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Abstract

The use of new technologies, such as GPU boosters, have led to a dramatic
increase in the computing power of High-Performance Computing (HPC)
centres. This development, coupled with new climate models that can better
utilise this computing power thanks to software development and internal
design, led to the bottleneck moving from solving the differential equations
describing Earth’s atmospheric interactions to actually storing the variables.
The current approach to solving the storage problem is inadequate: either
the number of variables to be stored is limited or the temporal resolution
of the output is reduced. If it is subsequently determined that another vari-
able is required which has not been saved, the simulation must run again.
This thesis deals with the development of novel compression algorithms
for structured floating-point data such as climate data so that they can be
stored in full resolution.

Compression is performed by decorrelation and subsequent coding of
the data. The decorrelation step eliminates redundant information in the
data. During coding, the actual compression takes place and the data is
written to disk. A lossy compression algorithm additionally has an approx-
imation step to unify the data for better coding. The approximation step
reduces the complexity of the data for the subsequent coding, e.g. by using
quantification. This work makes a new scientific contribution to each of the

three steps described above.

This thesis presents a novel lossy compression method for time-series
data using an Auto Regressive Integrated Moving Average (ARIMA) model
to decorrelate the data. In addition, the concept of information spaces and
contexts is presented to use information across dimensions for decorrela-
tion. Furthermore, a new coding scheme is described which reduces the

weaknesses of the eXclusive-OR (XOR) difference calculation and achieves
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a better compression factor than current lossless compression methods for
floating-point numbers. Finally, a modular framework is introduced that
allows the creation of user-defined compression algorithms.

The experiments presented in this thesis show that it is possible to in-
crease the information content of lossily compressed time-series data by
applying an adaptive compression technique which preserves selected data
with higher precision. An analysis for lossless compression of these time-
series has shown no success. However, the lossy ARIMA compression model
proposed here is able to capture all relevant information. The reconstructed
data can reproduce the time-series to such an extent that statistically rele-
vant information for the description of climate dynamics is preserved.

Experiments indicate that there is a significant dependence of the com-
pression factor on the selected traversal sequence and the underlying data
model. The influence of these structural dependencies on prediction-based
compression methods is investigated in this thesis. For this purpose, the
concept of Information Spaces (IS) is introduced. IS contributes to improv-
ing the predictions of the individual predictors by nearly 16% on average.
Perhaps more importantly, the standard deviation of compression resultsis
on average 20% lower. Using IS provides better predictions and consistent
compression results.

Furthermore, it is shown that shifting the prediction and true value leads
to a better compression factor with minimal additional computational costs.
This allows the use of more resource-efficient prediction algorithms to
achieve the same or better compression factor or higher throughput during
compression or decompression. The coding scheme proposed here achieves
a better compression factor than current state-of-the-art methods.

Finally, this paper presents a modular framework for the development
of compression algorithms. The framework supports the creation of user-
defined predictors and offers functionalities such as the execution of bench-
marks, the random subdivision of n-dimensional data, the quality evalua-
tion of predictors, the creation of ensemble predictors and the execution of
validity tests for sequential and parallel compression algorithms.

This research was initiated because of the needs of climate science, but
the application of its contributions is not limited to it. The results of this the-
sis are of major benefit to develop and improve any compression algorithm

for structured floating-point data.



Zusammenfassung

Der Einsatz von neuen Technologien, wie GPU-Boostern, haben zu einem
dramatischen Anstieg der Rechenleistung von HPC-Zentren gefiihrt. Diese
Entwicklung gekoppelt mit neuen Klimamodellen, welche diese Rechenleis-
tung dank Softwareentwicklungen und internem Aufbau besser auslasten
konnen, fithrte dazu, dass sich der Engpass weg von der Losung der Differ-
entialgleichungen hin zur eigentlichen Speicherung der Variablen verschob.
Der aktuelle Ansatz zur Losung des Speicherproblems ist unzureichend: En-
tweder wird die Anzahl der zu speichernden Variablen begrenzt oder die
zeitliche Auflésung der Ausgabe reduziert. Sollte im Nachhinein festgestellt
werden, dass eine weitere Variable notwendig ist, welche nicht gespeichert
wurde, muss die Simulation von neuem laufen. Diese Arbeit beschiaftigt
sich mit der Entwicklung neuartiger Kompressionsalgorithmen fiir struk-
turierte Gleitkommazahlen wie Klimadaten, damit diese in voller Aufl6sung

gespeichert werden kénnen.

Komprimierung erfolgt durch Dekorrelation und anschlieffende
Kodierung der Daten. Der Dekorrelationsschritt eliminiert redundante
Informationen in den Daten. Bei der Kodierung findet die eigentliche
Kompression statt und die Daten werden auf die Festplatte geschrieben.
Ein verlustbehafteter Kompressionsalgorithmus hat zusidtzlich einen
Annéherungsschritt, um die Daten fiir die Kodierung zu vereinheitlichen.
Der Anndherungsschritt reduziert die Komplexitit der Daten, indem z.B.
Methoden der Quantifizierung verwendet werden. Diese Arbeit leistet zu
jedem der drei oben beschriebenen Schritte einen neuen wissenschaftlichen
Beitrag.

In dieser Dissertation wird ein neuartiges verlustbehaftetes Kompres-
sionsverfahren fiir Zeitreihendaten vorgestellt, welches ein Auto Regres-
sive Integrated Moving Average (ARIMA) Modell zur Dekorrelation der
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Daten verwendet. Dariiber hinaus wird das Konzept der Information-
srdume und -kontexte vorgestellt, um Informationen iiber Dimensionen
hinweg besser fiir die Dekorrelation zu nutzen. Weiterhin wird ein neues
Kodierungsschema beschrieben, welches die Schwichen der eXclusive-
OR (XOR)-Differenzberechnung reduziert und einen besseren Kompres-
sionsfaktor erreicht als aktuelle verlustfreie Kompressionsverfahren fiir
Gleitkommazahlen. Schliefdlich wird ein modulares Framework eingefiihrt,
das die Erstellung von benutzerdefinierten Kompressionsalgorithmen er-
moglicht.

Die in dieser Dissertation aufgefithrten Experimente zeigen, dass es
moglich ist, den Informationsgehalt von verlustbehaftet komprimierten
Zeitreihendaten durch die Anwendung eines adaptiven Kompressionsver-
fahrens zu erhéhen. Eine Analyse fiir verlustfreie Kompression dieser
Zeitreihen hat keinen Erfolg gezeigt. Das hier vorgeschlagene verlustbe-
haftete ARIMA-Kompressionsmodell ist jedoch in der Lage alle relevanten
Informationen zu erfassen. Die Rekonstruktion der Daten kann die Zeitrei-
hen so weit reproduzieren, dass statistisch relevante Informationen zur

Beschreibung der Klimadynamik erhalten bleiben.

Diese Arbeit zeigt, dass eine signifikante Abhéngigkeit des Kompres-
sionsfaktors von der gewidhlten Traversierung und dem zugrunde liegen-
den Datenmodell besteht. Der Einfluss dieser strukturellen Abhéngigkeiten
auf Vorhersage-basierende Kompressionsverfahren wird in dieser Arbeit
untersucht. Es werden Moglichkeiten vorgestellt diese Abhidngigkeiten zu
entdecken und den Kompressionsfaktor zu verbessern. Hierfiir wird das
Konzept der Information Spaces (IS) eingefiihrt, welches dazu beitrigt, die
Vorhersagen der einzelnen Pridiktoren um durchschnittlich fast 10% zu
verbessern. Vielleicht noch wichtiger jedoch ist, dass die Standardabwe-
ichung der Kompressionsergebnisse um durchschnittlich tiber 20% ver-
ringert wird. Die Verwendung des IS-Ansatzes bietet bessere Vorhersagen

und konsistente Kompressionsergebnisse.

Weiterhin wird gezeigt, dass ein besserer Kompressionsfaktor mit min-
imalen Rechenkosten erreicht wird, wenn vor der Differenzberechnung
die Vorhersage und der wahre Wert verschoben werden. Das ermdoglicht
die Verwendung von ressourcenschonenderen Vorhersagealgorithmen, um

den gleichen oder besseren Kompressionsfaktor oder einen hdheren Durch-
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satz wihrend der Kompression bzw. Dekompression zu erreichen. Dariiber
hinaus erreicht das hier vorgeschlagene Kodierungsschema einen besseren
Kompressionsfaktor als der aktuelle Stand der Technik.

Schliellich wird in dieser Arbeit ein modulares Framework zum Aufbau
eigener Kompressionsalgorithmen zur Verfiigung gestellt. Dieses Frame-
work unterstiitzt die Erstellung von benutzerdefinierten Pradiktoren und
weitere Funktionen wie die Ausfithrung von Benchmarks, die zufillige Un-
terteilung von n-dimensionalen Daten, die Qualitdtsbewertung von Pradik-
toren, die Erstellung von Ensemble-Priadiktoren und die Ausfithrung von
Giltigkeitstests fiir sequentielle und parallele Kompressionsalgorithmen.

Diese Forschung wurde durch Bediirfnisse der Klimawissenschaften be-
griindet. Letztendlich sind die Ergebnisse aber nicht auf die Klimawis-
senschaften beschrinkt. Die Ergebnisse dieser Arbeit sind zur Entwicklung
und Verbesserung eines beliebigen Kompressionsalgorithmus fiir strukturi-
erte Gleitkommazahlen von groflem Nutzen.
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CHAPTER 1

Introduction

The development of GPU clusters, high bandwidths within and between
compute nodes, faster CPUs using multi-core architecture and the introduc-
tion of SSDs have drastically reduced the computation time for simulations
on HPC clusters. In addition to these developments in raw computing power,
a better utilisation of hardware nodes is achieved through optimised soft-
ware libraries for parallel and distributed computing. While the computing
power used to be the bottleneck for climate simulations, today it is typically
the memory bandwidth and the storage space required for simulation out-
put. The climate sciences are severely affected by this bottleneck.

New climate models allow model integration at unprecedented resolu-
tion, simulating decades and centuries of climate change, including com-
plexinteractions in the Earth system under different scenarios. The number
of variables stored for analysis is minimised to keep the simulation output
small and manageable. Further, if the model assessment requires more in-
formation, often simulations have to be rerun to calculate the requested
variables. Another applied solution is to reduce resolution. The available
storage space often forces scientists to reduce the temporal resolution of
their output and to use interpolation for missing time steps. The generated
output then becomes an inferior representation of the actual model used
for simulation. One method to tackle this problem is to apply compression.

Although compression algorithms can differ in their specifics, the basic
principle is always the same: Data compression is achieved by removing
redundant information in the data. Removing redundancy allows a smaller
representation of the data without information loss. Both of the applied
solutions would not be necessary any more.

First, applying compression enables the researcher to increase the tem-
poral resolution of the simulation output, since more information can be

saved on the same storage space as before. Therefore, no interpolation meth-



ods are for missing time steps necessary. Even if the desired temporal reso-
lution can not be achieved and interpolation methods still need to be used,
the results of the interpolation methods will be better than before since
more data points can be used for interpolation.

Second, compression enables saving more variables per simulation run.
This prevents possible simulation reruns, since more variables can be saved
with the initial run of the simulation. This decreases the CO, footprint of
the HPC cluster since unnecessary simulation runs are avoided. However,

there are challenges involved in developing novel compression algorithms.

Challenge 1
Understanding the structure and intrinsics of the data.

The first step is to analyse the structure and intrinsics of the data. Knowl-
edge must be gained about what is represented in the data. Possible data
sources must be identified and analysed for differences and information
content. The most common data variables, their data types, and their value
ranges must be identified. Thisinformation will help relate one data point to
any other data point. In order to do this it will help identify related research
fields and recommended solutions from the literature.

Challenge 2
Analysing available compression techniques for strengths and weaknesses.

The next step is to find out which compression techniques are most promis-
ing for the data. For this purpose, an extensive and in-depth analysis of the
available literature must be carried out. With an ever deeper knowledge,
compression techniques for related data can be analysed, that are similar
but not identical to the available data.

Challenge 3
Integrating existing knowledge about the interactions of variables.

