Numerical analytical code development at Karlsruhe Institute of Technology KIT
Thomas Jordan, IKET, H2 Group

Technical session 1 – Analytical and experimental research
Fukushima Research Conference – Workshop on Nuclear Hydrogen Safety FRCHS2019
17-18 October, 2019
Outline

- INTRODUCTION
- GASFLOW-MPI
 - Overview
 - Geometry modelling and mesh generation
 - Combustion modelling
 - Film modelling
- COM3D
 - Overview
 - Adaptive Mesh Refinement
 - Fluid-Structure Interaction
- CLOSURE
INTRODUCTION
History of Nuclear Research in Karlsruhe

1956: Reactor Construction and Operating Company mbH Nuclear Research Center Karlsruhe

1995: Research Center Karlsruhe

2009: Karlsruhe Institute for Technology after merger with University

- 1961: Research reactor FR2 44 MW\textsubscript{th}, operation until 1981
- 1965: Multipurpose research reactor MZFR, 58 MW\textsubscript{e}, operation until 1984
- 1971: Compact sodium-cooled nuclear reactor plant Karlsruhe (KNK) 21 MW\textsubscript{e}, operation KNK2 until 1991
- 1971: Reprocessing plant WAK for 35 t/a, operation until 1990

Japanese experts visit the Hydrogen Test Center HYKA
Merger of the University Karlsruhe with the Research Center Karlsruhe in 2009

Research Center Karlsruhe → Campus North
- 15 Programs
- 27 Institutes
- 3,800 Employees
- 305 Mio.€ Budget

University Karlsruhe → Campus South
- 11 Faculties
- 120 Institutes
- 4,000 Employees
- 21,500 Students
- 250 Mio.€ Budget

10 km, 15 min
Institute for Nuclear and Energy Technology (IKET)
Hydrogen Group

Secretaries
Fr. H. Hofmann
Fr. F. Bonsack

Institute for Nuclear and Energy Technology
Dr.-Ing. T. Walter Tromm
Deputy: W. Raskop
110 FTE

Administration
Fr. D. Rosanowitsch

Accident Analysis
Dr. X. Gaus-Liu

Accident Consequences
DM. W. Raskop

KALLA-Labor.
Prof. Dr. T. Wetzel

Transmutation
Dr. A. Rineiski

Hydrogen Group H2
Dr.-Ing. T. Jordan
Deputy Dr. A. Kotchourko
28 FTE

Pro-Science
Dr. W. Breitung
Dr. A. Friedrich
DI J. Grune
DI N. Kotchourko
Dr. G. Necker
Eng. M. Moore
DI J. Rietz
Dr. P. Royl
DI K. Sempert
DI G. Stern
Dr. J.R. Travis
DI A. Veser

Flow Modelling & FNPS
Prof. Dr. A. Class

Fusion Technology
Dr. L. Bühler

Energy and Process Techn.
Dr. D. Kuhn

Infrastructure
DI. K. Arheidt

Dr. A. Denkevits
DP O. Jedicke
DI J. Gerstner
Fr. B. Kaup
Dr. A. Kotchourko
Dr. M. Kuznetsov
Dr. A. Lelyakin
Dr. Yabing Li
Mr. J. Mohacsi
M. Ordonez
Dr. Guang Hu
P. Roglin
Fr. M. Stassen
Dr. J. Yanez
DM Fujiang Yu
Dr. J. Xiao
Dr. Han Zhang
Dr. Z. Xu
Methods and Tools for Hydrogen Safety
Safety of Flammable Gases, Dusts and Hybrid Mixtures

Theory – Analytical Tools
GASFLOW-MPI
COM3D

Experiments
Hydrogen Test Center

Models – Engineering Correlations
GP-CODE

Models – Engineering Correlations
GP-CODE

Number of methods and tools for hydrogen safety.
State-of-the-Art Containment Safety Code

GASFLOW-MPI
GASFLOW-MPI: “One-Stop-Shopping”
All-speed CFD code for Hydrogen Safety Analysis
Simulate flows at broad Mach number regimes with one all-speed numerical solver

… in the past

All-speed, All physics approach
GASFLOW-MPI: Features I/III

- **Flexible geometrical modeling capability**
 - Obstacles
 - Walls and rupture discs
 - Holes
 - Fractional Area/Volume Object Representation (FAVOR)
 - Geometric modeler

- **Flexible structured mesh capability**
 - Cartesian
 - Cylindrical
 - Non-uniform mesh
 - Multi-block
 - Immersed boundary

