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Abstract

Fossil fuels paved the way to prosperity for modern societies, yet alarmingly,
we can exploit our planet’s soil only so much. Renewable energy sources
inherit the burden to quench our thirst for energy, and to reduce the impact
on our environment simultaneously. However, renewables are inherently
volatile; they introduce uncertainties. What is the e�ect of uncertainties on
the operation and planning of power systems? What is a rigorous mathemat-
ical formulation of the problems at hand? What is a coherent methodology to
approaching power system problems under uncertainty? These are among
the questions that motivate the present thesis that provides a collection of
methods for uncertainty quanti�cation for (optimization of) power systems.

We cover power �ow (��) and optimal power �ow (���) under uncertainty
(as well as speci�c derivative problems). Under uncertainty—we view “un-
certainty” as continuous random variables of �nite variance—the state of the
power system is no longer certain, but a random variable. We formulate ��
and ��� problems in terms of random variables, thusly exposing the in�nite-
dimensional nature in terms of L2-functions. For each problem formulation
we discuss a solution methodology that renders the problem tractable: we
view the problem as a mapping under uncertainty; uncertainties are propa-
gated through a known mapping. The method we employ to propagate un-
certainties is called polynomial chaos expansion (���), a Hilbert space tech-
nique that allows to represent random variables of �nite variance in terms of
real-valued coe�cients.

The main contribution of this thesis is to provide a rigorous formulation of
several �� and��� problems under uncertainty in terms of in�nite-dimensional
problems of random variables, and to provide a coherent methodology to
tackle these problems via ���. As numerical methods are moot without nu-
merical software another contribution of this thesis is to provide PolyChaos.jl:
an open source software package for orthogonal polynomials, quadrature
rules, and ��� written in the Julia programming language.
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Deutsche Kurzfassung

Fossile Brennsto�e ebneten modernen Gesellschaften den Weg zum Wohl-
stand; der Energievorrat unseres Planeten ist allerdings begrenzt. Den er-
neuerbaren Energien kommt nun die Bürde zu, den Durst nach Energie zu
stillen und dabei den Ein�uss auf die Umwelt zu verringern. Jedoch – erneu-
erbare Energien sind volatil: wann Sonne oder Wind zur Verfügung stehen,
ist nie genau bekannt. Was ist der Ein�uss erneuerbarer Energien auf den
Betrieb des elektrischen Netzes? Was ist eine mathematische Beschreibung
dieses Problems? Existiert eine strukturierte Vorgehensweise, um elektrische
Netze unter Unsicherheiten zu berechnen? Diese Fragen bilden die Grundla-
ge der vorgelegten Dissertation; sie umfasst Herangehensweisen undMetho-
den, um die Wirkung von Unsicherheiten auf den (optimalen) Betrieb elek-
trischer Netze zu quanti�zieren.

Insbesondere werden (optimale) Last�ussprobleme unter Unsicherheiten un-
tersucht. Unter Unsicherheiten lässt sich der Gesamtzustand des Netzes als
Zufallsvariable endlicher Varianz modellieren. Die Dissertation zeigt, wie
(optimale) Last�ussprobleme unter Unsicherheiten als Optimierungsproble-
me über Zufallsvariable formuliert werden können, also als unendlichdi-
mensionale Probleme in L

2-Räumen. Fernerhin wird ein einheitlicher Zu-
gang vorgestellt, um jene Probleme in endlichdimensionale zu überführen:
sämtliche Probleme werden als Abbildungen unter Unsicherheiten aufge-
fasst, welche durch eine polynomiale Chaoserweiterung (���) angegangen
werden können. Besagte Hilbertraum-Methode erlaubt, Zufallsvariable end-
licher Varianz durch reellwertige Koe�zienten darzustellen.

Der Hauptbeitrag der Dissertation besteht in der rigorosen Problemformulie-
rung als auch der strukturierten ���-basiertenMethodik, die diverse (optima-
le) Last�ussprobleme unter Unsicherheiten zu lösen vermag. Überdies stellt
die Dissertation mit PolyChaos.jl eine Software in der Programmiersprache
Julia zur Verfügung, mit welcher orthogonale Polynome, Quadraturen und
polynomiale Chaoserweiterungen berechnet werden können.
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Notation

N natural numbers
R, R�0 real numbers, non-negative real numbers
Rn

n-dimensional Euclidean space
1 indicator function
0n⇥m, 0n zero matrix, zero vector of given dimension
�ij Kronecker-delta

Speci�c distributions
N normal distribution
B beta distribution
U uniform distribution

Measure theory, random variables
⌦ sample space
F sigma algebra
B Borel sigma algebra
µ measure
⇢ Lebesgue density or probability density
P, P probability distribution, see (2.9)
x random variable, vector-valued random variable
E(x) (element-wise) expected value of x
V(x) (element-wise) variance of x
C(x, y) covariance of x and y

Hilbert spaces
h·, ·i scalar product
k · k 2-norm
⇧ projection operator
L
2
(⌦, µ;R) Hilbert space of random variables
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Notation

Orthogonal polynomials
k index
K set of indices
�k k

th basis polynomial

Power systems
Nb number of buses
Nbr number of lines
N index set of buses
N�� index set of �� buses
N�� index set of �� buses
N�� index set of slack bus(es)
L, Llin index sets of lines
pi, pi active power at bus i
qi, qi reactive power at bus i
vi, vi voltage magnitude at bus i
�i, �i voltage angle at bus i
ei, ei real voltage at bus i
fi, fi imaginary voltage at bus i
zi, zi state of bus i
p
br, pbr active power branch �ow

q
br, qbr reactive power branch �ow
g(·), g���(·) power �ow equations
h(·), h���(·) bus speci�cations
pci controllable active power at bus i
pui uncontrollable active power at bus i
qci controllable reactive power at bus i
qui uncontrollable reactive power at bus i
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Acronyms

�� alternating current
��� backward-forward sweep
�� chance constraint
��-��� chance-constrained optimal power �ow
�� direct current
��� Karush Kuhn Tucker
�� Karhunen-Loève
��� linear time-invariant
��� model predictive control
��� nonlinear program
��� optimal power �ow
��� polynomial chaos expansion
��� probability density function
�� power �ow
��� probabilistic power �ow
���� power transfer distribution factor
�� quadratic program
���� second-order cone program
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1 Introduction

The world’s supply with electrical power has come a long way since Faraday,
Henry, and Zantedeschi independently discovered the e�ect of electromag-
netic induction in the early 1830s. What the citizens of industrialized coun-
tries take for granted today—an uninterrupted, reliable, and cheap access to
electricity—is the outcome of two world wars, unforeseen economic growth,
and of course tremendous e�orts of ever-curios scientists and engineers. The
current power systems are impressive results of craftsmanship, planning, and
engineering. However, there is a key player missing: their exceptional role
for society makes power systems inadvertently political. For instance, here
is how regulations changed in Germany in the last 20 years:

– On April 29, 1998, the new version of the Gesetz über die Elektrizitäts-
und Gasversorgung enabled the so-called liberalization of the Ger-
man electricity market: customers are free to choose their electricity
provider [29].

– Since April 01, 2000, the Gesetz für den Ausbau erneuerbarer Energien
guarantees feed-in tari�s for renewable energy sources [30].

– On August 06, 2011, the 13. Gesetz zur Änderung des Atomgesetzes
demanded the shut-down of all nuclear power plants by the end of
2022 [31].

– On January 26, 2019, the Kommission für Wachstum, Strukturwandel
und Beschäftigung with its �nal report recommended to phase out of
coal power by 2038 [93].

These policies have induced a paradigm change in the planning and operation
of (German) power systems. For instance, in Germany the share of renewable
energy production rose from 8.8 % in 2002 to 40.6 % in 2018. In the same time,
the installed capacity for solar power increased from 0.3GW to 45.9 GW in

1



1 Introduction

Germany; for onshore wind it rose from 12.0 GW to 53.0 GW.1 The instal-
lation of solar panels and wind parks a�ects di�erent voltage levels of the
power systems. In turn, this a�ects the transmission system operators and
may induce re-dispatches, that is power plants have to account for possible
shortages of electric power. In Germany, the re-dispatched energy grew from
4,956GWh in 2012 to 20,438GWh in 2017.2 The installation of renewables is
not a German but a global phenomenon: we observe similar endeavors—with
similar consequences—across Europe [12], in the USA [1], in Mexico [13], in
India [89], and in Japan [132].

There is an interesting side e�ect to the undeniable growth in the already
complex challenges in power systems: diverse research �elds discover their
interest in the topic. For instance, the �eld of systems and control dedicates
entire sessions to power systems at premier conferences such as the ���� Con-
ference on Decision and Control. Computer scientists have even coined a
new term: energy informatics [68], highlighting that it takes an e�ort of a
broad and interdisciplinary research community to enable the transition to-
ward sustainable power systems.

Abstractly speaking, the installation of renewable energy sources and the
liberalization of the electricity market introduce uncertainty: it is no longer
known with certainty who will produce how much energy where and when
exactly. Clearly, uncertainty was present all along in power systems, but the
necessity to consider uncertainties in a structured and explicit manner has
become more relevant. Exactly this is the seed around which this thesis ag-
glomerates: power systems under uncertainty. We tackle questions such as:
Given a power system, and given an uncertainty description of, for instance,
a load, how does this a�ect the overall state of the power system? What is the
probability that some lines are overloaded? How canwe operate a power sys-
tem cost-optimally despite the presence of uncertainties? How to compute
and quantify the e�ect of uncertainties on power systems?

1 Figures taken from https://www.energy-charts.de/energy_pie_de.htm retrieved August 13,
2019, 16:15.

2 Figures taken from https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/
Unternehmen_Institutionen/Versorgungssicherheit/Engpassmanagement/Redispatch/Redisp
atch_2017.jpg, retrieved August 13, 2019, 16:25.
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Motivated by the celebrated Don’t Repeat Yourself (���) principle from soft-
ware engineering [87] this thesis aims for a unifyingmethodology to analyze,
tackle, and solve speci�c problems of power systems under uncertainty.3 To
realize ��� means to introduce abstraction, in our case leading to the study
of mappings under uncertainty. That is, given a mapping, and given a ran-
dom variable, how can we characterize the image? For us this given mapping
resembles (optimal) power �ow problems.

Outline and contributions

The content of this thesis interconnects according to Figure 1.1. Chap-
ter 2 forms the theoretical and methodological baseplate: starting from an
in�nite-dimensional problem formulation that represents a mapping under
uncertainty in terms of random variables, we show how a method called
polynomial chaos expansion (���) helps in rendering the problem �nite-
dimensional, irrespective of whether the uncertainties are Gaussian, non-
Gaussian, or a combination thereof. Before we apply ��� we cover its sur-
rounding theory: measure theory, Hilbert space theory, and orthogonal poly-
nomials. On top of the baseplate provided byChapter 2we erect two columns,
each standing for a speci�c class of problems from power systems: Chapter 3
covers power �ow problems under uncertainty, and Chapter 4 covers optimal
power �ow problems under uncertainty. Both Chapter 3 and Chapter 4 are
built bottom-up: starting from the generic problem (probabilistic power �ow
(���) for Chapter 3, respectively chance constraint (��)-alternating current
(��)-��� for Chapter 4), we cover two special cases (backward-forward sweep
(���) and optimal adaptive linearizations for Chapter 3, respectively single-
and multi-stage direct current (��)-��� for Chapter 4). In both Chapter 3
as well as Chapter 4 we adhere to the formalism from the methodological
Chapter 2. We show how the same principles and the same work�ow can be
applied to di�erent problems, all of which lead to �nite-dimensional prob-
lems in terms of ��� coe�cients.

The case studies from Chapter 6 are to Chapter 3 and Chapter 4 what an
arch is to the columns it rests upon: it connects, it bridges a gap, and it orna-

3 The opposite of ��� being—of course–Write Everything Twice (���) [87].
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1 Introduction

ments. Chapter 6 shows how power systems problems under uncertainty can
be tackled with ���. We study ���, ��-���, and ��-��� for the same grid, the
same uncertainty, and the same constraints. What is the role of Chapter 5?
It literally provides the tool to construct and implement our problem formu-
lations: the software package PolyChaos.jl written in the Julia programming
language. PolyChaos.jl facilitates the computation of orthogonal polynomi-
als, quadrature rules, and ���s. We conclude with Chapter 7, giving a sum-
mary and outlining open issues.

Let us examine the content and the individual contributions of the chapters
more closely.

Chapter 2 – Mappings under uncertainty

This chapter introduces the problem formulation that permeates the entire
thesis: mappings under uncertainty. That means, given a mapping, and given
a random variable, how to characterize the image of the random variable
under the mapping? We study this problem by means of a Hilbert space
technique called polynomial chaos expansion (���): ��� is to a random vari-
able what a Fourier series is to a periodic signal, namely a representation of
an in�nite-dimensional mathematical object in terms of scalar coe�cients.
Chapter 2 introduces the relevant concepts from measure theory, Hilbert
space theory, and orthogonal polynomials. These three �elds are connected
such that their relation to ��� becomes obvious. The amalgamation of estab-
lished material to form a self-contained and concise problem formulation is
a pedagogical and methodological contribution of Chapter 2. The main sci-
enti�c contribution lies with Section 2.5, the quanti�cation of ever-present
truncation errors for ���, speci�cally for polynomial and non-polynomial ex-
plicit mappings [122, 123]. Insightful examples complement the chapter.

Chapter 3 – Power flow under uncertainty

The abstract problem formulation from Chapter 2 is applied to concrete
power systems problems, namely power �ow problems under uncertainty.
Solving the probabilistic power �ow (���) problem covered in Section 3.1
means to determine the state of an electrical grid in terms of random vari-

4
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Figure 1.1: Content of this thesis as a block diagram. Chapter 5 has a special role, because it
provides the numerical software PolyChaos.jl. 5



1 Introduction

ables: given an electrical grid under �� conditions governed by Kirchho�’s
laws, and given, for instance, a probabilistic description of the load at one
bus of the power system, how does this a�ect the �ows among all lines?
How does this a�ect the voltage magnitudes at all buses? Mathematically,
��� leads to a system of nonlinear equations in terms of random variables,
which can be rendered to an enlarged system of nonlinear equations in terms
of the ��� coe�cients. One set of equations is given by the so-called power
�ow equations that model the underlying physics. The other set of equations
models equipment behavior, the so-called bus speci�cations.

For radial grids, i.e. power systems whose underlying graph is a tree, the
��� can be simpli�ed, leading to the so-called backward-forward sweep (���)
method that is covered in Section 3.4. The ���method is an iterative method
that switches between applying Kirchho�’s current law and Kirchho�’s volt-
age law. The iteration between nodal and branch quantities is possible math-
ematically, because the reduced incidence matrix4 of a tree is invertible.

A slightly di�erent kind of power �ow under uncertainty is the subject of
Section 3.5. Perhaps a full ��� problem is too costly to solve, and we are
interested only in a su�ciently accurate proxy. In this context “su�ciently
accurate” refers to a setting inwhichwemodel the operating range of a power
system in terms of random variables and we seek an a�ne input-to-output
mapping that is optimal with respect to a speci�c errormetric. This is the idea
of optimal adaptive linearizations that combine the computational prowess
of a�ne mappings with optimization under uncertainty.

The advantages of ��� for all of the considered ��� problems are evident:
our setting is not restricted to a speci�c class of uncertainties, such as Gaus-
sian random variables. Furthermore, we require no sampling to obtain the
solution. Instead, we formulate a modi�ed problem in terms of the ��� coef-
�cients that needs to be solved just once, then providing all the information
we sought. Also, we do not need to linearize the power �ow equations; we
employ the full nonlinear equations.

To summarize our contributions:

4 That is the quadratic incidence matrix of the tree with the root column removed.
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– rigorous formulation of power �owproblem as amapping under uncer-
tainty in terms of arbitrary random variables of �nite variance [119];

– exposition of the in�nite-dimensional character of the ��� problem [119];

– one of the �rst applications of intrusive ��� to ��� [119];

– �rst application of intrusive ��� to ��� [9];

– �rst application of ��� to optimal adaptive linearizations [125].

Chapter 4 – Optimal power flow under uncertainty

In this chapter we turn to optimal power �ow (���) under uncertainty, the
task of operating a power system optimally despite possible �uctuations in
load and/or generation. Compared to the ��� problem from Chapter 2, ��� is
a numerical optimization problem.5 In Section 4.1 we formulate the generic
problem under �� conditions, putting great emphasis on how to reformu-
late the deterministic ��� problem in the presence of uncertainties, lead-
ing to chance-constrained optimal power �ow (��-���) formulations. This
is necessary because it is not clear per se how inequality constraints are to
be treated in the presence of uncertainties. We also show how ��� renders
the in�nite-dimensional problem �nite-dimensional. Under the simplifying
�� conditions Section 4.2 derives a similar chance-constrained problem for-
mulation, and shows how its solution simpli�es when using ���. The multi-
stage setting, i.e. the problem of solving ��� over a time horizon, is covered
in Section 4.3.

Similar to the ��� problems from Chapter 2 we highlight the advantages of
��� for chance-constrained ��� problems: Our setting is not restricted to a
speci�c class of uncertainties, such as Gaussian random variables. No sam-
pling is required to obtain the solution. Instead, we formulate a modi�ed
problem in terms of the ��� coe�cients that needs to be solved just once, then
providing all the information we sought. We do not rely on linearizations of
the power �ow equations or convex reformulations thereof; we propagate un-

5 Strictly speaking ��� is a speci�c numerical optimization problem, namely a feasibility prob-
lem. The point is: ��� always involves numerical optimization.

7



1 Introduction

certainties through the fully nonlinear power �ow equations. Finally, ��� is a
natural framework for moment-based reformulations of chance constraints,
because moments can be computed directly from the ��� coe�cients.

To summarize our contributions:

– rigorous formulation of chance-constrained ��� as a mapping under
uncertainty in terms of random variables [55, 117–121, 125];

– exposition of the in�nite-dimensional character of the ��� problem [55,
117–121, 126];

– �rst application of intrusive ��� to chance-constrained ��� for both ��
and �� settings [55, 117–121, 125, 126];

– �rst solution of ��-��� for the fully nonlinear �� power �ow equa-
tions [55, 119, 126];

– rigorous formulation of multi-stage ��-��� in the presence of Gaussian
uncertainties in terms of �rst and second moments.

Chapter 5 – PolyChaos.jl

Reliable and e�cient software forms the backbone of numerics-driven re-
search. Chapter 5 is about PolyChaos.jl, a software package written in the Ju-
lia programming language [19] for orthogonal polynomials, quadrature rules,
and ���. As there existed no ��� package in Julia it was up to the author of
this thesis to co-create one. Clearly, we could have resorted to existing ���
packages in Matlab or Python. However, the Julia programming language
o�ers too many intriguing features for scienti�c computing to not witness
a ��� package in due time anyway. The focus of PolyChaos.jl is on intru-
sive ��� with an e�cient computation of the tensors of scalar products. The
open source code is available free of charge [127]. An example shows how to
construct orthogonal polynomials for a Gaussian mixture with PolyChaos.jl.

To summarize our contributions:

– �rst open source Julia package for orthogonal polynomials, quadrature
rules, and ��� [127];
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– given an absolutely continuous, non-negative measure the package
PolyChaos.jl allows to

. compute recurrence relations of underlying orthogonal polyno-
mials via Stieltjes procedure, Lanczos procedure, or multiple dis-
cretization;

. compute quadrature rules via Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature;

. compute tensorized scalar products of basis functions for intru-
sive ���;

– comprehensible documentation.

Chapter 6 – Case studies

Chapter 3 and Chapter 4 provide methodologies, Chapter 5 provides a nu-
merical tool. The purpose of Chapter 6 is to demonstrate all of the above in
action, applied to the same power system. Starting from a non-trivial uncer-
tainty model (Gaussian mixture) we use PolyChaos.jl to compute the orthog-
onal basis, then solve the ��� problem, and then compare ��-��� to ��-���
under uncertainty. The contribution of Chapter 6 is to study three di�erent
(optimal) power �ow problems under uncertainty for the same grid and the
same uncertainty description, also providing a thorough comparison of the
solution characteristics.
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2 Mappings under uncertainty

The concept of a function in mathematics is as simple as it is profound: ele-
ments aremapped to other elements according to some rule. The usual vocab-
ulary surrounding functions suggests a visual interpretation: the elements
that a function takes as inputs are said to be pre-images, and the function
renders them to images. Imagine we select a collection of pre-images such
that certain elements of the collection appear more frequently than others.
Mapping all the elements of the collection of pre-images, what can we say
about the resulting collection of images—this is the question we attempt to
answer.1

2.1 Problem formulation – Idea

Let X be the pre-image (or domain), and let Y be the image (or codomain).
The function f associates elements of X with elements of Y , and we write

f : X ! Y, x 7! y = f(x). (2.1)

We are interested in applying f to speci�c sets

X̃ = {x 2 X : x is a realization of the random variable x}, (2.2)

where we assume the random variable x, and hence X̃ , are known to us. If
we map these speci�c sets (2.2) through the function f , we obtain the images

n
y 2 Y : y = f(x) 8x 2 X̃

o
. (2.3)

1 We shall use the terms mapping, function, and map synonymously [10]. Also, we exclude
set-valued functions from our investigations.
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2 Mappings under uncertainty

These images depend on both the random variable x and the mapping f .

In lighter—yet for now imprecise and purely conceptual—notation this reads

y = f(x), (2.4)

meaning that the random variable x is propagated via the function f to the
random variable y. We emphasize that the mapping f itself is deterministic
(or causal)—identical pre-images yield identical images—but it is uncertain
which pre-images will be mapped at all. This problem at hand is well-known
in the �eld of uncertainty quanti�cation [95, 154, 172].

Problem 2.1 (Mapping under uncertainty). Given a function f that maps
elements of the domain X to the codomain Y , and given the random variables
x = [x1, . . . , xnx ]

> for nx 2 N with known X̃ ✓ X , �nd the random variables
y = [y1, . . . , yny ]

> for ny 2 Ny that are the image of x under f . We formally
write y = f(x).

Let us study a concrete example.

Example 2.1 (Chi-squared distribution). Let X = X̃ = Rn for some �nite
n 2 N, and Y = R�0 both of which are linked by the mapping

y = f(x1, . . . , xn) =

nX

i=0

x
2
i .

We treat each xi as the realization of a standard Gaussian random variable for
which we write xi ⇠ N(0, 1) for i 2 {1, . . . , n}. Hence, we are interested in the
random variable y that is the image of the sum of the squared xi

y = f(x1, . . . , xn) =
nX

i=0

x2i .

In Example 2.1 we are fortunate enough to have an explicit expression for
the function f . More often than not this will not be the case. The function f

might, for example, be a black box to which we have no access: a proprietary
piece of software for instance. The function f may not admit an explicit form
at all: it may be an implicit function, it may be the solution to an ordinary

12



2.1 Problem formulation – Idea

di�erential equation to which no analytic solution is known, it may be a dis-
cretized solution of a partial di�erential equation—all of the above scenarios
are common in the �eld of uncertainty quanti�cation [95, 154, 172]. In this
thesis the function f often represents the solution to an optimization prob-
lem, and we are interested in solving a family of optimization problems for
a range of uncertain parameter values. From here on we assume that the
argmin of the optimization problems is not set-valued.

Example 2.2 (Quadratic program with uncertain data). Let X = R and Y =

R2. For a positive de�nite matrix A 2 R2⇥2 consider the quadratic program

y = f(x) := argmin

z2R2

1

2
z
>
Az

s. t.

h
1 1

i
z = x,

(2.5)

where x is the realization of a Beta random variable x ⇠ B([x, x],↵,�) with
so-called support X̃ = [x, x] where 0 < x < x < 1 and positive shape
parameters ↵,�. Hence, �nd y = f(x).2

Example 2.2 makes it clear that the conceptually simple “y = f(x)” requires
care: if we merely substituted x  x in (2.5), then the very meaning of
the equality constraint would be questionable; we would have “[1 1]z = x”,
which is not meaningful as there is a real number on the left-hand side, and
a random variable on the right-hand side. Hence, it is imperative to distin-
guish the function from the uncertainty: the optimization problem (2.5) is a
function that maps a value x to an optimal value y, and it is this function that
shall be evaluated for realizations of a random variable.

It is natural to ask: How can we solve Problem 2.1? What are existing meth-
ods?

Perhaps the most intuitive approach is sampling: evaluate the function f

for each realization of the uncertainty x. Having solved a plethora of de-
terministic problems, the ensemble of the outputs provides statistical infor-
mation. The simplicity of this so-called Monte-Carlo (��) approach is both
its strength and its weakness. It “just” requires a reliable sampler, the imple-

2 From here on we no longer specify X̃ explicitly. It will be clear from the context.
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2 Mappings under uncertainty

mentation is then conceptually simple and amenable to parallelization. Exist-
ing code can be re-used, no additional massaging of the problem is required.
However, the mean value of the output ensemble converges in proportion to
1/
p
N with N being the number of samples [172, p. 3]; the same applies to

the convergence of the variance [95, p. 9]. Hence, �� typically requires a lot
of samples. Several sampling methods have been proposed in the literature
to speed up convergence [95, 154, 173].

Perturbation methods are an alternative to sampling-based approaches [172,
p. 3]: the function f is expanded around the mean value of x in terms of an
(often second-order) Taylor series. The surrogate model may be used to de-
rive analytic expressions of the mean and variance. Clearly, this technique is
valid only in a neighborhood of themean value of x, hence no large deviations
should occur.

Moment-based approaches, instead, compute solutions in terms of moments:
the input uncertainty x is given in terms of its moments, and we are inter-
ested in the moments of y [172, p. 4]. Hence, neither the input random vari-
able x nor the desired output random variable y is modelled by its probability
density function. The derivation of the moments, however, often exhibits
a dependency on higher moments, leading to the so-called moment closure
problem [94].

In this thesis we study mappings of the form y = f(x) by means of a Hilbert
space technique called polynomial chaos expansion (���). Besides having
appealing convergence properties, ��� is a powerful tool that allows to prop-
agate uncertainties through mappings in a single step. The idea is to ex-
pand random variables as a linear combination of orthogonal basis functions
weighted by deterministic coe�cients. It is these coe�cients that charac-
terize the random variable, and it is these coe�cients we need to compute.
The canvas for ��� is weaved of measure theory, Hilbert space theory, and
orthogonal polynomials—all three of which we touch upon in the following.
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2.2 Preliminaries

2.2 Preliminaries

In view of polynomial chaos expansion (���) the basic ingredients we need
to formulate Problem 2.1 are measure theory, Hilbert space theory, and or-
thogonal polynomials. The material is assembled from [82–84, 154].

2.2.1 Measure theory

Given a collection ⌦—a so-called sample space—we want to assign numbers
to elements (or combinations of elements) of ⌦. These numbers may have a
physical meaning such as length, area, volume or mass, but they may as well
stand for the abstract idea of a probability. We call this act of assignment a
measurement. But what does it mean to measure? The verb to measure is a
transitive verb. In its active form to measure requires a subject that does the
action of measuring, and it acts on an receiving object to which the act of
measuring is done to. In mathematical terms the doer is the measure, and the
receiving objects are elements of a sigma algebra.

De�nition 2.1 (Sigma algebra, measurable space). Let ⌦ be a sample space.
Then, the family of sets F ✓ P(⌦), where P(⌦) denotes the power set of ⌦, is
called a sigma algebra on ⌦ if it satis�es

– ⌦ 2 F,

– if A 2 F, then its complement A{
2 F (closed under complement),

– if An 2 F for all n 2 N, then [
n2N

An 2 F (closed under countable

union).

The pair (⌦,F) is called a measurable space. Every set A 2 F is called F-
measurable.

A speci�c sigma algebra is the so-called Borel sigma algebra [82, 83, 154].
Given a sample space ⌦ its Borel sigma algebra B(⌦) is the smallest sigma
algebra on ⌦ that contains all open sets—where “small” refers to the cardi-
nality of the set. For the scope of this thesis the sample space ⌦ associated
with Borel sigma algebras is either R or Rn with N 3 n � 2. A possible way
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2 Mappings under uncertainty

to de�ne the Borel sigma algebra on R is that it contains all left-bounded
intervals, hence [34]

B(R) =
\

{F : F is a sigma algebra containing all (a,1) 8a 2 R}.

We can study Borel sigma algebras in higher dimensions too. To do so we
introduce the following element-wise interval notation for some a, b 2 Rn

[a, b] = {x 2 Rn
: ai  xi  bi 8i 2 {1, . . . , n}}. (2.6)

The de�nitions for the open interval (a, b), and the half-open intervals (a, b],
[a, b) are analogous. With this notationwe�nd the Borel sigma algebraB(Rn

)

on Rn to have the following properties [82, p. 41]:

– {c} 2 B(Rn
) for all c 2 Rn,

– for all a, b 2 Rn

[a, b], [a, b), (a, b], (a, b) 2 B(Rn
),

– for all a 2 Rn it holds that

(�1, a], (�1, a), [a,1), (a,1) 2 B(Rn
).

Given a measurable set, a measure is a function that assigns a number to this
set. Albeit an intuitive concept the mathematically rigorous de�nition of a
measure requires some care.

De�nition 2.2 (Measure, measure space). Let (⌦,F) be a measurable space.
Then, the function µ : F ! [0,1] is called a measure on the sigma algebra F
if it satis�es

– µ(;) = 0, and

– if An 2 F for all n 2 N and all An being mutually disjoint, i.e. An \

Am = ; for all n 6= m, then

µ

✓
[

n2N
An

◆
=

X

n2N

µ(An). (2.7)
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2.2 Preliminaries

The triple (⌦,F, µ) is called a measure space.

Remark 2.1 (Lebesgue measure, integral). For the scope of this thesis the
prevalent measure is the Lebesgue measure on Rn. The Lebesgue measure is
the mathematically precise de�nition of the common sense notion of volume. In
fact, for the measure space (Rn

,B(Rn
)) the Lebesgue measure is the unique

measure such that3

µ([a1, b1]⇥ · · ·⇥ [an, bn]) = (b1 � a1) · · · (bn � an) (2.8)

holds with aj  bj for all j 2 {1, . . . , n} [82, 83]. All integrals that appear in
the following are to be understood as Lebesgue integrals that employ the familiar
notation from Riemann integrals.

De�nition 2.3 (Measurable function). Let (⌦,F) and (⌦0
,F0

) be measurable
spaces. A function f : ⌦! ⌦

0 is called F/F0-measurable if

f
�1

(A
0
) = {x 2 ⌦ : f(x) 2 A

0
} 2 F 8A

0
2 F0

.

Hence every pre-image f�1
(A

0
) of everyF0-measurable subsetA0 isF-measurable.

If f : ⌦! ⌦
0 is F/F0-measurable we write f : (⌦,F)! (⌦

0
,F0

).

De�nition 2.4 (Absolutely continuous measure). Let µ be a measure on
(R,B(R)), and let ⇢ : R ! R�0 be a Lebesgue-measurable function such
that for any A ✓ B(R)

µ(A) =

Z

A

⇢(⌧)d⌧.

Then, the measure µ is said to be absolutely continuous w.r.t. the Lebesgue
measure and non-negative, and ⇢ is called the Lebesgue density. We formally
write dµ = ⇢(⌧)d⌧ with d⌧ as the Lebesgue measure. If µ is a probability
measure such that µ(R) =

R
R ⇢(⌧)d⌧ = 1, then we call ⇢ a probability density.

3 If the Lebesgue measure were de�ned on the power set of the real numbers, then whether
the thusly de�ned Lebesgue measure truly exists is an instance of Gödel’s incompleteness
theorem—it can neither be proved nor disproved [84]. Technically, the domain of the Lebesgue
measure is the Lebesgue sigma algebra, a sigma algebra which contains the Borel sigma al-
gebra, but is still smaller than the power set in general. Hence, every Borel-measurable set is
Lebesgue-measurable, while the converse is not true. In the following we assume that we are
dealing with Borel-measurable sets exclusively.
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2 Mappings under uncertainty

2.2.2 Random variables

De�nition 2.5 (Probability space). Let (⌦,F, µ) be a measure space with
µ(⌦) = 1. Then, the triple (⌦,F, µ) is called a probability space.

De�nition 2.6 (Real-valued random variable). Let (⌦,F, µ) be a probability
space. Then, any F/B(R)-measurable function is called a real-valued random
variable, i.e. f : (⌦,F)! (R,B(R)). We call Pf : (R,B(R))! [0, 1] with

Pf(A
0
) = µ(f�1

(A
0
))

the probability distribution of the random variable f under µ.

It can be shown that the image space triple (R,B(R),Pf) is a probability
space [82]. This means that the probability distribution from De�nition 2.6 is
itself a probability measure for the measure space (R,B(R)). We introduce
a tempting and engineering-motivated short-hand notation “P(f  a)” to
describe “the probability of the real-valued random variable f being less than
or equal to a.” This verbose de�nition can be made rigorous with the help of
De�nition 2.6

P(f  a) := Pf((�1, a]) = µ({! 2 ⌦ : f(!)  a}). (2.9)

De�nition 2.7 (Rn-valued random vector). Let (⌦,F, µ) be a probability
space, and let fi be a real-valued random variable for all i 2 {1, . . . , n} with
n 2 N. Then,

f : ⌦! Rn
, x 7!

2

664

f1(x)
...

fn(x)

3

775

is (F,B(Rn
))-measurable and called an Rn-valued random vector.

Real-valued random variables with absolutely continuous probability distri-
butions allow to compute integrals as one would expect [34, Thm. 4.16, Cor.
4.2], namely

Z

⌦
g(f(!))dµ(!) =

Z

R
g(⌧)dPf(⌧) =

Z

R
g(⌧)⇢(⌧)d⌧, (2.10)
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provided any of the integrals exist. Note that g is someB(R)/B(R)-measurable
function. For the special cases g(x) = x and g(x) = x

2 we obtain

E(f) =
Z

⌦
fdµ =

Z

R
⌧dPf(⌧) =

Z

R
⌧⇢(⌧)d⌧ (2.11a)

E(f2) =
Z

⌦
f2dµ =

Z

R
⌧
2
dPf(⌧) =

Z

R
⌧
2
⇢(⌧)d⌧ = V(f) + E(f)2, (2.11b)

where E(·) is called the expected value, and V(·) is called the variance.

De�nition 2.8 (Real-valued stochastic process). Let T be any set, and let
(⌦,F, µ) be a probability space. We call the function f : T ⇥ ⌦ ! R an R-
valued stochastic process on T if for every t 2 T we have that f(t, ·) = f(t) is a
random variable with respect to the probability space (⌦,F, µ). In other words,
a stochastic process is a collection {f(t, ·) 8t 2 T } of random variables. We say
a stochastic process is discrete if the index set T has �nitely many elements; if
T has in�nitely many elements we say it is a continuous stochastic process.

Stochastic processes can be viewed in three equivalent ways [84, 154]:4

– as the map (t,!) 7! f(t,!) from T ⇥ ⌦ to the real numbers;

– as the map t 7! f(t, ·) from T to the set of all random variables with
respect to the probability space (⌦,F, µ); or

– as the map ! 7! f(·,!) from the sample space ⌦ to the set of all func-
tions that map T to the real line.

The last of the three views relates discrete stochastic processes to random
vectors: Let’s say that the index set is T = {1, . . . , n}, and we consider a
stochastic process f : T ⇥⌦. Then we can view the stochastic process equiv-
alently as an Rn-valued random vector f : ⌦ ! Rn, because every realiza-
tion of the stochastic process is an element of Rn. Consequently, for index
sets T with in�nitely many elements the realization of the stochastic pro-
cess becomes in�nitely-valued, hence a “true” function from T onto the real

4 For the scope of this thesis, stochastic processes are functions de�ned on a domain T ⇥ ⌦.
In contrast to the �eld of signal processing we do not put emphasis on the properties of a
stochastic process, such as ergodicity, but study the e�ect of propagating stochastic processes
through given mappings.
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2 Mappings under uncertainty

line. Loosely speaking, a random variable corresponds to a randomly chosen
number, a random vector corresponds to a randomly chosen vector, and a
stochastic process corresponds to a randomly chosen function.

2.2.3 Hilbert space theory

Hilbert spaces generalize the geometric intuitions we hold dear from Eu-
clidean spaces: length, orthogonality, and orthogonal projections. Euclidean
spaces are perhaps the most prominent example of Hilbert spaces. The core
subject of study for this thesis are Lebesgue spaces of square-integrable mea-
surable functions. These so-called L

2-spaces include continuous random
variables of �nite variance. Other notable examples of Hilbert spaces are the
space of square-summable sequences, and the Sobolov space of L2-functions
whose weak derivatives (up to a speci�ced order) are also L

2-functions. We
present standard results for real (pre-)Hilbert spaces with a focus on or-
thonormal sequences and when they generate a Hilbert space.

A pre-Hilbert space is a linear vector space endowed with an inner product
h·, ·i which induces the norm k · k =

p
h·, ·i. Also, pre-Hilbert spaces allow

for the concept of orthogonality.

De�nition 2.9 (Orthogonal elements, orthonormality). Two elements f, g of
a pre-Hilbert space are called orthogonal if hf, gi = 0 whenever f 6= g. If in
addition the elements f, g have unit length kfk = kgk = 1, they are called
orthonormal.

If a pre-Hilbert space is complete—i.e. every Cauchy sequence of elements
of the space attains its limit in the very space—we call it a Hilbert space. In
Hilbert spaces the notion of orthogonality leads to the classical projection
problem: Given an element of a Hilbert space, characterize and �nd the ele-
ment from a closed subspace that is closest in the induced norm. The idea is
shown in Figure 2.1.

