
Nanophotonics 2020; 9(1): 75–82

Research article

Aso Rahimzadegan*, Dennis Arslan, David Dams, Achim Groner, Xavi Garcia-Santiago, 
Rasoul Alaee, Ivan Fernandez-Corbaton, Thomas Pertsch, Isabelle Staude  
and Carsten Rockstuhl

Beyond dipolar Huygens’ metasurfaces for  
full-phase coverage and unity transmittance
https://doi.org/10.1515/nanoph-2019-0239
Received September 6, 2019; revised October 24, 2019; accepted 
November 14, 2019

Abstract: Metasurfaces made from densely packed reso-
nant wavelength-scale particles enable abrupt modulation 
of impinging electromagnetic radiation within an ultrathin 
surface. Combining duality symmetry of particles and rota-
tional symmetry of their arrangement led to the develop-
ment of Huygens’ metasurfaces with perfect transmission. 
However, so far, when identical particles are considered, 
only their dipolar multipolar contributions are engineered. 
There, the achievable phase coverage at a fixed wavelength 
when modifying the period is smaller than 2π, being a 
clear limitation for applications. To lift such limitation, 

we consider dipolar-quadrupolar Huygens’ metasurfaces. 
They consist of scatterers that require a dipolar and a quad-
rupolar term to capture their response. We show that such 
metasurfaces offer access to the desired 2π phase coverage 
while preserving the perfect efficiency when the condi-
tions of duality and symmetry continue to be met. We also 
propose core-multishell and disk-multiring particles made 
from realistic materials to meet the requirements and that 
can be used to build such metasurfaces. Our results are 
important as a theoretical basis for large-scale fabrications 
in imaging and integrated optics.

Keywords: Huygens’ metasurface; multipoles expansion 
method; scattering theory; hologram; duality symmetry.
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1   Introduction
Huygens’ metasurfaces, i.e. metasurfaces made from an 
n-fold rotationally symmetric Cn>2 arrangement of resonant 
scatterers that are electromagnetically dual-symmetric 
[1], are characterised by a suppressed back-reflection [2]. 
Made out of nonabsorbing particles, these metasurfaces 
provide unity optical transmittance while allowing to tune 
the phase angle of the transmission [3–8]. Huygens’ meta-
surfaces are appealing candidates to implement wave-
front modulation devices such as holograms in ultrathin 
surfaces [9]. In Huygens’ metasurfaces, the excited electric 
and magnetic moments of the scatterers have to be equal. 
Thus far, emphasis had been put on dipolar metasurfaces, 
i.e. metasurfaces where the scattering response from its 
constituents can be explained while considering only the 
dipolar contribution [4, 10–12]. This corresponds to the 
idea of a Huygens’ source that lent the device its name.

For a fixed geometry and by sweeping through the 
resonance in frequency domain, the phase angle of trans-
mission through Huygens’ metasurfaces can be tuned to 
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cover the entire 2π range [4]. However, the metasurfaces 
are not operated at various but at a fixed frequency. There-
fore, the phase angle of the transmission should be tuned 
by either locally tuning the geometry of the particles for a 
fixed arrangement or tailoring the arrangement of other-
wise identical particles. At a fixed operational frequency, 
enforcing an equal electric and magnetic response 
requires a careful design of the geometry of the particle.

Our study is focused on metasurfaces with identical 
particles. For large-scale self-assembled metasurfaces, 
having identical particles is highly demanding. Due to fab-
rication constraints, the consideration of multiple particles 
satisfying the required conditions such as unity transmit-
tance and a desired transmission phase angle is daunting. 
For example, designing Huygens’ metasurfaces with nano-
cylinders having equal electric and magnetic response 
under normal incidence requires a specific aspect ratio of 
radius over height but different absolute sizes for differ-
ent transmission phase angles. This implies that different 
heights across the (meta)surface are required for a unity 
transmittance and full-phase coverage. Such a require-
ment is clearly not suited for lithography. Therefore, as an 
additional constraint, we shall require the metasurface to 
be made from identical particles. And the only tuning para-
meter that is left over in such configuration is the lattice 
constant that tunes the arrangement of the particles.

