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Abstract
We establish Littlewood–Paley decompositions for Muckenhoupt weights in the setting of
UMD spaces. As a consequence we obtain two-weight variants of the Mikhlin multiplier
theorem for operator-valued multipliers. We also show two-weight estimates for multipliers
satisfying Hörmander type conditions.
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1 Introduction

A Fourier multiplier is an operator of the form T : f �→ F −1(m · F f ), where F and F −1

stand for the Fourier transform and its inverse, respectively. The multiplying function m is
called the symbol of T , and this operator is often written as T = Tm . By a classical theorem
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512 S. Fackler et al.

of Hörmander [11] (see [11, Theorem 1.2] and its equivalent formulation stated without
number just before [11, Definition 1.3]), every bounded translation-invariant operator on
L p(Rn) can be represented in this form, which explains the ubiquitous presence of these
multipliers inAnalysis and PDE.Conversely, in applications, it is often important to recognise
conditions under which a given function m induces a bounded Fourier multiplier operator in
this way. The first answers to this question are provided by the classical multiplier theorems
by Marcinkiewicz [31], Mikhlin [34] and Hörmander [11]. These have been subsequently
extended into multiple directions, two of which (and their intersection in particular) lie at the
focus of this paper.

The first extension replaces the underlying Lebesgue measure by a class of weights on
R
n . For p ∈ (1,∞) we say that a locally integrable function ω : R

n → R≥0 belongs to the
Muckenhoupt class Ap(R

n;Cn) if

[ω]Ap(Rn;Cn) := sup
A∈Cn

(
1

|A|
∫
A

ω(x) dx

)(
1

|A|
∫
A

ω(x)−
1

p−1 dx

)p−1

< ∞.

Here Cn is either the collectionQn orRn of all cubes or rectangles inR
n of positive and finite

measure whose sides are parallel to the coordinate axes. Clearly, in the one dimensional case
one hasAp(R;Q1) = Ap(R;R1), whereas in the higher dimensional case the strict inclusion
Ap(R

n;Rn) � Ap(R
n;Qn) holds. The class Ap(R

n;Qn) goes back to [35], where it was
used to give a real variable characterization of the weightsω for which the Hardy–Littlewood
maximal operator remains bounded on the weighted space L p

ω(Rn). Afterwards the classi-
cal Fourier multiplier theorems were extended by Kurtz [21] and Kurtz/Wheeden [22] to
weights in Ap(R

n;Rn). The crucial tool in their proofs, like already in the first multiplier
theorem by Marcinkiewicz [31], is some variant of the Littlewood–Paley decomposition
[29,30]. Recently, sharp weighted estimates for the Littlewood–Paley square function and
Marcinkiewicz multipliers were considered in [26] in the one-dimensional case. Another
recent work on weighted estimates for Fourier multipliers is [1], where various extensions of
the Coifman–Rubio de Francia–Semmes multiplier theorem to operator-valued multipliers
on Banach function spaces were obtained.

The second extension of the classical multiplier theory that we have in mind is concerned
with Fourier multipliers on vector-valued (i.e., Banach space-valued) L p-spaces. Among
other things, the development of this extension has been strongly motivated by applications
to the regularity theory of parabolic equations, and we refer the reader to [6,20] for an exten-
sive discussion of the theory from this perspective. By now, it is understood that a reasonable
Fourier multiplier theory is only possible on a certain class of complex Banach spaces, the
class of UMD spaces. For such spaces a vector-valued analogue of the Littlewood–Paley
decomposition, and a vector-valued Marcinkiewicz-type multiplier theorem for symbols of
one variable, were obtained by Bourgain [2]. Based on this decomposition variants of the
Mikhlin multiplier theorem for scalar multipliers in several variables were obtained by Zim-
mermann in [43]. An independent approach to slightly weaker forms of these theorems is
due to McConnell [32]. The case of operator-valued multipliers involves a concept called
R-boundedness (see Sect. 2.1 for details) and a corresponding Mikhlin multiplier theorem
has been established by Weis [41] for one-variable symbols, and by Štrkalj and Weis [40] in
the higher dimensional case.

Our goal is to unify these two types of generalizations, and to show multiplier theo-
rems for operator-valued multipliers in theAp-setting. Here the crucial step is to generalize
Bourgain’s Littlewood–Paley decomposition toAp-weights. Further, we go beyond the one-
weight setting and generalize the Mikhlin multiplier theorem to the two-weight setting, i.e.
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Weighted estimates for operator-valued Fourier multipliers 513

we consider the boundedness of multipliers between L p
σ (Rn; X) and L p

ω(Rn; Y ). Here one
replaces theAp-condition with its two-weight analogue

[ω, σ ]Ap(Rn;Cn) := sup
A∈Cn

(
1

|A|
∫
A

ω(x) dx

)(
1

|A|
∫
A

σ(x)−
1

p−1 dx

)p−1

.

Our two-weightmultiplier results seem to be new even in the case of scalar-valuedmultipliers.
By its very own nature, the approach based on Littlewood–Paley theory only yields results

for Ap-weights with respect to rectangles. However, we also give multiplier results for
weights with respect to cubes only. In this way we obtain weighted multiplier results which
generalize [22] in three directions: first we deal with operator-valued multipliers, secondly
we work in a two-weight setting and thirdly we obtain estimates with explicit dependencies
on the weight characteristics. As an application we use our established multiplier theorems to
recover directly some extrapolation results for maximal L p-regularity of evolution equations.

In order to give an impression of the paper, let us now state two Fourier multiplier results
we are able to prove. For simplicity we restrict ourselves here to the one-weight setting.
Besides this restriction, the three results below are special cases or simplified versions of
more general and/or technical results from the main part of the paper.

The first result follows the Littlewood–Paley approach (Sect. 5; or Sect. 3 in the one-
dimensional case) and is therefore restricted to the setting of rectangularAp-weights.

Theorem 1.1 Let X be a UMD space, p ∈ (1,∞), and ω ∈ Ap(R
n;Rn). Let m ∈

L∞(Rn;B(X)) be a bounded operator-valued function such that its partial derivatives ∂αm
are continuous on R

n∗ = [R\{0}]n for each multi-index α = (α1, . . . , αn) ∈ N
n such that

|α|∞ = max
1≤i≤n

αi ≤ 1.

Then
‖Tm‖B(L p

ω(Rn;X)) �X ,p,n,ω sup
|α|∞≤1

R
{
|ξ ||α| ∂αm(ξ) : ξ ∈ R

n∗
}

.

The above theorem is a special case of Theorem 5.12.(a). Part (b) of that theorem is
concerned with the case that X in addition satisfies Pisier’s property (α) and provides R-
boundedness of a set of Fourier multipliers. We furthermore obtain a version for anisotropic
symbols on mixed-norm spaces (see Theorem 5.14), extending [13, Theorem 3.2] (see
also [14, Section 7]) to the weighted setting.

As an application we use Theorem 1.1 to recover directly some extrapolation results for
maximal L p-regularity of evolution equations (Sect. 4).

We also give multiplier results forAp-weights with respect to cubes (Sect. 6). In the proof
of the following result, we pass from the multiplier perspective to the perspective of singular
integral operators.

Theorem 1.2 Let X be a UMD space, p ∈ (1,∞), and ω ∈ Ap(R
n;Qn). Let m ∈

L∞(Rn;B(X)) be a bounded operator-valued function such that its partial derivatives ∂αm
are continuous on R

n\{0} for each multi-index α = (α1, . . . , αn) ∈ N
n such that

|α|1 =
n∑

i=1

αi ≤ n.

Then
‖Tm‖B(L p

ω(Rn;X)) �X ,p,n,ω sup
|α|1≤n

R
{
|ξ ||α| ∂αm(ξ) : ξ ∈ R

n\{0}
}

.
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514 S. Fackler et al.

The above stated theorem actually is a consequence of Corollary 6.13 and the fact that
Ap =⋃q∈(1,p) Aq (see Remark 6.16). The assumption on the weight ω in Corollary 6.13 is

thatω ∈ Ap/r or ω
− 1

p−1 ∈ Ap′/r for suitable r ∈ (1, p), with estimates explicitly depending
on the weight characteristics.

Moreover, Corollary 6.13 is in turn a consequence of our estimates for Fourier symbols
satisfying integrated conditions (of “Hörmander type”) instead of the stronger but easier-to-
state pointwise conditions (of “Mikhlin type”) used in the above formulation. These more
precise estimates take into account an additional geometric property of the Banach space X ,
namely Fourier type, linking the required smoothness of the symbolm to the geometry of X .
This gives a weighted extension of amultiplier theorem of Girardi andWeis [8, Corollary 4.4]
(see Corollary 6.13).

2 Preliminaries

2.1 The basic setting

We now give exact definitions and fix the setting. A general reference, in which more details
on these topics can be found, is [18]. In the following let X , Y be Banach spaces which are
always assumed to be complex. We denote by S(Rn; X) the space of all X -valued Schwartz
functions. Further let S′(Rn; X) be the associated space of distributions, i.e. the space of all
continuous linear mappings ϕ : S(Rn) → X . For weights ω and σ , i.e. measurable functions
R
n → [0,∞] that take their values in (0,∞) almost everywhere, let

L p
ω(Rn; X) :=

{
f : R

n → X Bochner measurable :
∫
Rn

‖ f (x)‖p
X ω(x) dx < ∞

}
.

Here we identify functions that agree almost everywhere.
Let Cn be either the collection Qn or Rn of all cubes or rectangles, respectively, in R

n of
positive and finite measure with sides parallel to the coordinate axex. Let MCn denote the
associated Hardy–Littlewood maximal function operator. For a weight ω on R

n and a Borel
set A ⊂ R

n , we write

ω(A) =
∫
A

ω(x) dx ∈ [0,∞].

The p-dual weight of ω is the weight ω′
p := ω

− 1
p−1 , where p ∈ (1,∞). We define the

Ap-characteristics

[ω, σ ]Ap(Rn;Cn) := sup
A∈Cn

ω(A)

|A|

(
σ ′
p(A)

|A|

)p−1

, p ∈ (1,∞),

[ω]Ap(Rn;Cn) := [ω,ω]Ap(Rn;Cn) = sup
A∈Cn

ω(A)

|A|

(
ω′
p(A)

|A|

)p−1

, p ∈ (1,∞),

and

[ω]A∞(Rn;Cn) := sup
A∈Cn

1

ω(A)

∫
A
MCn (ω1A) dx .

For p ∈ (1,∞] the Muckenhoupt classAp(R
n;Cn) is defined as the set of all weights ω on

R
n with [ω]Ap(Rn;Cn) < ∞. For p ∈ (1,∞) it holds that ω ∈ Ap(R

n;Cn) if and only if
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Weighted estimates for operator-valued Fourier multipliers 515

ω′
p ∈ Ap′(Rn;Cn), in which case [ω]Ap(Rn;Cn) = [ω′

p]p−1
Ap′ (Rn;Cn)

. For 1 < p0 ≤ p1 ≤ ∞ it

holds thatAp1(R
n;Cn) ⊂ Ap0(R

n;Cn) with 1 ≤ [ω]Ap1 (Rn;Cn) ≤ [ω]Ap0 (Rn;Cn).
If ω is an Ap-weight,

S(Rn; X)
d

↪→ L p
ω(Rn; X) ↪→ S′(Rn; X).

One therefore may ask under which conditions on a function m ∈ L∞(Rn;B(X , Y )) the
operator

Tm : S(Rn; X) � f �→ F −1(ξ �→ m(ξ)(F f )(ξ)) ∈ S′(Rn; Y ) (2.1)

induces a bounded operator L p
σ (Rn; X) → L p

ω(Rn; Y ). In this case we say that m is a
bounded multiplier. We denote by Mn

p((X , σ ) → (Y , ω)) the space of all such bounded
multipliers and writeMn

p(X , ω) if both X and Y and σ and ω agree. Its norm is given by the
operator norm of the Fourier multiplier operator.

For a Borel measurable set A ⊂ R
n we use the following special notation for the Fourier

multiplier with as symbol the associated indicator function 1A: 	(A) := T1A .
The pairing

L p
ω(Rn; X) × L p′

ω′
p
(Rn; X∗) −→ C,

∫
Rn

( f , g) �→ 〈 f , g〉 dλ,

is norming. Under this pairing one has [L p
ω(Rn; X)]∗ = L p′

ω′
p
(Rn; X∗) when X is e.g. reflex-

ive.
If ω, σ ∈ Ap , then ω′

p, σ
′
p ∈ Ap′ and

Mn
p ((X , σ ) → (Y , ω)) −→ Mn

p′
(
(Y ∗, σ ′

p) → (X∗, ω′
p)
)

, m �→ m̃∗,

defines an isometric isomorphism, where m̃∗(ξ) = [m(−ξ)]∗ and Tm̃∗ is obtained from Tm∗
by restriction.

Reasonable multiplier theorems cannot be obtained on arbitrary Banach spaces as even
the most basic multiplier, namely the vector-valued Hilbert transform

(H f )(x) := lim
ε↓0

∫
|x−t |≥ε

f (t)

x − t
dt, (2.2)

does not give rise to a bounded operator L2(R; X) → L2(R; X) for arbitrary Banach spaces
X . This leads to the following definition.

Definition 2.1 A Banach space X is said to be of class HT if the vector-valued Hilbert trans-
form (2.2) initially defined on S(R; X) induces a bounded operator L p(R; X) → L p(R; X)

for one or equivalently (by Hörmander’s condition) all p ∈ (1,∞).

Recall that the Hilbert transform can be realized as the Fourier multiplier operator with
symbol ı sgn. A a consequence, X is of class HT if and only if 	(R) ∈ B(L p(R; X)) (i.e.
1R+ ∈ M1

p(X)) for some/all p ∈ (1,∞).
A deep result due to Burkholder and Bourgain ([18, Theorem 5.1.1]) says that a Banach

space X is of class HT if and only if X is a UMD space. UMD is a primarily probabilistic
notion and stands for unconditionality of martingale differences ([18, Definition 4.2.1]).

For example, all reflexive L p-spaces are UMD spaces ([18, Proposition 4.2.15]). One can
show that on UMD spaces theMikhlinmultiplier theorem holds for scalar-valuedmultipliers,
see for example [18, Theorem 5.5.10]. For operator-valued multipliers norm boundedness
must be replaced by R-boundedness.
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516 S. Fackler et al.

A Rademacher sequence is a sequence of independent random variables (ε)k∈N on some
probability space (�,F , P) with P(εk = ±1) = 1

2 for all k ∈ N. In the following we fix a
Rademacher sequence (εk)k∈N.

Definition 2.2 A subset T ⊂ B(X , Y ) is called R-bounded if there exists a constant C ≥ 0
such that for all n ∈ N, T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X one has∥∥∥∥

n∑
k=1

εkTkxk

∥∥∥∥
L2(�;Y )

≤ C

∥∥∥∥
n∑

k=1

εk xk

∥∥∥∥
L2(�;X)

.

The smallest constant for which the above inequality holds is denoted by R(T ).