Theorem2.1 (Projection theorem [104, 154]). LetM be a closed subspace of a
Hilbert spaceH. For any element f 2 H there is a unique element ⇧Mf 2M

such that kf � ⇧Mfk  kf � gk for all g 2M. A necessary and su�cient
condition for ⇧Mf to be the unique minimizer is that f �⇧Mf be orthogonal
to all elements of M. This allows to write f uniquely as f = ⇧Mf + e with
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M

H

f

ΠMf

Figure 2.1: Idea of projection theorem (Theorem 2.1): a Hilbert space element f 2 H is projected
orthogonally onto the closed subspace M, yielding ⇧Mf 2M.

e 2M
? whereM? is the orthogonal complement ofM. The element⇧Mf 2

M is called the orthogonal projection of f onto M.

The projection theorem is a powerful lever. It gives an answer to the basic
approxiation problem: given a—now �nite—sequence of elements {tn}Nn=1

in a Hilbert space H, �nd the best approximation f̂ 2 span{tn}
N
n=1 such

that the norm of the error kf � f̂k is minimized. For all the computational
and methodological advantages of orthogonality we focus not just on any
sequence of elements in the following, but on orthogonal/orthonormal se-
quences. Orthonormal sequences are sequences of elements of a Hilbert
space that are mutually orthonormal. The Gram-Schmidt procedure is one
possibility to construct a (in-)�nite orthonormal sequence of elements given
an (in-)�nite sequence of linearly independent elements in some pre-Hilbert
space. The importance of Gram-Schmidt is twofold: it ensures the exis-
tence of an orthonormal sequence and it provides a constructive method to
compute them.5 If we combine the idea of the Projection Theorem 2.1 with
the Gram-Schmidt procedure we �nd that for �nite orthonormal sequences
(en)

N
n=1 the aforementioned approximation problem of an element f 2 H

reduces to

f̂ =

NX

n=1

hf, enien (2.12)

with the error kf � f̂k being minimized. This is known as (generalized)
Fourier series, and the scalars hf, eni are called (generalized) Fourier coef-
�cients [104, 154]. The natural question to ask is whether this series con-

5 However, the importance of Gram-Schmidt is more theoretical as it tends to be numerically
unstable [70, p. 151].
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verges given an in�nite orthonormal sequence (en)n2N in the Hilbert space.6
Bessel’s inequality and Parseval’s identity help to a�rm that

P
n2Nhf, enien

does converge to an element of the closed subspace generated by the or-
thonormal sequence [104, 154]. Hence, for every element of the Hilbert space
to admit a converging Fourier series we need the closure of the span of the
orthonormal sequence to be the Hilbert space itself. This leads to the notion
of a dense set.

De�nition 2.10 (Complete orthogonal/orthonormal sequence, dense set,
separable space [104]). An orthogonal/orthonormal sequence (en)n2N with
all elements en 2 H for n 2 N is called complete if

span{en}n2N = H.

Hence the closed subspace generated by orthogonal/orthonormal sequence is the
Hilbert space itself. Then, by de�nition, the set span{en}n2N is dense inH, and
H is separable.

We remark that the use of the word “complete” in De�nition 2.10—i.e. the
entire Hilbert space is generated—is di�erent from the notion of complete-
ness in metric spaces. To highlight the importance of the entire space being
generated, we added the notion of a dense set and a separable space to De�ni-
tion 2.10. It remains to provide a criterion to check whether an orthonormal
sequence is complete according to De�nition 2.10. This criterion and its im-
plications are given in the following Theorem 2.2.

Theorem 2.2 (Complete orthonormal basis [104, 154]). An orthonormal se-
quence (en)n2N in a Hilbert space H is complete if and only if its orthog-
onal complement is the set containing only the zero element 0H of H, thus
{en}

?

n2N = {0H}. The following statements are then equivalent:

i) {en}
?

n2N = {0H};

ii) H = span{en}n2N;

6 Convergence refers to the sequence of partial sums being convergent.
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iii) for all f 2 H it holds

kfk
2
=

X

n2N

hf, eni
2
;

iv) for all f 2 H it holds

f =

X

n2N

hf, enien.

Corollary 2.1 (Complete orthogonal basis [104, 154]). In case of an orthogo-
nal sequence (en)n2N the results from Theorem 2.2 are analogous, but Item iii)
and Item iv) read:

kfk
2
=

X

n2N

hf, eni
2

hen, eni
2
, f =

X

n2N

hf, eni

hen, eni
en

for any f 2 H.

Hence, orthogonality and orthonormality di�er only in the normalization
constants; we use them interchangeably whenever no confusion is expected.

Let us turn to the Hilbert space prevalent in this thesis, the L2-space whose
de�nition is based on square-integrable measurable functions. If we restrict
ourselves to those square-integrable measurable functions that are random
variables we can de�ne the Hilbert space of equivalence classes of random
variables. The notion of equivalence classes is required because square-
integrable measurable functions that di�er only on a set of measure zero
have the same norm, hence violating positive-de�niteness of the norm.

De�nition 2.11 (Equivalence almost everywhere). Let (⌦,F, µ) be ameasure
space. Then,

E = {f : (⌦,F)! (R,B(R))with
9A 2 F : µ(A) = 0 and f(x) = 0 8x 2 ⌦ \ A}

is the set of all F/B(R)-measurable functions from ⌦ to R that are zero almost
everywhere. Any two F/B(R)-measurable functions f, g from ⌦ to R that sat-
isfy f � g 2 E are called equivalent µ-almost everywhere.
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2 Mappings under uncertainty

De�nition 2.12 (L2-space of random variables). Let (⌦,F, µ) be a probabil-
ity space, and let E be de�ned according to De�nition 2.11. The quotient space

L
2
(⌦, µ;R) =

⇢
f : (⌦,F)! (R,B(R)) with

Z

⌦
f(⌧)2dµ(⌧) <1

�
/E

of equivalence classes of F/B(R)-measurable square-integrable random vari-
ables from ⌦ to R is a Hilbert space with respect to the inner product

hx, yiL2(⌦,µ;R) := E(xy) =
Z

⌦
x(⌧)y(⌧)dµ(⌧)

for elements x, y 2 L
2
(⌦, µ;R).7

We yield to the convention and refer to the equivalence classes by their repre-
sentatives [34, 104, 151, 154]. Saying that a random variable x 2 L

2
(⌦, µ;R)

is square-integrable is equivalent to x having a �nite variance.

2.3 Problem formulation – Revisited

Let us revisit Problem 2.1 in light of measure theory and Hilbert space theory.

Problem 2.2 (Mapping under uncertainty). Let (⌦,F, µ) be a probability
space, for whichL2

(⌦, µ;R) is the Hilbert space of all real-valued random vari-
ables of �nite variance, and let xi 2 L

2
(⌦, µ;R) be nx 2 N given random

variables for i 2 {1, . . . , nx}. Furthermore, let

f : L
2
(⌦, µ;R)⇥ · · ·⇥ L

2
(⌦, µ;R)! L

2
(⌦, µ;R)⇥ · · ·⇥ L

2
(⌦, µ;R)

be aB(Rnx)/B(Rny )-measurable and component-wise square-integrable func-
tion.

Then, �nd the random variables yi 2 L
2
(⌦, µ;R) for all i 2 {1, . . . , ny} such

that
y = f(x) with y = [y1, . . . , yny ]

>
, x = [x1, . . . , xnx ]

>
.

7 Whenever convenient we drop the subscript in the scalar product specifying the Hilbert space.
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2.4 Polynomial chaos

A challenge intrinsic to Problem 2.2 is that real-valued random variables are
in�nite-dimensional mathematical objects, but practical computations are
naturally restricted to �nite evaluations. Hence, we are interested in �nite-
dimensional representations of in�nite-dimensional objects. This idea dates
back to Fourier series and has been addressed in Section 2.2.3 already. Fourier
series allow to represent periodic signals of �nite energy in terms of deter-
ministic Fourier coe�cients, see Theorem 2.2. In certain cases—surely in
practical applications—only �nitely many coe�cients serve as a proxy for
the periodic signal. The same idea can be applied to random variables of
�nite variance where it is then called polynomial chaos expansion.

2.4 Polynomial chaos

A polynomial chaos expansion (���) for a random variable is what a classic
Fourier series is for a periodic signal, namely a Hilbert space method to rep-
resent an in�nite-dimensional mathematical object in terms of (in-)�nitely
many coe�cients. We study ��� for continuous random variables and exten-
sions to random vectors. We further assume that all random variables con-
sidered admit an absolutely continuous probability distribution, hence can
be visualized by their probability density functions.

2.4.1 Orthogonal polynomials

De�nition 2.13 (Ordered set of monic orthogonal polynomials [64]). Let
(R,B(R), µ) be a measure space with the measure µ absolutely continuous
and non-negative, and letK be the index set N0 (or {0, 1, . . . , d} for some �nite
d 2 N in case we truncate). The elements Pµ = {�k}k2K are called an ordered
set of monic orthogonal polynomials with respect to µ if

�0 = 1,

�k(t) = t
k
+ ak�1t

k�1
+ · · ·+ a0, 8k 2 K \ {0},

h�i,�ji =

Z

R
�i(⌧)�j(⌧)dµ(⌧) = �i�ij , 8i, j 2 K,

�k > 0, 8k 2 K,

(2.13)
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2 Mappings under uncertainty

where �ij is the Kronecker-delta. The numbers �k are normalization constants.

We stick to the convention and use �0 = 1, cf. [64, 154, 172]. Note that the
index k is equivalent to the degree of the polynomial �k

deg �k = k. (2.14)

The index k hence is a natural ordering of the elements of Pµ ; the greater k,
the greater the degree. As the inner product from De�nition 2.13 is positive
de�nite, there exists an in�nite sequence of orthogonal polynomials relative
to the measure µ [154, Thm. 8.5]. In light of the theory of Hilbert spaces from
Section 2.2.3, it is fair to ask whether these ordered sets of orthogonal poly-
nomials form complete orthogonal sequences according to De�nition 2.10?
Unfortunately, there is no a�rmative answer in general. Take for example
the log-normal density ⇢(⌧) / 1/⌧ exp(� ln

2
(⌧)/2) for all real t > 0: there

are in�nitely many orthogonal polynomials relative to the measure, but their
sequence is not complete, hence the closed subspace generated by these poly-
nomials is not the underlying Hilbert space [154].

The interest in orthogonal polynomials arose in themiddle of the 19th century
whenChebyshev studied least-squares problems to �t experimental data [72].
This is a classic example of the Projection Theorem 2.1—which ensures con-
vergence in the mean square sense. In fact, the smoother the function that is
to be approximated, the better the rate of convergence is going to be; this is
the notion of spectral convergence [154, 172]. Uniform convergence can be
arbitrarily ludicrous, however, independent of the smoothness of the func-
tion to be approximated—this is the Gibbs phenomenon [95, 154, 172].

Let us now turn to multivariate polynomials. We write

t
↵
:= t

↵1
1 t

↵2
2 · · · t

↵m
m , deg t

↵
= |↵| := ↵1 + . . .+ ↵m (2.15)

for amultivariatemonomial, where↵ is amulti-index↵ = [↵1 ↵2 . . . ↵m]
>
2

K
m. The degree of the multivariate monomial is de�ned to be the sum of the

entries of the multi-index. Given some multivariate polynomial we call the
largest degree among all its monomials the total degree.8

8 Sometimes the total degree refers to the expression for the degree in (2.15), see [42, p. 2].
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2.4 Polynomial chaos

|↵| grlex grevlex revgrlex #

0 [0 0 0 0] [0 0 0 0] [0 0 0 0] 0
1 [0 0 0 1] [0 0 0 1] [1 0 0 0] 1

[0 0 1 0] [0 0 1 0] [0 1 0 0] 2
[0 1 0 0] [0 1 0 0] [0 0 1 0] 3
[1 0 0 0] [1 0 0 0] [0 0 0 1] 4

2 [0 0 0 2] [0 0 0 2] [2 0 0 0] 5
[0 0 1 1] [0 0 1 1] [1 1 0 0] 6
[0 0 2 0] [0 1 0 1] [1 0 1 0] 7
[0 1 0 1] [1 0 0 1] [1 0 0 1] 8
[0 1 1 0] [0 0 2 0] [0 2 0 0] 9
[0 2 0 0] [0 1 1 0] [0 1 1 0] 10
[1 0 0 1] [1 0 1 0] [0 1 0 1] 11
[1 0 1 0] [0 2 0 0] [0 0 2 0] 12
[1 1 0 0] [1 1 0 0] [0 0 1 1] 13
[2 0 0 0] [2 0 0 0] [0 0 0 2] 14

Table 2.1: Di�erent orderings on N4
0 and their indexing in N by #, see Examples 2.3-2.5.

In contrast to the univariate case there is no natural ordering for multivariate
polynomials by their multi-indices ↵, because there is no natural ordering on
K

m
✓ Nm

0 . There exist several schemes for ordering multi-indices. We just
mention a few representatives [41, 67, 95, 154, 172]:

Example 2.3 (Graded lexicographic). For all ↵,� 2 Nm
0 we write

↵ �
grlex

�

if |↵| > |�|, or if |↵| = |�| and the left-most non-zero entry of ↵�� is positive.

Example 2.4 (Graded reverse lexicographic). For all ↵,� 2 Nm
0 we write

↵ �
grevlex

�

if |↵| > |�|, or if |↵| = |�| and the right-most non-zero entry of ↵ � � is
negative.

Example 2.5 (Reversal of graded lexicographic). For all ↵,� 2 Nm
0 we write

↵ �
revgrlex

�
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2 Mappings under uncertainty

if |↵| > |�|, or if |↵| = |�| and the left-most non-zero entry of ↵�� is negative.

Note that the graded reverse lexicographic order is not the same as the rever-
sal of the graded lexicographic order; they are mirrored. Table 2.1 shows the
subtle di�erences on N4

0. Having mentioned these orderings we can de�ne
the multivariate extension of De�nition 2.13.

De�nition 2.14 (Ordered set ofmultivariatemonic orthogonal polynomials).
Consider some �nitem 2 N. Let µ = µ1 ⌦ · · ·⌦ µm be a product measure9 on
(Rm

,B(Rm
)), and let Pµi = {�

(i)
k }k2K be a family of ordererd sets of monic

orthogonal polynomials relative to µi with normalization constants �(i)
k for all

i 2 {1, . . . ,m}. Then, the ordered set Pm
µ of m-variate monic orthogonal

polynomials with respect to the measure µ of total degree less than or equal
to supK is given by

P
m
µ =

(
�#(↵) =

mY

i=1

�
(i)
↵i

with |↵|  supK

)

↵2Km

(2.16a)

=

n
�#(↵) =

mY

i=1

(t
↵i + a

(i)
↵i�1t

↵i�1
i + · · ·+ a

(i)
0 )

with |↵|  supK

o

↵2Km
(2.16b)

h�#(↵),�#(�)i =

mY

i=1

h�
(i)
↵i
�
(i)
�i
iL2(R,µi;R) (2.16c)

=

mY

i=1

�
(i)
↵i

�↵i�i 8↵,� 2 K
m
, (2.16d)

9 The product measure µ1 ⌦ µ2 : F1 ⇥ F2 ! [0,1] is de�ned such that (µ1 ⌦ µ2)(F1 ⇥

F2) = µ1(F1)µ2(F2) for all F1 2 F1, F2 2 F2, see [154, Def. 2.33]. In light of random
variables, product measures appear whenever random variables are independent. In that case,
the overall probability density is the product of the individual probability densities.
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2.4 Polynomial chaos

where #: K
m
✓ Nm

0 ! N0 with ↵ 7!
���� 2 Nm

0 : ↵ �
ord

�
 �� enumerates

the multi-index order �
ord

for ord 2 {grlex, grevlex, revgrlex}.10 In case of K =

{0, 1, . . . , d}, the cardinality of the set Pm
µ is (see Appendix A.3)

|P
m
µ | =

(d+m)!

d!m!
=

✓
d+m

d

◆
. (2.16e)

The de�nition of the multivariate basis follows from Fubini’s Theorem [154].

Remark 2.2 (Fixed ordering). In everything that follows we employ the rever-
sal of the graded lexicographic ordering, see Example 2.5.

Remark 2.3 (Alternative construction of basis). Often (physical) models are
driven by low-order e�ects and low-order interactions [115]. This can help to
tame the curse of dimensionality in De�nition 2.14. Imagine we construct a
multivariate basis of total degree less than supK for which only products of at
most j  supK univariate bases form a multivariate element

P
m
µ =

(
�#(↵) :=

mY

k=1

�
(k)
↵k

with |↵|  supK

mX

i=1

1↵i>0 < j

)

↵2Km

.

(2.17)
The number

Pm
i=1 1↵i>0 of non-zero elements of ↵ is called the rank of ↵ and

represents the interactions among the univariate bases [7, 23]. It is shown in [23]
that “decreasing j allows a relative decrease [. . . ] of about 10 with respect to the
usual index set [Pm

µ ].” Arguably, if the true model exhibits interactions ĵ with
j < ĵ  supK, then these interactions are not captured. Another approach
to reducing the number of basis elements is to use hyperbolic index sets [23].
Both approaches are computationally superior than the ad-hoc de�nition ofPm

µ

according to De�nition 2.14 as they exploit sparsity.

All of the presented ways to create the multivariate basis are, so far, based on a-
priori choices: the maximum degree supK and, if applicable, the interaction j

are chosen by the user before making any computation. If there is any data
available, there exist other possibilities to create the multivariate basis, leading

10 The cardinality of the empty set is zero.
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2 Mappings under uncertainty

to basis-adaptive and sparse polynomial bases. The idea is to add incrementally
only those polynomials that have a signi�cant numerical e�ect [24, 25].

2.4.2 Polynomial chaos expansion

Polynomial chaos expansions combine measure theory, Hilbert space theory,
and orthogonal polynomials. The main idea is to let polynomials that are or-
thogonal relative to a given probabilitymeasure span aHilbert space towhich
we can apply Theorem 2.1. To overcome technical details with whether a se-
quence of orthogonal polynomials is complete or not, we make the following
technical assumption.

Assumption 2.1 (Orthogonal sequence in L
2). Consider L2

(⌦, µ;R) accord-
ing to De�nition 2.12, let the sample space be the real numbers ⌦ = R, and
let the probability measure µ be absolutely continuous and non-negative. We
assume Pµ is an ordered set of monic orthogonal polynomials in L

2
(⌦, µ;R),

and that it forms a complete orthogonal sequence according to De�nition 2.10.11

In Assumption 2.1 the triple (⌦,F, µ) = (R,B(R), µ) is a probability space,
and the symbol “µ” takes over the meaning of the probability distribution.
This allows to keep the notation somewhat lighter than the more technical
notation in Section 2.2.2.

As theL2-space fromDe�nition 2.12 is a Hilbert space it inherits all the useful
properties mentioned in Section 2.2.3. It was NorbertWiener who studied the
standard Gaussian measure

µG(A) =

Z

A

1
p
2⇡

exp

✓
�
x
2

2

◆
dx, 8A 2 B(R) (2.18)

and who found the Hermite polynomials to be a complete orthogonal se-
quence in L

2
(R, µG;R), for which he coined the term homogeneous chaos

[167].12 Wiener’s homogeneous chaos is Fourier series for real-valued square-

11 Hence, the elements �k of Pµ are both random variables and “ordinary” polynomials that
map real numbers to real numbers.

12 Sometimes theHermite polynomials orthogonal to (2.18) are called probabilists’ Hermite poly-
nomials.
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integrable random variables that are the image of functions of standard Gaus-
sian random variables

f : L
2
(R, µG;R)! L

2
(R, µG;R). (2.19)

The extension to real-valued square-integrable random variables that are the
image of functions of several random variables that are allowed to be non-
Gaussian is called generalized polynomial chaos, or simply polynomial chaos
[154, 172, 173]. The mappings of interest for ��� are thus

f :

mO

i=1

L
2
(⌦i, µi;R)! L

2
(⌦, µ;R). (2.20)

It is fair to ask about the relation between the tensor product of Hilbert spaces
and the image space in (2.20)? Before we can answer this question, let us as-
sume that there is an ordered set of monic orthogonal polynomials for every
Hilbert space associated with every Hilbert space L2

(⌦i, µi;R).

Assumption 2.2 (SeveralL2-spaces). For a �nitem 2 N let the Hilbert spaces
L
2
(⌦i, µi;R) satisfy Assumption 2.1 for all i 2 {1, . . . ,m}. The random vari-

ables ⌅1, . . . ,⌅m with ⌅i 2 L
2
(⌦i, µi;R) for all i 2 {1, . . . ,m} are mutually

independent.

Remark 2.4 (Stochastic germ [95, 154, 172]). The m-valued random vector
⌅ = [⌅1, . . . ,⌅m]

> from Assumption 2.2 is called the stochastic germ.13

As all m spaces L2
(⌦i, µi;R) are separable, see Assumption 2.1 and the ref-

erence to De�nition 2.10 therein, the tensor product of the Hilbert spaces is
isomorphic to the L2-space over the product probability space [154, p. 237],

L
2
(⌦, µ;R) = L

2
(⌦1 ⇥ ⌦2 ⇥ · · ·⇥ ⌦m, µ1 ⌦ µ2 ⌦ · · ·⌦ µm;R)

⇠=

mO

i=1

L
2
(⌦i, µi;R).

(2.21)

13 We use that term extensively in Section 4.3.
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The scalar product in L
2
(⌦, µ;R) is then the product of the m individual

scalar products

h·, ·iL2(⌦,µ;R) =

mY

i=1

h·i, ·iiL2(⌦i,µi;R). (2.22)

It remains to characterize the elements that generate the tensor product space
L
2
(⌦, µ;R) in the sense of Theorem 2.2. These elements can be chosen asm-

variate monic polynomials that are orthogonal relative to the product mea-
sure µ = µ1⌦µ2⌦· · ·⌦µm. Hence they can be constructed according to Def-
inition 2.14 (for an unbounded index set). Thus by construction the ordered
set of m-variate monic orthogonal polynomials Pm

µ for the tensor product
space L2

(⌦, µ;R) forms a complete orthogonal sequence. Then, polynomial
chaos expansion is the name of the manifestation of Theorem 2.1 for random
variables that are elements of L2

(⌦, µ;R), namely ��� is the expansion of
a random variable of �nite variance in a complete orthogonal basis. Impor-
tantly, the depiction of Theorem 2.1 from Figure 2.1 holds just the same: a
given random variable is projected onto every basis function.14

De�nition 2.15 (��� of random variables). Let Assumption 2.2 hold such that
P

m
µ = {�k}k2N0 is a complete orthogonal sequence of orderedm-variate monic

orthogonal polynomials for the tensor product space L2
(⌦, µ;R).15 Then, the

polynomial chaos expansion of the random variable x 2 L
2
(⌦, µ;R) is

x =
X

k2N0

xk�k with xk =
hx,�kiL2(⌦,µ;R)

h�k,�kiL2(⌦,µ;R)
2 R, (2.23)

where xk is called the kth ��� coe�cient of x. The truncated polynomial chaos
expansion of x for K = {0, . . . , k̂} reads

⇧k̂x =
X

k2K

xk�k with xk =
hx,�kiL2(⌦,µ;R)

h�k,�kiL2(⌦,µ;R)
2 R, (2.24)

14 With the modi�cation that H = L2
(⌦, µ;R), and M = span{�k}k2K (assuming K has

�nitely many elements).
15 Hence, the underlying measurable space is (⌦,F) = (Rm,B(Rm

)).
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2.4 Polynomial chaos

where the error x�⇧k̂x is orthogonal to the subspace spanned by the elements
of the sequence (�k)k2K.16

For the truncated ��� mentioned in De�nition 2.12 it is common to let the
subspace be spanned by all orderedm-variate orthogonal polynomials of de-
gree at most d. This subspace has the dimension

dim (span{�k}k2K) = k̂ + 1 =

✓
d+m

d

◆
, (2.25)

We call the number k̂+1 the ��� dimension.17 In that case we identify the ���
of the random variable with its projection onto the subspace, i.e. x = ⇧k̂x.

De�nition 2.16 (��� of random vectors). Consider the setting from De�ni-
tion 2.15. For a �nite n 2 N consider the (not necessarily independent) random
variables xi 2 L

2
(⌦, µ;R) for all i 2 {1, . . . , n} with their kth ��� coe�cient

xi,k . We call x = [x1, . . . , xn]> an Rn-valued random vector and write its ���

x =
X

k2N0

xk�k, (2.26a)

where xk = [x1,k, . . . , xn,k]
>
2 Rn. Formally, we write

x 2 L
2
(⌦, µ;Rn

) () xi 2 L
2
(⌦, µ;R) 8i 2 {1, . . . , n}. (2.26b)

We see that the ��� of a random vector is de�ned as taking the ��� of each
component. Clearly, the kth ��� coe�cient of a random vector is then vector-
valued. Interestingly, the space L

2
(⌦, µ;Rn

) can be understood as the fol-
lowing isomorphism [154]

L
2
(⌦, µ;Rn

) ⇠= L
2
(⌦, µ;R)⌦ Rn

. (2.27)

16 To emphasize the dimension k̂+1 of the subspace spanned by {�k}k2K rather than the fact
that it is a subspace we slightly violate the notation of the projection operator, see its premier
occurrence in Theorem 2.1.

17 The number (2.25) appeared already in De�nition 2.14. Note that the role of the sets “K” in
both (2.25) and De�nition 2.14 is the role of an ordered single-index set.
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2 Mappings under uncertainty

We can thus view the originally Rn-valued random vector x instead as a real-
valued discrete stochastic process x : T ⇥⌦! Rwith T = {1, . . . , n}, hence
for every instant t 2 T we have that x(t, ·) 2 L

2
(⌦, µ;R) is a real-valued

random variable, and for every realization! 2 ⌦we have that x(·,!) 2 Rn is
but an ordinary Euclidean vector. We call the real-valued discrete stochastic
process we associate with x 2 L

2
(⌦, µ;Rn

) a square-integrable real-valued
discrete stochastic process. For a more detailed investigation between ���
and stochastic processes we refer to Appendix A.4.

2.4.3 Advantages

We focus on four advantages of ��� for random variables: evaluation, appli-
cability to non-Gaussian settings, moments of random variables/vectors, and
uncertainty propagation.

Evaluation

Although more a property or point-of-view than an advantage, it is worth
emphasizing that ��� allows for a straightforward evaluation of random vari-
ables to obtain realizations. Given a random variable x 2 L

2
(⌦, µ;R) and its

��� relative to some �nite orthogonal basis {�k}k2K we write according to
De�nition 2.15

x = x(⌧) ⇠= ⇧k̂x(⌧) =
X

k2K

xk�k(⌧) 2 R. (2.28)

The notation emphasizes that the random variable x is a function mapping
values ⌧ 2 ⌦ to the real numbers x. It allows to leverage random variables
that are outputs of mappings under uncertainty for decision-making: given
a speci�c realization ⌧ of the uncertainty, the corresponding realization of
the uncertainty of the output is obtained from (2.28). The computational cost
associated with (2.28) is negligible: it requires to evaluate a polynomial basis
and multiply with the respective ��� coe�cients.
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2.4 Polynomial chaos

Table 2.2: Orthogonal bases for univariate random variables according to [173].

Type Support �k(!) Polynomial basis

Beta (0, 1) P
(��1,↵�1)
k (2! � 1) Jacobi

Gamma (0,1) L
(↵�1)
k (�!) Generalized Laguerre

Gaussian (�1,1) Hek(!) Hermite
Uniform [0, 1] P

(0,0)
k (2! � 1) Legendre

Non-Gaussian random variables

Polynomial chaos requires the random variables to have a �nite variance,
but there are no restrictions on the distribution of the random variable, e.g.
Gaussian or uniform. Also, the random variables need not have a unimodal
probability density. For instance, ��� works for (Gaussian) mixture mod-
els, i.e. continuous random variables whose probability density function is
a convex combination of (Gaussian) densities [154]. Hence, ��� is applica-
ble to Gaussian and non-Gaussian random variables alike—or combinations
thereof. The Askey scheme of orthogonal polynomials characterizes polyno-
mials that are orthogonal relative to measures reminiscent of often-employed
random variables [173]. Table 2.2 shows some of the orthogonal polynomials
that correspond to continuous random variables with absolutely continuous
probability distributions. In case one has to deal with a non-standard proba-
bility density—because it has been �tted to experimental data for instance—
not all hope is lost. There exist stable numerical methods to compute orthog-
onal polynomials relative to given probability density functions. We refer to
Appendix A.1 for details; Chapter 5 introduces a Julia package written specif-
ically for this purpose.

Moments

Orthogonality of the polynomials admits straightforward formulæ for mo-
ments of random vectors in terms of their ��� coe�cients. For example, the
expected value of the random vector x 2 L

2
(⌦, µ;Rn

) is

E(x) = E(x�0) (2.29a)
= hx,�0iL2(⌦,µ;R) (2.29b)
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2 Mappings under uncertainty

=

X

k2N0

xkh�k,�0iL2(⌦,µ;R) (2.29c)

= x0, (2.29d)

which follows from orthogonality and µ being a probability measure, thus
h�0,�0iL2(⌦,µ;R) = µ(⌦) = 1. Note that the notation in (2.29b) is to be
understood as taking the scalar product component-wise with respect to x.
The covariance of two random vectors x, y 2 L

2
(⌦, µ;Rn

) becomes

C(x, y) = E((x� E(x))(y � E(y))>) (2.30a)

= E
⇣ X

k12N

xk1�k1

X

k22N

y
>

k2
�k2

⌘
(2.30b)

=

X

k2N

xky
>

k E(�k�k) (2.30c)

=

X

k2N

xky
>

k h�k,�kiL2(⌦,µ;R), (2.30d)

hence it is the sum of weighted squares of the ��� coe�cients. Note that the
summation in (2.30) is not over N0 but N. Similar expressions can be derived
for higher-order moments of random variables such as skewness or kurtosis.

Uncertainty propagation

Uncertainty propagation with ��� means to �nd the ��� coe�cients of the
image random variable y = f(x), given the mapping f and the ��� for x. One
way to approach this is via intrusive Galerkin projection. This means, given
the mapping f : L

2
(⌦, µ;Rn

) ! L
2
(⌦, µ;R) according to De�nition 2.16,

and given the random vector x 2 L
2
(⌦, µ;Rn

) with ��� coe�cients xk rel-
ative to the orthogonal polynomials {�k}k2N0 , we do the following to �nd
the ��� coe�cients of y = f(x):

1. Insert the ��� of x and y

X

k2N0

yk�k = f

 
X

k2N0

xk�k

!
. (2.31)
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2.4 Polynomial chaos

2. For allm 2 N0 project onto the orthogonal element �m

⌦ X

k2N0

yk�k,�m

↵
L2(⌦,µ;R)

=
⌦
f

⇣ X

k2N0

xk�k

⌘
,�m

↵
L2(⌦,µ;R)

. (2.32)

3. Solve

ym =

⌦
f

⇣P
k2N0

xk�k

⌘
,�m

↵
L2(⌦,µ;R)⌦

�m,�m

↵
L2(⌦,µ;R)

. (2.33)

The approach is said to be intrusive because we insert the ��� of x into the
function f and derive new equations (2.33) that have to be evaluated. These
new equations (2.33) are deterministic but there are N0 of them. For prac-
tical considerations we restrict the investigations to the subspace generated
by {�k}k2K see De�nition 2.15, but still its dimension is known to grow
rapidly. Intrusive approaches have the appealing property that the mathe-
matical structure of the relations (2.33) may be equivalent to the structure of
the mapping f . For example, if f is polynomial, then all equations (2.33) will
remain polynomial. Hence, for selected classes of functions f the structure
is preserved; this can be exploited both numerically and theoretically, see for
instance Section 2.5.

Non-intrusive methods instead evaluate the function f for a �xed number
of times (so-called deterministic model resolutions [95]) from which the ���
coe�cients of the image of y are computed. Least-squares and its sparse
counterparts can then be applied, but collocation methods are also possible
[95, 172]. These methods compute the ��� to hold exactly at selected points,
making the overall ��� of the image y an interpolatory rule. Non-intrusive
methodsmay not be able exploit the structure of f asmuch as intrusivemeth-
ods. However, non-intrusive methods have clear advantages in case there is
no explicit formula for f . For instance, the evaluation of f might come from
a proprietary piece of software, which in addition could be numerically ex-
pensive to run. In that case, non-intrusive methods may be favorable.
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2 Mappings under uncertainty

2.4.4 Disadvantages

As with anything ��� brings about advantages but also disadvantages. It is
fair to say ��� is a method that is heavy in both abstraction and computation.

First, ��� requires to describe uncertainties in terms of probability density
functions. This may be too much to ask for in practice as there might be—at
best—histograms available. Hence, ��� might involve a pre-processing step
that �ts a continuous function to given histograms, yielding an analytic prob-
ability density function. Alternatively, the histograms can be used directly as
a discrete measure for which we compute orthogonal polynomials. Math-
ematically speaking, however, we are then in the realm of discrete orthog-
onal polynomials. Second, for multivariate ���s we assume independence
among the random variables of each uni-variate basis, see Assumption 2.2.18
It is possible to adapt ��� to the setting in which the random variables of
each univariate are dependent, but the basis functions need then no longer
be polynomials.19 Third, ��� requires to know the orthogonal basis functions.
Except for special cases, see Table 2.2, ��� relies on a pre-processing step to
compute the basis functions relative to a given density. For this task there
exist dedicated software packages, see Chapter 5 for details.

While the aforementioned disadvantages are generic to ���, there may be
issues speci�c to howwe apply ���. Speci�cally, this thesis employs intrusive
���, see the previous Section 2.4.3: the governing equations are “intruded”,
and we derive a larger set of deterministic equations. Although intrusive
��� may preserve the mathematical structure of the governing equations,
it comes at the cost of having to derive the “intruded” governing equations,
hence solving integrals. Clearly, non-intrusive ���may be favorable for large
systems with many uncertainties.

18 Recall: this does not mean that the modeled random variables need to be independent, but it
still imposes restrictions on the random variables that compose the orthogonal basis.

19 An example is given in [154, Remark 11.16].
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2.5 Quantifying truncation errors

2.5 Quantifying truncation errors

A polynomial chaos expansion of a random variable as such is exact with in-
�nitely many terms. In practice, the truncated ��� is used, meaning that only
�nitely many coe�cients represent the random variable. This naturally leads
to asking whether truncation errors are made and how they can be quanti-
�ed. Is it possible to describe a random variable and its mapping precisely
by a �nite truncated ���? And, if the ��� is truncated early, is it possible to
establish an error bound on the image random variable?

It so appears that there exists but a small number of results that consider
��� truncation errors rigorously. For instance, in [60] illustrative examples
evaluate the accuracy of ���. Yet, the errors are not computed rigorously but
rather are studied via extensive simulations. Similarly, the authors of [47] list
several numerical challenges when using ���, including the potential need
for large ��� dimensions. The authors of [11] provide an upper bound on the
truncation error using a univariate Hermitian basis based on di�erentiability
assumptions of the mapping. Yet, these results do not easily carry over to
other bases. The following material is based on [122, 123].

We begin with a de�nition.

De�nition 2.17 (Minimum expansion degree). The minimum expansion de-
gree of x 2 L

2
(⌦, µ;R) is the number dx 2 N0 such that all ��� coe�cients

associated with higher-degree polynomials are zero, i.e. xj = 0 for all j with
deg �j > dx.

For multivariate polynomials the minimum expansion degree refers to the
total degree, see Section 2.4.1.

Assumption 2.3 (Exact ��� input). For a given m-variate polynomial basis
P

m
µ = {�k}

k̂x
k=0, the ��� of the real-valued random variable x 2 L

2
(⌦, µ;R)

has the known and �nite minimum degree dx 2 N0 with

k̂x � (m+ dx)!/(m!dx!).

Unless stated otherwise we assume that k̂x = (m+ dx)!/(m!dx!).
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2 Mappings under uncertainty

In other words, for all sets {�k}
k̂
k=0 ◆ {�k}

k̂x
k=0 with k̂ � k̂x we have kx �

⇧k̂xkL2(⌦,µ;R) = 0.20 Indeed, for many uncertaintymodels Assumption 2.3 is
often satis�ed for a minimum degree of dx = 1, namely whenever Gaussian,
Beta, Gamma, or uniform distributions are employed to model uncertainties.
This is often done in the �eld of systems and control, see [57, 92, 103, 108,
109, 121].

Two questions arise:

��.� Choosing the ��� output dimension equal to the ��� input dimen-
sion what truncation error is made given a square-integrable nonlinear
mapping?

��.� What is the minimum ��� dimension such that a zero truncation error
is attained for?

We analyze and tackle these questions for polynomial mappings �rst.

2.5.1 Polynomial mappings

Let xi, y 2 H = L
2
(⌦, µ;R) with i 2 {1, . . . , nx} be real-valued random

variables (with ⌦ = R). Moreover, let the space generated by the orthogonal
sequence of orderedm-variate monic orthogonal polynomials Pm

µ be a com-
plete subspace of H. For ease of presentation we consider that y and all xi
have the same ��� dimension.

