distinguish whether a certain loading scenario leads
to failure, the stress-dependent scalar effort value q8 is introduced, where
8 ∈ {��+, ��−, ���+, ���−} represents the different failure modes. The
failure planes for modes I and II are related to failure in fiber direction whereas
modes III and IV are associated with the matrix dominated failure occurring
on one distinct action plane. The latter has to be chosen from the set of
the transversal isotropic planes and is identified as the plane with the highest
probability of failure, following the theory of Puck’s action plane concept. The
stresses acting on the action plane are displayed in Fig. 2.9. The orientation of
the potential fracture plane is characterized by the action plane angle Θ, giving
the inclination of the normal x=. Table 4.2 summarizes the implemented effort
functions that characterize fiber and inter-fiber failure. Please note, that for
the given case of rotations around the fiber axis, the normal and shear stress
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4.2 Material model for unidirectional fiber reinforced plastics

components (==, (=1, and (=C on the tangential action planes are functions
of (22, (33, (12, (13, and (23 but not (11. Hence failure modes III and IV
are independent of stresses in fiber direction. On the other hand, failure
in fiber direction (I and II) is solely caused by (11. In order to take into
account differing tensile and compressive failure behavior, the given criteria
are formulated unilaterally. These equations put into context the active stress
state Y with a set of strength parameters, valid in different directions depending
on the orientation of the action plane. In fiber direction the damage onset is
characterized by the tensile and compressive strength, '+

‖ and '
−
‖ respectively.

The choice of such effort functions is a strong simplification, neglecting kinking
and buckling effects of fibers, especially under compression. Perpendicular to
the fibers, Puck’s proposition of three-dimensional effort functions are used,
incorporating several strength parameters valid on the transversal isotropic
planes. According to Puck [319] '+

⊥ is the resistance of the action plane
against failure due to normal tensile loading (+

==, 'A
⊥⊥ the resistance of the

action plane against failure due to shear on the transversal plane (=C , and 'A
⊥‖

the resistance of the action plane against failure due to shear in fiber direction
(=1. A graphical display of the failure surfaces regarding inter-fiber failure
in the domain of second Piola-Kirchhoff stresses as well as the indication of
the corresponding strength parameters is given in Fig. 4.5. Additionally, an

a

Sn1

Snt

Snn

b

Sn1

Snt

Snn

Figure 4.5: Failure surfaces for inter-fiber fracture formulated in terms of second Piola-Kirchhoff
stresses and depiction of material strength parameters. (a) Capped failure surface under tension. (b)
Paraboloidal failure surface for compressive failure. Images taken and modified from Puck [319].

interpolation term including 'A
⊥Ψ is defined by

?±⊥Ψ
'A
⊥Ψ

=
?±⊥⊥
'A
⊥⊥

cos2 Ψ +
?±⊥‖

'A
⊥⊥

sin2 Ψ (4.106)
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4 Constitutive modeling of constituents and composites

with

Ψ = arctan
(=1
(=C

and ?−⊥⊥ = −
cos

[
2Θ̂fp

]
1 + cos

[
2Θ̂fp

] . (4.107)

Hereby Θ̂fp corresponds to the measured action plane angle appearing under
transverse compressive failure. Furthermore, it is assumed that ?+

⊥⊥ = ?−⊥⊥.
?±⊥‖ are the inclination parameters introduced by Puck [319].

4.2.3 Modelling ultimate damage

In order to assess damage initiation, the damage activation function �8 is
introduced, corresponding to the formulation of the failure criteria

�8 = q8 − A8 ≤ 0 ∀ 8 ∈
{
��+, ��−, ���+, ���−

}
. (4.108)

If �8 is less than 0, the material sees no further damage due to the corresponding
failure mode (8). When �8 reaches 0, damage evolution is active and a set of
damage variables is computed. The damage threshold value A8 , initially 1, must
satisfy the Karush-Kuhn-Tucker conditions

¤A8 ≥ 0, and �8 ≤ 0, and ¤A8�8 = 0 (4.109)

in order to guarantee thermodynamic consistency. Furthermore, the consistency
condition

¤�8 = 0 if �8 = 0 (4.110)

must be fulfilled at all times. For the evolution of the threshold values, the
above equations can be summarized by

¤A8 =

{
0 if �8 < 0
¤q8 if �8 = 0

, (4.111)
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4.2 Material model for unidirectional fiber reinforced plastics

which according to Simo & Ju [353,354] can be integrated explicitly yielding
the representation

A8 = max
{
1, max
g∈[0,C ]

{
qg8

}}
(4.112)

with C being the total time. In analogy to a plasticity formulation, the failure
criteria may be interpreted as loading criteria, with the threshold variables
A8 substituting the yield stress (cf. Matzenmiller [257]). The maximum
value of q8 in time will define the value of the corresponding damage variable
as outlined later on.

4.2.3.1 Damage effect and the concept of effective stresses

Degradation of material stiffness due to damage effects in a continuum frame-
work is understood as the average effect of microcracks. In accordance with
the work of Kachanov [183, 184], only the undamaged material between
the voids is subjected to load and therefore transmit stresses. Effective stresses
Ỹ and effective strains K̃ are introduced to quantify those entities. To this end,
the behavior of the remaining (undamaged) material skeleton can be written as

Ỹ = C0 : K̃ and K̃ = H0 : Ỹ, (4.113)

where H0 =
(
C0)−1 corresponds to the undamaged compliance tensor and

C0 is the undamaged stiffness tensor already defined in Eq. 4.102. Accord-
ing to Matzenmiller [257] the formulation of the failure criteria should
consequently depend on the effective entities rather than their nominal coun-
terparts. The task of the damage variables is to relate effective quantities to
their externally measured (nominal) counterparts. Basically three possibilities
are available to establish this relationship, strain, stress and energy equivalence
(cf. Lemaître & Chaboche [220, 223], Cordebois & Sidoroff [77],
Chow & Wang [72] among others). Most common is the usage of the theory
of strain equivalence, where it is assumed that effective and nominal strains are
equal and stresses differ. Therefore, Eq. 4.113 simplifies to

Ỹ = C0 : K and K = H0 : Ỹ. (4.114)
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4 Constitutive modeling of constituents and composites

The effect of damage is introduced by the fourth-order damage effect tensors
M (D) and B (D) as functions of the damage state D, yielding

Y =
[
(M)−1 : C0] : K and K =

[
H0 : M

]
: Y, (4.115)

since

Ỹ = M : Y and Y = (M)−1 : Ỹ = B : Ỹ (4.116)

define the simple relationship between effective and nominal stresses. Despite
the known shortcoming in terms of symmetry of the secant stiffness tensor
(cf. Carol et al. [52, 53]), this approach is pursued throughout this work due
to a possible straightforward derivation and implementation. The notion of
unilateral failure criteria motivates the introduction of two different crack sys-
tems with associated action planes, active under tensile (D+) and compressive
loading (D−) respectively. In this way the asymmetric behavior under tension
and compression is considered. Thus, Eq. 4.1151 can be rewritten as

Y =
[ (
P+

K : B+ (
D+) + P−K : B− (D−)

)
: C0] : K

=
[
B+ (
D+) : C0] : K+ +

[
B− (D−) : C0] : K−,

(4.117)

with the projection tensor

P±K =
m

mK

[
3∑
�=1
〈�� 〉±n� ⊗ n�

]
(4.118)

yielding positive or negative contributions of the strain tensor K

K± = P±K : K. (4.119)

Hereby, �8 and n8 are the eigenvalues and eigenvectors of the strain tensor
K. Hence, damage effects active under tensile load manifest only if the strain
tensor contains tensile entries and vice versa. Following the arguments of
Carol et al. [52], Murakami et al. [285], Cordebois & Sidoroff [77]
and Murakami [283], a symmetric second-order damage tensor is chosen
to characterize the internal damage state D ≡ J±. The index ± allows again
the distinction between damage states active under tensile or compressive
conditions. Modes I and III are respected in J+, whereas J− contains damage
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4.2 Material model for unidirectional fiber reinforced plastics

variables that evolve due to damage progression as a result of damage modes
II and IV. However, the notation is neglected for the next few derivations. J
varies between zero at the beginning, corresponding to an undamaged state and
unity at the fully damaged state. An equivalent notation is introduced by the
integrity tensor

� = 1 − J
∧= X8 9 − �8 9 (4.120)

behaving in the inverted manner (cf. Betten [34] and Valanis [398]).
With the nominal-effective relations given in Eq. 4.116 the damage effect
tensors can be identified. In order to ensure symmetry of these terms, a
product-type symmetrization is applied, originally proposed by Cordebois
& Sidoroff [77]. This induces the introduction of the square root terms
8 (J) of the integrity tensor

� = 82 ∧= l8:l: 9 . (4.121)

Rewriting Eq. 4.1162 yields therefore

(8 9 = l8: (̃:;l; 9 . (4.122)

Taking into consideration the symmetry of Ỹ, the damage effect tensor B with
all minor and major symmetries is obtained by

B
∧=

1
2

(
l8:l 9; + l8;l 9:

)
. (4.123)

Carefully note the similarity with the symmetric fourth-order identity tensor.
The damage effect tensor in the principal axes of damage in Nye’s notation
then reads

B =



Υ1
Υ2

Υ3 √
Υ1Υ2 √

Υ1Υ3 √
Υ2Υ3


(4.124)
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The damaged stiffness tensor can then be formulated as

C = B : C0 =
[
P+

K : B+ (
J+) + P−K : B− (J−)

]
: C0. (4.125)

4.2.3.2 Damage evolution law and damage update

Having selected the form of the damage effect tensors, the upcoming derivations
deal with the definition of damage evolution. Following the example of the
damage evolution law already defined for the matrix model (cf. Eq. 4.46), the
damage variables 3̄∗

8
valid on the action plane Θ (indicated by ·̄) are calculated

according to

3̄∗8 = 3̄∗8 (q8 (Θ)) = 1 − 1
q8

exp (�8(Θ) (1 − q8)) . (4.126)

A reduction of mesh sensitivity during damage localization is obtained by appli-
cation of the crack band model according to Baz̆ant & Oh [19]. Therefore,
the adjustment parameters �8 are calculated in such a manner that the equation
for dissipated energy density 68 for a monotonous uniaxial test

68 =
∫∞

0

mΨ

m3̄∗
8

¤̄3∗8 dC =
∫∞

1

mΨ

m3̄∗
8

m3̄∗
8

mq8
dq8 =

�8

;∗
(4.127)

is fulfilled at all times. Hereby, ;∗ is the characteristic length of the respective
finite element and �8 is the fracture toughness for the associated loading
case. The numerical implementation is described in more detail in Maimí et
al. [245] and outlined in Appendix C. Using the damage variables 3̄∗

8
computed

on the active action plane, the trial damage tensors J̄∗ is obtained. It has three
orthogonal principal directions n̄� with � ∈ [1, 2, 3] and the corresponding
principal values �̄∗

�
. This formulation allows the interpretation of the damage

variables as a measure for the net area reduction due to damage. It reads

J̄
∗ =

3∑
�=1

�∗� n
∗
� ⊗ n∗� = �̄∗8 9 ē8 ⊗ ē 9 = ©«

3̄∗1 0 0
0 3̄∗= 0
0 0 0

ª®¬ ē8 ⊗ ē 9 . (4.128)

The base vectors n̄� = {ē8}8=1,2,3 define the coordinates of the action plane
system inclined by the angle Θ and correspond to the principal axes of the trial
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4.2 Material model for unidirectional fiber reinforced plastics

damage. The damage variable 3̄∗1 corresponds to the failure modes I and II,
3̄∗= describes the damage state due to inter-fiber damage evolution (modes III
and IV). The damage tensors from Eq. 4.128 are then compared to the damage
tensors Jn induced during the load history. In order to obtain thermodynamic
consistency ( ¤J > 0), the damage update has the following form in a general
case

J ⇐ Jn + ΔJ
(
J̄
∗
)

= Jn + ©«
〈3̄∗1 − 3̄

n
1〉+ 0 0

0 〈3̄∗= − 3̄n=〉+ 0
0 0 0

ª®¬ ē8 ⊗ ē 9

= ©«
3̄1 0 0
0 3̄= 3̄n=C
0 3̄n=C 3̄nC

ª®¬ ē8 ⊗ ē 9 .

(4.129)

Together with the knowledge of Θ, Δ J̄ does not only contain information
about the magnitude, but also the direction of damage evolution.Therefore, J̄
describes the change of symmetry class and increasing anisotropy. Rewriting
the damage tensor from Eq. 4.129 in the material base coordinates and in the
principal system yields

J = ©«
31 0 0
0 3= 3=C
0 3=C 3C

ª®¬ e8 ⊗ e 9 =
3∑
�=1

� � n� ⊗ n� . (4.130)

At this point it is also considered that the damage effect caused under com-
pressive load is activated under tension as well, since the introduced cracks
open under tension, whereas tensile damage is passive under compressive load.
Depending on the previous state of damage Jn the resulting principal system
of damage does not have to be conform with the principal system of the trial
damage, i.e. in general n� 6= n∗

�
. Carefully note, that the index ± has not been

written here for reasons of better readability, but applies to all damage entities.
In analogy to Eq. 4.125 the damaged stiffness tensor on the action plane can
thus be formulated according to

C̄ =
[
P̄+

K̄
: B̄+

(
J̄

+
)

+ P̄−
K̄

: B̄−
(
J̄
−) ] : C0 (4.131)
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with C̄ = C0 for J = 0. Back-transformation yields the damaged stiffness
tensor in the material system

C = XT (Θ) ∗ C̄. (4.132)

The damaged stresses can then finally be written as

Y = C : K . (4.133)

4.2.4 Algorithmic treatment

The proposed continuum damage model is implemented in the implicit finite
element software Abaqus/Standard using the user-defined material subroutine
UMAT (cf. Simulia [355]). An algorithmically simplified counterpart of the
stress response from Eq. 4.133 is employed. Hereby, the structural tensor S
with the corresponding direction of the reinforcement G is handled as an input
variable (cf. Eq. 4.89). The material stiffness takes the specific form

C (K, Kn) = XT (Θ (Kn)) ∗ C̄ (K, Kn) . (4.134)

The projection tensors from Eq. 4.131 are redefined asP±
Kn , being a function of

the deformation state K̄n on the action plane from the previous time increment
n. The analogous assumption applies for the computation of the action plane
angle Θ = Θ

(
K̄
n
)

= Θn, and thus also the adjustment parameters �8 (Θn),
resulting in a significantly simplified formulation for the global tangent oper-
ator as demonstrated later on. Schirmaier et al. [344] recently proposed
an enhanced method to accelerate the search for the action plane angle Θ.
However, in this implementation an arbitrary number of < = 360 effort values
q 9

(
K̄
n
,Θ 9

)
with 9 ∈ [���+, ���−] at different given Θ 9 ∈ [−90◦, 90◦] are

calculated for every time step. Finally, the configuration resulting in the max-
imum q 9 is chosen to be the valid action plane angle Θ. A straight forward
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4.2 Material model for unidirectional fiber reinforced plastics

convergence of the calculation in the implicit framework of Abaqus necessitates
the definition of the global tangent operator, defined as

Ct = ΔKY =
dY (K, Kn)

dK

=
d
dK
[C (K, Kn) : K]

= C (K, Kn) +
mC (K, Kn)

mK
: K .

(4.135)

The partial derivation of the damaged stiffness tensor C with respect to the
deformation yields a sixth-order tensor

mC

mK
=

m

mK

[
XT (Θn) ∗ C̄ (K, Kn)

]
∧=

m

m���

[(
'��

)T (
'��

)T (
'��

)T (
'� �

)T
C̄����

]
=

(
'��

)T (
'��

)T (
'��

)T (
'� �

)T mC̄����
m���

=
(
'��

)T (
'��

)T (
'��

)T (
'� �

)T
A���� �� .

(4.136)

Keep in mind that the transformation tensors X (Θn) are independent of the
current deformation state. The partial derivation of the active stiffness tensor
on the action plane in Eq. 4.136 can be further simplified to

mC̄

mK
=
mC̄

mK̄
:
mK̄

mK
(4.137)

with

mK̄

mK
=
m (X (Θn) ∗ K)

mK
∧= '$� '

%
� I$%"# . (4.138)
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With C̄
(
K̄, K̄n

)
=

[
P̄+

K̄n
: B̄+ (

K̄
)

+ P̄−
K̄n

: B̄−
(
K̄
) ]

: C0, only the derivations
of the damage effect tensor B̄± with respect to the deformation (on the action
plane) stay undetermined

mC̄
(
K̄, K̄n

)
mK̄

=

[
P̄+

K̄n
:
mB̄+ (

K̄
)

mK̄
+ P̄−

K̄n
:
mB̄−

(
K̄
)

mK̄

]
: C0. (4.139)

Analogously for damage effects active under compression and tension, the
exploitation of the chain rule then yields

mB̄
(
K̄
)

mK̄
=
mB̄

(
J̄

)
mJ̄

:
mJ̄

(
K̄
)

mK̄
(4.140)

and further

mB̄
(
K̄
)

mJ̄
=
mB̄

(
K̄
)

m8̄
:
m8̄

m�̄
:
m�̄

mJ̄
. (4.141)

Taking into consideration Eqs. 4.120 and 4.125, the derivations

mB̄
(
K̄
)

m8̄
∧=

1
2

(
ml̄� 

ml̄"#

l̄�! + l̄� 
ml̄�!

ml̄"#

+
ml̄� !

ml̄"#

l̄� + l̄� !
ml̄� 

ml̄"#

) (4.142)

and

m�̄

mJ̄
= −I (4.143)

are rather easy to determine. The remaining contribution in Eq. 4.141 can be
rewritten using the eigenvalue decomposition of �̄ as

m8̄

m�̄
=

m

m�̄

[
3∑
�=1

(
Ῡ�

)1/2
n� ⊗ n�

]
. (4.144)
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An algorithmic treatment for the derivation of isotropic tensor functions can be
found in Miehe [274]. The missing contribution in Eq. 4.140 can be identified
by

mJ̄
(
q8

(
K̄
) )

mK̄
=
mJ̄

mq8
:
mq8

mK̄
=
mJ̄

mq8
:
mq8

m Ỹ
: C0 (4.145)

using the corresponding case dependent definitions for the effort functions
q8 which were formulated in the effective stress Ỹ

(
K̄
)
on the action plane.