If knowledge about the data already exists, it can be used to identify redun-
dant information. To do this, the first step is to find out which knowledge
about the variables makes sense to integrate. Then it has to be decided in
which phase of the compression process this knowledge can be integrated.
Finally, a suitable form of representation must be chosen with which this
knowledge can be integrated into the algorithm.



Challenge 4
Identifying new patterns and relationships within and between variables for
the current data.

Previous knowledge can only help to a certain extent. The compression
algorithm must adapt to the data to be compressed. This process can be
accelerated by analysing in advance which types of relationships occur most
frequently and contain the most information within and between the data
variables. Finally, a method must be developed to quickly identify these
types of relationships in the current data.

Challenge 5
Building a framework to perform rapid testing of new compression
algorithms.
Developing a compression algorithm is an iterative process. There is a lot of
fine-tuning involved. If parts of the compression algorithm can be replaced
quickly, iteration steps can be accelerated. For this purpose, the common
components of a compression algorithm must first be identified. Then a
concept for a modular structure has to be worked out. Following this, the
interfaces can be developed by analysing which of the algorithm steps offer
the greatest opportunity for improvement. Finally, concepts to accelerate
testing must be developed. These can be parallel processing or the (random)
selection of data areas for tests. Such an environment can reduce the devel-
opment time of an algorithm.

1.1 Contributions to the Research Field

Overall, the contributions of this thesis focus on developing novel compres-
sion techniques for structured floating-point data. This research was ini-
tiated because of the needs of climate science, but the application of its
contributions is not limited to them. The results of this thesis can be used
to develop and improve any compression algorithm for structured floating-
point data. Each contribution is discussed in more detail in the following.



Contribution 1
Analysis methods for identification of redundant information in data

The first contribution is about analysis methods for the discovery of redun-
dant information in data. In the following, it is shown how analysis meth-
ods from statistics, entropy analysis and information theory can be used
for the recognition of redundant information between and within variables.
The presented analyses can be applied to one-dimensional and multidimen-
sional data. This contribution is associated with Challenge 1.

Contribution 2
Comparison of lossless compression algorithms for structured floating-point
data

The next contribution is an in-depth study of lossless compression algo-
rithms for floating-point data. The compression factor and throughput of
these algorithms is investigated. For this purpose, general-purpose algo-
rithms as well as custom compression algorithms for floating-point data
are used. This contribution makes it possible to test the compression algo-
rithms developed in this thesis against state-of-the-art algorithms. This
contribution has been published in Cayoglu et al. (2019b) and is associated
with Challenge 2.

Contribution 3
Novel data coding scheme for prediction-based lossless compression
methods

Third, a novel data coding scheme is developed. During the analysis of com-
pression algorithms, a weakness in the coding of the data is identified. Ex-
tensive analysis of this weakness shows that by applying a shift operation
to move the data into a more suitable value range it is possible to improve
the compression factor. In addition, this method allows the use of computa-
tionally less intensive algorithms to increase throughput without affecting
the achieved compression factor. This contribution has been published in
Cayoglu et al. (2019b) and is associated with Challenge 2.



Contribution 4
Development of a novel lossy compression algorithm for time-series data

There are various established climate indices, which can predict the devel-
opment of data variables. These indices are time-series data and can help
identify redundant information in temperature or precipitation. However,
these time-series data must be available to the encoder. The fourth contri-
bution of this thesis is a novel lossy compression algorithm for time-series
data. By applying statistical models and improving the precision of individ-
ual data points, the quality of the reconstructed data is increased without
significantly increasing the required storage space. This contribution has
been published in Cayoglu et al. (2017) and is associated with Challenge 3.

Contribution 5
Introduction of Information Spaces to use information across all dimensions
for data prediction

Analyses of climate data suggest that information from all dimensions are
important for predicting variables. However, the importance of each dimen-
sion depends on the time and location of the data point on Earth. Therefore,
it is necessary to have an algorithm that adapts the context on which a pre-
diction is based on to previous successful or erroneous predictions. The con-
cept of information spaces (IS) and contexts presented in this thesis serves
this purpose. Based on the quality of earlier predictions, the information
used for the next prediction is adjusted. Further, IS can use and adapt prior
knowledge about the data variables to achieve a better prediction and com-
pression factor. Using this concept it is possible to increase the compression
factor and, more importantly, to reduce dependence of the compression
factor on the structure of the data. This contribution has been published in
Cayoglu et al. (20194, 2018c,a) and is associated with Challenge 1 and 4.

Contribution 6
A modular framework for testing and quality assessment of compression
algorithms

The final contribution is a modular framework for the development of cus-
tom compression algorithms. This framework allows the creation of custom
prediction-based compression algorithms with support for ensemble pre-

dictors, quality assessment, parallel execution with random subsetting of



multi-dimensional data. Further, it defines an interface for each module to

help the user extent the framework. This contribution has been published

in Cayoglu et al. (2018b,c) and is associated with Challenge 5.

List of Publications. Most of the contributions discussed above have been

published in peer-reviewed conferences and workshops. In the following

the corresponding publications are listed:

Cayoglu, U., Braesicke, P., Kerzenmacher, T., Meyer, J., and Streit,
A. (2017). Adaptive Lossy Compression of Complex Environmental
Indices Using Seasonal Auto-Regressive Integrated Moving Average
Models. In 2017 IEEE 13th International Conference on e-Science
(e-Science), pages 315-324. DOI: 10.1109/eScience.2017.45. [best paper
award]

Cayoglu, U., Schréter, J., Meyer, J., Streit, A., and Braesicke, P. (2018b).
A Modular Software Framework for Compression of Structured Cli-
mate Data. In Proceedings of the 26th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Sys-
tems, SIGSPATIAL 18, pages 556—559, New York, NY, USA. ACM, ISBN:
978-1-4503-5889-7, DOI: 10.1145/3274895.3274897

Cayoglu, U., Tristram, F., Meyer, ]., Kerzenmacher, T., Braesicke, P.,
and Streit, A. (2018c). Concept and Analysis of Information Spaces
to improve Prediction-Based Compression. In 2018 IEEE Interna-
tional Conference on Big Data (Big Data), pages 3392-3401. DOI:
10.1109/BigData.2018.8622313

Cayoglu, U., Tristram, F., Meyer, J., Kerzenmacher, T., Braesicke, P.,
and Streit, A. (2019a). On Advancement of Information Spaces to
Improve Prediction-Based Compression. In David, K., Geihs, K.,
Lange, M., and Stumme, G., editors, INFORMATIK 2019: 50 Jahre
Gesellschaft fiir Informatik — Informatik fiir Gesellschaft, pages
271-272, Bonn. Gesellschaft fiir Informatik e.V., ISBN: 978-3-88579-688-
6, ISSN: 1617-5468, DOI: 10.18420/inf2019_39

Cayoglu, U., Tristram, F., Meyer, J., Schroter, J., Kerzenmacher, T.,
Braesicke, P., and Streit, A. (2019b). Data Encoding in Lossless
Prediction-Based Compression Algorithms. In IEEE 15th Interna-
tional Conference on e-Science (e-Science). ISBN: 978-1-7281-2451-3,
DOI: 10.1109/eScience.2019.00032
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« Cayoglu, U., Braesicke, P., Kerzenmacher, T., Meyer, J., and Streit,
A. (2018a). Towards an optimised environmental data compression
method for structured model output. In EGU General Assembly Con-
ference Abstracts, volume 20, page 8609. https://meetingorganizer.
copernicus.org/EGU2018/EGU2018-8609.pdf

 Kerzenmacher, T., Cayoglu, U., Kellmann, S., Kirner, O., Versick, S.,
Wang, S., and Braesicke, P. (2018). QBO influence on the ozone
distribution in the extra-tropical stratosphere. In EGU General
Assembly Conference Abstracts, volume 20, page 16565. https://
meetingorganizer.copernicus.org/EGU2018/EGU2018-16565.pdf

Code and Data Availability. Data and corresponding implementations of
all methods introduced in this thesis and previously published articles are
available under GNU GPLv?3 license at the following addresses:

« https://github.com/ucyo/adaptive-lossy-compression (Cayoglu et al.,
2017)

« https://github.com/ucyo/informationspaces (Cayoglu et al., 20193,
2018c¢)

« https://github.com/ucyo/cframework (Cayoglu et al., 2018b,c)

- https://github.com/ucyo/xor-and-residual-calculation (Cayoglu et al.,
2019b)

« https://github.com/ucyo/climate-data-analysis (Cayoglu, 2019a)

1.2 Outline of the Thesis

The remainder of this thesis is structured as follows (see Fig. 1.1):

Chapter 2 provides the necessary background for the thesis. The basic
principles and structure of compression algorithms are introduced, meth-
ods for classification presented, and the relationship between compression
and information theory explained. Further, prediction-based compression
is explained in detail and several metrics for the evaluation of compression
methods are introduced. The chapter concludes with an introduction to cli-
mate data and their different sources with a deep dive in simulation output.

Chapter 3 goes on to discuss related work. The chapter is divided into
three parts. First, related work regarding the compression of climate data
is introduced. Next, related work in image, time-series and floating-point
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FIGURE 1.1 Outline of the thesis

compression is described, since these compression algorithms deal with
data similar to climate data. Finally, a short summary of the remaining field

of compression is given.

Chapter 4 provides a critical analysis of climate data to identify redun-
dant information. Several analyses are conducted: Long-term and short-
term variance analysis, Shannon and Sample entropy analysis as well as

Mutual Information analysis.

Chapter 5 builds upon the results of the previous chapter and introduces
the concept of information spaces and contexts. Since several contexts are
used, methods for the consolidation of predictions are investigated and al-
ternative traversal methods are recommended and evaluated to optimise
the information context.

Chapter 6 introduces the aforementioned lossy compression method
for time-series data. The chapter starts with an introduction of the Auto
Regressive Integrated Moving Average (ARIMA) model used to identify re-
dundant information. After an introduction of the environmental indices,
the replacement methods are explained, since the algorithm must decide
autonomously which data points to save with higher precision. The chapter
concludes with an evaluation of the proposed method.

Chapter 7 introduces the novel coding approach discussed in the third
contribution. After an introduction to established residual calculation algo-
rithms, the weakness of the XOR residual calculation is explained. Next, the

shift calculation is presented to overcome the weakness. This is followed



by an explanation of the transformation and coding steps applied to the
residual. Finally putting it all together, state-of-the-art compression algo-
rithms are compared regarding compression factor and throughput, the
coding performance evaluated and the proposed compression algorithm
with state-of-the-art algorithms compared.

In Chapter 8 the proposed compression framework from the sixth con-
tribution is presented. The internal structure and the implemented modules
are described. Afterwards, more details about the libraries used and possi-

bilities for future extensions are explained.

In Chapter 9 a summary of the thesis is given as well as a an overview of

open questions and the possibilities for future work are presented.






CHAPTER 2

Background

This chapter gives an overview of the basic components of data compression
and its history in information theory. The goal of this chapter is to build a
common understanding of data compression and climate data. The chapter
starts with an introduction to common terminology and notation. After-
wards, compression algorithms are classified based on their characteristics
and application field. Following this overview of different compression al-
gorithms, one specific compression algorithm, prediction-based compres-
sion, is introduced in more detail. The introduction to data compression
concludes with an overview of metrics that can be used to assess the quality
of a compression algorithm. Since the compression algorithms introduced
and developed in this thesis are applied to climate data, an overview about
the structure and properties of climate data are presented in the concluding

section.

2.1 Data Compression

Data compression was originally developed to reduce transportation time
of data from a source location S to a predefined destination D. This is the
reason why data compression is also referred to as source coding. The re-
duction in transportation time was mostly achieved by reducing the size of
the data. The following definitions are based on Salomon and Motta (2010).

DEFINITION 2.1 (Source) A source S of data items can be a file stored on a
disk, a file that is input from outside the computer, text input from a key-
board, or a program that generates data symbols to be compressed or pro-
cessed in some way. A source is always ordered and might therefore be
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called a sequence.

S = 818983 ... 5,_15n
= (s;)j=, with7 € N* (2.1)
S| =n

with | S| representing the size of S. A subsequence of S can be expressed
using S* notation

k
Sh = SmSm+1Sm+2 - - - Sk—15k

= (si)f:m withk > m (2.2)

In a memoryless source, the probability of occurrence of a data symbol
does not depend on its context. Such a source is termed Independent and
Identically Distributed (IID). The source consists of a set of data symbols
which is called its Alphabet X.

