
Received: 8 August 2018 Revised: 28 October 2019 Accepted: 3 November 2019

DOI: 10.1002/net.21922

R E S E A R C H A R T I C L E

Two-stage stochastic minimum s− t cut problems: Formulations,
complexity and decomposition algorithms

Steffen Rebennack1 Oleg A. Prokopyev2 Bismark Singh1,3

1Department of Stochastic Optimization, Institute

for Operations Research, Karlsruhe Institute of

Technology, Karlsruhe, Germany
2Department of Industrial Engineering, University

of Pittsburgh, Pittsburgh, Pennsylvania,
3Discrete Mathematics,

Friedrich-Alexander-Universität

Erlangen-Nürnberg, Erlangen, Germany

Correspondence
Steffen Rebennack, Institute for Operations

Research, Karlsruhe Institute of Technology,

Karlsruhe, Germany.

Email: steffen.rebennack@kit.edu

Funding information
This research was supported by the U.S. Air Force

Office of Scientific Research, FA9550-08-1-0268

and FA9550-11-1-0037.

Abstract
We introduce the two-stage stochastic minimum s− t cut problem. Based on a classi-
cal linear 0-1 programming model for the deterministic minimum s− t cut problem,
we provide a mathematical programming formulation for the proposed stochastic
extension. We show that its constraint matrix loses the total unimodularity property,
however, preserves it if the considered graph is a tree. This fact turns out to be not sur-
prising as we prove that the considered problem is -hard in general, but admits
a linear time solution algorithm when the graph is a tree. We exploit the special
structure of the problem and propose a tailored Benders decomposition algorithm.
We evaluate the computational efficiency of this algorithm by solving the Benders
dual subproblems as max-flow problems. For many tested instances, we outperform
a standard Benders decomposition by two orders of magnitude with the Benders
decomposition exploiting the max-flow structure of the subproblems.

KEYWORDS

Benders decomposition, combinatorial optimization, complexity, minimum s− t cut
problem, total unimodularity, two-stage stochastic programming

1 INTRODUCTION

Let G = (V , A) be a directed graph with node set V , arc set A⊆V ×V , and nonnegative costs cij given for each arc ij ∈ A. The
minimum s− t cut problem for directed graphs can be defined as follows. For a given directed connected graph G = (V , A)
with root node s and terminal node t, the task is to find a node set S⊂V with s ∈ S and a node set T ⊂V with t ∈ T , such that
S∪T = V , S ∩ T = ∅ and the cost of the cut c[S, T]≔

∑
ij∈A : i∈ S∧ j∈Tcij is minimized.

The minimum s− t cut problem and the max-flow problem are dual problems to each other. This relation is called the
max-flow min-cut theorem and was first proven in [11]. This duality enhanced the development of many polynomial time
algorithms for computing minimum s− t cuts; see, for example, [2].

The following mathematical programming formulation of the minimum s− t cut problem dates back to Ford and Fulkerson
[12]. Let

xi =

{
1, if i ∈ T
0, if i ∈ S

∀i ∈ V and yij =

{
1, if i ∈ S, j ∈ T
0, otherwise.

∀ij ∈ A. (1.1)

This allows the following linear 0-1 programming formulation for the minimum s− t cut problem:

min
x,y

∑
ij∈A

cijyij (1.2a)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2019 The Authors. Networks published by Wiley Periodicals, Inc.

Networks. 2019;1–24. wileyonlinelibrary.com/journal/net 1

https://orcid.org/0000-0002-8501-2785
https://orcid.org/0000-0003-2888-8630
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnet.21922&domain=pdf&date_stamp=2019-11-29

2 REBENNACK ET AL.

s.t. yij ≥ xj − xi, ∀ij ∈ A; (1.2b)

xs = 0; xt = 1; (1.2c)

xi ∈ {0, 1}, yij ∈ {0, 1}, ∀i ∈ V , ∀ij ∈ A. (1.2d)

Note that Ford and Fulkerson consider the equation xt − xs = 1 in [12] instead of Equation (1.2c). The constraint matrix
defined by (1.2b)–(1.2c) is totally unimodular (TU) [12] (see further discussion in Section 2.2), allowing the relaxation of the
variables x and y to be nonnegative, continuous, and bounded above by 1. This provides another indication of the fact that the
minimum s− t cut problem is polynomially solvable.

An alternative definition of the minimum s− t cut problem can be provided as follows. Define a cutset as a set of arcs whose
removal ensures that there is no directed path from s to t. Then the minimum s− t cut problem can be defined as the problem
of finding a cutset of minimum weight. Note that model (1.2) has a clear interpretation in this framework since variable yij is 1
if the corresponding arc ij belongs to the required cutset.

This interpretation provides intuitive practical motivation for the minimum s− t cut problem in the military and
law-enforcement contexts. Assume that G is an adversarial transportation (or communication) network and the decision-maker
is interested in disrupting the connectivity between two predefined nodes (i.e., s and t) in the network. Then, each arc cost can
be interpreted as the amount of the interdiction resources necessary for the decision-maker to terminate direct communication
(i.e., an arc) between the corresponding node pair. Consequently, an optimal solution of the minimum s− t cut problem pro-
vides an optimal “attack” and the minimum amount of the resources required for the decision-maker to completely disconnect
the s− t node pair. Clearly, this interpretation can be generalized to capture network reliability and survivability considerations,
where arcs can fail due to some natural reasons; see discussions and examples in [7, 20, 21]. Furthermore, it should be noted
that in the transportation setting an s− t cutset of minimum weight can be viewed as a “bottleneck” limiting the maximum flow
through the network. In fact, military considerations (in particular, underlying interdiction ideas) were one of the original moti-
vations for studying the minimum cut problem in the literature [29]. The now de-classified Harris-Ross report [17] was one of
the earliest related studies, where the authors attempted to identify the bottleneck of the railway network in the Western Soviet
Union and Eastern Europe. Finally, we refer the reader to [2, 19, 25] and the references therein for more detailed discussions of
the minimum cut problem, its applications, and solution approaches.

Stochastic programming models exploit the fact that in many real-life applications probability distributions governing
the problem data are known or can be estimated in advance. Numerous studies over the past several decades demonstrate
potential benefits of stochastic programming models over their deterministic counterparts [28, 36]. In particular, the related
literature contains a number of studies that consider stochastic extensions of various classical graph and network design
problems. Examples include two-stage stochastic extensions of maximum weight matching [23], shortest path [15], mini-
mum spanning tree [10, 13], and Steiner tree [16] problems. For an introduction to stochastic programming, we refer the
reader to [4].

In the aforementioned military and law-enforcement application contexts, the decision-maker often does not have full infor-
mation about the underlying network. Thus, it is natural to consider settings with multiple decision-making epochs—two in the
current study—where the decision-maker does not need to make all of his/her decisions in the same time period, but instead has
an opportunity to construct a valid cutset over two decision-making epochs. Specifically, the decision-maker can disrupt some
arcs in the network initially (i.e., in the first stage). The uncertainty in the second stage (i.e., the second decision-making epoch)
is characterized by some known probability distribution (e.g., estimated based on the available intelligence and/or surveillance
information) and the decision-maker can disrupt distinct arc subsets in the second stage depending on the particular scenario,
realized with the overall goal to construct a cutset of the minimum expected cost. Therefore, the decision-maker does not need
to commit to all of his/her decisions right away (i.e., in the first stage) but instead attempts to take advantage of his/her knowl-
edge of the probability distributions governing the problem data (i.e., arc costs and specific terminal node for each scenario) in
the future.

Motivated by the discussion above, we introduce the following two-stage stochastic extension of the original deterministic
problem.

Definition 1. Given a directed graph G = (V , A) with node set V , arc set A⊆V ×V , a root node s ∈ V, and K scenarios.
The kth scenario consists of a single terminal node tk and has a probability pk, where 0< pk < 1, of being realized. Arc
ij ∈ A has nonnegative cost cij in the first stage and nonnegative cost 𝑑k

ij in the recourse stage (or, second stage) if the kth
scenario is realized. The task is to find a set of arcs E0 to cut in the first stage, and for each scenario k, an arc set Ek to be
cut in the recourse stage if scenario k is realized, such that removing E0 ∪ Ek from the graph G disconnects s from the

terminal tk. The objective is to minimize the total expected cost; that is, min
(∑

ij∈E0
cij +

∑K
k=1 pk∑

ij∈Ek
𝑑k

ij

)
.

REBENNACK ET AL. 3

Previous studies have considered stochastic min-cut problems in various forms. In [18], the authors study a network with
random arc capacities following a discrete probability distribution. There is also work on finding the min-cut in a network where
arcs fail randomly [5, 33]. We instead consider the min-cut problem of disconnecting a root node from a terminal node, where
the terminal node and the arc capacities are random. In [14], the authors present an alternate formulation, which provides an
approximate solution, to this problem. The authors in [9, 15] discuss a somewhat related robust s− t min-cut problem, where the
task is to minimize the maximum cost over all scenarios while disconnecting s from terminals tk. This robust min-cut problem
is known to be APX-hard [22]. The robust problem differs from our stochastic problem, as in the latter problem we identify a
min-cut for every scenario.

In our problem statement (see Definition 1) we make three assumptions. First, we assume that the uncertainty in the second
stage is characterized by a finite number of scenarios. This assumption is standard in the related stochastic mixed integer and
combinatorial optimization literature; see, for example, [30] for the related discussion on the stability issues. For problems with
a prohibitively large (or infinitely many) number of scenarios, we assume that the problem given in Definition 1 is obtained
using the sample average approximation method. Our second assumption is that the root node is known to the decision-maker
and only the terminal nodes are uncertain. In making this assumption we follow the aforementioned related studies in [9, 15];
furthermore, this assumption simplifies our technical analysis in this paper. In the military and law-enforcement settings used as
our motivating application context, it implies that whenever the decision-maker is interested in disconnecting a particular node
pair in the adversarial network, the decision-maker has complete knowledge about at least one node from the pair (e.g., a source
of smuggling operations but not the destination which may depend on the scenario realized). Relaxing this assumption provides
an interesting avenue for future research. Our third assumption is that the decision-maker is risk-neutral as only the expected
cost is optimized. Naturally, one can consider more general risk-averse versions of the problem, for example, by adding some
dispersion statistic into the objective function with an appropriate nonnegative multiplier to capture risk considerations [1].

This article has the following contributions:

(i) We extend the classical s− t min-cut problem to a stochastic two-stage s− t min-cut problem, and provide a mixed-integer
linear programming (MILP) formulation for the latter.

(ii) We show that total unimodularity is preserved if the graph is a tree and we prove -hardness for general graphs.
(iii) We propose a tailored Benders decomposition algorithm with an efficient implementation where Ford-and-Fulkerson’s

max-flow algorithm is used to solve the Benders subproblems. The proposed Benders decomposition algorithm uses the
classical Benders optimality cuts in the context of two-stage stochastic optimization. With that, it is a direct application
of the well-known L-shaped method with some computational enhancements.

The remainder of this paper is organized as follows. In Section 2, we provide a linear mixed 0-1 programming formulation
of the two-stage stochastic minimum s− t cut problem that is a generalization of the classical model (1.2). Unfortunately, the
constraint matrix of the proposed mathematical program loses the total unimodularity property (Section 2.2) of the original
deterministic formulation; however, this property is preserved if graph G is a tree (Section 2.3). This fact turns out to be not
surprising as we prove in Section 3 that the considered problem is -hard, while a linear time solution algorithm is available
when the graph is a tree (see Section 4). Our tailored Benders decomposition algorithm is presented in Section 5 followed by
computational results in Section 6. Finally, Section 7 concludes the discussion.

2 MATHEMATICAL PROGRAMMING FORMULATION

We discuss the two-stage stochastic minimum s− t cut problem considering the graph in Figure 1. Two scenarios are given with
equal probabilities of 0.5. This graph has four nodes with node 1 as the root and node 4 as the terminal node for both scenarios.

In the two-stage stochastic minimum s− t cut problem, one has to decide which arcs are cut in the first and second stage,
where the cut in the second stage depends on the particular second-stage scenario. An optimal solution using this arc-based
interpretation is shown in Figure 1B. In the first stage, both arcs (2,3) and (3,2) are a cut. In the second stage, arcs (1,3) and
(2,4) are a cut for scenario 1, while arcs (1,2) and (3,4) are a cut for scenario two. This way, the optimal objective function
value is 4.