Theorem 2.3 (Error under polynomial mapping [122, 123]). Suppose that
all xi satisfy Assumption 2.3 with minimum degree dx relative to the orthogonal
basis Pm

µ , and let f : Hnx ! H be a square-integrable polynomial mapping

20 It might be the case that kx�⇧k̂xkL2(⌦,µ;R) = 0 for k̂ < k̂x, for instance x = x0�0+x1�1

and P
1
µ = {�k}

2
k=0.
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2.5 Quantifying truncation errors

of total degree df such that y = f(x1, . . . , xnx). Then, the magnitude of the
truncation error en = y � ⇧ny is

en := kenk =

8
>><

>>:

vuut X̀

k=n+1

y
2
kk�kk

2
, n < `,

0, n � `,

(2.34a)

where
`+ 1 =

(m+ dxdf )!

m!(dxdf )!
, (2.34b)

and yk are the ��� coe�cients of y.

Proof. From Assumption 2.3 the ��� for xi is given by

xi =
k̂xX

k=0

xi,k�k 8i 2 {1, . . . , nx}, (2.35)

where k̂x + 1 = (m + dx)!/(m!dx!). Without loss of generality we assume
the mapping f is of the form

f(x1, . . . , xnx) = x↵1
1 · · · x

↵nx
nx + . . . , (2.36)

where ↵ = [↵1 . . . ↵nx ]
>
2 Nnx

0 is a multi-index with |↵| = df . We insert
the ��� for every xi

f

 
k̂xX

k=0

x1,k�k, . . . ,

k̂xX

k=0

xnx,k�k

!
=

0

@
k̂xX

k=0

x1,k�k

1

A
↵1

· · ·

0

@
k̂xX

k=0

xnx,k�k

1

A
↵nx

+ . . . =

�t
�1
1 · · · t

�m
m + . . . , (2.37)

where � is some constant. In (2.37) the multi-index � = [�1 . . . �m]
>
2 Nm

0

satis�es |�| = dx|↵| = dxdf . Hence, the total degree of y is dxdf , yielding a
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2 Mappings under uncertainty

total number `+1 of basis elements given by (2.16e), thus enlarging the basis
by `� k̂x elements. The orthogonal projection of y reads⇧ny =

Pn
k=0 yk�k .

Consequently, the truncation error en becomes en =
P`

k=n+1 yk�k , which
is zero in case of n � `. For n < `, apply Parseval’s identity to obtain kenk,
cf. [28].

With the help of Theorem 2.3 we provide answers to questions ��.� and ��.�.

Corollary 2.2 (Error for polynomial mapping [122]).

��.� Given a polynomial mapping f(·) such that y = f(x1, . . . , xnx) with
y, x1, . . . , xnx 2 L

2
(⌦, µ;R), and choosing the ��� output dimension

equal to the ��� input dimension, the truncation error is given by ek̂x

from (2.34a).

��.� Furthermore, the minimum dimension to attain a zero trucation error is
given by (2.34b).

2.5.2 Quadratic programs

quadratic programs (��s) are a special and often-encountered class of opti-
mization problems. In the context of systems and control they frequently
appear when applying model predictive control to discrete-time linear time-
invariant systems with convex polytopic constraints and a convex quadratic
cost function [105, 138]. Also, ��s are the basis for sequential quadratic pro-
gramming methods for solving nonlinear programs that are encountered in
nonlinear model predictive control. In power systems applications ��s occur
when solving optimal power �ow problems under so-called �� power �ow
conditions, see Section 4.2 and Appendix A.6. However, in many cases the
data of the �� is uncertain—in these cases polynomial chaos can be of help.

Problem 2.3 (Convex �� with uncertain data). Let h 2 L
2
(⌦, µ;Rn�) be

an Rn� -valued random vector, and let b 2 L
2
(⌦, µ;Rncon) be an Rncon -valued

random vector. Set x = [x>1 x>2 ]
>

= [h> b>]> 2 L
2
(⌦, µ;Rn�+ncon). All

these random variables satisfy Assumption 2.3, eachwith known and exact �nite
��� dimension k̂ + 1.21 Let the space generated by the orthogonal sequence of

21 For brevity of notation we demand the same dimension k̂ + 1.
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2.5 Quantifying truncation errors

ordered m-variate monic orthogonal polynomials Pm
µ be a complete subspace

of L2
(⌦, µ;R). For every realization x 2 Rn�+ncon of x consider the convex ��

y := argmin
�2Rn�

1

2
�
>
H�+ x

>

1 �

s. t. A�+ x2  0,

(2.38)

for some positive de�nite H 2 Rn�⇥n� and a non-empty feasible set {� 2
Rn� : A� + x2  0}. Then, the problem is to �nd the Rn� -valued random
variable y and quantify the element-wise truncation error kyi � ⇧nyik for all
i 2 {1, . . . , n�}.

Remark 2.5 (Overloading the argmin). In Problem 2.3 we interpret the argmin
operator as a mapping from the realization x of the given random variable x
to the realization y of the sought random variable y. We shy away from di-
rectly overloading the argmin operator with the random-variable notation as
that would lead to reformulating the inequality constraint: an inequality con-
straint in terms of random variables is per se not meaningful as there is no
inutitive way of ordering random variables. A possible way out is to use chance
constraints. We defer the discussion of chance constraints to the power systems
applications in Chapter 4. The purpose of Problem 2.3 is to introduce a point of
view: we are interested in evaluating the argmin of a convex �� for parameters
that follow a known probability distribution.

Remark 2.6 (��s and model predictive control). In case of linear-quadratic
model predictive control, Problem 2.3 is equivalent to considering uncertainty
with respect to the initial condition at every time instant [105]. This uncertainty
may be due to state estimation, or a lack of measurement precision/availability.
The open-loop optimal control problem over the prediction horizon N 2 N for
linear-quadratic model predictive control (���) can be written as

y := argmin

u2RNnu

1

2
u
>
Hu+ x

>

k F
>
u (2.39a)

s. t. Pu+ V xk + v  0. (2.39b)

The construction of the �� ingredientsH,F, P, V, v from the linear time-invariant
system (A,B), weight matrices Q,R, and constraint sets X ,U is described for
instance in [105].
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2 Mappings under uncertainty

We can leverage the results from polynomial mappings to tackle Problem 2.3.

Theorem 2.4 (Uncertainty quanti�cation for Problem 2.3 [122, 123]). For
all realizations of x, let the active constraints in Problem 2.3 satisfy the linear
inequality constraint quali�cation (����) at the optimal solution y. If the set
of active constraints A = {a1, . . . , anact} ✓ {1, . . . , ncon} is the same for all
realizations of x = [h> b>]>, then the element-wise truncation error becomes

kyi � ⇧nyik =

8
>>><

>>>:

vuuut
k̂xX

k=n+1

�
w

h>
i hk + w

b>
i MAbk

�2
k�kk

2, n < k̂x,

0 n � k̂x,

where wh>
i , wb>

i are the ith rows with i 2 {1, . . . , n�} of the matrices Wh,
W

b that satisfy
"
W

h
W

b

V
h

V
b

#
= �

"
H A

>
M

>

A

MAA 0

#�1

. (2.40)

The active constraint selection matrix MA 2 Nnact⇥ncon
0 is constructed from the

active set A and has elements (MA)i ai = 1 for all i 2 {1, . . . , nact}, and it is
zero elsewhere.

Proof. Because the set of active constraints is supposed to beA for all realiza-
tions, the Karush Kuhn Tucker (���) conditions hold in terms of a function
of random variables

"
y

�
?

#
=

"
W

h
W

b

V
h

V
b

#"
h

MAb

#
, (2.41)

where (2.40) and x = [x>1 x>2 ]
>

= [h> b>]> are used. Invertibility follows
from ����. Consequently for all i 2 {1, . . . , n�},

yi = w
h>
i h+ w

b>
i MAb =

k̂xX

k=0

(w
h>
i hk + w

b>
i MAbk)�k,

and the result follows from Theorem 2.3 with df = 1.
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2.5 Quantifying truncation errors

Remark 2.7 (Extension to changes in the active set [122, 123]). Note that
even if the active set changes, Theorem 2.4 still holds locally on the current a�ne
piece [18]. Furthermore, the error description can be turned into an upper bound
by considering the worst case active set, which maximizes kyi � ⇧nyik.

2.5.3 Non-polynomial mappings

We now turn to ��� truncation errors for non-polynomial mappings. Con-
sider the real-valued random variables xi, y 2 H = L

2
(⌦, µ;R) for i 2

{1, . . . , nx}.

Theorem 2.5 (Error for non-polynomial mapping [122]). Let all xi with i 2

{1, . . . , nx} satisfy Assumption 2.3 with minimum degree dx relative to the
orthogonal basis Pm

µ , and let f : H
nx ! H be a square-integrable mapping

such that y = f(x1, . . . , xnx). Then, the magnitude of the truncation error
en = y � ⇧ny is

en := kenk =
q
kyk2 � g>Qg, (2.42)

where Q = diag(1/k�0k
2
, . . . , 1/k�nk

2
) 2 R(n+1)⇥(n+1) is positive de�nite,

and g = [g1 . . . gn+1]
>
2 Rn+1 with gj+1 = hy,�ji for all j 2 {0, . . . , n}.

Proof. The ��� coe�cients of ⇧ny satisfy

h�j ,�jiyj = hy,�ji 8j 2 {0, . . . , n} () Q
�1y = g, (2.43)

which follows from orthogonality of the basis. The vector of ��� coe�cients
y 2 Rn+1 contains all ��� coe�cients y = [y0 . . . yn]

>. The truncation
error satis�es

kenk
2
= hy � ⇧ny, y � ⇧nyi = kyk

2
� g

>y, (2.44)

because (y � ⇧ny) ? ⇧ny. Using (2.43), the result (2.42) follows.

The error (2.42) can be computed e�ciently using Gauss quadrature, see Ap-
pendix A.2. Recalling the questions ��.� and ��.� we asked at the beginning
of this section we can now provide answers.

Corollary 2.3 (Error for non-polynomial mappings [122]).
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2 Mappings under uncertainty

��.� Given a non-polynomial mapping f(·) such that y = f(x) with x, y 2
L
2
(⌦, µ;R), and choosing the ��� output dimension equal to the ��� in-

put dimension, the truncation error is given by ek̂x
from (2.42).

��.� Unfortunately, a general statement remains open.22 However, for a user-
speci�ed error threshold the according minimum ��� dimension is ob-
tained from Theorem 2.5. ⇤

2.5.4 Selected examples

We present some numerical examples from [122] that show how the pre-
sented results may be of use. The �rst example is more mathematical, while
the other two examples are applications from systems and control.

Example 2.6 (Quadratic mapping, Gaussian uncertainty [122]). Let nx = 1,
m = 1, and let x be a Gaussian random variable with mean µ and standard
deviation � > 0. Consider the mapping y = f(x) = x2. If Pm

µ = {He0,He1},
where Hek is the kth probabilists’ Hermite polynomial, then Assumption 2.3 is
satis�ed with dx = 1, and the ��� coe�cients of x are x0 = µ and x1 = �.
Direct inspection shows that y = f(x) = (µ

2
+�

2
)He0+2�µHe1+�

2
He2. The

error becomes e1 = �
2
He2 with norm e1 =

p
2�

2
=
p
2x

2
1. The minimum

exact ��� degree for y is dxdf = 2. Adding another basis function P
m
µ =

{He0,He1,He2}, the projection error becomes zero.

Table 2.3 shows the squared norm of edx = y�⇧dxy for an ascending input
degree dx and symbolic ��� input coe�cients x0, . . . , xdx ; the case in which we
choose the ��� output dimension equal to the ��� input dimension. Note that
higher-order coe�cients tend to get weighted more heavily in the Hermitian
basis.

Example 2.7 (Linear-quadratic��� [122]). Consider linear-quadratic ��� for
an linear time-invariant (���) discrete-time model �(k+1)=A�(k)+Bu(k) of
an aircraft. The open-loop optimal control problem can be cast as a �� [105]. The
numerical values for the nominal system (A,B) and weights Q,R are taken

22 Note that in the univariate casem = 1 a zero truncation error in general requires an in�nite
��� dimension, because a non-polynomial function cannot be represented exactly by a linear
combination of a �nite polynomial basis.
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Table 2.3: Squared truncation errors edx for Example 2.6.

dx 1 2 3

e2dx 2x4
1 24x2

2(x
2
1 + x2

2) 480x2
2 x

2
3 + 24 (x2

2 + 9x2
3 +2x1x3)

2
+ 720x4

3

from [103]; the horizon length isN = 35. The input is the rate of change of the
elevator angle, which introduces discrete-time integral action and an additional
state. Uncertainty is introduced via the initial condition �(0) = x for the alti-
tude: it is modeled by the random variable x4 that follows a Beta distribution
on [�402,�381] with shape parameters ↵ = 2, � = 5, yielding the uncertain
initial condition x = [0 0 0 x4 0]>. Assumption 2.3 is satis�ed with dx = 1 and
the ��� coe�cients are x4,0 = �396, x4,1 = 3 for a Jacobi polynomial basis.
Figure 2.2 shows the evolution of the 6�-interval of the optimal input over time—
note that the realization of the optimal random variable resembles the control
inputu to the system. For all realizations of the initial condition x the constraints
for the second state are active on the interval [0.5, 7.5] s, with no inequality
constraints being active thereafter. Following Theorem 2.4, a Jacobi polynomial
basis with n�1 allows a zero ��� truncation error in the decision variable y. The
corresponding optimal control input trajectory over [0.0, 7.0] s is deterministic,
as shown in Figure 2.2a. In terms of ��� coe�cients, this is equivalent to all
��� coe�cients of order greater than zero being zero, yielding a Dirac-delta as
a probability density function. It is after the constraints become inactive that
uncertainty plays a role; depicted in Figure 2.2b for t 2 [7.5, 17.0] s.23 Because
the closed-loop system is asymptotically stable, the input uncertainty eventually
fades out, resulting again in Dirac-deltas.

Example 2.8 (Linear-quadratic regulator for continuous-time system [122]).
Consider the continuous-time ��� dynamics �̇ = A(x)� + Bu for a modi�ed

23 The histogram rather than the probability density is shown for sake of readability, because
the peak of the densities for t � 12 are orders of magnitude larger.
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2 Mappings under uncertainty

Figure 2.2a: Expected value and 6�-interval. Note that for t  7 s the input is deterministic as
a state constraint is active.

Figure 2.2b: Histogram of optimal input for t � 7.5 s.

aircraft model from [105].24 The initial condition is �(0) = [0 0 0 40]
>, and

the system dynamics are governed by

A =

2

6664

�1.2822+0.4 x 0 0.98 0

0 0 1 0

�5.4293 0 �1.8366 0

�128.2 128.2 0 0

3

7775
, B =

2

6664

�0.3

0

�17

0

3

7775
,

24 The system matrix is a matrix-valued random variable.
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2.6 Problem formulation – Finalized

where x ⇠ U[�1, 1] follows a uniform distribution on [�1, 1]. The realization
x = 0 corresponds to the nominal systemmatrixA. The controlu(t) = �K�(t)

is a standard linear-quadratic regulator based on the weightsQ = 0.001I4 and
R = 100 for the nominal system (A,B). Now we apply the above feedback
to the uncertain system matrix. The closed-loop altitude trajectories �4(t) are
given in Figure 2.3 (left) for best case andworst case realizations, clearly showing
the performance degradation under uncertainty. The uncertainty x is mapped
to the state �(t) via the state transition map �(t) = exp[(A(x) � BK)t]�0.
Figure 2.3 shows the altitude truncation error e4,n(t) from (2.42) over time for
increasing highest-degree n 2 {2, 3, 4}. The basis consists of Legendre polyno-
mials. The closed-loop system is asymptotically stable for all realizations of x,
hence the truncation error decays to zero. However, it is clearly non-monotonic
over time. Note how over- and undershooting of the deterministic solution, Fig-
ure 2.3 (left), carry over to the ��� error, Figure 2.3 (right).

x = 1

x = 0

x = �1

Figure 2.3: Closed-loop altitude trajectory for di�erent x-realizations (left). Truncation error for
altitude over time for di�erence ��� dimensions (right).

2.6 Problem formulation – Finalized

We have assembled all the material to formalize the verbose problem formu-
lation from the beginning of this section, namely Problem 2.1.

Problem 2.4 (Mapping under uncertainty). Let (⌦,F, µ) be a probability
space, for whichL2

(⌦, µ;R) is the Hilbert space of all real-valued random vari-
ables of �nite variance that is spanned by the uni- or multivariate orthogonal
polynomials {�k}k2N0 , and let xi 2 L

2
(⌦, µ;R) be nx 2 N given random

49



2 Mappings under uncertainty

variables for i 2 {1, . . . , nx} that admit a ��� on the subspace spanned by
{�k}k2K with K = {0, . . . , k̂}. Furthermore, let

f : L
2
(⌦, µ;R)⇥ · · ·⇥ L

2
(⌦, µ;R)! L

2
(⌦, µ;R)⇥ · · ·⇥ L

2
(⌦, µ;R)

be a B(Rnx)/B(Rny )-measurable and square-integrable function. Then, �nd
the random variables yi 2 L

2
(⌦, µ;R) in terms of their ��� coe�cients for all

i 2 {1, . . . , ny} such that

y = f(x) with y = [y1, . . . , yny ]
>
, x = [x1, . . . , xnx ]

>
.

Speci�cally, the non-set-valued mapping f may represent one of the following:

1. The solution to a system of nonlinear algebraic equations;

2. The argmin operator of an optimization problem.

In short, Problem 2.4 exploits polynomial chaos to represent mappings under
uncertainty in terms of deterministic mappings of �nitely many coe�cients.

Remark 2.8 (No set-valued argmin operators). Implicit to Problem 2.4 is the
assumption that the mapping f is not set-valued. This is especially important
in light of argmin operators. For example, consider for all x > 0

f(x) = argmin
z2R

x(z � 1)
2
(z + 1)

2
= {�1, 1},

which is a case we exclude by restricting f to be non-set-valued.

Remark 2.9 (Interpretation of solution). We emphasize that the nature of the
mapping may be an explicit or implicit mapping, but it may also be the argmin
operator of some optimization problem. That means the result of Problem 2.4
may be an optimal random variable. This does not mean that the argmin of
the optimization problem takes on arbitrary values. Instead, from the engineer-
ing lens propagating uncertainties through an argmin operator means to solve
many deterministic optimization problems—in�nitelymany for continuous ran-
dom variables—and studying the distribution of the resulting solutions. Prob-
lem 2.4 aims to perform the propagation in a single step. While we often think of
continuous random variables in terms of their probability density functions and
their moments, it is advisable to recall that mathematically a continuous ran-
dom variable is merely a measurable function de�ned for a probability space,
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2.6 Problem formulation – Finalized

see Section 2.2.2. This function maps elements from its domain to the real num-
bers, see Section 2.4.3. Speci�cally, given a realization of the input uncertainty x
we can evaluate the output uncertainty y, immediately obtaining a realization
of the argmin; the solution provides a policy, see Example 2.10. This situation is
typical in optimal control: a given optimal control problem is—among others—
parameterized by the system’s initial condition. In case we are able to derive a
closed-form solution of the optimal control problem, the optimal input trajectory
is a function of this initial condition. Di�erent initial conditions yield di�erent
optimal input trajectories. If we were to overload the initial condition with an
uncertainty, we would be back in the setting from Problem 2.4.

Before we proceed let us revisit the very �rst examples we introduced at the
beginning of this section.

Example 2.9 (��� applied to Example 2.1). The problem is equivalent to �nd-
ing the ��� coe�cients of the random variable that follows a chi-squared distri-
bution withm degrees of freedom.

For every random variable xi ⇠ N(0, 1)we introduce a distinct Hermitian basis
Pµi = {He0,He

(i)
1 ,He

(i)
2 } for all i 2 {1, . . . ,m}, from which we construct the

m-variate basis with total degree at most 2 as follows

P
m
µ = {1,He

(1)
1 ,He

(2)
1 , . . . ,He

(m)
1 , . . .}

with a total of |Pm
µ | = 1 + k̂ = (m + 4)!/(m!4!) elements. Recall that we

employ the reversal of lexicographic ordering, see Example 2.5. We set K =

{0, 1, . . . , k̂}. With that, the ��� coe�cients xi,k 2 R of every xi read

xi,k =

(
0, k 2 K \ {i+ 1},

1, k 2 {i+ 1},

for all i 2 {1, . . . ,m}. We obtain the ��� coe�cients y 2 Rk̂+1 of y by Galerkin
projection. This means to solve the following equations

ykh�k,�ki =

mX

i=1

X

k1,k22K

xi,k1xi,k2h�k1�k2 ,�ki

for all k 2 K.
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2 Mappings under uncertainty

Example 2.10 (��� applied to Example 2.2). We are interested in the ��� co-
e�cients of the argmin operator of an equality-constrained convex quadratic
program. We know that we can express x exactly with two ��� coe�cients in a
Jacobi basis. Speci�cally, the ��� coe�cients of x are

x0 =
↵x+ �x

↵+ �
, x1 = x� x,

in the Jacobi basis {�k}
1
k=0 = {1, ⇠�

1
2 (1+

(↵�1)2(��1)2

(↵+��2)(↵+�) )} which is orthog-
onal relative to

⇢(⇠) =
⇠
↵�1

(1� ⇠)
��1

B(↵,�)
,

where B(·, ·) is the Beta function. In terms of random variables the solution to
problem (2.5) reads

yi = ⌫ix, ⌫i =
A3�i,3�i �A1,2

A1,1 +A2,2 � 2A1,2
, 8i 2 {1, 2},

where A =

"
A1,1 A1,2

A1,2 A2,2

#

with A1,1 + A2,2 � 2A1,2 6= 0. Given a speci�c realizataion x of the random
variable x we immediately obtain the resulting argmin from yi = ⌫ix.

We �nd the ��� coe�cients of y to be

y0 =

"
⌫1

⌫2

#
↵x+ �x

↵+ �
, y1 =

"
⌫1

⌫2

#
(x� x).

Hence, we have an analytic expression for the desired ��� coe�cients.

In terms of random variables the optimal cost becomes

z =
1

2
y?>Ay? =

detA

2(A1,1 +A2,2 � 2A1,2)
· x2 =: !x2,
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2.6 Problem formulation – Finalized

and the ��� coe�cients of z can be obtained from

zk = !

2X

k1=0

2X

k2=0

xk1xk2

h�k1�k2 ,�iiL2(⌦,µ;R)

h�i,�iiL2(⌦,µ;R)

for all k 2 {0, 1, 2} with x2 = 0. Note that we expanded the basis to attain a
zero truncation error for the optimal cost z.

The problem is simple enough to allow for further insights. For example, we can
compute the moments of x

E(x) = x0 =
↵x+ �x

↵+ �
,

V(x) = x
2
1k�1k

2
L2(⌦,µ;R) = (x� x)

2 ↵�

(↵+ �)2(↵+ � + 1)
,

and the moments of y

E(y) = y0 =

"
⌫1

⌫2

#
↵x+ �x

↵+ �
,

V(y) =

"
y
2
1,1

y
2
2,1

#
k�1k

2
L2(⌦,µ;R) =

"
⌫
2
1

⌫
2
2

#
(x� x)

2 ↵�

(↵+ �)2(↵+ � + 1)
.

Furthermore, the probability density of each minimizer is

⇢(yi) =
(yi � ⌫ix)

↵�1
(⌫ix� yi)

��1

(⌫ix� ⌫ix)
↵+��1B(↵,�)

for yi 2 [⌫ix, ⌫ix] for i 2 {1, 2}. Similarly, the probability density of the
optimal cost is

⇢(z) =
1

2
p
2!z(x� x)↵+��1B(↵,�)

✓r
z

!
� x

◆↵�1✓
x�

r
z

!

◆��1

for all z 2 [!x
2
,!x

2
].
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3 Power flow under uncertainty

Apower system is a large-scale alternating-current (��) electrical circuit with
considerable power consumption and generation that operates on di�erent
voltage levels (for example 380 kV, 220 kV, 110 kV, 20kV, 10 kV, 0.4 kV in Ger-
many [149]). Typical components of a power system are generators, loads,
transformers, shunt elements, and lines. Borrowing vocabulary from graph
theory, we treat a power system as a connected, directed graph (without self-
loops). The nodes of the graph correspond to generators, loads, or trans-
formers; its edges are electrical lines. Thinking of the power system as a
connected, directed graph without self-loops, we call its nodes the buses,
and the edges are the lines. Given a power system with a known topology
and known physical parameters, and given some known power demands and
known power generations, we strive to determine all the quantities in the
system such that Kirchho�’s laws and Ohm’s law are satis�ed—this is the
traditional power �ow study [8]. For the scope of this thesis the key word in
that described task is known. What happens for instance if we are unable to
specify the power demand in terms of a single real-valued number because
we are unsure about what the precise value is going to be? Perhaps the power
demand at a certain bus is modeled more adequately in terms of a continu-
ous random variable with a probability density function.1 The cornerstone
assumption for the scope of this thesis is that we can adequately model any
form of uncertainty in terms of continuous random variables. Hence, we are
interested in the following power �ow problem under uncertainty: given a
power system with a known topology and known physical parameters, and

1 In fact, the possible origins of uncertainty in power �ow problems are numerous. For instance,
the values for the physical parameters of the power systems, e.g. line admittances, may not
be known precisely, and/or they might vary with changing weather conditions. However, we
assume another origin to have a much more signi�cant e�ect: the volatile and di�cult-to-
predict character of renewable energy sources, as well as all forms of uncertainties that root
in forecasts. Forecasts, be they for renewable energies or for load/demand, are uncertain by
nature. For speci�cs on probabilistic forecasts we refer to [73–75].
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3 Power �ow under uncertainty

given some unknown power demands and unknown power generations, de-
termine all the quantities in the system such that Kirchho�’s laws and Ohm’s
law are satis�ed.

Before we can attempt to solve this task we need to make assumptions on
how to model the power system.

Assumption 3.1 (Power system model [8, 58, 61, 78, 168]). We consider

1. a connected system/graph;

2. a lumped-parameter system;

3. steady-state conditions;

4. lines that are modeled by their ⇧-line equivalents (see Figure 3.1);

5. a balanced power system in terms of its single-phase equivalent.

Under Assumption 3.1 the equations to model a power system become signif-
icantly simpler: we studymerely a single problem (Item 1), partial di�erential
equations become ordinary di�erential equations (Item 2) which become al-
gebraic equations (Item 3, Item 4) that are reduced in number (Item 5).

We present a generic power �ow problem under uncertainty (Section 3.1) and
show how polynomial chaos facilitates its solution (Section 3.3). Thereafter,
we study two speci�c applications of power �ow under uncertainty: namely,
how power �ow can be simpli�ed if the power system is radial (Section 3.4),
and how linearizations can replace having to solve a full power �ow (Sec-
tion 3.5). We tackle each task by studying two consecutive questions:

��.� Problem formulation: What is a mathematically sound formulation of
the speci�c power �ow problem under uncertainty?

��.� Solution methodology: Having obtained a mathematical formulation,
what is a solution approach?

Remark 3.1 (Notation for random variables). For everything to follow we
model uncertainties as continuous random variables of �nite variance. We lever-
age polynomial chaos expansion to represent all of the continuous random vari-
ables in terms of their deterministic ��� coe�cients (to do so, we rely on the
notations and de�nitions from Section 2.4). Speci�cally, we study probability
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3.1 Problem formulation

spaces (⌦,F, µ) = (Rm
,B(Rm

), µ) where m is the number of unique uncer-
tainties, and the measure µ is absolutely continuous and viewed as a probability
distribution P with respect to a known probability density.

3.1 Problem formulation

The following is inspired by [8, 58, 61, 78, 168]. We consider an Nb-bus
electrical network that satis�es Assumption 3.1 and represent it by its set
of bus indices N with |N | = Nb 2 N; unless stated otherwise we set N =

{1, . . . , Nb}.2 Each bus i 2 N is described by its complex power and its
complex voltage: the complex power has real part pi and imaginary part qi,
which are called active power and reactive power respectively; the complex
voltage at bus i 2 N in rectangular coordinates has real part ei and imagi-
nary part fi. Hence, we introduce

zi =

h
pi qi ei fi

i>
2 R4 (3.1)

as the state of bus i 2 N .3 The standing assumption for what is to follow
is that our knowledge about the state of every bus in the power system is
uncertain. Thus we treat each bus state zi as the realization of an R4-valued
random variable. We formalize this as follows.

Assumption 3.2 (Power system under uncertainty). We study a power sys-
tem under Assumption 3.1 in the presence of uncertainties. That implies we
model the state of every bus i 2 N by an R4-valued random variable

zi =
h
pi qi ei fi

i>
2 L

2
(⌦, µ;R4

). (3.2)

Assumption 3.2 addresses themathematical model we choose to describe the
state of the power system. What is the physical model of the power system,

2 The backward-forward sweep method is an exception, see Section 3.4.
3 A di�erent representation of the complex-valued phasors leads to a di�erent de�nition of the
bus state. For �� power �ow, for instance, it is more convenient to express the power in
rectangular coordinates and the voltage phasor in polar coordinates, see Appendix A.6 and
Section 3.5.
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3 Power �ow under uncertainty

bus j

gjk + jbjk

bus k

j
bbr,shjk

2 j
bbr,shjk

2

Figure 3.1: ⇧-line model of a transmission line between buses j and k [8, 78, 168].

hence how do the entries of the bus states relate to each other? The answer
is given by the so-called power �ow equations which we derive directly in
terms of random variables.

We �rst relate the state zi of every bus i 2 N to power �ows among the lines.
All buses i 2 N are connected to each other by electrical lines (also called
branches). We write L ✓ N ⇥N for the set of directed line indices

L = {(j, k) 2 N ⇥N : line begins in bus i and ends in bus j}, (3.3)

where |L| = Nbr is the number of lines. Each line (j, k) 2 L is modeled
by a ⇧-circuit with shunt susceptance b

br,sh
jk , mutual conductance gjk , and

mutual susceptance bjk , see Figure 3.1.4 Kirchho�’s laws and Ohm’s law
relate the real and imaginary part of the random bus voltages to the random
active power �ow pbrjk and the random reactive power �ow qbrjk across each
line (j, k) 2 L

pbrjk = gjk(e
2
j + f2j � ejek � fjfk) + bjk(ejfk � fjek), (3.4a)

qbrjk = �(bjk + b
br,sh
jk /2)(e2j + f2j )� bjk(ejek � fjfk)

+ gjk(ejfk � fjek). (3.4b)

We can use the branch �ows from (3.4) to formulate energy balance at each

4 For ease of presentation we do not consider transformers in the derivation to follow. Including
transformers leads to the so-called uni�ed power �ows equations [8, 61].
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3.1 Problem formulation

Table 3.1: Common bus speci�cations.

Bus name Fixed quantities

�� Active power & reactive power
�� Active power & voltage magnitude
Slack Voltage angle & voltage magnitude

bus i 2 N . If we assume that each bus connects not just to branches but also
to some shunt, see Figure 3.2, the energy balance reads

pi =
X

(j,k)2L

s.t. j=i

pbrjk +

X

(j,k)2L

s.t. k=i

pbrkj + g
sh
i (e2i + f2i ), (3.5a)

qi =
X

(j,k)2L

s.t. j=i

qbrjk +

X

(j,k)2L

s.t. k=i

qbrkj � b
sh
i (e

2
i + f2i ). (3.5b)

These equations (3.5) are the power �ow equations in terms of random vari-
ables. They are the physical model of the power system under uncertainty.5
These 2Nb equations relate all the bus states zi for all i 2 N—hence a total
of 4Nb random variables—to each other.

Di�erent buses represent di�erent equipment, the behavior of which is typi-
cally modeled in one of three ways shown in Table 3.1. Hence, we decompose
the bus index set N = N�� [N�� [N�� into the set of �� buses N��, the set
of �� buses N�� and the set of slacks N��. Mathematically, each of these bus
speci�cations �xes two values of the bus state zi. The purpose of the slack
bus is to provide an angle reference. In the absence of such an angle refer-
ence it would not be possible to entangle the voltages as they always appear
in di�erences; the power �ow equations exhibit rotational degeneracy [114].
For ease of presentation we assume the sets N��, N��, and N�� are mutually
disjoint, and that there is just one slack bus such that |N��| = 1.

To summarize: thus far we have presented the power �ow equations, and the
bus speci�cations. Let us now aim for a concise mathematical formulation of

5 This form of the power �ow equations is the so-called branch �ow model [8, 61]. There also
exists the formulation as the bus injection model, see Appendix A.6.
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gsh
i + jbshi

Bus i

Bus n

Bus m

G

Grid-sideBus-side

Bus l

Figure 3.2: Power balance at bus i considers all the line �ows from the grid-side and the nodal
shunt �ow from the bus-side.

the ��� problem in terms of random variables. We treat the power �ow equa-
tions from (3.5) as a nonlinear mapping g : L2

(⌦, µ;R4Nb)! L
2
(⌦, µ;R2Nb)

z =
h
z1 . . . zNb

i>
7! g(z). (3.6)

We formulate the verbose bus speci�cations from Table 3.1 mathematically
via hi : L

2
(⌦, µ;R4

)! L
2
(⌦, µ;R2

) for every bus i 2 N = N��[N��[N��

zi 7! xi = hi(zi) =

8
>>>>>>>>>><

>>>>>>>>>>:

"
pi
qi

#
, if i 2 N��,

"
pi

e2i + f2i

#
, if i 2 N��,

"
e2i + f2i

0

#
, if i 2 N��.

(3.7)

We collect all bus speci�cations in the mapping h : L
2
(⌦, µ;R4Nb) !

L
2
(⌦, µ;R2Nb) with

h
z>1 . . . z>Nb

i>
7! x =

h
h1(z1)> . . . hNb(zNb)

>

i>
. (3.8)

In what follows the notion of “bus speci�cation” refers to both the map-
pings h/hi and their image. We are ready to formulate the probabilistic
power �ow problem mathematically.
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3.1 Problem formulation

Problem 3.1 (Probabilistic power �ow). Let Assumption 3.1 and Assump-
tion 3.2 hold. The probabilistic power �ow problem is understood as mapping the
bus speci�cations x 2 L

2
(⌦, µ;R2Nb) to a total bus state z 2 L

2
(⌦, µ;R4Nb)

such that "
g(z)

h(z)

#
=

"
02Nb

x

#

holds, where g are the power �ow equations (3.6), and h are the bus speci�ca-
tions (3.8), both in terms of random variables.

The idea of ��� is shown in Figure 3.3 for a four bus system. Bus 1 is the
slack bus, bus 2 is an uncertain �� bus, bus 3 is a certain �� bus, and bus
4 is a �� bus. We visualize uncertainty in terms of the probability density
function (���) of the active powers: at bus 2 there is a bi-modal density, at
bus 4 there is Dirac-delta pulse as it is not uncertain. Figure 3.3a shows this
setup. Figure 3.3b shows the solution to the ��� problem: the active power
injection at the slack bus 1 mirrors the demand; the active power injection at
the �� bus 3 is certain.

In light of Chapter 2 we can view ��� as an implicit mapping under uncertain-
ties: the user-provided bus speci�cations x are mapped through the power
�ow equations to an overall grid state in terms of random variables, namely z.
We loosely write

x
(3.6) and (3.8)
�! z, (3.9)

highlighting that in general we are unable to provide a closed-form for the
mapping (3.9).

The speci�c values of the bus speci�cations x that occur in Problem 3.1 cap-
ture what the user knows about the power grid, for instance how the load at
some �� bus is expected to behave in terms of a random variable. The ��� ac-
cording to Problem 3.1 is a system of nonlinear algebraic equations in terms
of random variables, hence an in�nite-dimensional problem that is challeng-
ing to solve in general. Before making an attempt to tackle the problem, let
us investigate existing approaches from the literature.

Remark 3.2 (Deterministic power �ow). If we imagine the random variables
to have trivial probability density functions equal to Dirac-delta pulses centered
at some nominal value, then the ��� problem reduces to the traditional determin-
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3 Power �ow under uncertainty

(a) Uncertainty speci�cation at �� buses:
bus 2 is uncertain, bus 4 is certain
(Dirac-delta pulse).

(b) Having solved ��� we obtain the active
power injection at the slack bus 1. Bus 3
is a �� bus (Dirac-delta pulse).

Figure 3.3: Idea of probabilistic power �ow (���) for 4-bus system (bus 1 – slack bus, bus 2 –
uncertain �� bus, bus 3 – deterministic �� bus, bus 4 – �� bus). The plots represent
the probability density function (���) of the active power at every bus.

istic �� problem. Put di�erently, the ��� is a generalization of the deterministic
�� problem in terms of probabilistic uncertainties.

Remark 3.3 (Probabilistic �� power �ow). The �� power �ow equations con-
stitute a system of nonlinear algebraic equations. It is sometimes desirable to
make additional assumptions in order to obtain a more pleasant computational
formulation. A speci�c set of assumptions, often used for high-voltage trans-
mission systems, is given by the so-called �� power �ow conditions. Under these
conditions the nonlinear �� power �ow conditions reduce to a system of linear
equations, see Appendix A.6 for a derivation. To study probabilistic �� power
�ow means to interpret and solve (A.47) from Appendix A.6 in terms of random
variables. As �� power �ow is linear, this is straightforward and can be done
with zero truncation errors. The solution of (A.47) in terms of random variables
gives the voltage angles in terms of random variables based on the active power
bus speci�cations for all �� and �� buses i 2 N�� [N��. The net power at the
slack bus is then computed from the line of (A.46) corresponding to N��.
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3.2 Existing approaches

3.2 Existing approaches

The deterministic �� problem is run-of-the-mill in the �eld of power systems
engineering; its formulation is part of any given textbook on the subject such
as [78, 134, 168]. The extension to ��� can be traced back to [27]: “[. . . ] given
a set of probable values of node loads, [. . . .] the problem is to �nd the set of
corresponding values of branch �ows.” Ever since, the portfolio of methods
to solve the ��� problem has been expanding. The existence of an 11-page
bibliography [147] on power system analysis under uncertainties between
the years 1962 and 1988 speaks for itself. We distinguish between analytical
methods and sampling-based methods [36]. Sampling-based methods sub-
stitute the ��� problem by some (possibly large) number of deterministic ��
problems. The ensemble of the solutions provides statistical information that
is—hopefully—representative of the statistics of the true solution. The task
of how to choose the deterministic �� problems is speci�c to the sampling-
based method, e.g. (Markov chain) Monte-Carlo, (adaptive) rejection sam-
pling, strati�ed random sampling, Latin hypercube sampling, or unscented
transforms, see e.g. [4, 37, 40, 174].