However, as we will demonstrate shortly, by sweep-
ing through the lattice constant and while considering 
only dipolar particles, it is nearly impossible to cover the 
entire 2π range of transmission phase angles at a fixed 
operational wavelength. To entirely lift such limitation, 
we propose here to exploit quadrupolar resonances in the 
scatterers along with the dipolar resonances to access the 
entire phase-shift range of 2π.

It is worth noting here that high-transmittance non-
resonant and non-Huygens’ metasurfaces that can provide 
the full-phase coverage are possible. In these metasur-
faces, nonidentical particles can be used [10, 13–17]. In 
this contribution, our focus is on resonant polarisation-
insensitive Huygens’ metasurfaces made out of identical 
rotational-symmetric particles.

To analyse in this contribution the transmission 
through dielectric metasurfaces in a generic and systematic 
approach, we initially consider particles with a scattering 
response modelled with a Lorentzian dispersion profile 
in their individual dipolar and quadrupolar multipolar 
terms. Then, to offer a structural implementation for such 
particles, we design core-multishell and disk-multiring 
particles from realistic materials to satisfy the required 
conditions for the construction of metasurfaces with 
full-phase-shift coverage. With these implementations at 

hand, and as an application, we study the effect of a full-
phase-shift coverage on the image quality of a metasur-
face hologram. The discussion and results are covered in 
the Supplementary information.

The main purpose of this work is to demonstrate that 
additional degrees of freedom in the design of Huygens’ 
metasurfaces can be unlocked when considering parti-
cles with a more complicated scattering response as their 
constituents. The particles we propose are exemplary, and 
many more particles can be considered, driven from the 
analytical insights. Only recently, the opportunities in 
exploiting the entire multipolar response of individual 
particles have been appreciated to tailor their scattering 
response [18–25]. And with this work, we extend such con-
siderations to Huygens’ metasurfaces thereof.

2   Lorentzian particles
The polarisation of particles by an electromagnetic excita-
tion can be quantified by the multipolar polarisability in 
a Cartesian basis [26, 27]. The particles considered in this 
article are initially isotropic, and hence, the polarisabilities 
are scalar. Later, we also present a design for a nonisotropic 
particle, but this does not change the argumentation. We 
approximate the response of the particles by their electric 
and magnetic dipolar and/or quadrupolar polarisabilities. 
For the initial numerical analysis, we have used a Lorent-
zian dispersion model for the resonances of the polarisa-
bilities that are corrected for the radiation losses to satisfy 
the optical theorem [28–32]. In such model, we can easily 
assume that the electric and magnetic response is equal. 
The dispersion models used for the dipolar αd and quadru-
polar αq polarisabilities are defined as follows:
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where k = 2π/λ is the wavenumber in free space, α0d and α0q 
are related to the oscillator strength, ω0d and ω0q are the res-
onance frequencies, and γΩd and γΩd are the Ohmic losses of 
the dipole and quadrupole resonances, respectively. Con-
sidering only nonabsorbing particles, the Ohmic losses 
throughout the article are always set to zero, i.e. γΩd = γΩq = 0. 
The electromagnetic duality symmetry of these particles is 
easily enforced by choosing the free parameters in the elec-
tric and magnetic polarisabilities to be the same. Properties 
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between dipolar and quadrupolar terms, e.g. resonance fre-
quency or oscillator strength, can be distinct, though.

To describe the light scattering from particles with 
such polarisabilities and to study reflection and trans-
mission through arrays thereof, we rely on a scattering 
theory that explicitly considers these polarisabilities 
when defining the T-matrix linked to the scatterer. In 
the multipole expansion method [26, 33], the T-matrix 
relates the multipolar scattering coefficients to the inci-
dent ones. The T-matrix describes the electromagnetic 
properties of particles [34, 35]. For an isotropic particle, 
the corresponding T-matrix in electric/magnetic basis is 
diagonal, and the elements are the Mie coefficients an 
and bn [32, 36]. Here, an and bn are multipolar electric and 
magnetic Mie coefficients, with n denoting the multipole 
order. A particle having equal electric and magnetic 
response is said to have electromagnetic duality sym-
metry, and the particle is called a dual particle [37, 38]. 
For the isotropic particles considered here, a particle is 
dual if and only if an = bn for n = 1, 2, …. A dual particle 
preserves the helicity of the impinging light in scatter-
ing, i.e. it does not mix the right and left polarisation of 
the incident light.