Interestingly, in both scenarios, the resulting graph is disconnected after removing the arcs but the removal of the arcs does
not correspond to a “minimum cut” in the classic sense; that is, as a partition of the nodes. This is the case, since in both
scenarios arcs (2,3) and (3,2) are cut in the first stage. We interpret this solution as hedging of arcs. Specifically, note that the
resulting arcs define a valid cutset. On the other hand, let us consider each scenario independently after the arcs that are cut in
the first stage are removed from G. Then we can observe that the resulting subproblem for each scenario is a classical minimum
s− t cut problem that can be equivalently interpreted either as a partition of the nodes or a cutset of arcs. On the other hand,
for each scenario one of the arcs removed in the first stage is not actually needed to form a valid cut. In other words, in the first

4 REBENNACK ET AL.

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(A)

(B)

(10,10,1)

(10,1,10)
i j
(ci j,d1i j,d

2
i j)

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)
i j
(ci j,d1i j,d

2
i j)

first stage cut

second stage cut: scenario 1

1

3

2

4

(10,1,10)

(1,10,10)(1,10,10)

(10,10,1)

(10,10,1)

(10,1,10)
i j
(ci j,d1i j,d

2
i j)

first stage cut

second stage cut: scenario 2

FIGURE 1 Example of a two-stage minimum s− t cut instance. (A) Node 1 is the root node and node 4 is the terminal node. Given are two scenarios with

equal probability. (B) Hedging: in the first stage, both arcs (2,3) and (3,2) are cut. The cost of this minimum cut is 4. The top graph shows the optimal cuts for

scenario 1 and the bottom graph for scenario 2 (together with the first-stage cuts)

stage the decision-maker removes an extra arc (with respect to each scenario) in order to hedge his/her exposure to the arc costs
in the second stage.

We now discuss two cases when a specific structure on the costs of arcs is present.

Case 1: cij ≤ pk𝑑k
ij, ∀ij ∈ A, k = 1,… ,K. The first-stage cost for each arc is less than or equal to the second-stage

costs in each of the K scenarios, weighted with the scenario probability. Thus, there is no need to cut in the second
stage. Now, the problem transforms into a cut problem, where K terminals have to be cut from a single source s.
This problem can be transformed into a (deterministic) minimum s− t cut problem by introducing a super
terminal node t which is connected to each of the K terminals with arc cost +∞.

Case 2: cij ≥ 𝑑k
ij, ∀ij ∈ A, k = 1,… ,K. The first-stage arc cost is greater than or equal to the cost of cutting in the

second stage at any of the scenarios. In this case, no arcs need to be cut in the first stage and the second-stage
problem decomposes into K independent (deterministic) minimum s− t cut problems.

Thus, in both of the above cases, the two-stage stochastic minimum s− t cut problem is solvable in polynomial time. This
is summarized in the following proposition.

Proposition 1. The two-stage stochastic minimum s− t cut problem is solvable in strongly polynomial time for arbitrary
graphs if one of the following two cases holds: cij ≤ mink=1,…,Kpk𝑑k

ij, ∀ij ∈ A, or cij ≥ maxk=1,…,K𝑑
k
ij, ∀ij ∈ A.

Note that the conditions presented in Cases 1 and 2 can be exploited in a preprocessing step. For example, if for some arc
ij ∈ A, cij ≤ pk𝑑k

ij for all k = 1, …, K, then arc ij does not need to be cut in the second stage for any scenario, which reduces the
problem size (in terms of decision variables).

REBENNACK ET AL. 5

Allowing “hedging” of arcs, we obtain the following formulation for the two-stage stochastic minimum s− t cut problem

z∗ = min
∑
ij∈A

cijyij +
K∑

k=1

pk
∑
ij∈A

𝑑k
ijuk

ij (2.1a)

s.t. uk
ij + yij ≥ xk

j − xk
i , ∀ij ∈ A, k = 1,… ,K; (2.1b)

xk
s = 0, k = 1,… ,K; (2.1c)

xk
tk = 1, k = 1,… ,K; (2.1d)

xk
i , yij, uk

ij ∈ {0, 1}, ∀i ∈ V , ∀ij ∈ A, k = 1,… ,K, (2.1e)

where we define variables uk
ij similar to Equation (1.1) as the arc to be cut for scenario k; variable xk

i has value one if node i ∈ V
belongs to the sink set Tk, otherwise it has value 0 and belongs to the source set Sk; that is, Tk ∪ Sk = V and Tk ∩ Sk = ∅.

Proposition 2. Model (2.1) formulates the two-stage stochastic minimum s− t cut problem correctly.

Proof. Let arc sets E0 and Ek define a two-stage s− t cut for graph G. Arc set Ek defines sets Sk and Tk for each scenario
k. With this, assign variables xk values either 0 or 1 accordingly. The cut variables y and uk obtain their values according
to the arc sets E0 and Ek. With this assignment, inequality (2.1b) is satisfied because otherwise, the sets Sk and Tk do not
define a cut. The objective function value of this cut is calculated correctly.

It remains to show that any feasible solution of model (2.1) defines a two-stage s− t cut for graph G. Therefore,
assume that we are given a feasible solution of model (2.1) and that the graph is not disconnected. This implies that, for
at least one scenario k, there is a (directed) path from root s to terminal tk. Inequality (2.1b) implies that all variables xk

i
for nodes i along this path have the same value, which contradicts Equations (2.1c) and (2.1d). ▪

The next proposition states that it is never optimal to cut the same arc both in the first and the second stage, whenever the
arc costs are nonzero.

Proposition 3. The inequality

uk
ij + yij ≤ 1, ∀ij ∈ A, k = 1,… ,K, (2.2)

strengthens model (2.1). If 𝑑k
ij > 0, then inequality (2.2) does not cut away any optimal solution of model (2.1).

Proof. Clearly the inequality is valid if at least one of the two variables yij or uk
ij is not 1. Therefore, assume that there

exists an arc ij ∈ A and a scenario index k ∈ {1, …, K}, such that uk
ij = yij = 1 in an optimal solution with objective

function value z*. By assigning uk
ij = 0 and leaving all other decision variables unchanged, the objective function reduces

by pk𝑑
k
ij. This contradicts optimality, unless 𝑑k

ij = 0. ▪

Recognize that model (2.1) does not involve any variables xi for the first stage, but only for the recourse stage. Furthermore,
variables y and uk can be relaxed to be nonnegative continuous if variables xk are binary. In order to see this, consider an
optimal, fractional solution for variables y and uk, as well as the corresponding binary solution values of variables xk

i and xk
j ,

and assume that all 𝑑k
ij > 0. This implies that there must be an arc ij ∈ A with yij = l∈ (0, 1); otherwise, each fractional

variable uk
ij implies that 𝑑k

ij = 0. Then, inequality (2.1b) implies that either uk
ij = 1 − l if xk

j − xk
i = 1 or uk

ij = 0 otherwise.

Considering all scenarios k, arc ij ∈ A contributes to the objective function the value cij ⋅ l +
∑K

k=1 pk𝑑k
ijuk

ij = l ⋅ cij + (1 − l) ⋅∑
k∈K∶uk

ij≠0pk𝑑k
ij, which is a convex combination of the two values cij and

∑
k∈K∶uk

ij≠0pk𝑑k
ij. As the solution defined by variables

y, uk and xk is optimal, we obtain cij =
∑

k∈K∶uk
ij≠0pk𝑑k

ij. Hence, the extreme point solution yij = 1 and uk
ij = 0 is also an optimal

solution.
Model (2.1) is a two-stage stochastic optimization problem. Therefore, one can quantify the value of the proposed stochastic

model (2.1) by the well-known “value of the stochastic solution” [4]. The idea of this textbook method is to compute first-stage
cuts by replacing the second-stage uncertainties in model (2.1) by their expected values; the resulting deterministic optimization
problem is called an expected value problem. The obtained first-stage cuts are then “evaluated” in the two-stage stochastic
framework of model (2.1) and the resulting objective function value is compared with z*. Note that any first-stage cut can be
extended to a valid cutset, separating all K terminals from the single source s, because of the possibility to cut edges in the
second stage.

6 REBENNACK ET AL.

s 1

t1

t2

(L,4L,4L)

(L,0,3L)

(L,3L,0)

i j
(ci j,d1i j,d

2
i j)

FIGURE 2 Instance with “value of the stochastic solution” of L

Since the stochastic model possesses possibly K different terminal nodes, the expected value problem separates s from all
terminals (the technology matrix and the right-hand-side of model (2.1) are uncertain). Consequently, all second-stage cuts
in a solution of the expected value problem cut all K second-stage edges. This may lead to an arbitrarily large “value of the
stochastic solution”. For such an example, consider Figure 2 with two scenarios of equal probability and some L∈N. The
optimal stochastic solution cuts edge (1, t1) for scenario 1 and edge (1, t2) for scenario 2, at 0 cost. The optimal solution of the
expected value problem cuts edge (s, 1) in the first stage at cost L . This leads to a value of the stochastic solution of L.

2.1 Undirected graphs
Let G(V , E) be an undirected graph. For undirected graphs, we call each ij ∈ E an edge. In order to apply our results for directed
graphs, we define the appropriate directed graph G(V , Au), associated with G(V , E), with

Au ≔ {ij|ij ∈ E or ji ∈ E}

together with the corresponding arc cost cij and 𝑑k
ij for all ij∈Au and k ∈ {1, …, K}.

The (deterministic) minimum s− t cut problem formulation (1.2a)–(1.2d) for the corresponding directed graph G(V , Au)
remains valid. However, the stochastic two-stage minimum s− tk cut problem formulation requires a slight adjustment: The
first-stage cuts yij for ij ∈ E need to affect both copies of edges ij∈Au and ji∈Au; that is,

yij = yji, ∀ij ∈ E. (2.3)

Equation (2.3) is not necessary for the deterministic minimum s− t cut problems, as only one of the two arcs ij or ji is contained
in any optimal cut (for cij > 0). In contrast, in the two-stage version, different directed arcs ij or ji might be cut for different
scenarios k. Because an undirected graph does not distinguish between the two, we require additional constraints (2.3).

To improve computational performance, we make three adjustments:

1. Remove arcs is from Au, for all i ∈ V .
2. Remove arcs tki from Au, for all k = 1, …, K, i ∈ V if t𝜅 = t𝜅−1 for all 𝜅 = 2, …, K, that is, all terminal nodes are identical.
3. Keep only one copy of the decision variables yij and yji; that is, replace inequality (2.1b) by

uk
ij + yiji<j + yjij<i ≥ xk

j − xk
i , ∀ij ∈ Au, k = 1,… ,K, (2.4)

where indicator function a< b = 1 if a< b and 0 otherwise.
The three improvements above can also be applied to directed graphs.

2.2 General case: total unimodularity is lost
It is natural to consider whether variables xk can be relaxed as well, similar to the deterministic case. This leads us to the
discussion of whether the constraint matrix (2.1b)–(2.1d) is TU. In this section, we show via a counterexample that the constraint
matrix of the two-stage stochastic minimum s− t cut problem loses the total unimodularity property when extended from the
deterministic case.

Recall that a matrix A is TU, if the determinant of each square sub-matrix of A has the value 0, 1, or −1. In order to
discuss total unimodularity of the constraint matrix (2.1b)–(2.1d), it suffices to consider the matrix defined by (2.1b), due to
the following lemma.

REBENNACK ET AL. 7

14

2

3

FIGURE 3 The matrix corresponding to this graph defined through constraints (2.1b)–(2.1d) is not TU for K ≥ 2

Lemma 1. ([35]). Let A be a matrix with {±1, 0} entries and B be the matrix where one row with exactly one entry with
value +1 or −1 is added to A. Then, matrix B is TU, if and only if A is TU.

We now re-write the constraints in the form x̃≤ b. To this end, let y be the vector of variables yij, uk be the vector of variables
uk

ij, and xk be the vector of variables xk
i . Furthermore, let B be the arc-node incidence matrix of graph G with dimension m× n, let

Im be the identity matrix with dimension m×m and 0 be the matrix with all entries as 0 (with an appropriate dimension). Finally,
let x̃ = (u1,… , uK , y, x1,… , xK)⊤, where (⋅)⊤ defines the transpose operator. This enables us to re-write inequality (2.1b) as

Ax⊤ =

⎛⎜⎜⎜⎜⎝
−Im 0 · · · 0 −Im B 0 · · · 0

0 −Im ⋮ 0 −Im 0 B ⋮ 0
⋮ · · · ⋱ ⋮ ⋮ ⋮ · · · ⋱ ⋮
0 0 · · · −Im −Im 0 0 · · · B

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1

u2

⋮
uK

y
x1

x2

⋮
xK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ 0. (2.5)

For two matrices M1 and M2 with the same number of rows, we denote by M1|M2 the matrix obtained by “gluing” M1 to
the left of M2. Then, we make use of the following lemma.

Lemma 2. ([37]). Let A be an n×m matrix. −In|A is TU, if and only if A is TU.

With Lemma 2, it suffices to consider the following matrix

C =

⎛⎜⎜⎜⎜⎜⎝

−Im B 0 · · · 0
−Im 0 B ⋮ 0
⋮ ⋮ · · · ⋱ ⋮

−Im 0 0 · · · B

⎞⎟⎟⎟⎟⎟⎠
. (2.6)

We now consider the graph with four nodes and four arcs shown in Figure 3. We note that the graph does not contain a
directed cycle (but is also not a tree), and both source and sink nodes are not marked because this is irrelevant for the TU property.

For K = 2, the matrix C for Figure 3 is as follows.