After the computation of the damaged stresses and moduli a push-forward
operation is performed, yielding the corresponding entities (3 and c) on the
current configuration. Regarding an implementation of the material model
using an Abaqus user material subroutine (UMAT), the true stresses (Cauchy
stresses)

2 =
3

�
(4.146)

and the corresponding moduli associated to the Jaumann derivation are needed
(cf. Miehe [266] and Baaser et al. [20]). The latter can be written as

c̃
0123 =

[
c
0123 + X02g13 + g02X13

]
/� (4.147)

where � = det L is the determinant of the deformation gradient L.

4.3 Constitutive modeling of weave reinforced
plastics

Organo sheets consist of a fabric structure embedded in a thermoplastic matrix
material. These are layered composites, where each layer consist of two sets
of interwoven rovings (weft and warp), set up in a twill weave pattern. The
undulated glass-fiber reinforcement structures define preferred directions in
the material as depicted in Fig. 4.6. Materials with preferred directions per-
pendicular to each other are associated with orthotropic symmetry. Deviations
from this lead to different groups of symmetry, e.g. monoclinic symmetry. The
principal directions of the reinforcements are assumed to be initially known, e.g.
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Figure 4.6: Change of material orientation due to deformation of a weave reinforced composite.
The display of the matrix domain is omitted.

by drape simulation or assumptions. However, the application of external me-
chanical loads results in a finite change of reinforcement orientation, containing
both reversible and irreversible contributions and hence establishing a differing
stress-free state upon unloading. Hereby, the matrix behavior is related to plas-
tic deformation processes in the matrix-rich regions of the composite material,
i.e. in the interstices of the rovings. The work proposed here concentrates on
the composite formulation of a constitutive model taking into account the afore-
mentioned kinematic observations. In crystal plasticity it is often assumed that
the initially known preferred directions (i.e. the crystal latices) do not change
with the material directly (cf. Rice [334], Kröner & Teodosiu [206] and
Mandel [250]). In terms of finite plasticity, this means that the structural
tensors in the intermediate configuration stay constant and the corresponding
yield condition is formulated in terms of the Schmidt stresses� (cf. Hill [162],
Asaro [14], Cuitino & Ortiz [83] or Miehe [265], among others). For
the present material system, the preferred directions coincide with the direc-
tions of the rovings which change during loading continuously due to material
deformation. In his work, Miehe [268] states that for such cases a finite
plasticity formulation based on the plastic metric

Mp = LpTM̄Lp (4.148)

can be formulated. Due to the occurring anisotropy within the chosen material
class, it is hardly possible to find a sound overall formulation for plasticity and
damage onset of the material. To overcome this problem, the approach of the
model presented here is to superimpose two angled preferred directions, coupled
through an isotropic matrix by means of analytical homogenization technique.
Moreover, using the damage models presented before (cf. Section 4.1 and
Section 4.2), the incorporation of mechanism-based damage formulations in
both the reinforcements and the thermoplastic matrix is enabled. The overall
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consistency in terms of thermodynamics (dissipation inequality) is assumed
to be preserved since the formulations for the phases were developed along
these guidelines. To the knowledge of the author such an approach, combining
analytical homogenization techniques with damage formulations within the
single phases, is the first of its kind, addressing the damage modeling of textile
woven composites.

4.3.1 Material orientation and intermediate configuration

In general, the initial structural tensors of aweave can bewritten asS8 = G8⊗G8
for each preferred direction 8 ∈ [1, 2] as displayed in the undeformed weave in
Fig. 4.6. Given an arbitrary deformation expressed in terms of the deformation
gradient L = LeLp, the material orientation may change and will now be
aligned with the deformed structural tensors m8 = a8 ⊗ a8 . The vectors a8
correspond to a deformed preferred direction (cf. Fig. 4.6, right) and are
defined by

a8 = LG8 . (4.149)

Figure 4.7 depicts that behavior schematically. For thermoplastic basic con-

𝒙
𝑿

𝒪
𝒆1

𝒆2

𝒆3

𝑨𝟏

𝒂𝟏

𝑭

𝜑(𝑿, 𝑡)ℬ𝑚

ℬ𝑠

𝑨𝟐

𝒂𝟐

Figure 4.7: Weave kinematics at large deformations. The initial material orientation G8 in the
reference configuration is mapped on its deformed representation a8 on the current configuration
by means of the deformation gradient L.

stituents, inelastic behavior during loading prior damage effects is observed. In
the following it is assumed that this behavior is attributed solely to plastic effects
in the matrix (phase index m), resulting in a plastic share of the deformation
gradient Lp

m. In the present case, plasticity in the matrix model is introduced
additively according to Eq. 4.1. Consulting again Section 4.1.6, a relation
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of the logarithmic plastic strains 9p = ∑3
�=1 Y

p
�
n� ⊗ n� and the plastic metric

tensor Mp (cf. Eqs. 4.83 and 4.148) was defined by Miehe [277]. Combining
the above mentioned equations, a formulation for the plastic contribution of
the deformation gradient can be found. With the assumption that only the
thermoplastic matrix (U =m) outside of the tows is objected to plastic effects,
it reads

Lp = L
p
m =

3∑
�=1

�
p
�
n� ⊗ n� =

√
Mp (4.150)

with the eigenvalues

�
p
�

=
[
exp

[
2Yp
�

] ] 1/2
. (4.151)

This kind of formulation yields a symmetric form for Lp, an observation
that was also reported by Reese [333]. As a consequence, the plastic spin
remains undetermined, similar to isotropic elastoplasticity formulations (cf.
Reese [332, 333]). The possibility to split the deformation gradient in an
elastic and plastic contribution gives rise to the introduction of the plastic
intermediate configuration in the co-/contravariant domains B̄ and B̄∗ for both
metrics and stresses (cf. Fig. 4.8). Please recall that Bm is the reference or

a

𝑿

ℬm

 ℬ

ℬs𝒙𝑭 = 𝑭𝑒𝑭𝑝

𝑭𝑝 𝑭𝑒

 𝑿

𝑨𝟏

𝑨𝟐

𝒂𝟏

𝒂𝟐

 𝑨𝟏

 𝑨𝟐

ℬm
∗

 ℬ∗

ℬs
∗

𝑭−𝑇

𝑭𝑝
−𝑇

𝑭𝑒
−𝑇

𝐂𝑒 𝒈𝑪 𝑮𝑝  𝑮

b

𝑿

ℬm

 ℬ

ℬs𝒙𝑭 = 𝑭𝑒𝑭𝑝

𝑭𝑝 𝑭𝑒

 𝑿

𝑨𝟏

𝑨𝟐

𝒂𝟏

𝒂𝟐

 𝑨𝟏

 𝑨𝟐

ℬm
∗

 ℬ∗

ℬs
∗

𝑭−𝑇

𝑭𝑝
−𝑇

𝑭𝑒
−𝑇

 𝚺 𝝉𝑺

Figure 4.8: Schematic display of co-/contravariant domains for (a) metric and (b) stresses in
analogy to Fig. 2.2. The plastic intermediate configuration is a function of the plastic share of the
deformation gradient Lp = L

p
m due to inelastic effects in the matrix material. Failure of tows is

evaluated on this configuration in terms of the Schmidt stresses �̄.

material configuration, whereas Bs denotes the current or spatial configuration.
Both entities are defined in the co-variant domain. Their counterparts in the
contra-variant domain can be written as B∗m and B∗s . The key concept of
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4.3 Constitutive modeling of weave reinforced plastics

the presented model is the idea of embedding reinforcement structures in a
thermoplastic matrix by separating the plastic deformation and the definition
of the intermediate configuration. The elastic response and damage evaluation
of the matrix is computed in the reference configuration. By contrast the
elastic response of the reinforcement structures (index r8) are calculated on
the intermediate configuration. In Eq. 4.97 it has been shown that the elastic
response of a transversal isotropic roving is a function of its structural tensor.
For the present case, the normalized preferred directions Ḡn

8 are used therefore
for the weft and warp yarn (8 ∈ [1, 2]), respectively. They can be denoted as

Ḡ
n
8 =

LpG8
‖LpG8 ‖

. (4.152)

The right Cauchy-Green tensorI = LTgL is chosen to describe the deformation
for the overall definition of the continuous weave model in the reference
configuration, where g is the metric tensor in the Eulerian configuration (cf.
Fig. 4.8).

4.3.2 Combination of models from lower scales

Having defined the assumed geometrical framework, the computation of stresses
and moduli of the composite follows. The scalar strain energy potential

Ψ = 5

(
Em,Ψm (I,Mp (I) , 3 (I)) ,

Er8 ,Ψr8
(
Ie (Mp) , Ḡn

8 (Mp) , J± (Ie)
) ) (4.153)

is assumed, describing the overall composite as a function of matrix and
reinforcement behavior. Hereby, Ψm corresponds to the strain energy function
of the matrix defined within the finite strain framework extension defined in
Section 4.1.6 and Ψr8 as the strain energy functions of the reinforcements
r8 formulated on the plastic intermediate configuration dependent on Ie (cf.
Fig. 4.8). Carefully note that, while Ψm is independent of the preferred
directions, Ψr8 takes Ḡn

8 as input, hence, introducing preferred directions, since
the ground state elasticity of the reinforcement structures are assumed to be

153



4 Constitutive modeling of constituents and composites

initially transversely isotropic. Em and Er8 in Eq. 4.153 denote the volume
fractions of the matrix and the two reinforcement phases respectively, with

Em +
=∑
8=1

Er8 = 1. (4.154)

For the present work a balanced weave is assumed, yielding Er8 = Etow/2 (cf.
Table 3.7). Standard arguments yield the second Piola-Kirchhoff formulation
defined on the reference configuration for the stresses in the matrix according
to

Ym = 2
mΨm

mI
= Ym (I,Mp (I) , 3m (I)) . (4.155)

Analogously, the global tangent operator can be expressed as

Cm = 4
m2Ψm

mI2 = Cm (I,Mp (I) , 3m (I)) . (4.156)

The material behavior of the tows is assessed on the intermediate configuration.
Similar derivations, involving the exploitation of Coleman’s method, yield the
Schmidt stresses in the reinforcements

�̄r8 = 2
mΨr8

mIe = Yr8
(
Ie (Mp) , Ḡn

8 (Mp) , J± (Ie)
)
. (4.157)

A de novo derivation yields the corresponding moduli

c̄
r8 = 4

m2Ψr8

mIe2 = c̄
r8

(
Ie (Mp) , Ḡn

8 (Mp) , J± (Ie)
)
. (4.158)

In order to allow the superposition of all stresses, �̄r8 and c̄r8 are transferred to
the Lagrangian setting, applying a pull-back operation (�). The stresses and
moduli in the reinforcements written in the reference configuration then read

Yr8 = Lp � �̄r8 and Cr8 = Lp � c̄
r8 . (4.159)

The assembly function 5 in Eq. 4.153 defines the used homogenization tech-
nique and therefore the combination rule of stresses and moduli. For reasons of
simplicity, in the present work the assembly rule according to Voigt [404] is
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4.3 Constitutive modeling of weave reinforced plastics

used. This hypothesis serves here as a first guidance, even though the internal
microstructure of the weave is not explicitly considered. Other homogeniza-
tion schemes, taking into account these geometrical particularities, have been
proposed by many different authors (cf. Section 2.4.3 for a short review). The
homogenization scheme according to Voigt corresponds to the assumption
that all phases experience the same uniform strain. As already reported, this
assumption is known as the iso-strain assumption in literature. Together with
the assumption of the stress-concentration tensor being Ar8 = I, the Voigt
formulation can be recovered from Eq. 2.57, yielding the overall formulation
for the stresses and moduli according to

Y = EmYm +
2∑
8=1

Er8Yr8 (4.160)

and

C = EmCm +
2∑
8=1

Er8Cr8 . (4.161)

The here proposed framework allows a straightforward implementation of
the constitutive equations in Abaqus/Standard, using a user-defined material
subroutine (UMAT). After the computation of Eqs. 4.160 and 4.161 defined on
the reference configuration, a push-forward operation is necessary in order to
obtain the Kirchhoff stresses 3 and the corresponding moduli c. Subsequently,
the transformations given in Eqs. 4.146 and 4.147 have to be employed to
ensure compatibility with the Abaqus UMAT interface.
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The following section focuses on the compilation of the simulative results,
where the structure specified by the multi-scale analysis was also taken into
account. The starting point of the simulations was the generation of the
microstructures (cf. Section 5.1) needed on the distinct scales. Beginning with
a parameter fitting of the basic constituents, the calculations of the deformation
and damage behavior of the unidirectional microstructure (cf. Section 5.2) and
woven mesostructure (cf. Section 5.3) are presented. Finally, the features of the
newly proposed macroscopic material model are demonstrated in Section 5.4.
Its behaviorwith respect to the change ofmaterial orientation under deformation
as well as the representation of damage evolution is reviewed in the course of
exemplary virtual tests.

5.1 Generation of virtual microstructures

For the multiscale approach, two virtual microstructures are needed: the
representative volume element characterizing the unidirectionally reinforced
composites and the unit cells standing for the woven composite. For an eas-
ier handling of the simulation models, a python routine was developed in
order to embed the routines of the microstructure generation into the prepro-
cessing framework of Abaqus. The application of case-dependent periodic
boundary conditions (PBCs) is described in more detail in Appendix D. For
both microstructures, existing generation methods were used. For the cre-
ation of topology data of UD-SRVEs it therefore is referred to the work of
Melro et al. [259] who developed a three-step methodology to generate UD
microstructures. The single steps of one cycle are named by

1. Hard-core step: Placing new fibers in the control volume

2. Stirring step: Creating free space by shaking the present fibers

3. Compression step: Compacting of existing fibers towards the center

157
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and are demonstrated in Fig. 5.1. Described is an iterative process which
is repeated several times to achieve the desired fiber volume fractions. The

a b c
Figure 5.1: The three steps of one cycle of the generation routine by Melro et al. [259]: (a)
Hard-core step, (b) stirring step, and (c) compression step.

movements within one single cycle are rather small but due to the big amount
of fibers a very dynamic system emerges. The purpose of steps two and three
is the liberation of areas where new fibers could be placed. In such a way it is
possible to attain UD cells with a high volume fraction of fibers. Figure 5.2
shows the progress of the routine over several cycles. A further feature for

Figure 5.2: Evolving microstructures during the generation process. By repeating the three above-
mentioned steps the volume fraction of the control volume increases until the designated target
fraction is reached (here Ef = 63%).

the generation of clustered microstructures was developed in the course of
the present work. Figure 5.3 visualizes the process steps in order to obtain
a clustered geometry. The starting point is a RVE with a high fiber volume
fraction (Ef = 63%, cf. Fig. 5.3a). The highlighted green areas in Fig. 5.3b
indicate the randomly chosen cluster centers, which are free to overlap. In
the present case a target fiber volume fraction of Ef = 43% was specified.
The routine removes fibers from the RVE that are not in the area of the cluster
centers until the desired fiber volume content is reached. The red fibers in
Fig. 5.3b correspond to the inclusions to be removed. Finally, a control volume
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5.1 Generation of virtual microstructures

with areas of higher density of fibers and such with lower density forms that
differs significantly from structures with a more even fiber distribution (cf.
Fig. 5.4 and Fig. 5.3c). The routine by Melro et al. [259] was furthermore

a b c
Figure 5.3: Sequence of actions during the generation of clustered microstructures. (a) Original
microstructure with a high fiber volume fraction (Ef = 63%). (b) Randomly placed cluster centers
are highlighted in green. Fibers that are positioned within these centers stay untouched. The red
highlighted fibers belong to the set of fibers that were randomly chosen to be subtracted from the
geometry set. The removal process takes place as long as the desired fiber content does not fall
below a specified value. (c) Resulting clustered UD-RVE with a volume fraction of Ef = 43%.

extended towards the possibility to use normally distributed fiber diameters (cf.
Fig. 5.4). The user can specify a standard deviation in addition to the nominal
diameter. The basic principals of the original routine stay unchanged, only
the eventual overlap of the fiber volumes has to be checked depending on the
present diameters.