DEFINITION 2.2 (Alphabet) An alphabet defines the set of symbols from

which a source S can draw its symbols from.

X =A{x1, 29, 23,..., 2, withm € N* (2.3)
| X|=m

with | X| representing the size of X. An alphabet may consist of 128 ASCII

codes (text data), two bits, or any other set of symbols.

A compression algorithm consists of two transformation processes. The
first process transforms the data from source S to destination D. This pro-
cess is called encoding or compression and is performed by the encoder.
The data being encoded is called raw, original, or unencoded data, while the
data after the encoding process is called encoded or compressed data. The
second process reverses the first transformation. This process transforms
data from D back to S. This process is called decoding or decompression
and is performed by the decoder. The data after the decoding process is
called reconstructed data.

While compression algorithms can differ in their specifics, the basic
principle is always the same: Data compression is achieved by removing
redundancy also called structure, or correlation in the original data. Any
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non-random data has some structure, and this structure can be exploited
to achieve a smaller representation of the data, a representation where no
structure is discernible (Salomon and Motta, 2010).

2.1.1 Classification of Compression Algorithms

There are two main types of compression algorithms: lossless and lossy.
Lossless compression algorithms encode the original data in such a way,
that the reconstructed data is identical to the original data. Lossless com-
pression is performed by decorrelation and subsequent coding of the data.
The decorrelation step eliminates redundant information in the data. Dur-
ing coding, the actual compression takes place and the data is written to disk.
Lossy compression algorithms aim to achieve smaller file sizes for encoded
data by removing or approximating unimportant information. This process
is called approximation. The approximation step reduces the complexity
of the data for the subsequent coding, e.g. by using quantification. Approxi-
mation and is not applied in lossless compression. An overview of the steps
is depicted in Figure 2.1. Some additional classifications for compression
algorithms are the following (Salomon and Motta, 2010):

- Non-adaptive vs adaptive
A compression algorithm which modifies its operations and parame-
ters based on the original data is called an adaptive compression algo-
rithm. An algorithm which does not do this is called a non-adaptive
compression algorithm.

- Symmetric vs asymmetric
The data processing of the encoder and decoder might be different de-
pending on the compression algorithm. In a symmetric compression
algorithm the encoder and decoder apply the same algorithm in dif-
ferent direction. In an asymmetric compression algorithm one of the
two parts has a heavier workload.

- Single-pass vs multi-pass
A single-pass algorithm traverses the data only once, while a multi-
pass or n-pass algorithm traverses the data several (n) times. Statis-
tical compression algorithms are often multi-pass algorithms, since
the first pass is used to gather statistical information about the data
like distribution and skewness.

13



lossless

Decorrelation

lossy

Approximation

FIGURE 2.1 A compression algorithm is defined by three steps: decorrelation, ap-
proximation and coding. A lossless compression algorithm uses decorrelation and
coding. A lossy compression algorithm has an approximation step in between. This
figure is based on Cappello and Lindstrom (2018).

« Streaming vs block mode
A compression algorithm working in streaming mode reads a sym-
bol from the source, encodes it and moves on to the next symbol until
the source is exhausted. A block mode compression algorithm reads
the source in several blocks of n symbols and encodes each block sep-
arately.

« Universal vs custom
A universal compression algorithm has no statistical information
about the original data. A custom, specific or non-universal com-
pression algorithm has a predefined knowledge about the data to be
compressed. A universal method is optimal if the compressor can
produce compression ratios (see Section 2.1.5) which asymptotically

approaches the entropy of the input stream for long inputs.

EXAMPLE: SYMMETRIC VS. ASYMMETRIC

Archiving is a good example for an asymmetric compression algorithm.
The encoder has often the heavier workload, so that it takes significantly
more time to encode the data. The reason for this imbalance is the as-
sumption, that the files will be read more often than written in an archive.

Therefore, the decompression should be fast.

2.1.2 Data Compression and Information Theory

Claude Shannon single-handedly created the research field of information
theory in the late 1940s. He was interested in creating a reliable and fast
communication channel from a source to a receiver. Back in the days the
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communication channels were often affected by faulty hardware (e.g. bad
wiring, isolation problems) or in case of audio communication actual noise
in the background. Therefore, he worked on special codes (e.g. error-control
codes) to reliably communicate over a noisy channel. Further, he tried to re-
duce the amount of data to be transferred over the communication channel.
To achieve this, Shannon (1948) created a metric to measure the information
content of each symbol of the message to be transmitted called the Shannon
Entropy H(X),

H(X) = — 3 Pla) - logy(P(x) (2.4)

z€X
where X = {21, z,...,x,}isthe alphabet of the source, P(-) the probability
mass function (PMF), and b the base of the logarithm. Common values for b
are 2, Euler ¢, and 10. The unit of H(X) depends on b. For those mentioned
above the corresponding units are bits for b = 2, nats for b = ¢, and bans for
b = 10. Unless otherwise stated, b = 2 is assumed in the remainder of the
thesis, since the Shannon Entropy with b = 2 is considered the lower limit
for bits per float (BPF) in lossless compression algorithms for floating-point

numbers.

One advantage (and disadvantage) of the Shannon Entropy is that no
further information other than the PMF will be considered for calculating
the information content of a symbol. This may lead to information about
fluctuation or the regularity of a dataset (e.g. in time-series data) to be dis-
regarded. In cases where more information about the dataset is available
(e.g. temporal interdependency) other entropy metrics such as the Sample
Entropy might be more accurate as to the information content of each sym-
bol.

Sample Entropy (Richman and Moorman, 2000) is an approximate en-
tropy established in the field of neurology to analyse brain wave data. Given
asource S = $,8y...5, 15, and a subset S = s, 5,1 ... Smii_1, Sm4l, the

Sample Entropy is defined as follows:
Z(X,l+1,7)
Z(X,l,T)
Z(X,l,7) = ZZ d(Sit, ST < 1] Vi

SampEn(X,[,7) = —log, (2.5)
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with d(-) being a distance function of two datasets (i.e. vectors) like the Eu-
clidean or Chebyshev distance (Chebyshev, 1853), 7 a threshold value for the
distance, and | - | defined as follows:

{1 if Pistrue
Pl =

0 else

In literature the values | = 2and 7 = 0.2 - ¢(X) with o(-) representing the
standard deviation, have established themselves.

EXAMPLE: SHANNON ENTROPY VS. SAMPLE ENTROPY
Given a source S, with alphabet X; and a source S; with alphabet X,

S, = (10,20, 10, 20, 10, 20, 10, 20, 10, 20, 10, 20) with X; = {10, 20}
Sy = (10,10, 20, 10, 10, 20, 20, 20, 10, 10, 20, 20) with X, = {10, 20}

the resulting entropies based on Eq. 2.4 and 2.5 are

H(X;)=1.0 SampEn(S;,2,0(X;)) = 0.223
H(X;) =1.0 SampEn(Ss,2,0(X,)) = 0.693

Since the fluctuation in S; is rather regular than pure noise the
SampEn(X) returns a lower entropy for S than for S;. H(X) returns the
same entropy for both sources since no information other than the PMF
is considered.

2.1.3 Application of Custom Compression Algorithms

One of the classification criteria for compression algorithms explained in
the previous section is the type of customisation: universal and custom.
For subsequent chapters it is helpful to understand in which aspects algo-
rithms are customised. Custom compression algorithms usually take into
account structural dependencies in the data. This might be previous or fol-
lowing frames in a video format or neighbouring pixels in an image file.
These dependencies are represented in the structure of the file and can be
taken advantage of to discover redundancies in the data. There are several

custom compression algorithms for video, audio (e.g. wavelet, transform-
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based), image (e.g. partial pattern matching), text (e.g. dictionary-based),
and numerical data (e.g. prediction-based). Most of these algorithms use
probability models to figure out what the most probable symbol might be
next in the data. This is the reason why most of the research in the field of
compression can be split into two groups. The first group works on improv-
ing the probability model for a given application field (e.g. video, numerical
data, or audio). The second group works on improving the coding process
where the actual compression of the data happens. Novel approaches in
both of these fields are discussed in Chapter 6, 5 and 7.

2.1.4 Prediction-Based Compression

One often customised algorithm for floating-point data is the prediction-
based compression algorithm. This section describes the steps involved in a
prediction-based compression algorithm. A prediction-based compression
algorithm involves five steps (Cayoglu et al., 2018c¢):

1) Mapping the floating-point data to integer values
2) Choosing a traversal sequence

)

)
3) Giving a prediction for each value
4) Calculating the residual between prediction and true value
)

5) Coding the residuals and writing them on disk

The five steps are now discussed in more detail:

1. Mapping the Floating-Point Data to Integer Values. The mapping of
floating-point data to positive integer values is necessary to use integer op-
erations. Using integer operations guarantees reproducibility across com-
puter architectures, since floating-point operations are vulnerable to round-

ing errors which may lead to numerical imprecision.
m:R—N (2.6)

2. Choosing a Traversal Sequence. In prediction-based compression each
data pointis first given a prediction and later compared with the actual value.
This is an iterative process and each prediction is based on data points seen
in the past. The traversal function ¢ is a permutation of the original source
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FIGURE 2.2 Example for row-major traversal sequence.

and defines the sequence in which each data point is visited.

t:N—N (2.7)
The resulting traversal sequence S’ is defined as follows:
S = (i)l (2.8)

A traversal function can be considered as a space-filling curve introduced
by Peano (1890). The traversal sequence is important for designing a good
prediction-based compression algorithm since it defines the available in-
formation for making a prediction. Non-universal compression algorithms
can adapt their traversal sequence to fully exploit the structure of the data
to decorrelate it better than universal compression algorithms.

EXAMPLE: FROM ROW-MAJOR TO COLUMN-MAJOR TRAVERSAL

Given a source S = ($152...S15516) With s; = i representing a 4 x 4 grid

(see Figure 2.2) and the traversal function

x
t(z) =4 (x mod4) + LlJ
the I'ESUIting sequence is 8/ = (518589513825681051483578118158488812816).
This traversal function transformed a row-major dataset into a column-
major dataset. This traversal might be more successful in decorrelating S

if there is a higher correlation between the columns of the dataset rather

than the rows.
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3. Giving a Prediction for Each Value. In the next step each data point is vis-
ited according to the traversal sequence. At each visit a prediction method
or predictor p, gives a prediction §; € S for each symbol s € S using the
data points of " — S with p;,(S") = (@)‘Zﬂ

Z?sg_j-cj Vi>kANs, €S
pb(S) else

pr(S) = (2.9)

where py(+) is the prediction function using & elements of the sequence 5’,
pby, a prediction function for the border cases where |S’| < k, ¢; the weight

coefficient of element s;_.

The above notation focuses on the traversal sequence and can become
confusing very quickly:

g 10, g B, g (2.10)

Since climate data is represented using a four dimensional cube i.e.
tesseract, any prediction function p(-) can be expressed using the relative
position of each data point. In the following the notation fora M x N matrix
is described, but it can be extended to any other multi-dimensional data like
a cube (three dimensions) or tesseract (four dimensions).

Given a matrix A of size M x N, each element of A can be identified using
A(i, j)with0 < i < Mand0 < j < N. The prediction method p : {A,¢} — A
can then be defined as follows:

(4.9 ZE_)A<I—Z',y—j)'Ci,j re€MNZ>uyeE NN ( )
plA, c) = €€ 2.11
(A, C) else

with p(-) representing the prediction function, ¢; ; € c'the weight coefficient
of element A(z — i,y — j) and pb(-) the prediction function for the border
casesif A(z —1i,y—7)is not available. The notation can be further shortened

by expressing the relative position of cells using p; ; as follows:

pij =Alr—i,y—j) Yee MAYye N (2.12)

p=p-¢ (2.13)

= _Pij" Cij
i?j
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where p; ; defines the relative position of the data point A(z — 4,y — j) and
¢;.; the weight coefficient for that particular data point.