C =

(1, 4) (1, 2) (1, 3) (2, 3) 1 2 3 4 1 2 3 4⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 −1 0 0 1 0 0 0 0

0 −1 0 0 −1 1 0 0 0 0 0 0

0 0 −1 0 −1 0 1 0 0 0 0 0

0 0 0 −1 0 −1 1 0 0 0 0 0

−1 0 0 0 0 0 0 0 −1 0 0 1

0 −1 0 0 0 0 0 0 −1 1 0 0

0 0 −1 0 0 0 0 0 −1 0 1 0

0 0 0 −1 0 0 0 0 0 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.7)

where the first four columns correspond to the arc variables yij, columns five to eight correspond to the node variables x1
i for

the first scenario, and the last four columns to variables x2
i for the second scenario. Matrix C in (2.7) is not TU as the square

8 REBENNACK ET AL.

TABLE 1 Convex hull for different instances corresponding to Figure 3

Source node Sink node scenario 1 Sink node scenario 2 # integral extreme points # fractional extreme points

1 2 2 25 000 0

1 2 3 20 900 0

1 2 4 22 748 0

1 3 3 19 000 0

1 3 4 19 712 0

1 4 4 22 120 0

submatrix

E =

(1, 4) (2, 3) 1 2 1 3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 −1 0 0 0

0 0 −1 1 0 0

0 −1 0 −1 0 0

−1 0 0 0 −1 0

0 0 0 0 −1 1

0 −1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.8)

has determinant −2. Thus, in the general case the constraint matrix (2.1b)–(2.1d) is not TU.
Note that TU is just a sufficient condition for integral polyhedra. Through the example above, we see that the TU property

of the deterministic s− t cut problem is lost, in general. Despite the loss of the TU property, solutions of the LP-relaxation
of model (2.1) might still be integral. This is important to note in light that we observe that many of the random instances
yield integer solutions from their LP relaxations; see Section 6. In this context, consider Table 1. The table lists the number of
extreme points of the corresponding polytope for different choices of source and sink nodes. The extreme points are calculated
with the software PORTA [6]. As evident from the results, all extreme points are 0-1 valued. This shows that the polyhe-
dra are integral! Therefore, any choice of arc costs leads to an integral optimal solution even though the constraint matrix is
not TU.

2.3 Trees: total unimodularity is preserved
In this section, we show that the constraint matrix A of (2.1b)–(2.1d) is TU if the underlying graph G is a tree; that is, the graph
does not contain any (undirected) circuits. Specifically, we consider directed, connected graphs G, which are out-rooted trees.
As such, G has exactly n− 1 arcs for n nodes.

As a by-product, we learn that the two-stage stochastic minimum s− t cut problems for trees are single commodity flow
problems on a transformed graph. Furthermore, in Section 4, we discuss a linear time algorithm for the two-stage stochastic
minimum s− t cut problem. All this implies that the two-stage stochastic minimum s− t cut problem is polynomially solvable
for trees—just as the demand robust minimum s− t cut problem is [15].

We have already seen with Figure 3 that, in general, the constraint matrix (2.1b)–(2.1d) is not TU. The underlying reason is
that the graph contains an undirected cycle. Forbidding undirected cycles for graphs leads to trees—and this property of a tree
is exactly what we need in order to prove that the corresponding constraint matrix is TU.

Consider the following matrix

D ≔

⎛⎜⎜⎜⎜⎜⎝

B⊤ 0 · · · 0 0
0 B⊤ ⋮ 0 0
⋮ · · · ⋱ ⋮ ⋮
0 0 · · · B⊤ 0

In−1 In−1 · · · In−1 In−1

⎞⎟⎟⎟⎟⎟⎠
(2.9)

with node-arc incidence matrix B⊤ of graph G with dimension n× (n− 1) and identity matrix In−1 with dimension
(n− 1)× (n− 1). Matrix D has been obtained from C by the following operations. First, matrix C has been transposed. In the
transposed graph, second, the last n− 1 rows are multiplied by −1 and third, the last n− 1 columns are added (containing exactly
one +1 entry). All three operations do not alter the TU property (see Lemma 9.2.2 in [35]). In fact, matrix D is TU if and only
if C is TU. Therefore, D is TU if and only if A is TU.

REBENNACK ET AL. 9

Matrix D is the constraint matrix of a multicommodity flow problem on the graph corresponding to node-arc incidence
matrix B⊤; see for example [32, 34]. Because G is a tree with one root node, the multicommodity flow problem has one supply
node, s, and K demand nodes, tk, k = 1, …, K. In particular, G does not contain any circuits.

Soun and Truemper [32] describe a general procedure for transforming a multicommodity flow problem to a single commod-
ity flow problem which preserves TU. Because such a transformation is not possible in general (consider our counterexample
in Section 2.2), the first step of the procedure checks whether the graph is transformable. This check iteratively removes nodes
from 2-connected graphs until a cycle with two arcs is left (see “Step 1 (Analysis)” in the transformation algorithm in [32]).
Because tree G is not 2-connected, G has to be decomposed into its 2-connected components, which are just single nodes (this
is where we exploit the assumption that G is a tree). Each of the single nodes is trivially transformable (there is no flow to send)
and with that the multicommodity flow problem (see page 358 in [32]). Therefore, the multicommodity flow problem is equiv-
alent to some single commodity flow problem, whose constraint matrix is TU. By transformability, matrix D is TU [32]. This
completes our proof and shows that matrix A of (2.1b)–(2.1d) is TU for trees.

3 COMPUTATIONAL COMPLEXITY

The fact that the constraint matrix of the two-stage stochastic minimum s− t cut problem loses its total unimodularity (see
Section 2.2) raises the question about the theoretical computational complexity of the problem. In this section, we show that the
stochastic programming extension of the polynomially solvable (deterministic) minimum s− t cut problem becomes -hard
in general. This is consistent with similar observations for the two-stage stochastic extensions of the minimum spanning tree
[13] and the maximum weight matching [23] problems. In this section for simplicity of further discussion, we consider the
undirected version of the problem. We define the decision version of two-stage stochastic s− t cut problem as follows.

Definition 2. (Decision version).

Instance: An undirected graph G = (V , E) with node set V , edge set E, root node s ∈ V , K scenarios and bound C <∞.
The kth scenario consists of a single terminal tk and has probability pk, where 0< pk < 1, of being realized. Edge
ij ∈ E has nonnegative cost cij in the first stage and nonnegative cost 𝑑k

ij in the recourse stage (or second stage) if the
kth scenario is realized.

Question: Is there a set of arcs E0 to be cut in the first stage and for each scenario k, an edge set Ek to be cut in the recourse
stage, if scenario k is realized, such that removing E0 ∪ Ek from the graph G disconnects s from the terminal tk, while
the expected cost of cutting c ≔

∑
ij∈E0

cij +
∑K

k=1 pk∑
ij∈Ek

𝑑k
ij over all scenarios does not exceed C, that is, c≤C?

We call the edge set E0 ∪ Ek a feasible cut for scenario k, if the removal of E0 ∪ Ek from the graph G disconnects the node
s from the terminal node tk. In our reduction, we use the multiterminal cut (MC) problem.

Definition 3. (Multiterminal cut, [8]).

Instance: An undirected graph G(V , E) with node set V , edge set E, a set S = {s1, s2, …, sk}⊆V of k specified
terminals, a positive weight wij for each edge ij ∈ E and a bound B<∞.

Question: Is there a subset of arcs E ⊆ E with
∑

e∈Ewij ≤ B such that the removal of E from E disconnects each
terminal from all others?

An edge set E ⊆ E is called a feasible cut for MC, if the removal of E from E disconnects each terminal from all others. We
need the following complexity result.

Lemma 3. ([8]). The multiterminal cut problem for k = 3 and arbitrary graphs is -complete even if all edge weights
are equal to 1.

Note that for k = 2 the MC problem reduces to the standard minimum s− t cut problem, which can be solved in
polynomial time.

We now establish the strongly -completeness of the two-stage stochastic s− t cut problem by reducing the MC problem
with k = 3 to it. We are given an instance of the MC problem with G = (V , E), respective weights wij for each ij ∈ E, S = {s1,
s2, s3} and bound B. Without loss of generality (i.e., the MC problem remains NP-complete), we assume that arcs s1s2 and s1s3

do not exist in G; that is, s1s2, s1s3 ∉E.
Next we construct an instance of the two-stage stochastic s− t cut problem such that there is a one-to-one correspondence

between their respective solutions. We define graph GMC = G̃(Ṽ , Ẽ) as follows:

10 REBENNACK ET AL.

• Let Ṽ = V ∪ {t} and Ẽ = E ∪ {s1s2, s1s3, s2t, s3t}. In other words, we add an extra node and four additional arcs into the
original graph for the MC problem.

• Let the first-stage edge capacities be cij = wij ∀ ij∈E and cij = +∞ for ij ∈ {s1s2, s1s3, s2t, s3t}.
• Let the second-stage edge capacities be 𝑑1

ij = 𝑑2
ij = +∞∀ ij ∈ E, 𝑑1

s1s2
= 𝑑1

s3t = 𝑑2
s1s3

= 𝑑2
s2t = +∞, and 𝑑1

s1s3
= 𝑑1

s2t =
𝑑2

s1s2
= 𝑑2

s3t = 0.
• Let the root node be s := s1 and the terminal node be t for both scenarios.
• Let the probability of each scenario be given by p1 = p2 = 1/2.

An example and the corresponding transformation is shown in Figure 4. The MC instance in Figure 4A is a “YES” instance
for B≥ 9, with the feasible cutset E = {s15, s14, s24, s2s3}. This set is marked by the gray lines. Figure 4B shows the transformed
graph GMC with a cut having weight 9.

Lemma 4. An instance for the multiterminal mut problem with bound B is a “YES” instance, if and only if the transformed
graph GMC is a “YES” instance for the two-stage stochastic s− t cut problem with cost bound C = B.

Proof. “⇒” Let the MC problem have the feasible cutset E with
∑

ij∈Ewij ≤ B. The first-stage cutset for GMC is E as
well, since for the first scenario, arcs s1s3 and s2t are cuts in the second stage and for the second scenario arcs s1s2 and
s3t are a cut in the second stage. In this way, the cut weight is c≡w. This leads to a feasible cut for GMC for the two-stage
s− t cut problem for both scenarios with weight c≤C = B.

“⇐” Suppose the solution of the constructed two-stage stochastic minimum s− t cut problem is given by the edge set
Ẽ0 for the first stage and edge sets Ẽ1 and Ẽ2 for scenarios one and two in the second stage, respectively, and cut weight
C. Because C <∞, any feasible two-stage s− t cut has a finite total capacity. We then have the following facts:

• Ẽ0 ⊆E since cij = +∞ for any ij ∈ Ẽ ∖ E.
• Any ij ∈ E cannot belong to either Ẽ1 or Ẽ2.
• We may assume that Ẽ1 = {s1s3, s2t} and Ẽ2 = {s1s2, s3t} since the respective capacities are zero, while all other

capacities are +∞.
• In scenario one, since 𝑑1

s1s2
= 𝑑1

s3t = +∞, arcs s1s2 and s3t are not cut. Hence, Ẽ0 must contain arcs that completely
disconnect s1 from s3; because s1 is connected to s2 in scenario one, s2 must be disconnected from s3 as well.

• In scenario two, since 𝑑2
s1s3

= 𝑑2
s2t = +∞, arcs s1s3 and s2t are not cut. Hence, Ẽ0 must contain arcs that completely

disconnect s1 from s2; because s1 is connected to s3 in scenario two, s2 must be disconnected from s3 as well.

Therefore, any two-stage stochastic s− t cut with a finite total capacity must contain Ẽ0 that completely disconnects
s1, s2 and s3 from each other; that is, Ẽ0 is a multiterminal cut in the original graph G(V , E). Moreover, since the capacities
of arcs in Ẽ1 and Ẽ2 are zero, minimizing the total capacity of the two-stage s− t cut corresponds to minimizing the
weight of the multiterminal cut. Thus, Ẽ0 is a feasible cut for MC with weight B = C. ▪

This allows us to prove our main result.

Theorem 1. The decision version of the two-stage stochastic s− t cut problem is -complete in the strong sense even
for two scenarios and the same terminal node for both scenarios.

Proof. The two-stage stochastic s− t cut problem is in  , as a nondeterministic algorithm needs only to guess which
arcs to cut, check if this leads to a feasible cut for each scenario, and check if the cost of the cut is less than or equal to C.

The given transformation from MC to the two-stage stochastic s− t cut problem via graph GMC is valid according
to Lemma 4. By replacing the weights +∞ by B+ 1, the node set, the edge set, and the edge weights of the constructed
graph GMC are linearly bounded in the input size of MC. Thus, the transformation can be done in (strongly) polynomial
time. ▪

Corollary 1. The directed version of the two-stage stochastic s− t cut problem is also -complete in the strong sense.
To see this, one can use the same reduction as for the undirected case by preserving the direction of the arcs to be cut in
the construction presented in the proof of Lemma 4.

4 LINEAR RUNNING TIME ALGORITHM FOR TREES

As we discussed in Section 2.3, if graph G is a tree, then the constraint matrix (2.1b)–(2.1d) is TU. This fact indicates that
the two-stage stochastic minimum s− t cut problem is polynomially solvable if G is tree. Furthermore, we show next that the
problem admits a linear time solution algorithm.