For the basic permanence properties of R-boundedness under sums, compositions and
unions, which will be used in the following, we refer to [19, Section 8.1]. We are now ready
to formulate the Mikhlin theorem for operator-valued Fourier multipliers in the unweighted
case ([18, Theorem 5.5.10]).

Theorem 2.3 Let X and Y be UMD spaces and m ∈ Cn(Rn\{0};B(X , Y )). Suppose that

sup
|α|∞≤1

R{|ξ ||α| ∂αm(ξ) : ξ ∈ R
n\{0}} < ∞.

Then m is a bounded Fourier multiplier, i.e. m ∈ Mn
p((X ,1) → (Y ,1)), for all p ∈ (1,∞).

More precisely, there exists a constant C > 0 only depending on n, p, X and Y such that

‖Tm‖ ≤ C sup
|α|∞≤1

R{|ξ ||α| ∂αm(ξ) : ξ ∈ R
n\{0}}.

The case of scalar-valued multipliers is contained in the above result. Indeed, by Kahane’s
contraction principle ([19, Proposition 3.2.10]) the set {c Id : |c| ≤ 1} is R-bounded in every
Banach space.

2.2 Extrapolation of Calderón–Zygmund operators

Wewill obtain a smooth variant of the Littlewood–Paley estimate as a consequence of extrap-
olation results for Calderón–Zygmund operators. In this section we present the necessary
background in a smooth setting sufficient for our needs. For Banach spaces X and Y , a
Bochner measurable function K : R

n\{0} → B(X , Y ) is called a Calderón–Zygmund kernel
(of convolution type) if, for some constant C > 0,

(1) it obeys the decay estimate

‖K (x)‖B(X ,Y ) ≤ C |x |−n , x �= 0,

(2) and it obeys the Hölder type estimate

‖K (x − y) − K (x)‖B(X ,Y ) ≤ C |y|α |x |−n−α , 0 < |y| <
1

2
|x − y|

for some Hölder exponent α ∈ (0, 1].
A bounded operator T : L p(Rn; X) → L p(Rn; Y ) is called a Calderón–Zygmund oper-

ator if there exists a Calderón–Zygmund kernel K such that for all f ∈ C∞
c (Rn; X) and

almost all x /∈ supp f one has the representation

(T f )(x) =
∫
Rn

K (x − y) f (y) dy.
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Weighted estimates for operator-valued Fourier multipliers 517

We use the following extrapolation result for Calderón–Zygmund operators, which is a refor-

mulation of [10, Corollary 3.3] (with σ
− 1

p−1 playing the role of σ there).

Theorem 2.4 Let X be a Banach space, T a Calderón–Zygmund operator on L p(Rn; X)

and σ , ω such that ω, σ
− 1

p−1 ∈ A∞(Rn;Qn) and [ω, σ ]Ap(Rn;Qn) < ∞. Then T induces a

bounded operator L p
σ (Rn; X) → L p

ω(Rn; X) with

‖T ‖L p
σ →L p

ω
� [ω, σ ]1/pAp(Rn;Qn)

(
[ω]1−

1
p

A∞(Rn;Qn)
+
[
σ

− 1
p−1

] 1
p

A∞(Rn;Qn)

)
.

The implicit constant only depends on ‖T ‖L p→L p , p, the dimension n and the constant C in
the definition of a Calderón–Zygmund kernel. In particular, if ω = σ , then

‖T ‖L p
ω→L p

ω
� [ω]max{1, 1

p−1 }
Ap(Rn;Qn)

.

To go from the two-weight estimate to the one-weight estimate, we note that

[
σ

− 1
p−1

] 1
p

A∞(Rn;Qn)
= [σ ′

p]
1
p

A∞(Rn;Qn)
≤ [σ ′

p]
1
p

Ap′ (Rn;Qn)
= [σ ]

1
p(p−1)

Ap(Rn;Qn)

and 1
p + 1

p(p−1) = 1
p−1 .

2.3 Unconditional decompositions

In this subsection we recall some facts from the theory of unconditional (Schauder) decom-
positions, with references [5,18,19,42]. We take the setting from [18, Section 4.1.b] on
unconditional decompositions, which in the context of Littlewood–Paley decompositions
provides a more natural framework than that of Schauder decompositions.

Given an index set I , we denote by (εi )i∈I a family of independent identically distributed
random variables on some probability space (�,F , P)with P(εi = ±1) = 1

2 . In case I = N

we get a Rademacher sequence. For a general index set I we call (εi )i∈I a Rademacher
family on (�,F , P).

A pre-decomposition of a Banach space X is a family of bounded linear projections
	 = (	i )i∈I in X with the property that 	i	 j = 0 whenever i �= j . An unconditional
Schauder decompostion of X is a pre-decomposition	 = (	i )i∈I of X with the property that
x =∑i∈I 	i x in X for all x ∈ X . A Schauder decomposition of X is a pre-decomposition
	 = (	i )i∈N of X with the property that x =∑∞

i=0 	i x in X for all x ∈ X . Note that every
unconditional decomposition 	 = (	i )i∈I of X with I countably infinite can be realized as
Schauder decomposition by any enumeration of I . A family D = (Di )i∈I ⊂ B(X) is called
U+ if there exists a finite constant C+ > 0 such that∥∥∥∥

∑
i∈F

εi Di x

∥∥∥∥
L2(�;X)

≤ C+
∥∥∥∥
∑
i∈F

Di x

∥∥∥∥
X

for all finite subsets F ⊂ I and x ∈ X , and U− if there exists a finite constant C− > 0 with∥∥∥∥
∑
i∈F

Di x

∥∥∥∥
X

≤ C−
∥∥∥∥
∑
i∈F

εi Di x

∥∥∥∥
L2(�;X)

for all finite subsets F ⊂ I and x ∈ X . We denote the smallest such constants C+ > 0 and
C− > 0 by C+

D > 0 and C−
D > 0, respectively. Let 	 = (	i )i∈I ⊂ B(X). For each finite
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518 S. Fackler et al.

subset F ⊂ I we define 	F :=∑i∈F 	i . We futhermore define

ran(	) := ∪ {	F (X) : F ⊂ I finite} .

Lemma 2.5 For a pre-decomposition 	 = (	i )i∈I of a Banach space X with ran(	) dense
in X the following are equivalent:

(i) 	 is an unconditional decomposition.
(ii) There exists a finite constant C > 0 such that for all (εi )i∈I ∈ {−1, 1}I , finite subsets

F ⊂ I and x ∈ X ∥∥∥∥
∑
i∈F

εi	i x

∥∥∥∥
X

≤ C

∥∥∥∥
∑
i∈F

	i x

∥∥∥∥
X
.

(iii) 	 is U+ and U−.
The smallest admissible constant C in (ii) is called the unconditional constant of 	 and is
denoted by C	. Moreover, it holds that C−

	,C+
	 ≤ C	 ≤ C−

	C+
	 .

Using the characterization of unconditional decompositions in terms of U+ and U− one
can establish the following abstract multiplier theorem [5, Theorem 3.4].

Theorem 2.6 Let X and Y be Banach spaces and 	X = (	X
i )i∈I , 	Y = (	Y

i )i∈I uncondi-
tional decompositions of X and Y , respectively. Further suppose that (Mi )i∈I ⊂ B(X , Y ) is
R-bounded with 	Y

i Mi = 	Y
i Mi	

X
i for all i ∈ I . Then

Mx :=
∑
i∈I

Mi	i x

is summable for all x ∈ X and defines a bounded linear operator M : X → Y with

‖M‖ ≤ C+
	X C

−
	YR{Mi : i ∈ I }.

For Banach spaces X and Y that havePisier’s property (α) there is a usefulR-boundedness
version of the above theorem. Before we state it, let us first recall Pisier’s property (α). Let
(ε′

i )i≥1 and (ε′′
j ) j≥1 be independentRademacher sequences on probability spaces (�′,F ′, P

′)
and (�′′,F ′′, P

′′), respectively. A Banach space X is said to have Pisier’s property (α) (or
Pisier’s contraction property) if there exists a finite constant C > 0 such that

∥∥∥∥
M∑
i=1

N∑
j=1

ai, jε
′
iε

′′
j xi, j

∥∥∥∥
L2(�′×�′′;X)

≤ C |a|∞
∥∥∥∥

M∑
i=1

N∑
j=1

ε′
iε

′′
j xi, j

∥∥∥∥
L2(�′×�′′;X)

for all M, N ∈ N, a = (ai, j )1≤i≤M,1≤ j≤N ⊂ C and (xi, j )1≤i≤M,1≤ j≤N ⊂ X . The smallest
such constant is denoted by αX .

Theorem 2.7 [5, Theorem 3.14] Let X and Y be Banach spaces with Pisier’s property (α)

and	X = (	X
i )i∈I ,	Y = (	Y

i )i∈I unconditional decompositions of X and Y , respectively.
LetM ⊂ B(X , Y ) be an R-bounded collection of operators and

T :=
{∑

i∈I
Mi	i : Mi ∈ M such that 	Y

i Mi = 	Y
i Mi	

X
i for all i ∈ I

}
⊂ B(X , Y ).

Then T is R-bounded with

R(T ) ≤ αXC
+
	X αYC

−
	YR(M).
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Weighted estimates for operator-valued Fourier multipliers 519

Note that T is well-defined by Theorem 2.6. In the setting of Littlewood–Paley decom-
positions it is convenient to use duality in order to verify that a family of spectral projections
forms an unconditional decomposition, the adjoint family being of the same form. The fol-
lowing proposition provides the abstract basis for such a duality argument.

Proposition 2.8 Let 	 = (	i )i∈I be a pre-decomposition of X with adjoint family 	∗ =
(	∗

i )i∈I . Then 	 is an unconditional decomposition if ran(	) is dense in X and both 	 and
	∗ are U+. Moreover, in this situation we have (in addition to Lemma 2.5) C−

	 ≤ C+
	∗ .

2.4 A generic Fourier multiplier theorem

In this subsection we follow the approach presented in the survey article [14], which
was concerned with the unweighted setting, to obtain Fourier multiplier theorems out of
Littlewood–Paley decompositions. This is basically the usual approach but put in a nice
abstract framework that cleans up the arguments. As no proofs are given in [14], we have
decided to include those here in quite some detail in order to make the paper more accessible.

For the rest of this section, let X , Y , E , F and G be Banach spaces with

S(Rn; X)
d

↪→ E
d

↪→ S′(Rn; X), F ⊂ S′(Rn; X), S(Rn; Y )
d

↪→ G
d

↪→ S′(Rn; Y ),

S(Rn; Y ∗)
d⊂ G∗, B(X , Y ) ↪→ B(F,G) contractively by pointwise multiplication and

M := R{	([η,∞)) : η ∈ R
n} < ∞ in B(E, F),

where [η,∞) = [η1,∞) × · · · × [ηn,∞). Here

S(Rn; Y ∗) = [S′(Rn; Y )]′ ↪→ G∗ ↪→ [S(Rn; Y )]′ = S′(Rn; Y ∗)

under the natural identifications; S(Rn; Y ∗)
d⊂ G∗ holds for instance when G is reflexive.

We denote byM(E → G) the space of all Fourier multiplier symbols with Tm ∈ B(E,G)

equipped with the natural norm.

Definition 2.9 We say that a set of functions M ⊂ L∞(Rn;B(X , Y )) is of uniformly R-
bounded variation if there exist a constant C > 0, an R-bounded set T ⊂ B(X , Y ), and
for each m ∈ M a complex Borel measure μm on R

n and a bounded function τm : R
n →

B(X , Y ) that is wo-measurable in the sense that η �→ 〈τ(η)x, y∗〉 is measurable for every
x ∈ X and y∗ ∈ Y ∗, with ‖μm‖ ≤ C and τm(Rn) ⊂ T , such that

〈m(ξ)x, y∗〉 =
∫

(−∞,ξ ]
〈τm(η)x, y∗〉 dμm(η), ξ ∈ R

n, x ∈ X , y∗ ∈ Y ∗, (2.3)

where (−∞, ξ ] = (−∞, ξ1] × · · · × (−∞, ξn]. We define

varR(M ) := inf{CR(T ) : C > 0,T ⊂ B(X , Y ) as above}.

Lemma 2.10 Suppose that m ∈ L∞(Rn;B(X , Y )) can be represented as in (2.3) for some
complex Borel measureμ onR

n and a boundedwo-measurable function τ : R
n → B(X , Y ).

Then we have m ∈ M(E → G) with

‖m‖M(E→G) ≤ sup
{‖	([η,∞))‖B(E,F) : η ∈ R

n} ‖τ‖∞ ‖μ‖ .
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Moreover, for every f ∈ E and g ∈ G∗, R
n � η �→ 〈g, τ (η)	([η,∞)) f 〉〈G,G∗〉 ∈ C

is a bounded Borel measurable function from which the Fourier multiplier operator Tm ∈
B(E,G) can be obtained by

〈Tm f , g〉〈G,G∗〉 =
∫
Rn

〈τ(η)	([η,∞)) f , g〉〈G,G∗〉 dμ(η). (2.4)

Proof We put C := sup
{‖	([η,∞))‖B(E,F) : η ∈ R

n
} ≤ M < ∞. Note that, as a conse-

quence of the assumptions, G can be described in terms of G∗ as follows:

G = {u ∈ S′(Rn; Y ) : [g �→ 〈u, g〉〈S′,S〉
] ∈ (S(Rn; Y ∗), ‖ · ‖G∗

)∗} isometrically. (2.5)

Let us first prove the measurabilty of R
n � η �→ 〈g, τ (η)	([η,∞)) f 〉〈G,G∗〉 ∈ C for

every f ∈ E and g ∈ G∗. For each fixed η ∈ R
n it holds that

E × G∗ → C, ( f , g) �→ 〈τ(η)	([η,∞)) f , g〉〈G,G∗〉

is a continuous bilinear map, satisfying the bound

|〈τ(η)	([η,∞)) f , g〉〈G,G∗〉| ≤ C ‖τ‖∞ ‖ f ‖E ‖g‖G∗ . (2.6)

Since

S(Rn) ⊗ X
d⊂ S(Rn; X)

d
↪→ E, S(Rn) ⊗ Y ∗ d⊂ S(Rn; Y ∗) d

↪→ G∗,

it thus is enough to consider f = ϕ ⊗ x and g = ψ ⊗ y∗ with ϕ ∈ S(Rn),
ψ ∈ S(Rn), x ∈ X , and y∗ ∈ Y ∗. Then η �→ 〈τ(η)	([η,∞)) f , g〉〈G,G∗〉 =
〈	([η,∞))ϕ, ψ〉〈S′,S〉〈τ(η)x, y∗〉〈Y ,Y ∗〉 is measurable, being the product of two measurable
functions.