4. Calculating the Residual Between Prediction and True Value. The differ-
ence method diff(-) defines how the difference between the prediction 3,
and the true value s, is calculated. The difference itself is called the resid-
ual. In most cases this will be either the absolute difference using diff,;; or
eXclusive OR (XOR) difference using diff,,, defined as follows:

diff,,, =3, ® s; (2.14)
diﬁ‘abs = | §;— S; | (2.15)

If the prediction is close to the true value, the leading zero count (LZC) of the
residual will be high. LZC represents the number of most significant bits
of a floating-point value that are zero i.e. unset. These bits do not need to
be saved on disk, since they can be reproduced by the prediction algorithm.
The remaining bits of the residual are then processed in the next step.

5. Coding the Residuals and Writing Them on Disk. In the last step the re-
mainder of the residual is coded and written on disk. There are several
options to choose from: Huffman coding (Huffman, 1952), Arithmetic cod-
ing (Howard and Vitter, 1994), Range coding (Martin, 1979), Golomb coding
(Golomb, 1966), Asymmetric Numeral System coding (Duda, 2013) or any
combination of these. More details regarding step four and five are given
in Chapter 7.

In prediction-based compression there is a clear distinction between the
decorrelation and coding phase depicted in Fig. 2.1. The goal of the decor-
relation phase (steps one to three) is to use the available information in the
best possible way to decorrelate the data and reduce the size of the residual.
The task of the coding phase (steps four and five) is to write these residu-
als on disk in the most space-efficient way. If necessary, an approximation
step can be added before calculating the residuals in step four or by a post-

processing step using quantisation in step three.
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2.1.5 Metrics

To assess the quality of a compression algorithm several metrics will be de-
scribed in this section. The following metrics are commonly used: compres-
sion factor (CF), compression ratio (CR), throughput, and memory usage.
The first two metrics are used if the size of the encoded data is important.
They set the size of the raw and compressed data in relation.

Size of raw data
Size of compressed data

compression factor (CF) = (2.16)
A CF greater than 1 means the compression algorithm was successful in re-
ducing the size of the original data. A value smaller than 1 means that the
encoded data is actually larger than the raw data. The greater the compres-
sion factor, the better the compression algorithm.

Size of compressed data
Size of raw data
=CF!

compression ratio (CR) = (2.17)

The CR is the inverse of the CF. The smaller the CR, the better the compres-
sion algorithm. A value close to o is optimal, while a value greater than 1
suggests that the compression algorithm failed and the size of the encoded
data is actually larger than the raw data. It gives information about how a
single bit in the encoded data is related to a single bit in the raw data.

The following two metrics are about compression speed and memory
usage. The throughput indicates the amount of data processed per unit of
time. In most cases this will be either Bytes/s or MiB/s.

Filesize [Bytes or MiB]

throughput =
FOUBHPYE = Total Processing Time [sec]

(2.18)

The higher the throughput, the faster the algorithm. The throughput is cal-
culated separately for the encoder and decoder since the compression algo-
rithm might be asymmetric. The memory usage is the maximum amount
of memory used by the encoder (decoder) at any given time during the com-
pression (decompression) process.
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Most custom compression algorithms developed for a specific type of
data also adjust their metrics to that data type. One such a metric is bits per
float (BPF), which is derived from CR.

BPF — Size of compressed data [bits]

2.
Number of floating-point values in data - bits (2.19)
with bits = 32 forsingle precision and bits = 64 for double precision floating-
point data. BPF describes how many bits a single floating-point value occu-

pies in a dataset after compression.

2.2 Climate Data

There are many different sources for climate data. However, these sources
can be divided into two main groups: observational data and simulation
data. The former can be split again into ground-based remote sensing
data using measurement devices on the ground e.g. Fourier-Transform In-
frared Spectrometers (FTIR), remote sensing data from devices attached
to aircraft, satellites or balloons and in-situ measurements by direct con-
tact (see Fig. 2.3). Observational data is often constrained in its spatial
as well as temporal resolution due to hardware or software specifications.
Further, there are more missing values in observational data compared
to simulation data, since there are conditions where the sensors are not
able to work properly (e.g. due to clouds or heavy rain). Simulation data
are climate or weather data calculated by simulation models like ICOsa-
hedral Nonhydrostatic (ICON) (Zingl et al., 2@15; Schroter et al., 2018) or
ECMWF Hamburg/Modular Earth Submodel System Atmospheric Chem-
istry (EMAC) (Jockel et al., 2006). The rest of the thesis will deal exclusively
with simulation data. It therefore makes sense to take a closer look at the
weather and climate simulation models that generate these data.

2.2.1 Weather and Climate Models

Weather and climate models simulate the interactions in the Earth’s atmo-
sphere, ocean, cryosphere, and land surface. These models solve coupled
differential equations describing central physical and chemical interactions
on Earth, i.e. radiation (solar and terrestrial), advection, emissions, convec-
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FIGURE 2.3 There are many different sources for climate data. However, these
sources can be divided into two main groups: observational data and simulation
data. This figure is taken from WMO (2019).

tion and condensation. Models simulate different prognostic and diagnos-
tic variables. The variables described directly by the differential equations
are called prognostic variables. They are integrated and calculated at each
time step. Prognostic variables are e.g. temperature, wind, moisture, sur-
face pressure, salinity (of the ocean), and water vapour. The diagnostic vari-
ables are evaluated from prognostic variables at specific time steps (set by
the model parameters). One example for a diagnostic variable is humidity,

which can be derived from temperature and water vapour.

These variables are calculated by dividing the Earth into a three-
dimensional grid and solving the underlying differential equations and
their interactions along the fourth dimension, time. While the differen-
tial equations solved are the same in weather and climate models, often the
horizontal resolution, simulated area, and time scale is different. Weather
models have often a higher horizontal resolution, but simulate at short time
scales (from hours to couple weeks) and might be limited to local regions (e.g.
Germany, or Europe). Climate models often simulate several decades at a
global scale. These models are often run on a coarser horizontal resolution

23



than weather models due to the high compute power needed to solve the
differential equations on a global scale for many years. Simulation models
can further be distinguished based on their approach to solve the differ-
ential equations (i.e. spectral models using Fourier-based transformations
or finite-difference models), their vertical consistency (i.e. hydrostatic or
nonhydrostatic) as well as their grid model (i.e. structured models with a

constant angular grid or unstructured models with a non-rectangular grid).

2.2.2 Data Structure of Climate Model Output

Due to historical reasons the most common data structure in climate data
is the hypercube or tesseract. Although next generation climate models
switched to unstructured grids to better use the compute power provided
by High Performance Computing (HPC) systems the output of these models
will be often interpolated to a structured grid format for ease of use. The four
dimensions of the tesseract represent the three spatial dimensions (longi-
tude, latitude, and altitude) and time. These dimensions are called coordi-
nates or coordinate variables. The calculated prognostic and diagnostic
variables are referred to as data variables. While the horizontal dimen-
sions with longitude and latitude are usually represented by [°E] (longitude)
or [°N] (latitude), there is no agreement about the altitude unit. The alti-
tude might be represented in (hybrid) pressure levels (e.g. [Pal, [hPa]) or
metre (e.g. [m]). The temporal resolution can be anything between seconds
[s], days [d], months [months] or years [years]. Most of the climate data
is stored using hierarchical data formats like the Network Common Data
Format (NetCDF) (Rew and Davis, 1990), General Regularly-distributed In-
formation in Binary form (GRIB) (WMO, 2013), or Hierarchical Data Format
(HDF) (Folk et al., 1999). But it is not uncommon for remote sensing data
to be stored as ASCII data. The data and coordinate variables are single or

double precision floating-point values.

In this chapter, terms and notations were presented that are used
throughout the work and a general overview of the basic principles of data
compression was given. The reader should now be able to classify different

compression algorithms based on their properties and evaluate their perfor-

24



mance using the metrics presented in this chapter. In the following, related
work in the field of compression of climate data as well as structurally sim-
ilar data is introduced.
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CHAPTER 3

Related Work

The biggest challenge with the compression of climate data is data volume.
The processing of high volumes of data is a well-known problem in com-
puter science in the era of Big Data. This chapter features an overview of
similar challenges in related scientific fields as well as their proposed solu-
tions. This overview is by no means exhaustive. There are many develop-
ments in compression, such as succinct data structures, which are skipped
for reasons of brevity. The focus of this chapter is on the algorithms used
in compression and not on the data structures.

First, related work and solutions directly connected to the topic of cli-
mate data compression is introduced. Afterwards, an outline of the state-
of-the-art compression methods for image, time-series and floating-point
compression is given, since these data share most similarities with climate
data. Finally, compression techniques from video, audio and text compres-
sion are described.

3.1 Compression of Climate Data

A thorough search of the relevant literature yielded one other group work-
ing on lossless compression of climate data. In their work Huang et al. (2016)
and Liu et al. (2014) introduce czip a lossless compression algorithm for
climate data. Huang et al. (2016) use a prediction-based compression algo-
rithm with adaptive prediction, XOR difference and ‘multi-way’ compres-
sion. First the authors identify the most powerful prediction method from a
predefined set of predictors by analysing the first 100 time steps of the data.
Afterwards, each dataset is split into static and dynamic regions. Static re-
gions are defined as two or more consecutive data points with the same value.
Regions not satisfying this criteria are declared as dynamic. The residual is
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calculated using XOR difference as described in Section 2.1.4. The residual
of dynamic regions is then ‘multi-way’ compressed: Each single or double
precision floating-point data is split into four or eight byte sections respec-
tively, and is compressed using z1ib (Deutsch and Gailly, 1996) for the first
byte sections and 1z4 (Collet, 2011) for the last section. The experimental
results in Huang et al. (2016) and Liu et al. (2014) suggest that czip achieves
a very good CR as well as throughput. Unfortunately no public version of
the algorithm was available at the time of writing, so it could not be used for
the experiments described in this thesis. Further, the authors assume that
the time coordinate variable is large, which might not be the case. A large
part of the climate simulation output analysed in this thesis shows that the
spatial resolution in a single data set is finer than that of the temporal di-
mension. The reason for this is that the output of simulations takes place at
fixed time steps which are significantly shorter compared to the simulated
time scale. As a result, individual files have a few time steps but high spatial
resolution.

While there is little related work regarding lossless compression of cli-
mate data, there is much more literature about lossy compression of climate
data. Baker et al. (2016) and Hiibbe et al. (2013) compare the effects of lossy
compression on climate data using different error thresholds and quality
metrics.

Baker et al. (2016) conclude that ‘lossy compression can effectively re-
duce climate simulation data volumes without negatively impacting scien-
tific conclusions’ if certain precautions have been taken. First, the com-
pression must be done on a variable-by-variable basis. This would allow
applying different compression algorithms per variable and defining adap-
tive thresholds. The authors also suggest considering derived variables from
post-processing workflows when choosing the above mentioned thresholds,
since these variables are most severely affected by error propagation from
lossily compressed data. Further, Baker et al. (2016) argue that compression
algorithms should consider a special treatment for missing or fill values,
because these can appear very often and intermittently in climate data.

Hiibbe et al. (2013) compare three lossy compression methods (GRIB2
coding, GRIB2 with JPEG2000 and LZMA, and proprietary APAX) regard-
ing data quality, compression ratio and processing time. The experimental
results show that APAX outperforms GRIB2 coding regarding data qual-
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ity especially in climate variables with often repeating values. The authors
recommend using one of the other two lossy compression algorithms com-
pared if not execution speed but high precision is the main concern in the
reconstructed data, e.g. for archiving purposes. Hiibbe et al. (2013) suggest
‘due to the statistical nature of climate research’ that the input and output
datasets could probably be lossy compressed, but suggest lossless compres-
sion for intermediate results (e.g. checkpoint and restart files during simula-
tion) to ‘carefully monitor the numerical stability and consistency of results’.

Sasaki et al. (2015) analyse lossy compression of climate data specifically
for checkpoints and restarts during simulation runs. The authors propose a
lossy compression technique based on Haar wavelet transformation (Haar,
1910) for checkpoints. The wall clock time of a checkpoint is reduced by 81%,
while the average relative error introduced by the compression method is
around 1.2%. The reduction in checkpoint time is achieved due to the strong
decrease in I/0O compared to additional computation time. The authors ex-
pect derivations to be in the order of /n with n representing the calculation
steps in the simulation. Sasaki et al. (2015) suggest this ‘may be acceptable
compared to inherent errors to scientific simulations’. But this derivations
are additional to the error computed by the scientific models. Further, an
error in the per cent range is high for certain environmental variables es-
pecially if derived variables are considered. Unfortunately, the authors do
only a single restart of the simulations during their experiments. It would

be interesting to know how the error propagates with several restarts.

