
Improving NLU Training over Linked
Data with Placeholder Concepts

Tobias Schmitt1, Cedric Kulbach2, and York Sure-Vetter1,2(B)

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
tobias.s.schmitt@web.de, york.sure-vetter@kit.edu

2 FZI Research Center for Information Technology, Karlsruhe, Germany
kulbach@fzi.de

Abstract. Conversational systems, also known as dialogue systems,
have become increasingly popular. They can perform a variety of tasks
e.g. in B2C areas such as sales and customer services. A significant
amount of research has already been conducted on improving the under-
lying algorithms of the natural language understanding (NLU) compo-
nent of dialogue systems. This paper presents an approach to generate
training datasets for the NLU component from Linked Data resources.
We analyze how differently designed training datasets can impact the
performance of the NLU component. Whereby, the training datasets dif-
fer mainly by varying values for the injection into fixed sentence patterns.
As a core contribution, we introduce and evaluate the performance of dif-
ferent placeholder concepts. Our results show that a trained model with
placeholder concepts is capable of handling dynamic Linked Data with-
out retraining the NLU component. Thus, our approach also contributes
to the robustness of the NLU component.

Keywords: Natural Language Understanding · Named Entity
Recognition · Chatbots · Linked Data

1 Introduction

Modern conversational systems, also called dialogue systems (DS), are gaining
access into peoples day-to-day lives and are offering an increasing number of
services, especially known to the public audience in the form of chatbots. The
standard DS consists of three components: the Natural Language Understanding
(NLU) component, which identifies the meaning behind the incoming message
and extracts relevant parts called entities, the Dialogue Manager (DM), which
determines the corresponding action based on the output from the NLU, and
the Natural Language Generator (NLG), which generates the response that is
transmitted to the user [11].

In DS the NLU component mostly uses standard concepts from Natural Lan-
guage Processing (NLP) tasks. It mainly consists of an intent classifier and
a named entity recognition (NER) component. Both components make use of
c© The Author(s) 2019
M. Acosta et al. (Eds.): SEMANTiCS 2019, LNCS 11702, pp. 67–82, 2019.
https://doi.org/10.1007/978-3-030-33220-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33220-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-33220-4_6


68 T. Schmitt et al.

machine learning technologies, which mostly need to be trained supervised (s.
Sect. 1.1). More and more data is published as Linked Data, which forms a
suitable knowledge base for NLP tasks. In the context of chatbots a key chal-
lenge is developing intuitive ways to access this data to train an NLU pipeline
and to generate answers for NLG purposes. Using the same knowledge base for
NLU and NLG provides a self-sufficient system. An NLU component identifies
the intents and entities which the NLG component requires for generating the
response. However, the challenge becomes apparent when the knowledge base
changes and the already trained NLU model deteriorates in the detection of
intents and entities. Training on more general training data could avoid compu-
tational expensive retraining and make the NLU component more robust against
changes in the knowledge base and unclear requests. In this context, we define
the robustness of an NLU through the metrics of the NLU on not yet seen entity
values. As a more general approach to create appropriate training data for the
NLU we propose the placeholder concept where placeholder values are used as
entity values instead of real ones taken from a related knowledge base. These val-
ues are then filled into predefined sentence patterns to generate the final dataset
for training the NLU components. As a key result, we show which type of entity
values (placeholder or database values) work best for training a NER algorithm
or an intent classifier.

In a first step, we present the typical process that can be used when designing
an NLU in the chatbot context. After a motivating example in Sect. 1.2 the
procedure for the construction of training data for an NLU pipeline (Sect. 2) is
shown. To compare the performance of the two conceptual approaches to create
the NLU training dataset, we created a set of experiments that are described in
Sect. 3. After evaluating the performance results of the conducted experiments in
Sect. 4, we bring the paper into the context of related work (Sect. 5). An outlook
is given in Sect. 6.

1.1 NLU in Chatbot Context

In current DS architectures the NLU component is the most critical component
to the success of chatbots or question answering (Q&A) [6]. It aims to identify
the meaning behind the user’s input and extracts all the custom entity values in
the incoming utterance [23]. Identifying the intent of the interlocutor is a classifi-
cation problem that can be solved using supervised machine learning techniques.
Available classifiers include Support Vector Machines (SVM) [3,13], deep neural
networks [18,19] and embedding models [24]. The classifier is trained to predict
to which of the learned intent classes the incoming utterance belongs to and to
assign this label to the utterance so that it can be used by the next component
[20]. All the intents that the system shall be able to match to user inputs have
to be included in the training dataset. If the user input does not correspond to
any of the learned intent labels, the model will still match it to one of them [16].
In closed domain DS this behavior leads to a chatbot that will answer every
question, which must be taken into account during the creation process of the
training dataset.