Since the measurable function y �→ 〈τ(η)	([η,∞)) f , g〉〈G,G∗〉 satisfies the bound (2.6),
it follows that the expression on the right hand-side of (2.4) is well defined and, in fact, gives
rise to a bounded bilinear form

Bτ,μ : E × G∗ → C, ( f , g) �→
∫
Rn

〈τ(η)	([η,∞)) f , g〉〈G,G∗〉 dμ(η)

of norm≤ C ‖τ‖∞ ‖μ‖. SinceS(Rn; X) andS(Rn; Y ∗) are dense in E andG∗, respectively,
in viewof this bound for Bτ,μ and (2.5), it is thus enough to show 〈Tm f , g〉〈S′,S〉 = Bτ,μ( f , g)
holds for all f ∈ S(Rn; X) and g ∈ S(Rn; Y ∗); here Tm is at this moment of course still the
operator (2.1). So let f ∈ S(Rn; X) and g ∈ S(Rn; Y ∗). Then

〈Tm f , g〉〈S′,S〉 = 〈m f̂ , ǧ〉〈S′,S〉 =〈m f̂ , ǧ〉〈L∞,L1〉

=
∫
Rn

∫
(−∞,ξ ]

〈τ(η) f̂ (ξ), ǧ(ξ)〉 dμ(η) dξ

=
∫
Rn

∫
[η,∞)

〈τ(η) f̂ (ξ), ǧ(ξ)〉 dξ dμ(η)

=
∫
Rn

∫
Rn

〈τ(η)1[η,∞)(ξ) f̂ (ξ), ǧ(ξ)〉 dξ dμ(η)

=
∫
Rn

〈τ(η)1[η,∞) f̂ , ǧ〉〈L∞,L1〉 dμ(η) =
∫
Rn

〈τ(η)1[η,∞) f̂ , ǧ〉〈S′,S〉 dμ(η)

=
∫
Rn

〈τ(η)	([η,∞)) f , g〉〈S′,S〉 dμ(η)
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=
∫
Rn

〈τ(η)	([η,∞)) f , g〉〈G,G∗〉 dμ(η)

= Bτ,μ( f , g),

where we used Fubini’s theorem in the fourth equality.

Lemma 2.11 Let U , V be Banach spaces, T ⊂ B(U , V ), (S,A ) a measurable space, μ a
complex measure on (S,A ) with bounded variation, F : S → B(U , V ) a wo-measurable
function taking values in T and A ∈ B(U , V ) an operator satisfying

〈Au, v∗〉 =
∫
S
〈F(s)u, v∗〉 dμ(s), u ∈ U , v∗ ∈ V ∗.

Then A ∈ ‖μ‖ abs convwo(T ), where abs conv
wo

(T ) is the closure in the weak operator
topology on B(U , V ) of the absolute convex hull of T .

Proof We follow the line of reasoning in [19, Theorem 8.5.2], modified from the strong
operator topology to the weak operator topology. By the Hahn-decomposition for measures
and a scaling argument, we may without loss of generality assume that μ is a probability
measure.

Let N be an open neighborhood of A in B(U , V ) with respect to the weak operator
topology. By definition of the weak operator topology, we can pick ε > 0, u1, . . . , uk ∈ U
and v∗

1 , . . . , v
∗
k ∈ V ∗ such that

k⋂
j=1

{
T ∈ B(U , V ) : |〈(A − T )u j , v

∗
j 〉| < ε

}
⊂ N .

The C
k-valued μ-integrable function s �→ (〈F(s)u1, v∗

1〉, . . . , 〈F(s)uk, v∗
k 〉) takes its values

in {(〈Tu1, v∗
1〉, . . . , 〈Tuk, v∗

k 〉) : T ∈ T }. An application of [18, Proposition 1.2.12] thus
gives that

(〈Au1, v∗
1〉, . . . , 〈Auk, v∗

k 〉) =
∫
S
(〈F(s)u1, v

∗
1〉, . . . , 〈F(s)uk, v

∗
k 〉) dμ(s)

∈ abs conv
({

(〈Tuk, v∗
k 〉, . . . , 〈Tuk, v∗

k 〉) : T ∈ T
})

.

Therefore, we can find T ∈ abs conv(T ) such that∣∣(〈Au1, v∗
1〉, . . . , 〈Auk, v∗

k 〉
)− (〈Tuk, v∗

k 〉, . . . , 〈Tu1, v∗
1〉
)∣∣∞ < ε.

By choice of ε > 0, u1, . . . , uk ∈ U and v∗
1 , . . . , v

∗
k ∈ V ∗, we have T ∈ N . As N

was an arbitrary neighborhood of A in the weak operator topology, this shows that A ∈
abs conv

wo
(T ).

Proposition 2.12 If M ⊂ L∞(Rn;B(X , Y )) is of uniformly R-bounded variation, then

R{Tm : m ∈ M } ≤ M varR(M ) in B(E,G).

Proof Let C > 0 and T be as in the definition of uniformly R-bounded variation for M ,
and define S := {	([η,∞)) : η ∈ R

n} ⊂ B(E, F). Each m ∈ M in particular satisfies the
hypotheses of Lemma 2.10, whence the associated Fouriermultiplier operator Tm ∈ B(E,G)

has the representation (2.4). Lemma 2.11 thus yields

Tm ∈ C abs conv
wo

(T S ), m ∈ M .
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Then, by the basic stability properties of R-bounds (see [19, Section 8.1.e]),

R{Tm : m ∈ M } ≤ CR(T )R(S ).

Using the R-boundedness assumption M = R(S ) < ∞ and taking the infimum over all
admissible C > 0 and T gives the desired result.

Combining Proposition 2.12 with Theorem 2.6/2.7 we arrive at the following generic
Fourier multiplier theorem:

Theorem 2.13 LetJ ⊂ Rn be a countable collection of rectangles for which	E = {	[R] :
R ∈ J } ⊂ B(E) and	G = {	[R] : R ∈ J } ⊂ B(G) form unconditional decompositions
of E and G, respectively.

(a) If m ∈ L∞(Rd ;B(X , Y )) is a symbol with the property that {m1J : J ∈ J } is of
uniformly R-bounded variation, then we have m ∈ M(E → G) with

‖m‖M(E→G) ≤ M C+
	E

C−
	G

varR({m1J : J ∈ J }).

(b) Suppose additionally that E and G have Pisier’s property (α). Suppose that M ⊂
L∞(Rd ;B(X , Y )) is a set of symbols such that {m1J : m ∈ M , J ∈ J } is of uniformly
R-bounded variation. Then one has, in B(E,G),

R{Tm : m ∈ M } ≤ M αEαG C+
	E

C−
	G

varR({m1J : m ∈ M , J ∈ J }).

Proof We only need to show the compatibility between the Fourier multiplier operator Tm
and the operator, say Dm , obtained from the abstract multiplier result Theorem 2.6/2.7. So
let f ∈ S(Rn; X). It is enough to show that Tm f = Dm f . Writing mJ := m1J , we
have Dm =∑J∈J TmJ 	J with respect to the strong operator topology in B(E,G). Since
G ↪→ S′(Rn; Y ), it follows that Dm f =∑J∈J TmJ 	J f in S′(Rn; Y ). On the other hand,

T̂m f = m f̂ = ∑J∈J mJ1J f̂ in L1(Rn; Y ), implying that Tm f = ∑J∈J TmJ 	J f in
L∞(Rn; Y ) ↪→ S′(Rn; Y ). Therefore, Tm f = Dm f .

3 Littlewood–Paley theory and Fourier multipliers forAp-weights in
one dimension

In this section we extend Bourgain’s Littlewood–Paley decomposition [2] to the weighted
setting (see Theorem 3.4),which we use to obtain a two-weight version of [41, Theorem 3.4]
(see Theorem 3.5).

Although all results in this section are as special cases contained in Sect. 5 on the higher-
dimensional case, we have decided to treat the one-dimensional case separately. This has
two reasons. Firstly, the one-dimensional case simplifies a lot and is already sufficient for
the application to maximal L p-regularity in Sect. 4. Secondly, this choice also improves the
readability of Sect. 5 at some points.

Throughout this section we will write Ap(R) := Ap(R,R1) = Ap(R,C1).
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3.1 Littlewood–Paley theory

Lemma 3.1 Let X be a UMD space, p ∈ (1,∞) and ω, σ ∈ Ap(R) with [ω, σ ]Ap(R) < ∞.
Then the family {	[I ] : I ∈ R1} lies in B(L p

σ (R; X), L p
ω(R; X)) with R-bound

R{	[I ] : I ∈ R1} �X ,p [ω, σ ]1/pAp(R)

(
[ω]1−

1
p

Ap(R)
+ [σ ]

1
p(p−1)
Ap(R)

)
.

Proof Since X is UMD, the Hilbert transform H defines a bounded operator on L p(R; X).
The Hilbert transform is a Calderón–Zygmund operator, so H is bounded between L p

σ (R; X)

and L p
ω(R; X) with a norm estimate as in Theorem 2.4:

‖H‖B(L p
σ (R;X),L p

ω(R;X)) �X ,p [ω, σ ]1/pAp(R)

(
[ω]1−

1
p

Ap(R)
+ [σ ]

1
p(p−1)
Ap(R)

)
.

As in [19, Proposition 8.3.1] (cf. [20, Lemma 3.7 c)]) it can now be shown that the family
{	[I ] : I ∈ R1} lies in B(L p

σ (R; X), L p
ω(R; X)) with R-bound

R{	 j [I ] : I ∈ R1} ≤ ‖H‖B(L p
σ (R;X),L p

ω(R;X)).

Let us for convenience of the reader provide some details.
Let I ∈ R1 with |I | < ∞, say I = (aI , bI ) with −∞ < aI < bI < ∞. Using that, as a

Fourier multiplier operator, H has symbol ı sgn = ı(21R+ −1), we find the representation

	[I ] = ı

2

(
MaI HM−aI − MbI HM−bI

)

where Ma is the modulation operator Ma : f �→ ea f with ea(t) = exp(2π ı t). Denoting by
Tσ and Tω the set {m ∈ L∞(R) : ‖m‖L∞(R) ≤ 1} viewed as multiplication operators on
L p

σ (R; X) and L p
ω(R; X), respectively, we find that

{	[I ] : I ∈ R1, |I | < ∞} ⊂ Tω{H}Tσ + +Tω{H}Tσ .

SinceR({H}) ≤ ‖H‖B(L p
σ (R;X),L p

ω(R;X)) inB(L p
σ (R; X), L p

ω(R; X)) holds trivially (see [19,
Example 8.1.7]) and R(Tω) ≤ 1 and R(Tσ ) ≤ 1 by [19, Example 8.1.9], it follows from the
stability of R-boundedness under sums and products (see [19, Proposition 8.1.19]) that

R{	[I ] : I ∈ R1, |I | < ∞} ≤ ‖H‖B(L p
σ (R;X),L p

ω(R;X)
) in B(L p

σ (R; X), L p
ω(R; X)).

As 	[(a,∞)] f = limn→∞ 	[(a, n)] f in L p
ω(R; X)) for f ∈ F −1C∞

c (R; X)
d⊂

S(R; X)
d

↪→ B(L p
σ (R; X) and ‖	[(a, n)]‖B(L p

σ (R;X),L p
ω(R;X)) ≤ ‖H‖B(L p

σ (R;X),L p
ω(R;X)),

	[(a,∞)] is contained in closure of {	[I ] : I ∈ R1, |I | < ∞} in B(L p
σ (R; X), L p

ω(R; X))

with respect to the strong operator topology. Similarly, 	[(−∞, b)] is contained in that
closure. The stability of R-boundedness under strong operator closures (see [19, Proposi-
tion 8.1.22]) finally yields the desired R-bound.

Lemma 3.2 Let X be a UMD Banach space, p ∈ (1,∞) and ω, σ ∈ Ap(R) with
[ω, σ ]Ap(R) < ∞. Then S(R) ⊂ M1

p((X , σ ) → (X , ω)) with

‖ϕ‖M1
p((X ,σ )→(Y ,ω)) � [ω, σ ]1/pAp(R)

(
[ω]1−

1
p

Ap(R)
+ [σ ]

1
p(p−1)
Ap(R)

)
sup

k=0,...,3
sup
ξ∈R

|ξ kϕ(k)(ξ)|

for every ϕ ∈ S(R).
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Proof Let ϕ ∈ S(R) with supk=0,...,3 supξ∈R |ξ kϕ(k)(ξ)| ≤ 1. The Mikhlin multiplier theo-
rem (Theorem 2.3) in one dimension gives ϕ ∈ M1

p((X ,1) → (X ,1)) with the estimate
‖ϕ‖M1

p((X ,1)→(X ,1)) � 1. By [39, Proposition VI.4.4.2(a)], K := F −1ϕ satisfies the esti-
mates in the definition of a Calderón–Zygmund kernel independently of ϕ. The desired result
thus follows from Theorem 2.4.

Lemma 3.3 Let X be a Banach space, p ∈ (1,∞) and ω ∈ Ap(R). Then F −1C∞
c (R∗) is

dense in L p
ω(R; X), where R∗ = R\{0}.

Proof In view of the density of L p
ω(R) ⊗ X in L p

ω(R; X) we may without loss of generality
assume that X = C. As F −1C∞

c (R) is dense in L p
ω(R), it suffices to show that F −1C∞

c (R)

is contained in the closure of F −1C∞
c (R∗) in L p

ω(R). So fix an f ∈ F −1C∞
c (R). For

each ε ∈ {−1, 1} let Iε := ε[0,∞) ∈ R1 and consider the associated frequency cut-off
	(Iε) ∈ B(L p

ω(R)). Then f =∑ε∈{−1,1} 	(Iε) f with suppF [	(Iε) f ] ⊂ Iε . Furthermore,
writing ea(x) = exp(2π ia · x), picking ϕ ∈ S(R) with ϕ(0) = 1 and suppF ϕ ⊂ (0,∞)

and putting ϕε,k := ϕ( ε
k · ), we have f ε

k := ϕε,ke 1
k ε	(Iε) f ∈ F −1C∞

c (ε(0,∞)) with

f ε
k → 	(Iε) f in L p

ω(R) as k → ∞.

For each k ∈ Z and η ∈ {−1, 1} we consider the dyadic interval Ik,η := η[2k, 2k+1]. Let
I denote the collection of all these dyadic intervals: I := {Ik,η : (k, η) ∈ Z × {−1, 1}}.
Theorem 3.4 Let X be a UMD Banach space, p ∈ (1,∞) and ω ∈ Ap(R). Then 	 :=
(	I )I∈I defines an unconditional decomposition of L p

ω(R; X)withC±
	 �X ,p [ω]2max{1, 1

p−1 }
Ap(R)

.

For an alternative approach to this theorem based on recent sparse domination, we would
like to refer the reader to [28, Section 9].

Proof Let us check the conditions ofProposition2.8.Thedensity of ran(	)⊃F −1C∞
c (R∗; X)

in L p
ω(R; X) follows from Lemma 3.3. For the randomized estimates we only need to treat

	, 	∗ being of the same form. Indeed, as X is reflexive (being a UMD space), 	∗
I = 	−I

on [L p
ω(R; X)]∗ = L p′

σ (R; X∗), where σ = ω−1/(p−1). Furthermore, [ω]2max{1, 1
p−1 }

Ap(R)
=

[σ ]2max{1, 1
p′−1

}
Ap′ (R)

.