REBENNACK ET AL. 11

s1

s2

s3

4

5

3

(A)

(B)

1

2

3

4

1

4

s

s2

s3

4

5

t

(3, + ∞, + ∞)

(1, + ∞, + ∞)
(2, + ∞, + ∞)

(3, + ∞, + ∞)

(4, + ∞, + ∞)

(1, + ∞, + ∞)

(4, + ∞, + ∞)

(+ ∞, 0, + ∞)

(+ ∞, + ∞, 0)

(+ ∞, + ∞, 0)

(+ ∞, 0, + ∞)

FIGURE 4 MC instance and corresponding instance GMC for the two-stage stochastic minimum s− t cut problem. The legend for (B) is the same as in

Figure 1, but rather for undirected arcs. (A) “YES” instance for MC problem for B≥ 9 with cut; gray arcs are cut. (B) Corresponding instance for the

two-stage stochastic minimum s− t cut problem with cut

Consider now the following transformation. Given an instance of the two-stage stochastic minimum s− t cut problem on
directed graph G = (V , A) with the notation of Definition 1, construct a directed graph G = (V ,A) as follows:

• Add one additional node Tk
to V for each scenario k; that is, V ≔ V

⋃K
k=1{Tk}.

• Add one arc between terminal tk and Tk
to A for each scenario k; that is, A = A

⋃K
k=1{tkTk}.

• Define weights for ij ∈ A as the first-stage costs; that is, wij = cij,∀ ij∈A.

• Define weights for tkTk
as follows. Let Pk be the (unique) path from the source s to tk, and ek be one least cost arc in

scenario k (along this path Pk). Then w
tkT

k = pk𝑑k
ek ,∀k = 1,… ,K.

Graph G remains a tree by construction. Now, finding a (deterministic) minimum cut in G, which separates s from all

terminals Tk
, can be done via a linear time dynamic programming algorithm (use a backward recursion from the terminals to s

and update the arcs to be cut). Any such cut in G corresponds, then, to a cut in G (and vice-versa) with the same cost as follows:

if arc ij ∈ A for G is a cut, then in the first stage, ij is a cut in G; if arc ij = tkTk ∈ A ⧵ A is a cut, then in the k-scenario, the
corresponding arc e is a cut. Hence, we have the following lemma:

Lemma 5. If graph G is a tree, then the two-stage stochastic minimum s− t cut problem can be solved in linear time.

Figure 5 shows the transformation for an instance with three scenarios, having equal probability. First, the three nodes T1
,T2

,

and T3
and the three arcs t1T1

, t2T2
, and t3T3

are added for the three scenarios. The arcs cost for all arcs (s2, 2t1, 2t2, s3, 3t3) of
the original graph are given by the first-stage arc cost cij. The weights for the additional arcs t1T1

, t2T2
, and t3T3

are given by
1

3
min{7, 6} = 2, 1

3
min{6, 7} = 2 and 1

3
min{3, 4} = 1, respectively. The optimal cuts are marked accordingly.

Adjusting the formulation of the deterministic minimum s− t cut problem (1.2a)–(1.2d) to the cut problem for graph G, we
obtain:

min
∑
ij∈A

wijyij (4.1a)

s.t. yij ≥ xj − xi, ∀ij ∈ A; (4.1b)

xs = 0; xtk = 1, ∀k = 1,… ,K; (4.1c)

xi, yij ∈ [0, 1], ∀i ∈ V , ij ∈ A. (4.1d)

12 REBENNACK ET AL.

s

3

(A)

(B)

2

t1

t2

t3

(3,7,6,1)

(2,1,1,3)

(5,6,8,1)

(5,8,7,1)

(2,1,1,4)

i j
(ci j,d1i j,d

2
i j,d

3
i j)

second stage cut: scenario 3

s

3

2

t1

t2

t3

T
1

T
2

T
3

3

2

5

5

2

2

2

1

FIGURE 5 Two-stage stochastic min-cut instance for a tree and corresponding deterministic min-cut instance. (A) Stochastic min-cut instance for tree with

three scenarios. (B) Transformed tree instance of deterministic min-cut problem

The constraint matrix defined by (4.1b)–(4.1c) is TU. However, this does not (at least, in an obvious manner) imply that the
constraint matrix is TU for the tree G as well.

Finally, we should note that the approach discussed in this section is similar in spirit to the one in [14] for the two-stage
robust min-cut problem, as the latter also admits a polynomial time solution whenever G is a tree.

5 BENDERS DECOMPOSITION

The y variables in inequality (2.1b) represent the s− tk cuts in the first stage. In other words, the y variables connect the K stages.
Thus, if variables y are fixed to 0 or 1, then problem (2.1a)–(2.1e) decomposes into K separate minimum s− t cut problems of
the type (1.2a)–(1.2d). Each of the K optimization problems is a linear program, because of its total unimodularity property.
This structure suggests a Benders decomposition approach [3], where the master problem contains the y variables and the K
subproblems are minimum s− t cut problems for trial values y obtained from the master problem. By using such a proposed
decomposition, the underlying TU structure of each of the K scenarios is revealed and can be exploited.

Benders decomposition is also known as the L-shaped method in the stochastic programming community [31]. We assume
that the reader is familiar with Benders decomposition, otherwise we refer to [26, 27] and the references therein. Note that our
Benders subproblems are LPs because of the TU property of the s− tk min-cut problems. Thus, we do not require methods from
two-stage stochastic integer programming, which are very hard to solve problems when second-stage integrality requirements
are present.

We start with the description of the sub-problem of the Benders decomposition algorithm. For a given trial solution y,
obtained from the master problem, we have K subproblems, one for each scenario k, as follows

z∗k (y) = min
∑
ij∈A

𝑑k
ijuk

ij (5.1a)

s.t. uk
ij − xk

j + xk
i ≥ −yij, ∀ij ∈ A; (5.1b)

xk
s = 0; (5.1c)

xk
tk = 1; (5.1d)

xk
i , uk

ij ∈ [0, 1], ∀i ∈ V , ∀ij ∈ A. (5.1e)

REBENNACK ET AL. 13

We note that all K subproblems (5.1a)–(5.1e) are feasible for any (binary) y, which eliminates the need for Benders feasibility
cuts. We add K optimality cuts, one for each sub-problem, (the so-called “multicut version” of Benders decomposition). For
k = 1, …, K, the cut is derived as

𝜂k ≥
∑
ij∈A

(−𝜋k
ij)yij +𝜛k; (5.2a)

𝜛k = z∗k (y) +
∑
ij∈A

𝜋k
ijyij, (5.2b)

where 𝜋k
ij is an optimal dual solution associated with constraint (5.1b) and 𝜛k is the cut constant.

To improve computational performance, when solving the Benders subproblems (5.1), we apply Proposition 3; that is,
constraints (5.1b) are eliminated whenever trial solution yij = 1.

The master problem is then derived as

z = min
∑
ij∈A

cijyij +
K∑

k=1

pk𝜂k (5.3a)

s.t. 𝜂k ≥
∑
ij∈A

(−𝜋k
ij)yij +𝜛k

l , ∀k = 1,… ,K, ∀l = 1,… ,L; (5.3b)

yij ∈ {0, 1}, ∀ij ∈ A, (5.3c)

𝜂 ≥ 0, (5.3d)

where l is the index of the Benders iterations. Note that 𝜂 ≥ 0 because 𝜂 ≥ z∗k (⋅) and z∗k (y) ≥ 0 for any binary y due to the
nonnegative second-stage arc costs 𝑑k

ij.
The master problems yield a lower bound z on the optimal solution value z*. A feasible solution y of the master problem

provides an upper bound as:

z(y) =
∑
ij∈A

cijyij +
K∑

k=1

pkz∗k (y). (5.4)

We stop the Benders decomposition algorithm if the relative gap between the upper and the lower bound is less than a predefined
tolerance 𝜀> 0.

The resulting Benders algorithm is summarized in Algorithm 1. We start with the initialization in Step 1. We initialize
the Benders iteration count, l, and set the upper bound z to infinity. If a feasible solution is known, then the upper bound
takes on its objective function value. Next, we solve the master problem in Step 2. Its optimal decision variables are t he
trial solution, y, required to set up the Benders subproblem in the next step. The subproblem in Step 3 is tackled by solv-
ing K independent LPs. Together with the objective function value of the master problem, we compute and update the upper
bound in Step 4. Because the master problem’s optimal objective function value, z, is a lower bound on z*, we can check con-
vergence of the algorithm in Step 5 by comparing lower and upper bounds. If convergence is achieved, then the algorithm
terminates with an optimal solution. Otherwise, we compute the K Benders optimality cuts in Step 6. The algorithm starts over
by solving the master problem in Step 2 again (with the K additional cuts), after the iteration counter is incremented in Step 7.

Algorithm 1. Benders decomposition for two-stage stochastic minimum s− t cut problem (2.1).

Input: Graph G(V , A), tolerance 𝜀> 0
Output: Optimality cut, lower and upper bound on z*

1: l = 0, z = +∞.
2: Solve master problem (5.3); obtain trial solution y and lower bound z.
3: Forall k = 1, …, K: Solve sub-problem (5.1) with trial solution y; obtain optimal objective function value z∗k (y), optimal

dual solution 𝜋k associated with constraint (5.1b).

4: Compute upper bound, z ← min
{

z,
∑

ij∈Acijyij +
∑K

k=1 pkz∗k (y)
}

5: If
z−z

z
≤ 𝜀, then STOP. Return optimal min s− t cut (first-stage cut, y, and second-stage cuts, uk), lower bound z and upper

bound z.
6: For all k = 1, …, K: Compute Benders optimality cut (5.2) using z∗k (y), 𝜋k and y and add the cut to the master problem
7: l← l+ 1, go to Step 2.

14 REBENNACK ET AL.

We note from Algorithm 1 that we need to solve the Benders subproblem (5.1) in order to (i) compute an upper bound, and
(ii) to compute a Benders optimality cut. For both tasks, we require the optimal objective function value, z∗k (y), and the duals,
𝜋k, associated with constraint (5.1b). Algorithm 1 obtains these by solving K LPs in each iteration. Next, we discuss a way to
more efficiently obtain z∗k (y) and 𝜋k, via a direct calculation method. Such a direct cut calculation, if the problem admits it, can
yield very efficient solution algorithms [24].

By the max-flow min-cut theorem, we know that the dual of the Benders subproblem (5.1) is a max-flow problem. The dual
of problem (5.1) for a fixed scenario k and trial solution y of the master problem is as follows:

z∗k (y) = max −
∑
ij∈A

yij𝜋
k
ij + 𝜋k

tk +
∑
ij∈A

𝜆k
ij +

∑
i∈V

𝜃k
i (5.5a)

s.t. 𝜋k
ij + 𝜆k

ij ≤ 𝑑k
ij, ∀ij ∈ A; (5.5b)∑

j∶ij∈A
𝜋k

ij −
∑

j∶ji∈A
𝜋k

ji + 𝜃k
i ≤ 0, ∀i ∈ V ⧵ {s, tk}; (5.5c)

∑
j∶sj∈A

𝜋k
sj −

∑
j∶js∈A

𝜋k
js + 𝜋k

s + 𝜃k
s ≤ 0; (5.5d)

∑
j∶tkj∈A

𝜋k
tkj −

∑
j∶jtk∈A

𝜋k
jtk + 𝜋k

tk + 𝜃k
tk ≤ 0; (5.5e)

𝜋k
ij ≥ 0, 𝜆k

ij ≤ 0, ∀ij ∈ A; (5.5f)

𝜃k
i ≤ 0, ∀i ∈ V; (5.5g)

𝜋k
s , 𝜋

k
tk free, (5.5h)

with dual variables 𝜋k
ij, 𝜋

k
s and 𝜋k

tk associated with constraints (5.1b)-(5.1d) respectively, and dual variables 𝜆k
ij and 𝜃k

i associated
with ≤1 constraints (5.1e) for variables xk

i and uk
ij, respectively. Note that, because of strong duality, the optimal objective

function values of model (5.1) and model (5.5) are the same.
Recognizing its special structure, model (5.5) can be reformulated in the more typical max-flow form:

z∗k (y) = max
∑

j∶jtk∈A

𝜋k
jtk (5.6a)

s.t.
∑

j∶ij∈A

𝜋k
ij −

∑
j∶ji∈A

𝜋k
ji = 0, ∀i ∈ V ⧵ {s, tk}; (5.6b)

𝜋k
ij ≤ 𝑑k

ij, ∀ij ∈ A; (5.6c)

𝜋k
ij ≥ 0, ∀ij ∈ A, (5.6d)

with A ≔ {ij ∈ A|yij = 0}.

As such, model (5.6) is an s− tk max-flow problem on graph Ĝ = (V ,A) with capacities given by the kth scenario’s cost.
We remove arcs from the original graph, if they are included in the first-stage cut; that is, for ij ∈ A with yij = 1. This follows
from Proposition 3.