Improving NLU Training over Linked Data 69

The second task of the NLU is to extract custom entities using sequence-
labeling techniques. Conditional Random Fields (CRF) and Recurrent Neural
Network (RNN) are most commonly used to label each unit in an utterance to
determine the words that correspond to each of the learned entity types [10].
This is achieved by extracting features from the surrounding words (context) so
that the system can predict not only the entity values present in the training data
but also new values that users might use in their messages. Both components
form an NLU. Examples of available NLUs include Microsoft’s LUIS,1 IBM’s
Watson2 and RASA’s NLU3 [4].

”text” : ”Where is the lecture Web Science taking place?”,
”intent” : ” location of lecture ”,
” entities ” : [
{
”start” : 21,
”end” : 32,
”value” : ”Web Science”,
”entity”: ”lecture”
}]

Listing 1.1. Example of a labelled utterance used to train the intent classifier and
entity extractor of the NLU.

Example of a data point that can be either used for training or testing the NLU
is presented in Listing 1.1 (s. Sect. 2). To generate the training data like the
one shown, we create a set of utterances related to each intent and integrate the
entity values from either a knowledge base or placeholder values at the designated
places. This approach not only provides a semi-automated way for generating
training datasets, such as the one depicted in Listing 1.1, it further provides the
first step towards an integration of Semantic Question Answering (SQA) [21]
tasks into chatbots. By generating training data as described in this work, the
aim is to analyze how well a system can be trained if little or no information
is available about the entity values that users might use in their utterances. In
summary, we provide contributions to the following questions:

RQ 1 Which type of entity values work best for training the entity recognition
algorithm?

RQ 2 Which type of entity values work best for training different intent classi-
fiers?

RQ 3 How can linked data improve NLU performances?

1.2 Motivating Example

We describe an example that motivates our approach and experiments. The
handbook for the study program Industrial Engineering and Management at
1 https://www.luis.ai/home, accessed on 11.12.2018.
2 https://console.bluemix.net/developer/Watson/documentation, accessed on

11.12.2018.
3 https://rasa.com, accessed on 11.12.2018.

https://www.luis.ai/home
https://console.bluemix.net/developer/Watson/documentation
https://rasa.com


70 T. Schmitt et al.

KIT is publicly available as a .pdf version. In order to make this information
accessible by a computer program, such as a dialogue system, the relevant data
were extracted and transformed to RDF. The domain of a DS trained with
the RDF triplestore is defined by lectures, lecturers, location and semesters,
where each person(lecturer) can lecture a lecture from a specific module in a
given room/building (location of lecture) at a given date/semester. To answer
a question like ‘Where is the lecture Web Science taking place’ (Q1 ) the NLU
needs to detect the intent location of lecture and the entity lecture with the
value ‘Web Science’. Remarking that the question for a location is related to
the entities found in the question (in Q1 lecture). This problem is addressed by
relation linking (RL) [7]. Before the RL problem can be resolved, however, it
must first be ensured that the correct intents and entities are found. To train
the NLU a set of utterances for each intent is defined (s. Listing 1.1). In a
closed domain DS the entries from the knowledge base can be used to generate
utterances by replacing the entities (e.g. “Web Science” in Listing 1.1) from
the utterances with the entries from the knowledge base. For example, with the
help of the sentence pattern ‘Where is the lecture lecture taking place?’ and the
knowledge base, data points can be generated automatically from the lectures
property. Whereby, lecture is a placeholder for the lectures entries from the triple
store or other values. We call this concept the domain or placeholder concept
(s. Sect. 2.1). The results are multiple data points with the same structure, but
different entities. Taking into account that the entity values (i.e. for the entity
lecture) can change over time, the NLU has the task of identifying intents and
entities that did not exist before. We address this problem by providing a robust
NLU (definition in Sect. 1) from the beginning.

2 Construction of Training Data

In the first part the general design approach is described before presenting a
holistic approach that can be used to systematically create a DS and its matching
training dataset.

2.1 Training Data Design Approaches

In this work, we aim to optimize the performance of the two tasks of the NLU
(Intent classification and entity recognition) by optimizing the dataset that is
used to train the system. Therefore we created two different design approaches
that can be applied to create the training dataset for a domain-specific NLU. In
this work, we focus on how the performance of the trained NLU is impacted if
different types of entity values are used to create the training dataset.