OBSERVATION 3.1 Lossless compression of climate data is not very well re-
searched.

OBSERVATION 3.2 Lossy compression is a viable option if certain criteria
are met: variable-based thresholds, consideration of post-processing steps,

and special treatment of missing values.

3.2 Compression of Data Similar to Climate Data

While there is only a handful of research papers regarding the compres-
sion of climate data, there are a lot of research papers about compression
of data that share structural similarities with climate data. Image data are

two dimensional numerical data sharing similarities with the horizontal
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resolution of climate data. Time-series data share similarities with climate
data along the temporal dimension. Further, since climate simulation out-
put is mostly floating-point data, climate research has the same challenges
as other scientific fields dealing with high volume floating-point data.

3.2.1 Image Compression

A digital image is a rectangular array of dots, cells or pixels, arranged in a
grid. In case of grayscale images the pixels are shades of grey with integer
valuesin the range of @-255. Colour images are often represented as a triple
of ©-255 for each primary colour or a quad including the alpha level. Image
compression algorithms are often designed specifically for various kinds of
images (Salomon and Motta, 2010): bi-level images (i.e. images with only
two colours), grayscale images, continuous tone images, or discrete-tone im-
ages (i.e. images without noise nor blur like text images, cartoons or charts).
The assumption forimage compression is that each random pixel is strongly
correlated with its neighbouring pixels. The neighbouring values of a pixel
are called its context. The reason for the similarities between compression
techniques for image and climate data lies in the spatial structure of the
climate data, which is also structured like a grid. As with pictures, it can
be assumed that the meteorological conditions at two locations are rather
similar at short distances.

Many image compression algorithms use lossy compression since the
human eye has inefficiencies in the perception of certain shades or gra-
dients. Compression algorithms exploiting these inefficiencies are called
perceptive compression algorithms. One of these perceptive image com-
pression algorithms is JPEG (ITU-T.81, 1992). JPEG can be used in lossy and
lossless mode. In lossy mode the algorithm first maps the red, green, and
blue (RGB) values to luminance and chrominance representation. Since the
human eye is more sensitive to changes in luminance rather than chromi-
nance, the chrominance values get downsampled to artificially increase cor-
relation in the dataset. Afterwards the data is decorrelated using discrete
cosine transform (DCT) and encoded using run-length encoding (RLE) cou-
pled with Huffman Coding (Huffman, 1952). In lossless mode the algorithm
does not use downsampling and switches the decorrelation step from a DCT

algorithm to a prediction-based algorithm using the predictors given in Ta-
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TABLE 3.1 Predictors used by JPEG in lossless mode.

Type Predictor

One-dimensional p1 £0,1 P11

0,1—P1,1 1,0—P1,1 1,0+p0,1
4P 20 + P 2p p 2/)

Two-dimensional p10+ po1 — P11 P10 0,1

ble 3.1. The user has to choose manually which predictor to use. Since the
lossless compression results of JPEG yield low CF, this mode is often not im-
plemented by JPEG library providers (Salomon and Motta, 2010). Due to the
problems of JPEG in lossless mode the standard JPEG-LS (ITU-T.87, 1998)
was developed. Algorithm 3.1 depicts the prediction step of JPEG-LS. This

1: procedure PREDICTION(p1,0,00,1,01,1)

2 T <= P10+ Po1 — P11

3 if max{p1 0, p0,1,p11} = p1,1 then

4 7 <= min{p1 0, Po,1, 1,1}

5: else if min{p, o, po1,p11} = p11 then
6: r 4 max{pi,0, Po,1, P11}

7 end if

8 ctx <—CONTEXT(,0170,p071,p171,p_171)

9 s <=SIGN(p1,0,00,1,01,1,0—1,1)

10: r<—r+Clctz] - s
11: r < min{r, mazval}
12: return max{r, 0}

13: end procedure

ALGORITHM 3.1 Prediction step of JPEG-LS image compression algorithm.

update of the algorithm is a good example on how compression algorithms
develop. The decorrelation is done with a more sophisticated prediction al-
gorithm: the prediction-model uses an edge-detection mechanism coupled
with a correction algorithm. The correction algorithm calculates the context
ctxz based on the surrounding gradients p_1 1 — po1, Po.1 — p1.1,and p11 — p1o
and applies the appropriate correction using a predefined correction table
C. Finally the data is coded using Golomb coding (Golomb, 1966).

OBSERVATION 3.3 The development of JPEG from the use of a rather simple
decorrelation method to a more sophisticated one is common in the develop-
ment of compression algorithms. Where previously the neighbourhood was
sufficient, now edge probabilities are calculated and corrections are made.
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FIGURE 3.1 Neighbourhoods used from lossless image compression methods. The
left top row represents those used by JPEG (ITU-T.81, 1992) and JPEG-LS (ITU-T.87,
1998). The left bottom row is used by Motta et al. (2000), Wu and Memon (1997),
Moffat (1991), and Langdon and Rissanen (1981). The right column represents those
used by Howard and Vitter (1993). The X depicts the pixel to be predicted.

The available information for making a prediction and decorrelating the
data is the same, since the sequence in which the data points are traversed
is the same. But the further the techniques advance the more sophisticated
the methods are to extract the right information from the neighbourhood.

Further developments in the area of lossless image compression im-
proved upon the context calculation and patterns of neighbourhoods to
be considered. If lossless compression is expected, then most of the algo-
rithms switch to a prediction-based algorithm for decorrelation of the data
(Liand Orchard, 2001; Aiazzi et al., 1999; Weinberger et al., 2000; Neves and
Pinho, 2009; Taquet and Labit, 2012). Some of these neighbourhoods are
represented in Figure 3.1. Due to brevity, only a few of these patterns are
listed. Please refer to Salomon and Motta (2010) for an overview of the topic.
Lossy image compression algorithms often change to a more time-efficient
method than prediction-based compression, like the above mentioned JPEG
(ITU-T.81, 1992). The decorrelation methods applied in lossy compression
are diverse: neural networks (Toderici et al., 2017), centroids (Karadimitriou
and Tyler, 1998), wavelets (Bruylants et al., 2015), Haar transforms (Haar,
1910), discrete cosine transform (Ahmed et al., 1974), as well as perceptual
methods (Alakuijala et al., 2017).

The keen reader might observe similarities with multi-dimensional in-
terpolation methods. Both problem fields are related. In mathematics the
problem described above is known as Lagrange, Hermite, or Birkhoff in-

terpolation problem. The Lagrange interpolation problem defines the
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challenges of interpolation on a multi-dimensional grid if only the actual
values are considered. The Hermite interpolation problem considers ad-
ditionally the derivative of the multi-dimensional problem. Finally, the
Birkhoff interpolation problem, considers the interpolation of the actual
value, the derivative and possible missing values. For more details, please
refer to Burden and Faires (1997); Sauer and Xu (2006); Allasia et al. (2018);
Krislock and Wolkowicz (2@12); Schultz (197@) and Olver (2006).

3.2.2 Time-Series Compression

Since one of the coordinate variables of climate data is representing tem-
poral information, there are strong similarities between climate and time-
series data. There are only a few scientific communities which need lossless
compression of time-series data. One of these communities is medicine,
specifically neurology (Sriraam, 2012; Sriraam and Eswaran, 2008; Srini-
vasan and Reddy, 2010).

Sriraam (2012) and Sriraam and Eswaran (2008) developed a lossless
compression algorithm for Electroencephalography (EEG) data using a
prediction-based compression algorithm. The authors train three neural
networks (e.g. single-layer perceptron) and two linear prediction models
i.e. auto-regressive (AR) and finite impulse response filter (FIR) for decorre-
lation. This prediction step is then followed by a statistical error modelling
scheme (Sriraam and Eswaran, 2008). Since recording EEG is time-critical
the authors define computational efficiency (CE) as their quality metric:

CR

CE = — (3.1)
processing time

The results indicate that there is almost no performance difference between
neural networks and linear predictions. Among the different predictors
used, it is found that the single-layer perceptron yields the best compression
results closely followed by the AR model.

Pelkonen et al. (2015) introduce a lossless time-series compression al-
gorithm for high velocity data for in-memory time-series databases. The
algorithm uses a prediction-based method in which the delta-of-delta is
computed. Delta compression refers to techniques when, instead of storing
the absolute values of the time-series data, the differences between the in-
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dividual data points are stored. This difference calculation can be applied
recursively, which results in the delta-of-delta definition. The difference is
calculated using XOR (see Eq. 2.14). Because of the high data velocity, the
XOR operation results in a high leading zero count (LZC). These residuals
are saved and finally coded using variable length-coding. The results in-
dicate high throughput possibilities ‘[to] efficiently store monitoring data
comprising of over 700 million points per minute’ (Pelkonen et al., 2015).
An additional analysis of less frequent time-series data would also be inter-
esting as the correlations between the time steps would likely be lower than

those obtained with high frequency time-series data.

OBSERVATION 3.4 Lossless compression methods for time-series data use

mostly prediction-based methods.

Lossy time-series compression algorithms are applied in a lot of com-
munities: databases (Deri et al., 2012), haptic telepresence systems (Kuschel
et al., 2006), artificial intelligence (Fink and Gandhi, 2011; Del Testa and
Rossi, 2015), sensor networks (Huamin Chen et al., 2005), and smart grids
(Eichinger et al., 2015). As in the previous section about lossy image com-
pression, many of these algorithms use different transformation techniques
like wavelets and DCT to decorrelate the data.

There are other interesting time-series models for compression of time-
series data. These models are so-called forecasting models. One of these
models is the Auto Regressive Integrated Moving Average (ARIMA) model
first introduced by Box and Jenkins (1976). The ARIMA model helps identify
interdependencies in time-series data and is applied by different communi-
ties e.g. economics (French et al., 1987; Pai and Lin, 2005), telecommunica-
tions and multimedia (Al Tamimi et al., 2008; De la Cruz et al., 1998; Garrett
and Willinger, 1994) and social studies (Chen et al., 2008).

3.2.3 Floating-Point Compression

In the last couple of years the development of compression algorithms for
floating-point data experienced a renaissance (Cayoglu et al., 2019b). The
reason for the increasing interest in floating-point data compression is the
amount of data from the next generation of high-resolution models that
can simulate increasingly complex systems with fast HPC systems. The first
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FIGURE 3.2 Memory representation of double precision floating-point values. While
the decimal representation differs in one position, the last five bytes of the memory
representation are different. The memory representation is given in hexadecimal.
The differences in each representation are emphasised. This figure is taken from
Engelson et al. (2002).

articles introducing novel lossless floating-point compression algorithms
for scientific data were Engelson et al. (2002); Isenburg et al. (2005); Ratana-
worabhan et al. (2006) and Lindstrom and Isenburg (2006).

Engelson et al. (2002) develop a lossless compression method for
floating-point time-series data using delta compression. In the next step La-
grange extrapolation (Waring, 1779) is used for prediction. The authors also
explain the problem with memoryrepresentation of floating-point data (see
Fig. 3.2). Evenif the decimal representation of two numbers can be very sim-
ilar, this does not need to be the case for the representation in memory. This
problem is also addressed by Isenburg et al. (2005) and later extended in
Lindstrom and Isenburg (2006).

Isenburg et al. (2005) use the Lorenzo predictor (Ibarria et al., 2003) for
decorrelation of the data and use range coding (Martin, 1979) in the final
step. To prevent the pitfalls of binary memory representation the authors
split the residual in different blocks and code them separately. More details
of this method will follow in Chapter 7.

Ratanaworabhan et al. (2006) follow a different approach in residual
calculation. Like Engelson et al. (2002), the authors try to address the prob-
lem of memory representation by delta compression in conjunction with
an additional correction step. The correction is calculated using previous
errors saved in a hash table. The key of each correction is calculated using
the current context. The context is defined by the last three deltas in the
data. Afterwards, the residual is calculated using XOR difference and saved
on disk using Range Coding (Martin, 1979).