Algorithm 1 mainly needs an update in Step 3. The subproblems are no longer solved as general LPs by a linear programming
solver. Instead, the dual variables and the objective function value (both required for the Benders optimality cut in Step 6)
are obtained by solving K max-flow problems, recognizing strong duality. Because the max-flow problems are the dual of the
(primal) subproblems, we no longer have values for the second-stage cut variables uk. Thus, if the algorithm terminates in Step
5, the optimal second-stage cut variables uk need to be computed (e.g., by solving min-cut problem (5.1)), if desired.

We want to highlight the following observation. Because any (extreme point) solution of the max-flow problem (5.6) is
integral (for integral second-stage arc costs 𝑑k

ij), the cut coefficients and cut constant of the Benders optimality cut (5.2) are
all integral as well. This, in turn, means that the optimal 𝜂k in the Benders master problems are also integral. If the first-stage
arc costs cij are integral, then the optimal objective function value z must change by 0 or minij∈A, k = 1, …, K{cij, pk | cij ≠ 0}
between iterations. In other words, the improvement is either 0 or bound from below by the smallest nonzero objective function
coefficient of the master problem. Note also that the number of iterations with no improvement is bounded by the number of
multiple (binary) optimal solutions of the master problem. This is very atypical. This property of Algorithm 1 is significant

REBENNACK ET AL. 15

because it implies that convergence is not slow when the lower bound gets close to the upper bound. This stands in contrast to
most Benders decomposition algorithms where very slow convergence is observed when closing the optimality gap. Loosely
speaking, in Benders decomposition, one typically observes improvements which converge to 0 with the number of iterations,
while this cannot happen for Algorithm 1 provided arc costs cij and 𝑑k

ij are integral.

6 COMPUTATIONAL EXPERIMENTS

In this section, we benchmark the developed Benders decomposition algorithm for the two-stage stochastic minimum s− t
cut problem against the extensive formulation (2.1). The two algorithms are presented in Section 5 as implementation
variants of Algorithm 1. “Benders+VLP” is the Benders algorithm where the subproblems are solved as vanilla LPs, while
“Benders+max-flow” solves the subproblems via Ford-Fulkerson’s max-flow algorithm. All resulting LP and MILP problems
are solved with CPLEX 12.8.0 using the default settings. We use the C++ programming language and a standard Ford-Fulkerson
implementation to solve the max-flow problems. For our parallel runs, we utilize the internal CPLEX parallel implementa-
tion when solving MILPs; the Benders algorithm implementations rely on the C++ threat class to solve the LPs and max-flow
instances in parallel (on eight cores). We set a time limit of 10 000 seconds and a relative optimality gap of 0.001%. We use
the LP relaxation as a lower bound and a sub-optimal solution as an upper bound for the extensive formulation and all Ben-
ders algorithm implementations. We exclude the computational times to obtain the lower and upper bounds when we report
run times of the extensive formulation or the Benders algorithm implementations. All computations are performed on a 64bit
Intel(R) Xeon(R) with 3.20 GHz and 16 GB RAM featuring eight cores.

It turns out that most arbitrary graphs for the two-stage stochastic minimum s− t cut problem yield instances with a zero
duality gap; that is, the LP relaxation yields integral solutions. To this end, we constructed thousands of random graphs by
varying the following parameters: number of nodes, density of graph, number of scenarios, placement of terminal nodes and
cost. We use a uniform random number generator to generate these parameters. In all of these instances, the LP relaxation
yielded integral solutions. Thus, motivated by the transformation described in Figure 4 and the proof of Lemma 4, we construct
two problem classes where optimal solutions are intuitive, yet the models are computationally challenging.

Note that both instance classes have some limitations regarding the uncertainty characterization. Instance class 1 has a
limited random structure, since there is no uncertainty in the terminal node and the random arc cost parameters take only a
limited number of values: 0, 1, +∞. Instance class 2 is limited in terms of capturing uncertainty, because we can only solve
instances with a very small number of scenarios (up to 30 scenarios). However, it is essential to consider a larger set of scenarios
to have a better characterization of the underlying uncertainty.

6.1 Instance class 1
Our first instance class is shown in Figure 6. It consists of the root s, a single terminal t, nodes i1, …, iN and nodes j1, …, jK . K
defines the number of (second-stage) scenarios. Each of the nodes i1, …, iN is connected to each node j1, …, jK , and adjacent
i nodes are connected to each other as well. The solid lines have a cost of 1 in the first stage and ∞ in the second stage, for all
scenarios. The dashed lines have first-stage cost ∞. All dashed lines have a cost of 0 in the second stage for all scenarios, except
for the following edges that have a cost of ∞ for scenario k = 1, …, K: between nodes s and jm, m≠ k, and between nodes jk and t.
Other edge costs are possible as well, but we choose this cost structure to facilitate an analytical expression for the optimal total
cost. All scenarios are equally likely. For our computations, we set 100 000 instead of the infinite edge cost (smaller objective
function coefficients are possible, but tend to yield worse performance for the extensive formulation). An optimal first-stage
solution cuts edges between the i and the s nodes yielding an optimal value of N ⋅ K. The optimal second-stage solution in
scenario k cuts the following edges: the single edge between nodes s and jk, and the K − 1 edges between nodes jm, m≠ k and
t. The optimal cost for this instance is N ⋅ K.

Consequently, the first instance class shares the same terminal node for all scenarios k; the second-stage edge cost differs
significantly between 0 and infinity. The graph size changes with a different number of scenarios K. Parameters N and K
completely determine the instance. Therefore, we have only one instance per parameter combination.

The computational results for our first instance class are summarized in Tables 2 and 3. Consider now Table 2. The first
four columns characterize the instances. RMILP is the optimal objective function value of the LP relaxation and MILP is the
optimal objective function value z*. The next six columns provide the computational times (in seconds) of the three methods
tested: the extensive formulation, Benders+VLP, Benders+max-flow. Each of the three algorithms is executed sequentially
and in parallel (eight cores). The next two columns report the lower bound for instances which could not be solved to proven
optimality within the time limit. The next four columns with label “# Iterations” state the number of iterations of the four Benders
algorithms. Finally, the last column shows the speedup of the Benders+max-flow algorithms over the Benders+VLP algorithms

16 REBENNACK ET AL.

TA
BL

E
2

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
in

st
an

ce
cl

as
s

1

Ti
m

e
(s

)
Lo

w
er

bo
un

d
#

It
er

at
io

ns

In
st

an
ce

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Sp
ee

du
p

K
N

R
M

IL
P

M
IL

P
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Se

qu
en

tia
l

Pa
ra

lle
l

5
10

30
50

0.
1

0.
2

0.
6

0.
1

0.
2

0.
1

=
=

25
31

25
31

6
2

20
60

10
0

0.
3

0.
3

2.
5

0.
3

0.
8

0.
2

=
=

55
61

55
61

8
4

30
90

15
0

0.
6

0.
7

5.
5

0.
6

1.
7

0.
5

=
=

75
91

75
91

9
3

40
12

0
20

0
1.

4
0.

7
5.

4
0.

6
1.

9
0.

5
=

=
92

12
1

92
12

1
9

3

50
15

0
25

0
1.

6
1.

5
10

.8
1.

0
3.

4
0.

8
=

=
11

3
15

1
11

3
15

1
10

4

60
18

0
30

0
2.

1
1.

8
19

.6
1.

7
6.

1
1.

4
=

=
14

6
18

1
14

6
18

1
11

4

70
21

0
35

0
2.

5
1.

8
38

.9
2.

6
11

.9
2.

1
=

=
16

6
21

1
16

6
21

1
15

5

80
24

0
40

0
3.

3
3.

2
56

.8
3.

7
19

.3
3.

1
=

=
18

5
24

1
18

5
24

1
15

6

90
27

0
45

0
3.

8
3.

7
87

.6
5.

1
30

.0
4.

4
=

=
20

5
27

1
20

5
27

1
17

6

10
0

30
0

50
0

5.
8

5.
4

12
3.

0
6.

9
43

.6
5.

8
=

=
23

0
30

1
23

0
30

1
17

7

10
10

55
10

0
0.

3
0.

4
1.

6
0.

1
0.

4
0.

1
=

=
28

31
28

31
16

4

20
11

0
20

0
0.

8
0.

9
4.

7
0.

4
1.

2
0.

3
=

=
44

61
44

61
11

4

30
16

5
30

0
1.

9
2.

3
10

.9
0.

8
2.

8
0.

7
=

=
63

91
63

91
13

4

40
22

0
40

0
20

.1
24

.4
24

.6
1.

6
5.

5
1.

2
=

=
91

12
1

91
12

1
15

4

50
27

5
50

0
30

.2
36

.4
43

.0
2.

9
10

.5
2.

1
=

=
10

6
15

1
10

6
15

1
14

5

60
33

0
60

0
43

.0
62

.9
71

.6
4.

2
16

.9
3.

4
=

=
12

7
18

1
12

7
18

1
17

5

70
38

5
70

0
62

.4
10

2.
7

14
3.

6
10

.1
41

.3
8.

6
=

=
14

7
21

1
14

7
21

1
14

4

80
44

0
80

0
69

.2
17

9.
7

29
5,

6
13

.8
64

.5
11

.8
=

=
16

7
24

1
16

7
24

1
21

5

90
49

5
90

0
84

.8
26

1.
2

48
2.

9
18

.0
10

8.
5

15
.3

=
=

21
1

27
1

21
1

27
1

26
7

10
0

55
0

10
00

13
9.

8
41

3.
0

66
3.

4
24

.9
14

2.
2

21
.3

=
=

22
2

30
1

22
2

30
1

26
6

15
10

80
15

0
3.

8
3.

1
4.

6
0.

3
0.

9
0.

2
=

=
24

31
24

31
15

4

20
16

0
30

0
94

4.
3

14
8.

4
16

.2
0.

8
3.

1
0.

8
=

=
45

61
45

61
20

3

30
24

0
45

0
32

22
.7

77
1.

2
41

.8
1.

9
8.

6
1.

7
=

=
70

91
70

91
22

5

40
32

0
60

0
a

56
48

.5
74

.9
3.

7
14

.1
3.

1
58

9.
6

=
85

12
1

85
12

1
20

4

50
40

0
75

0
a

34
82

.5
b

12
9.

7
6.

3
24

.3
4.

9
73

4.
0

74
4.

7
10

3
15

1
10

3
15

1
20

5

60
48

0
90

0
a

21
84

.3
b

26
1.

6
9.

1
48

.8
7.

9
87

7.
5

86
9.

7
14

6
18

1
14

6
18

1
28

6

70
56

0
10

50
a

63
70

.4
b

34
5.

3
14

.8
71

.5
10

.9
10

13
.5

10
11

.2
15

5
21

1
15

5
21

1
23

6

80
64

0
12

00
69

54
.9

b
22

39
.8

b
51

7.
6

20
.5

10
0.

8
15

.3
11

60
.2

11
62

.4
16

9
24

1
16

9
24

1
25

6

90
72

0
13

50
a

32
20

.2
b

74
8.

5
27

.7
14

4.
0

20
.5

13
04

.1
13

05
.2

19
0

27
1

19
0

27
1

27
7

10
0

80
0

15
00

a
31

17
.8

b
11

27
.0

35
.2

23
8.

5
26

.7
14

47
.0

14
49

.7
23

0
30

1
23

0
30

1
32

8

REBENNACK ET AL. 17

TA
BL

E
2

C
on

ti
nu

ed

Ti
m

e
(s

)
Lo

w
er

bo
un

d
#

It
er

at
io

ns

In
st

an
ce

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Sp
ee

du
p

K
N

R
M

IL
P

M
IL

P
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Se

qu
en

tia
l

Pa
ra

lle
l

20
10

10
5

20
0

30
1.

4
57

.8
7.

1
0.

3
1.

2
0.

3
=

=
22

31
22

31
23

4

20
21

0
40

0
a

26
63

.1
b

25
.1

1.
2

5.
3

1.
2

37
7.

2
38

1.
9

45
61

45
61

20
4

30
31

5
60

0
a

20
57

.8
b

62
.3

3.
0

10
.8

2.
2

55
5.

1
56

2.
3

69
91

69
91

20
4

40
42

0
80

0
a

33
42

.5
b

12
4.

5
5.

1
22

.0
4.

1
73

2.
8

75
1.

0
91

12
1

91
12

1
24

5

50
52

5
10

00
a

52
29

.0
b

21
0.

3
8.

9
38

.0
6.

5
91

3.
2

93
1.

5
10

9
15

1
10

9
15

1
23

5

60
63

0
12

00
a

a
33

6.
4

13
.9

63
.6

10
.1

11
22

.9
11

14
.0

12
6

18
1

12
6

18
1

24
6

70
73

5
14

00
a

a
52

3.
9

20
.9

99
.5

14
.8

13
00

.1
10

84
.7

14
3

21
1

14
3

21
1

25
6

80
84

0
16

00
a

a
75

6.
3

27
.9

14
1.

9
19

.9
14

71
.4

14
54

.6
16

3
24

1
16

3
24

1
27

7

90
94

5
18

00
a

a
10

42
.4

35
.8

19
4.