Before going into the specifics of the approaches it has to be noticed that
the utterance patterns have to be created. This is necessary so that the entity
values can later be filled in automatically. For each of the defined intents, a set
of utterances have to be created, where each one contains one or more entity
values that the system shall learn to detect. Because we want to be able to insert



Improving NLU Training over Linked Data 71

different types of values automatically, an empty slot of matching type is inserted
at the position where an entity value shall be inserted during the creation of the
training data. Looking at utterance from the motivating example, we replaced
the value of type lecture (Web Science) by an empty slot of type lecture (‘Where
is the lecture {lecture} taking place’ ). Now we are able to insert different types
of entity values into the utterances without having to change the utterances
manually. Both approaches use the same utterances for each intent but are filled
with different kinds of entity values.

The two approaches described in the following are called the Domain Con-
cept and Placeholder Concept. As the names suggest, we used entity values
from a related knowledge base to create the training dataset within the database
concept and placeholder values in the placeholder concept to create the dataset
for training the NLU.

Looking at the domain concept, it can be seen that the related knowledge
database is queried for each of the defined entity types with the goal to extract
all available values and store them into a list. These values are then used to fill
the empty slots in the utterances, with respect to the entity type restriction.
Table 1 shows how both concepts work and further depicts an example for each
of them. The example shows how one of the entity values of type lecture is used
to fill the empty slot of matching type in the example utterance. This utterance
together with the appropriate labels can then be used to train the component
of the NLU.

Table 1. Conceptual approaches used to create the dataset for training and testing
the NLU of the task-oriented component-based dialogue system.

The second approach is called Placeholder Concept and refers to the fact
that instead of real values, taken from some knowledge database, placeholder
values are inserted into the utterances to create the dataset for training the NLU.
In general, the placeholder values are values which consist of one or multiple
random words of varying length. The random words used in this work have



72 T. Schmitt et al.

e.g. been created by randomly selecting one or multiple letters from the English
alphabet. Within this concept, we followed two different ways of creating the
dataset. The first one called Identical Placeholder Values Concept (PH
Type 1). As the name suggests in this approach only one random value is
created and used to fill all the empty slots in the utterances regardless of the
entity type. In the example shown in Table 1 the letter x was selected to fill all of
the empty slots. The second approach is called Different Placeholder Value
Concept (PH Type 2). In this approach different random values are used to
fill the different types of empty slots. For each of the defined entity types, one
unique random value is created and used to fill the corresponding empty slots.

With the experiments described in Sect. 3 we aim to determine which design
concept is best for training a domain-specific NLU. Based on the design specifi-
cation of the concepts it can be assumed that if a dataset is created that contains
all available entity values the results are likely to be highest.

In the next part of the section, we introduce a holistic approach that can be
used to create the dataset matching the requirements of a domain-specific NLU
of a task-oriented DS.

2.2 Training Data Creation Process

In this subsection, we describe an approach that can be used to design the NLU
of a task-oriented DS and to create a dataset matching the requirements. The
complete approach is depicted in Fig. 1 and is based on the procedure described
by Grötz [8].

Fig. 1. Process for designing a customized NLU and creating the corresponding labeled
dataset to train and test the system

The process consists of six processing steps which can be categorized into
three areas. The first area focuses on defining the functions/tasks of the DS.
The processes in the second area are to derive a set of intent and entity type



Improving NLU Training over Linked Data 73

labels that the NLU needs to be able to assign to an incoming utterance. In the
processes of the last area, the previously defined intents and entity types are
used to create a matching dataset for training (and testing) the NLU.

The first area is called Domain Specification and consists of one process
during which a set of functions/tasks are defined that the dialogue system shall
be able to handle. According to Grötz [8], it is recommended to start with a
small set of functions and to use the collected experience over time to improve
them and to successively add new ones. In this work, we created the NLU of a
DS which aims to support students at the KIT in acquiring information related
to their study program (s. Sect. 1.2). Two of the defined functions, depicted in
Fig. 1, aim to find the location where a certain lecture takes place and to identify
lectures that take place in a specific semester. In our approach, the information
required to answer the students’ questions are stored within an RDF knowledge
base. SPARQL queries are used to extract the demanded information from the
incoming question.