Analytical methods analyze the ��� problem as an entity of mappings un-
der uncertainty. The challenge is to propagate the uncertainties through the
implicit nonlinear power �ow equations. Analytical methods often modify
the ��� problem to obtain a mathematical problem whose properties are eas-
ier to analyze and/or exploit. The earliest references on ��� may be classi-
�ed as analytical methods. For instance, the already referenced paper [27]
made the simplifying assumption that “active and reactive power �ows are
independent of each other.” The authors of [6, 49] linearized the power �ow
equations around a nominal operating point; propagating the uncertainties
then becomes easy, because the mappings are a�ne after the linearization.
Gram-Charlier expansions are another way to cope with ��� [178]. These
expansions allow to write a series expansion of the probability density func-
tion. Moment-based methods may be viewed as a combination of analytical
and sampling-based methods. These methods compute the statistics of the
random variables by a fairly small number of deterministic power �ow prob-
lems. The point-estimate method [86, 116, 153, 158] is a prominent example.

In this thesis we apply polynomial chaos expansion to ���. Depending on
how the ��� coe�cients are computed we can classify polynomial chaos ei-
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3 Power �ow under uncertainty

ther as a sampling-based method or as an analytical method. In 2016/2017
several independent works described how ��� can be applied to ��� problems
[119, 131, 139, 169]. Interestingly, these works cover both sampling-based an
analytical aspects of ���. For example, [131, 139] present regression-based
methods, and [119, 169] focus on the Galerkin-based approach instead. It is
the hope that polynomial chaos can combine the advantages of both worlds:
it is per se an analytical method, but may be implemented as a sampling-
based method. Once the ��� coe�cients are available, we have access to the
moments, hence also entailing the advantages of moment-based approaches.

3.3 Solution methodology

The power �ow problem under uncertainty according to Problem 3.1 is a
problem of uncertainty propagation through implicit equations. We can em-
ploy ��� in combination with Galerkin projection to reformulate the in�nite-
dimensional problem as an enlarged deterministic problem. To apply ��� we
need to assume that we know about the ��� of the bus speci�cations.

Assumption 3.3 (��� of bus speci�cations). The overall bus speci�cations x 2
L
2
(⌦, µ;R2Nb) from (3.8) in Problem 3.1 admit a �nite and exact polynomial

chaos expansion with respect to the polynomial basis {�k}k2K with K =

{0, 1, . . . , k̂}. We write

x =
X

k2K

x̂k�k with x̂k 2 R2Nb , (3.10)

where the 2Nb elements of x̂k are given by the individual ��� coe�cients of all
power system components

pi =
X

k2K

p̂i,k�k

qi =
X

k2K

q̂i,k�k

9
>>=

>>;
8i 2 N��, (3.11a)
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pi =
X

k2K

p̂i,k�k

vi =
X

k2K

v̂i,k�k

9
>>=

>>;
8i 2 N��, (3.11b)

ei =
X

k2K

êi,k�k

fi =
X

k2K

= f̂i,k| {z }
0

�k

9
>>>=

>>>;
8i 2 N��. (3.11c)

We use the notation ·̂ to indicate—and emphasize—known and given values.

Under Assumption 3.3 we can tackle the ��� Problem 3.1 by means of in-
trusive Galerkin projection, see Section 2.4.3. Let us begin by introducing
polynomial chaos for every bus state zi with i 2 N

zi =

2

6664

pi
qi
ei
fi

3

7775
=

X

k2K

2

6664

pi,k

qi,k

ei,k

fi,k

3

7775
�k =

X

k2K

zi,k�k with zi,k 2 R4
. (3.12)

Our goal is to compute all the ��� coe�cients zk = [z
>

1,k . . . z
>

Nb,k
]
>
2 R4Nb

for all k 2 K. To do so, we project the power �ow across a transmission line
given by (3.4) onto the orthogonal basis spanned by �k , resulting in (3.17)
on page 67. Then, we project the power �ow equations given by (3.5) onto
the basis polynomials, resulting in the system of equations from (3.18) on
page 67. As we did before in Section 3.1 we introduce a shorthand notation
for the collection of all Galerkin-projected power �ow equations (3.18) in
terms of the mapping g��� : R4Nb(k̂+1)

! R2Nb(k̂+1)

z =

h
z
>

0 . . . z
>

k̂

i>
7! g���(z). (3.13)

Next, we apply Galerkin projection to the bus speci�cations (3.7), resulting
in the equations

��: pi,k = p̂i,k, qi,k = q̂i,k, 8i 2 N��, (3.14a)
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3 Power �ow under uncertainty

��: pi,k = p̂i,k,

X

k1,k22K

v̂i,k1 v̂i,k2�k1k2k

=

X

k1,k22K

(ei,k1ei,k2+fi,k1fi,k2)�k1k2k, 8i 2 N��, (3.14b)

��: ei,k = êi,k, fi,k = 0, 8i 2 N��, (3.14c)

for all k 2 K with �k1k2k = h�k1�k2 ,�ki.6 For (3.14) we introduce the
mapping h��� : R4Nb(k̂+1)

! R2Nb(k̂+1) with

z =

h
z
>

0 . . . z
>

k̂

i>
7! h���(z; x̂), (3.15a)

which is parameterized by the collection of all ��� coe�cients of the bus
speci�cations

x̂ =

h
x̂
>

0 . . . x̂
>

k̂

i>
. (3.15b)

We gather all the results and compose the ���-overloaded ��� problem.

Problem 3.2 (Probabilistic power �ow using ���). Consider the probabilistic
power �ow Problem 3.1, and let Assumption 3.3 hold. Then, the ���-overloaded
probabilistic power �ow problem is the solution to the system of nonlinear equa-
tions given by the ���-overloaded power �ow equations (3.18) and the ���-
overloaded bus speci�cations (3.14),

"
g���(z)

h���(z; x̂)

#
=

"
02Nb(k̂+1)

02Nb(k̂+1)

#
. (3.16)

This way we map the user-given ��� coe�cients x̂k 2 R2Nb to the overall ���
coe�cients zk 2 R4Nb for all k 2 K.

6 The numerical values for �k1k2k can be computed by Gauss quadrature, see Appendix A.2.
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3 Power �ow under uncertainty

3.3.1 Discussion

Computational characteristics

TheGalerkin-projected �� problemunder uncertainty is rendered a determin-
istic system of nonlinear algebraic equations in terms of the ��� coe�cients
of the bus voltages and bus powers—in principle any established numerical
technique for solving such problems such as the Newton-Raphson method
can be used. The number of variables, however, grows to 4Nb(k̂ + 1): there
is a power �ow equation and a bus speci�cation for every ��� coe�cient for
every entry of the total bus state. In case there is no uncertainty, the deter-
ministic �� problem is recovered, and the problem size reduces back to 4Nb
because the ��� dimension reduces to k̂ + 1 = 1. In other words, the ���-
overloaded probabilistic power �ow from Problem 3.2 is a generalization of
the deterministic power �ow problems for the speci�c case the uncertain-
ties can be modeled adequately in terms of a ��� of a random variable. The
Galerkin-projected power �ow has the same mathematical structure as the
deterministic power �ow; namely, it is a system of quadratic equations in the
real and imaginary voltage ��� coe�cients, weighted by the scalars �k1k2m

that depend on the basis functions.

Interpretation of solution

Having solved the ���-overloaded power �ow problem, all vectors of ���
coe�cients for all grid variables pk , qk , ek , and fk are known for all k 2 K.
Recall from Remark 2.9 that the solution admits two di�erent interpretations:
we can compute stochastic moments of relevant quantities, see Section 2.4.3,
or we can compute speci�c realizations of the grid state. The latter reduces
merely to evaluating the polynomial basis at a point and multiplying with
the respective ��� coe�cients, see again Section 2.4.3.

Truncation errors

The ���-overloaded ��� Problem 3.2 is an instance of the generic Problem 2.4
from page 49: random variables are mapped to other random variables, all
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3.4 Backward-forward sweep

of which are described in terms of their �nite ���. Unfortunately, the im-
plicit polynomial nature of the power �ow equations makes it challenging
to derive truncation errors. Whenever we employ a �nite ��� to solve the
���-overloaded ��� Problem 3.2 we have to accept a non-zero truncation er-
ror. Only for in�nite ���s we can expect a zero truncation error. However,
numerical studies indicate that polynomial bases of low total degree such as
2 or 3 are su�cient to yield satisfactory numerical accuracy [55, 126].

3.4 Backward-forward sweep

In Section 3.1 we introduced the generic ��� problem; any ��� problem may
be cast in this form. If, however, the problem at hand admits structure, we
may be able to derive a formulation of ��� speci�c to that structure. An
example is the backward-forward-sweep (���) method, a speci�c iterative
solution method tailored to the power �ow problem for radial grids (or tree
networks) [150]. The ���method exploits the tree structure of the underlying
graph, and iterates successively between Kirchho�’s current law and Kirch-
ho�’s voltage law [52]; the traditional nonlinear power �ow equations need
not be solved as a one-shot problem. The equations for the ���-iterations
are straightforward to derive, see Appendix A.7, they admit a physical in-
terpretation, and compared to Newton-Raphson-based methods no Jacobian
matrices need to be inverted.

The presented material is based on [9]; for a detailed derivation of the ���
scheme for generic load models and for generic constitutive laws we refer to
Appendix A.7.

3.4.1 Problem formulation

We study a radial power grid with Nb + 1 buses and Nb lines under un-
certainty that satis�es Assumption 3.2. We de�ne the set of bus indices by
N = {0, 1, . . . , Nb}, where we assume that the so-called root node 0 is the
slack bus N�� = {0}. The ��� method iterates between Kirchho�’s cur-
rent law and Kirchho�’s voltage law, i.e. between all nodal voltages, and
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Figure 3.4: Depiction of bus and line numbering for a radial grid together with its nodal voltages
and branch currents (left); reduced incidence matrix Ar and its inverse (right).

all branch currents. It is convenient for ��� to introduce a vectorized and
complex-valued notation for all non-root nodes and all branches

v =

h
v1 . . . vNb

i>
, s =

h
s1 . . . sNb

i>
, ibr =

h
ibr1 . . . ibrNb

i>
,

(3.19a)
to represent the random-variable non-root node voltages v, the random-
variable non-root node apparent powers s, and the random-variable branch
currents ibr, where

Re(wi) , Im(wi) 2 L
2
(⌦, µ;R) 8w 2 {v, s, ibr}, 8i 2 N . (3.19b)

The enumeration from (3.19) follows a simple pattern: the root node i 2 N��
is number zero, and its leaves (i.e. non-root nodes) i 2 N \N�� are numbered
in ascending order from left to right. The lines are directed from the root to
its leaves. The line number corresponds to the number of the terminating
leaf node. For a 5-bus system Figure 3.4 shows the numbering of the buses
and lines. The speci�c numbering allows to write the incidence matrix of the
radial grid as

A =

h
a0 Ar

i
2 ZNb⇥(Nb+1)

, a0 2 ZNb , Ar 2 ZNb⇥Nb , (3.20)

and we call the quadratic matrixAr the reduced incidence matrix. It is lower-
triangular with ones on its diagonal, and has rankNb, see Figure 3.4. The fact
that the reduced incidencematrix is invertible is the keymathematical insight
for the ���method to work, because it allows to use Kirchho�’s laws directly
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3.4 Backward-forward sweep

Algorithm 1: ��� method under uncertainty.
Data: s; Y sh; Zbr; v��; Ar ; vinit; "1, "2 > 0.
Result: v, ibr.
Set ⌧  0;
Initialize v(⌧) = vinit;
do

# Backward sweep
Evaluate

ibr(⌧) = (A�1
r )

>
(Y shv(⌧)� s?./v?(⌧));

# Forward sweep
Evaluate

v(⌧ + 1) = �A�1
r Zbribr(⌧) + v��1Nb ;

Set ⌧  ⌧ + 1;
while kE(v(⌧ + 1))� E(v(⌧))k > "1 and kV(v(⌧ + 1))� V(v(⌧))k > "2;
Return v  v(⌧ + 1), ibr  ibr(⌧);

to transition from (non-root) nodal to branch quantities and vice versa. Fig-
ure 3.5 shows the successive iteration between Kirchho�’s laws.

We have already speci�ed the root node to be the slack bus; we set v�� =

1+ 0j, indicating that for all realizations the voltage at the root node should
be unity. In accordance with the literature [150], we consider the remaining
buses i 2 N \ N�� to be �� buses, i.e. N�� = {1, . . . , Nb}. Uncertainty
enters the problem via the active and reactive power bus speci�cations at all
�� buses. Hence the here-presented ��� problem means to �nd the voltage
phasors at all �� buses, and to �nd the net complex power at the root node
in terms of random variables.

Problem 3.3 (��� under uncertainty). Consider a radial grid withNb+1 buses
for which Assumption 3.1 andAssumption 3.2 hold. Let the root node be the slack
bus, and let the remaining buses be �� buses with given bus speci�cations (3.7)
in terms of random variables. Backward-forward sweep under uncertainty is
understood as solving a ��� problem by iteratively applying Kirchho�’s current
law and Kirchho�’s voltage law according to Algorithm 1.

In Algorithm 1 the vector 1Nb 2 RNb is a vector composed of Nb ones, the
superscript ? denotes a complex conjugate.

To solve Problem 3.3, we formally overload the deterministic ��� scheme from
Appendix A.7. This results in Algorithm 1, in which “⌧ ” denotes the itera-
tion index, “./” denotes component-wise division. The data we supply to
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Figure 3.5: Scheme of ��� method as an iteration between Kirchho�’s current law and Kirch-
ho�’s voltage law.

Algorithm 1 consists of the uncertain power s at all �� buses, the shunt ad-
mittance matrix Y

sh, the branch impedances Zbr, the slack voltage v��, the
reduced incidence matrix Ar , an initial voltage guess vinit, and termination
tolerances "1, "2. If the �rst two moments between iterations do not di�er by
more than "1, respectively "2, the algorithm terminates. From Algorithm 1
we see how the uncertainties are propagated through the backward and the
forward sweep, compare the graphical representation from Figure 3.5.

Besides the question about how to choose the initial random variable vinit
the algorithm is not immediately amenable to computation; it is an iterative
scheme among random variables. How has this problem been tackled before?

3.4.2 Existing approaches

The backward-forward sweep method dates back to [150]; extensions to
three-phase power �ow are presented in [38]. A review on backward-forward
sweep methods is presented in [52]. In [26] the authors study analytic con-
vergence criteria. Common to all of these works is that they apply ��� to
deterministic power systems. To the best of the author’s knowledge only the
work [88] studies ��� under uncertainties, leveraging moment-based refor-
mulations. Speci�cally, the authors of [88] reformulate ��� for the �rst two
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moments, assuming that the �rst twomoments characterize the uncertainties
su�ciently accurately.

We clearly see that there is a considerable gap between the research on ���
for deterministic problems and problems under uncertainty. We attempt to
close this gap to some degree by presenting an approach based on ��� that
may be viewed as a generalization to the moment-based work [88]: while
the authors of [88] restrict themselves to two moments, polynomial chaos
does not need to make this assumption. By reformulating and solving ���
in terms of the ��� coe�cients we can compute any moments of interest
from the coe�cients a posteriori, see Section 2.4.3. The resulting ���-based
approach is an iterative method reminiscient of the deterministic case. In
fact, it is a generalization that contains deterministic ��� as a special case.

3.4.3 Solution methodology

Polynomial chaos can help render Algoritm 1 computationally tractable by
rewriting it in terms of a deterministic algorithm that computes the ��� coef-
�cients. To this end, let Assumption 3.3 hold. We write the ��� of the active
power p and reactive power q for all �� buses as follows

p =

X

k2K

2

664

p1,k

...
pNb,k

3

775�k =

X

k2K

pk�k 2 L
2
(⌦, µ;RNb),

q =

X

k2K

2

664

q1,k

...
qNb,k

3

775�k =

X

k2K

qk�k 2 L
2
(⌦, µ;RNb).

(3.21)

This allows to introduce a complex-valued vector of ��� coe�cients

CNb 3 sk = pk + jqk, 8k 2 K. (3.22)
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We employ the following formal notation for the ��� of the complex-valued
apparent power among all non-root nodes s

s =
X

k2K

sk�k, (3.23a)

meaning that
X

k2K

Re(sk)�k,

X

k2K

Im(sk)�k 2 L
2
(⌦, µ;RNb). (3.23b)

In the same manner we introduce the complex-valued ��� coe�cients for the
non-root node bus voltages and the branch currents

v =

X

k2K

vk�k, vk 2 CNb , ibr =
X

k2K

i
br
k �k, i

br
k 2 CNb . (3.24)

With this notation we substitute every random variable in Algorithm 1 by its
���, and then apply Galerkin projection. This leads to Algorithm 2 (page 75):
the ���-overloaded ���method that computes the ��� coe�cients of all non-
root node voltages, and the ��� coe�cients of all branch currents. In Algo-
rithm 2 the scalar �k is the normalization constant from De�nition 2.13.

Problem 3.4 (���-overloaded ��� under uncertainty). Consider Problem 3.3,
and let Assumption 3.3 hold. Then, the ���-overloaded ��� under uncertainty
means to solve a speci�c ���-overloaded ��� problem according to Algorithm 2.

In Algorithm 2 (page 75) we can still distinguish between the backward and
the forward sweep, which are taken for every k

th ��� coe�cient. Compared
to the data provided to Algorithm 1, we need to feed Algorithm 2 the ���
coe�cients of the uncertain power at the �� buses. Note that the backward
sweep requires the ��� coe�cients ii,k2 , i.e. all the k 2 K ��� coe�cients of
the current at buses i 2 N��. Unfortunately, we obtain these coe�cients only
implicitly from the load model. Nonetheless, Algorithm 2 admits a straight-
forward and structurally equivalent implementation to the deterministic ���
according to Algorithm 3 from Appendix A.7. If the �rst two moments be-
tween iterations do not di�er by more than "1, respectively "2, then the ���-
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Algorithm 2: ���-overloaded ��� method.
Data: ��� coe�cients pk, qk 8k 2 K; Y sh; Zbr; v��; Ar ; "1, "2 > 0.
Result: ��� coe�cients vk, ibrk 8k 2 K.
Set ⌧  0;
Initialize

vk(⌧) =

(
v��1Nb , k = 0,

0Nb , k 2 K \ {0};

Compute sk from (3.22); do
# Backward sweep
Evaluate 8m 2 K and 8i 2 N��

si,mh�m,�mi =
X

k1,k22K
vi,k1 (⌧)i

?
i,k2

(⌧)h�k1�k1 ,�mi;

Set 8k 2 K

ik(⌧) = [i1,k(⌧) . . . iNb,k(⌧)]
>
;

Evaluate 8k 2 K

ibrk (⌧) = (A>
r )

�1
(Y shvk(⌧)� ik(⌧));

# Forward sweep
Evaluate 8k 2 K

vk(⌧ + 1) =

8
><

>:

�A�1
r Zbribr0 (⌧) + v��1Nb , k = 0,

�A�1
r Zbribrk (⌧), k 2 K \ {0};

Set ⌧  ⌧ + 1;
while kv0(⌧ + 1)� v0(⌧)k > "1 and k

P
k2K\{0}(vk.

2
(⌧+1)�vk.2(⌧))�kk>"2;

Return vk  vk(⌧ + 1), ibrk  ibrk (⌧) 8k 2 K;

overloaded Algorithm 2 terminates. An alternative straightforward termina-
tion criterion is [9]:

terminate if max
k2K

kvk(⌧ + 1)� vk(⌧)k < ". (3.25)

We refer the interested reader to [9] where Algorithm 2 is derived in terms
of real and imaginary components of the ��� coe�cients.
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3.4.4 Discussion

Computational characteristics

Algorithm 2, like its deterministic sibling, is an iterative algorithm, hence
it creates no heavy computational burden. As usual with intrusive ���, the
scalar products need to be computed. For this, however, there exist dedicated
software tools, see Chapter 5.

Interpretation of solution

The situation is equivalent to Section 3.3.1: once ��� has terminated, the ���
coe�cients are available from which the entire grid state can be derived in
terms of random variables. Recalling Remark 2.9 we know that the random
variable can either function as a policy: for a speci�c realization of the un-
certainty we obtain a speci�c realization of the grid state. We may also use
the random-variable solution to deduce statistical information about the grid
state in terms of moments, for example. Via sampling we can also obtain the
probability density function of desired grid states.

Truncation errors

In light of truncation errors of ���, see Section 2.5, the question arises how
this applies to the ���-overloaded ���method. Recall the basic “ingredients”
to the ��� method: Kirchho�’s laws, a constitutive law, a load model, and a
shunt model. Given the linearity of Kirchho�’s laws, if we choose a linear
relation for both the constitutive law (i.e. Ohm’s law), and a linear relation
for the shunt model, then whether or not truncation errors can be quanti�ed
exactly will depend entirely on the load model. We presented the method
for a constant-power load model from which the currents have to be deter-
mined. This leads to an implicit system of polynomial equations for which
no general conclusions can be drawn. In case of a constant-impedance load
model, however, the load model is also linear, hence the overall ��� scheme
is linear, hence the theory from Section 2.5.1 applies; we can quantify the
errors exactly. For this speci�c choice of constant-impedance loads we can
also provide convergence guarantees, see Appendix A.7.
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3.5 Optimal adaptive linearizations

3.5 Optimal adaptive linearizations

In Section 3.1 we introduced the generic power �ow problem under uncer-
tainty. Mathematically, it is a nonlinear, non-convex, and implicit set of equa-
tions. For large-scale systems this may become numerically expensive to
solve. It is common in power systems operations to determine proxies for
the generic power �ow problem that sacri�ce numerical exactness for com-
putational tractability. More often than not these proxies are linear and ex-
plicit sets of equations that can be evaluated quasi-instantaneously. Perhaps
the most prominent example is power �ow under so-called �� conditions,
see Appendix A.6, leading to the so-called power transfer distribution factor
(����) matrix. Another approach is to linearize the power �ow equations
around some nominal operating point by means of �rst-order Taylor expan-
sion; this leads to so-called ��-���� matrices [168]. In both cases we speak
of power �ow linearizations.

Both the ���� and the ��-���� are general-purpose linearizations. By that
wemean that they are applicable to any power system, but they do not exploit
additional knowledge.7 Instead, we strive for linearizations that are optimal
and adaptive. Optimal refers to the linearizations minimizing a speci�c error
metric, and adaptive means that the linearizations account for a speci�c op-
erating range of the system. Speci�cally we choose to model the operating
range in terms of random variables, and we aim to minimize the expected
value of the squared error. Once more, polynomial chaos will be helpful to
derive a concise and deterministic problem formulation.

Figure 3.6 visualizes the di�erence between general-purpose linearizations
and adaptive linearizations. The solid black graph is the true correspondence
between some bus power p and some branch power pbr—which we would
like to approximate. The left plot in Figure 3.6 shows a generic linearization
around some operating point (dashed grey graph); the linearization is suf-
�ciently accurate within the dotted interval. If we know, however, that the
bus injection p will �uctuate according to the density shown on the p-axis in
the right plot of Figure 3.6, we also expect the branch �ows to follow some

7 This is similar to the generic power �ow problem vs. backward-forward sweep; ��� exploits
the additional knowledge about the radial structure of the grid, providing for a tailored power
�ow problem.
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pbr

p

pbr

p

Figure 3.6: Graphical comparison between general-purpose linearizations (left) and adaptive lin-
earizations (right). The curves on the bus power p-axis and the branch power pbr-axis
in the right plot represent the probability density functions of p and pbr.

density, shown on the pbr-axis. We then see that the generic linearization will
perform poorly in that case, because we did not design it to account for the
information about how frequently certain bus injections p will occur. The
output of the method we propose is the linearization shown in the right plot
of Figure 3.6 as the solid graph—it provides a meaningful linearization given
the density of the bus injections. The presented material is based on [125]. f

3.5.1 Problem formulation

We study a power grid under uncertainty that satis�es Assumption 3.2. The
operating range is modeled by known random variables for the active and
reactive power injections, denoted as pi for all i 2 N�� [N��, and qi for all
i 2 N��. While the voltage magnitudes at �� and slack buses can also gener-
ally be represented by random variables vi for all i 2 N�� [N��, we consider
constant voltage magnitudes at these buses.8 For the given power grid we
seek a linearization that relates a single “output” quantity of interest to some
“input” quantities.9 The output is typically a quantity that is constrained or
optimized but not directly controlled, such as voltagemagnitudes at �� buses,
active and reactive line �ows, or current �ows. Although applicable to a vari-
ety of choices for input and output quantities we focus on outputs consisting

8 In terms of random variables constant voltage magnitudes have a probability density equal to
a Dirac-delta pulse centered at the value of the voltage magnitude.

9 If we speak of linearizations (plural) in the following we mean the set of mappings that relates
several outputs to inputs.
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3.5 Optimal adaptive linearizations

of active and reactive power �ows on each line, and inputs consisting of ac-
tive and reactive power injections at each non-slack bus i 2 N \ N��. We
want to identify an a�ne relation that maps random bus injections to some
random active power branch �ow via

p̂brjk = `0 +

X

i2N\N��

(`p,i pi + `q,i qi) (3.26)

for all lines (j, k) 2 L of interest. The coe�cients `0 and `p,i, `q,i for all
i 2 N \ N�� are the linearization parameters we need to compute. The
ansatz (3.26) results in linearizations analogous to commonly used ���� for-
mulations.10

Problem3.5 (Optimal adaptive linearizationwith respect to expected squared
error). Consider a grid for which Assumption 3.1 and Assumption 3.2 hold. The
operating range is modeled by known random variables for the active and reac-
tive power injections, denoted as pi for all i 2 N��[N��, and qi for all i 2 N��.
We consider constant voltage magnitudes vi for all buses i 2 N�� [ N��. The
optimal adaptive linearization with respect to the expected squared error is

min
`0,`p,i,`q,i2R
8i2N\N��

pi,qi,ei,fi2L2(⌦,µ;R)
8i2N

E((pbrjk � p̂brjk)
2
) (3.27a)

subject to

g(z) = 0, (3.27b)
h(z) = x, (3.27c)

pbrjk = gjk(e
2
j + f2j � ejek � fjfk) + bjk(ejfk � fjek), (3.27d)

p̂brjk = `0 +

X

i2N\N��

(`p,i pi + `q,i qi), (3.27e)

where pbrjk is the random variable corresponding to the active power �ow on line
(j, k) 2 L.

10 In fact, if `0 = 0 and all `qi = 0, the ansatz is mathematically equivalent to the ����matrix,
see (A.53) in Appendix A.6.
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3 Power �ow under uncertainty

In Problem 3.5 the objective (3.27a) minimizes the expected squared error
between the linearization and the nonlinear power �ow equations for this
line �ow. Constraint (3.27b) denotes the power �ow equations (3.5) with
the bus speci�cations for the random variables being (3.27c), see (3.8). The
constraints (3.27d) and (3.27e) model the nonlinear active power �ow equa-
tion and its linearization, which is parameterized by the decision variables
`0, `p,i, `q,i. The solution to Problem 3.5 gives the coe�cients of the respec-
tive optimal adaptive linearization. The optimal objective value bounds the
linearization’s expected squared error. Linearizations for the active power
�ows on each line (j, k) 2 L as well as variants of Problem 3.5 that consider
other output quantities of interest such as reactive power �ows, or voltage
magnitudes can be computed in parallel.

3.5.2 Existing approaches

The idea of optimal adaptive linearizations originates in the recentworks [107,
111]. In [111] the goal is to minimize the worst-case linearization error. To
compute the linearization, a constraint-generation algorithm alternates be-
tween computing the power injections that result in the worst-case error
for a candidate linearization, and updating the candidate linearization in or-
der to reduce the error with respect to all previously calculated worst-case
power injections. The works [85, 107] study adaptive linearizations using ex-
pected errors. Reference [107] (with extensions to three-phase systems in [3])
minimizes the least-square linearization error for a prede�ned set of evenly
distributed points near a nominal operating point. While the resulting lin-
earization is adaptive to the system and operating range of interest, the set of
points is not selected in any optimal manner to minimize some objective. Us-
ing a so-called generalized moment approach, [85] also computes power �ow
linearizations that minimize the expected error. Speci�cally, [85] minimizes
the error for the solution to a speci�ed optimization problem (parameterized
by the uncertain power injections). Another approach is presented in [98]
where notions of regression analysis are applied to the linearization problem.
Albeit being adaptive this approach does not explicitly consider optimality
metrics that account for an uncertain operating range.

To summarize: linearizations have been studied for the expected error. They
can be classi�ed either as optimal or as adaptive, not satisfying both proper-
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3.5 Optimal adaptive linearizations

ties simultaneously. Our proposed solution is both optimal and adaptive, and
allows for a decomposition that makes the idea intuitive and scalable.

3.5.3 Solution methodology

Recall that the linearization Problem 3.5 has �nitely many decision variables:
the linearization parameters ` = [`0, `

>

p , `
>

q ]
>
2 R1+2|N\N��|. Though �nite-

dimensional this problem is nevertheless challenging since the power �ow
equations in terms of random variables (3.27b) are in�nite-dimensional. Ad-
ditionally, the calculation of the expectation (3.27a) requires solving an inte-
gral. To address these challenges, we exploit the problem’s structure, specif-
ically the facts that

1. the active power line �ow in (3.27d) is explicitly determined by the
solution to the square system of power �ow equations (3.27b), and

2. the decision variables ` only appear in (3.27e).

Hence, Problem 3.5 can be decomposed:

1. Feasibility problem: Solve the probabilistic power �ow problem (3.27b),
i.e., compute the random variables ei and fi for all i 2 N ; qi for all
i 2 N�� [N��; and pi for i 2 N�� given the random variables pi for all
i 2 N�� [N��, and qi for all i 2 N��.

2. Unconstrained optimization problem: Determine the optimal lineariza-
tion coe�cients ` by substituting the resulting random variables for ei,
fi, pi, and qi into (3.27d) and (3.27e) and then minimizing (3.27a).

As the ��� problem (3.27b) is independent of the objective (3.27a), the solution
from the �rst step can be used repeatedly (in parallel) to compute lineariza-
tions for multiple quantities of interest in the second step. Even though we
can decompose the linearization Problem 3.5, the �� problem (3.27b) remains
in�nite-dimensional and is therefore challenging—but we can recycle the re-
sults from Section 3.3—hence, we expect Assumption 3.3 to hold.

However, the objective (3.27a) still requires evaluating an integral. Turning
to the objective (3.27a), we next show how ��� facilitates the derivation of
a closed-form solution in terms of ��� coe�cients. We �rst substitute the
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3 Power �ow under uncertainty

equalities (3.27d) and (3.27e) into the objective to obtain an unconstrained
optimization problem. We then rewrite (3.27a) as

E((pbrjk�p̂
br
jk)

2
) = E((p̂brjk)

2
)� 2E(pbrjkp̂

br
jk) + E((pbrjk)

2
). (3.28)

For the �rst term E((p̂brjk)
2
) in (3.28), we use the ansatz (3.27e) for the active

power �ow p̂brjk and compute the moments according to Section 2.4.3. We
obtain (recall from Problem 3.5 that ` = [`0, `

>

p , `
>

q ]
>)

E((p̂brjk)
2
) = `

>
W `, where (3.29)

W =

"
1 t

>

t T

#
, t =

"
p0

q0

#
, T =

X

k2K

"
pkp

>

k pkq
>

k

qkp
>

k qkq
>

k

#
.

The vectors pk, qk are the kth ��� coe�cient of the active power and reactive
power, respectively. Notice that the matrix W is positive (semi)de�nite. For
the second termE(pbrjkp̂

br
jk) in (3.28), we substitute (3.27d) and (3.27e) and then

apply the moment relation from Section 2.4.3 to obtain

E(pbrjkp̂
br
jk) = w

>
`, (3.30a)

where the vector w = [w0 w
>

pq]
> has components

w0 =

X

k2K

�k(gjk(e
2
j,k+f

2
j,k�ej,kek,k�fj,kfk,k)+bjk(ej,kfk,k�fj,kek,k))

(3.30b)

wpq =

X

k1,k2,k32K

�k1k2k3

 
gjk

 
ej,k1ej,k2

"
pk3

qk3

#
+fj,k1fj,k2

"
pk3

qk3

#
�

ej,k1ek,k2

"
pk3

qk3

#
�fj,k1fk,k2

"
pk3

qk3

#!
+

bjk

 
ej,k1fk,k2

"
pk3

qk3

#
�fj,k1ek,k2pk3

!!
(3.30c)
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3.5 Optimal adaptive linearizations

with �k1k2k3 = h�k1�k2 ,�k3i, and normalization constants �k = h�k,�ki.11

Finally, the third term E((pbrjk)
2
) becomes

E((pbrjk)
2
) =

X

k2K

�k (p
br
jk,k)

2
=: w0, (3.31)

where pbrjk,k is given in (3.17a). To summarize, the objective (3.27a) subject to
the equality constraints (3.27d) and (3.27e) can bewritten as an unconstrained
convex quadratic program in the linearization parameters `,

min
`=[`0,`

>
p ,`>q ]>

2R1+2|N\N��|

E((pbrjk�p̂
br
jk)

2
)

subject to (3.27d), (3.27e)

)
=

min
`=[`0,`

>
p ,`>q ]>

2R1+2|N\N��|

`
>
W `� 2w

>
`+ w0.

(3.13)
The “ingredients” (W,w,w0) are computed after the ��� problem has been
solved, as they require knowledge of all vectors of ��� coe�cients pk , qk , ek ,
fk for k 2 K. Notice that w0 is constant with respect to the linearization
parameters ` and therefore only a�ects the optimal value. We summarize the
procedure as follows.

Problem 3.6 (���-overloaded optimal adaptive linearization). Consider Prob-
lem 3.5, and let Assumption 3.3 hold. The ���-overloaded optimal adaptive lin-
earization means to tackle Problem 3.5 in two steps:

1. Solve probabilistic power �ow (3.27b) according to Problem 3.2.

2. Solve an unconstrained �� according to (3.13).

3.5.4 Discussion

Computational characteristics

The feasibility problem inherits all the computational characteristics we
discussed in Section 3.3.1. The optimization problem is an unconstrained

11 These numbers can be computed by Gauss quadrature, see Appendix A.2.
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3 Power �ow under uncertainty

quadratic program forwhich the analytical solution is straightforward. Hence,
the computational characteristics are dominatedmainly by the ability to solve
the ��� problem. Once that is solved, a quadratic program can be de�ned for
every quantity of interest, which is straightforward to parallelize.

Interpretation of solution

Just like there are two steps to solving the problem, there are two kinds of re-
sults we obtain from it: �rst and foremost we obtain the vector of parameters
for the a�ne relation (3.26). The numerical values of the parameters indi-
cate the sensitivity of the output quantity on the desired input quantities. As
a byproduct from solving Problem 3.6 we also obtain information about the
state of the overall grid in terms of random variables as we solve a ��� prob-
lem at the same time. Strictly speaking, we obtain the ��� coe�cients from
which we then recover the grid state.

Truncation errors

The unconstrained optimization problem (3.13) does not cause any troubles.
Hence, if the numerical values of the ��� coe�cients were the exact solution
to the probabilistic �� problem, then the obtained linearization coe�cients
were in fact the true solution to Problem 3.5. Unfortunately, as we have dis-
cussed previously in Section 3.3 we cannot solve the probabilistic power �ow
problem with �nite ��� to exactness.
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4 Optimal power flow under
uncertainty

Optimal power �ow is a cornerstone optimization problem for the planning
and operation of power systems. Its solution is an optimal con�guration of
the power system in which the power �ow equations are satis�ed and en-
gineering limits such as generation, voltage, and/or line �ow limits are re-
spected. The notion of “optimality” may represent, for instance, a minimum
of monetary operation costs, or a minimum of transmission losses. The orig-
inal formulation of ��� dates back to [35]. Ever since the research commu-
nity has gone to tremendous lengths to develop tailored solution algorithms
that are e�cient, accurate, and computationally tractable [62, 63, 114]. To
study ��� problems under uncertainty is a logical consequence in view of
the steadily increasing importance of renewable energy sources.

Similarly to howwe approached power �ow under uncertainty in Section 3.1,
we study optimal power �ow under uncertainty in light of two questions:

��.� Problem formulation: What is a mathematically sound formulation of
optimal power �ow under uncertainty?

��.� Solution methodology: Having obtained a mathematical formulation,
what is a solution approach?

We study three di�erent ��� problems under uncertainty: the generic ��-���
problem, the simpli�ed ��-��� problem, and the simpli�ed ��-��� problem
for multiple time steps.