1
25

.9
16

45
.4

16
57

.0
17

9
27

1
17

9
27

1
29

7

10
0

10
50

20
00

a
a

15
47

.8
45

.3
35

9.
0

33
.1

18
47

.4
18

16
.4

21
6

30
1

21
6

30
1

34
10

25
10

13
0

25
0

86
7.

5
15

1.
6

12
.2

0.
4

2.
0

0.
4

=
=

24
31

24
31

30
5

20
26

0
50

0
a

27
64

.1
b

38
.6

1.
6

6.
3

1.
2

46
1.

2
46

2.
9

43
61

43
61

24
5

30
39

0
75

0
a

35
84

.0
b

92
.5

3.
7

16
.8

2.
8

68
6.

5
69

1.
7

66
91

66
91

25
6

40
52

0
10

00
a

50
34

.6
b

17
3.

7
6.

9
29

.4
5.

2
89

6.
3

89
9.

1
84

12
1

84
12

1
25

6

50
65

0
12

50
a

62
21

.3
b

30
0.

1
11

.7
52

.1
8.

2
11

27
.0

11
26

.0
10

4
15

1
10

4
15

1
25

5

60
78

0
15

00
a

34
83

.5
b

51
0.

4
18

.2
96

.7
12

.2
13

33
.2

13
34

.3
13

7
18

1
13

7
18

1
28

7

70
91

0
17

50
a

a
69

5.
9

26
,4

12
6,

7
17

.8
15

50
.9

15
67

.0
13

6
21

1
13

6
21

1
26

7

80
10

40
20

00
a

a
10

89
.7

35
.8

20
4.

0
24

.1
17

87
.8

18
01

.1
16

9
24

1
16

9
24

1
30

8

90
11

70
22

50
a

a
14

34
.8

44
.5

33
9.

4
31

.1
19

84
.0

19
90

.3
18

0
27

1
18

0
27

1
32

10

10
0

13
00

25
00

a
a

22
34

.1
55

.3
81

3.
2

40
.1

22
40

.2
22

22
.6

20
8

30
1

20
8

30
1

40
20

N
ot

e:
B

ol
d

nu
m

be
rs

m
ar

k
be

st
re

su
lt

s
fo

r
ea

ch
gr

ou
p

(e
xt

en
si

ve
fo

rm
ul

at
io

n
an

d
B

en
de

rs
).
=

m
ea

ns
lo

w
er

bo
un

d
eq

ua
ls

up
pe

r
bo

un
d.

a T
im

e
li

m
it

re
ac

he
d

(1
0

00
0

s)
.

b
P

re
m

at
ur

e
te

rm
in

at
io

n
(o

ut
of

m
em

or
y)

.

18 REBENNACK ET AL.

TA
BL

E
3

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
in

st
an

ce
cl

as
s

1
w

it
h

la
rg

er
gr

ap
hs

Ti
m

e
(s

)
#

It
er

at
io

ns

In
st

an
ce

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Sp
ee

du
p

K
N

R
M

IL
P

M
IL

P
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Se

qu
en

tia
l

Pa
ra

lle
l

50
10

25
5

50
0

32
.2

0.
7

8.
1

0.
6

25
31

25
31

46
14

20
51

0
10

00
77

.7
2.

5
15

.8
1.

7
39

61
39

61
31

9

30
76

5
15

00
18

5.
5

5.
6

36
.4

3.
8

63
91

63
91

33
10

40
10

20
20

00
36

7.
9

18
.0

94
.8

11
.9

78
12

1
78

12
1

20
8

50
12

75
25

00
10

10
.2

32
.2

16
0.

2
18

.6
10

1
15

1
97

15
1

31
9

60
15

30
30

00
14

16
.5

51
.4

36
5.

6
27

.5
11

6
18

1
11

6
18

1
28

13

70
17

85
35

00
23

34
.1

76
.3

76
4.

5
38

.2
14

1
21

1
14

1
21

1
31

20

80
20

40
40

00
31

83
.8

98
.4

11
78

.7
47

.9
15

9
24

1
15

9
24

1
32

25

90
22

95
45

00
48

44
.7

11
1.

3
16

78
.7

68
.0

19
8

27
1

19
8

27
1

44
25

10
0

25
50

50
00

66
95

.0
12

6.
6

24
19

.5
86

.0
21

3
30

1
21

3
30

1
53

28

75
10

38
0

75
0

93
.5

1.
5

25
.1

1.
1

26
31

26
31

62
23

20
76

0
15

00
24

3.
0

5.
0

49
.8

3.
3

44
61

44
61

49
15

30
11

40
22

50
41

9.
9

10
.8

13
8.

1
11

.6
60

91
60

91
39

12

40
15

20
30

00
13

17
.0

29
.8

77
4.

4
20

.8
70

12
1

70
12

1
44

37

50
19

00
37

50
23

87
.0

43
.8

19
12

.1
32

.3
10

4
15

1
10

4
15

1
54

59

60
22

80
45

00
36

59
.1

86
.0

20
51

.7
47

.4
12

4
18

1
12

4
18

1
43

43

70
26

60
52

50
52

45
.4

12
6.

6
34

78
.9

65
.6

13
9

21
1

13
9

21
1

41
53

80
30

40
60

00
72

83
.4

16
7.

9
58

11
.4

87
.5

16
8

24
1

16
8

24
1

43
66

90
34

20
67

50
91

46
.4

18
9.

8
b

64
.8

17
4

27
1

–
27

1
48

–

10
0

38
00

75
00

86
32

.4
24

4.
9

b
82

.1
20

6
30

1
–

30
1

35
–

10
0

10
50

5
10

00
19

8.
5

2.
8

90
.0

1.
7

25
31

25
31

71
53

20
10

10
20

00
42

5.
3

8.
2

19
6.

1
5.

3
38

61
38

61
52

37

30
15

15
30

00
91

0.
0

16
.6

48
5.

0
10

.6
59

91
59

91
55

46

40
20

20
40

00
17

07
.8

28
.3

11
36

.9
17

.8
86

12
1

86
12

1
60

64

50
25

25
50

00
24

80
.1

44
.1

18
33

.4
27

.9
10

2
15

1
10

2
15

1
56

66

60
30

30
60

00
39

96
.5

60
.3

b
41

.4
12

2
18

1
–

18
1

66
–

70
35

35
70

00
a

18
3.

0
b

59
.6

14
3

21
1

–
21

1
55

–

80
40

40
80

00
a

28
0.

2
b

13
5.

5
11

4
24

1
–

24
1

36
–

90
45

45
90

00
b

b
b

b
11

0
19

8
–

–
–

–

10
0

50
50

10
00

0
b

b
b

b
–

–
–

–
–

–

N
ot

e:
B

ol
d

nu
m

be
rs

m
ar

k
be

st
re

su
lt

s.
–

m
ea

ns
qu

an
ti

ty
no

tc
om

pu
te

d
(e

.g
.,

ou
to

f
m

em
or

y
or

ou
to

f
ti

m
e)

.
a T

im
e

li
m

it
re

ac
he

d
(1

0
00

0
s)

.
b
P

re
m

at
ur

e
te

rm
in

at
io

n
(o

ut
of

m
em

or
y)

.

REBENNACK ET AL. 19

s

i1

i2

iN

j1

j2

jK

t

FIGURE 6 Instance class 1 with N +K + 2 nodes

(comparing both sequential and parallel performance); a speedup of L means that Benders+max-flow algorithm was L times
faster than Benders+VLP. Thus, the greater the speedup the better and speedups >1 mean that we outperform the Benders+VLP
algorithm.

For the extensive formulation, CPLEX computes early on an optimal solution for all instances of Table 2. However, the
computational effort to prove its optimality increases significantly both with the number of scenarios, K, and the number of the
“i”-nodes, N. Out of the 40 instances, CPLEX solves 25 instances within the time limit, sequentially or parallel. As expected,
for those instances which could not be solved, we observe an increasing gap with an increase in K and N. We observe that
CPLEX requires much more memory in the parallel mode compared to the sequential one. For the easier instances, the sequential
algorithm tends to outperform the parallel; this changes with the harder instances.

The two Benders algorithms outperform the extensive formulation consistently. In parallel mode, both Benders algorithms
are always superior for instances with 15 or 20 scenarios (these are the hard instances). For example, for the instance with 20
scenarios and N = 100, CPLEX (sequential) spends about 1247 seconds until the first branching with a lower bound of 1728.4
(and an upper bound of 2000) when solving the extensive formulation. At that time, Benders+max-flow would have solved the
problem to proven optimality (with a gap = 0) 28 times.

The subproblems of both Benders algorithms can be naturally parallelized for the scenarios. Parallelization of the master
problem does not yield significant gains because CPLEX does not parallelize so well for MILPs. Further, the run times of both
parallel Benders implementations are never worse compared to the sequential one. In addition, the Benders+VLP algorithm
benefits quite significantly from parallelization. We observe improvements up to six times. In contrast, the parallelization of the
Benders+max-flow does not yield such significant gains. The reason is that the time spent to solve the Benders subproblems
are rather small, compared to the time spent to solve the master problems.

The number of iterations required for the Benders algorithms are rather small, especially taking into account that all instances
are solved to a gap of = 0. The reason that the absolute gaps is = 0, and not just a relative gap of <0.001%, is the special structure
of the two-stage stochastic minimum s− t cut problems as discussed at the end of Section 5. But this structure also explains
the relatively fast convergence of the Benders algorithms: the lower bound improves quite significantly through the iterations.
In addition, there are two other interesting observations. First, the number of iterations seems not to depend on the number of
scenarios present in the instance; N determines the number of Benders iterations. This is explained by the special symmetric
structure of the second-stage graphs and cost. Second, the number of iterations for Benders+max-flow remains identical for
identical N. This has to do with the sequence of subproblem and master solutions computed. We analyze this further using our
second instance class.

Computational results for larger graphs of instance class 1 are reported in Table 3. The organization of Table 3 is the same as
Table 2, except that we no longer report the results of the extensive formulation, as the Benders decomposition implementations
outperformed the extensive formulation already on smaller graphs of Table 2. We observe that the parallel Benders+max-flow
algorithm converges always the fastest. The speedup of the Benders+max-flow to the vanilla Benders algorithm ranges between
factor 8 and 71. The Benders+max-flow algorithm can solve instances with up to 100 scenarios and N = 80 in less than
300 seconds. Larger instances may have been solved, if more memory was available.

6.2 Instance class 2
For the second instance class, consider Figure 7. There are K ≤ K scenarios, tk is the terminal node for scenario k = 1, 2, …,
K, and s is the root node for all scenarios. Each of the nodes i1, …, iN is connected to each node j1,… , jK , and adjacent i nodes
are connected to each other as well. The solid lines have a cost of U[1, 10] in the first stage and ∞ in the second stage, for
all scenarios; here U[1, 10] is a discrete random variate generated uniformly among the 10 discrete values {1, 2, …, 10}. All
dashed lines have first-stage cost ∞. All dashed lines have a cost of U[1, 10] in the second-stage for all scenarios, except for

20 REBENNACK ET AL.

s

i1

i2

iN

j1

j2

jK

t1

t2

tK

FIGURE 7 Instance class 2 with N + 2K + 1 nodes

the following edges that have a cost of ∞ for scenario k = 1, …, K: between nodes s and jm, m≠ k, and between nodes jk and tk.

All scenarios have probability 1

K
and we set max{100,000, 10(N ⋅ K + 2 ⋅ K)} as the infinite edge cost. If all random edge costs

are 1, instead of U[1, 10], then an optimal first-stage solution cuts edges between the i and the jn, n = 1, …, K, nodes at a cost

of N ⋅ K; the optimal second-stage solution in scenario k cuts the following edges: the single edge between nodes s and jk, the

K − 1 edges between nodes jk and tm, m≠ k, and the K − 1 edges between nodes jm, m≠ k and tk; the cost for scenario k is thus

2 ⋅ K − 1. The optimal cost for this instance is N ⋅ K + 2 ⋅ K − 1, if all random edge costs are 1.

The second instance class has the following features compared to the first instance class: (1) the terminal nodes differ for

each scenario, (2) the number of scenarios K does not change the size of the graph, as long as K ≤ K, (3) the edge cost are

no longer 0, 1 or 100 000, and (4) the integrality gap of the LP relaxation depends strongly on the ratio of K to K. For each

parameter combination N, K and K, we generate five instances.

Computational results for the second instance class are summarized in Table 4. The first six columns provide information

about the instance. Column 4 is a counter for each group of instances, where the random costs are varied. Instance #1 has cost

of 1; instances #2-#5 have random costs. Columns 7–12 report on the run times for the different methods. The obtained relative

gap by the extensive formulation (sequential and parallel) and the four different Benders implementations are shown in columns

13–18. Columns 19–22 list the number of iterations of the different Benders implementations and the last two columns provide

the speedups.