The second area is called Customizing the NLU during which a list of
intent labels and entity type labels has to be defined that the NLU shall be able to
assign to the incoming utterances. Within the second process step called Creating
a List of Intent Labels, one intent label is created for each of the previously
defined functions. Following the example depicted in Fig. 1, one intent label is
created for each of the two functions. The intent label related to the first function
is called location of lecture and the one related to the second function is called
lectures in semester. In the third step, the types of entity values are determined
which the NLU needs to be able to extract from the incoming utterances. These
values are required to perform the functions defined in the first process step. The
types of entity values that the NLU has to be able to extract can e.g. be derived
from the underlying SPARQL queries. This is essential since the entity values
are required to perform the query in order to retrieve the demanded information
from the knowledge base. In the presented example, entity values of type lecture
or of type semester are required to execute the underlying query.

After having defined the required parameters, the process steps within the
third area focus on creating an optimal dataset for training the NLU. Within
the fourth step, a list of utterances is created for each of the defined intents
following the procedure described in the previous section. At the positions in the
utterances where an entity value of a certain type shall be inserted, an empty
slot of matching type is placed. Furthermore, the utterances have to match the
language usage of the target users (e.g. formal or informal) [8]. In Fig. 1 one
utterance for each of the two intents is depicted where each includes one of the
two defined entity types. In the sixth step, a list of entity values for each type is
created that is then used to fill the empty slots in the utterances in order to create
the final dataset. As explained in the previous section there are two approaches
that can be applied for replacing the empty slots in the utterances. The first
one is depicted in step 5.1 where a list of ‘real’ entity values is extracted from a
related knowledge base. As described in Sect. 1.2 we created a RDF knowledge
graph that contains all information related to the industrial engineering and



74 T. Schmitt et al.

management study program at the KIT. The second option is to use placeholder
values instead of real values. One value is assigned to each of the entity types,
which can be either identical or different as shown in Table 1.

In the last process step the empty slots in the utterances from step 4 are
replaced using one of the lists created in step 5. At last information about the
two sets of labels are added to each utterance. This includes the intent label, the
entity type, the entity value and the position at which the entity values can be
found in the utterance. This information is stored in one of the formats such as
JSON.

3 Experiments

Based on the previously introduced approach we created a task-oriented NLU
to determine which of the approaches from Subsect. 2.1 is best for training such
a system. In the first part, we describe the development of the training datasets
which were used to train the NLU, which we then evaluated to compare the
performance that can be achieved by following the different design approaches.
The applied pipeline of the NLU is described as part of the state of the art
within the context of related work (s. Sect. 5).

3.1 Creation of Domain Specific Dataset

In order to evaluate the different approaches previously described, we created
several datasets to train the NLU of the DS introduced in Sect. 1.2. Following
the process from Sect. 2.2 we first defined the functionality of our DS and used
these to derive a set of intents and entity types for creating the NLU. Next, we
created a set of utterances with empty slots for each intent and created three
entity type lists with different values to fill the empty slots. In the last part of
the section we describe the experimental datasets used to evaluate the design
approaches from Sect. 2.1

System Specification and Creation of Utterances. Following the process
described in Fig. 1 we defined 16 functions that our DS shall be able to perform.
For the configuration of the NLU, we created one intent label per function,
which the intent classifier shall be able to assign to incoming utterances after
training. In addition, we derived the types of entity values that are required to
perform the succeeding processing step, such as making a database inquiry (not
realized in this work). In total, the NER component of the NLU needs to be able
to recognize and extract six different types of entity values. An extract of the
complete list of the intents and the corresponding entity values can be seen in
Table 2. The first column shows the name of the intent and the last column the
entity value type that is required for further processing.

Furthermore, the table shows how many utterances have been manually cre-
ated for each intent. As described in Subsect. 2.1 we inserted empty slots at the
position in the utterance where one of the entity values shall be included in



Improving NLU Training over Linked Data 75

the final step. In total 299 utterances were created, which were split into a train
(80%) and a test (20%) set. These utterances are used by both design approaches
to create the final datasets for training and testing the NLU.

Table 2. Number of training utterances created for each intent and their corresponding
entity types.

Intent Utterance Entity type

Train (80%) Test (20%) Combined

lecturer of lecture 18 5 23 lecture

lectures in the current semester 8 3 11 semester, subject

semester of lecture 8 2 10 lecture, semester

subject of lecture 8 2 10 lecture, subject

modules within subject 16 4 20 subject

subject affiliation of module 16 5 21 module

location of room 19 5 24 building

office of lecturer 16 4 20 person

... ... ... ... ...