Remark. Despite the possibility of using clustered models with varying fiber
diameters, these options were not used for the following investigations in order
to achieve comparable data records, not being influenced by imperfections
on the microstructure. This option builds the basis for future investigations.
Carefully note, that due to the special case of the prevailing symmetry of UD
materials, the problem of fiber placement in the presented cases is reduced to a
two-dimensional one. The resulting output of the microstructure generation is
therefore the information about the position of the fiber centers and its diameter
as well as the size of the representative volume. A python routine, developed
throughout this thesis, transfers the created two-dimensional input to Abaqus,
where a three-dimensional model is created by extrusion along the fiber axis.
Further preprocessing operations are likewise carried out, such as the material
assignment, meshing, and the identification of the sorted element sets on the
boundaries of the RVE, which are crucial for a sound definition of the periodic
boundary conditions. The connection between fibers and adjacent matrix was
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Figure 5.4:UD-SRVEwith normally distributed
diameters (E 5 = 43%).

Figure 5.5: Discretized geometry of a UD-
SRVE (X = 30, Ef = 43%, 3f = 13 `<).
HEX (C3D20R) and WEDGE (C3D15) ele-
ments were used.

modeled by a conform mesh. The use of cohesive zone elements has been
dispensed with. During the experimental investigations, no evidence could be
found that failure occurs in the fiber matrix adhesion (cf. Fig. 3.28), supporting
this decision. Figure 5.5 shows a fully meshed UD-SRVE geometry. Trias et
al. [387] performed a thorough study on the necessary size of RVEs, by using
several criteria, such as fiber content, effective properties, stress and strain
fields including the probability density function (PDF) of occurring stress and
strain in the matrix , the Hill condition, and distance distributions. To this
end, a parameter X = 0/' ≥ 50 was defined for the minimum size of SRVEs
regarding the computation of plasticity and failure, defined by the RVE side
length 0 and the radius of the inclusions '. Throughout this thesis, this factor
was always respected. A smaller size was selected for the sake of a better
representation for the upcoming plots. For the following simulations, the fiber
diameter was defined to be 3f = 13 `<. UD-SRVEs for both relevant fiber
volume fractions Ef,1 = 43% and Ef,2 = 63% were considered.

The virtual unit cells for the impregnated (wet) woven composites were created
by using the software package TexGen (cf. Sherburn [350]). With this
tool, a straight-forward generation of impregnated and dry woven composites is
possible. Thus, twill weaveswere created considering the geometric dimensions
measured during the experimental investigations (cf. Table 3.7). Hereby, the
weave was considered to be balanced in terms of both geometry and material
properties, i.e. warp and weft yarns have the same properties. The yarns are
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5.1 Generation of virtual microstructures

modeled as lenticular-shaped structures not being in contact with each other.
The model is thickened artificially to ensure a meshing of the matrix in the
space between two overlapping yarns. The surrounding matrix shares nodes
with the yarns, hence setting up a conform mesh, where no other interface
is necessary nor defined. Using the integrated meshing tool TetGen, a three-

a b
Figure 5.6: (a) Meshed reinforcement structures of a 2x2 twill weave. The single yarns are not
in contact with each other but are separated by small gaps to ensure a successful meshing of the
complete structure. (b) Meshed body of the surrounding matrix. The matrix is connected to the
yarns by a conform mesh, thus sharing nodes on the surface of the yarns. A coarser mesh size is
displayed here for the sake of a clearer representation.

dimensional meshed structure was obtained (cf. Fig. 5.6). Please note, that
the presented mesh is not considered to be fine enough, but a coarser mesh
was chosen here for a better display. Local material orientation, especially
the fiber direction, plays an important role for the validity of the following
simulations and therefore builds an essential input for the computation. TexGen

1′

2′

3′

Figure 5.7: Imported material orientation of one single yarn. For each element of the yarns a local
material system {1′, 2′, 3′ } is defined, where the 1′-direction corresponds to the fiber axis.

also provides the local material orientation ({1′, 2′, 3′}) which can be imported
in an Abaqus computation as it can be seen in Fig. 5.7 for an exemplary single
yarn of a 2x2 plain weave. Hereby, the 1′-direction corresponds to the fiber axis,
which follows the undulation of the yarn throughout its length. Hereby, the
orientation of the rovings is defined piecewise linearly for each element. Instead
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of using local coordinate systems, the directional information �8 ∀ 8 ∈ [1, 3] is
passed in the material routine as additional parameters. Internally, the results
are first calculated with respect to the corresponding orientation system and
afterwards transformed onto and saved in the global coordinate system. The
use of TexGenwas embedded in a python routine responsible for the completion
of further preprocessing steps, necessary for a FE-simulation. Especially the
identification of the element sets on the surface of the unit cell is taken care
of. The user is free to define three-dimensional or in-plane periodic boundary
conditions. For the simulation results using woven unit cells presented in this
work, in-plane PBCs were used.

5.2 Computations on unidirectional unit cell

One principal idea of using a multiscale approach in order to assess and transfer
composite behavior from micro to macro scales is the input of material data on
the lowest scale. In the present case the thermoplastic polypropylene matrix and
the glass fibers are the basic constituents that build up the basis of the following
investigations. In the first step, a parameter identification procedure was
carried out. The input for the fitting process was delivered by the experimental
campaign presented in Section 3.2.2 and Section 3.2.3. Here, the polymeric
matrix was tested under uniaxial tension and compression. The main results are
summarized in Fig. 3.3 and Fig. 3.6 consisting of six curves for tension and four
curves for compression loading at different loading rates. An elasto-viscoplastic
material model including an ultimate damage formulation was presented in
Section 4.1. The parameters for that constitutive model were adapted in order
to minimize the resulting error during curve fitting. The available software
package LS-Opt supplied the optimization framework. A polynomial meta
model was created and adapted using the sequential response surface method
(SRSM). The objective of the optimization was the minimization of the least-
square error of the areas underneath the resulting calculated and experimental
curves. Furthermore, the identification of the precise position of the failure
onset (Yf( ¤Y), 'm( ¤Y)) was an objective. Since the rate dependent parameters
for tensile and compressive behavior show a strong connection, all objectives
had to be solved in parallel. The resulting set of material parameters for
the thermoplastic matrix are summarized in Table 5.1. When comparing
the calculated material response and experimentally recorded curves, a good
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5.2 Computations on unidirectional unit cell

Table 5.1: Identified material parameters for the thermoplastic matrix material and assumed
parameters for the E-Glass fiber material. Parameters with superscript 1 are estimated and such
with 2 are measured.

Neat matrix E-Glass
fiber

Tension
(8=t)

Compression
(8=c)

Elasticity � (in MPa) 1998.85 720001

a (-) 0.422 0.221

Plasticity ap (-) 0.421

Yield
onset

f0
8,0 (in MPa) 2.62 9.83
f0
8,∞ (in MPa) 14.61 21.86
[f

0
8 (-) 39.70 61.92

Uf
0
8 (-) 0.65 1.09

Yield
limit

f∞
8,0 (in MPa) 29.91 44.93
f∞
8,∞ (in MPa) 40.82 74.65
[f

∞
8 (-) 9.98 4.45

Uf
∞
8 (-) 0.59 0.49

Hardening
evolution

l8,0 (-) 70.05 64.98
l8,∞ (-) 101.72 65.87
[l8 (-) 150.29 150.29

Damage
onset

-8,0 (in MPa) 29.86 44.37 21501

-8,∞ (in MPa) 39.34 73.96 21501

[-8 (-) 14.06 4.33
U-8 (-) 0.63 0.48

Fracture
toughness

 Ic

(in MPa/mm
1
2 )

4.501 0.901

agreement is noted and applies both in tension and compression (cf. Figs. 5.8
and 5.10). The results show the basic properties of the implemented material
model. All curves start with the same stiffness. The point where the material
response becomes non-linear (yield initiation) is dependent on the strain rate,
just like the behavior during increasing plasticization. Finally, the stress where
the material starts to fail (ultimate failure initiation) varies with the strain rate.
Figures 5.9 and 5.11 show a good prediction accuracy when it comes to ultimate
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Figure 5.8: Comparison of the material model
response (colored, solid lines) and the average
experimental results (gray, dashed lines) taken
from Fig. 3.3.
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Figure 5.9: Comparison of measured ultimate
strengths of the matrix material at different strain
rates under tension with the model response.
Please note, that no direct fitting on this data
has been done.
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Figure 5.10: Comparison of the material model
response (colored, solid lines) and the average
experimental results (gray, dashed lines) taken
from Fig. 3.6.
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Figure 5.11: Comparison of measured ultimate
strengths of the matrix material at different strain
rates under compressionwith themodel response.
Please note, that no direct fitting on this data has
been done.

164



5.2 Computations on unidirectional unit cell

strength, even though this parameter function was not a direct fitting objective
but resulted from the curve fitting.

Remark. Since single glass fibers were not available from the material supplier,
a detailed experimental investigation was not carried out. Standard material
constants for E-glass fibers were taken as summarized in Table 5.1. However
the same subroutine as for the matrix material could be used, deactivating
the viscoplastic features, rendering a purely elastic model which includes the
damage formulation.

5.2.1 Computation of elastic bodies

Having generated the virtual microstructures of the UD-SRVEs, modeled and
characterized the isotropic basic constituents, the first step of simulation is the
assessment of the elastic properties of the given unidirectionally reinforced
microstructures under study. Six calculations corresponding to the six uniaxial
load cases are sufficient to determine the full stiffness tensor. The equations
of the numerical homogenization presented in Section 2.2.2 and the homoge-
nization integrals in Eq. 2.46 relate the far-field strain and/or stress applied to
the RVE with the help of the periodic boundary conditions with the resulting
and more complex stress and strain states within the microstructure. Table 5.2
shows the averaged elastic properties for two given volume fractions (Ef = 43%
and Ef = 63%). In total, a number of = = 10 microstructures with a size ratio
of X = 50 were used for each volume fraction. Assuming initial orthotropic
symmetry, the stiffness tensor can be described by nine independent variables.
After computation, the results show that the symmetry can be reduced further,
since �̄2 ≈ �̄3, ā12 ≈ ā13, �̄12 ≈ �̄13, and �̄23 ≈ �̄2/(2(1 + ā23)) which are the
characteristics of a transversely isotropic material system. The small standard
deviations obtained in this study show (cf. Table 5.2), that the calculation of
the elastic properties by numerical homogenization is a stable process (using
big RVEs) and the random placement of fibers within the microstructure does
not play a predominant role at the tested volume fractions. Figure 5.12 shows
a three-dimensional representation of the elastic stiffness body of the unidirec-
tionally reinforced material under investigation with a fiber volume fraction of
Ef = 63%. Similar forms are obtained with the respective properties of differ-
ent volume fractions. It becomes clearly visible that one preferred direction is
dominating the elastic behavior of the material. Furthermore the characteristic
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Table 5.2: Average of computed elastic properties of = = 10 different unidirectionally reinforced
microstructures with a fiber volume fracture of Ef = 43% and Ef = 63%. The given nine
parameters can be summarized to a reduced set showing the characteristics of a transversely
isotropic medium.

Ef = 43% Ef = 63%

�̄1 (in MPa) 31923.01 ± 0.25 45924.83 ± 0.29
�̄2 (in MPa) 4972.70 ± 29.92 9724.11 ± 107.76
�̄3 (in MPa) 4966.66 ± 38.56 9702.05 ± 68.94
ā12 (-) 0.322 ± 0.001 0.281 ± 0.001
ā13 (-) 0.321 ± 0.001 0.280 ± 0.001
ā23 (-) 0.595 ± 0.004 0.501 ± 0.003
�̄12 (in MPa) 1544.72 ± 9.64 2892.69 ± 26.06
�̄13 (in MPa) 1540.34 ± 10.51 2891.69 ± 20.35
�̄23 (in MPa) 1557.35 ± 10.42 3164.70 ± 32.74
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Figure 5.12: Three dimensional representation of the elastic body of the unidirectionally reinforced
material with a volume fraction of Ef = 63%. The elastic properties are given in Table 5.2.
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of rotational symmetry around the preferred direction (G-axis) is recognized.
By projecting the three-dimensional stiffness body onto one symmetry plane,

a

−
90 ◦

−
75 ◦

−
60 ◦

−45 ◦

−30 ◦

−15◦
0◦

15◦

30◦

45
◦

60
◦

75
◦

90
◦

In-plane angle φ

0 15000 30000
Young’s modulus Ē in MPa
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Figure 5.13: Projection of the elastic stiffness body from Fig. 5.12 onto polar coordinates, where
0◦ corresponds to the preferred axis. (a) Comparison of results obtained by selected analytical
homogenization techniques and the numerical solution as well as the averaged experimental data
from Section 3.3. (b) Comparison of the numerical and Mori-Tanaka (UD) solution at Ef = 43%
and Ef = 63%.

the values of the direction dependent Young’s moduli can be directly extracted.
Figure 5.13a shows the projected stiffness body of a UD-SRVE with a volume
fraction of Ef = 43%. Half symmetry is considered here, and the preferred
axis of the composite is aligned with the indicated 0◦- direction. Results from
selected analytical as well as the numerical solution are depicted. With the
numerical solution lying in the interspace of the Voigt and Reuss solution, a
physically reasonable outcome can be stated. Please note that the Voigt and
Reuss solution is isotropic (circle) since the input materials were assumed to be
isotropic. Furthermore experimental data is available for the present volume
fraction and is displayed here as an average of the Young’s moduli measured
at different strain rates (cf. Section 3.3). Comparison of the experimental
results with both the numerical and the analytical Mori-Tanaka solution for the
special case of UD materials yields a good agreement in terms of longitudinal
and transverse Young’s moduli. In Fig. 5.13b a comparison of the numerical
results using UD-SRVEs and Mori-Tanaka solutions for two different volume
fractions is displayed (Ef = 43% (blue) and Ef = 63% (green)). The higher
number of fibers within the control volume yields an increase of stiffness in
both longitudinal and transverse direction. While higher longitudinal stiffness
is directly deducable by the increased cross-sectional area of fiber material, the
reason for higher transverse stiffness lies in the micromechanical circumstances
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in the matrix between the fibers. With higher volume fractions the distance
of single fibers diminishes and therefore the adjacent matrix is exposed to
high multi-axial straining yielding a stiffer composite behavior. While the
Mori-Tanaka solution lies in good agreement with the numerical solution for
Ef = 43%, the results for Ef = 63% show a significant deviation especially in
the transverse direction. The Mori-Tanaka method assumes a dilute concen-
tration of inclusions and therefore yields an underestimation of the influence
of single fibers towards each other. In contrast, by using micro models, the
superelevation of strain in the interspace of single fibers is immediately con-
sidered. A comparison of results obtained by numerical and a selection of
analytical homogenization techniques at different volume fractions is depicted
in Fig. 5.14. Both diagrams show the respective Young’s modulus over the fiber
volume fraction in a semi-logarithmic display. To this end, UD-SRVEs with
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Figure 5.14:Comparison of analytical and numerical homogenization techniques for the calculation
of (a) the longitudinal (�̄‖ = �̄1) and (b) the transverse Young’s modulus (�̄⊥ = �̄2) at different
volume fractions.

volume fractions Ef = [10%, 20%, 30%, 40%, 43%, 50%, 60%, 63%] were cre-
ated and an elastic investigation was pursued. In Fig. 5.14a the course of the
longitudinal Young’s modulus (�̄ ‖ = �̄1) is depicted. It can be seen that the
Voigt, Mori-Tanaka and the numerical solution coincide over the whole range
of fiber volume fraction, while the Reuss solution yields stiffnesses that are
lower due to the assumption of a series connection of the single components.
Figure 5.14b depicts the course of the transverse stiffness (�̄⊥ = �̄2) over the
fiber volume fraction. While the Voigt and Reuss solutions are identical to
the ones in Fig. 5.14a, the Mori-Tanaka yields a divergent response, due to the
consideration of the internal orientation of reinforcing structures. A similar
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5.2 Computations on unidirectional unit cell

picture applies to the solutions of the numerical calculations. For volume frac-
tions Ef ≤ 40% the numerical and Mori-Tanaka solution coincide. Exceeding
this threshold the effect of an increasing interference of the single fibers plays
an ever more important role, resulting in diverging results. The investigations
in Section 3.4 showed a volume fraction of Ef = 63% in the reinforcing yarns.
However, only UDmaterial with a volume fraction of Ef = 43% could be tested
(cf. Section 3.3). The studies in this section demonstrated the possibility of the
prediction of the elastic properties of the unidirectionally reinforced composite
by comparing numerical and experimental results. The assumption applied in
the following is that the numerical approach yields realistic elastic constants
for the material at Ef = 63% (cf. Table 5.2) which will be used throughout this
thesis.