It is standard (and in fact only involving a direct computation) to construct (ρI )I∈I ⊂
C∞
c (R) with the properties that (i) ρI ≡ 1 on I for each I ∈ I and that (ii) the functions

ρε,J :=
∑
I∈J

εIρI , ε ∈ {−1, 1}I,J ⊂ I finite,

uniformly satisfy theMikhlin condition of order 3, that is, there exists a finite constantC > 0
such that

sup{|ξ lρ(l)
ε,J (ξ)| : l = 0, . . . , 3, ξ �= 0} ≤ C

for all ε ∈ {−1, 1}I andJ ⊂ I finite. Using Lemma 3.2 we find that (ρI )I∈I ⊂ M1
p(X , ω)

with ∥∥∥∥
∑
I∈J

εI TρI

∥∥∥∥
B(L p

ω(R;X))

�p,X [ω]max{1, 1
p−1 }

Ap(R)

for all ε ∈ {−1, 1}I and J ⊂ I finite. As 	I TρI = 	I , combining this estimate with
Lemma 3.1 gives the desired estimate for 	 in Proposition 2.8.
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3.2 TheMikhlin Fourier multiplier theorem

The following theorem, which extends [41, Theorem 3.4] to the two-weighted setting, is
consequence of the generic Theorem 2.13 and the Littlewood–Paley decompositions from
Theorem 3.4.

Theorem 3.5 Let X and Y be UMD Banach spaces, p ∈ (1,∞) and ω, σ ∈ Ap(R) with
[ω, σ ]Ap(R) < ∞.

(a) Let m ∈ L∞(R;B(X , Y )) be C1 on R\{0}. If
‖m‖RM := sup

k=0,1
R{ξ km(k)(ξ) : ξ �= 0} < ∞,

then m ∈ M1
p((X , σ ), (Y , ω)) with

‖Tm‖B(L p
σ (R;X),L p

ω(R;Y )
) �X ,Y ,p,σ,ω ‖m‖RM .

(b) Suppose further that X and Y have Pisier’s property (α). If M ⊂ L∞(Rn;B(X , Y )) is
such that ∂αm is C1 on R\{0} for each m ∈ M and

‖M ‖RM := sup
k=0,1

R{ξ km(k)(ξ) : m ∈ M , ξ �= 0} < ∞,

then M ⊂ M1
p((X , σ ), (Y , ω)) and one has in B(L p

σ (R; X), L p
ω(R; Y ))

R{Tm : m ∈ M } �X ,Y ,p,σ,ω ‖M ‖RM .

Proof. By Theorems 2.13 and 3.4 we only need to check that {m1I : I ∈ I} and {m1I :
m ∈ M , I ∈ I} are of uniformly R-bounded variation in (a) and (b), respectively. The case
(b) being exactly the same as (a), for simplicity of notation we only treat (a).

In connection with the representation (2.3) in the definition of uniformly R-bounded
variation, let us note the following. Let −∞ < a < b < ∞ and let f : [a, b] → Z be
a C1-function to some Banach space Z . Then, extending f by zero to R, the fundamental
theorem of calculus gives

( f 1R\{b})(ξ) =
∫

(−∞,ξ ]
f 1{a,b} d(δa − δb) +

∫
(−∞,ξ ]

f ′1(a,b) dλ.

Denoting by aI and bI the left and right endpoint of I ∈ I, respectively, this observation
gives that, for a.e. ξ ∈ R,

(m1I )(ξ) =
∫

(−∞,ξ ]
m1{aI ,bI } d(δaI − δbI ) +

∫
(−∞,ξ ]

ηm′(η)1(aI ,bI )(η) η−1dλ(η).

So m1I satisfies (2.3) a.e. with τm,I (η) = m1{aI ,bI } + ηm′(η)1(aI ,bI )(η) and dμm,I (η) =
d(δaI − δbI ) + 1(aI ,bI )(η)η−1dλ(η). Since

R({τm,I (η) : η ∈ R, I ∈ I}) ≤ ‖m‖RM
and

‖μm,I ‖ = 2 +
∫ bI

aI

dη

|η| = 2 + log(bI /aI ) = 2 + log(2), I = Ik,η,

it follows that

varR({m1I : I ∈ I}) � ‖m‖RM .
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4 An application: maximal Lp-regularity

We now give a short application of the obtained multiplier results in the context of maximal
L p-regularity. Let −A be the generator of a bounded analytic C0-semigroup on a Banach
space X (for an introduction see [36] or [7]). Then A is said to have maximal L p-regularity
for p ∈ (1,∞) if for one or equivalently all T ∈ (0,∞) the following holds: for all
f ∈ L p([0, T ]; X) the mild solution

u(t) =
∫ t

0
e−(t−s)A f (s) ds

of the abstract Cauchy problem u̇(t)+ Au(t) = f (t)with initial condition u(0) = 0 satisfies
u ∈ W 1,p([0, T ]; X) ∩ L p([0, T ]; D(A)). By the closed graph theorem this is equivalent to
the boundedness of the operator

f �→ Au(·) =
∫ t

0
Ae−(t−s)A f (s) ds =

∫
R

Ae−(t−s)A1R≥0(t − s) f (s) ds (4.1)

initially only defined for sufficiently regular functions, say f ∈ C∞
c ((0, T ); X). Taking the

Fourier transform, the boundedness of the singular integral at the right hand side is equivalent
to the boundedness of the multiplier operator associated to m(ξ) = iξ(iξ − A)−1. Since the
R-boundedness of m is even a necessary condition for the boundedness of operator-valued
multipliers and due to the easy structure of the resolvent, we even obtain—partially as a
consequence of the operator-valued Mikhlin multiplier theorem—the following equivalence
on UMD spaces:

A has maximal L p-regularity ⇔ R
{
iξ(iξ − A)−1 : ξ �= 0

}
< ∞.

For details we refer to the first chapters of [20]. This is the celebrated characterization
of maximal L p-regularity on UMD spaces due to Weis [41]. Using our weighted Mikhlin
multiplier result (Theorem 3.5), we obtain the following corollary.

Corollary 4.1 Let−A be the generator of a bounded analytic semigroup on someUMD space
X. Suppose further that A has maximal L p-regularity for some p ∈ (1,∞). Then for all
p ∈ (1,∞) and ω ∈ Ap(R;Q1) one has maximal L p-regularity in the following sense: for
all f ∈ L p

ω([0, T ]; X) the abstract Cauchy problem{
u̇(t) + Au(t) = f (t)

u(0) = 0

has a unique solution u in W 1,p
ω ([0, T ]; X) ∩ L p

ω([0, T ]; X).

Here W 1,p
ω ([0, T ]; X) is the space of all X -valued distributions for which both u and

u̇ lie in L p
ω([0, T ]; X). Note that Theorem 5.12 actually gives a two-weight result for the

operator (4.1).
Corollary 4.1 was first shown in [37] for power weights inAp with positive exponents and

was subsequently generalized to allAp power weights in [9, Theorem 1.15]. For generalAp-
weights the result was first shown in [3, Corollary 5] as a consequence of the extrapolation
result for Calderón–Zygmund operators (Theorem 2.4). However, one now sees that this
extrapolation result for maximal L p-regularity follows automatically from the extrapolation
properties of Mikhlin multipliers and therefore is inherent to the standard approach via R-
boundedness estimates on the resolvent.
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We finally remark that the result of Corollary 4.1 actually holds for a broader class of
weights than the Ap-weights. In fact, since the kernel vanishes on the negative real line,
maximal L p-regularity even holds forω ∈ A−

p , a class of one-sidedMuckenhouptweights [4,
Theorem 5.1].

5 Littlewood–Paley theory and Fourier multipliers for rectangular
Ap-weights

5.1 Product pre-decompositions and blockings

Theorem 5.1 Let X be a Banach space with the property that both X and X∗ have Pisier’s
property (α) and let 	 j = (	

j
i j

)i j∈I j , j = 1, . . . , n, be commuting unconditional decompo-

sitions of X. Put I := ∏n
j=1 I j and, for each i = (i1, . . . , in) ∈ I , 	i := ∏n

j=1 	
j
i j
. Then

	 = (	i )i∈I is an unconditional decomposition of X with

C+
	 ≤ αn−1

X C+
	1 . . .C+

	n and C−
	 ≤ C+

	∗ ≤ αn−1
X∗ C+

(	1)∗ . . .C+
(	n)∗ .

Proof. Although this result seems to be well known, we do not know an explicit reference.
However, the argumentation used in the concrete setting of Littlewood–Paley decompositions
(see for instance [20, Proposition 4.12] and the corresponding note [20, N. 4.12]) also works
in our setting. The argument goes as follows. Since one readily sees that ran(	) is dense
in X , by Lemma 2.5 it suffices to show that both 	 and 	∗ are U+ (with U+-constants as
asserted), something which follows from [19, Proposition 7.5.4]. Let us for convenience of
the reader carry out the estimates. As the estimates for 	 and 	∗ are of the same kind, we
restrict ourselves to 	.

Let x ∈ X and F ⊂ I a finite subset.Put y :=∑i∈F 	i x and pick finite subsets F1 ⊂ I1,

…, Fn ⊂ In such that F ⊂ F1 × · · · × Fn =: F̃ . For each j ∈ {1, . . . , n}, let (ε[ j]
i )i∈I1 be a

Rademacher family on a probability space (�[ j],F [ j], P
[ j]). By [19, Proposition 7.5.4],∥∥∑

i∈F
εi	i x

∥∥
L2(�;X)

= ∥∥∑
i∈F̃

εi	i y
∥∥
L2(�;X)

≤ αn−1
X

∥∥∑
i1∈F1

· · ·
∑
in∈Fn

εi1 · · · εin	1
i1 · · · 	n

in y
∥∥
L2(�[1]×···×�[n];X)

≤ αn−1
X C+

	1 . . .C+
	n

∥∥∑
i1∈F1

· · ·
∑
in∈Fn

	1
i1 · · · 	n

in y
∥∥
X

= αn−1
X C+

	1 . . .C+
	n

∥∥∑
i∈F

	i x
∥∥
X .

Remark 5.2 For a K-convex Banach space X it holds that X has Pisier’s property (α) if
and only if X∗ does (see [19, Proposition 7.5.15]). Moreover, αX ≤ K 2

2,XαX∗ and αX∗ ≤
K 2
2,X∗αX . In connection to the Littlewood–Paley theory in the next subsection, let us mention

that every UMD space X is K-convex with Kp,X ≤ β+
p,X ≤ βp,X for all p ∈ (1,∞) (see

[18, Proposition 4.3.10]).

In the absence of property (α) the product pre-decomposition above is in general not
unconditional. In fact, in the context of Littlewood–Paley decompositions it even occurs
that property (α) is not only sufficient but also necessary, see [24]. However, as the next
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theorem shows, under someR-boundedness conditions, one can find an appropriate blocking
of the product pre-decompositionwhich forms an unconditional decomposition. The theorem
is a modification of [42, Theorem 2.5.1], which was inspired by the work [43] on multi-
dimensional Littlewood–Paley decompositions.

Before we state the theorem, let us introduce some notation. Given an unconditional
decomposition 	 = (	i )i∈I of X and a subset J ⊂ I , we define in the strong operator
topology

	J := SOT −
∑
i∈J

	i .

Theorem 5.3 Let	 j = (	
j
i )i∈Z, j = 1, . . . , n, be commuting unconditional decompositions

of a Banach space X. Suppose that the following R-boundedness conditions hold true for all
j = 1, . . . , n:

κ j := R
{

N∑
i=M

	
j
i : M, N ∈ Z

}
< ∞, κ∗

j := R
{

N∑
i=M

(	
j
i )

∗ : M, N ∈ Z

}
< ∞.

(5.1)
Define the partition (Jk)k∈Z of the index set Z

n by

Jln+r := (Z ∩ (−∞, l + 1])r × {l + 1} × (Z ∩ (−∞, l])n−r−1,

where l ∈ Z and r ∈ {0, . . . , n−1}. For each k ∈ Z we define the bounded linear projection

	k := SOT −
∑
i∈Jk

	1
i1 . . . 	n

in

in X. Then 	 = (	k)k∈Z is an unconditional decomposition of X for which we have

C+
	 ≤

n∑
j=1

C+
	 j

∏
j �=k

κk, C−
	 ≤ C+

	∗ ≤
n∑
j=1

C+
(	 j )∗
∏
j �=k

κ∗
k (5.2)

and

R
{

N∑
k=M

	k : N , M ∈ Z

}
≤ 2κ1 . . . κn, R

{
N∑

k=M

	∗
k : N , M ∈ Z

}
≤ 2κ∗

1 . . . κ∗
n .

(5.3)

Remark 5.4 Concerning the R-boundedness assumptions in Theorem 5.3, let us remark the
following. The R-boundedness of the first collections in (5.1) is automatic when the space
X has the so-called triangular contraction property (or property weak-(α)); see [42, Defini-
tion 2.4.1] and [42, Corollary 2.4.3]. Having the R-boundedness of the first collections, the
R-boundedness of the second collections then is a consequence for K -convex spaces; see
e.g. [19, Proposition 8.20]. In particular, the R-boundedness assumption (5.1) is automatic
when X is a UMD space; see [18].

In the next section we will apply Theorems 5.1 and 5.3 in the setting of Littlewood–Paley
decompositions. There the R-bounds in (5.1) can be checked directly, with explicit bounds,
so that we do not have to rely on the above remark.

Proof of Theorem 5.3 For simplicity of notation we only treat the case n = 2. Throughout the
proof it will also be convenient to write P j

k := 	
j
Z∩(−∞,k] for each j ∈ {1, 2} and k ∈ Z.
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From (5.1) and the preservation of R-bounds under taking closures in B(X) and B(X∗) with
respect to the SOT-topology and the W∗OT-topology, respectively, it follows that

R{P j
k : k ∈ Z} ≤ κ j and R{(P j

k )∗ : k ∈ Z} ≤ κ∗
j , j = 1, 2. (5.4)

One readily sees that ran(	) is dense in X . In view of Proposition 2.8, in order to show
that 	 is an unconditional decomposition with (5.2) it thus suffices that both 	 and 	∗ are
U+, with C+

	 ≤ C+
	1κ2 + C+

	2κ1, C
+
	∗ ≤ C+

(	1)∗κ
∗
2 + C+

(	2)∗κ
∗
1 . We only consider 	, the

case of 	∗ being completely similar. To this end, let x ∈ ran(	) and a finite subset F of Z

be given. Writing F = F0 ∪ F1 with Fr := F ∩ [2Z + r ] for r ∈ {0, 1}, it suffices to show
that ∥∥∥∥

∑
n∈F0

εn	nx

∥∥∥∥
L2(�;X)

≤ C+
	2κ1,

∥∥∥∥
∑
n∈F1

εn	nx

∥∥∥∥
L2(�;X)

≤ C+
	1κ2.