Total 234 65 299

Entity Values. As explained in Sect. 2.1 there are two options to replace the
empty slots with a corresponding entity value. Following the domain concept,
we extracted all values related to each of the six entity types from a related RDF
file as explained in the motivating example. The values were retrieved by using
one SPARQL query for each type, which was then stored into a list. One list was
created for each entity type where all matching values were stored. As with the
utterance, each entity list was split into a training and testing set. The combined
set included all values found. Table 3 depicts the number of values found in the
RDF file which relates to one of the six entity types. The second column in the
table indicates how many empty slots in the utterances exist, which need to be
filled in order to create the final dataset. Having extracted all possible values
that the system needs to be able to recognize, the empty slots were replaced by
looping through the created entity list and filling in a value of the matching type
into the existing utterances. If there were more empty slots than unique entity
values, some values were used more then once which were selected randomly. If
there were more unique entity values than empty slots, some utterances were
used more than once. In that case, we randomly selected a matching number
of utterances from the list of utterances that only have an empty slot of that
specific type. Those were then used to fill in the remaining utterances to finish
the replacement process.

To create the utterances following the placeholder concept we created two
sets of placeholder values. The type 1 consists of one value which is used to
replace all empty slots in the utterances independent of the type. The type 2
list contains one unique value for each entity type, which is then used to replace
the empty slots of matching type. The values we used to create our datasets
are depicted in the last two columns of Table 3. In the last step, the previously
created lists with entity value(s) can now be used to create the datasets for
training and testing the different NLUs.



76 T. Schmitt et al.

Table 3. Placeholder values and unique domain values used to replace the empty slots.

Entity type Empty slots Domain values Placeholder values

Train (80%) Test (20%) Combined Type 1 Type 2

lecture 137 69 18 87 x v

person 46 36 10 46 x p

semester 21 11 3 14 x s

subject 41 4 1 5 x f

module 61 44 11 55 x m

building 24 19 5 24 x g

Total 330 183 48 231 1 6

Experimental Datasets. In order to answer the research questions introduced
in Sect. 1.1 we conducted a total of five experiments. Thereby we want to deter-
mine which type of entity values are best suited to create the training data and
how the trained NLU performs of different test datasets.

The datasets for training the NLU have been created by filling the designated
training utterances with some related entity values, as described in Subsect. 2.2.
Table 4 contains an overview of the experiments and the datasets used to evaluate
the performance of the NLU. The first two experiments are related to the domain
concept. In the first experiment (EX 1) the training dataset contains a subset
of the entity values that have been extracted from the available knowledge base.
Thereby we want to analyze how well the NLU can perform the two tasks if
the test set contains unknown utterances and unknown values taken from the
knowledge base. In addition, we want to determine how well the NLU performs
if the utterances are filled with entity values taken from another domain, in this
case, the DBpedia knowledge graph. To determine how well the NLU performs
if all domain related entity values are used for training, we conducted the second
experiment (EX 2).

The third and fourth experiments (EX 3 and 4) have been created to evaluate
how the performance of the NLU changes if placeholder values are used to train
the system. In EX 3 the train utterances have been filled with the PH Type 1
values and in EX 4 they have been filled with PH Type 2 values.

In the last experiment, we filled the train utterances with the values extracted
from the DBpedia and merged this one with the EX 1 dataset. Thereby we aim
to determine if the performance can be approved when the dataset is enriched
with values taken from another domain. Because we were not able to extract
entity values form all of the six types, we only used the utterances that contain
an entity type of at least one of the following types: lecture, building or person.

The datasets used to test the performance has been created by using either
the test set of the domain values or the test set of the DBpedia values to fill
the test utterances. Because the DBpedia set does not contain values of type
semester, subject and module the domain values of those types have been used
to create the Test DBpedia dataset. For determining and evaluating the perfor-
mance of the different conceptual approaches we calculated the precision, recall
and F1-score of the trained NLUs. No cross-validation has been applied to eval-
uate the performance.



Improving NLU Training over Linked Data 77

Table 4. Utterances and entity values used to create the experimental datasets.

Training datasets

EX 1 Train Utterances + Test Domain Entity Values

EX 2 Train Utterances + All Domain Entity Values

EX 3 Train Utterances + PH Type 1 Entity Values

EX 4 Train Utterances + PH Type 2 Entity Values

EX 5 EX1 extended by

Train Utterances + Train DBpedia Entity Values

Testing datasets

Domain test Test Utterances + Test Domain Entity Values

DBpedia test Test Utterances + Test DBpedia Entity Values

4 Evaluation Results

In this chapter, the results of the different experiments are evaluated. Table 5
provides an overview of the performance values that have been used to measure
the performance of the NER and the intent classifier of the NLU. In the first
part of the section, we analyze the results of the NER and intent classifier before
giving a recommendation about which approach to use for training the two
components of the NLU.