5.2.2 Plasticity and damage evolution

The material parameters determined in Section 5.2 were used to simulate six
different representative loading cases described in the following. Therefore,
UD-SRVEs with a side ratio of X = 50 were created. The plastic and damage
evolution in the matrix material were solved simultaneously and are depicted
in the figures below for a fiber volume fraction of Ef = 43%. For the sake of
a clear representation, RVEs with a side ratio of X = 30 are displayed here and
the fibers where assumed to be purely elastic for all presented cases except for
the case of longitudinal tension. Carefully note, that having implemented the
general set of periodic boundary conditions, any arbitrary loading scenario can
be applied on the RVE and the results here serve solely as a small selection.

5.2.2.1 Transversal tension

Figure 5.15 shows the results of an applied horizontal transversal tension load
to a UD-SRVE with a volume fraction of Ef = 43% (cf. Fig. 5.15a) and
Ef = 63% (cf. Fig. 5.15b) in five consecutive steps (1-5) respectively. The
top row represents the damage progression and the one at the bottom row
shows the development of the accumulated plastic strain. The first figure (1)
shows the RVE in its pristine state. In (2) a damage initiation in the material
is observable where the stress state locally exceeds the failure criterion. This
process is preferably triggered in the space between two fibers situated in close
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vicinity to each other and thus the tensile hydrostatic stresses are high. From
Fig. 5.16 it can be seen that this process starts around the 50% threshold of
the ultimate strength. By increasing the external load, the existing damaged
regions grow, new failure spots are introduced and existing cracks coalesce
(cf. (3)). Comparing Fig. 5.15a and b at stage (3) it can be stated, that RVEs
with a higher volume fraction show considerably more locations of damage
initiation due to the smaller distances in-between fibers and thus the resulting
higher shares of tensile hydrostatic stress. By decreasing the undamaged
volume, a further loss of stiffness is observed, yielding non-linearity of the
stress-strain curve (cf. Fig. 5.16). A localized band of damaged elements starts
to evolve through the RVE (cf. (4)) which is oriented perpendicular to the
external loading direction. Carefully note, that other existing cracks stop to
grow and stay constant eventually. Subsequently, the section of localized cracks
grow further and finally coalesce to a transverse crack throughout the RVE.
The described behavior of the material in the simulation above lies in good
agreement with the reported failure behavior of UD composites in Section 2.3.2
under transverse tensile load. The plastic evolution inside the RVE behaves
similar to the development of the damage variable. Initiating plastic flow occurs
in-between the fibers and progresses from there. As soon as cracks begin to
grow and to coalesce, the areas of high plastic strain rates are located near
the crack tips. Keep in mind for the following observations that as soon as
damage evolution is triggered, further plastic evolution is deactivated in the
corresponding element.

Remark. Even though it is talked about cracks at this point here, it must be
kept in mind, that this is synonymous with a band of elements with a highly
reduced stiffness rather than discrete cracks in the sense of material separation.
Additionally to the abovementioned qualitative simulations where the focus lied
on the correct reproduction of the damage mechanism, the homogenized stress-
strain curves performed at three strain rates under investigation were compared
to the corresponding experimental results (cf. Section 3.3). Figure 5.17 shows
the results in terms of stress-strain curves for a UD-SRVE with a volume
fraction of Ef = 43% objected to a transverse tensile load at three different
loading rates, (a) 1.25 mm/min, (b) 12.5 mm/min, and (c) 125 mm/min. These
correspond to the loading rates applied during the experimental assessment,
allowing therefore a direct comparison. Keeping in mind the viscoplastic
behavior of the matrix, differences in the material response are observed. At
the lowest strain rate (cf. Fig. 5.17a), the plasticity in the matrix dominates the
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Figure 5.16: Resulting stress-strain diagrams for transverse tensile loading of UD-SRVEs with
volume fractions of Ef = 43% and Ef = 63%. The numbers indicated correspond to the failure
stages depicted in Fig. 5.15: (1) describes the pristine state, (2) is the point of beginning damage
initiation, (3) and (4) show the effect of increasing crack lengths and coalescing cracks, and (5)
indicates the point in the loading history where the resulting crack traverses the whole RVE.

composite behavior in such a way, that the matrix yields already early on and
with the formation of large plastic strain. To this end, a failure strain results,
overestimating the one seen in the experiments. The failure strength is predicted
in good agreement with the experimental results. In Fig. 5.17b the strain rate
influence in the numerical model becomes visible. Here, the UD-SRVE was
loaded by a medium strain rate. Compared to before, the composite material
shows a stiffer response, a lower degree of non-linearity which is associated to
a slower plastic evolution, and a lower failure strain. The form of the numerical
and experimental curves align in good agreement and also the failure onset is
predicted well. By increasing the strain rate further as shown in Fig. 5.17c the
material response takes yet another form. Also here, the numerical response
is in good agreement with the experimental results. However, the material

a b c
Figure 5.17: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 1.25 mm/min, (b) 12.5 mm/min, and (c) 125 mm/min under transverse tension.
For this investigation a UD-SRVE with a fiber volume fraction of Ef = 43% was used.
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5.2 Computations on unidirectional unit cell

strength is slightly overestimated. Summarizing the above mentioned results
it can be stated, that the visco-plastic constitutive model used for the matrix is
capable of transferring rate dependent effects to the composite level. However,
using the model parameters determined from specimens of pure matrix (cf.
Section 5.2) the model overestimates the rate dependency to some degree
compared to experimental results obtained in Section 3.3, where only a small
rate influence was observed. The material strengths are predicted sufficiently
well for the presented case here.

5.2.2.2 Transversal compression

Figure 5.18 shows the result from an UD-SRVE subjected to transversal com-
pression, which is applied horizontally here. Figure 5.18a represents the spatial
distribution of the damage variable 3m of the matrix, whereas Fig. 5.18b
corresponds to the equivalent plastic strains Ypacc. The regions with a higher

a b
Figure 5.18: Results of a UD-SRVE with a fiber volume fraction of Ef = 43% objected to a
transverse compressive load. (a) Spatial distribution of the damage variable inside the matrix, (b)
spatial distribution of equivalent plastic strains.

degree of accumulated damage follow a crack pattern that is not aligned with
the direction of the compressive load but is inclined by about Θ = 50◦ with
the horizontal load axis. Inclined crack patterns usually arise when the shear
strength is exceeded. Similar results where observed and reported in the ex-
perimental section of this thesis (cf. Section 3.3) as well as in the literature
(cf. Section 2.3). Carefully note, that the crack growth is accompanied by the
formation of plasticized bands with locally large plastic strains (Ypacc > 10%).
Again, the high plastic strains form preferably in front of the crack tip, once it
occurs. Figure 5.19 shows the stress-strain curves of the UD-SRVEs subjected
to three different loading rates after homogenization. The influence of the rate
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a b c
Figure 5.19: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 0.5 mm/min, (b) 5 mm/min, and (c) 50 mm/min under transverse compression.
For this investigation a UD-SRVE with a fiber volume fraction of Ef = 43% was used.

dependency of the constitutive model is observable by the increasing strength
values for higher load velocities rather than the degree of non-linearity of the
material responses as it was the case in the previous example. Structural failure
is identified by an abrupt change in the stress-strain curve and only a small scat-
ter in the material strength can be observed. Once initiated, crack propagation
evolves very fast. The formulation of damage progression as implemented in
the present case has been calibrated for a uniaxial tensile case (mode I) there-
fore overestimating the pace of damage evolution. To this end, the predicted
failure strengths are slightly lower than the experimentally recorded ones. With
the damage variable growing too rapidly inside the RVE, the resulting failure
strains do not reach the same extent as in the experiments.

5.2.2.3 Longitudinal tension

Figure 5.20 shows the stress-strain diagrams of UD-RVEs loaded under longi-
tudinal tension at different strain rates. The material response is perfectly linear

a b c
Figure 5.20: Comparison of numerically and experimentally obtained stress-strain curves for
loading rates of (a) 5 mm/min, (b) 50 mm/min, and (c) 500 mm/min under longitudinal tension.
UD-SRVEs with a fiber volume fraction of Ef = 43% were used.

up to failure and no significant difference between the single tests in terms
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of a strain-rate effect can be found. This behavior is however not surprising,
since the material response here is dominated by the fibers which has not been
modeled to be rate dependent. Once the stresses in the fibers reach the local
strength, damage is initiated. As soon as the stiffness has been reduced to
such an extent that the matrix is reaching a critical loading state, damage also
grows within the matrix. Interestingly, the matrix damage grows not entirely
in the plane perpendicular to the macroscopic load but also along the fiber
axis. This phenomenon is observed also in literature and is finally referred to
as fiber pullout. Figure 5.21 shows the spatial damage distribution of a quasi
fully damaged SRVE due to a longitudinal tensile load for the fiber and matrix
regions respectively.

a b
Figure 5.21: UD-SRVE with a fiber volume fraction of Ef = 43% subbjected to longitudinal
tension. Spatial distribution of the damage variable (a) in the fibers and (b) in the matrix.

5.2.2.4 Transversal shear

Figure 5.22 shows the results of a RVE loaded by a symmetrically applied pure
ambilateral transversal shear load. Figure 5.22a hereby represents the resulting
damage pattern within the microstructure. Both horizontal and vertical cracks
can be observed. The regions of localized plastic strains coincide with the
ones of high damaged material (cf. Fig. 5.22b). The resulting stress-strain
curve after homogenization is depicted in blue in Fig. 5.22c. Furthermore, an
equivalent investigation was done for a UD-SRVE with a fiber volume fraction
of Ef = 63%. The homogenized stress-strain curve is displayed as the green
dashed line. Confronting the two curves, the effect of the higher volume
fraction is visible. Apart from the increased stiffness, the composite with the
higher volume fraction yields a slightly higher ultimate failure strength. Due
to the lower matrix share and the smaller associated plasticity-related effects, a
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lower strain at failure is observed. Moreover, since the deformation is matrix
dominated, a lower degree of non-linearity manifests.

a b c
Figure 5.22: Results of a UD-SRVE with a fiber volume fraction of Ef = 43% objected to a
pure transverse shear load. Hereby, the load was applied symmetrically. (a) Spatial distribution
of the damage variable inside the matrix, (b) spatial distribution of equivalent plastic strains, and
(c) comparison of two resulting stress-strain curves after homogenization for the fiber volume
fractions Ef = 43% and Ef = 63%.

5.2.2.5 Longitudinal shear

Figure 5.23 shows the results from an applied longitudinal shear load to a
UD-SRVE where a and b correspond to the spatial distribution of the damage
variable and the equivalent plastic strain respectively. The load was applied in

a b c
Figure 5.23: Results of a UD-SRVE with a fiber volume fraction of Ef = 43% objected to a
pure longitudinal shear load. (a) Spatial distribution of the damage variable inside the matrix, (b)
spatial distribution of equivalent plastic strains, and (c) comparison of two resulting stress-strain
curves after homogenization for the fiber volume fractions Ef = 43% and Ef = 63%.

such a manner that the left edge of the RVE was moved into the visible plane
along the fiber direction. This displacement resulted in a sharp crack, i.e. a
narrow band of localized damage and plastic strains in the matrix material. The
rest of the matrix material remained largely intact and only a few areas show
slight damage. Again, the plastic hot-spots coincide with those of damage.
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Homogenization of the local stresses and strains within the UD-SRVE yields
the resulting stress-strain curves depicted in Fig. 5.23c for the relevant fiber
volume fractions Ef = 43% and Ef = 63%. A direct comparison of the two
obtained curves shows the same tendencies as observed in the previous case.
Again, the higher volume fraction leads to a slightly higher material strength
as well as a reduced strain at failure. Due to the less pronounced matrix related
effects a reduced non-linearity is observed.

5.2.2.6 Transversal tension and longitudinal shear

The main advantage of the virtual material characterization is the possibility of
applying awide range of arbitrary loading scenarios, also those which are hardly
to achieve experimentally. The present loading case is an example for this. A
UD-SRVE was loaded simultaneously by a horizontal transversal tension and a
smaller amount of longitudinal shear. The results are demonstrated in Fig. 5.24
as the spatial distribution of the damage variable as well as the equivalent
plastic strain. As expected and described by Puck [319], the fracture plane
forms perpendicular to the tensile load. Plastic strain is mainly observed in the
areas of damage evolution. Homogenization of the local stress and strain states

a b
Figure 5.24: Results of a UD-SRVE with a fiber volume fraction of Ef = 43% objected to a
transverse tensile load superimposed by a longitudinal shear load. (a) Spatial distribution of the
damage variable inside the matrix, (b) spatial distribution of equivalent plastic strains.

yields the overall stress-strain curve of the composite. Figure 5.25a shows the
resulting curve for the transverse stress f̄22 versus the transverse strain Ȳ22,
whereas Fig. 5.25b depicts the material response in terms of the shear stress
f̄21 and the corresponding shear strain Ȳ21. Please note the differently scaled
ordinate axis of both diagrams. Again the investigation was performed for
both relevant fiber volume fractions Ef = 43% and Ef = 63%. Analyzing
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a b
Figure 5.25: Homogenized stress-strain curves for UD-SRVE microstructures with a fiber volume
fraction of Ef = 43% and Ef = 63%. (a) Transverse stress versus transverse strain (f̄22- Ȳ22),
(b) Longitudinal shear stress versus longitudinal shear strain (f̄21- Ȳ21).

Fig. 5.25a, a similar form of the curves as for the pure transverse tensile load
calculated previously can be stated. However, due to the additional load by the
shear deformation, the strength values are slightly reduced. The interaction
of transverse tensile and longitudinal shear loads plays an important role for
the parametrization of the homogenized failure model of the UD material
recently presented in Section 4.2. The resulting effects are further investigated
in Section 5.2.3.

5.2.3 Computation of failure envelope

In Section 4.2, a constitutive model for unidirectionally reinforced fiber compos-
ites was presented taking into account the most prominent damage mechanisms
that are observed experimentally. The appearing failure modes were classi-
fied in two species, along the fiber axis and transversally to it. While the
material strengths for the first can be obtained directly from (virtual) character-
ization, the latter considered the three-dimensional failure criterion introduced
by Puck [319]. To this end, a failure envelope (cf. Table 4.2) described
by the material strengths '±⊥ and '⊥‖ as well as the model parameters ?±⊥‖ ,
giving the inclination of the failure surface at f⊥ = 0, has been implemented.
One purpose of the undertaken computations was the virtual characterization
of the chosen criterion. In Section 5.2.2 some examples for possible loading
scenarios were presented. From there it is a straightforward operation to extract
the set of material strengths as the highest appearing stresses throughout the
analysis. Transversal tension superimposed by a longitudinal shear at various
in different relations defines the failure envelope defined by Puck [319]. The
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computations were conducted using = = 10 different realizations of UD-SRVE
microstructures with a fiber volume fraction of Ef = 43% and Ef = 63%. In
order to discretize the failure surface in a sufficient manner, < = 21 different
ratios of transversal tensile/compressive and longitudinal shears were defined.
Figure 5.26a shows the raw results obtained from this analysis in g⊥‖-f⊥ di-

a b
Figure 5.26: Representation of the computation results for different load ratios in a g⊥‖ -f⊥
diagram for fiber volume fractions Ef = 43% and Ef = 63%. The failure envelope was discretized
by< = 10 points, each representing a certain load ratio. For each support point = = 10 realization
were analyzed. (a) Display of the raw results, (b) Display of the fitted failure criterion introduced
by Puck [319] and implemented in Section 4.2. The parameters are summarized in Table 5.3.

agram. The results in red correspond to the UD-SRVEs with a fiber volume
fraction of Ef = 43% whereas the blue results represent UD-SRVEs with
Ef = 63%. The < = 21 single sets due to discretization as well as the scatter
of the material strength for each loading ratio due to the different microstruc-
ture are clearly distinguishable. The form of the obtained failure envelope
lies in good agreement with the model of Puck [319]. Figure 5.26b displays
moreover the analytical formulation of Puck’s failure criterion for both fiber
volume fractions. The curve was obtained by fitting the descriptive parameters
with the help of a least square error method. The material strengths are marked
as triangles. The resulting strength parameters are given in Table 5.3 together
with the material strengths for transverse shear and longitudinal loads. Please
note, that the material strength for longitudinal compressive loads could not be
investigated by using the UD-SRVEs in the present form. Failure in fiber direc-
tion under compressive is triggered by small misalignments and concomitant
buckling effects of single fibers which was not considered in the present model.
Based on the experimental results presented in Section 3.3, for the following
investigations a longitudinal compressive failure strength was assumed that
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is three times lower than the tensile strength. A detailed examination of the
related effects must be the subject of future work.

Table 5.3: Computed strength properties for unidirectionally glass-fiber reinforced composites
with a thermoplastic polypropylene matrix. The values were determined for two fiber volume
fractions (Ef = 43% and Ef = 63%) with the help of = = 10 realizations with a side ratio of
X = 50. The values marked with the superscript 1 are estimates.