We only treat the random sum over F1, the sum over F0 being similar. Defining F̃1 := {l ∈
Z : 2l + 1 ∈ F1} and using 	2l+1 = 	1

l+1P
2
l+1 = P2

l+1	
1
l+1 and x ∈ Ran(	) ⊂ Ran(	1),

we find∥∥∥∥
∑
n∈F1

εn	nx

∥∥∥∥
L2(�;X)

=
∥∥∥∥
∑
l∈F̃1

ε2l+1P
2
l+1	

1
l+1x

∥∥∥∥
L2(�;X)

(5.4)≤ κ2

∥∥∥∥
∑
l∈F̃1

ε2l+1	
1
l+1x

∥∥∥∥
L2(�;X)

≤ κ2C
+
	1 ‖x‖X .

Let us finally derive the R-bounds in (5.3). Define (�k)k∈Z by �k := 	Z∩(−∞,k]. Then,
on the one hand we have

∑N
k=M 	k = �N − �M−1 for N ≥ M and

∑N
n=M 	n = 0

otherwise. On the other hand,

�k =
{
P1
l+1P

2
l+1 k = 2l + 1, l ∈ Z,

P1
l+1P

2
l k = 2l, l ∈ Z,

so that (�k)k∈Z ⊂ {P1
k : k ∈ Z} · {P2

k : k ∈ Z} and thus (�∗
k)k∈Z ⊂ {(P2

k )∗ : k ∈
Z} · {(P1

k )∗ : k ∈ Z}. The R-bounds in (5.3) thus follow from (5.4).

5.2 Littlewood–Paley decompositions

In this subsection we prove Littlewood–Paley decompositions in the vector-valued weighted
setting. More specifically, the aim is to obtain Theorem 5.11. As already mentioned in the
introduction of this paper,Ap(R

n;Rn) is the right class ofweights for doing suchLittlewood–
Paley decompositions. As a matter of fact, the Littlewood–Paley decompositions require

1{x1≥1}, . . . ,1{xn≥1} ∈ Mn
p(X , ω)

while it is known from [21] that

1{x1≥1}, . . . ,1{xn≥1} ∈ Mn
p(C, ω) ⇐⇒ ω ∈ Ap(R

n;Rn).

The following lemma describes the one-dimensional behaviour of the class Ap(R
n;Rn) in

the two-weight setting.

Lemma 5.5 Let p ∈ (1,∞) andω, σ : R
n → R≥0 weights with [ω, σ ]Ap(Rn;Rn) < ∞. Then

for all j ∈ {1, . . . , n} and almost every (x1, . . . , x j−1, x j+1, . . . , xn) one has
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[ω(x1, . . . , x j−1, ·, x j+1, . . . , xn), σ (x1, . . . , x j−1, ·, x j+1, . . . , xn)]Ap(R;R1)

≤ [ω, σ ]Ap(Rn;Rn).

In particular, if ω ∈ Ap(R
n;Rn), then[

ω
(
x1, . . . , x j−1, ·, x j+1, . . . , xnx

)]
Ap(R;R1)

≤ [ω]Ap(Rn;Rn)

for all j ∈ {1, . . . , n} and almost every (x1, . . . , x j−1, x j+1, . . . , xn).

Proof The proof that we present is a direct adaption of the one-weighted argument in [21,
p. 241]. Suppose that [ω, σ ]Ap(Rn;Rn) < ∞. We may assume that j = 1. Let I ⊂ R be an
interval and Q ⊂ R

n−1 a cube, both of positive and finite measure. Then
(

1

|Q|
∫
Q

1

|I |
∫
I
ω(y, x) dy dx

)(
1

|Q|
∫
Q

1

|I |
∫
I
σ(y, x)−

1
p−1 dy dx

)p−1

=
(

1

|Q × I |
∫
Q×I

ω(y, x) dy dx

)(
1

|Q × I |
∫
Q×I

σ(y, x)−
1

p−1 dy dx

)p−1

≤ [ω, σ ]Ap(Rn;Rn).

Now, for fixed x = (x2, . . . , xn) ∈ R
n−1 choose cubes centered at this point and shrinking

to volume zero. For a fixed I the desired estimate follows for almost every (x2, . . . , xn) from
Lebesgue’s differentiation theorem. A universal exceptional set independent of I can be
found by first considering only intervals with rational endpoints and then passing to general
ones with a limiting argument.

For establishing the Littlewood–Paley decompositions of Theorem 5.11, together with
Theorems 5.1 and 5.3, the above lemma basically allows us to reduce the problem to the
one-dimensional case (in the form of Lemma 5.10), which was already treated in Sect. 3.1.
This reduction requires some (notational) preparations in our setting.

Given j ∈ {1, . . . , n} and T : L p(R; X) → L p(R; Y ), we let Tj : L p(Rn; X) →
L p(Rn; Y ) be the pointwise well-defined induced operator

(Tj f )(x) = (T f (x1, . . . , x j−1, · , x j+1, . . . , xn))(x j ).

In this notation, the above lemma combined with Theorem 2.4 immediately yields:

Lemma 5.6 Let T : L p(R; X) → L p(R; Y ) be a Calderón–Zygmund operator (as defined in
Sect. 2.2) for some given p ∈ (1,∞). For allω, σ ∈ Ap(R

n;Rn)with [ω, σ ]Ap(Rn;Rn) < ∞
and f ∈ L p(Rn; X) ∩ L p

σ (Rn; X) there holds the estimate

‖Tj f ‖L p
ω(Rn;Y ) � [ω, σ ]1/pAp(Rn;Rn)

(
[ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

)
‖ f ‖L p

σ (Rn;X) . (5.5)

The implicit constant only depends on ‖T ‖B(L p(R;X),L p(R;Y )), p and the constant C in the
definition of a Calderón–Zygmund kernel.

It will be convenient to introduce the following notation. For each j ∈ {1, . . . , n} we
define π j : R

n → R by π j x := x j and consider the associated pull-back on functions: for
a function f : R → C we write π∗

j f := f ◦ π j . Let m ∈ L∞(R;B(X , Y )) be such that

m ∈ M1
p((X ,1) → (Y ,1)). Then observe that π∗

j m ∈ Mn
p((X ,1), (Y ,1)) with

[Tm] j = Tπ∗
j m

in B(L p(Rn; X), L p(Rn; Y )). (5.6)
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For j ∈ {1, . . . , n} and a measurable set A ⊂ R we define the frequency cut-off with respect
to the j-coordinate 	 j [A] by 	 j [A] := Tπ∗

j 1A .

Lemma 5.7 Let X be a UMD space, n ∈ N, p ∈ (1,∞) and ω, σ ∈ Ap(R
n;Rn) with

[ω, σ ]Ap(Rn;Rn) < ∞. For each j ∈ {1, . . . , n} the family of spectral projections {	 j [I ] :
I ∈ R1} lies in B(L p

σ (Rn; X), L p
ω(Rn; X)) with R-bound

R{	 j [I ] : I ∈ R1} �X ,p [ω, σ ]1/pAp(Rn;Rn)

(
[ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

)
. (5.7)

As a consequence, {	[R] : R ∈ Rn} ⊂ B(L p
σ (Rn; X), L p

ω(Rn; X)) with R-bound

R{	[R] : R ∈ Rn} �X ,p

(
[ω, σ ]1/pAp(Rn;Rn)

(
[ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

))n
.

Proof We only need to prove the first statement, including theR-bound (5.7). This can can be
done in the same way as Lemma 3.1, now using Lemma 5.6 in combination with the simple
observation (5.6) instead of directly using Theorem 2.4.

The following lemma can be obtained in the same way as Lemma 3.2, now using
Lemma 5.6 in combination with the simple observation (5.6) instead of directly using The-
orem 2.4.

Lemma 5.8 Let X and Y be UMD Banach spaces, p ∈ (1,∞) and ω, σ ∈ Ap(R
n;Rn)

with [ω, σ ]Ap(Rn;Rn) < ∞. For every j ∈ {1, . . . , n} and ϕ ∈ S(R) it holds that π∗
j ϕ ∈

Mn
p((X , σ ) → (Y , ω)) with

‖π∗
j ϕ‖Mn

p((X ,σ )→(Y ,ω))

� [ω, σ ]1/pAp(Rn;Rn)

(
[ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

)
sup

k=0,...,3
sup
ξ∈R

|ξ kϕ(k)(ξ)|.

Lemma 5.9 Let X be a Banach space, p ∈ (1,∞) and ω ∈ Ap(R
n;Rn). Then

F −1C∞
c (Rn∗; X) is dense in L p

ω(Rn; X), where R
n∗ = [R\{0}]n.

Proof This can be proved in the sameway as Lemma 3.3, now using Rε :=∏n
j=1 ε j [0,∞) ∈

Rn with ε ∈ {−1, 1}n instead of Iε ∈ R1 with ε ∈ {−1, 1}. Furthermore, one has to take
ϕε,k(x) := ϕ( ε1

k x1, . . . ,
εn
k xn).

Recall from Sect. 3 the collection of dyadic interval I = {Ik,η : (k, η) ∈ Z × {−1, 1}},
where Ik,η = η[2k, 2k+1].
Lemma 5.10 Let X be a UMD Banach space, p ∈ (1,∞) and ω ∈ Ap(R

n;Rn). For each
j ∈ {1, . . . , n}, 	 j := ((	I ) j )I∈I defines an unconditional decomposition of L p

ω(Rn; X)

with C±
	 j

�X ,p [ω]2max{1, 1
p−1 }

Ap(Rn;Rn)
.

Proof Let us check the conditions of Proposition 2.8. The density of ran(	 j ) ⊃ L p
ω(Rn; X)∩

F −1C∞
c (Rn∗; X) in L p

ω(Rn; X) follows from Lemma 5.9. For the randomized estimates we
only need to treat 	 j , (	 j )

∗ being of the same form. Indeed, as X is reflexive (being a

UMD space), (	I , j )
∗ = 	−I , j on [L p

ω(Rn; X)]∗ = L p′
σ (Rn; X∗), where σ = ω−1/(p−1).

Furthermore, [ω]2max{1, 1
p−1 }

Ap(Rn;Rn)
= [σ ]2max{1, 1

p′−1
}

Ap′ (Rn;Rn)
.
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Let (ρI )I∈I ⊂ C∞
c (R) be as in the proof of Theorem 3.4. Using Lemma 5.8 we find that

(π∗
j ρI )I∈I ⊂ Mn

p(X , ω) with
∥∥∥∥
∑
I∈J

εI Tπ∗
j ρI

∥∥∥∥
B(L p

ω(Rn;X))

�p,X [ω]max{1, 1
p−1 }

Ap(Rn;Rn)

for all ε ∈ {−1, 1}I and J ⊂ I finite. As 	I , j Tπ∗
j ρI = 	I , j , combining this estimate with

Lemma 5.7 gives the desired estimate for 	 j in Proposition 2.8.

We are now able to prove the Littlewood–Paley decompositions that we will use to obtain
the Mikhlin multiplier theorems in Sect. 5.3 via an application of the abstract multiplier
result Theorem 5.12. For this we apply Theorems 5.1 and 5.3 to the above unconditional
decompositions. In the presence of Pisier’s property (α) we can use Theorem 5.1 and simply
take the product decomposition, which consists of the spectral projections corresponding to
rectangles from the family In := {I1 × · · · × In : I1, . . . , In ∈ I}. In the general case only
Theorem 5.3 on blockings is applicable, which leads us to consider the family of rectangles
En = {Ek,η : (k, η) ∈ Z × {−1, 1}n} defined for l ∈ Z and r ∈ {0, . . . , n − 1} by

Eln+r ,η :=
r∏
j=1

η j [0, 2l+1] × ηr [2l , 2l+1] ×
n∏

j=r+2

η j [0, 2l ],

Note that for Jk is as in Theorem 5.3

Ek,η =
⋃
i∈Jk

Ii1,η1 × · · · × Iin ,ηn . (5.8)

Theorem 5.11 (Littlewood–Paley for Ap-weights) Let p ∈ (1,∞) and ω ∈ Ap(R
n;Rn).

For a UMD space X one has the Littlewood–Paley decompositions:

(a) 	 = (	[E])E∈En forms an unconditional decomposition of L p
ω(Rn; X) with U±-

constants C±
	 �X ,p,n [ω](n+1)max{1, 1

p−1 }
Ap(Rn;Rn)

.
(b) If X additionally has Pisier’s property (α), then	 = (	[I ])I∈In forms an unconditional

decomposition of L p
ω(Rn; X) with U±-constants C±

	 �X ,p,n [ω]2nmax{1, 1
p−1 }

Ap(Rn;Rn)
.

Proof Part (a) follows from a combination of Theorem 5.3, Lemma 5.10 and Lemma 5.7,
where we use that X∗ is a UMD space and that the dual family 	∗ is of the same form on

[L p
ω(Rn; X)]∗ = L p′

ω′(Rn; X∗) with ω′ = ω−1/(p−1) ∈ Ap′(Rn;Rn).
Part (b) directly follows from a combination of Theorem 5.1, Remark 5.2 and Lemma 5.10.

The argumentation used in (b) is the usual one in case of Pisier’s property (α) and basically
goes back to [43], see the proof of Theorem 5.1 and the references given there. The use of
the abstract blocking result Theorem 5.3 in (a) is due to [42, Section 3.5] in the periodic
setting and can also be found in [13] on anisotropic multipliers. An alternative approach
would be the original one by [43], using amulti-dimensionalMikhlin theorem (in the spirit of
Lemma 5.10). For this one could use [33, Proposition 3.2], a Mikhlin theorem for L p

ω(Rn; X)

with ω ∈ Ap(R
n;Qn), obtained from extrapolation via Theorem 2.4 from Theorem 2.3.

However, in the anisotropic case (that wewill also consider) a suitable version of Theorem 2.4
is not available.
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5.3 Mikhlin multiplier theorems

The following theorem, which extends [40, Theorems 4.4 & 4.5] to the two-weighted setting,
is a consequence of the generic Theorem 2.13 and the Littlewood–Paley decompositions from
Theorem 5.11. Recall the collection of rectanglesIn andEn introduced before Theorem 5.11.

Theorem 5.12 Let X and Y be UMD spaces, p ∈ (1,∞), and ω, σ ∈ Ap(R
n;Rn) with

[ω, σ ]Ap(Rn;Rn) < ∞.

(a) Let m ∈ L∞(Rn;B(X , Y )) be such that ∂αm|E is continuous for each E ∈ En and
|α|∞ ≤ 1. If

‖m‖RM(En) := sup
|α|∞≤1

R{|ξ ||α| ∂αm|E◦(ξ) : E ∈ En, ξ ∈ E} < ∞,

then m ∈ Mn
p((X , σ ), (Y , ω)) with

‖Tm‖B(L p
σ (Rn;X),L p

ω(Rn;Y )) �X ,Y ,p,n,σ,ω ‖m‖RM(En) .

(b) Suppose further that X and Y have Pisier’s property (α). If M ⊂ L∞(Rn;B(X , Y )) is
such that ∂αm|I ◦ is continuous for each m ∈ M , I ∈ In and |α|∞ ≤ 1 and

‖M ‖RM(In) := sup
|α|∞≤1

R{ξα∂αm|I ◦(ξ) : m ∈ M , I ∈ In, ξ ∈ E} < ∞,

then M ⊂ Mn
p((X , σ ), (Y , ω)) and one has in B(L p

σ (Rn; X), L p
ω(Rn; Y ))

R{Tm : m ∈ M } �X ,Y ,p,n,σ,ω ‖M ‖RM(In) .