- **Flexible boundary conditions**
 - Global BC
 - PBC, VBC, MBC, CBC
 - Periodic boundary condition
 - Absorbing boundary condition

- **Proven technology of solving N-S equations and accurate numerics**
 - ICE’d ALE
 - 1st order upwind
 - 2nd order Van Leer
 - Higher order schemes

- **Cutting-edge, scalable and powerful high performance computing capabilities**
 - PETSc
 - Third-party pre-conditioners and solvers
GASFLOW-MPI: Features II/III

- **Turbulence modelling**
 - Algebraic
 - κ-ϵ
 - κ-ω and SST κ-ω
 - DES
 - LES

- **Heat and mass transfer, radiation model**
 - Conjugate heat transfer
 - 1-D heat conduction (slab, wall, sink)
 - Radiation model
 - 3-D heat conduction (slab, wall, sink)

- **Multiphase flow**
 - Homogeneous equilibrium model
 - Lagrangian Discrete multiphase model
 - Eulerian multiphase model

- **Combustion models**
 - Eddy break-up
 - Eddy dissipation
 - Arrhenius for detonation
 - Various correlations for turbulent flame velocity

- **Material properties**
 - 25 Gas species
 - 20 solid materials
 - Porous media
GASFLOW-MPI: Features III/III

Unique features for large scale industrial applications

- **Simplified pipe model**
- **Ignitor model**
- **Recombiner model**
- **Sump model**
- **Fan model**
- **Pre-expansion model**
- **Static film model**
- **Spray model based on HEM**
- **Xenon decay model**
- **Sigma and DDT criteria for H2 explosion risk analysis**
- **Aerosol model**
- **Lagrangian dust transportation**
- **Spray model based on Eulerian Multiphase model**
- **Dynamic film model**
- **Dust modeling based on Discrete Multiphase model**
- **Spray model based on Discrete Multiphase model**

Pre-processor, Post-processor and data export

- **pyscan**
- **netcdf4**
- **Data format to Third-party post-processing tools**
- **Automatic mesh generation via CAD import**
GASFLOW-MPI: Some Validation References
GASFLOW-MPI: Automatic Mesh Generation
Containment Geometry Modelling

- Large volumes (~100,000 m³)
- Complex multi-connected inside structure
- Mitigation measures

- Use of any standard CAD format IGES, STEP, STL,…
- Selection of spatial resolution
- Automatic wall, obstacle generation and material association, and optimized discretization

Example APR1400:
- 37 individual rooms, including RPV, steam generators and pumps
- Total free volume of ~ 48,000 m³
- Passive Autocatalytic Recombiner equipment
- Ignitor system
- Containment spray system
GASFLOW-MPI: Validation of combustion models

<table>
<thead>
<tr>
<th>Validation</th>
<th>Facility</th>
<th>Year</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow deflagration</td>
<td>THAI HYKA A2</td>
<td>2017</td>
<td>J. Xiao, M. Kuznetsov. NURETH-17, September 3 – 8, 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017</td>
<td>J. Xiao, M. Kuznetsov.</td>
</tr>
<tr>
<td>Flame acceleration</td>
<td>KIT Detonation tube</td>
<td>2017</td>
<td>J. Xiao, M. Kuznetsov.</td>
</tr>
<tr>
<td>DDT</td>
<td>KIT Ring geometry</td>
<td>2017</td>
<td>J. Xiao, M. Kuznetsov.</td>
</tr>
</tbody>
</table>

Images: Slow deflagration in THAI, Slow deflagration in HYKA A2, Fast deflagration for jet fire in ENACCEF, Detonation in RUT, FA and DDT in ring-shaped geometry.
GASFLOW-MPI: Slow deflagration with heat transfer in THAI-HD44

Turbulent velocity fluctuation \((u')\) at 0 s before ignition

Flame propagation (0 s ~ 15 s)
GASFLOW-MPI: Fast deflagration with heat transfer in ENACCEF

GASFLOW-MPI: Water Film Modelling
Outer Film Model for Passive Containment Cooling System

Example: Passive Containment Cooling System of AP1000
GASFLOW-MPI: Physics of liquid thin film transport

Solid wall: heat conduction

Wall-film interface:
Viscous shear stress, convective heat transfer

Film-gas interface:
Convective heat transfer
Evaporation/boiling
Viscous shear stress

Gas-wall interface:
Convective heat transfer
Steam condensation
Thermal radiation