Ef = 43% Ef = 63%

'+
‖ 989.93 1361.63

'−‖ 3301 4601

'⊥⊥ 18.41 21.78

'+
⊥ 22.01 22.12
'−⊥ 47.64 59.87
'⊥‖ 16.12 17.31
?+
⊥‖ 0.19 0.20
?−⊥‖ 0.19 0.20

5.3 Computations on weave reinforced unit cell

5.3.1 Basic features of the homogenized UD model

The work at hand introduces a three-dimensional constitutive model for the
prediction of damage onset and growth in unidirectional reinforced plastics,
corresponding to the impregnated rovings in the weaves (cf. Section 4.2). Tak-
ing into account large deformations, stress-based failure criteria and damage
evolution laws are introduced. The proposed model was implemented into
the commercial finite element code Abaqus using the implicit user material
subroutine UMAT. The capability of taking into account both the tension/-
compression anisotropy in damage evolution and the resulting damage effects
with respect to different loading directions is demonstrated in the following by
means of selected numerical use cases, involving single element simulation for
a fictitious material. Special attention was paid to the transversal failure modes,
while the longitudinal damage evolution behaves straightforward and is known
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from many existing failure models. As a first example, a tensile transverse
loading in 2-direction and a subsequent unloading/reloading scenario is inves-
tigated. The resulting loading cycle is shown in Fig. 5.27. Figure 5.27a shows
the stress-strain relation, whereas Fig. 5.27b depicts the evolution of the dam-
age variable 3+

2 that is associated to the loading direction and the normalized
deformation over time. It can be seen that the proposed model predicts damage

a

𝒜

ℬ

𝒞
𝒪

b

ℬ

𝒜𝒪

𝒪 ℬ 𝒞

Figure 5.27: (a) Stress-strain response for a loading/unloading/loading (O-A-B/B-O/O-B-
C) scenario in transverse direction of a single element. (b) Representation of the normalized
deformation D̄2 and the corresponding damage evolution for 3+

2 over time.

onset in loading direction without any previous inelastic material behavior
(O-A). Exceeding the transverse tensile stiffness '+

⊥, stiffness degradation
follows due to damage evolution (A-B). Carefully note, that only the damage
variable 3+

2 along the loading direction grows. All other damage variables
(3±1 , 3

−
2 , 3

±
3 ) stay zero. This behavior changes the symmetry class of the

stiffness tensor. During unloading, the degraded stiffness becomes visible by a
reduced secant (B-O). However, the calculated damage variables stay constant
(cf. Fig. 5.27b), which is a requirement for thermodynamic consistency. By
reloading, the material sees a reduced stiffness since the model represents a
crack opening process of a preexisting crack (O-B). Exceeding the predamaged
strength in B, damage evolution for 3+

2 progresses further (Fig. 5.27b) and a
continuously reduced stress response (B-C). The second example examines the
model response under compressive load reversal and a subsequent tensile load.
The loading cycle is depicted in Fig. 5.28, where Fig. 5.28a shows the resulting
stress-strain relationship, while Fig. 5.28b monitors the evolution of damage
and presents the normalized deformation D̄2. At first, the material does not see
any degradation of stiffness (O-A). As soon as the stress reaches the material
strength for compression '−⊥ (at A), damage grows (A-B). In contrast to the
first example, damage evolves now not only in the direction of external load,

181



5 Simulations

a

𝒪
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b
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Figure 5.28: (a) Stress-strain response for a compressive loading/unloading (O-A-B/B-O)
followed by a tensile loading scenario (O-C-D) in transverse direction of a single element. (b)
Representation of the normalized deformation D̄2 and the corresponding damage evolution for 3−2
and 3+

2 over time.

but, due to the inclination of the damage system by Θ, also in the perpendicular
3-direction. In the present case, Θ = 45◦ yields a symmetric evolution of
transverse damage, 3+

2 = 3+
3 = 3−2 = 3−3 up to point B. The underlying model

representation yields that the crack emerging due to external load is visible
throughout the transverse isotropic plane. Note, that damage evolution in the
various directions is highly dependent on the occurring orientation of the crack
system. Once more, the evolution of damage changes the symmetry class of the
stiffness tensor. During unloading (B-O) the crack closes and the calculated
damage state remains unchanged. Due to the introduction of the previously
introduced damage (3±2 > 0), the stiffness under a subsequent tensile load stays
reduced (O-C). The model represents an opening process of a preexisting crack.
Up to C the material behaves linearly. Once exceeding the remaining strength,
continued damage progression results in a further decrease of the stiffness,
since the damage variable 3+

2 keep growing (cf. Fig. 5.28b). The opposite case
is discussed next. In the third example, a tensile transverse loading/unloading
scenario is followed by a compressive load, both in 2-direction. Figure 5.29a
shows the resulting stress-strain relation, whereas Fig. 5.29b depicts the evo-
lution of the damage variables 3±2 and 3±3 and the normalized deformation D̄2
over time. The tensile loading cycle (O-A-B-O) shows a similar behavior as in
the first example when it comes to the material response. In terms of the model
representation, a crack opens perpendicular to the loading direction, decreasing
the stiffness under a tensile load. After unloading, a compressive load is applied
upon the single element. The model representation now states that the preex-
isting crack is not only closed but the compressive load results moreover in an
active closing of the crack flanks. Therefore, no reduced stiffness is observed
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a

𝒪
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Figure 5.29: (a) Stress-strain response for a transverse tensile loading/unloading (O-A-B/B-O)
followed by a transverse compressive loading scenario (O-C-D) in 2-direction of a single element.
(b) Representation of the normalized deformation D̄2 and the corresponding damage evolution for
3+

2 , 3
+
3 , 3

−
2 , and 3

−
3 over time.

at first (O-C). Once exceeding the compressive strength '−⊥, further damage
is introduced representing shear damage (C-D, cf. Fig. 5.29b). So far only
loads in one load direction were presented. The forth example examines the
model response under subsequent transverse tensile loads in two perpendicular
directions. The loading cycle is depicted in Fig. 5.30, where Fig. 5.30a shows
the resulting stress-strain relationship, while Fig. 5.30b represents the evolution
of damage and presents the normalized deformation D̄2 and D̄3. Similar to the

a

𝒪

𝒜

ℬ

ℬ′

𝒜′

b

𝒪 𝒜 ℬ 𝒪 𝒜′ ℬ′ 𝒪

Figure 5.30: (a) Stress-strain response for a transverse tensile loading/unloading (O-A-B/B-O)
in 2-direction followed by a transverse tensile loading scenario (O-A′-B′/B′-O) in 3-direction of a
single element. (b) Representation of the normalized deformation D̄2 and D̄3 and the corresponding
damage evolution for 3+

2 and 3+
3 over time.

first example, a linear increase is calculated until the material strength '+
⊥ is

reached (O-A). Exceeding the material strength, damage evolution is initiated,
resulting in a increasingly reduced stiffness (A-B). The reduced stiffness
becomes visible during the unloading path, where the damage variables stay
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constant. The stress-strain response is identical for both loading directions.
The model concept states that the two loads in the 2- and 3-direction cause a
crack in each case. Since both cracks are oriented perpendicularly, they do not
affect each other, which can be seen in the unchanged initial stiffness.

5.3.2 Computation of elastic bodies

Having generated the virtual microstructures of the woven unit cells respecting
the geometrical parameters given in Table 3.7, modeled and parametrized the
UD model as well as the isotropic matrix, the elastic properties of the weave-
reinforced mesoscopic structure under study can be assessed. Carefully note,
that the height of the unit cell had to be adjusted slightly in order to allow a
meshing in the interspace of two crossing rovings. Equivalent to before, six
calculations corresponding to the six uniaxial load cases were performed in
order to determine the full stiffness tensor. Again, the equations of the numerical
homogenization presented in Section 2.2.2 and the homogenization integrals in
Eq. 2.46 relate the far-field strain and/or stress applied to the unit cell with the
help of the in-plane periodic boundary conditions with the resulting and more
complex stress and strain states within the microstructure. Table 5.4 shows
the resulting elastic properties of the given virtual weave. Assuming initial
orthotropic symmetry, the stiffness tensor can be described by nine independent
variables. After computation, the results show that the orthotropic symmetry
class iswell represented. Figure 5.31a shows a three-dimensional representation
of the elastic stiffness body of the weave-reinforced material under investigation
in terms of Young’smodulus. It is clearly visible that two preferred direction are
dominating the elastic behavior of thematerial correspondingwith the preferred
directions of the inter-woven rovings. Orthotropy is defined by an invariance to
all rotations about 180◦ around the orthotropic axes which is reflected well by
the given elastic body. By projecting the three-dimensional stiffness body onto
the symmetry plane aligning with the G-H plane in Fig. 5.31a, the values of the
direction dependent Young’s moduli can be directly extracted. Figure 5.31b
shows the projected stiffness body of the virtual weave. Half symmetry is
considered here and the preferred axis of the composite is aligned with the
indicated 0◦- and 90◦-direction respectively. Furthermore, experimental data is
available and is displayed here as an average of the Young’s moduli measured at
different strain rates (cf. Section 3.4). Comparison of the experimental results
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5.3 Computations on weave reinforced unit cell

Table 5.4: Obtained stiffness parameters by volumetric homogenization of a woven unit cell. The
geometrical parameters were taken from Table 3.7.

Elastic properties

�̄1 (in MPa) 16088.29
�̄2 (in MPa) 15908.79
�̄3 (in MPa) 6271.47
ā12 (-) 0.130
ā13 (-) 0.501
ā23 (-) 0.501
�̄12 (in MPa) 1280.42
�̄13 (in MPa) 1289.96
�̄23 (in MPa) 1554.49
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Figure 5.31: (a) Display of the three-dimensional stiffness body computed from six uniaxial load
cases using a weave-reinforced unit cell. (b) Projection of the three-dimensional stiffness body in
the symmetry plane containing the reinforcing rovings (G-H plane from (a)). Half-symmetry is
considered here. Moreover the stiffness results from the experiments presented in Section 3.4 are
depicted.
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with the numerical solution yields a good agreement in terms of Young’s
modulus along the preferred axis, even though a slightly smaller value is
obtained. Lower values are also obtained in the 45◦-direction which can be
compared to the results of the ±45◦ off-axis experiments. In both cases, the
cause of the lower stiffness is the artificial additional matrix material in the
interspace of overlaid rovings. For the longitudinal case this yields a higher
sectional matrix share, for the latter the additional matrix allows an easier
rotation of the reinforcement structures with the load direction.

5.3.3 Plasticity and damage evolution

For the following load cases the in-plane formulation of the periodic boundary
conditions (cf. Appendix D) were used. Here, periodicity is assumed only in
the plane of reinforcements and does not apply in the perpendicular z-direction,
which is defined in the thickness of the ply. Four different loading scenarios are
considered: uniaxial tension, in-plane shear, biaxial tension along the rovings,
and a uniaxial tension case that superposed by an in-plane shear.

5.3.3.1 Uniaxial tension

Figure 5.32 shows the stress-strain (f̄11-Ȳ11) curve of a virtual uniaxial tension
test obtained by volumetric homogenization. The load was applied along
the reinforcement axis (horizontal 1-direction). The initial stiffness of the
numerical solution is just slightly lower than the experimental results which
agrees with the previous investigations (cf. Fig. 5.31b). The numbers indicated
correspond to five consecutive loading stages (1-5) depicted in Fig. 5.33.
Hereby, the top row represents the evolution of the equivalent plastic strain Ypacc
while the second shows the isotropic damage variable 3m in the surrounding
matrix. The last two rows concentrate on the reinforcement structures. Here,
the longitudinal damage variable 3+

1 is displayed in black whereas the transverse
damage variable 3+

2 is displayed in orange. The first column (1) shows the
unit cell in its pristine state. In (2) a initiation of transverse damage in the
rovings oriented perpendicular to the loading direction is observable where
the stress states locally exceeds the implemented failure criterion. Predestined
locations of damage onset are the crimp regions. From Fig. 5.32 it can be
seen that this process starts early on compared to the point of ultimate failure.
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5.3 Computations on weave reinforced unit cell

By increasing the external load, the existing damaged regions grow across
the whole perpendicular rovings. Decreasing the undamaged volume yields
an increasing loss of stiffness (cf. Fig. 5.32). By decreasing the transverse

2
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5

Figure 5.32: Resulting stress-strain diagram (f̄11- Ȳ11) for a transverse tensile load in horizontal
direction of a twill weave reinforced unit cell. The indicated numbers correspond to the failure
stages depicted in Fig. 5.33: (1) describes the pristine state, (2) is the point of beginning transverse
damage initiation, (3) shows increasing transverse damage progression accompanied by plastic
evolution in the adjacent matrix, (4) additional initiation of longitudinal damage in the loaded
rovings, and (5) corresponds to a fully damaged unit cell.

stiffness of the damaged rovings, the adjacent matrix sees increasingly higher
deformation, resulting in the formation of plastic regions. Carefully note, that
the hot spots of the plastic evolution coincide with those of transverse damage
in the rovings. Due to the relatively small extent of plastic strains, this effect
attributes no additional non-linearity to the stress-strain curve at this stage (cf.
Fig. 5.32, (3)). When the local strength of the rovings in the preferred axis is
exceeded, fiber damage starts to arise (cf. Fig. 5.33, (4)), by building cracks
that are oriented perpendicular to the loading axis. Again, the crimp regions
are the critical locations for damage onset. A localized band of damaged
elements starts to form in the rovings aligned with the loading direction by
further increasing the external load. This behavior is associated with a drastic
drop in the stress-strain curve (cf. Fig. 5.32, (4-5)) since the principal load
carrier are significantly weakened. At stage (5), all horizontally aligned rovings
show a crack over their complete width associated with a significant stiffness
drop in the composite response. This is leading to a higher loading of the
adjacent matrix around the cracks, resulting in high plastic straining and the
onset of matrix damage.
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5.3 Computations on weave reinforced unit cell

5.3.3.2 In-plane shear

The following examples focuses on a pure ambilateral in-plane shear load
case. Fig. 5.34 shows the evolution of the in-plane shear stress f̄21 versus the
far-field strain Ȳ21 obtained by volumetric homogenization that is compared
to the corresponding experimental results. As already observed in Fig. 5.31b,

Figure 5.34: Resulting stress-strain diagram (f̄21- Ȳ21) for an in-plane shear load of a twill weave
reinforced unit cell obtained by volumetric homogenization. Additionally, the experimental results
for the given load case are presented again for comparison (cf. Section 3.3).

a lower stiffness is computed in the in-plane shear case. The following non-
linearity is caused mainly by plastic effects in the matrix, superimposed with
transverse damage effects in the reinforcement structures.Figure 5.35 represents
the resulting damage pattern and plastic evolution within the mesostructure.
Transverse damage caused by the present shear load tends to concentrate in the
crimp area of the interwoven rovings, where the yarns cross each other and
from there propagate across the yarns. Damage in the longitudinal direction of
the rovings has not been initiated. In conclusion it can be stated, that under the
given shear load the narrow areas in the interspace of the rovings show high
stress concentrations due to the different shear moduli of the single components.
Therefore, plastic strains arise in those locations. The mentioned effects explain
the non-linear progression of the stress-strain curve in Fig. 5.34.
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a b

c d
Figure 5.35: Results of twill weave reinforced unit cell loaded by an in-plane shear load. (a)
Spatial distribution of the accumulated plastic strain, (b) isotropic matrix damage variable, (c)
longitudinal damage, and (d) transversal damage variable in the rovings.

5.3.3.3 Biaxial tension

Figure 5.36 shows the results of an unit cell loaded by a two-sided in-plane
tension load after volumetric homogenization. As it can be seen from the
diagram, a quasi linear curve for both tensions (f̄11 and f̄22) can be seen up
to ultimate failure. A slight non-linear behavior is however reported due to the
occurring transverse damage in all rovings (cf. Fig. 5.37). Hereby, the damage
in the horizontal rovings is a result of the tension in the vertical direction and
vice versa. At the point of ultimate failure, the vertical rovings abruptly develop
a crack band due to the evolution of longitudinal damage leading to a drop in the
stress response. This is accompanied by plastic evolution in the matrix in close
vicinity of the occurring cracks. The stresses in the horizontal rovings however,
continue to rise and are not affected significantly by the damage effects in their
counterparts. Furthermore, comparing Fig. 5.32 for the uniaxial tensile case
and Fig. 5.36, a slightly lower ultimate strength together with a lower failure
strain can be stated for the superimposed case.
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5.3 Computations on weave reinforced unit cell

Figure 5.36: Resulting stress-strain diagram (f̄11- Ȳ11 and f̄22- Ȳ22) for a biaxial tensional load
of a twill weave reinforced unit cell obtained by volumetric homogenization.

a b

c d
Figure 5.37: Results of twill weave reinforced unit cell loaded by a biaxial tensile load. (a) Spatial
distribution of the accumulated plastic strain, (b) isotropic matrix damage variable, (c) longitudinal
damage, and (d) transversal damage variable in the rovings.
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5.3.3.4 Uniaxial tension and in-plane shear

Here again, the possibility of applying a superimposed load was used. Fig-
ure 5.38 shows the resulting stress-strain diagram for a combined horizontal
tensile (f̄11-Ȳ11) and a smaller in-plane shear load (f̄21-Ȳ21). Figure 5.39
shows the corresponding failure pattern and plastic evolution in the matrix and
roving structures respectively. The observed non-linearity in Fig. 5.38 prior to

Figure 5.38: Resulting stress-strain diagram (f̄11- Ȳ11 and f̄21- Ȳ21) for a horizontal tensional
load and a superimposed in-plane shear load of a twill weave reinforced unit cell obtained by
volumetric homogenization.

ultimate damage can be traced back to the evolving transverse damage in the
vertical rovings together with a plastic evolution in the matrix (cf. Fig. 5.39a
and d) mainly provoked by the shear load. The point of ultimate failure is
indicated by a stress drop caused by a sudden reduction of element stiffness in
vertical crack bands in the load carrying rovings. Once the stiffness locally is
reduced by a great extent the surrounding material gets locally objected to a
higher degree of deformation due to stress redistribution. As a result plastic
bands and finally matrix damage evolves in these hot spots. For the present
case, the current strength (' ‖,1 = 317 MPa) is slightly lower than the strength
under uniaxial tension (' ‖,1 = 330 MPa). This allows the conclusion that a
influence of the longitudinal strength on superimposed shear loads exists. The
extent of this dependency is to clarify in future work.
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5.4 Computations for macroscopic woven composites

a b

c d
Figure 5.39: Results of twill weave reinforced unit cell loaded by a horizontal tensile load in
combination with a superimposed in-plane shear load. (a) Spatial distribution of the accumulated
plastic strain, (b) isotropic matrix damage variable, (c) longitudinal damage, and (d) transversal
damage variable in the rovings.