Fout and Ma (2@12) focus on high throughput compression. They pro-
pose an asymmetric compression method where the context is calculated

based on the last four values in the source. Each of the 16 predictors cal-
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culate a prediction for the context and the best predictor is chosen. This
information is saved for future use. If the same context reoccurs, a recalcu-
lation is not necessary. The residual is being calculated using XOR and coded
using Golomb Coding (Golomb, 1966). The information about the chosen
predictor is saved in a nibble and passed on to the decoder.

Gomez and Cappello (2013) describe a masking technique to decrease
the entropy of the data. The data is split into several blocks. For each block a
signature value is calculated ‘based on the most frequent value for the given
bit column’ (Gomez and Cappello, 2013). The appropriate masks are then
calculated and coded. The masks are then saved using the zlib compres-
sion library (Deutsch and Gailly, 1996). Experimental results suggest that in
some cases a reordering of the masks results in high CF. The reorganisation
is done by splitting and rearranging each byte block in the data.

Ainsworth et al. (2017) analyse the effects of decimation and define a
formula to calculate a priori the lower bound and the expected CR using
decimation depending on the stride size. The authors propose a compres-
sion algorithm based on their experimental results. Although the proposed
compression algorithm performs worse than those it is compared with, the
uniqueness of their work lies in the analysis and calculation of the expected
CR.

Due to the challenges mentioned above and low compression factors
achieved using lossless compression, several working groups turned their
focus on lossy compression of floating-point data. Currently there are two
dominating lossy compression algorithms for floating-point data: Squeeze
(SZ) and zip floating-point (ZFP). Both algorithms apply different decorre-
lation algorithms for the data. SZ uses a prediction-based algorithm, while
ZFP applies a transformation-based algorithm.

SZ is introduced in Di and Cappello (2216) and has since been updated
several times: In Tao et al. (2017b) the authors improve the applied pre-
dictors and achieve better compression results for absolute as well as rel-
ative error bound lossy compression. Tao et al. (2018) improve the algo-
rithm upon the fixed peak signal to noise ratio (PSNR) error bound, Liang
et al. (2018a) regarding the point-wise relative error bound and Liang et al.
(2018b) improve the prediction model of the algorithm. The current model
of SZ (Liang et al., 2018b) works with three predictors: the Lorenzo pre-

dictor (Ibarria et al., 2003), the mean-integrated Lorenzo predictor, and a
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linear-regression based predictor. The authors sample the dataset to iden-
tify which prediction model to use for the data. Some prediction models are
‘uniformly skewed from the original values if the error bound is relatively
large’. Therefore, the authors introduce the mean-integrated Lorenzo pre-
dictor for datasets with low variance coupled with a relatively large error
bound. In these cases the Lorenzo predictor performs badly, which results
in artefacts in the reconstructed data. SZ first chooses the best Lorenzo pre-
dictor based on data sampling. Afterwards, the regression coefficients of
thelinear-regression based predictoris calculated. In the last step, each data
block is compressed using either the regression-based predictor or the best
Lorenzo predictor. This choice is based on the estimated prediction errors of
each predictor for the current data block. Finally, the errors pass through a
quantisation step and are Huffman coded (Huffman, 1952). Further, domain
specific versions of SZ are available for cosmology simulations (Tao et al.,
2017a) and quantum chemistry (Gok et al., 2018).

ZFP is introduced in Lindstrom (2014) and works with an orthogonal
block transformation for decorrelation of the data. The decorrelation step
is as follows (Lindstrom, 2@14): the data is split into 4 x 4 x 4 blocks, aligned
by common exponent, converted to a fixed-point representation and trans-
formed using an orthogonal block transform. Afterwards, in the coding
step, the transform coefficients are ordered by the expected magnitude,
sorted by bit plane and coded using embedded coding (Hong and Ladner,
2002). There are domain specific versions of ZFP: Lindstrom et al. (2016)
customise the ZFP algorithm for seismic waveform tomography data. There

are several other lossy compression algorithms for floating-point data.

Due to the different nature of their decorrelation steps SZ and ZFP per-
form better for different data. Tao et al. (2019) introduces an automatic on-
line selection process between these two methods, to choose the optimal
lossy compression algorithm for any given data.

Marin et al. (2016) focus on high throughput lossy compression and rely
on fast integral transformations, such as the discrete Chebyshev transform
(DChT) (Chebyshev, 1853) and the discrete Legendre transform (DLT) (Leg-
endre, 1790) for the decorrelation of the data. The data is mapped to the
spectral space, truncated using a user-defined error threshold and Huffman
coded (Huffman, 1952) using binary symbols.
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Lakshminarasimhan et al. (2011) develop the lossy compression algo-
rithm Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) for
spatio-temporal data. The authors focus on in-situ compression, which pro-
cesses the data ‘in-tandem with the simulation by utilising either the same
compute nodes or the staging nodes’. For spatial decorrelation the data is
first split into windows of a certain size, the values inside each window is
sorted and then decorrelated using cubic B-splines (Bartels et al., 1987). The
original index position of each data point within the corresponding window
and the coefficients of the splines are later saved on disk. The temporal de-
pendencies are decorrelated by comparing each window with the previous
one and using delta coding for the result.

Liu et al. (2017) develop a lossy compression algorithm by truncating the
last s bits of a double precision floating-point value, in such a way, that the
remaining 64 minus s bits are within the user specified relative point-wise
error threshold. The authors suggest saving the truncated bits in remote
storage and applying these on the data only if full precision is desired.

Lu et al. (2018) perform different experiments with lossy compression al-
gorithms to identify good compressibility indicators to predict which lossy
compression algorithm will perform best for any given dataset. Following
data features are identified as good compressibility indicators: cumulative
distribution function (CDF), byte entropy, coreset size (indicating the num-
ber of unique symbols composing > 90% of the data), and auto-correlation
which measures the extent to which each symbol depends upon the previous
symbol. The experimental results show that in general SZ exceeds the per-
formance of ZFP, which in turn exceeds that of ISABELA. Since ISABELA
and SZ are asymmetric compression methods, the decoding throughput is
higher than the coding throughput. Further, the authors suggest different
subsampling methods for SZ and ZFP. A random block-based sampling is
suggested for ZFP and a Gaussian model is suggested for SZ.

Velegar et al. (2019) suggest using singular value decomposition (SVD)
for the lossy compression of data. Originally proposed for scalable diagnos-
tic analysis, the authors suggest using SVD for low rank representations of
the data to reach compression factors of about 1000.

Dunton et al. (2019) proposes using matrix decompositions for the
decorrelation of data and introduce a novel single-pass algorithm for high

throughput computing of interpolative decompositions. Lossy compres-
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sion factors ‘exceeding 400 are achieved while maintaining accuracy with
respect to first- and second-order flow statistics’ (Dunton et al., 2019). The
difficulty in using SVD or other matrix decompositions are error thresh-
olds. None of these methods support relative or absolute thresholds for con-
trolled information loss during lossy compression. For this reason, these

methods are not yet widely used.

OBSERVATION 3.5 If lossless compression is the goal, almost all proposed
algorithms use prediction-based compression algorithms for decorrelation
of the data. Lossy compression promises very high compression factors
compared to lossless compression. The authors of lossy compression meth-
ods often choose transformation-based compression algorithms, with the

exception of SZ.

3.3 Compression of Other Data

This section introduces compression techniques used in video, audio, and
text compression. For reasons of brevity, only the most common methods
are described in this section. Please see Salomon and Motta (2010) for a

more comprehensive study.

Dictionary-based compression methods are very successful in compress-
ing textual data. One of the most used (and extended) dictionary-based
method is Lempel Ziv (LZ) introduced in Ziv and Lempel (1977). The algo-
rithm decorrelates the data using references to previous occurrences of the
words in the text. The data is traversed using two buffers called search space
and look-ahead buffer. The text is traversed from the beginning to the end.
During the traversal the search space consists of the last s characters of
the text and the look-ahead buffer consists of the current and v upcoming
characters of the text with s > w. If the current character is found in the
search space the algorithm tries to match every following character from
the look-ahead buffer. The offset and match length is then saved on disk.
The DEFLATE algorithm introduced in Deutsch (1996) and implemented in
z1ib (Deutsch and Gailly, 1996) is based on LZ coupled with Huffman cod-
ing (Huffman, 1952) as is the Lempel-Ziv-Markov chain Algorithm (LZMA)
algorithm implemented in 7z (Pavlov, 2019).

39



Video compression algorithms are usually lossy (Salomon and Motta,
2010) and use prediction-based compression for decorrelation. A video sig-
nal consists of several frames or pictures. For compression the frames are
splitinto Intra (I), Bidirectional (B), and Predictive (P) frames. AnIframeis
encoded independently, a P frameis encoded using preceding I and P frames,
and a B frame is encoded using preceding and following I and P frames. The
number of encoded frames is usually B > P > I. Some decorrelation tech-
niques applied to these frames are according to Salomon and Motta (2010):
subsampling (only any other frame is encoded), differentiation (compar-
ing each pixel with the pixel at the same position on the previous frame and
delta coding if the difference is above a certain threshold), block comparison
(differentiating by comparing pixel blocks), motion compensation (similar
to LZ compression by referring to blocks from the previous frame), frame
segmentation, and distortion measures.

Whileitis possible to compress digital audio data using lossless compres-
sion methods, this might not be beneficial if the piece does not have strong
reoccurring characteristics. Similar to human sight, human perception of
sound has inefficiencies which can be utilised more effectively with lossy
compression algorithms. Two of these techniques are (Salomon and Motta,
2010): silence compression and companding. Silence compression is a
technique in which very short samples (up to three samples) are treated as
if they were silent. Companding (a word composed from compression and
expanding) refers to a technique which makes use of human perception
of sound. Sounds with low amplitudes need generally more precise sam-
ples than sounds with higher amplitudes. Therefore, the sampling rate for
higher amplitude sounds can be reduced without effecting the human per-
ception.

Robinson (1994) introduces a lossless audio compression algorithm with
Lagrange interpolation for decorrelation and RICE codes (Rice and Plaunt,
1971) for coding of the data. Josh Coalson (2019) extends upon these ideas
and introduces the FLAC compression algorithm. Next to the fixed lin-
ear predictors employed by Robinson (1994) Coalson suggests using lin-
ear predictive coding (LPC) first introduced in Rabiner and Schafer (1978).
These predictors analyse the auto-correlation of the data. FLAC applies the

Levinson-Durbin recursion (Levinson, 1946) to solve the system of linear
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equations and calculate the optimal predictor coefficients minimising resid-
uals. Finally, the residuals are coded using Rice coding (Rice and Plaunt,

1971).

This chapter gave a brief overview of related work. First, research pa-
pers directly related to lossy and lossless compression of climate data were
discussed. A thorough search of the relevant literature yielded two studies
on lossless compression of climate data. This lack of in-depth analyses is

the raison d’étre of this thesis.

Next, related work of data compression that shares similarities with cli-
mate data were presented. Our findings suggest that most of the lossless
compression algorithms apply a prediction-based compression algorithm,
while lossy compression algorithms tend to use transformation-based com-
pression methods. Further, the algorithms differ mostly in their way of
using the available information, while the information sources being used
are often the same. The results suggest that a good compression algorithm
has to have the ability to adjust to the information available and assess the

quality of the available information.
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CHAPTER 4

Data Analysis and
Identification of
Redundant Information

Decorrelation is a key step in the design of a good compression algorithm.
For successful decorrelation, it is important to understand the intrinsics
of the data to be compressed. This understanding is the reason why cus-
tom compression techniques like JPEG are more successful in compress-
ing images i.e. domain-specific data. Knowledge about the internal struc-
ture helps to identify redundant information which can then be removed to
achieve better compression factors. This chapter describes different analy-
sis techniques to achieve this understanding for climate data. The analyses
described here help to overcome the first challenge described in Chapter 1.
Section 4.1 gives a short motivation about the different analysis tech-
niques. These techniques are then described in detail in Section 4.2. This is
then followed by a description of the experimental setup in Section 4.3 and
the evaluation of the experimental resultsin Section 4.4. Finally, Section 4.5
concludes the chapter with a summary and possible future work.