Remark 5.13 Following the steps of the proof, the power dependency on the weight charac-
teristics can be determined explicitly: indeed, in (a) we have

CX ,Y ,p,n,σ,ω �X ,Y ,p,n [ω](n+1)max{1, 1
p−1 }

Ap(Rn;Rn)
[σ ](n+1)max{1, 1

p−1 }
Ap(Rn;Rn)(

[ω, σ ]1/pAp(Rn;Rn)
([ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

)

)n

and (b) in we have

CX ,Y ,p,n,σ,ω

�X ,Y ,p,n

(
[ω]2max{1, 1

p−1 }
Ap(Rn;Rn)

[σ ]2max{1, 1
p−1 }

Ap(Rn;Rn)
[ω, σ ]1/pAp(Rn;Rn)

(
[ω]1−

1
p

Ap(Rn;Rn)
+ [σ ]

1
p(p−1)
Ap(Rn;Rn)

))n
.

However, it is known that the obtained powers are far from optimal for the class of Calderón–
Zygmund operators [15], e.g. the Hilbert transform. This loss of exactness stems from our
approach based on the Littlewood–Paley decompositions.

Proof. By Theorems 2.13 and 5.11, we only need to check that {m1E : E ∈ En} and
{m1I : m ∈ M , I ∈ In} are of uniformly R-bounded variation in (a) and (b), respectively.

In connection with the representation (2.3) in the definition of uniformly R-bounded
variation, let us note the following. Let I = [a1, b1]× · · ·× [an, bn] ∈ Rn and let f : I → Z
be a continuous function to some Banach space Z whose partial derivatives ∂α f , |α|∞ ≤ 1,
exist and are continuous on I . For each α ∈ {0, 1}n and j ∈ {1, . . . , n}, let Iα, j := {a j , b j }
if α j = 0 and Iα, j := (a j , b j ) if α j = 1, and let νIα, j := δa j − δb j if α j = 0 and
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534 S. Fackler et al.

νIα, j := 1(a j ,b j )λ
1 ifα j = 1. For eachα ∈ {0, 1}n , let Iα :=∏l

j=1 Iα, j and νIα := ⊗n
j=1νIα, j .

Extending f by zero to R
n , one has by the fundamental theorem of calculus

f (ξ) =
∑

|α|∞≤1

∫
(−∞,ξ ]

(∂α f )1Iα dνI ,α, ξ ∈ R
n\(I \ I◦), (5.9)

where I◦ = [a1, b1) × · · · × [an, bn). For (a) we can use (5.9) to obtain

(m1E )(ξ) =
∑

|α|∞≤1

∫
(−∞,ξ ]

|η||α|∂αm|E (η)1Eα (η)|η|−|α| dνE,α(η)

=
∫

(−∞,ξ ]

∑
|β|∞≤1

|η||β|∂βm|E (η)1Eβ (η)
∑

|α|∞≤1

|η|−|α| dνE,α(η)

for a.e. ξ ∈ R
n , where the second equality follows from disjointness of supports. For the

symbolm1E we can thus take τm,E (η) :=∑|β|∞≤1 |η||β|∂βm|E (η)1Eβ (η) and dμm,E (η) :=∑
|α|∞≤1 |η|−|α| dνE,α(η) in the representation (2.3). Since

R({τm,E (η) : η ∈ R
n, E ∈ En}) ≤ ‖m‖RM(En)

and for E = Eln+r ,η one has

‖μm,E‖ ≤
∑

|α|∞≤1

∥∥∥|η|−|α| dνE,α(η)

∥∥∥ �

∑
|α|∞≤1

2−l|α| ∏
j :α j=1

‖1(a j,E ,b j,E )λ
1‖

≤
∑

|α|∞≤1

2−l|α|(2l+1)|α| �n 1,

it follows that

varR({m1E : E ∈ En}) �n ‖m‖RM(En) .

In case of (b) one similarly gets that m1I satisfies (2.3) with

τm,I (η) :=
∑

|β|∞≤1

ηβ∂βm|I (η)1Iβ (η) and dμm,I (η) :=
∑

|α|∞≤1

η−α dνI ,α(η).

Then,

R({τm,I (η) : m ∈ M , η ∈ R
n, I ∈ In}) ≤ ‖M ‖RM(In)

and

‖μm,I ‖ ≤
∑

|α|∞≤1

‖η−α dνI ,α(η)‖ �
∑

|α|∞≤1

∏
j :α j=1

∫
(a j,I ,b j,I )

η−1
j dη j =

∑
|α|∞≤1

log|α|(2) �n 1,

so that

varR({m1I : m ∈ M , I ∈ In}) �n ‖M ‖RM(In) .

We finally state an anisotropic version of Theorem 5.12.(a) in the weighted mixed-norm
setting, extending [13, Theorem 3.2] (see also [14, Section 7]) to the weighted setting. Such
a result is an important tool in the weighted maximal Lq -L p-regularity approach to parabolic
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problems (see [27]). Let us first introduce the anisotropic setting. Given a ∈ (0,∞)n , we
define the a-anisotropic distance function | · |a on R

n by the formula

|x |a :=
⎛
⎝ n∑

j=1

|x j |2/a j

⎞
⎠

1/2

.

We furthermore define an a-anisotropic version Ea
n = {E a

k,η : (k, η) ∈ Z × {−1, 1}n} of the
decomposition En (introduced before Theorem 5.11) for l ∈ Z and r ∈ {0, . . . , n − 1} by

E a
ln+r ,η :=

r∏
j=1

η j [0, 2a j (l+1)] × ηr [2a j l , 2a j (l+1)] ×
n∏

j=r+2

ηi [0, 2a j l ].

Let us next introduce the weighted mixed-norm setting. Suppose that n = n1 + · · · + nl
with n1, . . . , nl ∈ Z≥1, l ∈ N, and view R

n as R
n = R

n1 × · · · × R
nl . For x ∈ R

n

we accordingly write x = (x1, . . . , xl) with x j = (x j,1, . . . , x j,n j ), where x j ∈ R
n j and

x j,i ∈ R ( j = 1, . . . , l; i = 1, . . . , n j ). Given p ∈ (1,∞)l and ω ∈ ∏l
j=1Ap j (R

n j ;Rn j ),

we define associated the weighted mixed-norm Bochner space L p
ω(Rn; X) as the Banach

space of all Bochner measurable f : R
n → X satisfying

‖ f ‖L p
ω(Rn;X) :=

(∫
R
nl

. . .

(∫
R
n1

‖ f (x)‖p1
X ω1(x1)dx1

)p2/p1
. . . ωl(xl)dxl

)1/pl
< ∞.

We denote by Mn
p((X , σ ), (Y ,ω)) the set of all Fourier multipliers L p

σ (Rn; X) →
L p

ω(Rn; Y ).

Theorem 5.14 Let X and Y be UMD spaces, p ∈ (1,∞)l , andω, σ ∈∏l
j=1Ap j (R

n j ;Rn j )

with [ω j , σ j ]Ap j (R
n j ;Rn j )

< ∞ for j = 1, . . . , l. Let m ∈ L∞(Rn;B(X , Y )) be such that

∂αm|E◦ is continuous for all E ∈ Ea
n and |α|∞ ≤ 1. If

‖m‖RM(Ea
n )

:= sup
|α|∞≤1

R{|ξ ||α|
a ∂αm|E◦(ξ) : E ∈ En, ξ ∈ E} < ∞,

then m ∈ Mn
p((X , σ ), (Y ,ω)) with

‖Tm‖B(L p
σ (Rn;X),L p

ω(Rn;Y )) �X ,Y , p,n,σ ,ω ‖m‖RM(Ea
n )

.

Proof In the same way as in Theorem 5.11 it can be shown that 	 = {	[E] : E ∈ Ea
n}

defines an unconditional decomposition of L p
ω(Rn; X) with U±-constants

C±
	 �X , p,n

l∑
i=1

l∏
j=1

[ω j ]
(n j+δi, j )max{1, 1

p j−1 }
Ap j (R

n j ;Rn j )
,

where δi, j denotes the Kronecker delta. In the same way as in Lemma 5.7 it can be shown
that {	[R] : R ∈ Rn} is a bounded family in B(L p

σ (Rn; X), L p
ω(Rn; X)) with R-bound

R{	[R] : R ∈ Rn} �X , p

l∏
j=1

(
[ω j , σ j ]1/p j

Ap j (R
n j ;Rn j )

(
[ω j ]

1− 1
p j

Ap j (R
n j ;Rn j )

+ [σ j ]
1

p j (p j−1)

Ap(R
n j ;Rn j )

))n j

.

Wemay thus apply the generic Theorem 2.13 and the proof of the theorem is now completed
in the same way as in Theorem 5.12.(a).
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6 Fourier multipliers for cubularAp-weights

The approach for weighted estimates of multipliers based on Littlewood–Paley theory gives
by its very own nature only results for the more restrictive and one-dimensional behaving
class Ap(R

n;Rn). Naturally, it is also very desirable to obtain results for the weaker class
Ap(R

n;Qn). This is indeed possible if one works with Hörmander type conditions instead
of the Littlewood–Paley decomposition. Hence, we pass from the multiplier perspective to
the perspective of singular integrals. Nevertheless, as a consequence we will obtain weighted
results for Fourier multipliers.

In this section we will use the following Banach space geometric property:

Definition 6.1 A complex Banach space X has Fourier type t ∈ [1, 2] if the vector-valued
Fourier transform F : S(Rn; X) → S(Rn; X) extends for one (or equivalently all) n ∈ N to
a bounded operator Lt (Rn; X) → Lt ′(Rn; X).

Note that every Banach space has Fourier type 1 by the Riemann–Lebesgue lemma and
that Fourier type t implies Fourier type s for all s ∈ [1, t]. Further, Kwapień showed that
a Banach space has Fourier type 2 if and only if it is isomorphic to a Hilbert space [23,
Proposition 4.1].

We will furthermore use the weight characteristic [ω, σ ]Ar
p(R

n;Qn) defined by

[ω, σ ]Ar
p(R

n;Qn) := sup
Q∈Qn

(
σ r (Q)

|Q|
) 1

r − 1
p
(

ω(Q)

|Q|
)1/p

,

where p ∈ (1,∞) and r ∈ [1,∞).

6.1 Domination by sparse operators

Wefirst show that certainmultiplier operators are dominated by rather easy operators, namely
sparse operators.

Definition 6.2 A collection S of cubes in R
n is called sparse if for some η > 0 there exists a

pairwise disjoint collection (EQ)Q∈S such that for every Q ∈ S the set EQ is a measurable
subset of Q and satisfies |EQ | ≥ η |Q|. Given a sparse family S and r ∈ [1,∞), we define
for non-negative measurable functions f the associated sparse operator as

Ar ,S f :=
∑
Q∈S

(
1

|Q|
∫
Q

f r
)1/r

1Q .

The standard dyadic grid on R
n is the collection D of cubes {2− j ([0, 1)n + m) : j ∈

Z,m ∈ Z
n}. Further, for given (ωk)k∈Z ∈ ({0, 1}n)Z we define a shifted dyadic grid Dω as

the collection
Dω :=

{
Q +

∑
j :2− j<�(Q)

ω j2
− j : Q ∈ D

}
.

Having domination by sparse operators, the following theorem subsequently yields
weighted estimates.

Theorem 6.3 [17] Let r ∈ [1,∞) andS a sparse family of cubes out of a fixed shifted dyadic
system. Then for p ∈ (r ,∞) and all measurable f : R

n → R≥0

‖Ar ,S( f σ)‖L p
ω(Rn) �p,r ,S [ω, σ ]Ar

p(R
n;Qn)([ω]1/p′

A∞(Rn;Qn)
+ [σ r ]1/pA∞(Rn;Qn)

) ‖ f ‖L p
σr (Rn) .
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Proof. The statement of the theorem is a reformulation of [17, Theorem 1.1] (also see [16,
Theorem 1.1]). Let us for convenience of the reader elaborate a bit on the reformulation.

As in [17], for ρ ∈ (0,∞) and non-negative measurable functions h we define

Aρ

S(h) :=
⎛
⎝∑

Q∈S

(
1

|Q|
∫
Q
h

)ρ

1Q

⎞
⎠

1/ρ

and for two weights ω and ς on R
d we define

[ω, ς]Aq (Rn;Qn):− sup
A∈Cn

ω(A)

|A|
(

ς(A)

|A|
)q−1

, q ∈ (1,∞).

In this notation, [17, Theorem 1.1] says that

∥∥Aρ

S(gς)
∥∥
Lq

ω(Rn)
�q,ρ,S [ω, ς]Aq (Rn;Qn)([ω](1/ρ−1/q)+

A∞(Rn;Qn)
+ [ς]1/qA∞(Rn;Qn)

) ‖g‖Lq
ς (Rn) (6.1)

for all measurable g : R
n → R≥0.

Note that Ar ,S(h) = [A1/r
S (hr )]1/r . Applying (6.1) with ρ = 1/r , q = p/r , ς = σ r to

g = f r , we thus obtain

‖Ar ,S( f σ)‖r
L p

ω(Rn)
= ‖Aρ

S(gς)‖Lq
ω(Rn)

�p,r ,S [ω, ς]Aq (Rn;Qn)

(
[ω](1/ρ−1/q)+

A∞(Rn;Qn)
+ [ς]1/qA∞(Rn;Qn)

)
‖h‖Lq

ς (Rn)

= [ω, σ ]rAr
p(R

n;Qn)

(
[ω](1−1/p)r

A∞(Rn;Qn)
+ [σ r ]r/pA∞(Rn;Qn)

)
‖ f ‖r

L p
ς (Rn)

�
[
[ω, σ ]Ar

p(R
n;Qn)

(
[ω]1/p′

A∞(Rn;Qn)
+ [σ r ]1/pA∞(Rn;Qn)

)
‖ f ‖L p

σr (Rn)

]r
.

For an operator T mapping L p(Rn; X) into vector-valued measurable functions and some
k ∈ N we define its grand maximal truncated operator as

MT ,k f (x) = sup
Q�x

ess sup
y∈Q
∥∥T ( f 1((2k+1)Q)c )(y)

∥∥ .
Here (2k+1)Q denotes the cube with the same center and side length 2k+1 times that of Q.
Recall that a Bochner measurable function f : R

n → C lies in L p,∞(Rn; X) for p ∈ [1,∞)

if there exists C ≥ 0 with

∣∣{x ∈ R
n : ‖ f (x)‖ > λ}∣∣ ≤ C p

λp
for all λ > 0.

Further, ‖ f ‖L p,∞(Rn;X) is the smallest C for which the above estimate holds. One has the
following general domination theorem by Lerner [25, Theorem 4.2] which only deals with
the scalar case and the choice k = 1. However, a very similar argument does work in this
more general setting as well.