The Mie coefficients can be related to the polarisabili-
ties by the following equations [39]:
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Alternatively, the nth order electric an and magnetic 
bn Mie coefficient for nonabsorbing particles can be mod-
elled according to [31, 32]:

 
( ) cos ( )exp  i ( ),n n na ω α ω α ω=  (5)
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where we call nα  and nβ  the electric and magnetic Mie 
angles, respectively. Such a model has the least number of 
degrees of freedom, i.e. only the Mie angles, while it still 
offers all the characteristic features. This model is particu-
larly useful when systematically driving the properties of 
the particles through their resonance because only the 
angle needs to be tuned. For nonabsorbing particles as 
considered here, , n nα β  are real angles covering a range 
from −π/2 to π/2. An angle equal to zero corresponds to 
the resonance of the Mie coefficient. Negative/positive 

angles correspond to the red/blue side of the spectrum of 
the resonance, respectively.

3   Dipolar and quadrupolar 
Huygens’ metasurfaces

Relying on a T-matrix method formalism for multipolar 
analysis [32, 34], we have employed a tool for periodically 
arranged scatterers to study the transmission through two-
dimensional lattices of particles. It is an exact approach to 
calculate reflection and transmission from arrays of iden-
tical particles that are characterised by their T-matrix. The 
latter is being renormalised due to the interaction in the 
array that we correctly consider in the Ewald summation. 
We use for our purpose an in-house code, but a descrip-
tion of a program with a relatively similar approach can 
be found in [40].

To explore the transmission through a periodic 
arrangement of identical meta-atoms, we use the Lorentz-
ian models in (1) and (2) for the polarisabilities. The cor-
responding Mie coefficients are shown in amplitude and 
phase in Figure 1A. While tuning through the resonance, 
the phase in each coefficient changes up to π. When we 
arrange such identical particles, characterised by a reso-
nant dipolar or quadrupolar polarisability in either the 
electric or magnetic multipole moment, in a periodic 
array and sweeping the illumination wavelength through 
the resonance, an overall π phase-shift coverage in the 
spectrum of the transmission is seen (not shown here). 
Directly in resonance, the transmittance goes to zero. In 
the complex plane (i.e. real and imaginary transmission), 
this response corresponds to a circle with a radius of 0.5 
and a centre of 0.5 + 0i, which touches the origin 0 + 0i at 
resonance.

However, things change drastically when the condi-
tion of duality is met. For a dipolar particle, i.e. a particle 
characterised by only dipolar polarisabilities, and if the 
electric and magnetic polarisabilities are equal (i.e. dual), 
an overall 2π phase-shift coverage in the transmission 
spectrum td is observed (Figure 1B, C), while, as discussed 
earlier, the transmittance stays unity. In the complex 
plane, this corresponds to a circle of radius 1 with a centre 
in origin 0 + 0i (Figure 1B, the red curve) [32]. This response 
corresponds to a full control over the phase shift.

One step further, and to include higher-order 
multipoles, if a periodic arrangement of dual dipolar-
quadrupole particles is assumed, i.e. particles with 
a1 = b1 = ad, a2 = b2 = aq, the complex transmission td+q as a 
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function of the wavelength will be a double winding circle 
around the origin 0 + 0i, covering an overall 4π phase shift 
through the four resonances (Figure 1B, C).

However, any device that is geared toward the modu-
lation of the wavefront is operated at a fixed frequency. 
There, the phase angle of the transmission is tuned by 
sweeping the lattice constant of the arrangement. Tuning 
the lattice constant renormalises the polarisabilities, 
making the lattice constant a parameter to tune the phase 
shift of the transmission [39, 41]. For dual dipolar particles, 
fixed to operate at the resonance wavelength of the polar-
isabilities, it turns out that a full 2π phase coverage is not 
possible while tuning the lattice constant. This is shown 

in Figure 2 when plotting td. Eventually, only a range of 

about 
3
2

π is covered (i.e. 75%). This argument is generally 
valid and independent of the structural implementation 
of the particle, as the analysis at this stage is done using a 
generic model for the polarisability of the particles.