5.4 Computations for macroscopic
woven composites

5.4.1 Computation of elastic bodies

The constitutive model for weave reinforced composites (HomWeave) does not
take the overall elastic properties of the composite, but the stiffness parame-
ters of the single components for rovings and matrix. For the thermoplastic
matrix, a parameter identification based on experimental results was under-
taken, presented in Section 5.2. The UD structures are represented by an
initially transverse isotropic material model (cf. Section 4.2) and the resulting
elastic properties are summarized in Table 5.2. The fiber volume fractions
plays an important role for the following investigations. The roving structures
in the present weave are characterized by a local fiber volume fraction of
Ef = 63%. The overall fiber volume fraction in the weave was determined to
be Etow = 74.6% (cf. Table 3.7). This results in the single volume fractions
of the homogenized rovings of 2r1 = 2r2 = 0.746/2 where a balanced weave is
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assumed. The volume fraction of the matrix is determined by Eq. 4.154 and
was defined as 2m = 0.254. Having the computational model implemented,
the resulting stiffness body can now be calculated by means of six calculations
corresponding to the six uniaxial load cases. After volumetric homogeniza-
tion, the full stiffness tensor is obtained. Table 5.5 shows the averaged elastic
properties for a composite. Assuming an initial orthotropic symmetry, the
stiffness tensor can be described by nine independent variables. Figure 5.40a

Table 5.5: Obtained stiffness parameters computed by the homogenized weave model (HomWeave).
The parameters concerning the volume fraction were taken from Table 3.7. The elastic properties
of the yarns were obtained by volumetric homogenization (cf. Table 5.4).

Elastic properties

�̄1 (in MPa) 21562.82
�̄2 (in MPa) 21562.82
�̄3 (in MPa) 9246.24
ā12 (-) 0.111
ā13 (-) 0.449
ā23 (-) 0.45
�̄12 (in MPa) 2336.31
�̄13 (in MPa) 2336.31
�̄23 (in MPa) 2467.43

shows the resulting three-dimensional representation of the elastic stiffness
body of the homogenized weave model under investigation. Again, the two
preferred directions in terms of stiffness corresponding with the weft and warp
directions become clearly visible. Furthermore, the characteristic symmetry
planes are observed. Projecting the three-dimensional stiffness body onto the
I-plane, the values of the direction dependent Young’s moduli can be directly
extracted. Figure 5.40b shows the projected stiffness body considering half
symmetry in the G-plane. The preferred axes of the composite are aligned with
the indicated 0◦- and 90◦- direction. Additionally to the results of the material
model under investigation, the experimental results as well as the numerical
solution obtained by volumetric homogenization of the woven meso structure
is depicted here again. As expected for a material model using the homogeniza-
tion technique according to Voigt [404], the material responds stiffer due to
the assumption made in such models. By neglecting the structural conditions
on the meso level and instead presuming a simple parallel connection of all
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5.4 Computations for macroscopic woven composites

constituents the overall elastic properties are overestimated (ca. 30% higher
stiffness in the preferred directions compared to the experimental results).
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Numerical (HomWeave)
Numerical (MesoModel)
Experimental

Figure 5.40: (a) Three-dimensional stiffness body computed from six uniaxial load cases using
the homogenized three-dimensional weave model. (b) Projection of the three-dimensional stiffness
body in the symmetry plane containing the reinforcing rovings (G-H plane from (a)). Half-symmetry
is considered here. Moreover the stiffness results from the experiments presented in Section 3.4 as
well as the results from the mesomodel are depicted.

5.4.2 Effective composite response

In the following, first results obtained by the simulation of a single element
using the newly introduced constitutive model for weave reinforced composites
are presented. The first example deals with the case of an 45◦ off-axis shear
load, neglecting damage effects. The purpose of this loading scenario is
therefore to show the possibility regarding the reproduction of the kinematical
reorientation of the fibers due to an external load. Figure 5.41 depicts the
computed stress response (f21 versus Y21) together with the corresponding
experimental results. The two preferred axis initially are perpendicular to each
other (W0 = ] (G1, G2) = 90◦) but are rotated by i = 45◦ with respect to the
loading direction. A higher stiffness in the numerical solution compared to the
experiments is obtained. This behavior reproduces the results already observed
in Fig. 5.40b. The following non-linearity of the stress-strain curve results from
the evolution of plastic strain in the matrix material. This is accompanied by a
change in the angle between the two preferred directions as depicted in Fig. 5.42.
Here, the angle W = ] (a1, a2) is plotted over time C. With an increasing extent
of deformation the angle is steadily decreased. To this end, a stiffer material
response results over time, since the reinforcement structures are rotated in load

195



5 Simulations

 𝜎21/2

 𝜎21/2

𝑨1𝑨2

Figure 5.41: Resulting stress-strain diagram (f̄21- Ȳ21) for an in-plane shear load of a twill weave
reinforced unit cell computed by the omogenized material model for weave reinforced composites
(HomWeave). Additionally, the experimental results for the given load case are presented for
comparison (cf. Section 3.3).

Figure 5.42: Inner angle W = ] (a1, a2) between the reinforcing fibers for the two presented
examples over time C . Shear load provokes a reorientation of the reinforcements that is characterized
by a change of the inner angle. Upon unloading, the reversible parts of the deformation decrease,
leaving behind a remaining reorientation, characterizing a new stress-free state. During the uniaxial
load aligned with a preferred direction no change of the angle W is observed.
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5.4 Computations for macroscopic woven composites

directions and therefore make up an increasingly larger proportion of the total
stiffness of the composite. Upon unloading, the elastic parts of deformation in
the matrix and the reinforcing fibers spring back, while plastic strains remain
in the matrix. These prevent a complete back rotation of the roving. This
effect can be observed by the increased slope of the stress-strain curve during
unloading in Fig. 5.41 and the final angle W ≈ 72.5◦ < 90◦ in Fig. 5.42. Hence,
the introduced plastic strain in the matrix create a changed stress-free state of
equilibrium in the composite. In contrast to this is the deformation behavior of
a composite, which is loaded in its preferred direction. Figure 5.43 shows the
computed f̄11-Ȳ11 diagram. The load was applied along the reinforcement axes
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Figure 5.43: Resulting stress-strain diagram (f̄11- Ȳ11) for a uniaxial tensile load in a preferred
direction (G1) of a twill weave reinforced unit cell modeled by the homogenized weave model
(HomWeave). The indicated numbers correspond to the following events: (1) transverse damage
initiation in the roving with the direction G2, (2) plastic onset in the matrix, (3) longitudinal damage
initiation in G1, (4) point of beginning unloading, (5) unloaded state, revealing the permanent
plastic strains.

with the direction G1. The initial stiffness of the numerical solution is higher
than the experimental results which agrees with the previous investigations (cf.
Fig. 5.40b). The numbers indicated correspond to five consecutive loading
stages (1-5). Already early on, transverse damage in the direction perpendicular
to the loading (G2) is activated. With the composite stiffness being a function of
all constituents, this results directly in a reduced stiffness in the stress response.
The superposition of the three material models treats the matrix material as
independent, solely coupled to the reinforcing rovings. To this end, when a
sufficient degree of deformation is reached, plastic strains occur in the matrix.
The kink in the stress-strain curve at (2) corresponds to the onset of plastic
evolution in the matrix that continues until the unloading point in (4). At (3)
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the ultimate strength in longitudinal direction is reached in G1 yielding an
abrupt drop in the stress-strain curve up to (4) as the stiffness of the major load
carrying structure is reduced significantly by the evolving damage parameter 3+

1 .
(4) denotes the point of unloading. Until here, no damage in the matrix 3m was
observed. The higher calculated ultimate stresses of the composite result again
due to the Voigt-homogenization. After unloading a permanent deformation
remains (5), revealing the plastic strains evolved during the loading cycle.
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6 Conclusion

This thesis deals with the multiscale investigation of a weave reinforced com-
posite with a thermoplastic polypropylene matrix. To this end, three different
subscales were examined throughout this work, which have been identified
by an optical analysis: (a) matrix and fibers as the basic constituents, (b) uni-
directionally reinforced microstructures, and (c) the full composite of woven
fiber structures in thermoplastic matrix. For all three geometrical scales an
experimental and numerical treatment is proposed, which were developed in
close coordination. The common thread of the present work was to introduce
a closed multiscale chain in order to computationally predict the material be-
havior of the macroscopic composite in terms of deformation and failure. The
first part of the presented work discusses the experimental assessment of the
different levels (a)-(c) of the material system at hand (cf. Chapter 3). Care-
fully note, that experimental testing gives an essential input for the subsequent
modeling activities, not only for characterization purposes but also for the
validation of the model response. Therefore, it is of great importance to use
consistent material systems throughout the multiscale approach. In the present
case, this requirement could not be strictly adhered to since the unidirectionally
reinforced composites could not be purchased from the supplier of the organo
sheets. Furthermore, it was not possible to test the material behavior of the
fibers individually. The main idea of the present work was to use fitted data as
an input only on the lowest scale, i.e. matrix (and fibers). For the matrix, both
tensile and compressive tests were performed. Considering different loading
rates, the rate dependency upon elastic moduli, plastic properties, and material
strength was assessed. The goal of the experimental analysis of the relevant
composites (UD and woven) was slightly different. For the later simulation of
the UD microstructure and the woven mesostructure it was of great importance
to respect the spatial conditions within. For this reason, the structures were
initially measured in terms of geometry. The focus of mechanical testing
was on determining the anisotropy influence on the deformation behavior of
the composites and comparing the observed failure modes with those known
from literature. The obtained stress-strain diagrams were used to validate the
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model response. Chapter 4 lays the theoretical framework of the corresponding
computational material models. Three constitutive models were introduced in
the course of this work, all formulated in the framework of finite strains. The
theoretical basis of this framework was introduced and a geometric interpreta-
tion of the basic kinematic equations was presented. Besides the prediction of
the deformation, a main focus was to respect material non-linearities, such as
plasticity in the matrix material and damage evolution in all underlying material
systems. To ensure a thermodynamically consistent behavior, the provided
models are derived from the free energy and the dissipation functions.

Starting on the lowest level of basic constituents, the matrix material was
characterized with regard to its viscoplastic behavior in combination with rate-
dependent failure using standard tests during the experimental campaign. The
information obtained here builds the fundamental basis for the identification of
the relevant material parameters and hence the starting point of all subsequent
investigations. An isotropic elasto-viscoplastic constitutive material model
including a formulation for progressive ultimate damage was defined. In a first
step, a standard plasticity model is introduced, using an additive elastic-plastic
strain split in the framework of small strains. By including a stress-based
failure criterion and adding formulations for damage evolution, the model
was enabled to predict progressive failure. The problem of mesh-dependent
solutions during calculations was addressed by implementing the crack band
model, incorporating a characteristic length scale parameter regularizing the
dissipation energy of the localizing finite element. Finally, the existing model
was extended towards a rate-dependent formulation for plasticity and damage
onset. By using purely geometrical operations on the strain tensor, the model
was then transferred to a finite strain framework by means of logarithmic
strains. The consideration of viscoelasticity was neglected at this point but
should be subject of future work. Using the experimental results for the matrix
material, the model parameters were adapted. It has to be emphasized, that
this is the only time in the present work when a parameter fitting was carried
out. The adaptation results showed a good ability of the presented material
model to predict the behavior of the thermoplastic matrix both in terms of
viscoplasticity and rate-dependent damage onset. Carefully note, that the
given model was also used for the fibers with the characteristic of deactivated
plasticity and rate-independent damage behavior. With the help of numerical
micromechanical analyses a better understanding of the constitutive behavior
of composite materials can be achieved. Conforming with the multiscale
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strategy, such analyses were performed on two geometrical levels. In a first
step, UD-SRVEs were generated using an existing method. This routine was
then extended towards the consideration of variable fiber diameters as well as
the feature of clustered microstructures. Secondly, impregnated woven unit
cells were generated based on the determined geometric data. Implementing
the given three-dimensional and in-plane periodic boundary conditions, the
createdmicrostructures can be loaded in any desired load combination, enabling
the assessment of their deformation and failure behavior. With the geometric
models of themicrostructure generated and the constitutivemodel formatrix and
fibers implemented, an assessment of the unidirectionally fiber reinforced RVEs
was performed for two fiber volume fractions. The results regarding elasticity
and a selection of load cases with focus on resulting plasticity and damage
were presented. Volumetric homogenization of the calculated stress and strain
fields enabled the comparison with known experimental investigations. Overall,
a good forecasting quality of the predicted solutions and the experimentally
obtained results in terms of the transverse isotropic elastic properties can be
stated. The failure behavior of UD-SRVEs under transversal loading was
investigated in detail and is very consistent with the failure behavior known
from literature. However, it should be noted that the matrix of the tested
material does not match the one of the adjustment and therefore may explain
occurring slight deviations in the forecast of too high plastic contributions
and therefore overestimated strength when loaded in the matrix dominated
direction. Deviating crystallization states in the matrix can be achieved due to
the fiber input, which can lead to a change in material behavior. The usage of
the presented methodology allows the definition of a vast number of possible
superimposed loads whereby most of them cannot be achieved experimentally.
However, one load case has to be already a priori excluded from this definition,
the longitudinal compressive load. In reality, local instabilities inside the
material initially lead to defects in the matrix, which allows local buckling of
the fibers. In the following, this leads to total failure of the whole material.
Neglecting an initial undulation of the fibers, this effect can therefore not be
reproduced computationally with the described method. As an interface to the
next higher geometric scale, a failure envelope was calculated and approximated
by the Puck criterion. Hereby the influence of fiber stresses on the transverse
failure behavior was neglected and has to be numerically investigated in future
work. The required parameters are included in the presented constitutive model
for unidirectionally reinforced plastics.
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A homogenized material model considering anisotropic damage initiation and
progression is necessary to predict the behavior of the impregnated rovings
within the woven composite. This model is concerned with an initially trans-
verse isotropic formulation of elasticity in the framework of large strains. After
the deduction of the material stiffness by means of the free energy function,
a methodology to cover anisotropic damage initiation and progression is pre-
sented. Hereby the most important failure modes identified in literature have
been implemented. These can be grouped in fiber failure and matrix related
failure modes that are effective in perpendicular directions. In both cases a
unilateral damage behavior is defined allowing the distinction of tensile and
compressive failure and moreover takes into account the interacting effects
of damage introduced by tensile or compressive loads. Generally, as soon
as damage is introduced, the symmetry class of the material changes. Mesh
sensitivity is accounted for by means of the crack band model as before. A
known general framework of elastic degradation and damage at small strains
was extended towards a formulation of large strains in a logarithmic setting.
The kinematic features in terms of deformation, damage onset, and progression
were clarified using selected exemplary load cases, showing the model response
of single element tests. Virtual assessments of the deformation and failure
behavior of the woven fiber reinforced composite were performed in order to
show the capabilities of the geometrical as well as the constitutive models.
However, the purpose of this demonstrations was not the thorough study of
exact damage mechanisms but rather a feasibility study. An intensified study
of the micromechanical processes in the wet weaves and a comparison with
experiments or findings from literature is recommended.