Theorem 6.4 [25] Let X , Y be Banach spaces and T : Lq(Rn; X) → Lq,∞(Rn; Y ) be linear
and bounded for some q ∈ [1,∞). Further suppose thatMT : Lr (Rn; X) → Lr ,∞(Rn) for
some r ∈ [q,∞). Then for every compactly supported f ∈ Lr (Rn; X) and all k ∈ N there
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exist sparse families S1, . . . ,S3n of cubes out of different shifted dyadic grids such that
almost everywhere

‖T f (x)‖ �
(‖T ‖Lq→Lq,∞ + ‖MT ,k‖Lr→Lr,∞

) 3n∑
j=1

Ar ,S j ‖ f ‖ (x).

Here the implicit constant only depends on k, n, q and r.

In the following we verify the assumptions of Lerner’s domination theorem for certain
Fourier multipliers. The geometric property Fourier type of a Banach space (see Sect. 2.1)
plays a role in our estimates.

In the next result, a vector-valued adaption of [22, Lemma 1], we establish a connection
between Hörmander type conditions on the multiplier and estimates on the kernel. Let us fix
the setting.

Let m ∈ L∞(Rn;B(X , Y )). We fix some ϕ ∈ C∞
c (Rn) with support contained in 1

2 ≤
|ξ | ≤ 2 and inducing a partition of unity, i.e.

∑∞
j=−∞ ϕ(2− j ξ) = 1 for all ξ �= 0 (see also

Lemma 5.10). For m j (ξ) = m(ξ)ϕ(2− j ξ) we have m(ξ) =∑∞
j=−∞ m j (ξ) for ξ �= 0. The

multipliers m j are integrable and compactly supported. Therefore the corresponding kernel
k j = F −1m j is a bounded smooth function. For N ∈ N we consider the approximative
kernels KN =∑N

j=−N k j . For all f ∈ S(Rn; X) one then has

KN ∗ f = F −1
( N∑

j=−N

m j · F f

)
.

In the lemma below there is the Hörmander type condition (6.2) on the the multipier
m ∈ L∞(Rn;B(X , Y )). For convenience we use the convention that when we write down
a condition like (6.2) it is implicitely assumed that the expression in (6.2) is well-defined
in a natural way; we require the distribution ∂αm to be regular on R

n\{0} in the sense that
∂αm|Rn\{0} ∈ L1

loc(R
n\{0};B(X , Y )) (or actually that ∂αm u is a regular distribution on

R
n\{0} for all u ∈ X0 in the specific case of the lemma below).

Lemma 6.5 Let X , Y be Banach spaces and m ∈ L∞(Rn;B(X , Y )). Assume that Y has
non-trivial Fourier type t > 1 and that there exist s ∈ [t, 2] and l ∈ ( nt , n] ∩ N such that for
some C ≥ 0 one has for all R > 0 and all u in a subset X0 ⊂ X

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm(ξ)u
∥∥s dξ

)1/s
≤ C ‖u‖ for all |α| ≤ l. (6.2)

If there exists d ∈ ( nt ,
n
t + 1) ∩ N, then for p ∈ [1, t ′], R > 0, |y| ≤ R

2 and u ∈ X0 we have
uniformly in N ∈ N the kernel estimate

(∫
R<|x |<2R

‖[KN (x − y) − KN (x)]u‖p dx

)1/p
� R

n
p − n

t ′ −d |y|d− n
t ‖u‖ ,

where the implicit constant only depends on n, t , s, l, C and ‖F ‖Lt (Rn;Y )→Lt ′ (Rn;Y )
. In

particular, for p ∈ [1, t ′] the kernels satisfy uniformly the pointwise p-Hörmander condition,
i.e. there exists (ak)k∈N ∈ �1 such that for all k ∈ N, u ∈ X0 and y ∈ R

n

(∫
2k |y|<|x |<2k+1|y|

‖[KN (x − y) − KN (x)]u‖p dx

)1/p
≤ ak(2

k |y|)− n
p′ ‖u‖ .
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Proof. It follows from the assumptions that for |α| ≤ l, j ∈ Z and q ≤ s

(∫
Rn

‖∂αm j (ξ)u‖q dξ
)1/q

� 2 j( nq − n
s )

(∫
Rn

‖∂αm j (ξ)u‖s dξ
)1/s

� 2 j( nq − n
s )
∑
β≤α

2− j |α−β|
(∫

2 j−1≤|ξ |≤2 j+1
‖∂βm(ξ)u‖s dξ

)1/s

� 2
j
(
n
q − n

s

)∑
β≤α

2− j |α−β|2( j−1)( n
s −|β|) ‖u‖ � 2

j
(
n
q −|α|

)
‖u‖ .

(6.3)

By Minkowski’s inequality one has

(∫
R<|x |<2R

‖[KN (x − y) − KN (x)]u‖p dx

)1/p

≤
∞∑

j=−∞

(∫
R<|x |<2R

‖[k j (x − y) − k j (x)]u‖p dx

)1/p
.

Thus it suffices to prove suitable estimates for the kernels k j u. We now estimate them sepa-
rately. On the one hand one has for R > 0 and |y| ≤ R

2

(∫
R<|x |<2R

∥∥[k j (x − y) − k j (x)]u
∥∥p dx

)1/p

≤
(∫

R<|x |<2R
‖k j (x − y)u‖p dx

)1/p
+
(∫

R<|x |<2R
‖k j (x)u‖p dx

)1/p

≤ 2

(∫
R/2<|x |<5R/2

‖k j (x)u‖p dx

)1/p
.

Since d ≤ l, we obtain for the last above term

(∫
R/2<|x |<5R/2

‖k j (x)u‖p dx

)1/p
� R−d

(∫
R/2<|x |<5R/2

‖|x |d k j (x)u‖p dx

)1/p

� R−d
∑

|α|=d

(∫
R/2<|x |<5R/2

‖xαk j (x)u‖p dx

)1/p
.

Recall that by assumption Y has Fourier type t and that p ≤ t ′. Hence, for each of the above
summands we have by (6.3)

R−d
(∫

R/2<|x |<5R/2
‖xαk j (x)u‖p dx

)1/p

� R
n
p − n

t ′ −d
(∫

R/2<|x |<5R/2

∥∥F −1(∂αm ju)(x)
∥∥t ′ dx

)1/t ′

� R
n
p − n

t ′ −d
(∫

Rn
‖∂αm j (ξ)u‖t dξ

)1/t
� R

n
p − n

t ′ −d
(2 j )

n
t −d ‖u‖ .

(6.4)
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In the same spirit we can estimate the difference as
(∫

R<|x |<2R
‖[k j (x − y) − k j (x)]u‖p dx

)1/p

� R
n
p − n

t ′
(∫

R<|x |<2R
‖[k j (x − y) − k j (x)]u‖t ′ dx

)1/t ′

� R
n
p − n

t ′ −d
∑

|α|=d

(∫
R<|x |<2R

∥∥∥xαF −1((eiy· − 1)m ju)(x)
∥∥∥t ′ dx

)1/t ′

� R
n
p − n

t ′ −d
∑

|α|=d

(∫
Rn

‖∂α[(eiy· − 1)m j ](ξ)u]‖t dξ
)1/t

= R
n
p − n

t ′ −d
∑

|β|+|γ |=d

(∫
Rn

‖∂γ (eiy· − 1)(ξ)∂βm j (ξ)u‖t dξ
)1/t

.

We now estimate the above summands. For |γ | = 0 and |β| = d the inequality |eiyξ − 1| ≤
|ξ | |y| and (6.3) gives

(∫
Rn

|eiξ y − 1|t‖∂βm j (ξ)u‖t dξ
)1/t

≤
(∫

Rn
|ξ |t |y|t ‖∂βm j (ξ)u‖t dξ

)1/t

� |y| 2 j( nt −d+1) ‖u‖ .

For |γ | > 0 we use |∂γ (eiy· − 1)| ≤ |y||γ | together with (6.3) and obtain
(∫

Rn
‖∂γ (eiy· − 1)(ξ)∂βm j (ξ)u‖t dξ

)1/t
� |y||γ | 2 j( nt −|β|) ‖u‖ .

Adding the two just obtained estimates, we get

(∫
R<|x |<2R

‖[k j (x − y) − k j (x)]u‖p dx

)1/p
� R

n
p − n

t ′ −d
d∑

m=1

|y|m (2 j )
n
t −d+m ‖u‖ .

(6.5)
Finally, putting (6.4) and (6.5) together and using |y|m (2 j )n/t−d+m ≤ |y| (2 j )n/t−d+1 for
2 j ≤ |y|−1, we have because of d ∈ ( nt ,

n
t + 1) the claimed estimate

(∫
R<|x |<2R

‖[KN (x − y) − KN (x)]u‖p dx

)1/p

�
∑

2 j≤|y|−1

R
n
p − n

t ′ −d |y| (2 j )
n
t +1−d ‖u‖ +

∑
2 j≥|y|−1

R
n
p − n

t ′ −d
(2 j )

n
t −d ‖u‖

� R
n
p − n

t ′ −d |y|d− n
t ‖u‖ .

Remark 6.6 For p = 1 the pointwise p-Hörmander condition reduces to the pointwise variant
of the well-known Hörmander condition, namely∫

|x |>2|y|
‖[KN (x − y) − KN (x)]u‖ dx � ‖u‖ .

We now use the obtained estimates on the kernel to verify the assumptions of Lerner’s
domination theorem.
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Lemma 6.7 Let X , Y be Banach spaces and suppose that X has non-trivial Fourier type
t > 1. Further, let m ∈ L∞(Rn;B(X , Y )) be such that Tm : Lq(Rn; X) → Lq,∞(Rn; Y ) for
some q ∈ (1,∞). Assume that there exist s ∈ [t, 2] and l ∈ ( nt , n] ∩ N such that for some
C ≥ 0 one has for all R > 0 and all v∗ ∈ N in a subsetN of Y ∗ norming for Y the estimate

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm∗(ξ)v∗∥∥s dξ

)1/s
≤ C
∥∥v∗∥∥ for all |α| ≤ l.

If q ∈ [t,∞), then for every compactly supported f ∈ Lq(Rn; X) there exist sparse families
S1, . . . ,S3n of cubes out of different shifted dyadic grids such that almost everywhere

‖Tm f (x)‖ �
3n∑
j=1

Aq,S j ‖ f ‖ (x).

Here the implicit constant only depends on n, s, l, t , ‖F ‖Lt (Rn;X)→Lt ′ (Rn;X)
, C, q and

‖T ‖Lq→Lq,∞ .

Proof As already said, we verify the assumptions of Theorem 6.4. The required map-
ping property for T = Tm is satisfied by our made assumptions. We now show that
MT ,k : Lq(Rn; X) → Lq,∞(Rn) is bounded for some sufficiently large k ∈ N. For
f ∈ L1(Rn; X) let TN f = KN ∗ f ∈ C(Rn; Y ). Fix x ∈ R

n and Q with x ∈ Q. For
y, z ∈ Q we have

TN ( f 1((2k+1)Q)c )(y) = TN ( f 1((2k+1)Q)c )(y) − TN ( f 1((2k+1)Q)c )(z)

+ TN ( f 1((2k+1)Q)c )(z).

The values in y and z are comparable. For this note that y, z ∈ Q implies |z − y| ≤ √
n�(Q).

Consequently, if k is chosen large, we have |x − y| ≤ 1
4 (2k + 1)�(Q). Then for all v∗ ∈ N

〈v∗, TN ( f 1((2k+1)Q)c )(y) − TN ( f 1((2k+1)Q)c )(z)〉
=
〈
v∗,
∫

((2k+1)Q)c
[KN (y − w) − KN (z − w)] f (w) dw

〉

≤
∫

|w|≥
(
k+ 1

2

)
�(Q)

∣∣〈[K ∗
N (w − (z − y)) − K ∗

N (w)]v∗, f (z − w)〉∣∣ dw

≤
∞∑
j=0

(∫
|w|∈2 j

(
k+ 1

2

)
�(Q)[1,2]

∥∥[K ∗
N (w − (z − y)) − K ∗

N (w)]v∗∥∥q ′
dw

)1/q ′

·
(∫

|w|∈2 j

(
k+ 1

2

)
�(Q)[1,2]

‖ f (z − w)‖q dw

)1/q
.

(6.6)

We now apply the estimates of Lemma 6.5 to the multiplier m∗. For this notice that X∗
has Fourier type t whenever X has Fourier type t . By assumption we can choose some
d ∈ ( nt , l] ∩ N. Further, after choosing a slightly smaller Fourier type if necessary, we may
also assume that d ∈ ( nt ,

n
t + 1). Then by Lemma 6.5 and q ′ ≤ t ′, the first factors in the
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inner sum satisfy the estimate

(∫
2 j+1

(
k+ 1

2

)
�(Q)≥|w|≥2 j

(
k+ 1

2

)
�(Q)

∥∥[K ∗
N (w − (z − y)) − K ∗

N (w)]v∗∥∥q ′
dw

)1/q ′

� (2 j�(Q))−d |z − y|d− n
q .

(6.7)

From (6.6), (6.7) and the dimensional estimate |z − y| ≤ √
n�(Q) we obtain by taking

in (6.6) the supremum over all v∗ in the norming subset N
∥∥TN ( f 1((2k+1)Q)c )(y) − TN ( f 1((2k+1)Q)c )(z)

∥∥
�

∞∑
j=0

(2 j�(Q))−d |z − y|d− n
q

(∫
|w|∈2 j

(
k+ 1

2

)
�(Q)[1,2]

‖ f (z − w)‖q dw

)1/q

�
∞∑
j=0

(2 j�(Q))−d�(Q)
d− n

q (2 j+1�(Q))
n
q

·
((

2 j+1
(
k + 1

2

)
�(Q)
)−n
∫

|z−w|≤2 j+1

(
k+ 1

2

)
�(Q)

‖ f (w)‖q dw

)1/q

� (Mq ‖ f ‖)(z)
∞∑
j=0

2
− j
(
d− n

q

)
.

(6.8)

Here we use the maximal function (Mq f )(x) := (supQ�x |Q|−1 ∫
Q | f |q)1/q . Notice that the

series converges because of d > n
t > n

q . Now, (6.8) and x ∈ Q yield

sup
y∈Q

‖TN
(
f 1((2k+1)Q)c

)
(y)‖ � inf

z∈Q
(‖TN ( f 1((2k+1)Q)c

)
(z)‖ + (Mq ‖ f ‖)(z))

≤ inf
z∈Q
(‖(TN ( f ))(z)‖ + ‖TN ( f 1(2k+1)Q)(z)‖ + (Mq ‖ f ‖)(z))

≤ 1

|Q|
∫
Q

‖(TN f )(z)‖ dz + 1

|Q|
∫
Q
‖(TN ( f 1(2k+1)Q))(z)‖ dz + 1

|Q|
∫
Q
(Mq ‖ f ‖)(z) dz

≤ (M ‖TN f ‖)(x) + (M‖TN f 1(2k+1)Q‖)(x) + M(Mq ‖ f ‖)(x).
Since Q is an arbitrary cube containing x , we have the pointwise domination

MTN ,k f (x) � M(‖TN f ‖)(x) + M(‖TN f 1(2k+1)Q‖)(x) + M(Mq ‖ f ‖)(x).
Using the fact that M maps Lq,∞(Rn) boundedly into itself for all q > 1, we obtain for
f ∈ L1(Rn; X) ∩ Lq(Rn; X)

‖MTN ,k f ‖Lq,∞ � ‖M ‖TN f ‖‖Lq,∞ + ‖M‖TN ( f 1(2k+1)Q)‖‖Lq,∞ + ‖M(Mq‖ f ‖)‖Lq,∞

� ‖TN f ‖Lq,∞ + ‖TN ( f 1(2k+1)Q)‖Lq,∞ + ‖Mq‖ f ‖‖Lq,∞ � ‖ f ‖Lq (Rn;X) .