To mitigate such limitations, we suggest that exploit-
ing quadrupolar resonances in the scatterers along with 
the dipolar resonances helps to cover the whole phase-
shift range of 2π by tuning the periodicity. The larger 
phase space that could be covered when tuning through 
the wavelength was a strong indication that this is feasi-
ble. Indeed, for a selected example of a square array of 
particles, a phase coverage slightly larger than 2π can be 
seen in Figure 2, where td+q is shown. Again, the particles 
are operated at the resonance wavelength, which is equal 
for the dipolar and the quadrupolar terms, and we only 
tune the lattice constant.

To obtain a more systematic insight into the acces-
sible phase coverage when combining particles with dif-
ferent dipolar and quadrupolar dual resonances and not 
only those where the operational wavelength is fixed to 
the resonance wavelength, we resort to the generic model 
for the Mie coefficients presented in (5) and (6). In par-
ticular, we can change there the electric and magnetic Mie 
angles, nα  and ,nβ  and can study the accessible range for 
the phase angle in transmission when changing the lattice 
constant. Selected examples for the phase are shown in 
Figure 3. Note that as all combinations considered are 
dual, the transmittance is always unity and for simplicity 
not shown. In Figure 3A, only dual dipolar particles are 
considered, while in Figure 3B, dual dipolar-quadrupolar 
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Figure 2: Metasurface transmission in periodicity sweep.
(A) The zero-order complex transmission t and (B) its phase 
and amplitude through a square-array periodic subwavelength 
arrangement of dual dipole d and dual dipole-quadrupole d + q 
Lorentzian particles (Figure 1A) at their individual resonance 
wavelengths λ0 = 1500 nm as a function of the normalised lattice 
constant. The coloured markers correspond to a specific normalised 
lattice constant as can be seen from (B).
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Figure 1: Metasurface transmission in frequency sweep.
(A) The Mie coefficients corresponding to the electric and magnetic dipole and quadrupole resonances. The vertical dark blue dashed line in 
(A) and (C) shows the resonance wavelength λ0 = 1500 nm. (B) The zero-order complex transmission t and (C) its phase arg(t) and amplitude 
|t |  through a square-array periodic subwavelength arrangement of dual dipole (td: red dashed line) and dual dipole-quadrupole (td+q: black 
dashed line) Lorentzian particles as function of wavelength. The periodicity is 800 nm. For td: a1 = b1 = ad, a2 = b2 = 0 and for td+q: a1 = b1 = ad, 
a2 = b2 = aq. The coloured markers correspond to specific wavelengths as can be seen from (C). The parameters for the Lorentzian model are 
λ0d = λ0q = 1500 nm, α0q = 10α0d = 8 × 1010 m3/s2. The simulations are done in free space.
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particles are examined. The larger phase space that is 
accessible for the dipolar-quadrupolar particles is evident. 
In Figure 3C, the phase-shift coverage for all dual combi-
nations is shown. The phase-shift coverage corresponds 
here to the difference in maximum and minimum phase 
value of the transmission when changing the lattice con-
stant between 1/3 of the operational wavelength and the 
operational wavelength. In this figure, the slope of the 
phase dispersion is not shown, and it should be noted that 
the slope can be very steep at certain points. It remains to 
mention that this is not always a disadvantage, but this can 
be beneficially used in optical sensing devices. However, 
from this figure, we can safely extract a parameter range 
that covers a range up to around 3π for the phase angle 
in transmission when tuning through the lattice constant. 
We can pick any of the related points in this space that 
offer this functionality and can build a metasurface from 
such particles. We only need to find a particle that is char-
acterised by the respective Mie coefficient.

4   Multilayered metasurfaces
In this section, we design and propose actual particles 
that offer the required Mie coefficients necessary to verify 
the results derived for Lorentzian particles. We show that 
by sweeping the lattice constant within the physical con-
straints, i.e. the lattice constant has to be smaller than the 
wavelength to preserve the nondiffracting nature of the 
metasurface, a metasurface made out of identical dipolar 

particles cannot give us a full-phase-shift coverage in the 
transmission and unity transmittance. However, we show 
that using identical designed dipolar-quadrupolar parti-
cles, the aforementioned requirement can be satisfied.