Gas inside of steel containment

Gas outside of steel containment

Momentum transport at interfaces of gas-film + film-wall

Energy transfer at interfaces of gas-film + film-wall
GASFLOW-MPI: Validation of outer film model with COMMIX Experiments

Film thickness

![Graph showing film thickness vs. location from ellipsoid top](image-url)
Chilton-Colburn empirical analogy

\[C_f = StPr^{2/3} = St_mSc^{2/3} \quad 0.6 < Pr < 60; \quad 0.6 < Sc < 3000 \]

\[St_m = \frac{h_d}{u_g} = \frac{Sh}{ReSc} \quad Sc = \frac{\nu}{D_{AB}} \quad Sh = \frac{h_dL}{D_{AB}} \]

\[h_d = \frac{h_w}{\rho c_p} \frac{Sc^{2/3}}{Pr^{2/3}} \]

and the condensation rate is calculated as:

\[\dot{m}_s = h_d^* A_w (\rho - \rho_{s, sat}) \]

\[\rho_{sat} = \frac{P_{sat}}{R_h T_w}, \quad P_{sat} = \exp \left[\frac{A(T - T_0)}{T + C} \right] \]
GASFLOW-MPI: Non-condensable Gas Absorption in Condensate Film

- The fraction of non-condensable gases in the film $n_{c,film}$:
 \[n_{c,film} = \frac{P_c}{H_c}, c = O_2 \text{ or } H_2 \]

- The static liquid film:
 - the film on the condense structure are with constant thickness δ_{min}
 - the mass and energy of the film is removed from the control volume when $\int \dot{m}_s dt / A_{film} > \delta_{min}$;
 - Along with the gases dissolved in the film:
 \[\omega_{c,film} = \omega_{c,g} \frac{P_{gas}}{H_c} \frac{M_{gas}}{M_{film,i}} \]
 \[\dot{m}_{a,c} = \omega_{c,film} \dot{m}_s \]

Where: H_c is henry constant, c is for components, H_2 or O_2; ω_c is the mass fraction, $\dot{m}_{a,c}$ is the absorption rate for component c
GASFLOW-MPI: Radiolytic Gas Transport Validation on the Hamaoka Pipe Experiments

Initalional and boundary conditions:
constant p=7MPa, T=286°C
ω_{H_2,g} = 0.002 \ ω_{H_2,g} = 0.016 (mole ration 2:1)
Insulator: calcium silicate wool d=65mm

Mesh: computational domain
2.5 *1.35*7.13m in x, y and z divided 70*8*168 cells
Uniform mesh at pipe cross-section

Test facility for measuring enrichment of non-condensable gases (He/O_2) in the Hamaoka pipe
GASFLOW-MPI: Radiolytic Gas Transport Validation on the Hamaoka Pipe Experiments

Temperature profiles associated with the distance from the upper tube end
GASFLOW-MPI (GF) versus test

Mole fraction at Hp1

<table>
<thead>
<tr>
<th></th>
<th>Test</th>
<th>GF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>64.7%</td>
<td>63.3%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>35.3%</td>
<td>31.7%</td>
</tr>
</tbody>
</table>
GASFLOW-MPI: Applications in Real Scale Containments
Analytical Codes

COM3D
COM3D: Reactive Flow Modelling

Since 1995 developed for turbulent combustion in industry relevant scales

<table>
<thead>
<tr>
<th>Turbulence models</th>
<th>Combustion models</th>
<th>Thermodynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard k-ε</td>
<td>Integral combustion model KYLCOM</td>
<td>Piecewise linear approximation of JANAF tables</td>
</tr>
<tr>
<td>RNG k-ε</td>
<td>+extensions: quenching, instabilities, DDT, …</td>
<td></td>
</tr>
<tr>
<td>SST k-ε & k-ω</td>
<td>Phenomenological models: EBU, EDC, …</td>
<td>Detonation</td>
</tr>
<tr>
<td>LES Smagorinski,</td>
<td>ALE scheme for slow combustion</td>
<td>Detailed chemistry</td>
</tr>
<tr>
<td>mixed, dynamic</td>
<td>SIMPLE(…) scheme for slow combustion</td>
<td></td>
</tr>
</tbody>
</table>

Special

- **Combustible dust model**
- Moving wall boundary conditions (soft wall, fragmentation, …)
- Co-Simulation with ABAQUS