The last modeling step closes the multiscale chain proposed in this work. Con-
sidering a finite change of reinforcement direction due to external loads, a
composite formulation of a constitutive model is presented taking into account
the aforementioned material models. Hereby, an intermediate stress-free state
is established that originates from reversible and irreversible contributions of
strains. The main idea of the proposed model is the superposition of two angled
preferred directions, which are coupled by the isotropic matrix by means of
the analytical homogenization. For reasons of simplicity in the present case
the homogenization rule of Voigt [404] was chosen. Using the already intro-
duced constitutive models, it was possible to incorporate the mechanism-based
damage formulations for both the matrix as well as the UD material. Ther-
modynamic consistency is ensured by the separate derivation of the damage
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6 Conclusion

evolution respecting the dissipation inequality. The approach of numerical
implementation of an analytical homogenization technique with damage formu-
lations in the individual phases in combination with the large strain formulation
has not yet been discussed in literature. However, the constitutive equations
of the presented model are derived without a sufficient testing of the model
response under different load cases. Only two examples showing the kinematic
behavior in the event of a load-related change in the preferred direction and
the events during damage evolution were presented. The charm of such a
simple formulation goes hand in hand with a few drawbacks. By ignoring the
inner structure of the weave to a large extent, i.e. the crimp regions and the
waviness of the yarns herein, and assuming a simple superposition in the form
of a parallel connection instead, an important stress concentration region is
ignored. Hence, the results from these models tend to overestimate the elastic
moduli and do not reflect relevant local stress conditions which are important
for the correct prediction of damage initiation. Furthermore, an asymmetry
of stiffness under tension and compression is observed in reality, since the
undulated rovings buckle easily under compression whereas they get pulled
straight under tensile load. This behavior is not considered in the presented
model. Reviewing literature in this regard show alternative homogenization
techniques that take into consideration geometrical conditions in the microstruc-
ture. The Mori-Tanaka model for woven composites of Gommers et al. [127]
is to be named here as an example for a more sophisticated model, however
formulated in the small strain framework. The extent to which a change of the
homogenization technique is successful must be investigated in future work.
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Detailed experimental data

A.1 Polypropylene matrix
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1635.62 31.65 8.21
1646.67 31.14 8.01
1624.80 31.05 8.04

` 1643.70 31.31 8.22
s 16.96 0.22 0.20

Figure A.1: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 1.6mm/min.
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A Detailed experimental data
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` 1696.39 31.94 7.77
s 55.76 0.23 0.29

Figure A.2: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 5mm/min.
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s 23.80 0.16 0.14

Figure A.3: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 16mm/min.
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` 1989.52 36.93 6.01
s 43.70 0.29 0.19

Figure A.4: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 50mm/min.
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A.1 Polypropylene matrix
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` 1901.26 38.32 5.71
s 37.27 0.21 0.16

Figure A.5: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 160mm/min.
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` 2039.88 39.39 4.51
s 36.26 0.13 0.13

Figure A.6: Stress-strain relation and determined parameters of quasi-static tension tests of pure
matrix at ET = 500mm/min.
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` 1233.83 48.83 10.26
s 61.83 0.76 0.23

Figure A.7: Stress-strain relation and determined parameters of quasi-static compression tests of
pure matrix at ET = 0.25mm/min.
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A Detailed experimental data
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s 92.72 0.24 0.24

Figure A.8: Stress-strain relation and determined parameters of quasi-static compression tests of
pure matrix at ET = 2.5mm/min.
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Figure A.9: Stress-strain relation and determined parameters of quasi-static compression tests of
pure matrix at ET = 25mm/min.
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Figure A.10: Stress-strain relation and determined paramters of quasi-static compression tests of
pure matrix at ET = 250mm/min.
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A.2 Unidirectionally glass fiber-reinforced composite

A.2 Unidirectionally glass fiber-reinforced
composite
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Figure A.11: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of UD specimens at ET = 5mm/min.
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` 27.00 930.94 2.93
s 1.72 36.62 0.06

Figure A.12: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of UD specimens at ET = 50mm/min.
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A Detailed experimental data
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Figure A.13: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of UD specimens at ET = 500mm/min.
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Figure A.14: Stress-strain relation and determined parameters of quasi-static tension tests in
transverse direction of UD specimens at ET = 5mm/min.
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s 0.09 0.61 0.08

Figure A.15: Stress-strain relation and determined parameters of quasi-static tension tests in
transverse direction of UD specimens at ET = 50mm/min.
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A.2 Unidirectionally glass fiber-reinforced composite

0.000 0.002 0.004 0.006 0.008
Strain

0

5

10

15

20

St
re

ss
in

M
Pa

Experimental (500 mm/min)
Mean (500 mm/min)

� t
⊥ 't

⊥ Yt⊥
(GPa) (MPa) (%)

4.91 20.94 0.48
4.97 22.24 0.56
5.10 21.96 0.51

` 5.00 21.71 0.52
s 0.11 0.57 0.03

Figure A.16: Stress-strain relation and determined parameters of quasi-static tension tests in
transverse direction of UD specimens at ET = 500mm/min.
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Figure A.17: Stress-strain relation and determined parameters of quasi-static compression tests in
longitudinal direction of UD specimens at ET = 0.5mm/min.
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Figure A.18: Stress-strain relation and determined parameters of quasi-static compression tests in
longitudinal direction of UD specimens at ET = 5mm/min.
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A Detailed experimental data
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Figure A.19: Stress-strain relation and determined parameters of quasi-static compression tests in
longitudinal direction of UD specimens at ET = 50mm/min.
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Figure A.20: Stress-strain relation and determined parameters of quasi-static compression tests in
transversal direction of UD specimens at ET = 0.5mm/min.
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Figure A.21: Stress-strain relation and determined parameters of quasi-static compression tests in
transversal direction of UD specimens at ET = 5mm/min.
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A.2 Unidirectionally glass fiber-reinforced composite
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Figure A.22: Stress-strain relation and determined parameters of quasi-static compression tests in
transversal direction of UD specimens at ET = 50mm/min.
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Figure A.23: Stress-strain relation and determined parameters of quasi-static shear tests of UD
specimens at ET = 5mm/min.
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Figure A.24: Stress-strain relation and determined parameters of quasi-static shear tests of UD
specimens at ET = 50mm/min.
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A Detailed experimental data
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Figure A.25: Stress-strain relation and determined parameters of quasi-static shear tests of UD
specimens at ET = 500mm/min.
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A.3 Weave reinforced polypropylene

A.3 Weave reinforced polypropylene
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Figure A.26: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of woven specimens at ET = 5mm/min.
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Figure A.27: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of woven specimens at ET = 50mm/min.
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A Detailed experimental data
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Figure A.28: Stress-strain relation and determined parameters of quasi-static tension tests along
the fiber direction of woven specimens at ET = 500mm/min.
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Figure A.29: Stress-strain relation and determined parameters of quasi-static compression tests
along the fiber direction of woven specimens at ET = 1mm/min.
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Figure A.30: Stress-strain relation and determined parameters of quasi-static compression tests
along the fiber direction of woven specimens at ET = 10mm/min.
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A.3 Weave reinforced polypropylene
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Figure A.31: Stress-strain relation and determined parameters of quasi-static compression tests
along the fiber direction of woven specimens at ET = 100mm/min.
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Figure A.32: Stress-strain relation and determined parameters of quasi-static ±45◦ off-axis tension
tests of woven specimens at ET = 5mm/min.
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Figure A.33: Stress-strain relation and determined parameters of quasi-static ±45◦ off-axis tension
tests of woven specimens at ET = 50mm/min.
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A Detailed experimental data
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Figure A.34: Stress-strain relation and determined parameters of quasi-static ±45◦ off-axis tension
tests of woven specimens at ET = 500mm/min.
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B

Data sheets

B.1 Data sheet of PP/GF UD material

CELSTRAN® CFR-TP PP GF70-13 - PP

Description

Celstran® CFR-TP PP GF70-13 is a 70% E-glass fiber by weight PP (polypropylene) continuous fiber (uni-directional) reinforced thermoplastic

composite tape. This material exhibits a high strength-to-weight ratio, excellent toughness and chemical resistance. It is well suited for industrial,

automotive and sporting goods applications where cost and process ability are critical. The material is available in natural and black

colors. Alternate tape widths and thicknesses may be available.

Physical properties Value Unit Test Standard

Density 1660 kg/m³ ISO 1183

Fiber Content 70 % by wt. -

Fiber Volume 45.3 % by vol. -

Tape Thickness 0.25 mm -

Tape Width 305 mm -

Tape Areal Weight 439 g/m² -

Fiber Areal Weight 307 g/m² -

Mechanical properties (Tape) Value Unit Test Standard

Tensile Strength, 0° 931 MPa ASTM D 3039M

Tensile Modulus, 0° 33.9 GPa ASTM D 3039M

Tensile Strain at Failure, 0° 2.99 % ASTM D 3039M

Flexural Strength, 0° 606 MPa ASTM D 790/Tape

Flexural Modulus, 0° 33.2 GPa ASTM D 790/Tape

Flexural Strain at Failure, 0° 2.01 % ASTM D 790/Tape

Thermal properties Value Unit Test Standard

Melting temperature, 10°C/min 173 °C ISO 11357-1/-3

Glass transition temperature, 10°C/min -10 °C ISO 11357-1,-2,-3

CLTE above Tg, parallel 0.1 E-4/°C ISO 11359-2

Start Temp 23 °C ISO 11359-2

End Temp 50 °C ISO 11359-2

CLTE above Tg, normal 0.66 E-4/°C ISO 11359-2

Start Temp 23 °C ISO 11359-2

End Temp 50 °C ISO 11359-2

Thermal conductivity, flow 0.69 W/(m K) ASTM E 1461

Thermal conductivity, crossflow 0.5 W/(m K) ASTM E 1461

Other text information

Compression molding

Celstran® CFR-TP Tape Laminate Processing Guidelines

Celstran® CFR-TP can be molded using a heated platen compression molding press. A hardened steel, aluminum or flexible tooling can be used

depending on the application. The tool should be treated with a mold release prior to molding.

The molding cycle consists of the following steps: 

1. The platens should be heated above the polymer matrix melt temperature.

2. The individual lamina should be constructed and placed in the tool to achieve the desired laminate reinforcement orientation.

3. The tool is placed between the platens and the platens are closed to achieve a contact pressure on the tool less than 30 psi (2 bar).

4. The tool is allowed to rise in temperature until stabilizing at the initial temperature the platens were set to.

5. The pressure is increased to the desired amount and held for a recommended time.

6. Air and/or water cooling is initiated until the material reaches a temperature sufficiently below the melt and peak crystallization temperatures

wherein the pressure is reduced to a contact pressure less than 15 psi (1 bar).

7. The tool is continually cooled until reaching a temperature, typically at or below the glass transition point, at which the pressure is completely

removed and the part de-molded from the tool. It should be noted that the choice of tooling, geometry and heating/cooling mechanisms will greatly

dictate processing conditions, and thus, optimization specific to the individual molders’ capabilities is necessary. Additionally, the resin is what

dictates the molding temperatures, whereas the sample thickness is what determines the time. As the thickness increases, the time at melt should

also increase to account for the time for heat to conduct to the center of the laminate.

Page: 1/2Created: 11.May.2016 Source: www.materialdatacenter.com
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B Data sheets

B.2 Data sheet of PP/GF Weave material

 
 

 

Material Data Sheet 

 
TEPEX® dynalite 104-RG600(x)/47% 

Roving Glass – PP Consolidated Composite Laminate 

 

Property Method ISO Units Longitudinal Transverse 

  
roving glass 

twill 2/2 
600 

 

 
Reinforcement 

 

 
Fibres 
Fabric 
Area weight 
Yarn 
Weight rate 

 
 
 

g/m2 
tex 
% 

1200 
50 

1200 
50 

  
Polymer 
 

 
Polymer 

  
PP 
 

  

  
Laminate 

 

 
Density 
Fibre content 
Thickness per layer 
 

 
g/cm3 
% vol. 

mm 

 
1,68 
47 
0,5 

 

  
Tensile Modulus 
 Strength 
 Elongation 
 Poisson’s ratio 

 
527-4/5 
527-4/5 
527-4/5 
527-4/5 

 
GPa 
MPa 
% 
 

 
20,5 
400 

- 
- 

 
20,1 
390 

- 
- 

  
Flexural Modulus 
 Ultimate stress* 
 

 
178 
178 

 
GPa 
MPa 

 
17,5 
370 

 

 
17,0 
365 

 

  

  
Charpy impact strength 23°C 
unnotched -30°C 
 

 
179/1eU 

 
kJ/m2 
kJ/m2 

 
- 
- 
 

 
- 
- 
 

 
163 

- 
158 

- 
- 

- 
- 

  

  
Melting Temperature per DSC 
Glass transition temperature per DSC 
Heat deflection temperature 1,80 MPa 
Coefficient of thermal expansion -30°C to 23°C 
 23°C to 80°C 
Relative temperature index 20.000 h 
 

 
3146 
3146 
75-1/2 
ASTM E831 
 
IEC 216/1 

 
°C 
°C 
°C 

E-6 1/K 
 

°C 
 

90 

* 3-Point loading, span-to-depth ratio 16 to 1 

 
 

These values are for this specific composition only, the characteristics of composites depend on the reinforcement level and the fibre orienta-
tion. Non-standard thickness may also alter some or all of these properties. The data listed here fall within the normal range of product 
properties, but they should not be used to establish specification limits nor used alone as basis of design. 

This information corresponds to our current knowledge on subject. It is offered solely to provide possible suggestions for your own experimentations. It is not intended, however; to substi-
tute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. This information may be subject to revision as new 
knowledge and experience becomes available. Since we cannot anticipate all variations in actual end-use conditions. Bond-Laminates makes no warranties and assumes no liability in 
connection with any use of this information. Nothing in this publication is to be considered as a licence to operate under or a recommendation to infringe any patent right.  
Caution: Do not use this product in medical applications involving permanent implantation in human body.  

Version: 07-01-2009 ® Bond-Laminates registered trademark 
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C

Determination of
the adjustment parameter

In order to find the suitable value for �m that returns a macro damage value 3
such that Eq. 4.47 is fulfilled, a virtual thought experiment in form of a uniaxial
tension test has to be conducted locally (i.e. in each integration point of the
element). Therefore, a uniaxial (trial) stress state is assumed (displayed here in
Voigt notation)

2UN
0 =

©«

fUN
0,11
0
0
0
0
0

ª®®®®®®®¬
, (C.1)

yielding
fUN

11 = (1 − 3)fUN
0,11 (C.2)

and all other entries of 2UN zero. Hence, we can rewrite the rate of energy
dissipation per unit volume

mΛ(2UN)
m3f

= Λ0(2UN) (C.3)

and

m3f

mA
=
m3f

m3

m3

mA

=
1

(1 − 3)2
�mA

A2 exp (�m(1 − A)) .
(C.4)
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C Determination of the adjustment parameter

Finally, the damage criterion in case of just reached uniaxial failure reads then
as follows

�d,UN =
(
f0,11

)2

-c-t
+ f0,11

(-c − -t)
-c-t

− A = 0 (C.5)

and therefore, solving for the critical trial stress f0,11

f
UN,crit
0,11 =

(-t − -c) +
√

(-c − -t)2 + 4-c-tA
2

. (C.6)

Note that the criterion for damage onset has been defined regarding the trial
stresses 20. With the above given information we can rewrite the integral for
the dissipated energy per unit volume (dissipated energy density) kD for the
uniaxial case

kD,UN =
∫∞

1

mΛ

(
f
UN,crit
11

)
m3f

m3f

m3

m3

mA
dA =

�f
;e

=
∫∞

1

(
Λ0

(
f
UN,crit
0,11

) m3f
m3

m3

mA

)
dA

(C.7)

Equation C.7 is solved numerically using the secant method and the definition
of damage Eq. 4.46 in order to find the adjustment parameter �m. This
procedure is followed according to Maimì et al. [245]. For geometrically
linear calculations �m has to be computed only once (at the first appearance
of damage for each integration point), since the volume of the element is
not changing. Non-linear calculations requires the computation in each time
increment as the volume does not stay constant and hence ;e differs.
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D

Formulation of
periodic boundary conditions

Periodic boundary conditions are a frequently used measure when it comes to
modeling of repetitive or periodic microstructures. Hereby, representative vol-
ume elements are used primarily. In order to allow a straightforward definition
within the commercial FE-tool Abaqus (cf. [355]) the corresponding equations
are given here. These equations are additional boundary conditions that are
considered during calculation of the deformation. The exact formulations
can be found by constructing the kinematical relations occurring during the
classical six cases of deformation of a representative volume (cf. Fig. D.1)
which are divided in three normal and three shear cases. The resulting set of
fully three-dimensional equations for cubical RVEs as well as for RVEs with
a in-plane periodicity are given in Appendices D.1 and D.2 using the notation
of a Abaqus input-file. The used nomenclature for vertices, edges and faces is
demonstrated in Fig. D.2. The used vertices, edges and faces must be defined as
element sets, since the corresponding equations are evaluated node-wise. Since
the introduced equations correspond to a relative connection between opposing
sides of the RVE, one point must be encastred. By definition the vertex with the
coordinate XPYPZP is chosen for that purpose. The user-defined deformation

Table D.1: Assignment of controlling degree of freedoms of reference points.

DOF RPT RPS1 RPS2

1 XX YX XY
2 YY ZY YZ
3 ZZ XZ ZX

can be controlled by the insertion of additional degree of freedoms (DOF)
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D Formulation of periodic boundary conditions

𝑧
𝑥

𝑦

𝑍𝑍

𝑋𝑋

𝑌𝑌

𝑌𝑋/𝑋𝑌

𝑍𝑌/𝑌𝑍

𝑋𝑍/𝑍𝑋

𝑅𝑃𝑇

𝑅𝑃𝑆1

(𝑅𝑃𝑆2)

Figure D.1: Depiction of the six classical load cases (three normal tension/compression (XX, YY,
ZZ) and three shear load cases (YX/XY, ZY/YZ, XZ/ZX)) that build the basis for the derivation of the
periodic boundary conditions. The three displayed reference points provide six additional degrees
of freedom that allow the kinematic control of the RVE. Depending on the internal microstructure
of the RVE, fluctuating boundaries will form.