Before we begin, a note on the role of time for ���: The solutions from ���
problems are applied for power system operation and operational planning.
That includes time spans from about 15 minutes to several days [8, 78]. It is
a standing assumption for the remainder that during that time span no new
equipment is being installed, and that no maintenance is undertaken [146].
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4 Optimal power �ow under uncertainty

That is, the power system we study is not subjected to substantial structural
changes.

4.1 Chance-constrained AC optimal power flow

The following material is based on [119, 126].

4.1.1 Problem formulation

We study a power system under Assumption 3.2. How does that a�ect the
formulation of the optimization problem that aims to minimize a total cost
of the power system subject to the power �ow equations and engineering
limits? A consequence of the presence of uncertainties according to Assump-
tion 3.2 is that all variables describing the network become random variables.
That means we need to consider probabilistic power �ow according to Sec-
tion 3.1 to model the physical behavior of the power system. With the nota-
tion from Section 3.1 we concisely write

g(z) = 02Nb . (4.1)

We make a technical assumption to exclude pathological grid con�gurations.

Assumption 4.1 (Existence of high-voltage solution). We assume there exists
a (high-voltage) solution of the power �ow equations for all realizations of the
uncertainty, and that (4.1) models this (high-voltage) solution.

Just like in Section 3.1 we model component behavior by declaring every bus
i 2 N = N�� [N�� [N�� a �� bus (i 2 N��), a �� bus (i 2 N��), or a slack
bus (i 2 N��). Further, we assume that each bus i 2 N connects to a single
controllable (generating) unit and a single uncontrollable unit such that the
net active and reactive power injection at bus i 2 N can be written as

pi = pci + pui , (4.2a)
qi = qci + qui , (4.2b)
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4.1 Chance-constrained AC optimal power �ow

Table 4.1: Engineering limits for ��� problems.

Quantity Lower bound Upper bound

Active power generation pmin pmax

Reactive power generation qmin qmax

Voltage magnitude vmin vmax

Branch �ow �ibr,max, �pbr,max ibr,max, pbr,max

where the superscript “c” denotes controllable generation, and the super-
script “u” denotes uncontrollable generation/demand. We subsume the entire
uncontrollable generation/demand in x 2 L

2
(⌦, µ;R2Nb),

x =
h
pu1 qu1 . . . puNb

quNb

i>
2 L

2
(⌦, µ;R2Nb), (4.3)

and we call x the (vector of) bus parameterizations. Given the bus parameter-
izations, it is our task to get the optimal con�guration of the power grid.

With every bus we associate a cost of power generation. Since the power
generation is not known with certainty, we introduce the random-variable
cost per bus ci : L2

(⌦, µ;R)! L
2
(⌦, µ;R) via

pci 7! ci(p
c
i). (4.4)

This cost is not directly amenable to (numerical) minimization. Often the ex-
pected value E(ci(pci))—which is a scalar—is minimized.1 This speci�c choice
is motivated from stochastic programming [90, 91]. Other choices that in-
clude the variance are possible too.

Engineering limits require the power system to remain within reasonable
technical bounds. This applies to active power generation, reactive power
generation, voltage magnitudes and branch �ows, see Table 4.1.2 The branch

1 To minimize a random variable would require to de�ne a proper order relation for random
variables, allowing us to characterize one random variable as “larger” than another one with
respect to that notion.

2 It is a simpli�cation to assume that the limits for active power generation and reactive power
generation are independent of each other, hencemodeled as box constraints. They are actually
coupled by the so-called reactive capability curve whose shape is speci�c to the type and the
operating conditions of the generator [8]. It is also possible to consider engineering limits
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4 Optimal power �ow under uncertainty

�ow limits follow from the thermal limits of the cable such that the sag does
not exceed regulatory requirements.3 In a deterministic setting the engineer-
ing limits have to be strictly satis�ed in terms of inequality constraints in the
optimization problem. In a setting under uncertainty, it is not per se mean-
ingful and/or clear how to formulate inequality constraints for random vari-
ables (excluding pathological cases). So how can we formulate the inequality
constraints given that we need to constrain random variables? A so-called
chance constraint (��) is one option. When we formulate an inequality con-
straint in the presence of uncertainties as a chance constraint we satisfy the
constraint up to a pre-speci�ed (high) level. This level is a tuning parameter
and may be adjusted as desired. Let us consider an example: in a determin-
istic setting the upper generation limit at bus i reads

p
c
i  p

max
i . (4.5a)

We treat pci as the realization of the random variable pci and reformulate (4.5a)
as the following chance constraint

P(pci  p
max
i ) � 1� "p, (4.5b)

for some "p 2 (0, 1) and some bus i 2 N .4 Hence, the probability of the
upper generation bound being satis�ed should exceed 1 � ". Likewise, we
could model the converse statement, namely the probability of violating the
constraint being below a level ".

As an answer to ��.� from above, we can formulate ��� under uncertainty as
the following chance-constrained optimization problem

Problem 4.1 (Chance-constrained �� optimal power �ow). Let Assump-
tion 3.2 and Assumption 4.1 hold for a given power system, and let the bus

related to the absolute value of the voltage angles as well as their di�erences. For simplicity
we do not consider these angle limits in what follows.

3 In the �� setting the branch �ow limits correspond to active power branch �ow limits.
4 We introduced this engineering-motivated notation in (2.9). Note that the symbol “µ” has a
di�erent meaning in the contexts of Section 2.2.2 and the present section, see also Remark 3.1.
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parameterizations (4.3) be given. We call the following optimization problem a
chance-constrained �� optimal power �ow problem

min
pci,q

c
i,pi,qi,

ei,fi2L2(⌦,µ;R)
8i2N

X

i2N

E(ci(pci)) (4.6a)

subject to

g(z) = 02Nb , (4.6b)
pi = pci + pui , 8i 2 N , (4.6c)
qi = qci + qui , 8i 2 N , (4.6d)

P(pci � p
min
i ) � 1� "pi , 8i 2 N , (4.6e)

P(pci  p
max
i ) � 1� "pi , 8i 2 N , (4.6f)

P(qci � q
min
i ) � 1� "qi , 8i 2 N , (4.6g)

P(qci  q
max
i ) � 1� "qi , 8i 2 N , (4.6h)

P(vi � v
min
i ) � 1� "vi , 8i 2 N , (4.6i)

P(vi  v
max
i ) � 1� "vi , 8i 2 N , (4.6j)

P(ibrij  i
br,max
ij ) � 1� "

br
iij , 8(i, j) 2 L, (4.6k)

fi = 0, 8i 2 N��, (4.6l)

where g denotes the power �ow equations (3.5) in terms of random variables.

Problem 4.1 minimizes the sum of the expected costs of active power genera-
tion (4.6a). The constraint (4.6b) stands for the power �ow equations in terms
of random variables; in other words, the �� power �ow equalities hold for all
realizations of the uncertainties. The single-sided chance constraints (4.6e)-
(4.6k) are reformulations of the engineering limits for active power limits,
reactive power limits, voltage magnitude limits, and branch �ow limits, re-
spectively, with acceptable violation probabilities "pi , "qi , "vi , "ibrij

2 (0, 1).5

The voltage angle reference is set to zero for all realizations of the uncer-
tainty by (4.6l). We can view Problem 4.1 as amapping under uncertainty: the

5 For ease of presentation we do not distinguish between di�erent risk levels for upper and
lower bounds.
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4 Optimal power �ow under uncertainty

(a) Uncertainty speci�cation at �� buses
2 and 4 (see Figure 3.3b), and cost
functions at generation buses 1 and 3.

(b) Solution to ��� under uncertainty
(blue) compared to ��� solution from
Figure 3.3b (light gray).

Figure 4.1: Idea of optimal power �ow (���) under uncertainty for 4-bus system from Figure 3.3.

random-variable bus parameterizations are mapped to the random-variable
overall grid state. We loosely write

“z? = argmin Problem 4.1(x), ” (4.7)

where z? 2 L
2
(⌦, µ;R4Nb) is the overall grid state, and the vector x contains

the bus parameterizations that occur in the ��� problem (4.6).

Figure 4.1 visualizes the idea of ��� under uncertainty. The power system
setup is equivalent to Figure 3.3 which demonstrates probabilistic power �ow
(���). Compared to the ��� setup from Figure 3.3a the ��� setup from Fig-
ure 4.1a contains not just uncertainty speci�cations but cost functions for the
generator buses 1 and 3. The solution to ��� under uncertainty is shown in
Figure 4.1b, plotted against the ��� solution from Figure 3.3b. As the gen-
erator at bus 3 is no longer injecting at a �xed value, its injection follows a
���. The active power injection at bus 1 is shifted to lower values compared
to the ��� solution; the degrees of freedom from ��� allow to assign power
injections to the other generator at bus 3.
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4.1 Chance-constrained AC optimal power �ow

Remark 4.1 (Joint chance constraint formulations). In Problem 4.1 we chose
to reformulate inequality constraints as individual chance constraints. Joint
chance constraints are an alternative.

Consider the following two inequalities

x
min
 x  x

max
, y

min
 y  y

max
;

treating x and y as realizations of the random variables x and y we would like
to reformulate these constraints as chance constraints. Explicitly allowing for
separate risk levels for upper and lower bounds, the approach from Problem 4.1
leads to

P(x  x
max

) � 1� "
max
x , P(xmin

 x) � 1� "
min
x ,

P(y  y
max

) � 1� "
max
y , P(ymin

 y) � 1� "
min
y .

A double joint chance constraint of the form

P(xmin
 x  x

max
) � 1� "x, P(ymin

 y  y
max

) � 1� "y,

is an alternative; or a fully joint formulation

P(xmin
 x  x

max
^ y

min
 y  y

max
) � 1� ".

We favor single-sided chance constraints over joint chance-constrained formu-
lations, because if they are violated we have information about which quantity
and which bound is not being satis�ed. If a fully joint chance constraint is vi-
olated, it is in general di�cult to track down the root cause. Also, single-sided
chance constraints allow for a greater �exibility: for instance, if the lower bound
x
min is more critical than the upper bound xmax, then "max

x can be chosen smaller
than "

min
x . For joint chance-constrained formulations, the risk level " a�ects all

constraints to the same degree. We refer to Table 4.2 for some references that
apply joint chance constraints to ���.

Problem 4.1 poses numerous challenges:

��.� It is an in�nite-dimensional problem because the decision variables are
random variables of �nite variance.

��.� It entails a probabilistic power �ow problem.
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4 Optimal power �ow under uncertainty

Table 4.2: Comparison of approaches for chance-constrained ��� in chronological order.

Problem formulation Solution methodology
�� �� �� ��

[177] Full �� Double Monte Carlo Gaussian uncertainties, Monte-Carlo
[176] Full �� Single Linearization Back-mapping
[175] Full �� Single Linearization Sparse grid integration, Gaussian
[161] Full �� Joint Semi-de�nite relaxation Scenarios
[14] Approx. �� Single - Linearization, convex approximation
[44] Lin. �� Single - Convex approximation
[148] Full �� Single Iterative linearization Moment-based
[43] Lin. �� Single - Convex approximation
[140] Full �� Single Iterative linearization Moment-based
[157] Convex

Rel.
Joint - Gaussian uncertainties

[156] Convex
Rel.

Joint - Scenarios uncertainties

[155] Convex
Rel.

Joint - Scenarios

[119] Full �� Single Full ��, ��� Moment-based, ���
[126] Full �� Single Full ��, ��� Moment-based, ���

��.� The cost function requires to compute the expected value of the indi-
vidual random variable cost functions.

��.� The chance constraints require to compute the probability of constraint
satisfaction in terms of decision variables.

Before we present our solutionmethodology to Problem 4.1, let us investigate
how this problem has been tackled by previous works.

4.1.2 Existing approaches

We have presented one possibility to formulate and solve ��-��� in the pres-
ence of uncertainties. Clearly, other works have proposed to formulate and
solve ��-��� in the presence of uncertainties as a chance-constrained opti-
mization problem. Table 4.2 collects several works in chronological order,
distinguishing between problem formulation and solution methodology.
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4.1 Chance-constrained AC optimal power �ow

Table 4.2 shows that early works on chance-constrained ��� formulated the
problem with the full nonlinear �� power �ow equations. Later works re-
placed the nonlinear and nonconvex �� equations by linear or convex ap-
proximations. There is a simple reason for that: it is a notoriously di�cult
task to propagate uncertainties through the original formulation of the power
�ow equations. As we can see from Table 4.2, the early works [161, 175–177]
that did formulate the problem with the �� power �ow equations were not
able to solve the problem with these very equations, using Monte Carlo, lin-
earization or relaxations instead. Formulating the problem itself with proxies
such as linearizations or convex relaxations allows to also solve the problem
directly. Albeit more appealing from a theoretical and computational side
these proxies bear the danger of producing solutions that may not satisfy the
original fully nonlinear �� power �ow equations; for a survey on relaxation-
based methods see [114].

For chance constraints the research landscape is more diverse: double, joint,
and single chance constraint formulations exist along with a variety of meth-
ods to solve them. Scenario-based approaches replace chance constraints by
a speci�c number of deterministic inequality constraints such that satisfy-
ing the many deterministic constraints ensures satisfying the original chance
constraint [33]; scenario-based approaches for ��� are more often encoun-
tered in multi-period settings, see Section 4.2. Linearization-based methods
for chance constraints replace the original nonlinear dependency by a lin-
earization for which the �rst and second moment can then be computed.
Hence, we can identify two mild trends: moment-based reformulations of
chance constraints tend to be popular with linearization-based techniques,
because the moments can be computed; and scenario-based approaches tend
to be popular with convex relaxations, because they lead to large yet convex
problems that can (hopefully) be solved reliably and e�ciently.

The works [119, 126] provide a polynomial chaos-based approach to tackle
the fully nonlinear �� power �ow equations together with moment-based
reformulations of chance constraints. Hence, ��� appears currently to be
the only method that is able to propagate uncertainties through the power
�ow equations in a structured manner and providing the moments directly
without having to linearize or sample.

Chance-constrained ��� is but one method to formulate ��� in the presence
of uncertainties. There exist also robust formulations [100, 101, 113, 129]
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4 Optimal power �ow under uncertainty

of ���. In that case, the inequality constraints are satis�ed for all possible
realizations of the random variable. This approach may be problematic as the
information about the random variable—given by its probability density—is
ignored; it is agnostic about what realizations will occur how often. Hence,
robust constraints tend to be conservative. There is another reason that lets
us be wary about robust constraints: if the support of the probability density
function is the real axis, for instance, then a robust constraint formulation
trivially induces infeasibility for any meaningful engineering limits.

Recently, so-called distributionally robust formulations have become pop-
ular. The idea is to introduce ambiguity sets that characterize a family of
probability distributions that share certain properties [56]. For instance, a
moment-based ambiguity set represents a set of distributions that all have
the same statistical moments (up to a speci�ed degree). Alternatively, ambi-
guity sets can be de�ned as all distributions that are close to some nominal
distribution. The notion of “close” refers to a distance speci�c to probabil-
ity distributions such asWasserstein metrics, or Kullback-Leibler divergence;
these ambiguity sets are then said to bemetric-based [56]. The authors of [50]
have applied Wasserstein-metric-based distributionally robust approaches to
��-��� problems. However, in stark contrast to our proposed approach, the
method from [50] is not able to consider the fully nonlinear �� power �ow
equations for all realizations of the uncertainty. Instead, the �� power �ow
equations are considered only for a nominal operating point; linearizations
around that nominal operating point are employed to reformulate the chance
constraints. The works [79–81] also consider Wasserstein-metric-based dis-
tributionally robust ��� problems, albeit in the multi-period setting. As the
authors point out: “as long as an accurate linear model exists, the proposed
technical approach can be utilized to formulate and solve a distributionally-
robust chance-constrained ��-��� problem.” Hence, the work [80] requires
a linear model of the power �ow equations, and is not able to propagate
the uncertainties through the fully nonlinear �� power �ow equations. The
work [110] is an example for moment-based distributionally robust formula-
tions in conjunction with a linearized dist-�ow model.6

6 The dist-�ow model is an iterative formulation of the power �ow equations for radial
grids [15]. In contrast to backward-forward sweep (���) that alternates between voltages and
currents, dist-�ow is formulated with active powers, reactive powers, and voltagemagnitudes.
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4.1 Chance-constrained AC optimal power �ow

To summarize: chance-constrained ��� is notoriously di�cult owing to two
reasons, namely the nonlinear �� power �ow equations, and the chance con-
straints. There appears to be no structured approach that can deal with these
challenges simultaneously. We aim to close that gap. Speci�cally, we pro-
pose to use polynomial chaos expansion to solve Problem 4.1 as it provides a
natural framework to consider the full �� power �ow equations and to treat
moment-based reformulations of the chance constraints.

4.1.3 Solution methodology

We tackle the challenges ��.�-��.� listed at the end of Section 4.1 subse-
quently by leveraging the advantages of polynomial chaos expansion men-
tioned in Section 2.4. Polynomial chaos directly addresses issue ��.�, because
it allows to reformulate in�nite-dimensional problems as �nite-dimensional
problems in terms of the ��� coe�cients. As we would like to apply ���, we
need to make the following assumption.

Assumption 4.2 (��� of bus parameterizations). The bus parameteriza-
tions x 2 L

2
(⌦, µ;R2Nb) from (4.3) in (4.6) admit a �nite and exact poly-

nomial chaos expansion with respect to the polynomial basis {�k}k2K with
K = {0, 1, . . . , k̂}. We write

x =
X

k2K

x̂k�k with x̂k 2 R2Nb , (4.8)

where
x̂k =

h
p̂
u
1,k q̂

u
1,k . . . p̂

u
Nb,k

q̂
u
Nb,k

i>
. (4.9)

We use the notation ·̂ to indicate and emphasize known and given values.

As a consequence of Assumption 4.2 we introduce ��� for every bus state zi
with i 2 N according to (3.12). Just like for the ��� problem, our goal is to
compute all the ��� coe�cients zk = [z

>

1,k . . . z
>

Nb,k
]
>
2 R4Nb for all k 2 K.

Also, we introduce ��� for the random-variable controllable generation

pci =
X

k2K

p
c
i,k�k. (4.10)
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4 Optimal power �ow under uncertainty

We addressed ��.�, probabilistic power �ow, in great detail in Chapter 3. We
adopt the notation from (3.13) to represent the ���-overloaded power �ow
equations in terms of the overall grid state ��� coe�cients z = [z

>

0 . . . z
>

k̂
]
>,

and write
g���(z) = 02Nb(k̂+1). (4.11)

We consider the ��� coe�cients of the parameterizations by applyingGalerkin
projection to (4.2). This yields

pi,k = p
c
i,k + p̂

u
i,k, 8k 2 K, 8i 2 N , (4.12a)

qi,k = q
c
i,k + q̂

u
i,k, 8k 2 K, 8i 2 N . (4.12b)

The constraints for the slack bus angle references follow (3.14c) except that
we do not specify a value for the real part,7

fi,k = 0, 8k 2 K, 8i 2 N��. (4.13)

Let us turn to the cost function mentioned in ��.�. We consider convex
quadratic costs

ci(p
c
i) = c2,i(p

c
i)

2
+ c1,ip

c
i, (4.14a)

with c2,i > 0 for every bus i 2 N . The expected cost E(ci(pci)) per bus from
(4.6a) written in terms of ��� coe�cients becomes (see Section 2.4.3)

E(ci(pci)) = c2,iE(pci)
2
+ c1,iE(pci)| {z }

=:ci(E(pci))

+c2,iV(E(pci))

= c2,i

X

k2K

�k (p
c
i,k)

2
+ c1,ip

c
i,0

=: c̃i(p
c
i,k),

(4.14b)

with �k = h�k,�ki. Notice that the cost function c̃i(p
c
i,k) remains quadratic,

but with respect to the ��� coe�cients.

7 For ease of presentation we assume every bus i 2 N�� to have a deterministic imaginary
voltage at zero.
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4.1 Chance-constrained AC optimal power �ow

It remains to address ��.�, the chance constraints. We reformulate the chance
constraints from Problem 4.1 using the �rst two moments [32, 140, 145]. For
example, the generation constraint in Problem 4.1 becomes

p
min
i  E(pci)± �("pi)

q
V(pci)  p

max
i , (4.15a)

where �("p) > 0 is chosen based on the knowledge about and the con�dence
in the random variable pci . The moment-based reformulation (4.15a) is par-
ticularly suitable with ��� as moments can be directly obtained from the ���
coe�cients, see Section 2.4.3. Thus, the constraint (4.15a) becomes

p
min
i  p

c
i,0 ± �("pi)

q
V(pci)  p

max
i (4.15b)

with V(pci) =
P

k2K\{0} �k(p
c
i,k)

2. The reformulation of the other chance
constraints for the generator (re)active powers from Problem 4.1 follows the
same procedure. The chance constraints for voltage magnitudes vi and line
current magnitudes ibrij are replaced by constraints on their squared mag-
nitudes and the corresponding �rst and second moment. The magnitude
chance constraints become

(v
min
i )

2
 E(v2i )± �("vi)

q
V(v2i )  (v

max
i )

2
, 8i 2 N , (4.16a)

E((ibrij)
2
) + �("

br
iij )

q
V((ibrij)2)  (i

br,max
ij )

2
, 8(i, j) 2 L. (4.16b)

The expressions for the moments are given in (4.18). The reason for using
the moment-based reformulation on v2i and (ibrij)2 instead of vi and ibrij is that
for the former, the moments can be obtained directly as an analytic function
of the moments of e and f (see (4.17)), whereas for the latter, obtaining the
moments would require additional equality constraints.

Remark 4.2 (Choice of �). In case pci is Gaussian, the reformulation (4.15a)
is exact with �("pi) = ��("pi) := �

�1
(1�"pi), where �(·) is the cumulative

distribution function of a standard Gaussian random variable [20, 144]. Ow-
ing to the nonlinearity of the �� power �ow, the resulting propagated random
variables for ��-��� (4.6) are non-Gaussian in general. Regardless, the distri-
bution of those variables is often close to a Gaussian in practice. This is due
to a concentration phenomenon similar to the central limit theorem [45, 140,

97



4 Optimal power �ow under uncertainty

145], making �� a good heuristic that we employ in the following. In case the
Gaussian heuristic is unsatisfactory, other choices of � can be used to enforce
distributionally robust chance constraints in terms of a moment-based ambigu-
ity set. As these choices require weaker assumptions (such as symmetry and/or
unimodality of the distribution) they become more conservative [32, 145]. Al-
ternatively, the parameter � can be chosen numerically via cross-validation or
through online adaptivemethods [133]. Finally, the Gaussian case is not the only
one allowing exact reformulations for �. Other examples include multivariate
truncated Gaussians and uniform distributions on ellipsoidal supports [21, 22].

We are ready to cast ��-��� according to Problem 4.1 as a �nite-dimensional
nonlinear program with the ��� coe�cients as decision variables:

Problem 4.2 (���-overloaded chance-constrained ��-���). Consider Prob-
lem 4.1 and let Assumption 4.2 hold. Assuming a moment-based reformulation
of the chance constraints, the ���-overloaded reformulation of Problem 4.1 reads

min
pc
i,k,q

c
i,k,pi,k,qi,k,

ei,k,fi,k2R
8i2N ,8k2K

X

i2N

c̃i(p
c
i,k) (4.18a)

subject to

g���(z) = 02Nb(k̂+1), (4.18b)

pi,k = p
c
i,k + p̂

u
i,k, 8i 2 N , 8k 2 K, (4.18c)

qi,k = q
c
i,k + q̂

u
i,k, 8i 2 N , 8k 2 K, (4.18d)

p
min
i  pi,0 ± �("pi)

q
V(pci)  p

max
i , 8i 2 N , (4.18e)

q
min
i  qi,0 ± �("qi)

q
V(qci)  q

max
i , 8i 2 N , (4.18f)

(v
min
i )

2
 E(v2i )±�("vi)

q
V(v2i )  (v

max
i )

2
,8i 2 N , (4.18g)

E((ibrij)
2
) + �("

br
iij )

q
V((ibrij)2)  (i

br,max
ij )

2
, 8(i, j) 2 L, (4.18h)

fi,k = 0, 8i 2 N��, 8k 2 K.

(4.18i)
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4 Optimal power �ow under uncertainty

The structural similarity between the ���-overloaded Problem 4.2 and the
original Problem 4.1 is obvious. Viewing Problem 4.2 as amappingwe loosely
write

“
h
z
?
0
>

. . . z
?
k̂
>

i>
= argmin Problem 4.2(x̂0, . . . , x̂k̂), ” (4.19)

thus emphasizing that the ��� coe�cients xk of the bus parameterizations get
mapped to optimal ��� coe�cients of the overall grid state z?k for all k 2 K.

4.1.4 Discussion

Computational characteristics

Problem 4.2 means to solve a nonconvex nonlinear program (���) in terms of
the 4Nb(k̂+1) ��� coe�cients. This is a challenging task, given that the ���
contains already a ���-overloaded probabilistic power �ow problem via the
equality constraints. It is advisable to warm-start the zero-order coe�cients
from the expected-value-solution, i.e. the solution obtained from solving a
deterministic ��� problem for the expected value of the uncertainties. Also,
constraint generation methods are of use for ��� problems: �rst neglect all
inequality constraints, and solve the equality-constrained ���. Then check
whether there are violated inequality constraints. If there are, add them to
the ��� and repeat the procedure until convergence. Clearly, this heuristic
has merit only if the set of active inequality constraints is believed to have
a few elements only. At least for the case studies from [127] this is the case.
Other works also support this claim [130, 143].

Interpretation of solution

The result of the ��� from Problem 4.2 is the collection of optimal ��� coe�-
cients for the overall grid state. From these coe�cients we can construct the
optimal random variables that solve Problem 4.1. Recalling Remark 2.9 we
can view interpret the solution from the angle of probability density func-
tions and moments, or we can interpret the solution as policies that map
speci�c realizations to speci�c inputs. Which view to choose depends on the
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4.2 Chance-constrained DC optimal power �ow

problem: are we solving a planning or an operational problem? For planning
purposes the former frequentist point of view is perhaps more insightful. It
allows to study the overall probability densities, including their (possible)
skewness and/or kurtosis. For operational purposes the user is interested in
applicable solutions, this means deterministic set points for the generators.
This requires the policy point of view. In that case, however, the user has to
bear in mind the meaning of the realization: inequality constraints cannot be
expected to hold with certainty owing to the chance constraint formulation.

Truncation errors

Problem 4.2 contains a ��� problem via the equality constraints. Hence, all
considerations about truncation errors for ��� apply, see Section 3.3.1.

4.2 Chance-constrained DC optimal power flow

In Section 4.1 we studied chance-constrained �� optimal power �ow. Its ma-
jor methodological and computational challenge originates in the nonlinear-
ity of the �� power �ow equations. For high-voltage transmission systems
we can impose additional assumptions that greatly simplify the mathemat-
ical structure of the power �ow equations. This leads to the so-called ��
power �ow equations, see Remark 3.3 and Appendix A.6. Consequently, the
�� power �ow conditions lead to a simpler formulation of optimal power �ow
problems under uncertainty both mathematically and notationally. The main
computational advantages of �� power �ow compared to the fully nonlinear
�� power �ow are its linear structure and the fact that we can express line
power �ows as a linear combination of the net bus power injections by using
the power transfer distribution factor matrix, see Appendix A.6.

The following material is based on [117, 121, 124].

4.2.1 Problem formulation

We consider a power system subject to �� power �ow conditions. We restate
the �� conditions from Appendix A.6.
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4 Optimal power �ow under uncertainty

Assumption 4.3 (�� power �ow). Consider a power system under Assump-
tion 3.1. Let the state of every bus i 2 N be given by (A.40) from Appendix A.6,

z
��
i =

h
pi qi vi �i

i>
2 R4

, (4.20)

and let the following conditions hold:

��.� the Ohmic losses across each line (j, k) 2 L are negligible such that
gjk = 0 holds for the ⇧-line model from Figure 3.1;

��.� the voltage angle di�erences are small across all lines (j, k) 2 L;

��.� the voltage magnitudes are constant at one per unit for all buses i 2 N .

A modeling consequence of Assumption 4.3 is that we need not consider ei-
ther the reactive power or the voltage magnitude at any bus i 2 N , immedi-
ately halving the number of unknowns in the power system to 2Nb; only the
active power and the voltage angle are unknowns. With this we can tailor
Assumption 3.2 to the �� conditions.

Assumption 4.4 (Power system under uncertainty and �� conditions). We
study a power system under Assumption 3.1 in the presence of uncertainties. Ad-
ditionally we consider �� conditions according to Assumption 4.3. That means
we can model the overall grid state by two RNb -valued random variables

p =

h
p1 . . . pNb

i>
2 L

2
(⌦, µ;RNb), (4.21a)

� =

h
�1 . . . �Nb

i>
2 L

2
(⌦, µ;RNb), (4.21b)

where pi is the random-variable active power, and �i is the random-variable
voltage angle, each at bus i 2 N .

With the notation fromAssumption 4.4 the �� power �ow equations in terms
of random variables read

p = �B�, (4.22)
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whereB 2 RNb⇥Nb is the imaginary part of the bus admittance matrix under
�� conditions, see Appendix A.5. In case we are not interested in the voltage
angles we can sum up (4.22)

X

i2N

pi = 1>

Nb
p = 0, (4.23)

which holds because 1Nb is a left-eigenvector of B for the eigenvalue 0, see
Appendix A.6. Under �� conditions we can leverage the so-called power
transfer distribution factor (����) matrix  2 RNbr⇥Nb to map the random-
variable bus powers directly to the random-variable line �ows8

pbr =  p. (4.24)

The entries of the random-variable line �ows are

pbr =
h
pbr1 . . . pbrNbr

i>
2 L

2
(⌦, µ;RNbr), (4.25)

where pbri corresponds to the pair (j, k) 2 L such that the i
th row of the

incidence matrix A has two non-zero entries, one at position j and one at
position k, i.e. Aij , Aik 2 {�1, 1}. For what follows it is more convenient
to have a linear indexing of the lines by L

lin
= {1, . . . , Nbr} rather than the

graph-theoretic indexing by edges.

In what follows we borrow largely from Section 4.1 and tailor it to the ��
setting. We assume each bus i 2 N connects to a single controllable unit
and a single uncontrollable unit, see (4.2)

pi = pci + pui , (4.26a)

and we subsume the entire uncontrollable generation/demand in the bus pa-
rameterizations x 2 L

2
(⌦, µ;RNb)

x =
h
pu1 . . . puNb

i>
2 L

2
(⌦, µ;RNb). (4.27)

8 We refer to Appendix A.6 for a concise derivation of the ���� matrix.
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4 Optimal power �ow under uncertainty

The considerations from Section 4.1 about the cost functions per bus apply to
the �� setting without changes. It remains to address the formulation of the
engineering limits under uncertainty for �� conditions. Of the engineering
limits from Table 4.1, only two apply to the �� setting: the active power gen-
eration limits, and the branch �ow limits in terms of active power line �ows.
In the deterministic case we would have to enforce the inequality constraints

p
min
i  p

c
i  p

max
i , (4.28a)

�p
br,max
j  p

br
j  p

br,max
j , (4.28b)

for all buses i 2 N and all lines j 2 L
lin

= {1, . . . , Nbr}. Just like in Sec-
tion 4.1 we reformulate the inequality constraints (4.28a) as individual chance
constraints

P(pci  p
max
i ) � 1� "pi , P(pci � p

min
i ) � 1� "pi , (4.28c)

P(pbrj � �p
br,max
j ) � 1� "pbr

j
, P(pbrj  p

br,max
j ) � 1� "pbr

j
, (4.28d)

for some "pi , "pbr
j
2 (0, 1) and for all buses i 2 N and all lines j 2 L

lin. We
are ready to formulate a chance-constrained ��-��� problem.

Problem 4.3 (Chance-constrained ��-���). Let Assumption 4.4 hold for a
given power system, and let the bus parameterizations (4.27) be given. We call
the following optimization problem a chance-constrained �� optimal power �ow
problem

min
pci,pi2L2(⌦,µ;R)

8i2N

X

i2N

E(ci(pci)) (4.29a)

subject to

X

i2N

pi = 0, (4.29b)

pi = pci + pui , 8i 2 N , (4.29c)

P(pci � p
min
i ) � 1� "pi , 8i 2 N , (4.29d)

P(pci  p
max
i ) � 1� "pi , 8i 2 N , (4.29e)

P( >

j p  p
br,max
j ) � 1� "pbr

j
, 8j 2 L

lin
, (4.29f)
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4.2 Chance-constrained DC optimal power �ow

P( >

j p � �p
br,max
j ) � 1� "pbr

j
, 8j 2 L

lin
, (4.29g)

where  >

j 2 R1⇥Nb is the jth row of the ���� matrix.9

Problem 4.3 minimizes the sum of the expected costs of active power gen-
eration subject to the �� power �ow equations and inidividual chance con-
straints for the active power generation and line �ow limits. Having solved
Problem 4.3 we can compute the random-variable voltage angles from (4.22).

With x being the bus parameterizations according to (4.27), we can view
Problem 4.3 as mapping the bus parameterizations x to the overall active
power p 2 L

2
(⌦, µ;RNb) via

“p? = argmin Problem 4.3(x), ” (4.30)

fromwhichwe can determine the overall grid state by solving for the random-
variable voltage angles � according to the �� power �ow equations (4.22).

We are in the same situation we faced in Section 4.1.3: having formulated the
chance-constrained ��-��� problem we see that the same challenges ��.�-
��.� appear. How has this problem been tackled in the existing literature?

4.2.2 Existing approaches

The chance-constrained ��� problem under �� conditions has been stud-
ied extensively in the literature. From Table 4.3 we immediately see that
moment-based approaches appear to be most popular. This is not too sur-
prising, because the linear equations of the �� power �ow equations allow to
derive analytical equations for the moments of all quantities of interest, es-
pecially the branch �ows. In combination with the assumption of Gaussian
uncertainties, this allows for an elegant, exact, and tractable reformulation of
chance constraints, see also Remark 4.2. The scenario-based approaches [159,
160] make use of results frommutli-parametric programming to compute the
solution to the chance-constrained ��� problem as a piece-wise a�ne policy.

9 If we were to consider constraints for the angles, they would appear as decision variables, and
we would have to replace (4.29b) by (4.22).
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4 Optimal power �ow under uncertainty

Table 4.3: Approaches for chance-constrained ��� under �� conditions.

Approach Work Characteristics

Chance constraint

[20, 141, 144, 145] Moment-based, Gaussian
[21, 22] Moment-based, Gaussian
[142] Weighted chance constraints
[159, 160] Scenario-based
[117, 121, 124] Moment-based, ���

Distributionally robust
[96, 102, 145, 171, 179, 180] Moment-based
[97] Ellipsoid-based

Just like in the �� case, distributionally robust approaches are an alternative
to chance constraints; Table 4.3 lists several works. Again, this is to be ex-
pected because linear mappings integrate nicely with distributionally robust
methods [56].

Just like their �� counterparts ��� problems under uncertainty and �� con-
ditions are in�nite-dimensional problems. To render the problem �nite-
dimensional a�ne response policies have been proposed as a potential rem-
edy, one of the earliest works being [163] for the multi-stage setting. These
a�ne policies ensure power balance despite the presence of stochastic �uc-
tuations. Albeit intuitive from an engineering point of view it was not un-
til [20] that a rigorous mathematical investigation was carried out, showing
why a�ne policies do ensure power balance, and how. However, [20] focused
on the Gaussian setting.

To summarize: the existing literature on chance-constrained ��� under ��
conditions has focused to a large degree on a�ne policies and speci�c uncer-
tainties, often Gaussian. With the help of polynomial chaos it is possible to
propose a framework for chance-constrained ��� under �� conditions that
naturally computes a�ne policies that satisfy power balance in the presence
of arbitrary uncertainties of �nite variance [117, 121, 124]. Hence, the ���
framework considers existing approaches as special cases, and provides ex-
tensions thereof.
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4.2 Chance-constrained DC optimal power �ow

4.2.3 Solution methodology

Chance-constrained ��� under �� conditions faces the same conceptual chal-
lenges ��.�-��.� as its �� counterpart. We address them step by step, keeping
the presentation concise as it mirrors largely Section 4.1.3.

We tackle ��.� by using ���: it renders the problem �nite-dimensional. To
apply ��� means to introduce ��� for the bus speci�cations.

Assumption 4.5 (��� of bus parameterizations for Problem 4.3). The bus
parameterizations x 2 L

2
(⌦, µ;RNb) from (4.27) in Problem 4.3 admit a �-

nite and exact polynomial chaos expansion with respect to the polynomial basis
{�k}k2K with K = {0, 1, . . . , k̂}. We write

x =
X

k2K

x̂k�k with x̂k 2 R2Nb , (4.31)

where
x̂k =

h
p̂
u
1,k . . . p̂

u
Nb,k

i>
. (4.32)

We use the notation ·̂ to indicate and emphasize known and given values.