Consider now Table 4. For fixed number of nodes K, the difficulty level of the instances increases with an increase in the

number of scenarios K. This is expected. However, the level of increase in complexity is surprising. For all tested instances

with K < K∕2 (or for K = K∕2 with cost 1), the LP relaxation yielded integer values. Increasing K yields harder instances

while for K = K, the instances are extremely difficult to solve. Instances with cost 1 tend to be easier to solve than instances

with uniform discrete random cost. The Benders implementations outperform the extensive formulation only on the diffi-

cult instances. CPLEX provides especially impressive computational speeds for the extensive formulation for instances with

K < K. For these instances, the integrality gap is particularly small and the LP relaxation provides strong bounds. Note

that the Benders algorithms benefit only indirectly from tight LP relaxations in contrast to the extensive formulation. In con-

trast, on the most difficult instances with K = K, the Benders+max-flow algorithm outperforms the extensive formulation.

Out of the 40 instances with K = K, only 7 instances can be solved by the extensive formulation (sequential/parallel) while

Benders+max-flow solves 33. For example, the instance with N = 20,K = K = 25 and cost 1 can be solved to optimal-

ity with zero gap in 403.6 seconds by the sequential Benders+max-flow algorithm; the sequential extensive formulation has

a gap of 2.7% after 10 000 seconds and the parallel mode runs of out memory after more than 2400 seconds with a gap of

3.54%.

The reported speedups in Table 4 are not that impressive compared to instance class 1. The main reason is the increase in

the number of Benders iterations for Benders+max-flow compared to Benders+VLP. Assuming the same number of iterations,

the Benders+max-flow algorithm outperforms the Benders+VLP by at least one order of magnitude, for all tested instances.

Overall, the computational performance of the Benders implementations compared to the extensive form is mixed. While

for instance class 1 the Benders implementations yields very promising results, for instance class 2, the Benders algorithms are

more challenged. In instance class 2, the “easy instances” are solved more efficiently by the extensive formulation and for the

“difficult” instances, the Benders implementations run out of time or out of memory quickly. However, the computed bounds

of the Benders+max-flow implementations are consistently better than the ones from the extensive form. Therefore, the results

for instance class 2 are not that mature and are of preliminary nature, yet, providing promising results.

REBENNACK ET AL. 21

TA
BL

E
4

C
om

pu
ta

ti
on

al
re

su
lt

s
fo

r
in

st
an

ce
cl

as
s

2

Ti
m

e
(s

)
G

A
P

#
It

er
at

io
ns

In
st

an
ce

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Sp

ee
du

p

N
K

K
#

R
M

IL
P

M
IL

P
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Se

qu
en

tia
l

Pa
ra

lle
l

15
5

15
1

10
4.

0
10

4.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
40

3.
0

62
8.

0
0.

42
0.

69
74

.6
0

36
.0

6
67

.5
9

37
.0

9
=

=
=

=
=

=
40

92
40

92
2.

07
1.

82

3
42

1.
7

65
6.

2
0.

78
1.

34
78

.8
8

26
.4

9
71

.9
8

27
.0

9
=

=
=

=
=

=
44

92
44

92
2.

98
2.

66

4
38

9.
7

61
0.

2
0.

94
1.

70
13

4.
28

75
.1

7
12

3.
18

73
.6

2
=

=
=

=
=

=
54

10
8

54
10

8
1.

79
1.

67

5
39

7.
1

61
6.

1
0.

73
1.

24
89

.7
1

35
.0

8
84

.0
9

36
.5

5
=

=
=

=
=

=
44

96
44

96
2.

56
2.

30

15
10

15
1

14
9.

0
17

9.
0

0.
45

0.
74

16
.1

8
11

.6
5

7.
47

11
.3

2
=

=
=

=
=

=
66

15
5

66
15

5
1.

38
0.

65

2
81

3.
5

97
5.

0
0.

46
0.

79
17

.4
5

41
.2

2
10

.0
1

41
.3

2
=

=
=

=
=

=
69

17
6

69
17

6
0.

58
0.

24

3
84

0.
3

10
17

.3
0.

66
1.

01
18

.6
2

45
.4

5
10

.5
6

46
.0

7
=

=
=

=
=

=
68

17
9

68
17

9
0.

40
0.

22

4
80

9.
1

10
21

.1
0.

94
1.

35
28

.4
5

52
.9

2
19

.9
1

54
.1

4
=

=
=

=
=

=
81

18
7

81
18

7
0.

53
0.

36

5
83

8.
3

10
08

.3
0.

64
0.

99
20

.4
4

47
.5

0
11

.6
4

46
.0

4
=

=
=

=
=

=
75

17
9

75
17

9
0.

43
0.

25

15
15

15
1

14
9.

0
25

4.
0

8.
72

17
.7

1
19

7.
57

33
.5

2
16

3.
93

34
.6

1
=

=
=

=
=

=
21

4
23

0
21

4
23

0
5.

89
4.

73

2
84

1.
1

14
06

.1
62

9.
32

84
.3

8
71

5.
60

39
1.

23
67

7.
00

39
6.

53
=

=
=

=
=

=
29

6
35

4
29

6
35

4
1.

82
1.

70

3
85

8.
5

14
39

.5
38

8.
58

80
.3

3
11

90
.3

7
68

3.
16

11
64

.6
0

68
0.

33
=

=
=

=
=

=
34

2
39

1
34

2
39

1
1.

74
1.

71

4
82

2.
2

13
65

.2
23

5.
13

64
.7

5
63

1.
58

24
5.

02
59

7.
26

25
0.

12
=

=
=

=
=

=
27

2
30

6
27

2
30

6
2.

58
2.

39

5
85

3.
4

14
10

.9
11

8.
69

49
.1

6
36

4.
37

24
0.

63
35

0.
17

23
9.

85
=

=
=

=
=

=
24

4
30

3
24

8
30

3
1.

51
1.

45

15
20

20
1

19
6.

5
33

9.
0

65
9.

97
20

.8
4

57
8.

41
11

1.
74

51
0.

73
11

5.
70

=
=

=
=

=
=

28
3

30
5

27
8

30
5

5.
18

4.
41

2
10

57
.4

17
82

.9
b

b
43

61
.0

6
74

0.
36

17
99

.4
9

69
8.

69
4.

94
%

4.
05

%
=

=
=

=
36

8
40

9
36

2
40

9
5.

89
2.

58

3
10

64
.5

17
93

.0
a

b
31

42
.4

3
62

5.
09

12
42

.0
2

62
3.

56
3.

52
%

4.
15

%
=

=
=

=
36

9
40

6
35

3
40

6
5.

03
1.

99

4
10

88
.4

18
33

.4
b

b
13

24
.4

3
49

1.
15

97
8.

02
49

3.
08

4.
94

%
4.

48
%

=
=

=
=

31
6

37
9

32
1

37
9

2.
70

1.
98

5
11

30
.2

19
13

.2
b

b
15

66
.2

3
59

1.
88

10
81

.0
2

56
9.

90
4.

07
%

4.
03

%
=

=
=

=
32

9
38

6
32

6
38

6
2.

65
1.

90

15
25

25
1

24
4.

0
42

4.
0

b
10

9.
57

21
88

.9
8

24
0.

75
15

61
.3

7
23

1.
31

2.
77

%
=

=
=

=
=

37
9

37
9

38
2

37
9

9.
09

6.
75

2
13

47
.7

23
03

.2
a

b
a

14
49

.5
0

57
40

.4
6

14
45

.8
6

6.
71

%
7.

53
%

10
.6

7%
=

=
=

16
7

52
5

50
8

52
5

>
6.

90
3.

97

3
13

54
.6

23
24

.6
b

b
a

23
94

.9
0

a
23

78
.8

7
7.

78
%

8.
37

%
4.

99
%

=
4.

83
%

=
43

2
55

1
48

5
55

1
>

4.
19

>
4.

22

4
13

54
.8

23
13

.8
b

b
a

19
33

.2
2

48
69

.0
0

19
41

.6
5

7.
37

%
6.

45
%

5.
16

%
=

=
=

47
8

57
7

48
7

57
7

>
5.

19
2.

51

5
13

71
.9

23
38

.4
a

b
a

18
60

.2
5

59
11

.2
0

18
54

.1
8

6.
18

%
6.

67
%

5.
23

%
=

=
=

43
6

55
4

50
3

55
4

>
5.

40
3.

19

15
30

30
1

29
1.

5
50

9.
0

b
b

a
45

9.
45

b
44

0.
70

1.
41

%
4.

27
%

21
.1

8%
=

21
.1

8%
=

81
45

2
81

45
2

>
21

.7
6

−

2
15

66
.0

26
85

.5
b

b
a

52
25

.1
5

b
51

23
.1

0
9.

33
%

8.
15

%
22

.1
9%

=
18

.3
4%

=
77

74
3

97
74

3
>

1.
91

−

3
16

08
.5

?
a

b
a

a
a

a
9.

50
%

8.
44

%
21

.6
1%

4.
05

%
17

.8
8%

4.
05

%
82

76
9

10
3

77
1

−
−

4
16

04
.5

?
b

b
a

a
a

a
9.

51
%

8.
89

%
21

.1
8%

4.
16

%
18

.8
9%

4.
16

%
83

69
5

97
69

5
−

−

5
16

24
.9

28
05

.9
b

b
a

42
26

.9
3

a
42

25
.8

8
9.

29
%

8.
80

%
21

.6
0%

=
16

.8
3%

=
80

68
3

11
2

68
3

>
2.

36
>

2.
36

20
5

20
1

13
9.

0
13

9.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
73

3.
8

73
3.

8
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

3
75

0.
4

75
0.

4
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

4
77

8.
6

77
8.

6
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

5
75

8.
6

75
8.

6
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

20
10

20
1

23
9.

0
23

9.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
12

50
.0

12
75

.5
0.

41
1.

07
24

.2
2

78
.1

7
10

.8
5

80
.7

1
=

=
=

=
=

=
68

23
5

68
23

5
0.

30
0.

13

3
12

47
.4

12
47

.4
0.

27
0.

81
23

.7
6

77
.5

2
10

.6
8

80
.2

1
=

=
=

=
=

=
66

22
7

66
22

7
0.

30
0.

13

4
13

82
.9

14
06

.9
0.

39
0.

98
30

.1
8

10
4.

36
15

.2
2

10
3.

95
=

=
=

=
=

=
78

24
8

78
24

8
0.

28
0.

14

5
13

77
.9

14
24

.9
0.

65
1.

12
30

.0
1

85
.8

4
14

.0
8

86
.5

4
=

=
=

=
=

=
77

23
7

77
23

7
0.

34
0.

16

22 REBENNACK ET AL.

TA
BL

E
4

C
on

ti
nu

ed

Ti
m

e
(s

)
G

A
P

#
It

er
at

io
ns

In
st

an
ce

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Se

qu
en

tia
l

Pa
ra

lle
l

Se
qu

en
tia

l
Pa

ra
lle

l
Sp

ee
du

p

N
K

K
#

R
M

IL
P

M
IL

P
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Ex

te
ns

iv
e

fo
rm

.
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Be

nd
er

s+
V

LP
Be

nd
er

s+
m

ax
-fl

ow
Se

qu
en

tia
l

Pa
ra

lle
l

20
15

20
1

24
9.

0
33

9.
0

4.
10

5.
62

10
5.

78
64

.0
5

68
.8

3
65

.5
2

=
=

=
=

=
=

12
2

30
6

12
2

30
6

1.
65

1.
05

2
13

58
.7

18
56

.7
5.

35
5.

95
16

5.
85

23
9.

00
12

8.
37

23
7.

69
=

=
=

=
=

=
12

4
33

7
12

4
33

7
0.

69
0.

54

3
13

82
.6

18
95

.6
6.

97
8.

42
20

1.
98

25
6.

41
16

5.
50

26
3.

27
=

=
=

=
=

=
13

9
34

3
13

9
34

3
0.

78
0.

62

4
13

28
.5

18
25

.5
10

.1
5

11
.3

7
18

4.
09

24
1.

22
14

5.
99

24
5.

01
=

=
=

=
=

=
13

6
33

0
13

6
33

0
0.

76
0.

59

5
13

38
.2

18
35

.7
5.

63
6.

49
19

3.
91

22
9.

57
15

7.
36

23
4.

35
=

=
=

=
=

=
12

9
33

5
12

9
33

5
0.

84
0.

67

20
20

20
1

24
9.

0
43

9.
0

2.
30

60
0

b
97

0.
12

15
8.

37
88

4.
42

18
3.

57
=

2.
59

%
=

=
=

=
35

9
40

4
35

9
40

3
6.

01
4.

81

2
13

32
.9

22
86

.5
b

b
96

53
.7

8
14

70
.0

2
43

43
.1

3
11

43
.5

3
5.

74
%

4.
38

%
=

=
=

=
44

2
53

4
46

1
52

4
6.

56
3.

79

3
13

30
.6

22
94

.6
b

b
a

46
49

.0
8

64
87

.1
7

19
76

.0
0

6.
07

%
4.

71
%

6.
64

%
=

=
=

42
5

64
6

53
8

62
7

>
2.

15
3.

28

4
13

13
.4

22
62

.9
b

b
a

33
83

.5
1

96
30

.6
9

34
06

.1
0

6.
11

%
5.