4.1 Performance NER

The first part of Table 5 shows the results when using the Domain Test dataset
for evaluating the performance of the differently trained NLUs and the second
part shows the results when using the DBpedia test dataset for testing. The first
part of the table clearly shows that the datasets related to EX 1, 2 and 5 lead
to the best NER performances. From those, it can be derived that using more
unique entity values lead to better results. If all potential entity values that an
NLU shall be able to extract are known in advance it is best to use them all
for training. Enlarging the training dataset with utterances that are filled with
values from another domain does not lead to better results. When using the
DBpedia test dataset for evaluating the results clearly show that the F1-score of
EX 5 is highest and therefore most suited for training. The results related to EX
1 and 2 are in this case far lower. In this case, the discrepancy between EX 1 and
2 and EX 5 is between 11.7 and 15.6% points. In the previous test, the results
were much closer with a discrepancy between 3.2 and 6.1% points. In both cases
training the NER with placeholder values lead to the lowest results. Although
using PH type 1 values lead so slightly higher results the performance is still
much lower than that of the other approaches. Due to the low results which are
more than 50% lower, compared to the other approaches, they are not suited for
training the NER component of the NLU.



78 T. Schmitt et al.

Based on these results we recommend to use the approach related to EX
1 or 2 for training the NER component if the NLU shall be optimized for a
certain domain. If instead, the NLU shall perform well on several domains we
recommend to merge the datasets following the approach described in EX 5 to
maximize the NER’s performance.

Table 5. Performance results of the conducted experiments.

NER Embedding classifier

Precision Recall F1-Score Precision Recall F1-Score

Domain test

EX 1 0.995 0.895 0.940 0.8626 0.8458 0.8452

EX 2 1.000 0.967 0.979 0.8497 0.8151 0.8101

EX 3 0.893 0.286 0.428 0.8663 0.8308 0.8288

EX 4 0.928 0.220 0.351 0.8311 0.8151 0.8029

EX 5 0.991 0.856 0.918 0.8657 0.8308 0.8269

DBpedia test

EX 1 0.878 0.770 0.812 0.8448 0.8151 0.8103

EX 2 1.000 0.806 0.851 0.8522 0.8151 0.8170

EX 3 0.835 0.312 0.451 0.8907 0.8769 0.8722

EX 4 0.848 0.220 0.351 0.8317 0.8151 0.8024

EX 5 0.992 0.950 0.968 0.8479 0.8308 0.8185

4.2 Performance Intent Classifier

The performance results of the different experiments when using the domain
test for the evaluation show, that overall all different approaches perform well
with F1-scores greater than 80%. By comparing EX 1 and 2 it can be noticed
that when more unique entity values are used for training the performance of
the classifier decreases. We assume this to be the case because several entity
values are used multiple times within different utterances that belong to different
intents. Because the classifier learns which words relate to which intent, we
assume that this approach causes a distortion of the vector space which results
in lower performance results. Therefore EX 1 performs better than EX 2 and is
overall the best approach for training a domain-specific intent classifier. It has
to be noticed that when using the other dataset for testing, the results of EX 2
are slightly higher than that of EX 1, which could indicate that there are other
factors that have a significant impact of the performance.

Looking at the performance of the experiments that applied the placeholder
concept, the results show that this approach is highly applicable for training
a high-performance intent classifier. Especially when using PH type 1 values
the discrepancy between EX 1 and EX 3 is only 1.64% points. Furthermore, it
is possible to train a much more robust classifier using PH type 1 values. As
can be seen from the results where the DBpedia test dataset has been used for



Improving NLU Training over Linked Data 79

testing the trained classifiers, the one which has been trained using PH type 1
values performs better than all the other trained classifiers. Therefore it can be
said that this approach is better suited when we want to train a classifier that
can perform well in several domains. This approach increases the robustness of
the NLU which performs best when entity values form the DBpedia domain are
used in the test utterances.

Based on the results at hand, we recommend applying the domain approach
following the EX 1 construction when training an intent classifier that shall only
perform well in a certain domain. When aiming towards training a more robust
and open domain intent classifier we recommend to used PH type 1 values to
construct the training dataset. Although the performance in some domains might
be lower, compared to using domain-specific values for training, the performance
overall domains will be higher.