First, we design a dipolar core-multishell particle, 
abbreviated in the following as c1, to meet dual dipole 
resonance at λ = 1500 nm, i.e. a1 = b1 = 1 and an>1 ≈ bn>1 ≈ 0. 
For the design of the core-multishell particles, we have 
used a particle swarm optimisation method [31, 42, 43]. 
We consider a core-multishell particle with up to two 
shells. The core and the shells were allowed to be made 
from isotropic nonmagnetic materials with a refractive 
index in the range from 1 to 7. For the optimised particle, 
the Mie coefficients as a function of the wavelength are 
shown in Figure 4A. Clearly, at the desired operational 
wavelength of λ = 1500  nm, the dipolar coefficients are 
at unity, while higher-order Mie coefficients are neg-
ligible. The transmission through the metasurface 
made from such particles at the resonance wavelength 
λ = 1500 nm as a function of the normalised lattice con-
stant is shown in Figure 4C and D (

1c
t ). As expected, the 

results are very similar to td in Figure 2; the phase cov-
erage is about 75% of the full 2π, and as can be seen, 
it is not possible to have the full-phase coverage within 
the possible lattice constants. Note that the lattice con-
stant is bound by the physical size of the actual particle 
(a = 2 × 346.65 = 693.30  nm) at the lower end and by the 
diffraction limit (a = λ = 1500 nm) on the upper end.

Next, we want to design a core-multishell particle that 
can provide the full-phase coverage of the transmission 

0

/2

3 /2

2

5 /2

3A B C

Figure 3: Metasurface phase coverage and the Mie coefficients.
(A) The phase shift achieved by different combinations of dual Mie coefficient angles for dipolar and (B) dipolar-quadrupolar particles 
as the metasurface constituents as a function of the normalised lattice constant a/λ ∈[1/3, 1]. (C) The phase-shift coverage achieved by 
all combinations of dual Mie coefficient angles for dipolar-quadrupolar particles. The maximum phase coverage is a sharp strip around 
α1 = β1 = − α2 = − β2 = 50°. The simulations are done in free space at a wavelength of 1500 nm, but the results are dependant only on a/λ and is 
valid for any wavelength.
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phase angle in the metasurface with lattice constant 
tuning. As we showed in the previous section, a suit-
able particle would require both dipolar and quadrupolar 
responses. An extra requirement, here for a hologram as 
a direct application, is that the phase-shift change as a 
function of the lattice constant is smooth and not steep. 
This is experimentally important to be able to use the full 
potential of the lattice sweep.

Based on our simulations, to achieve full-phase-
shift coverage and a smooth phase-shift variation, 

a particle with the designed Mie coefficient angle of 
1 1 2 2 >2 >20, /3, /2n nα β α β π α β π= = = = − ≈ ≈ −  is deemed 

suitable. The dispersion of the phase shift is already 
shown in Figure 3B (the red dash-dotted line).

Then, based on the required parameters, using the 
particle swarm optimisation, we have designed a core-
multishell particle to fulfil 1 1 2 2 >2 >20, /3, /2n nα β α β π α β π= = = = − ≈ ≈ − 

1 1 2 2 >2 >20, /3, /2n nα β α β π α β π= = = = − ≈ ≈ −  at a wavelength of 1500 nm. The refrac-
tive index of the shells is bound between 1 and 6. At this 
stage, the large refractive index has been chosen to clearly 
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1n1
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n3
c2

A B C D

Figure 4: Transmission of core-multishell metasurfaces.
(A) Mie coefficients of the dipolar c1 (inset picture) and (B) dipolar-quadrupolar c2 (inset picture) core-multishell particles. The vertical black 
dashed line is the design operating wavelength λopt. = 1500 nm. (C) Phase and amplitude and (D) the complex zero-order transmission of a 
square array of c1 and c2 particles. For core-multishell particles (c1), the design parameters are [r1, r2, n1, n2] = [181.35 nm, 346.65 nm, 7, 2.5], and 
the derived Mie coefficient angles at λopt. = 1500 nm are α β α β π= = ≈ = −1 1 >1 >10, /2.n n  For core-multishell particles (c2), the design parameters 
are: [r1, r2, r3, n1, n2, n3] =[213.30 nm, 447.75 nm, 458.55 nm, 5.96, 1.57, 4.96], and the derived Mie coefficient angles at λ = 1500 nm are 
α β α β π α β π= = = = − ≈ −1 1 2 2 >2 >20, /3, = /2.n n  The simulations are done in free space but can be scaled for any embedding and wavelength.