XMYPZP

XMYPZM XPYPZM

XPYPZP

XMYMZP

XMYMZM XPYMZM

XPYMZP

𝑧
𝑥

𝑦

YMZP

YMZM

YPZP

YPZM

XPZM

XPZP

XMZM

XMZP

YP

YM

XPXM

ZP

ZM

Figure D.2: Nomenclature of vertices, edges and faces of a cubical RVE. %= plus and "= minus
indicate together with the coordinate -/.// the exact location of the respective entity.

224



D Formulation of periodic boundary conditions

which is done by inserting three reference points, RPT, RPS1, and RPS2. Each
reference points has three DOFs. An overview of the assigned load cases is
given in Table D.1. In such a way nine additional degrees of freedom are
defined which yields a statically indeterminate system and the number ofDOFs
has to be reduced. This is done by constraining the double assigned shear
degrees. By setting RPS82 = 0∀ 8 ∈ [1, 3], the simple shear cases are obtained.
RPS82 =RPS81 yields the diagonal shear cases. Carefully note, that for the latter
case the specified deformation is uniformly distributed in both shear directions.
By constraining several DOFs of the reference points (by a certain value or as
free), a superposition of deformation boundary conditions is defined and the
RVE moves accordingly. Hereby, the inserted equations cause the opposite
entities to stay parallel. This yields a deformation that is equal to a behavior

a

x

y

b
Figure D.3: (a) Two-dimensional RVE deformed under simple YX-shear. The dashed line
corresponds to the deformed configuration if no inclusions are present in the volume that could cause
perturbations on the boundaries. The full lines show the deformation including the perturbation
due to inclusions, hence perturbing the deformation field, finally yielding fluctuations on the
boundaries. (b) Example of the deformation of a UD-SRVE (E 5 = 63%) under YX/XY-shear.

of an infinite medium, hence forming fluctuating boundaries, depending on
the inhomogeneities in the inside of the RVE. Figure D.3a shows two possible
configurations of the deformation of a RVE under simple YX-shear. The dashed
line corresponds to the deformation that would occur if no inhomogeneities
are present in the RVE. The boundaries marked by the full line show fluctu-
ations caused by inclusions in the inner of the RVE. Figure D.3b shows an
example of a unidirectionally reinforced SRVE under YX/XY-shear using the
below-mentioned periodic boundary conditions.
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D Formulation of periodic boundary conditions

D.1 Three-dimensional
periodic boundary conditions

** Vertices
**
*Equation

5
SET_XMYMZM , 1, 1.,
SET_XPYPZP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.,
SET_RPS_2 , 3, -1.

*Equation
5
SET_XMYMZM , 2, 1.,
SET_XPYPZP , 2, -1.,
SET_RPS_2 , 1, -1.,
SET_RPT, 2, -1.,
SET_RPS_1 , 2, -1.

*Equation
5
SET_XMYMZM , 3, 1.,
SET_XPYPZP , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPS_2 , 2, -1.,
SET_RPT, 3, -1.

*Equation
5
SET_XMYPZP , 1, 1.,
SET_XPYMZM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.,
SET_RPS_2 , 3, 1.

*Equation
5
SET_XMYPZP , 2, -1.,
SET_XPYMZM , 2, 1.,
SET_RPS_2 , 1, 1.,
SET_RPT, 2, -1.,
SET_RPS_1 , 2, -1.

*Equation
5
SET_XMYPZP , 3, -1.,
SET_XPYMZM , 3, 1.,
SET_RPS_1 , 3, 1.,
SET_RPS_2 , 2, -1.,
SET_RPT, 3, -1.

*Equation
5
SET_XMYPZM , 1, 1.,
SET_XPYMZP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.,
SET_RPS_2 , 3, -1.
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D.1 Three-dimensional periodic boundary conditions

*Equation
5
SET_XMYPZM , 2, 1.,
SET_XPYMZP , 2, -1.,
SET_RPS_2 , 1, -1.,
SET_RPT, 2, 1.,
SET_RPS_1 , 2, -1.

*Equation
5
SET_XMYPZM , 3, 1.,
SET_XPYMZP , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPS_2 , 2, 1.,
SET_RPT, 3, -1.

*Equation
5
SET_XMYMZP , 1, 1.,
SET_XPYPZM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.,
SET_RPS_2 , 3, 1.

*Equation
5
SET_XMYMZP , 2, 1.,
SET_XPYPZM , 2, -1.,
SET_RPS_2 , 1, -1.,
SET_RPT, 2, -1.,
SET_RPS_1 , 2, 1.

*Equation
5
SET_XMYMZP , 3, 1.,
SET_XPYPZM , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPS_2 , 2, -1.,
SET_RPT, 3, 1.

*Equation
3
SET_XPYMZP , 1, 1.,
SET_XPYMZM , 1, -1.,
SET_RPS_2 , 3, 1.

*Equation
3
SET_XPYMZP , 2, 1.,
SET_XPYMZM , 2, -1.,
SET_RPS_1 , 2, 1.

*Equation
3
SET_XPYMZP , 3, 1.,
SET_XPYMZM , 3, -1.,
SET_RPT, 3, 1.

*Equation
3
SET_XPYMZM , 1, 1.,
SET_XPYPZM , 1, -1,
SET_RPS_1 , 1, -1.

*Equation
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D Formulation of periodic boundary conditions

3
SET_XPYMZM , 2, 1.,
SET_XPYPZM , 2, -1,
SET_RPT, 2, -1.

*Equation
3
SET_XPYMZM , 3, 1.,
SET_XPYPZM , 3, -1,
SET_RPS_2 , 2, -1.

*Equation
3
SET_XPYPZM , 1, 1.,
SET_XPYPZP , 1, -1.,
SET_RPS_2 , 3, -1.

*Equation
3
SET_XPYPZM , 2, 1.,
SET_XPYPZP , 2, -1.,
SET_RPS_1 , 2, -1.

*Equation
3
SET_XPYPZM , 3, 1.,
SET_XPYPZP , 3, -1.,
SET_RPT, 3, -1.

**********************************
** Edges
**
*Equation

4
SET_XMYM , 1, 1.,
SET_XPYP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
4
SET_XMYM , 2, 1.,
SET_XPYP , 2, -1.,
SET_RPT, 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYM , 3, 1.,
SET_XPYP , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPS_2 , 2, -1.

*Equation
3
SET_XPYP , 1, 1.,
SET_XPYM , 1, -1.,
SET_RPS_1 , 1, 1.

*Equation
3
SET_XPYP , 2, 1.,
SET_XPYM , 2, -1.,
SET_RPT, 2, 1.

*Equation
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D.1 Three-dimensional periodic boundary conditions

3
SET_XPYP , 3, 1.,
SET_XPYM , 3, -1.,
SET_RPS_2 , 2, 1.

*Equation
4
SET_XMZM , 1, 1.,
SET_XPZP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_2 , 3, -1.

*Equation
4
SET_XMZM , 2, 1.,
SET_XPZP , 2, -1.,
SET_RPS_1 , 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMZM , 3, 1.,
SET_XPZP , 3, -1.,
SET_RPT, 3, -1.,
SET_RPS_1 , 3, -1.

*Equation
3
SET_XPZP , 1, 1.,
SET_XMZP , 1, -1.,
SET_RPT, 1, 1.

*Equation
3
SET_XPZP , 2, 1.,
SET_XMZP , 2, -1.,
SET_RPS_2 , 1, 1.

*Equation
3
SET_XPZP , 3, 1.,
SET_XMZP , 3, -1.,
SET_RPS_1 , 3, 1.

*Equation
4
SET_YMZM , 1, 1.,
SET_YPZP , 1, -1.,
SET_RPS_1 , 1, -1.,
SET_RPS_2 , 3, -1.

*Equation
4
SET_YMZM , 2, 1.,
SET_YPZP , 2, -1.,
SET_RPT, 2, -1.,
SET_RPS_1 , 2, -1.

*Equation
4
SET_YMZM , 3, 1.,
SET_YPZP , 3, -1.,
SET_RPT, 3, -1.,
SET_RPS_2 , 2, -1.

*Equation

229



D Formulation of periodic boundary conditions

3
SET_YPZP , 1, 1.,
SET_YPZM , 1, -1.,
SET_RPS_2 , 3, 1.

*Equation
3
SET_YPZP , 2, 1.,
SET_YPZM , 2, -1.,
SET_RPS_1 , 2, 1.

*Equation
3
SET_YPZP , 3, 1.,
SET_YPZM , 3, -1.,
SET_RPT, 3, 1.

*Equation
4
SET_XMYP , 1, 1.,
SET_XPYM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.

*Equation
4
SET_XMYP , 2, 1.,
SET_XPYM , 2, -1.,
SET_RPS_2 , 1, -1.,
SET_RPT, 2, 1.

*Equation
4
SET_XMYP , 3, 1.,
SET_XPYM , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPS_2 , 2, 1.

*Equation
4
SET_YMZP , 1, 1.,
SET_YPZM , 1, -1.,
SET_RPS_1 , 1, -1.,
SET_RPS_2 , 3, 1.

*Equation
4
SET_YMZP , 2, 1.,
SET_YPZM , 2, -1.,
SET_RPT, 2, -1.,
SET_RPS_1 , 2, 1.

*Equation
4
SET_YMZP , 3, 1.,
SET_YPZM , 3, -1.,
SET_RPS_2 , 2, -1.,
SET_RPT, 3, 1.

*Equation
4
SET_XMZP , 1, 1.,
SET_XPZM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_2 , 3, 1.
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D.1 Three-dimensional periodic boundary conditions

*Equation
4
SET_XMZP , 2, 1.,
SET_XPZM , 2, -1.,
SET_RPS_2 , 1, -1.,
SET_RPS_1 , 2, 1.

*Equation
4
SET_XMZP , 3, 1.,
SET_XPZM , 3, -1.,
SET_RPS_1 , 3, -1.,
SET_RPT, 3, 1.

**********************************
** Faces
**
*Equation

3
SET_XM, 1, 1.,
SET_XP, 1, -1.,
SET_RPT, 1, -1.

*Equation
3
SET_XM, 2, 1.,
SET_XP, 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
3
SET_XM, 3, 1.,
SET_XP, 3, -1.,
SET_RPS_1 , 3, -1.

*Equation
3
SET_YM, 1, 1.,
SET_YP, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_YM, 2, 1.,
SET_YP, 2, -1.,
SET_RPT, 2, -1.

*Equation
3
SET_YM, 3, 1.,
SET_YP, 3, -1.,
SET_RPS_2 , 2, -1.

*Equation
3
SET_ZM, 1, 1.,
SET_ZP, 1, -1.,
SET_RPS_2 , 3, -1.

*Equation
3
SET_ZM, 2, 1.,
SET_ZP, 2, -1.,
SET_RPS_1 , 2, -1.

*Equation
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D Formulation of periodic boundary conditions

3
SET_ZM, 3, 1.,
SET_ZP, 3, -1.,
SET_RPT, 3, -1.

D.2 In-plane periodic boundary conditions

** Vertices
**
*Equation

4
SET_XMYMZP , 1, 1.,
SET_XPYPZP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
4
SET_XMYMZP , 2, 1.,
SET_XPYPZP , 2, -1.,
SET_RPT, 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYPZP , 1, 1.,
SET_XPYMZP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.

*Equation
4
SET_XMYPZP , 2, 1.,
SET_XPYMZP , 2, -1.,
SET_RPT, 2, 1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYMZM , 1, 1.,
SET_XPYPZM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
4
SET_XMYMZM , 2, 1.,
SET_XPYPZM , 2, -1.,
SET_RPT, 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYPZM , 1, 1.,
SET_XPYMZM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.

*Equation
4
SET_XMYPZM , 2, 1.,
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D.2 In-plane periodic boundary conditions

SET_XPYMZM , 2, -1.,
SET_RPT, 2, 1.,
SET_RPS_2 , 1, -1.

*Equation
3
SET_XPYMZP , 1, 1.,
SET_XPYPZP , 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_XPYMZP , 2, 1.,
SET_XPYPZP , 2, -1.,
SET_RPT, 2, -1.

*Equation
3
SET_XPYMZM , 1, 1.,
SET_XPYPZM , 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_XPYMZM , 2, 1.,
SET_XPYPZM , 2, -1.,
SET_RPT, 2, -1.

**********************************
** Edges
**
*Equation

3
SET_XMZP , 1, 1.,
SET_XPZP , 1, -1.,
SET_RPT, 1, -1.

*Equation
3
SET_XMZP , 2, 1.,
SET_XPZP , 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
3
SET_XMZM , 1, 1.,
SET_XPZM , 1, -1.,
SET_RPT, 1, -1.

*Equation
3
SET_XMZM , 2, 1.,
SET_XPZM , 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYM , 1, 1.,
SET_XPYP , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
4
SET_XMYM , 2, 1.,
SET_XPYP , 2, -1.,
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D Formulation of periodic boundary conditions

SET_RPT, 2, -1.,
SET_RPS_2 , 1, -1.

*Equation
4
SET_XMYP , 1, 1.,
SET_XPYM , 1, -1.,
SET_RPT, 1, -1.,
SET_RPS_1 , 1, 1.

*Equation
4
SET_XMYP , 2, 1.,
SET_XPYM , 2, -1.,
SET_RPT, 2, 1.,
SET_RPS_2 , 1, -1.

*Equation
3
SET_YMZP , 1, 1.,
SET_YPZP , 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_YMZP , 2, 1.,
SET_YPZP , 2, -1.,
SET_RPT, 2, -1.

*Equation
3
SET_YMZM , 1, 1.,
SET_YPZM , 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_YMZM , 2, 1.,
SET_YPZM , 2, -1.,
SET_RPT, 2, -1.

*Equation
3
SET_XPYM , 1, 1.,
SET_XPYP , 1, -1.,
SET_RPS_1 , 1, -1.,

*Equation
3
SET_XPYM , 2, 1.,
SET_XPYP , 2, -1.,
SET_RPT, 2, -1.

**********************************
** Faces
**
*Equation

3
SET_XM, 1, 1.,
SET_XP, 1, -1.,
SET_RPT, 1, -1.

*Equation
3
SET_XM, 2, 1.,
SET_XP, 2, -1.,
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D.2 In-plane periodic boundary conditions

SET_RPS_2 , 1, -1.
*Equation

3
SET_YM, 1, 1.,
SET_YP, 1, -1.,
SET_RPS_1 , 1, -1.

*Equation
3
SET_YM, 2, 1.,
SET_YP, 2, -1.,
SET_RPT, 2, -1.

**
*Equation

2
SET_XMYPZP , 3, 1.,
SET_XMYMZP , 3, -1.

*Equation
2
SET_XMYMZP , 3, 1.,
SET_XPYMZP , 3, -1.

*Equation
2
SET_XPYMZP , 3, 1.,
SET_XPYPZP , 3, -1.

*Equation
2
SET_XMYPZM , 3, 1.,
SET_XMYMZM , 3, -1.

*Equation
2
SET_XMYMZM , 3, 1.,
SET_XPYMZM , 3, -1.

*Equation
2
SET_XPYMZM , 3, 1.,
SET_XPYPZM , 3, -1.

*Equation
2
SET_XMZP , 3, 1.,
SET_XPZP , 3, -1.

*Equation
2
SET_YMZP , 3, 1.,
SET_YPZP , 3, -1.

*Equation
2
SET_XMZM , 3, 1.,
SET_XPZM , 3, -1.

*Equation
2
SET_YMZM , 3, 1.,
SET_YPZM , 3, -1.

*Equation
2
SET_XMYM , 3, 1.,
SET_XPYM , 3, -1.
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D Formulation of periodic boundary conditions

*Equation
2
SET_XPYM , 3, 1.,
SET_XPYP , 3, -1.

*Equation
2
SET_XPYP , 3, 1.,
SET_XMYP , 3, -1.

*Equation
2
SET_XM, 3, 1.,
SET_XP, 3, -1.

*Equation
2
SET_YM, 3, 1.,
SET_YP, 3, -1.
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This work deals with the multiscale modeling of weave reinforced composite 
material. Three different subscales are investigated: the basic constituents  
(fibers and matrix), unidirectionally reinforced microstructures, and the full com-
posite of woven fiber structures embedded in a thermoplastic matrix. A closed 
multiscale chain to predict the material behavior of the macroscopic composite 
is introduced. This includes a geometrical evaluation of the different scales  
regarding their topology in order to virtually rebuild those structures and the 
mechanical assessment of their (anisotropic) behavior. The second part of this 
work defines the framework for the corresponding material models. Three con-
stitutive models are introduced according to the identified scales. The focus lies 
on the consideration of material non-linearities, i.e. plasticity and damage de-
velopment in all underlying material systems. All models presented are defined 
in the kinematic framework of large strains. The ability of the geometric and 
constitutive models to predict the deformation and failure behavior on their 
corresponding subscales is demonstrated by means of selected examples. 
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