4.1 Motivation

The Earth’s atmosphere is a chaotic system. While mankind now has a bet-
ter understanding of the Earth’s atmosphere than a couple of decades ago,
there are still atmospheric interactions that are not fully understood or not
known to mankind.

The goal of this chapter is to use data analysis to gain insights into the
interactions of variables. The current temperature is more comparable to

a measurement from an hour ago, than to a measurement taken last week.
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But does the relationship change for daily or monthly data? Does the inter-
action between temperature and humidity at the Equator differ from those
at the polar regions? Finding out about these relationships will help to iden-
tify types of relationships that can exist between variables. Once these are
recognised, methods can be developed that automatically recognise these
relationships.

The goal is to develop a method that can identify these types of rela-
tionships during the traversal of the data. That method then can assess the
most significant information in the immediate context to calculate a good

prediction for any data point in the data.

4.2 Proposed Methods

For the analysis of climate variables and their interrelations three different
analysis are carried out. Each of these techniques focuses on a different
relationship aspect.

First, a variance analysis is conducted. The goal of the variance analysis
is to identify variations in distribution for each variable. The analysis helps
to identify which dimension is the most important information source. The
less variance a variable has across a dimension, the easier it is to predict
along that dimension. Each data point is analysed for irregularities along
each of the dimensions. Doing this for each data point helps to identify
context-based differences e.g. changes depending on location on the globe,
time of the year or elevation level. Since datasets with several temporal
resolutions are available, these relationships are calculated for long and
short-term data. It is important to identify relationships at several time
scales, since the temporal resolution of climate data may range from hourly
data to monthly or yearly data.

Next, analyses from information theory are carried out. Foremost the
Shannon Entropy is calculated. The Shannon Entropy can be used as a
threshold for the maximum achievable bits per float for each variable. But
the Shannon Entropy does not consider interdependencies within the data.
Temporal relationships can therefore not be analysed using Shannon En-
tropy. In order to discover these kind of relationships the Sample Entropy
is calculated. Analysing the Shannon and Sample Entropy of the data will

help to set a lower limit for the achievable CR. It is important to note that
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the gained information from either entropy analyses is bound to each vari-
able and does not entail information across variables. A third experiment
is conducted to gain that information: mutual information.

Mutual information expresses the interdependency between two vari-
ables. It expresses the information gained about one variable by observing
the other. This information helps to identify how close the relationship be-

tween two variables is.

4.3 Experimental Setup

4.3.1 Data

Three datasets with different temporal resolutions are used for the anal-
yses. These datasets originate from a climate simulation run using the
ECMWF Hamburg/Modular Earth Submodel System Atmospheric Chem-
istry (EMAC) climate model (Jockel et al., 2006). They have a 128 x 64 hor-
izontal grid (longitude x latitude) and 47 vertical levels. Three different
temporal resolutions are used:

« One month (January, 2013) with 74 time steps i.e. every 10 hours
(hourly data)

- One year (2013) with 365 time steps i.e. every 24 hours (daily data)

- Fourteen years (2000-2013) with 168 time steps i.e. every month
(monthly data)

The hourly data with 10 hour temporal resolution are the original simula-
tion output. The daily and monthly data are generated by taking daily and
monthly means from the original simulation output.

The variables used for the experiments are temperature, zonal and
meridional wind as well as specific humidity. The zonal winds flow along
the latitudes, crossing each longitudinal line with a positive direction im-
plying wind flow from west to east. The meridional winds travel along the
longitudes and cross each latitude. Figure 4.1 depicts an exemplary zonal
band (NASA, 2019) along which the zonal wind is calculated. All variables

are available as single precision floating-point values.
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4.3.2 Experiments

Five experiments, the results of which are presented in the
next section, were conducted to explore the data.

Long-Term Variance Analysis. The first experiment analy-
ses the long-term relationships of all four variables. The
monthly dataset is being used for this analysis. It provides
the longest temporal information. Therefore it is the most
suitable dataset to identify long-term relationships. The

variance across each dimension for each of the data points

FIGURE 4.1 Zonal band

are calculated. In case of climate data these are: time, lati-
tude, longitude and altitude. Less variability along a dimension means that
it is a good candidate for decorrelation.

Short-Term Variance Analysis. The steps conducted for the short-term vari-
ance analysis are the same as the ones for the long-term analysis. The most
significant change is the data being used. For the second experiment, the
daily data with the highest temporal resolution is being used.

Shannon Entropy Analysis. The third experimentis conducted with all three
datasets. Since the PMF of the datasets is not known a discretization tech-
nique must be applied to identifyit. For the analysis of the Shannon Entropy
and the experiments described in the following sections, a binning strategy
is applied for discretization. Therefore, a slightly different definition of the
Shannon Entropy is being used than the one defined in Eq. 2.4:

H(X) = lim |— > Py(x;) - logy(Py(x;)) (4.1)

b—o0 vieX

where X = {x,z9,...,x,} is the alphabet of the source, b defining the bin
size and P,(-) the appropriate PMF given a discretization of X with bin size b.
Here, the Shannon Entropy is being calculated with ever increasing binning
sizes until the entropy plateaus at a certain value.

Sample Entropy Analysis. The fourth experiment is conducted to calculate
the Sample Entropy (see Eq. 2.5). Since the Sample Entropy builds upon
the Shannon Entropy a discretization of the data is necessary. Based on
the results of the previous experiment a discretization with a bin size of
50 is used. The Sample Entropy expresses the correlation within a variable

across a predefined dimension. For the analysis of the Sample Entropy the
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altitude dimension is chosen. This decision has been made based on the
results of the long-term and short-term variance analyses. The experiment

is conducted with all three datasets.

Mutual Information. Finally, the mutual information of all pairs of vari-
ables are calculated. For the analysis of the data described in Section 4.3.1

the normalised mutual information NMI is used:
MI(X,Y)
mean(H(X), H(Y))
P Liy Yj
MICXY) = Y 3 Plauy) log (P“”) (4)

r,€X ijY (:UZ) . P(:U])

NMI(X,Y) = (4.2)

where X and Y are the alphabet of each dataset, P(-) the PMF, MI(-) the mu-
tual information and H(X') the Shannon Entropy of X. The same binning
strategy for discretization as in the previous experiments with b = 50 is cho-
sen. The NMI(-) scales the results of the mutual information M /(-) between

o (i.e. no information) and 1 (i.e. high correlation).

4.4 Evaluation

The results of the previously defined experiments are presented in this sec-

tion.

4.4.1 Long-Term Variance Analysis

In the following the results of the long-term variance analysis for the
monthly dataset are presented. The results are depicted in Fig. 4.2.

Temperature. The results suggest that for temperature temporal and lon-
gitudinal information are the most stable (see Fig. 4.2a). If the data point
is around the Equator [—20 °N; +20 °N] the most stable information source
is the temporal dimension. Any data point = outside the latitude range of
r < —20°Nand x > 20 °N is more similar to its neighbouring data point on
the longitudinal dimension. A possible explanation for this finding is that
the temperature distribution is more uniform over time at the Equator than
at the poles. Another interesting finding is depicted in the last panel. For
the first 17 altitude levels ([1000 hPa; 340 hPa]) the longitudinal and temporal
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FIGURE 4.2 Long-term variance analysis on a global scale for each variable. Since
the altitude is flipped in the data, the abscissa of the last column is descending. Low
altitudes are on the far left and high altitudes on the far right.
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information have the same variance. At higher altitudes the longitudinal
information is more stable than the temporal. The drop around level 21
(100 hPa) is likely due to the tropopause which is roughly at this level.
Zonal Wind. The panels suggest that if longitudinal information is avail-
able, it should be used almost all the time for decorrelation of zonal wind
(see Fig. 4.2b). This is in agreement with the zonal wind direction depicted
in Fig. 4.1. The only exception is in the last panel, for data points at low al-
titudes (z < 540 hPa; level: 35 < = < 47). Here the data suggests using
temporal information for decorrelation might reduce prediction errors.
Meridional Wind. The meridional winds are most similar across the tem-
poral dimension (see Fig. 4.2c). In almost all cases the temporal dimension
has the least variability. Should the temporal dimension be missing, the re-
sults suggest the use of the neighbouring points on the same latitudes (third
panel from left). This is again in agreement with Fig. 4.1 for meridional wind
along the longitudes and crossing the latitudes.

Specific Humidity. The last variable analysed is the specific humidity (see
Fig. 4.2d). It is a diagnostic variable and can be derived from temperature
and water vapour. Therefore it is no surprise, that it shows similar prop-
erties as temperature. Around the Equator the smallest variance is across
the temporal dimension. Should the temporal dimension be missing it is
recommended to use longitudinal information for decorrelation (and vice
versa). Should the data point be at pressure levels 47 — 24 (i.e. > 155 hPa)
the preferred dimension should be time, otherwise the longitude is the ideal
candidate for decorrelation.

OBSERVATION 4.1 Most often the data points along the temporal and longi-
tudinal dimension are the best sources of information for decorrelation of
long-term climate simulation output. Having information about the repre-
sented information (e.g. wind direction) or calculation method for diagnos-
tic variables (specific humidity in relation to temperature) will help in the

decorrelation step.

4.4.2 Short-Term Variance Analysis

Next, the short-term variances are analysed. Due to brevity, only the plots
for temperature are depicted in Fig. 4.3 and 4.4. The remainder of the plots
can be found in Appendix A.
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FIGURE 4.3 Short-term variance analysis for temperature across time for the north-
ern hemisphere. For reasons of brevity, only the lowest altitudes are displayed.
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Temperature. Overall the variance across the temporal dimension (Fig. 4.3)
is lower with variances of up to 70 Kelvin than along the longitudinal dimen-
sion with up to 110 Kelvin (Fig. 4.4). There is high temporal variance at low
and high altitudes of the northern hemisphere. The high variance in tem-
poral dimension is not observed in the southern hemisphere (not depicted).
This difference in the northern and southern hemisphere is likely due to
the respective season for each hemisphere since January data were used.
It is common that temperatures fluctuate more during the winter months
(northern hemisphere) than during the summer months (southern hemi-
sphere).

The temporal stability at the Equator and the instability at the poles is
nicely depicted in Figure 4.4. There are high dynamics at the poles (latitudes
> 35 °N and latitudes < —35 °N), but the Equator is stable.

Fig. 4.3 also suggests that longitudinal information is more important
than latitudinal. The differences in variance seem to follow along a merid-
ional line which suggests that cells at the same latitude but neighbouring
longitude might be a good candidate for prediction. This suggests that the
results from the long-term experiment can also be seen in the short-term
data for temperature.

Zonal Wind. What is true for temperature also applies to zonal wind: The
temporal variance is half than the longitudinal variance. The results indi-
cate that temporal variance is mostly stable except for the region just below
the tropopause between 500 hPa — 120 hPa. The zonal wind is most unstable
around the Equator and moves along the latitudes.

Meridional Wind. Contrary to temperature and zonal wind, the variance of
the meridional wind is lowest across altitudes (max. ~ 80 m/s) and latitudes
(max. ~ 120 m/s). Therefore, the data point at the next altitude/latitude is
the most likely candidate for a good prediction. Spot-like patterns are seen
in variance across time at different altitudes. These patterns are similar
in northern and southern hemisphere. The variance across the latitudes is
highest just below the tropopause between 111 hPa — 520 hPa. The chaotic
pattern continues through here.

Specific Humidity. Thevariance of specific humidityislowand only appears
at the lowest altitudes. While there are higher variances around the Equator
due to their low magnitude (max. 1.2e — 5) it can be assumed that specific
humidity is mostly stable.
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OBSERVATION 4.2 Results from the long-term analysis are reappearing in
the short-term analysis. Temporal and longitudinal data are the most stable
sources of information for any given data point for temperature, zonal wind
and specific humidity.

OBSERVATION 4.3 Latitudinal data is more stable for meridional wind.
Therefore, using data points at the same latitude for the prediction of merid-
ional wind is more likely to be a successful candidate for decorrelation of
meridional wind.

OBSERVATION 4.4 The respective season has an influence on the tempera-
turevariable depending on the location on the globe. Although the temporal
dimension is often the most stable, during the winter months there is an
increase in variance compared to the summer months.