For the last termwe used the weak type boundednessMq : Lq → Lq,∞, whereas the estimate
for the first two is a consequence of our made assumptions.

Now, let f ∈ Lq(Rn; X). Since convergence in Lq,∞(Rn; Y ) implies pointwise conver-
gence almost everywhere after passing to some subsequence, we can find fn ∈ Lq(Rn; X)∩

123



Weighted estimates for operator-valued Fourier multipliers 543

L1(Rn; X) and (Nn)n∈N with fn → f in Lq(Rn; X) and (TNn fn)(x) → (T f )(x) almost
everywhere. The first part of the proof then gives

(MT ,k f )(x) ≤ lim inf
n→∞ (MTNn ,k fn)(x).

The result now follows from Fatou’s lemma for weak type Lq -spaces.

6.2 Weightedmultiplier results

We now use the weighted estimate in Theorem 6.3 together with the domination established
in Lemma 6.7 to obtain some weighted estimates for Fourier multipliers.

Theorem 6.8 Let X , Y be Banach spaces with X of non-trivial Fourier type t > 1. Let
m ∈ L∞(Rn;B(X , Y )) and assume that there exist l ∈ ( nt , n] ∩ N and s ∈ [t, 2] such that
for some C ≥ 0 one has for all R > 0 and v∗ ∈ N in some norming subset N ⊂ Y ∗

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm∗(ξ)v∗∥∥s dξ

)1/s
≤ C
∥∥v∗∥∥ for all |α| ≤ l. (6.9)

If Tm : Lq(Rn; X) → Lq,∞(Rn; Y ) is bounded for some q ∈ [t,∞), then, for all
p, r ∈ (1,∞) with p > r ≥ q and weights ω, σ : R

n → R≥0 with ω, σ r ∈ A∞(Rn;Qn)

and [ω, σ ]Ar
p(R

n;Qn) < ∞, the multiplier operator Tm( · σ) : L p
σ r (R

n; X) → L p
ω(Rn; Y ) is

bounded with

‖Tm(σ f )‖L p
ω(Rn;Y ) � [ω, σ ]Ar

p(R
n;Qn)([ω]1/p′

A∞(Rn;Qn)
+ [σ r ]1/pA∞(Rn;Qn)

) ‖ f ‖L p
σr (Rn;X) .

Here the implicit constant only depends on n, p, r , s, l, t , ‖F ‖Lt (Rn;X)→Lt ′ (Rn;X)
, C, q and

‖T ‖Lq→Lq,∞ .

Proof Using density of C∞
c (Rn; X) in L p

σ r (R
n; X), this follows directly from a combination

of Theorem 6.3 and Lemma 6.7.

Remark 6.9 Given l ∈ ( nt , n] ∩ N, the conditions s ∈ [t, 2] and q ∈ [t,∞) in Theorem 6.8
can be relaxed to s ∈ ( nl , 2] and q ∈ ( nl ,∞), respectively.

Proof Assume s ∈ ( nl , 2] and q ∈ ( nl ,∞) instead of s ∈ [t, 2] and q ∈ [t,∞), respectively.
X has Fourier type t̃ for all t̃ ∈ [1, t] and because of t, q, s > n

l we can choose t̃ ∈
( nl ,min(q, s)]. Now, applying Theorem 6.8 with t̃ instead of t and with σ and ω as the
Lebesguemeasure,wefind that Tm : Lq̃(Rn; X) → Lq̃(Rn; Y ) is bounded for all q̃ ∈ (q,∞).
In particular, we can take q̃ ∈ [t,∞).

We now restate the above result in terms of the mapping properties of Tm .

Corollary 6.10 Let X , Y be Banach spaces with X of non-trivial Fourier type t > 1. Let
m ∈ L∞(Rn;B(X , Y )) and assume that there exist l ∈ ( nt , n] ∩ N and s ∈ ( nl , 2] such that
for some C ≥ 0 one has for all R > 0 and v∗ ∈ N in some norming subset N ⊂ Y ∗

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm∗(ξ)v∗∥∥s dξ

)1/s
≤ C
∥∥v∗∥∥ for all |α| ≤ l.

If Tm : Lq(Rn; X) → Lq,∞(Rn; Y ) for some q ∈ ( nl ,∞), then for all p, r ∈ (1,∞) with
p > r ≥ q

‖Tm f ‖L p
ω(Rn ;Y ) �

[
ω, σ

− 1
p−r

]
Ar

p(R
n;Qn)

(
[ω]1/p′

A∞(Rn;Qn)
+
[
σ

− r
p−r

]1/p
A∞(Rn;Qn)

)
‖ f ‖L p

σ (Rn;X) ,

(6.10)
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where the implicit constant only depends on n, p, r , s, l, t , ‖F ‖Lt (Rn;X)→Lt ′ (Rn;X)
, C, q and

‖T ‖Lq→Lq,∞ . In particular, in the one-weight case one has

‖Tm f ‖L p
ω(Rn;Y ) � [ω]1/pAp/r (Rn;Qn)

(
[ω]1/p′

A∞(Rn;Qn)
+
[
ω

− r
p−r

]1/p
A∞(Rn;Qn)

)
‖ f ‖L p

ω(Rn;X) .

Proof. Ignoring the known dependencies on the weights, Theorem 6.8 and Remark 6.9 give
for f ∈ L p

σr (R
n; X) an estimate of the form∫

Rn
‖Tm( f σ)‖p ω dx �

∫
Rn

‖ f ‖p σ r dx .

Now, using the substitution g = f σ we get∫
Rn

‖Tm(g)‖p ω dx �
∫
Rn

‖g‖p σ r−p dx .

Renaming the weights appropriately, we get the two-weight estimate. For the one-weight

case we choose σ = ω
− 1

p−r . The two weight characteristic then reduces to

[ω, σ ] = sup
Q

(
1

|Q|
∫

ω
− r

p−r

) 1
r − 1

p
(

1

|Q|
∫
Q

ω

) 1
p = [ω]1/pAp/r

.

A duality argument now gives the following result, where we replace the weak-Lq -bound
by an Lq -bound. Note that in all results valid choices of the constants give n

l ∈ [1, 2).
Corollary 6.11 Let X , Y be Banach spaces with Y of non-trivial Fourier type t > 1. Let
m ∈ L∞(Rn;B(X , Y )) and assume that there exist l ∈ ( nt , n] ∩ N and s ∈ ( nl , 2] such that
for some C ≥ 0 one has, for all R > 0 and x ∈ X,

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm(ξ)x
∥∥s dξ

)1/s
≤ C ‖x‖ for all |α| ≤ l.

If Tm : Lq(Rn; X) → Lq(Rn; Y ) for some q ∈ (1, ( nl )
′), then, for all p, r ∈ (1,∞) with

p < r ′ < q ′,

‖Tm f ‖L p
ω(Rn;Y ) �

[
σ

− 1
p−1 , ω

− 1
(p−1)(p′−r)

]
Ar

p′ (R
n;Qn)([

σ
− 1

p−1

]1/p
A∞(Rn;Qn)

+
[
ω

r
(p−1)(p′−r)

]1/p′

A∞(Rn;Qn)

)
‖ f ‖L p

σ (Rn;X) , (6.11)

where the implicit constant only depends on n, p, r , s, l, t , ‖F ‖Lt (Rn;Y )→Lt ′ (Rn;Y )
, C, q and

‖T ‖Lq→Lq . In particular, in the one weight case one has

‖Tm f ‖L p
ω(Rn;Y )

�
[
ω

− 1
p−1

]1/p′

Ap′/r (Rn;Qn)

([
ω

− 1
p−1

]1/p
A∞(Rn;Qn)

+
[
ω

r
(p−1)(p′−r)

]1/p′

A∞(Rn;Qn)

)
‖ f ‖L p

ω(Rn;X) .

Proof Asm∗∗(ξ)x = m(ξ)x for x ∈ X , X ⊂ X∗∗ is norming for X∗ and Y ∗ has Fourier type
t , duality for Fourier multipliers (see Sect. 2.1) gives that m̃∗ satisfies the assumptions of
Corollary 6.10 with q ′ instead of q . Dualizing the corresponding estimate yields the desired
result.
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If we replace (6.9) by its stronger operator norm variant and the weak-Lq bound by an
Lq -bound, we obtain the following result valid for a broader range of indices.

Corollary 6.12 Let X , Y be Banach spaces of non-trivial Fourier type t > 1. Let m ∈
L∞(Rn;B(X , Y )) and assume that there exist l ∈ ( nt , n] ∩ N and s ∈ ( nl , 2] such that
for some C ≥ 0 one has for all R > 0

(
Rs|α|−n

∫
R<|ξ |<2R

∥∥∂αm(ξ)
∥∥s dξ

)1/s
≤ C for all |α| ≤ l. (6.12)

Suppose that Tm : Lq(Rn; X) → Lq(Rn; Y ) for some q ∈ ( nl , (
n
l )

′). Then (6.10) holds for
all p, r ∈ (1,∞)with p > r > n

l and (6.11) holds for all p, r ∈ (1,∞)with p < r ′ < ( nl )
′.

Proof Note that the conditions of Corollaries 6.10 and 6.11 are both satisfied. Applying
them with ω = σ = 1, we find that Tm is Lq̃ -bounded for all q̃ ∈ (q,∞) and for all q̃ ∈
(1, q ′), respectively. Interpolation subsequently yields Lq̃ -boundedness for all q̃ ∈ (1,∞).
In particular, we can apply Corollary 6.10 for all q ∈ ( nl ,∞) andwe can apply Corollary 6.11
for all q ∈ (1, ( nl )

′).

Combining the above result with [8, Corollary 4.4] we obtain the following corollary
(Corollary 6.13).

For the statement of this corollary it will be convenient to introduce the following notation.
Let N ∈ N and q ∈ {1,∞}. We denote by RMn

N ,q(X , Y ) the space of all symbols m ∈
L∞(Rn;B(X , Y )) with Dαm|Rn\{0} ∈ L1

loc(R
n\{0};B(X , Y )) for each |α|q ≤ N such that

‖m‖Mn
N ,q

:= sup
|α|q≤N

Ress

{
|ξ ||α|Dαm(ξ) : ξ �= 0

}
< ∞, (6.13)

where Ress is the essential R-bound; given f ∈ L0(Rn\{0};B(X , Y )), Ress{ f (ξ) : ξ �= 0}
is the infinimum over all representatives g of the equivalence class of f (a.e. coincidence) of
R{g(ξ) : ξ �= 0}.
Corollary 6.13 Let X , Y be Banach spaces of non-trivial Fourier type t > 1 and let l ∈
( nt , n] ∩ N. Then

‖Tm‖L p
σ →L p

ω
�X ,Y ,t,l,n,p,r

[
ω, σ

− 1
p−r

]
Ar

p(R
n;Qn)(

[ω]1/p′
A∞(Rn;Qn)

+
[
σ

− r
p−r

]1/p
A∞(Rn;Qn)

)
‖m‖RMn

l,1(X ,Y )

for p, r ∈ (1,∞) with p > r > n
l and

‖Tm‖L p
σ →L p

ω
�X ,Y ,t,l,n,p,r

[
σ

− 1
p−1 , ω

− 1
(p−1)(p′−r)

]
Ar

p′ (R
n;Qn)([

σ
− 1

p−1

]1/p
A∞(Rn;Qn)

+
[
ω

r
(p−1)(p′−r)

]1/p′

A∞(Rn;Qn)

)
‖m‖RMn

l,1(X ,Y ) .

for p, r ∈ (1,∞) with p < r ′ < ( nl )
′.

Proof By [8, Corollary 4.4], Tm is Lq -bounded for all q ∈ (1,∞), thus in particular for some
q ∈ ( nl , (

n
l )

′). As the R-boundedness condition in the definition of RMn
l,1(X , Y ) implies the

integral condition (6.12), we may apply Corollary 6.12 to obtain the desired result.
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Remark 6.14 Replacing theA∞-constants by the largerAp/r -constants in the oneweight set-

ting, i.e. using the estimates [ω]A∞ � [ω]Ap/r and [ω−r/(p−r)]A∞ � [ω]r/(p−r)
Ap/r

respectively,
we have, a fortiori, under the assumptions of Corollary 6.10 and 6.11 (and the subsequent
results), for Tm : L p

ω(Rn; X) → L p
ω(Rn; Y ) the estimates

‖Tm‖ � [ω]max
(
1, 1

p−r

)
Ap/r

and ‖Tm‖ �
[
ω

− 1
p−1

]max
(
1, 1

p′−r

)

Ap′/r
,

respectively. In particular, Tm is bounded for ω ∈ Ap/r and ω
− 1

p−1 ∈ Ap′/r respectively.

Remark 6.15 The boundedness result without the dependencies on the weights stated in the
previous remark follows from earlier known results: since the kernel K satisfies the pointwise
p-Hörmander condition, one can essentially apply a variant of [38, Part I, Theorem 1.6] to
obtain the boundedness of Tm for the same class ofAp-weights (for this see also the remarks
at the end of [38]).

Remark 6.16 In connection with Remark 6.14, note that the fact Ap = ⋃q∈(1,p) Aq yields
that for each ω ∈ Ap there exists r ∈ (1, p) such that ω ∈ Ap/r .

In particular, Corollory 6.13 gives a Mikhlin theorem for Ap-weights, but with implied
constants that have a complicated dependence on the weight. A nice dependence on the
weight can be obtained at the cost of increasing the Mikhlin condition to order n + 2 (where
the higher order estimates only require uniform boundedness instead of R-boundedness), see
[33, Proposition 3.1]. This smoothness n + 2 could actually be improved to n + 1 by using
(something in the spirit of) [12] instead of [39, Proposition VI.4.4.2(a)] for passing from the
Fourier multiplier perspective to the perspective of singular integrals.

Remark 6.17 In the case of scalar multipliers m : R
n → C the assumptions made on the

multiplier always imply the classical Hörmander condition. Further, the boundedness of
Tm : L2(Rn) → L2(Rn) is equivalent to m ∈ L∞(Rn) by Plancherel’s theorem. Hence, for
scalar multipliers we recover the one-weight results in [22, Theorem 1] whose proof uses
properties of the sharp maximal function instead of domination by sparse operators.
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