Cutting-edge, scalable and powerful high performance computing capabilities

- C++ skeleton with C, FORTRAN routines
- C++ library for domain decomposition
- MPP on basis of MPI (openMPI, …)
- Platforms: Linux clusters; Cray, IBM (SP3, RISC)
- Under development
COM3D: Process Control, Pre-, Post-Processing

- **Meshing**
 - Structured cubic
 - Optimized Load Balancer
 - AMR
 - Immersed 3D Boundaries

- **Pre-Processing**
 - CAD data import
 - comgen
 - Import of GASFLOW data via comcon

- **Post-Processing**
 - GTK+ 3 based GUI
 - VIZIR (incl. on-line mode)
 - Interfaces to all relevant visualization tools

- **Process Control**
 - Client-Server via SUN RPC
 - HDF5 data storage format
COM3D: Typical validation
2 blind large-scale RUT facility simulations

Ignition locations

HYC02
HYC14

Numerical details
- Grid $98 \times 94 \times 416 = 3\,800\,000$ cells
- Cells $6.67 \times 6.67 \times 6.67$ cm
- Process time 0.27 s, 2.4 s
- 80 CPUs with total time ~20000 hours

Initial conditions
- Uniformly mixed H_2 / air (11.5% vol.)
- Ignition: channel end, canyon
- $P = 1$ atm, $T = 288$ K

Excellent reproduction of pressure wave evolution in both blind simulations HYC02 and HYC14:
Shown pressure recordings in test HYC02; transducers are located in channel and in upper part of the facility
COM3D: Fluid-Structure-Interaction
Deflagration in flat channel with flexible wall

Wall displacement at $t = 5$ ms determined with COM3D-ABAQUS coupled calculation (co-simulation interface) applying KYLCOM+ combustion model (supported by Toyota Tsusho Europe S.A.)
COM3D: Pipeline deformation and failure behavior under detonation loads

Strain Visualization

Permanent strain experiment vs simulation

Detonation wave experiment vs simulation

Pressure with distance offset x vs Time / s

Permanent strain after test vs Distance / m

"V100G2-Experiment_m.dat"
"V100G2-Model_m.dat"
COM3D: Mitigation of detonation / SW impact

(a) Gas

(b) Dilute two-phase gas-solid medium

(c) Dilute two-phase gas-liquid medium
COM3D: Droplet – flow interaction model

- Disintegration time correlation of Pilch

- Corrected We-number for On > 0.1:

\[
\frac{t_b}{t^*} = \begin{cases}
6 (\text{We} - 12)^{-0.25} & 12 < \text{We} < 18 \\
2.45 (\text{We} - 12)^{0.25} & 18 < \text{We} < 45 \\
14.1 (\text{We} - 12)^{-0.25} & 45 < \text{We} < 351
\end{cases}
\]

\[
\text{We}_{corr} = \frac{\text{We}}{1 + 1.077 \text{On}^{1.6}}
\]

- Correlation for secondary droplet sizes

\[
\frac{D_{32}}{D_0} = 1.5 \text{On}^{0.2} \text{We}_{corr}^{-0.25}
\]

- Correlation for droplet size distribution

\[
f(D) = \frac{x}{2\sqrt{2\pi} \sigma D} \exp \left\{ -\frac{1}{2} \left[\frac{x - \mu}{\sigma} \right]^2 \right\}
\]
COM3D: Application Areas

Scientific area: DDT and Detonation using LMR

Industrial area: Automotive, Maritime, H2 Supply, Industry, Nuclear Safety
CLOSURE
User Community and Licensing

GASFLOW-MPI User Community
~ 25 licenses worldwide
(5 Germany, 12 China, 2 South Korea,
2 Mexico, 2 France, 1 Hungary and
1 Czech Republic)
Strong, expanding position in
nuclear community

COM3D User Community
Research focused, universities,
testing of combustion models

License Models
- GASFLOW-MPI: commercial, with services, application focused
- COM3D: research & education; open (free) source
Outlook

GASFLOW-MPI and COM3D
More applications also in the non-nuclear field, e.g. hydrogen supply infrastructure, fuel cells, vehicles, maritime, aviation, space, etc.

GASFLOW-MPI
- Special commercial services, in particular for Asia (spin-off in China)
- Improved user interfaces
- Further acceleration via domain decomposition, GPUs, etc
- Stochastic spray model, porous media, multi-phase H2, particle model,…

COM3D
- Immersed boundaries (moving walls)
- Co-simulation interface
- Shockwave- and flame-water spray interaction