As a consequence of Assumption 4.5 we introduce ��� for the random-
variable bus power and the random-variable generated power alike

pi =
X

k2K

pi,k�k, (4.33a)

pci =
X

k2K

p
c
i,k�k, (4.33b)

for all buses i 2 N . Our goal is to reformulate Problem 4.3 as an optimization
problem in terms of the ��� coe�cients. Under �� conditions, the probabilis-
tic power �ow problem, i.e. challenge ��.�, becomes straightforward: ensur-
ing power balance (4.29b) in terms of random variables becomes identical to
ensuring “power balance in terms of the ��� coe�cients.” This follows from
applying Galerkin projection to (4.29b), giving

X

i2N

pi,k = 0, (4.34)
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4 Optimal power �ow under uncertainty

for all k 2 K. We apply the same idea to the bus parameterizations (4.29c)

pi,k = p
c
i,k + p̂

u
i,k, (4.35)

for all buses i 2 N and all ��� coe�cients indices k 2 K. The reformulation
of the cost, i.e. challenge ��.�, is analogous to Section 4.1.3. The same applies
to the �nal challenge ��.�, the moment-based reformulation of the single-
sided chance constraints, leading to

p
min
i  pi,0 ± �("pi)

q
V(pci)  p

max
i , (4.36a)

�p
br,max
j  p

br
j,0 ± �("pbr

j
)

q
V(pbrj )  p

br,max
j , (4.36b)

where

V(pci) =
X

k2K\{0}

�k(p
c
i,k)

2
, (4.36c)

V(pbrj ) = V( >

j p) =
X

i1,i22N

 ji1 ji2

X

k2K\{0}

�kpi1,kpi2,k, (4.36d)

with �k = h�k,�ki. These results follow from orthogonality of the basis
functions, see Section 2.4.3. Having addressed all the challenges ��.�-��.�we
are ready to cast Problem 4.3 as a �nite-dimensional optimization problem in
terms of the ��� coe�cients.

Problem 4.4 (���-overloaded chance-constrained ��-���). Consider Prob-
lem 4.3 and let Assumption 4.2 hold. Assuming a moment-based reformulation
of the chance constraints, the ���-overloaded reformulation of Problem 4.3 reads

min
pc
i,k,pi,k2R

8i2N ,8k2K

X

i2N

c̃i(p
c
i,k) (4.37a)

subject to

X

i2N

pi,k = 0, 8i 2 N , 8k 2 K, (4.37b)

pi,k = p
c
i,k + p̂

u
i,k, 8i 2 N , 8k 2 K, (4.37c)

p
min
i  pi,0 ± �("pi)

q
V(pci)  p

max
i , 8i 2 N , (4.37d)
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� p
br,max
j  p

br
j,0 ± �("pbr

j
)

q
V(pbrj )  p

br,max
j , 8j 2 L

lin
. (4.37e)

4.2.4 Discussion

Computational characteristics

The reformulated Problem 4.3 is a second-order cone program (����); the in-
terested reader is referred to [117, 121] for a detailed derivation of the second-
order cone formulation based on [99]. Hence we need to solve a convex prob-
lem, for which there are dedicated o�-the-shelf solvers that solve ����s, e.g.
Mosek or Gurobi. In principle this can be done e�ciently with certi�ed op-
timality, i.e. zero duality gap. Nonetheless, the combination of large grids
with many uncertainties may lead to ����s that can be numerically chal-
lenging requiring tailored algorithms [20]. The ���� from Problem 4.4 has
a total of Nb(k̂ + 1) decision variables: for every bus i 2 Nb the (k̂ + 1)

��� coe�cients pci,k of the controllable power need to be computed for all
indices k 2 K.

Interpretation of solution

This is analogous to the interpretation of the solution for the �� case from
Section 4.1.4: according to Remark 2.9 we can use the computed ��� coe�-
cients to derive either statistical information about the solution such as mean
values or expected constraint violation, or we might use the ��� coe�cients
and the corresponding ��� as a policy that maps realizations of the uncer-
tainty to realizations of the decision variables. Clearly, the latter interpreta-
tion is of interest to practitioners, while the former one is more advantageous
for planning purposes.

Truncation errors

As the �� power �ow equations are linear, the results from Section 2.5 ap-
ply: given a �nite and exact ��� representation of the bus parameteriza-
tions, power balance can be achieved for all realizations of the uncertainty
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4 Optimal power �ow under uncertainty

by expanding the decision variables in the same basis. This result is for-
malized in [117], independently of the underlying distribution. Previous re-
sults [20] restricted the analysis to Gaussian uncertainties. If in addition the
moment-based reformulation of the chance constraints is exact (e.g. Gaussian
uncertainties)—or conversely, if we start from a moment-based formulation
of the problem—the ��� re-formulation is exact [121]. These properties are a
direct consequence of the linearity of �� power �ow, hence a prime example
for how structure can be exploited in favor of theoretical �ndings.

4.3 Multi-stage chance-constrained DC optimal
power flow

The chance-constrained ��� problems we considered thus far studied power
systems under uncertainty at a single time instant; time did not appear ex-
plicitly. We now turn to the multi-stage setting where we study chance-
constrained ��� problems over a time horizon.10 In contrast to the previous
single-stage settings from Section 4.1 or Section 4.2 the multi-stage setting al-
lows to consider equipment ramp constraints and/or energy storage systems.
For instance, generators cannot change their set points arbitrarily fast, which
imposes additional inequality constraints. Including energy storage systems
allows to determine schedules that obey their dynamics and guarantee, for
example, a desired storage level at the end of the optimization horizon.

4.3.1 Problem formulation

In the following we borrow largely from the problem formulation for the
single-stage problem from Section 4.2. It remains mainly to introduce a no-
tation for the time instants, and to model the storages and ramp constraints.

Assumption 4.6 (Power system under uncertainty and �� conditions; mul-
ti-stage). We study a power system under Assumption 3.1 in the presence of
uncertainties at time instants T = {1, . . . , T}.11 Additionally we consider

10 Also called multi-period setting.
11 Beginning with time instant t = 1 allows for a lighter notation.
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4.3 Multi-stage chance-constrained DC optimal power �ow

�� conditions according to Assumption 4.3. We model the overall grid state by
square-integrable discrete stochastic processes for the active power and the phase
angle

pi =
h
pi(1) pi(2) . . . pi(T )

i>
2 L

2
(⌦, µ;RT

), (4.38a)

�i =
h
�i(1) �i(2) . . . �i(T )

i>
2 L

2
(⌦, µ;RT

), (4.38b)

for every bus i 2 N . The overall grid state at every time instant t 2 T is
modeled by the RNb -valued random vectors

p(t) =
h
p1(t) . . . pNb(t)

i>
2 L

2
(⌦, µ;RNb), (4.38c)

�(t) =
h
�1(t) . . . �Nb(t)

i>
2 L

2
(⌦, µ;RNb). (4.38d)

In Assumption 4.6 we make explicit use of the dichotomy of discrete stochas-
tic processes and random vectors, see Section 2.2.2: though mathematically
equivalent, their interpretation is di�erent. We treat the active power and
phase at every bus i 2 N as a discrete process, but the overall grid state at
a speci�c time instant t 2 T is a random vector, a snapshot in time across
the power system. This covers the mathematical description of the power
system variables; let us turn to the physical model.

The �� power �ow conditions hold for every time instance t 2 T . Hence,
the �� power �ow equations, the energy balance, and the ����mapping that
we introduced in Section 4.2 now read

p(t) = �B�(t), (4.39a)
X

i2N

pi(t) = 1>

Nb
p(t) = 0, (4.39b)

pbr(t) =  p(t), (4.39c)

for all time instants t 2 T . From (4.39c) we see that also every line �ow is
now a discrete stochastic process in the sense that

pbri =

h
pbri (1) pbri (2) . . . pbri (T )

i>
2 L

2
(⌦, µ;RT

) (4.40a)
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holds for all lines i 2 L
lin, and

pbr(t) =
h
pbr1 (t) . . . pbrNbr

(t)

i>
2 L

2
(⌦, µ;RNbr) (4.40b)

is the snapshot of all random-variable line �ows at all time instants t 2 T .

Just like in Section 4.1 and Section 4.2 we suppose that each bus i 2 N

connects to a single controllable unit and a single uncontrollable unit. Ad-
ditionally we assume each bus connects to a single energy storage system,
hence the net power at every bus i 2 N reads

pi(t) = pci(t) + pui (t) + psi(t), (4.41)

for all time instants t 2 T , where pui (t) is the uncontrollable random-variable
power and psi(t) is the random-variable power drawn from/injected into the
storage at time instant t. We subsume the entire uncontrollable genera-
tion/demand as the discrete stochastic process

8i 2 N : xi =
h
pui (1) pui (2) . . . pui (T )

i>
2 L

2
(⌦, µ;RT

) (4.42)

with known and given characteristics for all buses. Hence, the bus parame-
terizations are given by discrete stochastic processes.

We consider integrator dynamics for the storage system

ei(t+ 1) = ei(t)� h psi(t), ei(1) = e��i , (4.43)

for all buses i 2 N . We call ei(t) the random-variable energy of the storage
at bus i at time instant t, and e��i 2 L

2
(⌦, µ;R) is some given yet random-

variable initial condition.12 The value of h > 0 subsumes the discretization
time and a potential loss factor. We thus see that both the state of the storage
and its input are discrete stochastic processes

ei =
h
ei(1) ei(2) . . . ei(T + 1)

i>
2 L

2
(⌦, µ;RT+1

), (4.44a)

psi =
h
psi(1) psi(2) . . . psi(T )

i>
2 L

2
(⌦, µ;RT

), (4.44b)

12 We accept the slight clash of notation with the real part of the voltage ei.
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related by the storage dynamics. Just like the rest of the equipment, the en-
ergy storage system is constrained. We model its engineering limits in terms
of individual chance constraints for every time instant, yielding

P(ei(t+ 1)  ei) � 1� ", P(ei(t+ 1) � ei) � 1� ", (4.45a)
P(psi(t)  si) � 1� ", P(psi(t) � si) � 1� ", (4.45b)

for all buses i 2 N with (4.45a) being the limits for the energy of the storage,
and (4.45b) being the limits for the storage input. For ease of presentation we
choose an identical risk level " for all quantities.

Generator ramp constraints are considered as individual chance constraints

P(pci(t)� pci(t� 1)  �p
max
i ) � 1� ", (4.46a)

P(pci(t)� pci(t� 1) � �p
min
i ) � 1� ", (4.46b)

for all time instants t 2 T \ {1} and all buses i 2 N , thus limiting the
probability of abrupt set point changes.

For the cost function we modify the formulation from Problem 4.3 by addi-
tionally summing over all time instants t 2 T .

Problem 4.5 (Chance-constrained multi-stage ��-���). Let Assumption 4.6
hold for a given power system, and let the bus parameterizations (4.42) be given.
We call the following optimization problem a chance-constrainedmulti-stage ��
optimal power �ow problem

min
pci,p

s
i,ei,pi2L2(⌦,µ;RT )

8i2N

X

t2T

X

i2N

E(ci(pci(t))) (4.47a)

subject to

pi(t) = pci(t) + pui (t) + psi(t), 8i 2 N , 8t 2 T , (4.47b)
X

i2N

pui (t) + pci(t) + psi(t) = 0 8i 2 N , 8t 2 T , (4.47c)

ei(t+ 1) = ei(t)� h psi(t), 8i 2 N , 8t 2 T \ {T},

(4.47d)

ei(1) = eici , 8i 2 N , (4.47e)
P(pci(t)  p

max
i ) � 1� ", 8i 2 N , 8t 2 T , (4.47f)
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P(pci(t) � p
min
i ) � 1� ", 8i 2 N , 8t 2 T , (4.47g)

P( >

j p(t)  p
br,max
j ) � 1� ", 8i 2 N , 8t 2 T , (4.47h)

P( >

j p(t) � �p
br,max
j ) � 1� ", 8i 2 N , 8t 2 T , (4.47i)

P(�pci(t)  �p
max
i ) � 1� ", 8i 2 N , 8t 2 T \ {0}, (4.47j)

P(�pci(t) � �p
min
i ) � 1� ", 8i 2 N , 8t 2 T \ {0}, (4.47k)

P(ei(t+ 1)  ei) � 1� ", 8i 2 N , 8t 2 T \ {T}, (4.47l)
P(ei(t+ 1) � ei) � 1� ", 8i 2 N , 8t 2 T \ {T},

(4.47m)

P(ei(T )  e
T,max
i ) � 1� ", 8i 2 N , (4.47n)

P(ei(T ) � e
T,min
i ) � 1� ", 8i 2 N , (4.47o)

P(psi(t)  s
T,max
i ) � 1� ", 8i 2 N , 8t 2 T , (4.47p)

P(psi(t) � s
T,min
i ) � 1� ", 8i 2 N , 8t 2 T , (4.47q)

with�pci(t) = pci(t)� pci(t� 1), and " 2 [0.5, 1).13 Note that  >

j 2 R1⇥Nb is
the jth row of the ���� matrix.

Problem 4.5 minimizes over stochastic processes. Speci�cally, we minimize
the expected cost of thermal generation (4.47a) over time while satisfying
the power balance (4.47c) for every realization of the uncertain disturbance,
and the storage dynamics (4.47d) in terms of stochastic processes, see (4.43).
All engineering limits are formulated in terms of single-sided chance con-
straints. We added chance constraints (4.47n) and (4.47o) for the terminal
state of the storage to allow for the storage to be at a prescribed level (with
high probability) at the end of the horizon.

It is possible to add another constraint to restrict the standard deviation of
all occurring random variables. For example, this enables to restrict the vari-
ation of certain generation units to be small. Another application would be
to constrain the variation of line �ows across areas to provide a more certain
power exchange.

13 It is straightforward to modify Problem (4.47) to consider time-varying and quantity-
depending risk levels ".
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We can view Problem 4.5 as a mapping under uncertainty. Speci�cally, the
bus parameterizations (4.42) are mapped to the optimal random-variable
power injections

“pc?1 (t), . . . , pc?Nb
(t), ps?1 (t), . . . , ps?Nb

(t) = argmin Problem 4.5(x1, . . . , xNb), ”

from which we can then determine the stochastic processes for the voltage
angles via the �� power �ow conditions (4.39a).

4.3.2 Existing approaches

Operating a system optimally subject to �� power �ow conditions and uncer-
tainties has been and continues to be an active area of research. A�ne control
policies14 and scenario-based approaches seem predominant [5, 48, 76, 128,
135, 162–164, 166, 170]. What is common to all the listed works is that the
choice of a�ne policies is motivated mostly by engineering intuition rather
than mathematical rigor. Also, the mathematical treatment of uncertainties
as discrete stochastic processes is not made explicit; the use of scenarios is
rather ad-hoc. In other words, the abstract problem formulation according
to Problem 4.5 is often bypassed in favor of a formulation that has a speci�c
application in mind.

Our presented formulation according to Problem 4.5 is inspired mostly by the
collection of works [162–164] as well as [166]. A notable di�erence to [162–
164] is that we consider single chance constraints instead of joint chance
constraints that are then reformulated deterministically via scenario-based
approaches. And in contrast to [166] we consider not just line �ow limits but
also constraints for generation, storage injection, and the storage state.

To summarize: there is a rich suite of existing works, but these approaches
do not present the problem formulation in terms of random variables as done
in Problem 4.5. Explicitly formulating the problem with random variables
makes it clear that we are—once again—dealing with an in�nite-dimensional
problem. The question is how to render it �nite-dimensional; we tackle this

14 Sometimes also referred to as linear decision rules [66].
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by deriving explicit formulæ for the �rst two moments that allow for a struc-
tured problem formulation.

4.3.3 Solution methodology

We are in the familiar situation from Section 4.1.3 and Section 4.2.3: hav-
ing formulated the chance-constrained multi-stage ��-��� problem the same
challenges ��.�-��.� appear; in addition, there is the time dependency.

We tackle ��.� by restricting our attention to second-order stochastic pro-
cesses that are fully described by their �rst and second moments. This allows
to rewrite the in�nite-dimensional Problem 4.5 as a �nite-dimensional prob-
lem in terms of the moments—an approach that is strongly motivated by our
previous use of ���. Let us specify the discrete stochastic processes we are
dealing with.

Assumption 4.7 (Bus parameterizations as discrete stochastic process). The
bus parameterizations from Problem 4.5 are modeled by a discrete second-order
stochastic process (4.42). Speci�cally, we model the stochastic process by

2

66664

pui (1)

pui (2)
...

pui (T )

3

77775
=

2

66664

[p̂
u
i ]1

[p̂
u
i ]2

...
[p̂
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i ]T
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2
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u
i ]11 0 . . . 0

[P
u
i ]21 [P

u
i ]22 0
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. . .
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i

2

66664

[⌅i]1

[⌅i]2

...
[⌅i]T

3

77775

| {z }
=:⌅i

(4.48a)
= p̂

u
i + P

u
i ⌅i (4.48b)

for all buses i 2 N , where p̂ui 2 RT , and P
u
i 2 RT⇥T is lower-triangular

and non-singular.15 The so-called stochastic germ ⌅i 2 L
2
(⌦, µ;RT

), see Re-

15 We use this dedicated bracket notation to refer to elements. This simpli�es to distinguish the
bus index i from the element indices.
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4.3 Multi-stage chance-constrained DC optimal power �ow

mark 2.4 is anRT -valued random vector composed of independent random vari-
ables with mean zero and unit variance,

8i, j 2 N : E([⌅i]k[⌅j ]l) = �ij�kl 8k, l 2 T , (4.48c)

where �ab is the Kronecker-delta.16 Speci�cally we assume that⌅i is a T -variate
Gaussian random vector. The uncertain disturbance (4.48) is then fully described
by its mean E(pui (t)) and variance V(pui (t))

E(pui (t)) = [p̂
u
i ]t, V(pui (t)) =

tX

k=1

[P
u
i ]

2
tk (4.48d)

for all time instants t 2 T .

Note that the lower-triangularity of P u
i means that the uncertain distur-

bance pui (t) is causal, i.e.

pui (t) = [p̂
u
i ]t +

tX

k=1

[P
u
i ]tk[⌅i]k (4.49)

depends only on past and present time instants k 2 {1, . . . , t} for all t 2 T ,
but not on future ones.

Remark 4.3 (Non-Gaussian uncertainties). Condition (4.48c)may be satis�ed
by other (centralized) random variables too. Hence, it is restrictive to consider
only Gaussian uncertainties in Assumption 4.7. This speci�c restriction is made
with a user background in mind: the full parameterization (4.48a)must be pro-
vided as an input to the proposed method. For Gaussian uncertainties, such a
parameterization can be obtained, for instance, via Gaussian process regression
[137, Ch. 2]. For other uncertainties that satisfy the technical condition (4.48c)
the parameterization (4.48a) may be more di�cult to obtain.

From Assumption 4.7 we see that the stochastic germ ⌅i parameterizes each
uncertain disturbance a�nely. From [117] it is known that a�ne parameter-

16 Notice that non-singularity of P u
i means that (4.48a) is a one-to-one mapping between

[pui (1), . . . , p
u
i (T )]

> and the stochastic germ ⌅i. The lower-triangularity of P u
i allows to

create this mapping �rst for time instant t = 1, then t = 2, etc.
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4 Optimal power �ow under uncertainty

izations of the disturbance can be accounted for by a�ne parameterizations
of the inputs to satisfy �� power balance. Hence, we introduce a discrete
stochastic process of the form

L
2
(⌦, µ;RT

) 3

2

664

pci(1)
...

pci(T )

3

775 = p̂
c
i +

X

j2N

P
c
i,j⌅j , 8i 2 N , (4.50a)

where p̂ci 2 RT , and every P
c
i,j 2 RT⇥T for all j 2 N is lower-triangular;

notice that the notation is structurally equivalent to (4.48). Again, the re-
quirement of lower-triangularity enforces the stochastic process to be causal.
Explicitly, the components of (4.50a) are

pci(t) = [p̂
c
i]t +

X

j2N

tX

k=1

[P
c
i,j ]tk[⌅j ]k 8i 2 N , (4.50b)

for all time instants t 2 T .17

Remark 4.4 (Flexibility of policies). The structure of the matrices P c
i,j deter-

mines the “character” of the generation policy. For example, the generic policy
from (4.50b) allows the generator at bus i to react to every possible source of
uncertainty ⌅j . In turn, if the generator at bus i is allowed to react only to the
sum of the deviations, then we would set P c

i,1 = · · · = P
c
i,Nb

. Also, according
to [166] “[e]xisting reserve mechanisms could be modeled by matrices [P c

i,j] for
which only the main diagonal is populated.” Clearly, combinations of all of the
above are possible.

We introduce the same kind of policy (4.50a) for the storages

L
2
(⌦, µ;RT

) 3

2

664

psi(1)
...

psi(T )

3

775 = p̂
s
i +

X

j2N

P
s
i,j⌅j , (4.51)

17 Notice that the control policy (4.50a) is written in terms of the stochastic germs⌅j for j 2 N ;
but in practice it is the realization of the uncertain disturbances pui (t) that can be measured.
In our setting it is always possible to get the realization of the stochastic germ from the real-
ization of the uncertain disturbance, and vice versa, see Footnote 16.
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4.3 Multi-stage chance-constrained DC optimal power �ow

where every P
s
i,j 2 RT⇥T with j 2 N is lower-triangular.

Having introduced the stochastic processes for the uncertainty model (4.48),
the generation (4.50b), and the storage (4.51), this allows to derive closed-
form expressions for the line �ow pbrj (t) at line j 2 L

lin, the change of
inputs �pci(t) = pci(t)�p

c
i(t�1) at bus i 2 N , and the state of the stor-

age ei(t + 1) bus i—all of which are required to solve Problem (4.47). These
closed-form expressions are listed in (4.54). All random variables, namely the
controls (pci(t), psi(t)) and the dependent quantities (ei(t+1),�pci(t), p

br
j (t))

are Gaussian random variables for all respective time instants. This follows
from linearity/a�nity of all equations (uncertainty model (4.49), power bal-
ance (4.23), ���� matrix, storage dynamics (4.43), control policies (4.50b),
(4.51)), in combination with the fact that a Gaussian random variable remains
Gaussian under a�ne mappings [83]. Hence, all stochastic processes from
Problem (4.47) are fully described by their mean and variance, the closed-
form expressions for which are listed in (4.55). This completes the solution
to challenge ��.�.

Next, we address challenge ��.�: probabilistic power �ow. Consider the
power balance (4.47c), and substitute the uncertainty model (4.48) and the
process for generation/storage control (4.50)/(4.51). Then, the power balance
is satis�ed for all realizations if [122]

X

i2N

p̂
u
i + p̂

c
i + p̂

s
i = 0T , (4.52a)

P
u
j +

X

i2N

P
c
i,j + P

s
i,j = 0T⇥T , 8j 2 N . (4.52b)

The reformulation of the cost, i.e. challenge ��.�, is analogous to Section 4.1.3.

The �nal challenge ��.�, the reformulation of the chance constraints, be-
comes straightforward for our setting. As all random variables occurring
in Problem (4.47) are Gaussian random variables, the chance constraints can
be reformulated exactly using the �rst two moments: Let x be a Gaussian
random variable with mean µ and variance �2. Then for " 2 [0.5, 1),

P(x  x
max

) � 1� " () µ+ �(")

p

�2  x
max

, (4.53a)

P(xmin
 x) � 1� " () x

min
 µ� �(")

p

�2, (4.53b)
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4 Optimal power �ow under uncertainty

where �(") = �
�1

(1�"), and � is the cumulative distribution function of
a standard Gaussian random variable [20], see also Remark 4.2. Hence, all
chance constraints from Problem (4.47) can be reformulated by applying re-
lation (4.53) with the moments from (4.55).

Having addressed all the challenges ��.�-��.�we are ready to cast Problem 4.5
as a �nite-dimensional optimization problem.

Problem 4.6 (Reformulated chance-constrained multi-stage ��-���). Con-
sider Problem 4.5 and let Assumption 4.7 hold. For a moment-based reformu-
lation of the chance constraints, the �nite-dimensional reformulation of Prob-
lem 4.5 reads

min
p̂c
i,p̂

s
i2RT ,

P c
i,j ,P

s
i,j2RT⇥T

8i,j2N

X

t2T

X

i2N

ci(E(ui(t))) + ci,2V(pci(t)) (4.56a)

subject to

X

i2N

p̂
u
i + p̂

c
i + p̂

s
i = 0T ,

P
u
j +

X

i2N

P
c
i,j + P

s
i,j = 0T⇥T ,

(4.56b)

ei(t+ 1) = {see (4.54)}, (4.56c)
ei(1) = e��i , (4.56d)

x
min
 E(x)± �(")

p
V(x)  x

max
, (4.56e)

8x 2 {pbrl (t), p
c
i(t), �pci(⌧), ei(t+ 1), ei(T + 1), psi(t)}

8i, j 2 N , t 2 T , ⌧ 2 T \ {1}, l 2 L
lin
.

4.3.4 Discussion

Computational characteristics

The reformulated Problem 4.5 is a second-order cone program (����), hence
all contemplations from Section 4.2.4 apply. It is generally advisable to in-
troduce the minimum number of scalar decision variables in the ���� (4.56).
Speci�cally, assume that the uncertain disturbances are connected to buses
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4 Optimal power �ow under uncertainty

Nu ✓ N with |Nu| = Nu, that the generators are connected to buses
Nc ✓ N with |Nc| = Nc, and that the storages are connected to buses
Ns ✓ N with |Ns| = Ns, where Nc \ Ns = ;, i.e. no bus has a generator
and a storage. Then, the number of scalar decision variables in the ���� (4.56)
is

(Nc +Ns)

✓
T +Nu

T (T + 1)

2

◆
(4.57)

for the generation/storage policies (4.50)/(4.51); in contrast to [166] we ex-
ploit lower-triangularity of the matrices P c

i,j , P s
i,j . For a global balancing

policy for both generation and storage, see Remark 4.4, the number of scalar
decision variables reduces to

(Nc +Ns)

✓
T +

T (T + 1)

2

◆
, (4.58)

hence it is independent of the number of uncertainties in the grid. The dif-
ference between the numbers (4.57) and (4.58) re�ects the usual trade-o� be-
tween computational tractability and complexity of the solution.

Interpretation of solution

The considerations from Section 4.2.4 apply: having obtained the optimal ���
coe�cients from Problem 4.6, we can construct the overall grid state in terms
of random variables. According to Remark 2.9 this solution can either be used
in terms of a policy that maps realizations of the uncertainty to realizations of
the decision variables. Or it may be used to deduce statistics of the random-
variable solutions.

Truncation errors

The considerations from Section 4.2.4 apply: for the �� power �ow equations
the truncation error can be brought down to zero. In other words, the energy
balance can be satis�ed for all realizations of the uncertainty. This result is
formalized in [20, 117], independently of the underlying distribution. Also,
the moment-based reformulation of the chance constraints is exact, hence
the ��� re-formulation is exact [121].
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5 PolyChaos.jl

Thus far we presented problem formulations of (optimal) power �ow prob-
lems under uncertainty based on intrusive ���. Tracing back every problem
formulation we presented in either Chapter 3 or Chapter 4 we see that there
appear ���-speci�c numerical ingredients that until now we assumed given;
Table 5.1 lists all of them. We summarize the requirements from Table 5.1:

1. Given a probability density (or, more generally, an absolutely continu-
ous, non-negative measure dµ(⌧) = ⇢(⌧)d⌧ ), what are the respective
orthogonal polynomials �k?

2. How can one compute the numbers

h�i1�i2 · · ·�im�1 ,�imi =

Z
�i1(⌧)�i2(⌧) · · ·�im(⌧)dµ(⌧) (5.1)

form 2 {2, 3, 4} e�ciently and accurately?

3. How to do both of the above in a multivariate setting?

Clearly, we would appreciate to have a software answer these questions for
us: that is why the author of this dissertation co-created the package Poly-

Table 5.1: ���-related quantities for (optimal) power �ow problems under uncertainty.

Name Problem ���-related quantities

��� 3.2 �k h�k,�ki h�k1�k2 ,�k3 i

��� 3.4 �k h�k,�ki h�k1�k2 ,�k3 i

Optimal
adaptive
linearization

3.6 �k h�k,�ki h�k1�k2 ,�k3 i

��-��-��� 4.2 �k h�k,�ki h�k1�k2 ,�k3 i h�k1�k2�k3 ,�k4 i

��-��-��� 4.4 �k h�k,�ki
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5 PolyChaos.jl

Chaos.jl written in the Julia programming language that provides a user-
friendly interface for making computations with ��� [127].1 PolyChaos.jl is
a collection of numerical routines for orthogonal polynomials, quadrature
rules, and (intrusive) polynomial chaos expansions. It is built around the
above questions: allow for arbitrary probability densities (or product mea-
sures) in an intrusive ��� setting, and compute and store arrays of scalar
products of the basis polynomials. PolyChaos.jl allows

– to compute the coe�cients for the monic three-term recurrence re-
lation numerically by the Lanczos or Stieltjes procedure, or multiple
discretization [64], see Section 2.4.1 or Appendix A.1,

– to evaluate the orthogonal polynomials at arbitrary points,

– to compute the quadrature rule (Gauss, Gauss-Radau, Gauss-Lobatto,
seeAppendixA.2; Fejér’s�rst/second rule, Clenshaw-Curtis, see [165]),

– to compute arrays of scalar products (5.1),

– to do all of the above in a multivariate setting, i.e. product measures.

If the weight function of the measure corresponds to a probability density
function, PolyChaos.jl further provides routines to compute polynomial chaos
expansions of random variables. These routines allow

– to compute a�ne ��� coe�cients for arbitrary densities,

– to compute moments,

– to compute the tensors of scalar products.

Why Julia? Julia is a just-in-time compiled programming language for sci-
enti�c computing [19]. It provides a command line interface (the so-called
Julia ����) with a built-in package manager, unicode support, and easy ac-
cess to the shell. Julia is committed to the paradigm of multiple dispatch, the
ability of functions to act di�erently depending on their signatures. Macros
and other concepts from metaprogramming are supported, too. Perhaps Ju-
lia’s greatest advantage—at least for the scienti�c programmer—is its abil-

1 The documentation is available at https://timueh.github.io/PolyChaos.jl/stable/.
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5.1 Existing software

ity to solve the so-called two-language problem. This problem refers to the
undesirable situation in which a programmer creates prototypes in one lan-
guage (often based on easy-to-use and easy-to-read scripts or notebooks, e.g.
Matlab or Python), then having to switch to a di�erent language (often com-
piled, e.g. C/C++) to achieve fast execution times. Julia is a platform for
both: rapid prototypes with intuitive code design can be morphed into type-
speci�c, high-performance code. Julia is entirely based on types. The fact
that types of values need not be declared explicitly is one reason why Julia
solves the aforementioned two-language problem: users may never feel the
need to declare types, yielding code reminiscent of scripted languages, yet
users can leverage the full power and expressiveness of Julia’s type system
to write cleaner code. The advantage of type-declared code is that it asserts
the code behaves as expected, and it provides information to the user and the
compiler which improves readability and performance in some cases.

The base library of Julia is slim by design: among others it provides collec-
tions and data structures, mathematical functions, arrays, and interfaces to
several foreign languages such as C/C++, Fortran, Python, R, or Java. Ad-
ditional functionalities are provided by the rich Julia package ecosystem.2
Every Julia package is hosted open source on GitHub, built and deployed via
continuous integration, and referenced in the Julia package manager—which
is itself a package written in Julia. There exists, for instance, a diverse suite
of solvers for di�erential equations [136], optimization tools [51, 112], itera-
tive solvers for linear systems,3 and plotting tools,4 to name a few. However,
there existed no previous Julia implementation that combined routines for or-
thogonal polynomials, quadrature rules, and polynomial chaos expansions.
PolyChaos.jl aims to close that gap.

5.1 Existing software

Table 5.2 lists existing software packages for ���. Except for Chaospy and
PolyChaos.jl these packages are full-�edged libraries for uncertainty quan-

2 See https://juliaobserver.com/packages for all publicly registered packages.
3 See https://github.com/JuliaMath/IterativeSolvers.jl.
4 See https://github.com/JuliaPlots/Plots.jl/.
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5 PolyChaos.jl

ti�cation; ��� comprises just one module of many, and is used mostly for
non-intrusive applications. Amongst the software from Table 5.2 UQLab and
Dakota provide the richest functionality, each coming with a superb docu-
mentation. While the core functions of UQLab are closed source, the scien-
ti�c methods surrounding ��� are all available under the ��� 3-clause license.
Furthermore, UQLab provides methods for basis-adaptive ��� based on [24,
25]. Dakota is a mature framework: currently at version 6.0, version 3.0 beta,
for instance, dates back to 2001. The functionality of MUQ and UQToolkit is
comparable; unfortunately they do not allow to compute orthogonal poly-
nomials for arbitrary probability densities. OpenTURNS is a full-�edged un-
certainty quanti�cation framework that comes with rich and mathematically
detailed documentation. The solely ���-centered Python package Chaospy
comes with the least restrictive ���-license whilst providing the core ���
functionality that includes the computation of orthogonal polynomials for
arbitrary probability densities.

Table 5.2 positions PolyChaos.jl in the landscape of software packages for
���: its premise is to support arbitrary probability densities, for which it
provides not just the Stieltjes but also the Lanczos procedure based on [64],
see Appendix A.1. In case the density can be composed as a sum of indi-
vidual densities—as is common for (Gaussian) mixture models—PolyChaos.jl
provides a speci�c method for multiple discretization based on [64, p. 99].
Furthermore, PolyChaos.jl supports a range of quadrature rules. Most im-
portantly though—as PolyChaos.jl is currently tailored to the intrusive ���
setting—it allows to compute arrays of scalar products of the form (5.1). These
numbers are needed in every problem from Chapter 3 or Chapter 4. Future
versions of PolyChaos.jl might include non-intrusive ���, i.e. collocation-
based methods [154, 172], or basis-adaptive sparse methods [23].

5.2 Type hierarchy

Every value in Julia has a type. The conceptual foundation of the type sys-
tem relies on abstract types. Abstract types serve but a single purpose: to
form a type hierarchy. It is neither desired nor possible to instantiate ab-
stract types. The type hierarchy remains independent from functions that
operate on types. To get what in other languages is called a struct or an ob-
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Table 5.2: Existing software packages for ���.

Name Language Features for ��� License Ref.

UQLab Matlab - Classic and arbitrary distributions
- Stieltjes procedure
- Gauss and sparse quadrature
- Basis-adaptive sparse ���
- Least-angle regression

��� 3-clause [106]

Chaospy Python - Classic and arbitrary distributions
- Gram-Schmidt, Stieltjes procedure
- Gauss quadrature, Clenshaw-Curtis

��� [59]

OpenTURNS Python - Classic and arbitrary distributions
- Stieltjes procedure
- Gauss quadrature

��� ���� [16]

Dakota C++ - Classic and arbitrary distributions
- Stieltjes, Gram-Schmidt, Chebyshev
- Gauss and sparse quadrature
- Stochastic collocation

��� ���� [2]

MUQ C++,
Python

- Classic distributions
- Gauss quadrature

n/a [39]

UQToolkit C++,
Python

- Classic distributions
- Gauss quadrature

��� ���� [46]

PolyChaos.jl Julia - Classic and arbitrary distributions
- Stieltjes and Lanczos procedure
- Multiple discretization
- Gauss quadrature, Fejér, Clenshaw-Curtis
- Scalar products

��� [127]

ject Julia provides composite types. A composite type has �elds,5 it can be
instantiated, and it can be declared a subtype of abstract types.

For PolyChaos.jl we devise our own type hierarchy. Figure 5.1 shows the
two bread-and-butter type trees we need; abstract types carry the pre�x
“Abstract.” Take the abstract type AbstractMeasure: it has two composite
subtypes: Measure and ProductMeasure with obvious meanings. There exist,
however, well-studied canonical measures such as Gaussian or uniform mea-
sures for which we introduce the abstract subtype AbstractCanonicalMea-
sure. All subtypes of AbstractCanonicalMeasure are shown in Figure 5.1. The

5 Methods can be �elds too. In that case, the type of the �eld is Function.
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5 PolyChaos.jl

AbstractMeasure
Measure

ProductMeasure
AbstractCanonicalMeasure

Beta01Measure
GammaMeasure
GaussMeasure
HermiteMeasure
JacobiMeasure
LaguerreMeasure

LegendreMeasure
LogistsicMeasure

MeixnerPollaczekMeasure
Uniform01Measure
genHermiteMeasure
genLaguerreMeasure

AbstractOrthoPoly
OrthoPoly
MultiOrthoPoly
AbstractCanonicalOrthoPoly

Beta01OrthoPoly
GammaOrthoPoly
GaussOrthoPoly
HermiteOrthoPoly
JacobiOrthoPoly
LaguerreOrthoPoly
LegendreOrthoPoly
LogisticOrthoPoly
MeixnerPollaczekOrthoPoly
Uniform01OrthoPoly
genHermiteOrthoPoly
genLaguerreOrthoPoly

Figure 5.1: Type hierarchy for measures and orthogonal polynomials.

AbstractQuad
EmptyQuad

Quad
AbstractTensor

Tensor

Figure 5.2: Type hierarchy for quadrature rules and tensors.

type hierarchy for orthogonal polynomials mirrors that of measures: there
are generic composite types for univariate polynomials, namely OrthoPoly,
and multivariate polynomials, namely MultiOrthoPoly, and there are canon-
ical orthogonal polynomials. Figure 5.2 adds to the overall PolyChaos.jl type
system quadrature rules via AbstractQuad and tensors of scalar products via
AbstractTensor. We emphasize once more that the type hierarchies from Fig-
ure 5.1 and Figure 5.2 describe a concept and no implementation.

Let us declare �elds for the composite types.