01
%

6.
50

%
=

=
=

40
1

56
3

45
4

56
3

>
2.

95
2.

82

5
13

52
.1

?
b

b
a

a
a

a
6.

45
%

6.
49

%
6.

42
%

5.
94

%
6.

10
%

5.
94

%
40

4
60

9
46

1
60

9
−

−

20
25

25
1

30
9.

0
54

9.
0

a
b

a
40

3.
55

57
77

.6
9

40
6.

01
2.

70
%

3.
54

%
13

.7
1%

=
=

=
17

7
50

5
47

5
50

5
>

24
.7

8
14

.2
3

2
16

89
.2

29
41

.7
b

b
a

38
94

.2
7

a
38

82
.9

9
7.

92
%

7.
58

%
16

.5
7%

=
15

.8
6%

=
14

3
67

3
15

1
67

3
>

2.
56

>
2.

57

3
17

61
.4

?
b

b
a

a
a

a
8.

19
%

8.
30

%
19

.8
4%

5.
01

%
15

.4
4%

5.
01

%
11

7
74

1
15

5
73

7
−

−

4
17

28
.2

?
b

b
a

a
a

a
8.

68
%

7.
73

%
19

.9
7%

5.
05

%
6.

33
%

5.
05

%
11

6
66

2
34

5
66

3
−

−

5
16

82
.0

?
b

b
a

a
a

a
8.

31
%

8.
10

%
17

.2
5%

5.
09

%
5.

38
%

5.
09

%
13

8
71

2
47

7
71

2
−

−

25
5

25
1

14
9.

0
14

9.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
84

5.
0

84
5.

0
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

3
84

0.
2

84
0.

2
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

4
81

2.
6

81
2.

6
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

5
80

6.
0

80
6.

0
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

25
10

25
1

24
9.

0
24

9.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
12

37
.1

12
37

.1
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

3
14

05
.7

14
05

.7
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

4
13

50
.1

13
50

.1
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

5
13

97
.3

13
97

.3
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡

25
15

25
1

34
9.

0
34

9.
0

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

≡
≡

2
16

71
.4

18
82

.4
1.

85
3.

28
75

.0
7

31
1.

00
39

.3
1

30
7.

68
=

=
=

=
=

=
83

34
4

84
34

4
0.

24
0.

12

3
17

05
.5

20
12

.5
3.

23
3.

98
93

.5
3

31
4.

51
59

.4
8

31
2.

94
=

=
=

=
=

=
95

34
2

94
34

2
0.

29
0.

19

4
16

83
.5

18
52

.0
1.

75
3.

23
77

.5
9

30
4.

23
37

.3
4

30
4.

16
=

=
=

=
=

=
78

34
2

79
34

2
0.

25
0.

12

5
16

48
.0

18
67

.5
2.

15
3.

67
85

.1
8

36
5.

77
39

.4
4

36
3.

36
=

=
=

=
=

=
87

36
9

83
36

9
0.

23
0.

10

25
25

25
1

37
4.

0
67

4.
0

b
b

a
64

9.
06

b
67

3.
29

5.
23

%
4.

72
%

23
.1

8%
=

21
.6

0%
=

11
8

67
9

13
3

63
0

>
15

.4
0

−

2
20

53
.6

36
22

.6
b

b
a

59
88

.0
1

b
57

81
.4

0
8.

73
%

7.
95

%
23

.1
9%

=
22

.0
7%

=
12

3
82

8
13

0
82

8
>

1.
67

−

3
20

52
.4

?
b

b
a

a
a

a
9.

28
%

8.
34

%
22

.9
6%

5.
45

%
19

.6
7%

5.
45

%
12

5
75

0
14

9
75

0
−

−

4
20

80
.8

36
85

.8
b

b
a

43
17

.8
1

b
43

01
.0

2
8.

89
%

8.
88

%
23

.9
3%

=
22

.8
8%

=
11

6
79

4
12

5
79

4
>

2.
31

−

5
20

62
.8

36
49

.8
b

b
a

48
25

.0
3

a
48

21
.8

5
8.

03
%

8.
07

%
23

.8
4%

=
20

.4
4%

=
11

7
81

2
14

2
81

2
>

2.
07

−

N
ot

e:
B

ol
d

nu
m

be
rs

m
ar

k
be

st
re

su
lt

s
fo

r
ea

ch
gr

ou
p

(e
xt

en
si

ve
fo

rm
ul

at
io

n
an

d
B

en
de

rs
).
=

m
ea

ns
lo

w
er

bo
un

d
eq

ua
ls

up
pe

r
bo

un
d.

–
in

di
ca

te
s

qu
an

ti
ty

no
tc

om
pu

te
d

(e
.g

.,
ou

to
f

m
em

or
y

or
ou

to
f

ti
m

e)
.≡

in
di

ca
te

s
L

P
re

la
xa

ti
on

yi
el

ds
in

te
ge

r
so

lu
ti

on
.?

in
di

ca
te

s
op

ti
m

al
ob

je
ct

iv
e

fu
nc

ti
on

va
lu

e
un

kn
ow

n.
a T

im
e

li
m

it
re

ac
he

d
(1

0
00

0
s)

.
b
P

re
m

at
ur

e
te

rm
in

at
io

n
(o

ut
of

m
em

or
y)

.

REBENNACK ET AL. 23

7 CONCLUSIONS

Based on the classical minimum s− t cut problem, we introduce the two-stage stochastic minimum s− t cut problem. We provide
a MILP formulation which is an extension of the standard linear 0-1 programming model for the deterministic minimum s− t
cut problem. We prove that the constraint matrix of the new formulation loses its total unimodularity property, in general;
however, the matrix preserves the property if the considered graph is a tree. This fact turns out to be not surprising as we show
that similar to many other stochastic extensions of classical combinatorial optimization problems (e.g., minimum spanning tree
[13]), the arc-based version of the two-stage stochastic minimum s− t cut problem is-hard. In the case of trees, the two-stage
stochastic minimum s− t cut problem is polynomially solvable due to the total unimodularity property; we also describe a simple
linear time solution algorithm. We apply Benders decomposition to the two-stage stochastic minimum s− t cut problem. Instead
of solving the Benders subproblems as LPs, we present an efficient implementation which exploits the special structure of the
subproblems and uses a maximum-flow algorithm to compute the Benders optimality cuts. This algorithm yields promising
computational results.

ACKNOWLEDGMENTS

S.R. thanks Klaus Truemper for his discussions on Section 2.2. We thank Ömer Özümerzifon (KIT) for his work on the C++
implementations. We also thank three anonymous reviewers and the associate editor for their detailed and constructive com-
ments. O.A.P. was partially supported by the U.S. Air Force Office of Scientific Research Grants FA9550-08-1-0268 and
FA9550-11-1-0037. B.S. thanks Sandia National Laboratories, USA for the part of his time spent there as a postdoctoral
appointee.

ORCID

Steffen Rebennack https://orcid.org/0000-0002-8501-2785
Oleg A. Prokopyev https://orcid.org/0000-0003-2888-8630

REFERENCES

[1] S. Ahmed, Convexity and decomposition of mean-risk stochastic programs, Math. Program. 106 (2006), 433–446.
[2] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.
[3] J. Benders, Partitioning procedures for solving mixed-variables programming problems, Numer. Math. 4 (1962), 238–252.
[4] J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, New York, 1997.
[5] M. Carey and C. Hendrickson, Bounds on expected performance of networks with links subject to failure, Networks 14 (1984), 439–456.
[6] T. Christof and A. Löbel, 2009. Polyhedron representation transformation algorithm. http://comopt.ifi.uni-heidelberg.de/software/PORTA/

index.html
[7] C. Colbourn, The Combinatorics of Network Reliability, Oxford University Press, New York, 1987.
[8] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, The complexity of multiterminal cuts, SIAM J. Comput. 23 (1994),

864–894.
[9] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh, How to pay, come what may: Approximation algorithms for demand-robust covering problems,

FOCS 2005. 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 367–376.
[10] K. Dhamdhere, R. Ravi, and M. Singh, On two-stage stochastic minimum spanning trees, Proceedings of the 11th International Conference on

Integer Programming and Combinatorial Optimization, 2005, pp. 321–334.
[11] L.R. Ford and D.R. Fulkerson, Maximal flow through a network, Can. J. Math. 8 (1956), 399–404.
[12] L.R. Ford and D.R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
[13] A. Frieze, A. Flaxman, and M. Krivelevich, On the random 2-stage minimum spanning tree, Random Structures Algorithms 28 (2006), 24–36.
[14] D. Golovin, V. Goyal, V. Polishchuk, R. Ravi, and M. Sysikaski, Improved approximations for two-stage min-cut and shortest path problems

under uncertainty, Math. Program. 149 (2015), 167–194.
[15] D. Golovin, V. Goyal, and R. Ravi, “Pay today for a rainy day: Improved approximation algorithms for demand-robust min-cut and shortest

path problems,” STACS 2006, Lecture Notes in Computer ScienceSpringer, Berlin/Heidelberg, 2006, pp. 206–217.
[16] A. Gupta, R. Ravi, and A. Sinha, LP rounding approximation algorithms for stochastic network design, Math. Oper. Res. 32 (2007), 345–364.
[17] T. Harris and F. Ross, Fundamentals of a method for evaluating rail net capacities, Tech. report, Rand Corp, Santa Monica CA, 1955.
[18] K. Hastings and D. Shier, Algebraic methods for stochastic minimum cut and maximum flow problems, Proceedings of the 5th International

Conference on Network Optimization, 2011, pp. 295–308.
[19] M. Henzinger, A. Noe, C. Schulz, and D. Strash, Practical minimum cut algorithms, J. Exp. Algorithmics (JEA) 23 (2018), 1–8.
[20] D. Karger, A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem, SIAM Rev. 43 (2001),

499–522.
[21] D. Karger and C. Stein, A new approach to the minimum cut problem, J. ACM 43 (1996), 601–640.
[22] R. Khandekar, G. Kortsarz, V. Mirrokni, and M. Salavatipour, Two-stage robust network design with exponential scenarios, Algorithmica 65

(2013), 391–408.
[23] N. Kong and A. Schaefer, A factor 1/2 approximation algorithm for two-stage stochastic matching problems, Eur. J. Oper. Res. 172 (2006),

740–746.

https://orcid.org/0000-0002-8501-2785
https://orcid.org/0000-0002-8501-2785
https://orcid.org/0000-0003-2888-8630
https://orcid.org/0000-0003-2888-8630
http://comopt.ifi.uni-heidelberg.de/software/PORTA/index.html
http://comopt.ifi.uni-heidelberg.de/software/PORTA/index.html

24 REBENNACK ET AL.

[24] T. Lohmann and S. Rebennack, Tailored Benders decomposition for a long-term power expansion model with short-term demand response,
Manage. Sci. 63 (2017), 2027–2048.

[25] J.C. Picard and M. Queyranne, Selected applications of minimum cuts in networks, INFOR: Inf. Syst. Oper. Res. 20 (1982), 394–422.
[26] R. Rahmaniani, T. Crainic, M. Gendreau, and W. Rei, The Benders decomposition algorithm: A literature review, Eur. J. Oper. Res. 259 (2017),

801–817.
[27] S. Rebennack, Combining sampling-based and scenario-based nested Benders decomposition methods: Application to stochastic dual dynamic

programming, Math. Program. 156 (2016), 343–389.
[28] A. Ruszczyński and A. Shapiro (eds), Handbooks in OR & MS: Stochastic Programming, vol. 10, Elsevier, Amsterdam, 2003.
[29] A. Schrijver, On the history of the transportation and maximum flow problems, Math. Program. 91 (2002), 437–445.
[30] R. Schultz, On structure and stability in stochastic programs with random technology matrix and complete integer recourse, Math. Program. 70

(1995), 73–89.
[31] R. Slyke and R.B. Wets, L-shaped linear programs with applications to control and stochastic programming, SIAM J. Appl. Math. 17 (1969),

638–663.
[32] Y. Soun and K. Truemper, Single commodity representation of multicommodity networks, SIAM J. Algebr. Discrete Methods 1 (1980), 348–358.
[33] R. Tahmasbi, E. Nasrabadi, and S. Hashemi, The value of information in stochastic maximum flow problems, Comput. Oper. Res. 40 (2013),

1744–1751.
[34] K. Truemper, Unimodular matrices of flow problems with additional constraints, Networks 7 (1977), 343–358.
[35] K. Truemper, Matroid Decomposition, Academic Press, Boston, revised edition Leibniz, Plano, TX, 1998.
[36] S. Wallace and W. Ziemba (eds), Applications of Stochastic Programming, SIAM, Philadelphia, PA, USA, 2005.
[37] L. Wolsey, Integer Programming, John Wiley & Sons, New York, 1998.

How to cite this article: Rebennack S, Prokopyev OA, Singh B. Two-stage stochastic minimum s− t cut problems:
Formulations, complexity and decomposition algorithms. Networks. 2019;1–24. https://doi.org/10.1002/net.21922

https://doi.org/10.1002/net.21922