In order to optimize the performance of the placeholder concept, differently
designed placeholder values can be tested. We created values of different word
length and also created values which consisted of two or more random words.
Although we were not able to increase the performance, it might be possible to
find values that can be used to increase the performance.

5 Related Work

Our contribution in training an NLU targets the research field of chatbots, as
well as SQA. While most chatbot frameworks (IBM Watson, Microsoft Bot Ser-
vice) are based on deep learning technologies for Intent and Entity Recognition
as one NLU component, most SQA systems use static n-gram strategy [22] or
Entity Linking Tools [5]. The DBpedia Bot [1] is one example for a rule-based,
static SQA realization. This static approach of Q&A over knowledge graphs
(KGs) has the disadvantage of only being able to react conditionally to sentence
conversions. The idea of the Frankenstein Framework [22] is to link these static
approaches by generalizing SQA into 3 steps (Named Entity Recognition and
Disambiguation, Relation Linking and Query Building). Considering the SQA
task our work addresses the NER and NED component, whereby an intent clas-
sification task is also taken into account and could improve the query building
component. In general, it is possible to train multiple closed domain systems,
which would make the NLU applicable in multiple domains [17]. For the present
study, the closed domain knowledge is stored in a database and used to create
the training data for the NLU. The database contains all entity values that users
might use in their utterances.

Bapat et al. [2] already presented an end-to-end pipeline for simplifying the
NLU training process, where the first sentences are defined and extended for
the following training. While the extension of the training dataset is skipped
and only classified into 5 categories of possible extension methods, our app-
roach mainly targets the class of generating big pools of parameter values. The
following NLU training was conducted by using the state-of-the-art and open-
source software of the Berlin-based company Rasa [16]. The extraction of entities



80 T. Schmitt et al.

and the classification of intents can be regarded as two separate tasks that can
be achieved by two different pipelines that are merged into one coherent NLU
pipeline. The intent classification pipeline uses the tokenized utterances created
by the spaCy model [9]. During training, each token and intent label is repre-
sented as a feature vector, except for digits, all of which are assigned to the
same feature vector. The embeddings model is based on the StarSpace model
developed by Facebook [24]. During training, the embeddings classifier learns its
own embeddings for each of the words in the training dataset, thereby taking
into account domain-specific uses of words [15]. The created feature vectors are
enriched by an additional three dimensions using the intent featurizer ngrams.
Again, the three most common n-grams in the training data are determined and
the three added dimensions are used to indicate whether a given token includes
one of these n-grams. The NER pipeline tokenizes the incoming utterance into
its elements by also using the spaCy model and automatically assigns POS tags
to each word in the utterance. Since only CRF [12] is supported as a NER algo-
rithm in Rasa, it was applied for the experiments. Placeholder concepts could
be considered as a way to increase the number of training examples and thus
improve the NLU performance.

6 Conclusion and Outlook

Three different design approaches for creating labeled training datasets were
developed and integrated into a holistic development process to design the NLU
of a task-oriented DS and to create a corresponding dataset for training the
component. While the experiments for RQ 1 clearly show that using more unique
Entities improves the performance of the NER component, a placeholder concept
only affects the intent classifier (RQ 2) slightly. In terms of robustness, the
evaluation of EX 5 on different test datasets shows, that the performance of
the NER component can be increased by including train datasets from different
domains. With placeholder values from different domains, we show how Linked
Data can help to increase (RQ 3) not only NLU robustness but also overall
performance in open domains.

A challenge that appears with RQ 1–2 is the generalizability of the proposed
concepts. We mainly address small, domain-specific databases, whereby an eval-
uation on larger datasets with multiples domains could lead to synergy effects
within the creation of the NLU training dataset. For further research, the NLU
component could be integrated into the Frankenstein framework and evaluated
on the SQA challenge dataset [14].

References

1. Athreya, R.G., Ngomo, A.N., Usbeck, R.: Enhancing community interactions
with data-driven chatbots-the DBpedia chatbot (2018). https://doi.org/10.1145/
3184558.3186964

https://doi.org/10.1145/3184558.3186964
https://doi.org/10.1145/3184558.3186964


Improving NLU Training over Linked Data 81

2. Bapat, R., Kucherbaev, P., Bozzon, A.: Effective crowdsourced generation of train-
ing data for chatbots natural language understanding (2018). https://doi.org/10.
1007/978-3-319-91662-0 8

3. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language
understanding and dialogue management. CoRR abs/1712.05181 (2017)