AbstractMeasure—We begin with the composite subtypes of AbstractMeasure
which we assume to be absolutely continuous measures speci�ed in terms of
their domain and weight function; Table 5.3 (page 131) lists their �elds. In
Julia the operator “::” links a type annotation to an expression. For instance
name::String means that the value of the variable name is of the type String.
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The composite typeMeasure has a name and a weight functionw : ⌦ ✓ R!
R with domain⌦ (dom).6 If the weight function is symmetric relative to some
m 2 ⌦, the �eld symmetric is set to true; symmetry relative tommeans that

8x 2 ⌦ : w(m� x) = w(m+ x). (5.2)

For example, the probability density of a Gaussian random variable is sym-
metric relative to the origin. If the weight function has any parameters, then
they are stored in the dictionary pars. All subtypes of AbstractCanonicalMea-
sure follow that pattern, and all �elds are conveniently pre-set. The compos-
ite type ProductMeasure has a weight function which is the product of the
weight functions of the elements of measures, a vector whose elements are
subtypes of AbstractMeasure.

AbstractOrthoPoly—Given an absolutely continuous measure in terms of its
weight (respectively Lebesgue density) what are the monic polynomials �i :

⌦! R that are orthogonal relative to this verymeasure? The subtypes ofAb-
stractOrthoPoly store the system of monic orthogonal polynomials in terms
of the three-term recurrence-coe�cients, see Appendix A.1. We use the com-
posite types from Table 5.3 as �elds of the subtypes of AbstractOrthoPoly. Ta-
ble 5.4 shows the �elds of the composite typesOrthoPoly,MultiOrthoPoly, and
all the subtypes ofAbstractCanonicalOrthoPoly. The purpose of name is obvi-
ous. The integer deg stands for themaxium degree of the polynomials. Rather
than storing the polynomials �i themselves, we store the recurrence coe�-
cients ↵, � that characterize the system of orthogonal polynomials. These
recurrence coe�cients are the single most important piece of information
for the orthogonal polynomials [64]. For several common measures, there
exist analytic formulæ. These are built-in to PolyChaos.jl and should be pre-
ferred to numerical approximations thereof. Nonetheless, PolyChaos.jl can
construct the recurrence coe�cients for arbitrary densities via the Stieltjes
or Lanczos procedure, see Appendix A.1. We use the vectors of recurrence
coe�cients to model the orthogonal polynomials, see Appendix A.1. Also,
each orthogonal polynomial has an underlying measure. Notice how we use
the speci�c canonical measure for the respective canonical orthogonal poly-
nomial. A quadrature may be assigned in the �eld quad. By default, a Gauss

6 The weight w corresponds to the Lebesgue density ⇢ from De�nition 2.4.
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quadrature rule is computed based on the recurrence coe�cients, see Ap-
pendix A.1.

AbstractQuad—What are the �elds of the composite type Quad from Fig-
ure 5.2? These are straightforward, see Table 5.3: the composite type Quad
carries a name, the number of quadrature points, and the nodes and weights
that are vectors of reals. The type EmptyQuad is assigned whenever we wish
to assign no quadrature rule.

AbstractTensor—The composite type Tensor is used to store the results of
scalar products (5.1). The “dimension”m of the tensor is the number of terms
that appear in the scalar product. Let’s assume we setm = 3, hence (5.1) be-
comes h�i1�i2 ,�i3i, then the concrete entry is obtained as Tensor.get([i1,j2,k3]).
For computing and storing the results in Tensor we rely on results from [17].
Speci�cally, we exploit the commutative property of the scalar products. For
example for the scalar products with m = 3 we have

h�i1 ,�i2�i3i = h�i1 ,�i3�i2i = h�i2 ,�i1�i3i

= h�i2 ,�i3�i1i = h�i3 ,�i2�i1i = h�i3 ,�i1�i2i (5.3)

for all i, i2, i3 2 K = {0, 1, . . . , k̂}. This yields a total of
✓
k̂ +m

m

◆

distinct computations.7 The distinct computations of h�i1�i2 ,�i3i exploit
Fubini’s theorem and symmetry of the probability density functions to detect
trivial zeros. All distinct scalar products are stored in sparse arrays. The jth
entry Tj of this array holds the entry

Tj = h�i1 ,�i2 · · ·�imi,

with

j = 1 +

mX

n=1

ink̂
m�n

. (5.4)

7 A naïve computation would yield (k̂ + 1)
m distinct computations.
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With (5.4) we introduce a system of numbers to the basis k̂ to whichwe assign
linear one-based indexing.

Table 5.3: Composite subtypes of AbstractMeasure and their �elds.

Measure
name::String Name of measure
w::Function Weight function w : ⌦! R
dom::Tuple{<:Real,<:Real} Domain ⌦

symmetric::Bool Is w symmetric relative to some m 2 ⌦, hence w(m �
x) = w(m+ x) for all x 2 ⌦?

pars::Dict Additional parameters
ProductMeasure
w::Function Weight function
measures::Vector{<:AbstractMeasure} Vector of univariate measures
Beta01Measure
w::Function 1

B(↵,�) t
↵�1

(1� t)��1

dom::Tuple{<:Real,<:Real} (0, 1)

symmetric::Bool true if ↵ = �

ashapeParameter::Real ↵ > 0

bshapeParameter::Real � > 0

GammaMeasure
w::Function �↵

�(↵) t
↵�1

exp(��t)

dom::Tuple{<:Real,<:Real} (0,1)

symmetric::Bool false
shapeParameter::Real ↵ > 0

rateParameter::Real 1

GaussMeasure
w::Function 1p

2⇡
exp

⇣
�

t2

2

⌘

dom::Tuple{<:Real,<:Real} (�1,1)

symmetric::Bool true
HermiteMeasure
w::Function exp

�
�t2

�

dom::Tuple{<:Real,<:Real} (�1,1)

symmetric::Bool true
JacobiMeasure
w::Function (1� t)↵(1 + t)�

dom::Tuple{<:Real,<:Real} (�1, 1)

symmetric::Bool true if ↵ = �
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ashapeParameter::Real ↵ > �1

bshapeParameter::Real � > �1

LaguerreMeasure
w::Function exp(�t)

dom::Tuple{<:Real,<:Real} (0,1)

symmetric::Bool true
LegendreMeasure
w::Function 1

dom::Tuple{<:Real,<:Real} (�1, 1)

symmetric::Bool true
LogisticMeasure
w::Function exp(�t)

(1+exp(�t))2

dom::Tuple{<:Real,<:Real} (�1,1)

symmetric::Bool true
MeixnerPollaczekMeasure
w::Function 1

2⇡ exp((2�� ⇡)t)|�(�+ it)|2

dom::Tuple{<:Real,<:Real} (�1,1)

symmetric::Bool false
�Parameter::Real � > 0

�Parameter::Real 0 < � < ⇡

Uniform01Measure
w::Function 1

dom::Tuple{<:Real,<:Real} (0, 1)

symmetric::Bool true
genHermiteMeasure
w::Function |t|2µ exp

�
�t2

�

dom::Tuple{<:Real,<:Real} (�1,1)

symmetric::Bool true
muParameter::Real µ > �0.5

genLaguerreMeasure
w::Function t↵ exp(�t)

dom::Tuple{<:Real,<:Real} (0,1)

symmetric::Bool false
shapeParameter::Bool ↵ > �1
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Table 5.4: Composite subtypes of AbstractOrthoPoly and their �elds.

OrthoPoly
name::String Name
deg::Int Maximum degree
↵::Vector{<:Real} Vector of recurrence coe�cients
�::Vector{<:Real} Vector of recurrence coe�cients
measure::AbstractMeasure Underlying measure
quad::AbstractQuad Quadrature rule
MultiOrthoPoly
name::Vector{String} Vector of names
deg::Int Maximum degree
dim::Int Dimension
ind::Matrix{<:Int} Array of multi-indices
measure::ProductMeasure Underlying product measure
uni::Vector{<:AbstractOrthoPoly} Vector of univariate orthogonal polynomials
CanonicalOrthoPoly
deg::Int Maximum degree
↵::Vector{<:Real} Vector of recurrence coe�cients
�::Vector{<:Real} Vector of recurrence coe�cients
measure::CanonicalMeasure Underlying canonical measure
quad::AbstractQuad Quadrature rule
For all CanonicalOrthoPoly 2 {Beta01OrthoPoly, GammaOrthoPoly, GaussOrthoPoly,
HermiteOrthoPoly, JacobiOrthoPoly, LaguerreOrthoPoly, LegendreOrthoPoly, LogisticOrthoPoly,
MeixnerPollaczekOrthoPoly, Uniform01OrthoPoly, genHermiteOrthoPoly, genLaguerreOrthoPoly}

Table 5.5: Composite subtypes of AbstractQuad and their �elds.

Quad
name::String Name
Nquad::Int Number of quadrature points
nodes::Vector{<:Real} Nodes
weights::Vector{<:Real} Weights
EmptyQuad
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Table 5.6: Composite subtype of AbstractTensor and its �elds.

Tensor
dim::Int “Dimension” m of tensor h�i1�i2 · · ·�im�1 ,�im i

T::SparseVector{Float64,Int} Entries of tensor
get::Function Function to get entries from T
op::AbstractOrthoPoly Underlying univariate orthogonal polynomials

1.0 µ1 = 2.1 µ2 = 3.2

0.75

⌧

�(⌧)

Figure 5.3: Probability density function of Gaussian mixture.

5.3 Tutorial example

In order to see PolyChaos.jl in action we consider an example.8 We would
like to compute the polynomials that are orthogonal relative to a so-called
Gaussian mixture on the real axis

�(⌧) =

nX

i=1

wif(⌧ ;µi,�i), (5.5a)

where

f(⌧ ;µ,�) =
1
p
2⇡

exp

✓
�
(⌧ � µ)

2

2�2

◆
(5.5b)

nX

i=1

wi = 1, wi > 0. (5.5c)

8 Inspired by https://timueh.github.io/PolyChaos.jl/stable/gaussian_mixture_model/.
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5.3 Tutorial example

is the probability density of a Gaussian random variable with mean µ and
standard deviation �. We use the generic Julia code to de�ne a Gaussian
mixture of n = 2 components:
f ( x ,µ ,� ) = 1 / s q r t ( 2 ∗⇡ ∗� ^ 2 ) ∗ exp (�( x�µ ) ^ 2 / ( 2� ^ 2 ) )
µ , � , w = [ 2 . 1 , 3 . 2 ] , [ 0 . 3 , 0 . 4 ] , [ 0 . 3 , 0 . 7 ]
� ( ⌧ ) = sum (w[ i ] ∗ f ( ⌧ ,µ [ i ] ,� [ i ] ) for i in 1 : l e ng th (w ) )

Note how close Julia code is to the mathematical syntax, especially by sup-
porting unicode. A plot of the probability density is shown in Figure 5.3. We
use PolyChaos.jl to create the Measure associated with the density (5.5).
using PolyChaos
meas = Measure ( " myMeas " ,� ,(�1 ,1 ) , f a l s e , D i c t ( : µ=>µ , : �=>� , :w=>w ) )

So far we have just declared and de�ned the �elds; no computations have
been done. Let us change that now by creating the family of orthogonal
polynomials up to degree 4.
deg = 4
op = OrthoPoly ( "myOP" , deg , meas ; Nquad =150 , Nrec =5deg )

The keywords Nquad and Nred specify how many Nquad quadrature points
are used internally to compute Nred recurrence relation coe�cients. The
optional keyword discretization speci�es whether to use the Stieltjes or the
Lanczos procedure. What are now the polynomials {�k}

4
k=0 that are orthog-

onal relative to the speci�c density � we de�ned?
showbas i s ( op , sym= "⌧ " , d i g i t s =2 )
1
⌧ � 2 . 8 7
⌧ ^2 � 5 . 5 8 ⌧ + 7 . 3 8
⌧ ^3 � 8 . 5 ⌧ ^2 + 2 3 . 2 ⌧ � 2 0 . 2 2
⌧ ^4 � 1 1 . 3 3 ⌧ ^3 + 4 6 . 6 ⌧ ^2 � 8 2 . 2 5 ⌧ + 5 2 . 4 2

A quadature rule is added automatically. By default PolyChaos.jl uses an
(Nrec-1)-point Gauss quadrature rule based on the recurrence relation co-
e�cients. The nodes and weights can be displayed by calling nw(opq). We can
use the quadrature rule to compute scalar products of the form h�i,�ji.
T2 = Tensor ( 2 , opq )
[ T2 . ge t ( [ i , j ] ) for i in 0 : deg , j in 0 : deg ]
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5 x5 Array { F l oa t 64 , 2 } :
1 . 0 0 . 0 0 . 0 0 . 0 0 . 0
0 . 0 0 . 3 9 3 1 0 . 0 0 . 0 0 . 0
0 . 0 0 . 0 0 . 1 7 9 3 2 2 0 . 0 0 . 0
0 . 0 0 . 0 0 . 0 0 . 1 1 7 1 9 3 0 . 0
0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 9 5 4 8 1 3

The polynomials are indeed orthogonal, because h�i,�ji = �i�ij holds,
where �ij is the Kronecker-delta. The collection of the scalar products h�i,�j�ki

can be computed by Tensor(3, opq), and so on.

Remark 5.1 (Multiple discretization). We presented but one possibility to gen-
erate the orthogonal polynomials. In case the underlyingmeasure can be written
as a sum of individual measures for which dedicated quadrature rules exist, [64,
p. 99] provides a tailored algorithm. This algorithm—which is implemented in
PolyChaos.jl as mcdiscretization —allows to solve integrals of the form

Z b

a
g(⌧)⇢(⌧)d⌧ =

nX

i=1

Z bi

ai

gi(⌧)⇢i(⌧)d⌧.

For our speci�c case of a Gaussian bi-mixture, mcdiscretization requires two
Gauss-Hermite quadrature rules (with the quadrature weights weighted by the
entries in w) together with

n = 2,

a1 = a2 = �1,

b1 = b2 =1,

⇢1(⌧) = w1f(⌧ ;µ1,�1),

⇢2(⌧) = w2f(⌧ ;µ2,�2).

136



6 Case studies

How can uncertainties be propagated through (optimal) power �ow prob-
lems? This was the question permeating Chapter 3 and Chapter 4. Let us
now turn to three case studies that show the presented methods in action.
We demonstrate ���-overloaded probabilistic power �ow according to Sec-
tion 3.3 (Problem 3.2), ���-overloaded optimal power �ow according to Sec-
tion 4.1 (Problem 4.2), and its �� counterpart from Section 4.2 (Problem 4.4).
For all problems we study the same grid under the same uncertainty: a non-
standard uncertainty in terms of a Gaussian mixture. The focus of our pre-
sentation is in line with the main theme from Chapter 2: mappings under
uncertainty. We focus on showing the probability density functions of the
obtained solutions, see Remark 2.9. The main purpose of our case study is
not to drown in details, but to solve di�erent power �ow problems under un-
certainty in an equivalent setting, thus allowing to show how their solutions
di�er.

After having speci�ed the power system and the uncertainty in the following
Section 6.1, we adhere to the same template for the three case studies:

– construct the orthogonal basis functions;

– derive the ��� coe�cients for bus speci�cations;

– solve the ���-overloaded problem, and visualize the solution.

Clearly, the scope of our case studies could be extended to further interest-
ing questions: What about exactness of the power �ow equations for all re-
alizations of the uncertainties [126]? What about exactness of the moments
obtained from ��� [117, 125]? What about larger systems [117, 121]? What
about more uncertainties [117, 121]? The interested reader is kindly referred
to the respective references [117, 121, 125, 126].
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1 2

34

1

2
3 4

5

Figure 6.1: 4-bus system inspired by [78].

Table 6.1: Branch parameters in per-unit
for 4-bus system from Figure 6.1.

Impedance Admittance
Line r x g b

1 1-2 0.01008 0.0504 3.8156 -19.0781
2 1-3 0.00744 0.0372 5.1696 -25.8478
3 1-4 0.00744 0.0372 5.1696 -25.8478
4 3-2 0.01272 0.0636 3.0237 -15.1185
5 3-4 0.01004 0.0601 2.7129 -16.2127

Base: 100 MVA, 230 kV

The Julia code for this case study is available at https://github.com/timueh/
PowerFlowUnderUncertainty. All units are normalized to per-unit values;
angles are given in radians; the cost function has no physical/monetary unit.

6.1 Setup

We study the 4-bus system from Figure 6.1 with generators located at buses
1 and 3, and loads located at buses 2 and 4.1 We assign bus 1 to be the slack
bus; it is controlled to have a unit voltage magnitude and a zero voltage an-
gle. There is no power demand at any of the generators, and conversely
there is no power injection at any of the loads. The branch parameters and
base values are listed in Table 6.1; their choice is inspired by [78]. We intro-
duce a single source of uncertainty at the load at bus 2: the negative active
power �p2 is assumed to have a ��� equal to the density (5.5) from Sec-
tion 5.3, i.e. ⇢�p2(⌧) = �(⌧).2 Assuming a constant power factor of 0.85
we have that q2 = 0.85p2, hence the reactive power has the same ��� mod-
ulo stretching and normalization, i.e. ⇢�q2(⌧) = �(⌧/0.85)/0.85. Figure 6.2
shows the ��� for the uncertain load at bus 2 based on 5,000 samples.3

1 It is the same power system we used to demonstrate ��� (see Figure 3.3) and ��� under un-
certainty (see Figure 4.1).

2 Note that we count power demand negative; it is a sink term.
3 Although we have an analytic expression for both ���s we choose to display the ��� created
from samples, because we cannot expect to have closed-form expressions for the ���s for the
results of ��� or ��-���.
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Figure 6.2: probability density function (���) of active and reactive power at bus 2.

All deterministic problems are formulated in Julia using JuMP [51]. We
choose a �at-start as an initial condition which means setting all voltage
phasors to real unity. We present the numerical values of the ��� coe�-
cients for the active and reactive power for both generators, and then plot
histograms of the ���s of quantities of interest based on the 5,000 samples
we used to generate the ���s in Figure 6.2.

6.2 Probabilistic power flow

We �rst need to assign further bus speci�cations: the generator at bus 4 is a
�� bus, and the loads at buses 2 and 4 are �� buses, henceN = {1, 2, 3, 4} =

N�� [N�� [N�� = {1} [ {3} [ {2, 4}. The �� bus injects an active power
of 0.84 whilst being controlled to a voltage magnitude of 1.04. The load at
bus 4 consumes an active power of 1.2, and a reactive power of 1.02; hence
the power factor is 0.85. Table 6.2 summarizes the bus speci�cations and lists
the known ���s; deterministic values are modeled to have a ��� equal to a
shifted Dirac-delta.

In order to apply the solution methodology from Problem 3.2 we need to
satisfy Assumption 3.3: hence �nd the orthogonal basis, and determine the
��� coe�cients.

Construction of orthogonal basis

The driving uncertainty is the uncertain load at bus 2, see Table 6.2. Its den-
sity follows the Gaussian mixture density from (5.5). For this density we have
computed the respective orthogonal polynomials in Section 5.3, hence the ba-
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Table 6.2: Uncertainty description for Figure 6.1; � stands for a Dirac-delta pulse.

Bus Type Probability density function for all ⌧ 2 (�1,1)

1 Slack ⇢e1 (⌧) = �(⌧ � 1) ⇢f1 (⌧) = �(⌧)

2 �� ⇢�p2 (⌧) = �(⌧) ⇢�q2 (⌧) = �(⌧/0.85)/0.85

3 �� ⇢p3 (⌧) = �(⌧ � 0.84) ⇢v3 (⌧) = �(⌧ � 1.04)

4 �� ⇢�p4 (⌧) = �(⌧ � 1.2) ⇢�q4 (⌧) = �(⌧ � 1.02)

sis functions {�k}
k̂
k=0 are known. For a maximum total degree of d = 4 the

dimension of the orthogonal polynomial basis is k̂ + 1 = d+ 1, see (2.25).

PCE coefficients for bus specifications

Let us continue with the ��� coe�cients for the bus speci�cations. This is
straightforward for all deterministic quantities: all coe�cients except for the
zero-order coe�cient are zero. The only non-zero �rst-order ��� coe�cients
appear for the uncertain load at bus 2: by construction of the basis the �rst-
order ��� coe�cient is unity for the active power.4 The ��� coe�cients of
the reactive power q2 are the ones from the active power p2 scaled by the
power factor of 0.85. The ��� coe�cients of all higher-order coe�cients k 2
{2, . . . , k̂} = {2, . . . , 4} are zero. We summarize the ��� coe�cients for the
bus speci�cations as follows
2

6664

ê1,0 ê1,1 ê1,k f̂1,0 f̂1,1 f̂1,k

p̂2,0 p̂2,1 p̂2,k q̂2,0 q̂2,1 q̂2,k

p̂3,0 p̂3,1 p̂3,k v̂3,0 v̂3,1 v̂3,k

p̂4,0 p̂4,1 p̂4,k q̂4,0 q̂4,1 q̂4,k

3

7775
=

2

6664

1.00 0.00 0.00 0.00 0.00 0.00

�2.87�1.00 0.00�2.44�0.85 0.00

0.84 0.00 0.00 1.04 0.00 0.00

�1.20 0.00 0.00�1.02 0.00 0.00

3

7775
,

where k 2 {2, . . . , k̂} are the indices relative to degrees greater than one.

4 PolyChaos.jl provides the function convert2a�inePCE to compute the zero- and �rst-order ���
coe�cient for a random variable relative to a given orthogonal basis.
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Table 6.3: ���-based solution for generators for ���.

kth ��� coe�cient Moments
x 0 1 2 3 4 E(x)

p
V(x)

p1 3.364 1.077 0.019 0.002 0.00023 3.364 0.676
q1 0.276 0.597 0.053 0.005 0.00064 0.276 0.375
p3 0.84 0.0 0.0 0.0 0.0 0.84 0.0
q3 3.859 0.641 0.042 0.004 0.00055 3.859 0.402

2 4
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Figure 6.3: ���s of active power at slack bus 1 and reactive power at buses {1, 4}.
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Figure 6.4: (���) ��� of voltage magnitude and angle at �� buses.
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Figure 6.5: (���) ���s of current magnitude for all lines.
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Numerical solution

The ���-overloaded ��� problem according to Problem 3.2 has a total of
4Nb(k̂ + 1) = 80 decision variables. Ipopt is able to solve the feasibility
problem in about 20ms. Table 6.3 lists the resulting numerical values of the
��� coe�cients for the active and reactive power at the generators: there
are non-zero higher-order coe�cients due to nonlinearity of the �� power
�ow equations. Based on the numerical values—especially the moments—we
see that bus 1 accounts for the larger share of active power generation while
bus 3 takes over the reactive power share. To get a better visual representa-
tion of the solution we study the ���s of quantities of interest based on the
5,000 samples we used to generate the ���s in Figure 6.2.

Figure 6.3 shows the ���s of the generated active power at the slack bus, and
the generated reactive power at both generation buses.5 In terms of active
power the generator at the slack bus 1 has to accommodate the entire uncer-
tainty originating at the load at bus 2. The reactive power injections appear
similar in terms of their distributions. We see that the bi-modal ��� of the
uncertainty at bus 2 induces a bi-modal ��� of the generated powers.

What is the e�ect on the voltages at the �� buses? This is shown in Fig-
ure 6.4: corresponding to the peak in demand at 3.2 there is a peak in the
voltage at around 0.91. The other peak in the demand at 2.1 corresponds to
the voltage peak at around 0.95. The phase is negative because the load is
drawing power. The deterministic load at bus 4 shows a qualitatively similar
behavior: two peaks in the voltage magnitudes and the angle are induced by
the uncertain demand at bus 2. However, the voltage magnitude variation
at bus 4 is much smaller—essentially constant—compared to bus 2. For both
�� buses the phase angles are negative as they are drawing power from the
grid. Figure 6.5 shows the ���s of the current magnitudes for all branches.
We see the bi-modality in all lines; however line 5 has an extreme �rst peak
at around 0.89. It is the line that connects the �� bus 3 to the determinis-
tic load 4. There are two e�ects: �rst the voltage magnitude and the power
injection are constant for the generator at bus 4, and second the voltage mag-
nitude variation at bus 4 is also small because it has a deterministic load. As

5 The power injection for the generator at bus 3 is not displayed as it is deterministic at 0.84,
see Table 6.2 and Table 6.3.
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6.3 Chance-constrained AC optimal power �ow

Table 6.4: ���-based solution for generators for ���.

kth ��� coe�cient Moments
x 0 1 2 3 4 E(x)

p
V(x)

p1 1.22 0.3114 0.005694 0.0004417 4.51e-5 1.22 0.1953
q1 1.883 0.4084 -0.03221 -0.009274 -0.00179 1.883 0.2565
p3 2.971 0.7651 0.01283 0.001229 0.0001456 2.971 0.4797
q3 2.189 0.8255 0.1251 0.01767 0.002753 2.189 0.5203

Table 6.5: ���-based solution for generators for ��-���.

kth ��� coe�cient Moments Constraint satisfaction
x 0 1 2 3 4 E(x)

p
V(x) Required Achieved

p1 1.411 0.801 0.01346 0.001128 0.0001986 1.411 0.5022 - -
q1 1.9 0.2419 0.05474 -0.03452 0.007012 1.9 0.1539 99.0 % 99.9 %
p3 2.778 0.2713 0.005252 0.0004625 8.105e-5 2.778 0.1701 95.0 % 96.7 %
q3 2.163 0.9697 0.03892 0.04255 -0.00561 2.163 0.6084 - -

the current magnitude is proportional to the magnitude of the di�erence of
the voltages—which is small for line 5—there is just a bit of �uctuation.

6.3 Chance-constrained AC optimal power flow

For ��� there are no degrees of freedom. In contrast, ��� introduces degrees
of freedom such that operational costs can be minimized and inequality con-
straints can be considered. We keep the �� bus speci�cations and the slack
bus speci�cation from the previous Section 6.2, but drop the bus speci�ca-
tion for the �� bus 3. In order to solve chance-constrained ��� according
to Problem 4.2 we need to satisfy Assumption 4.2: we need to compute the
orthogonal basis, and to parameterize the buses in terms of given ��� coe�-
cients.

Construction of orthogonal basis

We leave the uncertainty model untouched; the basis from ��� from Sec-
tion 6.2 is used.
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Figure 6.6: (���) ���s of active power and reactive power at buses {1, 4}. ��� solution in light
gray.
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Figure 6.7: (���) ���s of voltage magnitude at buses {2, 3, 4}. ��� solution in light gray.
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Figure 6.8: (���) ���s of active power for all lines. ��� solution in light gray.

144



6.3 Chance-constrained AC optimal power �ow

0 1 2 3

0

1

2

p1

⇢p1 (p1)

1.5 2 2.5

0

2

4

6

q1

⇢q1 (q1)

2 3 4

0

1

2

p3

⇢p3 (p3)

0 2 4

0
0.2
0.4
0.6
0.8

q3

⇢q3 (q3)

Figure 6.9: (��-���) ���s of active power and reactive power at buses {1, 4}. Unconstrained ���
solution in light blue.
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Figure 6.10: (��-���) ���s of voltage magnitude at buses {2, 3, 4}. Unconstrained ��� solution
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Figure 6.11: (��-���) ���s of active power for all lines. Unconstrained ��� solution in light blue.

145



6 Case studies

PCE coefficients for bus specifications

We recycle the results from ��� from Section 6.2:6

2

64
ê1,0 ê1,1 ê1,k f̂1,0 f̂1,1 f̂1,k

p̂2,0 p̂2,1 p̂2,k q̂2,0 q̂2,1 q̂2,k

p̂4,0 p̂4,1 p̂4,k q̂4,0 q̂4,1 q̂4,k

3

75=

2

64
1.00 0.00 0.00 0.00 0.00 0.00

�2.87�1.00 0.00�2.44�0.85 0.00

�1.20 0.00 0.00�1.02 0.00 0.00

3

75 ,

where k 2 {2, . . . , k̂} are the indices relative to degrees greater than one.
We keep only the bus speci�cations that leave no degrees of freedom.

Numerical solution

We consider quadratic costs (4.14) for the generators with coe�cients7

"
c2,1 c1,1

c2,3 c1,3

#
=

"
2500 100

1000 200

#
. (6.1)

The ���-overloaded nonlinear program (���) from Problem 4.2 has a total of
4Nb(k̂ + 1) = 80 unknowns. Ipopt is able to solve the ��� in about 25ms.

Table 6.4 shows the numerical values of the ��� coe�cients for the active and
reactive power at the generators. Based on the moments we see that bus 1
injects less active power compared to bus 2 because it is more expensive. The
optimal value, hence the expected total cost, is 13,588.37; in comparison, the
��� solution results in a total expected cost of 30,664.30. We are interested in
how the ���s of the generators have changed compared to the case of plain
���. This is shown in Figure 6.6: the light gray ���s correspond to the ���s
from ��� from Section 6.2, see Figure 6.3. Clearly, the active power injection
at bus 1 is reduced compared to ���; and it is ramped up at the other generator
that was previously set to a �xed active power injection. For the reactive
power we see that bus 1 ramps up and bus 3 ramps down in relation to ���.

6 Note that we do not need to distinguish the buses according to (4.2), because each bus is either
a generator or a load.

7 Recall that we consider the cost to be dimensionless.
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6.4 Chance-constrained DC optimal power �ow

The e�ect on the voltage magnitudes is shown in Figure 6.7: the magnitude
at bus 3 is no longer constant. A consequence of bus 3 now being �exible
in its power injections—and being cheap—is that the (directed) power �ow
across line 2—which connects bus 1 to bus 3—is reversed compared to ���,
see Figure 6.8. Also, more power is delivered across line 4 from bus 3 to the
uncertain load at bus 2.

Let us now consider two speci�c engineering limits in terms of the reformu-
lated chance constraints from Problem 4.2

E(q1) + �("q)
p

V(q1)  q
max
1 = 2.30, (6.2a)

E(p3) + �("p)
p

V(p3)  p
max
3 = 3.05. (6.2b)

We hence want to constrain the maximum reactive power generation at bus 1
and the maximum active power generation at bus 3. Motivated by the rela-
tion �(") = �

�1
(1 � ") that holds for Gaussian random variables, see Re-

mark 4.2 we choose �("q) = 2.6 and �("p) = 1.6. For (6.2) this amounts
to "q = 0.99 and "p = 0.95. The numerical results of this now chance-
constrained ��-��� are shown in Table 6.5 for the ��� coe�cients of the ac-
tive and reactive power of the generators. Table 6.5 also shows the empir-
ical constraint satisfaction: the required constraint satisfaction is achieved.
Hence, the Gaussian heuristic is good enough for this speci�c example. The
total expected cost becomes 14,052.92, an increase of about 3.42% compared
to the unconstrained solution. Figure 6.9 shows the ���s of the injected pow-
ers compared to the ���s from the previous ��� solution. As intended, the
reactive power at bus 1 is decreased, so is the active power at bus 3. The small
e�ect on the voltage magnitudes is shown in Figure 6.10. Again, the active
power line �ows are more sensitive, especially the �ows across lines 2 and 5,
as shown in Figure 6.11.

With the inequality constraints the time to solve the ���-overloaded ��� be-
comes 55ms.

6.4 Chance-constrained DC optimal power flow

Let us study the chance-constrained ��-��� problem under �� conditions, see
Assumption 4.3. �� conditions sacri�ce physical exactness for computational
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6 Case studies

Table 6.6: ���-based solution for generators for chance-constrained ��-���.

kth ��� coe�cient Moments Constraint satisfaction
x 0 1 2 3 4 E(x)

p
V(x) Required Achieved

p1 1.334 0.687 0.0 0.0 0.0 1.334 0.431 - -
p3 2.736 0.313 0.0 0.0 0.0 2.736 0.196 95.0 % 96.8 %
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Figure 6.12: (��-��-���) ���s of active power at buses {1, 4}. ��-��� solution in light red.
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Figure 6.13: (��-��-���) ���s of voltage angles at buses {2, 3, 4}. ��-��� solution in light red.
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Figure 6.14: (��-��-���) ���s of active power for all lines. ��-��� solution in light red.

tractability. Recall that for �� power �ow the grid state is given by the active
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6.4 Chance-constrained DC optimal power �ow

power and the voltage angles, shrinking the number of decision variables to
one half.

Before we can solve Problem 4.4 we need to satisfy Assumption 4.2: we have
to construct the orthogonal basis, and to parameterize the buses in terms of
given and exact ��� coe�cients.

Construction of orthogonal basis

We leave the uncertainty model untouched; the basis from ��� from Sec-
tion 6.2 is used.

PCE coefficients for bus specifications

Borrowing from the previous ��� problem from Section 6.2 we �nd
"
p̂2,0 p̂2,1 p̂2,k

p̂4,0 p̂4,1 p̂4,k

#
=

"
�2.87�1.00 0.00

�1.20 0.00 0.00

#
,

where k 2 {2, . . . , k̂} are the indices relative to degrees greater than one.
Note that no reactive power bus speci�cations are required due to the ��
conditions.

Numerical solution

We use the cost coe�cients from (6.1). Mosek is able to solve the ���-
overloaded second-order cone program (����) from Problem 4.4 in 1.6ms.
Table 6.6 shows the numerical values of the ��� coe�cients for the active
power at the generators, yielding an objective value of 13,117.51. Comparing
these �gures, especially the moments, to their �� counterparts from Table 6.5
we see that the values for order zero and order one are close; the ��� coe�-
cients of order k � 2 are zero in the �� case, because the power �ow satisfac-
tion is achieved with just an a�ne basis. Figure 6.12 shows the histograms
for the injected power at buses 1 and 3 in comparison to their �� counter-
parts: there is a signi�cant overlap. Di�erences for the �� solution become
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6 Case studies

more apparent for the voltage angles, shown in Figure 6.13, and especially
the power �ows, shown in Figure 6.14.

6.5 Comparison

Table 6.7 provides a comparison of the solution characteristics for all consid-
ered problems. Note that the number of variables for ���, ���, and ��-���
should read 4Nb(k̂ + 1) = 80, but we need not de�ne decision variables for
the active and reactive power ��� coe�cients at buses 2 and 4, reducing the
number to 60 unknowns. The same argument holds for the �� case. From
Table 6.7 we clearly see how an increasing problem complexity corresponds
to an increasing number of iterations and increasing solution times. The ��-
��� problem under �� conditions exhibits a speci�c problem structure (����)
for which there exist tailored solution algorithms, thus reducing the com-
putation time. The computational advantages of �� conditions are evident.
However, it is highly case-dependent whether or not the deviations from the
“true” �� solution are acceptable.

Table 6.7: Comparison of solution characteristics.

Case Problem type Variables Solver Objective Iterations Time

��� Feasibility 60 Ipopt 30,664.30 4 20ms
��� ��� 60 Ipopt 13,588.37 7 25ms
��-��-��� ��� 60 Ipopt 14,052.92 18 55ms
��-��-��� ���� 10 Mosek 13,117.51 9 1.6ms
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7 Summary and outlook

While societies are continuously increasing the share of renewable energy
sources, they are penetrating the power system with considerable uncertain-
ties: no longer is it certain where and when and how much electrical en-
ergy is being supplied. This leads to intriguing research questions—which the
present thesis sheds light upon. Most importantly we ask: How to formulate
(optimal) power �ow problems rigorously in the presence of uncertainties?
How to solve these problems coherently? Figure 1.1 from page 5 summa-
rizes our approach: �rst, study generic mappings under uncertainty using
the Hilbert space technique polynomial chaos expansion (���), and then ap-
ply these ideas to speci�c (optimal) power �ow problems. To deal with the
computational aspects of (intrusive) ��� we created the Julia package Poly-
Chaos.jl. It allows to compute orthogonal polynomials, quadrature rules, and
polynomial chaos expansions of random variables. As with anything in re-
search and science: a single thesis can cover only so much. There are nu-
merous open threads worth pursuing in the future. We examine the previous
chapters in light of scienti�c contributions and open topics.

Chapter 2 – Mappings under uncertainty

Given a mapping, and given random variables, we show how to propagate
these random variables through the mapping to obtain image random vari-
ables. Our method of choice is the Hilbert space technique called ���. The
theoretical foundations of ��� lie with measure theory, Hilbert space theory,
and orthogonal polynomials. We discuss the core concepts of each topic and
provide a self-contained introduction to ���. Our contributions are twofold:
pedagogically, we provide a thorough problem formulation of mappings un-
der uncertainty; scienti�cally, we study ��� truncation errors that result from
using not in�nitely many but �nitely many coe�cients to represent random
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7 Summary and outlook

variables. For explicit polynomial or non-polynomial mappings we derive
error bounds. Possible extensions for future work include:

– Quantify ��� truncation errors for implicit mappings.

– Quantify ��� truncation errors for non-intrusive methods.

– Assess whether and how a decaying truncation error can be used for
stability in systems and control.

Chapter 3 – Power flow under uncertainty

This chapter draws the attention from abstract mappings to concrete ex-
amples from power systems: how to solve power �ow problems in the
presence of uncertainties. We study the generic �� power �ow problem as
well as power �ow for radial grids and so-called optimal adaptive lineariza-
tions. These linearizations provide easy-to-evaluate proxies to the full ��
power �ow solution whilst accounting for operating ranges modeled by ran-
dom variables. We show how ��� helps with all these intrinsically in�nite-
dimensional problems: it renders them �nite-dimensional by reformulating
the problems in the ��� coe�cients. The methods and contributions from
this chapter are among the �rst ���-based formulations of power �ow under
uncertainty. The upper half of Table 7.1 provides an in-depth overview on
how we reformulate in�nite-dimensional power �ow problems under uncer-
tainty as �nite-dimensional counterparts, with the help of ���. Besides the
names and spaces of the decision variables, Table 7.1 also provides a short
discussion about the kind of the problem, the number of decision variables,
and whether zero truncation errors are attainable.