n2

n1

n3

n2

n1

n3

ne
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Figure 5: Transmission of designed dual-quadrupole metasurfaces.
(A) Designed core-multishell (CS) and (B) disk-multiring (DR) particles at a design wavelength of λ =opt. 1500  nm: The parameters derived from 
particle swarm optimisation for the core-multishell particle: [n1, n2, n3] = [3.67, 2.16, 4] and [r1, r2, r3] = [135, 354, 365] nm, where ne = 1.44 is the 
refractive index of the embedding medium. The parameters derived from particle swarm optimisation for the disk-multiring particle: [n1, n2, 
n3] = [1.9, 3.34, 2.2] and [r1, r2, r3, H] = [157.9, 284.8, 375, 361.2] nm, where ne = 1.44 is the refractive index of the embedding medium. (C) The 
corresponding Mie coefficients and (D) multipolar scattering cross-section contribution of the core-multishell and the disk-multiring particle, 
respectively. (E) The zero-order phase angle and amplitude of transmission through a square array arrangement of the core-multishell (tCS) 
and disk-multiring (tDR) particle embedded in a homogeneous environment ne = 1.44 as a function of the normalised lattice constant.
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demonstrate the feasibility. Further below, the design of 
particles is presented that are made from materials with 
properties offered by naturally available materials in near 
infrared (NIR). The designed particle in Figure 4B is abbre-
viated in the following as c2. The Mie coefficients and the 
lattice constant sweep of the transmission are shown in 
Figure 4B–D (

2c
t ). The result verifies our initial expectation 

that with dipolar-quadrupolar particles a full 2π phase-
shift coverage is achievable. The simulations are done in 
free space. In a homogeneous environment with refractive 
index ne, the results remain the same if the particle radii 
and the corresponding refractive indexes are down-scaled 
and up-scaled by a factor of ne, respectively.

Although nonabsorbing natural materials with a refrac-
tive index of up to 7 can be found at frequencies up to the 
mid-infrared spectrum [44], at NIR, we are limited to a 
maximum refractive index of 4 offered by natural materials. 
In this refined analysis, we would like to propose structures 
that can be used to realise Huygens’ dipole-quadrupole 
metasurfaces at NIR frequencies. Therefore, we have limited 
the refractive index to a range of 1 to 4 in the optimisation 
procedure in the following. We continue to assume a design 
wavelength of 1500 nm, and we have used again the par-
ticle swarm optimisation. We designed two different struc-
tures. First was a core-multishell particle considering these 
more realistic material properties. Second, we designed 
a disk-multiring particle that can indeed be realised with 
top-down nanostructure technology. In both cases, we 
considered a homogeneous dielectric environment as the 
embedding medium (Figure 5A, B). The electromagnetic 
properties of the individual optimised structures are shown 
in Figure 5C and D. The calculations of the optical response 
from the disk-multiring structure are done with JCMwave, a 
finite element solver for Maxwell’s equations. Although the 
particles are not perfectly dual, they have a strong quadru-
pole component. The results for the transmission through 
an arrangement of such particles are shown in Figure 5E. 
The results show promising results. The core-multishell and 
disk-multiring metasurface covers 97% and 90% of the total 
phase coverage, while their transmittance keeps near unity.

5   Conclusion
We have shown that with identical dipolar particles achiev-
ing the full-phase shift with lattice constant tuning is prac-
tically not possible in Huygens’ metasurfaces. However, 
using optimised dipolar-quadrupolar particles, metasur-
faces can be designed to cover the full 2π phase shift. We 
have designed core-multishell and disk-multiring particles 

to support our results. Holograms made from such dipolar-
quadrupolar particles show an improved performance, as 
documented in the Supplementary information.
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