4. Braun, D., Hernandez-Mendez, A., Matthes, F., Langen, M.: Evaluating natu-
ral language understanding services for conversational question answering systems
(2017)

5. Buscaldi, D., Rosso, P., Soriano, J.M.G., Sanchis, E.: Answering questions with an
n-gram based passage retrieval engine. J. Intell. Inf. Syst. 34(2), 113–134 (2010).
https://doi.org/10.1007/s10844-009-0082-y

6. Diefenbach, D., Lopez, V., Singh, K., Maret, P.: Core techniques of question
answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55, 529–569
(2018)

7. Dubey, M., Banerjee, D., Chaudhuri, D., Lehmann, J.: EARL: joint entity and rela-
tion linking for question answering over knowledge graphs. CoRR abs/1801.03825
(2018)

8. Grötz, R.: Sprich mit mir! iX - Magazin für Professionelle Informationstechnik 6,
50 (2018). https://www.heise.de/-4054854

9. Honnibal, M., Montani, I.: spaCy 2: natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing (2017)

10. Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991 (2015)

11. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recogni-
tion. Prentice Hall Series in Artificial Intelligence, 2nd edn. Prentice Hall Pearson
Education International, Upper Saddle River (2009)

12. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Proba-
bilistic Models for Segmenting and Labeling Sequence Data, p. 10 (2001)

13. de Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.:
Spoken language understanding. IEEE Signal Process. Mag. 25(3), 50–58 (2008).
https://doi.org/10.1109/MSP.2008.918413

14. Napolitano, G., Usbeck, R., Ngomo, A.N.: The scalable question answering over
linked data (SQA) challenge 2018 (2018). https://doi.org/10.1007/978-3-030-
00072-1 6

15. Nichol, A.: Supervised word vectors from scratch in Rasa NLU
16. Petraityte, J.: Deprecating the state machine: building conversational AI with Rasa

stack (PyData 2018)
17. Ramesh, K., Ravishankaran, S., Joshi, A., Chandrasekaran, K.: A survey of design

techniques for conversational agents. In: Kaushik, S., Gupta, D., Kharb, L., Chahal,
D. (eds.) ICICCT 2017. CCIS, vol. 750, pp. 336–350. Springer, Singapore (2017).
https://doi.org/10.1007/978-981-10-6544-6 31

18. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
abs/1706.05098 (2017)

19. Sarikaya, R., Hinton, G.E., Deoras, A.: Application of deep belief networks for natu-
ral language understanding (2014). https://doi.org/10.1109/TASLP.2014.2303296

20. Serban, I.V., Lowe, R., Henderson, P., Charlin, L., Pineau, J.: A survey of available
corpora for building data-driven dialogue systems (2018)

21. Shen, D., Lapata, M.: Using semantic roles to improve question answering (2007)
22. Singh, K., et al.: Why Reinvent the Wheel: Let’s Build Question Answering Sys-

tems Together, Lyon, France (2018). https://doi.org/10.1145/3178876.3186023

https://doi.org/10.1007/978-3-319-91662-0_8
https://doi.org/10.1007/978-3-319-91662-0_8
https://doi.org/10.1007/s10844-009-0082-y
https://www.heise.de/-4054854
https://doi.org/10.1109/MSP.2008.918413
https://doi.org/10.1007/978-3-030-00072-1_6
https://doi.org/10.1007/978-3-030-00072-1_6
https://doi.org/10.1007/978-981-10-6544-6_31
https://doi.org/10.1109/TASLP.2014.2303296
https://doi.org/10.1145/3178876.3186023


82 T. Schmitt et al.

23. Wang, X., Yuan, C.: Recent advances on human-computer dialogue. CAAI Trans.
Intell. Technol. 1(4), 303–312 (2016). https://doi.org/10.1016/j.trit.2016.12.004

24. Wu, L., Fisch, A., Chopra, S., Adams, K., Bordes, A., Weston, J.: StarSpace:
Embed all the things! CoRR abs/1709.03856 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1016/j.trit.2016.12.004
http://creativecommons.org/licenses/by/4.0/

	Improving NLU Training over Linked Data with Placeholder Concepts
	1 Introduction
	1.1 NLU in Chatbot Context
	1.2 Motivating Example

	2 Construction of Training Data
	2.1 Training Data Design Approaches
	2.2 Training Data Creation Process

	3 Experiments
	3.1 Creation of Domain Specific Dataset

	4 Evaluation Results
	4.1 Performance NER
	4.2 Performance Intent Classifier

	5 Related Work
	6 Conclusion and Outlook
	References