It is especially the numerics of ���-overloaded problem formulations that
deserve future attention. We envision improvements as follows:

– Tailor algorithms to solving large-scale ���-overloaded ��� problems.

– Exploit the decay of the ��� coe�cients in numerical routines.

– Use pre-conditioning techniques for ���-overloaded ��� problems.

– Consider other error metrics for optimal adaptive linearizations.
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7 Summary and outlook

Chapter 4 – Optimal power flow under uncertainty

Building on the problem formulations from Chapter 3, Chapter 4 turns from
power �ow problems to optimal power �ow problems. This leads to the
question: how to operate electrical grids optimally despite uncertainties and
whilst respecting engineering limits? We apply ��� to three speci�c prob-
lems: ��-��� under uncertainty, ��-��� under uncertainty, ��-��� under
uncertainty in the multi time-step setting. To reformulate the optimization
problems in the presence of uncertainty, we introduce chance constraints and
their deterministic moment-based reformulations. To the best of the author’s
knowledge, ��� is currently the only method that allows to tackle the full
nonlinear �� power �ow equations together with moment-based reformula-
tions of individual chance constraints. In the �� setting ��� allows to for-
mulate the ��� problem under uncertainty as a second-order cone program
(����). The lower half of Table 7.1 provides an in-depth overview on how we
reformulate in�nite-dimensional optimal power �ow problems under uncer-
tainty as �nite-dimensional counterparts, with the help of ���. Besides the
names and spaces of the decision variables, Table 7.1 also provides a short
discussion about the kind of the problem, the number of decision variables,
and whether zero truncation errors are attainable.

Similar to the open issues for Chapter 3, we sense future improvements es-
pecially with the numerics of ���-overloaded ��� problems:

– Derive tailored constraint generation algorithms for the ���-overloaded
��-��� problem.

– Exploit the decay of the ��� coe�cients in numerical routines.

– Use pre-conditioning techniques for ���-overloaded ��� problems.

– Derive non-intrusive schemes to solving ���-overloaded ��� problems.

– Derive tailored constraint generation algorithms for the ����s for ���
under �� conditions.

– Explore the connection between ��� and distributionally robust chance
constraint reformulations.
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7 Summary and outlook

– Exploit ��� with ��-��� problems that use linearized �� power �ow
equations and/or convex relaxations.

– Incorporate explicit dependencies between policies for generating units,
e.g. between active and reactive power.

– Employ di�erent cost functions, e.g. accounting for reserve costs.

– Introduce mixed-integer variables to ���-overloaded problems to ac-
count for security-constrained ���.

Chapter 5 – PolyChaos.jl

Polynomial chaos requires e�cient software to compute orthogonal bases
and (tensorized) scalar products. We created PolyChaos.jl, a software package
written in the Julia programming language that allows to compute orthog-
onal polynomials, quadrature rules, and polynomial chaos expansions. The
package is open source and available free of charge. The founding principle
of PolyChaos.jl is to allow to compute orthogonal polynomials for arbitrary,
user-speci�ed probability density functions (or generally absolutely contin-
uous, non-negative measures). The package comes with a straightforward
syntax and a comprehensible online documentation. As with any (numerical)
software, possible future improvements or additional features are multifold:

– Add support for non-intrusive ��� such as collocation.

– Add automated plotting functionality.

– Provide functionality for code generation for speci�c classes of func-
tions such as polynomials or linear ordinary di�erential equations.

– Add basis-adaptive and sparse ���.

– Add sparse quadrature rules.

– Add support for advanced sampling techniques.

– Extend the documentation and collect more use cases.
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Chapter 6 – Case studies

This chapter provides case studies for three selected settings: power �ow un-
der uncertainty, ��-���, and ��-���. For all settings we study the same grid
under the same uncertainty. This allows to compare the results straightfor-
wardly, for instance comparing the accuracy of ��� for the �� and the ��
setting. Although we provide references to larger test cases in the chapter,
we are aware that test cases with many buses and many uncertainties are
desirable. Assuming that some of the aforementioned numerics-related im-
provements for ��� were successful, future case studies can be extended to
account for more general problems. However, these problems may require to
revisit problem formulations too:

– Combine �� and ���� lines.

– Apply distributed optimization to solve problems region-wise.

– Add contingencies and N-1 constraints.

– Compare chance constraint reformulations (individual vs. joint).

– Investigate coupled transmission systems and distribution systems.

The modern world wants to uphold the luxury and comfort of omniscient
electrical energy whilst reducing the dependency on naturally limited fossil
fuels. If this thesis contributed in the faintest way, then it has paid its dues.
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A.1 Orthogonal polynomials

Orthogonal polynomials possess remarkable properties:

– If the absolutely continuousmeasureµ is symmetric with respect to the
origin, that is its density satis�es ⇢(t) = ⇢(�t), then �k is an even/odd
function in case k is even/odd [64, Thm 1.17].

– All zeros of �k for k 2 N are real, simple, and located in the interior
of the support of µ [64, Thm 1.19]; they can be computed as the eigen-
values of a symmetric tridiagonal matrix [64, 71]. In case the measure
is symmetric with respect to a point that is not the origin, the coor-
dinates can be shifted such that one attains symmetry with respect to
the origin in the shifted coordinates.

– The zeros of �k+1 alternate with those of �k [64, Thm 1.20].

– Let Pµ = {�k}k2K satisfy De�nition 2.13, then

�k+1(⌧) = (⌧ � ↵k)�k(⌧)� �k�k�1(⌧) 8k 2 K

�0(⌧) = 1,

��1(⌧) = 0,

(A.1a)

where

↵k =
h⌧�k,�ki

h�k,�ki
, 8k 2 K, (A.1b)

�k =
h�k,�ki

h�k�1,�k�1i
, 8k 2 K \ {0}, (A.1c)
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are called the recurrence coe�cients. It is convenient to de�ne1

�0 = h�0,�0i. (A.1d)

For many well-known densities the recurrence coe�cients of the re-
spective orthogonal polynomials are known in closed form. Users can
get a lot ofmileage from these textbook de�nitions, see e.g. [64]. In case
the recurrence coe�cients are not known, there are numerical proce-
dures to compute the recurrence coe�cients for absolutely continuous
measures such as the Stieltjes procedure, the Lanczos procedure, or the
(modi�ed) Chebyshev algorithm [64].

According to [64] “[the] three-term recurrence relation [(A.1)] [. . . ] is ar-
guably the songle most important piece of information for the constructive
and computational use of orthogonal polynomials.” The relation (A.1) can
be used for evaluating the polynomials, but more importantly to compute
quadrature rules, see Appendix A.2.

It is fair to ask: given an absolutely continuous measure dµ(⌧) = ⇢d⌧ , what
are the respective orthogonal polynomials? The Stieltjes procedure and the
Lanczos procedure are two numerical methods that answer this question. As
usual with numerical methods we need to discretize, hence we identify with
an absolutely continuous measure its discretized counterpart µN in terms of
N pairs of nodes and weights {(�i, ti)}i2{1,...,N}.

Stieltjes procedure

The Stieltjes procedure—dating back to ideas from 1884—is an iterativemethod
to compute the three-term recurrence coe�cients of orthogonal polynomi-
als. The idea is to evaluate the expressions from (A.1) successively based on
the insight: to compute ↵k we need to know the kth basis polynomial, and to
compute �k we need to know the kth and the (k � 1)

th basis polynomials.

1 For probability measures we have �0 = 1 by de�nition.
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By de�nitionwe know �0, see (A.1d). Starting from �0 = 1, the coe�cient↵0

can be computed from (A.1b),

↵0 =
h⌧�0,�0i

h�0,�0i
=
h⌧, 1i

�0
.

For probability density functions we have ↵0 = E(⌧). Knowing ↵0 and �0

we can compute �1 from (A.1a). With this we can go back to (A.1b) and com-
pute↵1, and from (A.1c) we obtain �1. Knowing↵1 and �1 we obtain �2 from
(A.1a). We continue to cycle through the de�nition of the recurrence coe�-
cients (A.1b) and (A.1a), and the computation of the basis polynomial (A.1a)
until a desired degree is reached.

Usually, the Stieltjes procedure relies on a quadrature rule to solve all occur-
ring integrals—which is but a discretization of the original absolutely contin-
uous measure. As pointed out in [64], it is advisable to choose the order of
the quadrature rule much larger than the number of desired recursion coe�-
cients. Potential over- or under�ows can be avoided by scaling the quadrature
weights or the basis polynomials.

Lanczos procedure

The Lanczos algorithm allows to tri-diagonalize a given symmetric ma-
trix A [70, Ch. 9]. More speci�cally, a real symmetric matrix A allows the
transformation Q

>
AQ = T , where Q is orthogonal and T is symmetric and

tridiagonal. Lanczos’ algorithm produces the matrices Q and T , given A. In
light of orthogonal polynomials, the Lanczos proceduremeans to constructA
such that the output of the Lanczos algorithm is the Jacobi matrix (A.6), from
which the recurrence coe�cients can be read o�. As shown in [64, Section
2.2.3.2], the matrix A contains the nodes and the weights of the discretized
measure µN :

A =

2

6666664

1
p
t1
p
�2 . . .

p
�N

p
�1 t1 0 0
p
�2 0 t2

...
. . . 0

p
�N 0 0 tN

3

7777775
, (A.2)
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yielding the tridiagonal matrix

T =

"
1

p
�0e

>

1
p
�0e1 JN (µN )

#
, (A.3)

with e = [1 0 . . . 0]
>
2 RN , and JN (µN ) is the N -point Jacobi matrix for

the discretized measure µN , see (A.6).

For details on the Lanczos algorithm itself we refer to the dedicated literature,
for instance [70, Ch. 9] or [77].

A.2 Gauss quadrature

This section is based on [64, 65, 69, 71].

Consider an absolutely continuous positive measure µ on the real axis whose
moments

mr =

Z

R
⌧
r
dµ(⌧) (A.4)

exist for all r 2 N0. An n-point Gauss quadrature rule for the measure µ is
given by the pairs {(�i, ti)}

n
i=1 such that

Z

R
f(⌧)dµ(⌧) =

nX

i=1

�if(ti) +Rn(f) (A.5)

with—and that is key to making a quadrature rule a Gauss quadrature rule—
Rn(f) = 0 whenever f is a polynomial of degree  2n � 1. That means
an integral involving a polynomial of degree up to 2n � 1 = 5 can be com-
puted exactly by a weighted sum of just n = 3 terms. And how to �nd the
Gauss quadrature rule? It turns out that the nodes {ti}ni=1 are the zeros of
the univariate monic polynomial �n of degree n that is orthogonal relative
to the measure µ [64, 154]. Recall from Appendix A.1 that these zeros are
real, simple and located in the interior of the support of the measure. Both
the nodes ti and the correspondingweights �i can be obtained elegantly from
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the solution of an eigenvalue problem that involves the three-term recurrence
relation. We de�ne the n-point symmetric tridiagonal Jacobi matrix

Jn(µ) =

2

6666666664

↵0
p
�1 0

p
�1 ↵1

p
�2

p
�2 ↵2

p
�3

. . .
p

�n�1

0
p
�n�1 ↵n�1

3

7777777775

, (A.6)

where (↵i,�i) for i 2 {0, . . . , n�1} are the recurrence coe�cients of the sys-
tem of orthogonal polynomials, see Appendix A.1. Then, the nodes {ti}ni=1

are the eigenvalues of Jn(µ), and the weights {�i}
n
i=1 satisfy

�i = m0v
2
i,1 (A.7)

with vi,1 being the �rst component of the normalized eigenvector vi corre-
sponding to the eigenvalue ti, hence Jn(µ)vi = tivi for all i 2 {1, . . . , n} [64,
65, 71, 154]. In case the integrand is not polynomial, but a smooth function,
then there exist bounds on the remainder term Rn(f) from (A.5) [65].

There exist variants of the classic Gauss quadrature that consider speci�c
points in the quadrature rule in case the support is �nite. For example, a
Gauss-Radau quadrature rule is an (n+1)-point quadrature rule of the form

Z b

a
f(⌧)dµ(⌧) = �0f(a) +

nX

i=1

�if(ti) +R
a
n(f) (A.8)

where R
a
n(f) = 0 holds for all functions f that are polynomials of degree

at most 2n. Interestingly enough, the nodes and weights (�i, ti)
n
i=0 with

t0 = a can again be computed by solving an eigenvalue problem. Consider
a modi�ed Jacobi matrix

J
a
n+1(µ) =

"
Jn(µ)

p
�nen

p
�ne

>

n a� �n
�n�1(a)
�n(a)

#
, (A.9)
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where e>n = [0 0 . . . 1] 2 Rn is the nth unit vector of Rn. Then, the nodes
{ti}

n
i=0 are the eigenvalues of the modi�ed Jacobi matrix J

a
n+1(µ), and the

weights {�i}
n
i=0 are again characterized by the relation (A.7) (in terms of

the eigenvectors of Ja
n+1(µ)). The Gauss-Radau quadrature can similarly be

de�ned to include the end point b of the support rather than the beginning
point a [65, 69]. If we are to include both end points a and b of the support,
then we obtain Gauss-Lobatto quadrature rules. These are (n + 2)-point
quadrature rules
Z b

a
f(⌧)dµ(⌧) = �0f(a) +

nX

i=1

�if(ti) + �n+1f(b) +R
a,b
n (f) (A.10)

for which R
a,b
n (f) = 0 for integrands f that are polynomials of degree at

most 2n+1. Once again, the nodes and weights (�i, ti)
n+1
i=0 with t0 = a and

tn+1 = b can be computed by solving an eigenvalue problem. Consider the
modi�ed Jacobi matrix

J
a,b
n+2(µ) =

2

4 Jn+1(µ)

q
�
L
n+1en+1q

�
L
n+1e

>

n+1 ↵
L
n+1

3

5 , (A.11)

where ↵L
n+1 and �

L
n+1 satisfy

"
�n+1(a) �n(a)

�n+1(b) �n(b)

#"
↵
L
n+1

�
L
n+1

#
=

"
a�n+1(a)

b�n+1(b)

#
. (A.12)

Then, the nodes {ti}
n+1
i=0 are the eigenvalues of the modi�ed Jacobi ma-

trix J
a,b
n+2(µ), and the weights {�i}

n+1
i=0 are again characterized by the re-

lation (A.7) (in terms of the eigenvectors of Ja,b
n+2(µ)).

The computation of quadrature rules by means of an eigenvalue problem of a
(modi�ed) Jacobi matrix can be extended even to the nested Gauss-Kronrod
quadrature rule [65].

162



A.3 Number of basis polynomials

A.3 Number of basis polynomials

Assume we have i 2 {1, . . . ,m} univariate sets of orthogonal polynomials
{�

(i)
k }

k̂
k=0 of degree at most k̂. What is the dimension of the corresponding

m-variate basis of degree at most k̂? This is equivalent to asking for the
number of non-negative integer solutions to the system of equations

z1 + z2 + . . .+ zm = k, 8k 2 {0, 1, . . . , k̂}. (A.13)

For each �xed k the number of non-negative integer solutions is known to
be (so-called stars and bars method)

sk =

⇣⇣
m

k

⌘⌘
=

✓
m+ k � 1

k

◆
. (A.14)

Hence, the total number s is given by

s =

k̂X

k=0

⇣⇣
m

k

⌘⌘
=

  
k̂ + 1

m

!!
=

✓
m+ k̂

m

◆
=

(m+ k̂)!

m!k̂!
. (A.15)

A.4 Polynomial chaos and stochastic processes

Random vectors can be interpreted as stochastic processes with a �nite in-
dex set, see Section 2.2.2.2 Hence, ��� is applicable to stochastic processes.
Speci�cally, let us consider stochastic processes that areL2-functions relative
to both domains.

De�nitionA.1 (Square-integrable real-valued stochastic process). Let x : T ⇥
⌦ be a stochastic process according to De�nition 2.8. For every t 2 T let x(t, ·) =
x(t) 2 L

2
(⌦, µ;R) be a square-integrable real-valued random variable, and

for every ! 2 ⌦ let x(·,!) 2 L
2
(T , dt;R) be a square-integrable real-valued

function. We call x 2 L
2
(⌦, µ;R) ⌦ L

2
(T , dt;R) a square-integrable real-

valued process. In case T has �nitely many elements dt is the discrete Lebesgue

2 Similarly, we can view continuous stochastic processes as in�nite-dimensional random vec-
tors.
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measure de�ned at points t 2 T . Then, we call x 2 L
2
(⌦, µ;R)⌦L

2
(T , dt;R)

a square-integrable discrete stochastic process.3

With this de�nition we can apply ��� to every random variable x(t, ·) of the
stochastic process, yielding ��� functions that are functions with domain T .

De�nition A.2 (��� of square-integrable real-valued stochastic process).
Let x be a square-integrable real-valued stochastic process according to De�ni-
tion A.1. The ��� of the stochastic process x is then given by the ��� of every
random variable x(t, ·) according to De�nition 2.15, yielding

x(t, ·) =
X

k2N0

xk(t)�k(·), (A.16)

for which we write in short-hand

x(t) =
X

k2N0

xk(t)�k. (A.17)

The functions xk : T ! R are called the stochastic modes.

Hence, knowing the stochastic modes and knowing the respective orthogo-
nal basis, we can model a given stochastic process. Although the decomposi-
tion from De�nition A.2 is mathematically appealing, it is fair to ask whether
and how the stochastic modes can be obtained from data of a given stochas-
tic process. More often than not we are able to model a stochastic process in
terms of its mean and covariance function. In that case there exists another
elegant decomposition: the Karhunen-Loève (��) decomposition, which is
orthogonal not just in the probability space but also in the index set T .

De�nition A.3 (Karhunen-Loève (��) decomposition). Let x : T ⇥ ⌦ be a
square-integrable real-valued process according to De�nition A.1 with mean
zero, i.e. for all t 2 T : E(x) = 0, and a continuous and square-integrable
covariance function c : T ⇥ T with c(s, t) = E(x(s, ·)x(t, ·)). Then

x(t) = x(t, ·) =
X

n2N

p
�nzn(·)'n(t) =

X

n2N

p
�nzn'n(t), (A.18)

3 In other words, for each realization ! 2 ⌦ we obtain a square-summable sequence x(·,!).
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where (�n,'n) are the eigen-pairs of the covariance operator
Z

T

c(s, t)'n(s)ds = �n'n(t) (A.19)

for all n 2 N such that
Z

T

'n(t)'k(t)dt = �nk (A.20)

for all n, k 2 N. The random variables zn are de�ned by

zn = zn(·) =
1
p
�n

Z

T

x(t, ·)'n(t)dt (A.21)

for all n 2 N. They are centered, uncorrelated, and have unit variance

E(zn) = 0, E(znzk) = �nk. (A.22)

Similar to ���, �� decompositions are truncated after �nitely many terms in
practice. The main computational challenge with �� is to �nd the eigen-pairs
by solving the Fredholm integral equation of the second kind. It is fair to ask
for the connection between ��� and ��. Given that the random variables zn in
the �� decomposition are themselves square-integrable real-valued random
variables we can write their ���

zn =

X

k2N0

z
(n)
k �k. (A.23)

We can substitute this ��� in De�nition A.3 and formally compare with the
��� of a stochastic process according to De�nition A.2, which yields [95]

xk(t) =

X

n2N

p
�n'n(t)z

(n)
k (A.24)

for all k 2 N0. The di�cult-to-compute expression (A.24) simpli�es tremen-
dously in case the considered stochastic process is a Gaussian process.

165



A Appendix

De�nition A.4 (Gaussian process). Let F : T ⇥ ⌦ be a stochastic process ac-
cording to De�nition 2.8. We call F a Gaussian process if (F(t1), . . . ,F(tn)) fol-
lows an n-dimensional normal distribution for all t1, . . . , tn 2 T with n 2 N.

Proposition A.1 (��� for Gaussian process). Let x : T ⇥ ⌦ be a continu-
ous Gaussian process according to De�nition A.4 with mean zero and a con-
tinuous and square-integrable covariance function c : T ⇥ T with c(s, t) =

E(x(s, ·)x(t, ·)). Then, the ��� of x is given by

x(t) =
X

k2N0

xk(t)�k, (A.25)

where

{�k}k2N0 = {1, ⇠1, ⇠2, . . . , ⇠n, . . .}, (A.26)

xk(t) =

(
0, k = 0,
p
�k'k(t), k � 1,

(A.27)

and (�k,'k) are the eigen-pairs of the covariance-operator from De�nition A.3
for all k 2 N.

Proof. The �� decomposition of the Gaussian process x is [95, 154, 172]

x(t) =
X

n2N

p
�nzn'n(t) =

X

n2N

p
�n⇠n'n(t), (A.28)

where ⇠n are standard Gaussian random variables. The collection of all ⇠n
augmented with the unity function

{�n}n2N0 = {1, ⇠1, ⇠2, . . .} (A.29)

forms an in�nite-dimensional orthogonal basis of total degree less than or
equal to one relative to the “formal” probability density proportional to [154]

Y

n2N

exp

✓
�
⌧
2
n

2

◆
. (A.30)
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Re-arranging the �� decomposition yields

x(t) = 0|{z}
=: x0(t)

+

X

n2N

p
�n'n(t)| {z }
=: xn(t)

⇠n|{z}
=:�n

, (A.31)

which completes the proof.

A.5 Bus admittance matrix

We provide a derivation of the bus admittance matrix by means of graph
theory, inspired by [78, Ch. 7] and [152, Ch. 8].

We characterize the steady state of an electrical network by

1. its digraph G = {V, E}, where V comprises the set of vertices or nodes,
and E ✓ V⇥V comprises the set of edges which we numerate increas-
ingly;

2. vertex voltages v 2 C|V| and vertex currents i 2 C|V|, and branch
voltages vbr 2 C|E| and branch currents ibr 2 C|E|;

3. a constitutive relation that maps branch voltages to branch currents.

Let |V| = n be the number of nodes and |E| = m be the number of edges of
the digraph G = {V, E}. The incidence matrix A 2 Zm⇥n is de�ned as

Aij =

8
><

>:

�1, if edge i starts at node j,
1, if edge i ends at node j,
0, otherwise,

(A.32)

for all i 2 {1, . . . ,m} and j 2 {1, . . . , n}. The incidence matrix allows to
convert nodal quantities to branch quantities. For example, let v 2 Cn be the
vector of node voltages, then the vectors in the column space of A

vbr = Av 2 Cm
, (A.33)
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correspond to the branch voltages, or potential di�erences. According to
Kirchho�’s voltage law, the components of Av add to zero around every
closed loop. This follows mathematically from the nullspace of A being

NullA = {x 2 Rn
: x = ↵1n, ↵ 2 R}, (A.34)

hence rankA = n� 1. Kirchho�’s current law is given by the left nullspace
of A, namely

A
>
ibr = 0n, (A.35)

where ibr 2 Cm denotes the branch currents. In other words: the current
�owing in equals the current �owing out at each node, because Kirchho�’s
current law is equivalent to a steady-state charge balance. If we draw/inject
currents i at the nodes, then the steady-state charge balance has a sink/source
term, thus reading

A
>
ibr| {z }

in�ow/out�ow

+ i|{z}
sink/source

= 0n, (A.36)

with the convention

ij

(
< 0, for sinks,
> 0, for sources,

(A.37)

for all nodes j 2 {1, . . . , n}.

Remark A.1. The four fundamental subspaces of A, i.e. column space, null
space, row space, and left nullspace, characterize the graph in terms of branch
and nodal quantities and represent Kirchho�’s laws. This is true for the concept
of �ows and potentials and not speci�c to electrical networks [152].

It remains to relate the voltages to currents, which requires a constitutive law.
The simplest possible constitutive equation relates the �ow and its driving
force linearly with a proportionality constant speci�c to the material. For
electrical networks this is Ohm’s law4

ibr = �Ybrvbr, (A.38)

where Ybr 2 Cm⇥m is a complex regular and usually symmetric matrix, the
so-called primitive or branch admittance matrix [78]. The minus sign is nec-

4 Other such relations are Hooke’s law, Fick’s law, Newton’s/Fourier’s law of cooling.
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essary to ensure that current �ows from higher to lower potentials. Sub-
stituting Ohm’s law (A.38) in Kirchho�’s current law (A.35), and using the
relation (A.33) yields

�A
>
Ybrvbr+ i = �A

>
YbrAv+ i = 0n () i = A

>
YbrAv =: Y v. (A.39)

The matrix Y is the bus admittance matrix; it combines topological informa-
tion of the power system with physical values of the electrical lines. Recall
that rankA = n � 1 and consequently rankY = n � 1. Also note that
Y is symmetric whenever Ybr is symmetric, and that Y corresponds to the
weighted Laplacian of the graph in case it is symmetric.

Thus, to �nd the steady state of an electrical network, the incidence matrix
A and the branch admittance matrix Ybr have to be speci�ed. For example, in
case wemodel a transmission line by its ⇡-line equivalent, then two branches
have to account for the ground connection, i.e.

Ybr =

2

64
y 0 0

0
yl

2 0

0 0
yl

2

3

75 , A =

2

64
0�1 1

1�1 0

1 0 �1

3

75 , Y =

2

64
yl �

yl

2 �
yl

2

�
yl

2 y +
yl

2 �y

�
yl

2 �y y +
yl

2

3

75 .

For a transformer with a speci�ed (real) tap setting t 2 R, the matrices are

Ybr =

2

64
ty 0 0

0 t(t� 1)y 0

0 0 (1� t)y

3

75 , A =

2

64
0�1 1

1�1 0

1 0 �1

3

75 ,

Y =

2

64
(t� 1)

2
y t(1� t)y (t� 1)y

t(1� t)y t
2
y �ty

(t� 1)y �ty y

3

75 .

To overcome the rank de�ciency of the bus admittance matrix, a reference
bus needs to be speci�ed.

There exist explicit formulæ for constructing the bus admittance matrix, in-
cluding all nodal shunts and line shunts as well as transformers. We refer to
[8, 61].
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A.6 AC and DC power flow equations

In Section 3.1 we derived the �� power �ow equations based on the branch
�ows. An alternative is to use the bus admittance matrix from Appendix A.5.
Recall from Section 3.1 that the state of every bus i 2 N is described by its
complex power and its complex voltage. Using rectangular coordinates for
the complex power and polar coordinates for the complex voltage we de�ne

z
��
i =

h
pi qi vi �i

i>
2 R4 (A.40)

to be the state of bus i 2 N ; the voltage magnitude at bus i is vi, the corre-
sponding voltage angle is �i. With the bus admittance matrix Y = G+jB 2

CNb⇥Nb , see Appendix A.5, the power injection at every bus is5

pi � jqi = vie
�j�i

X

k2N

Yikvke
j�k , (A.41)

see Figure 3.2. We separate the real and imaginary parts to obtain

pi =

X

j2N

vivj (Gij cos(�i � �j) +Bij sin(�i � �j)) , (A.42a)

qi =

X

j2N

vivj (Gij sin(�i � �j)�Bij cos(�i � �j)) . (A.42b)

To highlight the di�erence to the branch �owmodel from Section 3.1 the for-
mulation (A.42) is called the bus injection model. Regardless of the formula-
tion, the �� power �ow equations constitute a system of nonlinear algebraic
equations.

Let us make the following simplifying assumption.

Assumption A.1 (�� power �ow). We study a power system under Assump-
tion 3.1. Let the state of every bus i 2 N be given by (A.40), and let the following
conditions hold:

5 The bus admittance matrix can be constructed to account for nodal and line shunts [8, 61].
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�A.� the Ohmic losses across each line (j, k) 2 L are negligible such that
gjk = 0 holds for the ⇧-line model from Figure 3.1;

�A.� the voltage angle di�erences (�j��k) are small across all lines (j, k) 2 L;

�A.� the voltage magnitudes vi are constant at one per unit for all buses i 2 N .

A word of caution: the wording “��” is unfortunate. We are still in an ��
setting, however the equations mathematically resemble Ohm’s law from the
“true” �� conditions, hence the name. The consequences of Assumption A.1
for the �� power �ow equations according to (A.42) are immediate:

pi =

X

i2N

Bij(�i � �j), (A.43)

qi =

X

i2N

�Bij = const . (A.44)

Hence, for every bus i 2 N both the voltage magnitude and the reactive
power become constants, and

z
��
i =

h
pi �i

i>
2 R2 (A.45)

fully characterizes the state of bus i under �� conditions. From (A.43) we
obtain a relation between the vector of net active powers p = [p1 . . . pNb ]

>
2

RNb and the vector of phase angles � = [�1 . . . �Nb ]
>
2 RNb , namely

p = �B�, (A.46)

where B = Im(Y ) = A
>
B

br
A 2 RNb⇥Nb is the imaginary part of the bus

admittance matrix, and B
br

= Im(Ybr) 2 RNbr⇥Nbr is the imaginary part of
the branch admittance matrix from (A.38), where Nbr = |L| is the number
of lines. We see: in the �� setting the power �ow equations constitute Nb
linear equations. If we know the voltage angles � we can compute the net
bus injections p. Can we also compute the voltage angles from the net bus
injections given that B is rank de�cient? We can answer in the a�rmative
upon introducing a slack bus: we assume the system has a single slack bus i 2

171



A Appendix

N�� = {1} at bus number one for which �1 = 0 must hold. In that case we
can write

�̂ = �B̂
�1

p̂, (A.47)

where �̂ 2 RNb�1 is � with the �rst entry—corresponding to the slack—
removed, B̂ 2 R(Nb�1)⇥(Nb�1) is B with the �rst row and the �rst column
removed, and p̂ 2 RNb�1 corresponds to p with the �rst entry removed.

According to �A.� from Assumption A.1 there are no Ohmic losses. Intu-
itively, this means that the sum of the net power injections must add to zero.
This is true indeed

X

i2N

pi = 1>

Nb
pi = �1

>

Nb
B� = 0 · �, (A.48)

because 1Nb is a left-eigenvector to the zero eigenvalue of the graph Lapla-
cian B; this follows from (A.39) in combination with (A.34).

From Assumption A.1 we can draw another conclusion: the power �ows
across the lines are linearly related to the net bus power injections. To see this
we �rst write the steady state energy balance using the incidence matrix A

0Nb = A
>
p
br
+ p = A(p

br
�B

br
A�), (A.49)

where pbr 2 RNbr is the vector of active power �ows.6 From (A.49) we get

p
br
= B

br
A�, (A.50)

which relates the voltage angles linearly to the branch �ows. We assume the
system has a single slack bus i 2 N�� = 1 at bus number one for which
�1 = 0 must hold. In that case we can write

p
br
= B

br
A� = B

br
Â�̂, (A.51)

6 The entries of pbr correspond to the row-wise entries of the incidence matrix A.
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where Â 2 Z|L|⇥(Nb�1) is the incidence matrix A with the �rst column re-
moved, and �̂ 2 RNb�1 is � with the �rst entry—corresponding to the slack—
removed. We can use the �� power �ow equation (A.46) to write

�̂ = �(Â
>
B

br
Â)

�1
p̂, (A.52)

where p̂ 2 RNb�1 corresponds to p with the �rst entry removed. We can
combine (A.52) with (A.51) and obtain

p
br
= �B

br
Â(Â

>
B

br
Â)

�1
p̂ =

h
0Nbr �B

br
Â(Â

>
B

br
Â)

�1
i

| {z }
=: 

p. (A.53)

The matrix  2 RNbr⇥Nb is the so-called power transfer distribution factor
(����) matrix which maps the net power injections linearly to the line �ows.

A.7 Backward-forward sweep method

The setting for the backward-forward sweep method is described in the be-
ginning of Section 3.4. We derive the ���method with the help of the follow-
ing ingredients:

– Governing equations

. Kirchho�’s current law is given by, see A.5,

0 = A
>

r i
br
+ i� i

sh
, (A.54)

where ibr 2 CN is the vector of branch currents and i 2 CN is
the vector of nodal currents, and ish 2 CN is the vector of branch
shunt currents.

. Kirchho�’s voltage law in terms of the reduced incidence matrix
is given by

v
br
= Arv � v��a0, (A.55)

where vbr 2 CN is the vector of branch voltages, v 2 CN is the
vector of nodal voltages, v�� 2 C is the voltage at the root node,
and e1 2 RN is the �rst unit vector of RN .
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– Constitutive laws and load/shunt modeling:

. The loads are modeled in terms of some function f : CN
! CN

with i = f(v).

. The branch shunt currents are modeled in terms of some function
h : CN

! C with i
sh
= h(v).

. The constitutive equation g : CN
! CN relates potential di�er-

ences to �ows with i
br
= g(v

br
).

The overall scheme of the ��� method is shown in Figure 3.5: it shows how
Kirchho�’s laws are employed together with the additional modeling equa-
tions. Let us now derive the relevant equations for the ��� method.

Backward sweep

In the backward sweep, Kirchho�’s current law and the load model are used
to compute the branch currents from given nodal voltages, i.e.

i
br
= (A

>

r )
�1

(i
sh
� i) = (A

>

r )
�1

(h(v)� f(v)). (A.56)

Using constant impedance loads f(v) = Z
�1
constv we have

i
br
= (A

>

r )
�1

(h(v)� Z
�1
constv). (A.57)

If instead we use a constant power model and account for bus shunt currents,
we have (the superscript ? denotes the complex conjugate)

sk = vk î
?
k

ik = îk + y
sh
k vk

(A.58)

and thus
ik =

s
?
k

v
?
k

+ y
sh
k vk (A.59)
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for every node k 2 {1, . . . , Nb}. Then, the load model function f follows
from

2

66664

i1

i2

...
iNb

3

77775
=

2

66664

1/v
?
1 0 . . .

0 1/v
?
2

...
. . .

1/v
?
Nb

3

77775

2

66664

s
?
1

s
?
2
...

s
?
Nb

3

77775

+

2

66664

y
sh
1 0 . . .

0 y
sh
2

...
. . .

y
sh
Nb

3

77775

2

66664

v1

v2

...
vNb

3

77775
.

(A.60)

The total branch shunt current at node k is given by

i
sh
k =

X

j2adj(k)

y
br,sh
jk vk =

X

j2adj(k)

j
|b

br,sh
jk |

2
vk, (A.61)

where the set adj(k) contains all buses adjacent to bus k. From this, the
function i

sh
= h(v) becomes

i
sh
= (Q1N+1)r ⇤ v, (A.62)

where Q 2 C(N+1)⇥(N+1) is the branch shunt adjacency matrix,7 and (·)r

refers to reducing, i.e. dropping the root node index. Note that ⇤ means
element-wise multiplication (Hadamard product).

The term backwards stems from upper-triangularity of the matrix (A
>

r )
�1:

the leaf node branch currents are computed �rst, which are then used to �nd
the branch currents of the respective parents. Just like when solving sys-
tems of linear equations using �� factorization the solutions are backward-
substituted.

7 I.e. A>YshA = D � Q, where D is the degree matrix and Ysh 2 C(N+1)⇥(N+1) is the
branch shunt admittance matrix, usually Ysh = j/2 diag(|bbr,shjk |) for all lines (j, k) 2 L.
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Forward sweep

In the forward sweep, Kirchho�’s voltage law and the constitutive equation
are used to compute the nodal voltages given the branch currents, i.e.

v = A
�1
r (v

br
+ v��a0) = A

�1
r (g

�1
(i

br
) + v��a0) = A

�1
r g

�1
(i

br
) + v��1Nb .

(A.63)
Using Ohm’s law g(v

br
) = �Ybrv

br
= �(Z

br
)
�1

v
br, see Appendix A.5, we

have
v = �A

�1
r Z

br
i
br
+ v��1Nb . (A.64)

The term forward stems from lower-triangularity of the matrix A
�1
r : the

nodal voltage of the �rst node can be readily computed, which is then used to
computed the nodal voltages of its leaves. Just like when solving systems of
linear equations using �� factorization the solutions are forward-substituted.

Algorithm 3: ��� method.
Data: load model f(·); shunt model h(·); constitutive law g(·); v��; Ar ; vinit;

" > 0.
Result: v, ibr.
Set ⌧  0;
Initialize v(⌧) = vinit;
do

# Backward sweep
Evaluate

i
br
(⌧) = (A

�1
r )

>
(h(v(⌧))� f(v(⌧)));

# Forward sweep
Evaluate

v(⌧ + 1) = A
�1
r g

�1
(i

br
(⌧)) + v��1Nb ;

Set ⌧  ⌧ + 1;
while kv(⌧ + 1)� v(⌧)k > ";
Return v  v(⌧ + 1), i

br
 i

br
(⌧);

176



A.7 Backward-forward sweep method

Convergence analysis

Weusually initiate any ��� schemewith a �at start by setting the bus voltages
equal to the voltage at the root node

v�� = v1(0) = · · · = vNb(0), (A.65)

where the superscript denotes the iteration index. Then, we repeatedly apply
the backward sweep and the forward sweep until a convergence criterion is
satis�ed, e.g. kv(k + 1)� v(k)k1 < ".

We can study convergence of the ��� method easily in case the load models
are constant impedance loads (A.57), and in the absence of shunts. In that
case, we can merge the backward and the forward sweep to obtain a discrete-
time linear time-invariant system in terms of the bus voltages

v(k + 1) = (A
>

r YbrAr)
�1

Z
�1
constv(k) + v��1Nb , v(0) = v��1Nb . (A.66)

We see that ��� converges in case the magnitude of every eigenvalue of
(A

>

r YbrAr)
�1

Z
�1
const is inside the unit circle. The steady state bus voltage v̄ is

then
v̄ = v��(INb � (A

>

r YbrAr)
�1

Z
�1
const)

�11Nb . (A.67)
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