4.4.3 Entropy Analysis

The results of the Shannon and Sample Entropy analysis are depicted in
Figure 4.5. The number of bins used for discretization is depicted on the
abscissa in Figure 4.5a. With the bin size, the calculated entropy in the data
also increased. For all data variables, a plateau was reached with a bin size
of ~ 30. Although the rise of the Shannon Entropy of each dataset is slightly
different, the final plateau value is the same. The entropy for all four vari-
ables is between 12.3 and 12.5 bits. With this information the lower limit for
the CR can be calculated. For single precision floating-point numbers a CR
of 12.3/32 = .384 (i.e. CF of 32/12.3 = 2.60) might is achievable.

Sample Entropy incorporates auto-correlation for calculating the en-
tropy. The results shown in Figure 4.5b suggest that the monthly data has
a higher auto-correlation than the daily or hourly data for all of the vari-
ables. The only exception to this is the meridional wind between level 30-25.
Here the monthly data have a higher Sample Entropy than the other data,
indicating that there are more irregularities at these altitudes.

There is almost no difference in Sample Entropy of the daily and hourly
data for temperature and zonal wind. Both variables follow closely the same
curvature and differentiate only little (< 0.04) from each other. The same
can not be said for meridional wind and specific humidity, the differences
between the Sample Entropy of the daily and hourly data exceeds more

often and more significantly (~ 0.1) than with the other two variables.
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While there are two peaks at the 25 and 3 level mark (i.e. 540 hPa and
11 Pa) in the hourly and daily data for temperature, those do not appear
as significant in the monthly data. It is possible that the peak at level 3 is
caused by the polar vortex seen at high altitudes in the short-term data (see
Fig. 4.3).
OBSERVATION 4.5 The drop of Sample Entropy in the monthly data, cou-
pled with the information of a rather stable Shannon Entropy across the
three datasets, suggests that the variations in the monthly data are locally
constrained. These regions seem to span a greater area for temperature and
zonal wind, since the drop in Sample Entropy is more severe.

OBSERVATION 4.6 Temperature and zonal wind do not fluctuate often over
time, as the curvature of the Sample Entropy for the daily and hourly data

follow each other closely.

4.4.4 Mutual Information Analysis

Unlike the previous analyses, MI analysis does not search for relationships
within a variable, but between variables. The results are illustrated in Fig-
ure 4.6.

Temperature. Temperature has the highest NMIwith specific humidity and
zonal wind. The NMI gets as high as 0.6 at certain altitudes. The interdepen-
dence between temperature and specific humidity is expected, since specific
humidityis derived from temperature. The high correlation with zonal wind
is unexpected. Since temperature is correlated with both variables, it is no
surprise that the experiments also show a high correlation between zonal
wind and specific humidity. The NMI of temperature and zonal wind follow
the same curvature as the NMI of temperature and specific humidity. For
low altitudes (i.e. levels > 33) the NMI between temperature and specific
humidity is high. At altitudes above the tropopause (levels < 25) there is a
sudden increase in NMI between zonal wind and specific humidity.

Figure 4.6a depicts the time average of NMI. There is a clear seasonal
dependency between temperature, zonal wind and specific humidity. Dur-
ing the spring/summer months of the northern hemisphere (from March
till August), there is a valley in the NMI between temperature and specific
humidity, while the NMI of temperature and zonal wind peaks at that time

period. The seasonality of this relationship can be observed in the monthly
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FIGURE 4.5 Entropy Analysis: (a) Shannon Entropy for different bin sizes and (b)
Sample Entropy along altitude levels. Since the altitude is flipped in the data, the
abscissa is descending. Low altitudes are on the far left and high altitudes on the far
right.
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(a) NMI across time for each altitude
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FIGURE 4.6 NMI between data variables for each dataset (a) shows the NMI across time at each altitude and (b) shows the NMI across
altitudes at each time step.
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data depicted in Figure 4.6a. There is a yearly reoccurring pattern. The NMI
between temperature and meridional wind is non-existent with values rang-
ing between 0.05— 0.1 across the temporal dimension and between 0.05 — 0.2
across the altitudes. Although the NMI with meridional wind is low, there
is a seasonal pattern observable. Two peaks are reoccurring yearly at the
summer months and at the beginning of the year.

Zonal Wind. The zonal wind has a seasonal correlation with temperature
and specific humidity along the temporal dimension. The pattern visible
in the daily data is yearly reoccurring. The peak is reached in the sum-
mer months of the northern hemisphere. The two local minima are often
reached at the beginning of spring and mid-autumn of the northern hemi-
sphere. Generally, the correlation of zonal wind with temperature and with
specific humidity is not as strong as the correlation between temperature
and specific humidity. An exception to this occurs at high altitudes (levels
< 20). At these altitudes the correlation between zonal wind and specific
humidity peaks with ~ 0.4 for the daily and monthly data and ~ 0.53 for the
hourly data. The correlation between zonal wind and specific humidity is

the third strongest across the temporal dimension.

Meridional Wind. The meridional wind has the lowest correlation with any
of the other variables. There is no difference for the temporal or the vertical
dimension. At correlations across time the high altitudes seem to be higher
correlated than the lower altitudes, but still below all other correlations with
a NMI < 0.2.

Specific Humidity. Since specific humidity is a diagnostic variable and can
be derived from temperature it shares a lot of its similarities with tempera-
ture regarding NMLI. It is correlated with zonal wind, which increases with
the altitude. At high altitude levels (i.e. levels 23-7 [130 hPa — 1 hPa)) the
correlation between specific humidity and zonal wind is higher than that of
specific humidity and temperature. However, this connection only occurs
when considering the NMI across time (Fig. 4.6a). For the NMI across alti-
tudes (Fig. 4.6b), the NMI to temperature dominates the NMI with the zonal
wind.

OBSERVATION 4.7 There is a clear seasonal correlation of temperature with
zonal wind and with specific humidity. This relationship is reoccurring over
several years based on the results of the monthly data. Additionally, the
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monthly data shows the highest NMI compared to the other datasets. The
development of the temperature variable seems to be a good indicator for

the prediction of zonal wind and specific humidity.

OBSERVATION 4.8 At high altitudes there is a significant correlation be-
tween zonal wind and specific humidity. A seasonal pattern similar to the

one of temperature is appearing in the zonal wind data.

4.5 Summary

Different data analysis techniques are used in this chapter to identify rela-
tionships between and within variables. Five experiments are conducted to
learn about the interaction of climate variables.

First, long-term correlations are studied. To this end, a decade of climate
simulation is analysed. The experiments show that temporal and longitu-
dinal dimensions are the best sources of information. It is indicated that
the data point along these dimensions fluctuate less and are therefore more
suitable for context-based predictions.

Second, a short-term variance analysis is conducted. The results of the
long-term analysis are confirmed here. Data points along the temporal di-
mension are the most stable information source for predictions, while those
at the horizontal grid depend on the variable.

The third and fourth experiments are carried out to understand the en-
tropy of the data. The result of the Shannon Entropy shows that the maxi-
mum achievable compression ratio (CR)is 0.3875 (compression factor (CF) =
2.58). The Sample Entropy implies that there is high auto-correlation in the
data (especially for the monthly data). These results support that a better CR
than 0.3875 are achievable if auto-correlation effects are considered during
the decorrelation.

Finally, the mutual information between the variables is examined.
There is a seasonal correlation of temperature with zonal wind and with
specific humidity. The correlation also extends onto zonal wind and specific
humidity, specifically at high altitudes.

Overall, the results show that there are preferred dimensions which are
stable for information gathering. These dimensions should be preferred
when predicting data points. However, the experiments also show that the

position of the data point on Earth plays a strong role in determining the
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context which to be used for the prediction. It is therefore recommended
not to use a fixed "template”, but to build the context iteratively and change
it on-the-fly. This ensures that information from all dimensions is used.

4.6 Code and Data Availability

The data of the environmental indices and an implementation of the anal-
ysis methods described above are available under GNU GPLv3 license at
https://github.com/ucyo/climate-data-analysis (Cayoglu, 2019a).
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CHAPTER 5

Data Decorrelation using
Information Spaces and
Contexts

This chapter addresses challenges one and four, defined in Chapter 1. The
concept of Information Spaces (IS) and its components Information Con-
texts (IC) are presented. IS and IC help to adapt the compression algorithm
to the data to be compressed by identifying new patterns and relationships
during the compression process.

In prediction-based compression all data points are processed in a pre-
defined sequence. Often, the data is traversed according to the layout in
which it is mapped on the disk. This means that already at the start of the
compression procedure, information that can be used for each prediction
is fixed. In addition, a reorganisation of the data, e.g. by transposition, can
lead to a significantly different compression factor than with the original
data.

Especially, since the results in the previous chapter suggest, that a more
successful decorrelation is possible if the context used for the prediction is
adjusted for each data point. The results presented in this chapter have been
published in parts in Cayoglu et al. (2218c).

After a short motivation in Section 5.1 the proposed method is intro-
duced in Section 5.2, the experimental setup is described in Section 5.3, and

the experiments are evaluated in Section 5.4.
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FIGURE 5.1 Adjacent data points for a d-dimensional object according to Eq. 5.1.

5.1 Motivation

A good decorrelation method is crucial for a good compression algorithm.
But how to decide which neighbouring cells to use for prediction? The num-
ber of data points at distance n in a d-dimensional object is given by the
following formula:

a(n,d) = (2n+1)* -1 (5.1)

where the first term (2n+1)? describes the n neighbouring data points before
and after the data point to be predicted along each dimension (see Fig. 5.1).
Since climate data is structured as a tesseract the equation above results in
a(1,4) = 3* — 1 = 80 adjacent data points and potential information sources.
If not only adjacent data points, but data points at intermediate distances
are considered e.g. adjacent cells of adjacent cells a(2,4) = 624, the number
of potential data points grows very fast. Therefore, an adaptive method for
the selection of good neighbouring cells is needed. The method proposed in
this chapter provides this selection.

5.2 Proposed Method

The proposed method adapts for each data point the context on which its

prediction is based. IS is defined as follows:

DEFINITION 5.1 (information space) The IS of a data point s; to be predicted
is the set of already traversed data points s;, € S within a certain range r of

Sie

IS(s;) = {sp|Vsp € Sf:al —r <al <a\+r} (5-2)
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where o, defines the coordinate position at dimension m of element n in
sequence S. The restriction r is necessary to locally constrain the available
information for the prediction of s;.

The IS can be divided into several components to isolate the informa-
tion contained along the various dimensions. These components are called
information context (IC):

DEFINITION 5.2 (information context) The ICs split the IS into different sub-
sets based on their information level for each dimension and if applicable
to each combination of dimensions.

d
IC](si) = {sr: D _laj = aj] =1}, (5-3)
=0
with 0 < p < (”ll) being the index position of /C; atlevel [ and | - | defined as
follows:

1 if Pistrue
[Pl =

0 else

Each IC contains information along one or more dimensions. Each IC
within a level can contain overlapping data points with other ICs, but none
is a subset of the other. This distribution of data allows predictions to be
made on the basis of information from different dimensions and later to

merge them into a single consolidated prediction.

EXAMPLE: INFORMATION SPACE AND CONTEXT

Given a grid of size 3 x 4 and the following sequence S defined by its
coordinate positions on a grid: S = ((O, 1),(0,2),(0,3),(1,0),(1,2),(1,3),
(2,0),(2,1),(2,2),(1,1),(0,0), (2, 3)) For the prediction of s;, at position
(1,1) the resulting IS is depicted in Figure 5.2a. This IS consists of the five
ICs depicted in Figure 5.2b. These ICs can then be used to improve the

prediction of the value at 5,9 by using one of the consolidation methods.
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FIGURE 5.2 The IS for the example above is depicted in (a). The value to be predicted
is depicted as a dotted x and the values known at the time of prediction are marked
with a filled x. The IS can be split into five ICs on two levels. (b) The ICs can then be
used to predict the value. This figure is adapted from Cayoglu et al. (2018c).

5.2.1 Consolidation of Predictions

Each IC calculates a prediction. These predictions then are consolidated
to a single prediction. Therefore, appropriate consolidation methods are

necessary. Five different techniques are implemented and tested:

- Average (AV)
Takes the average of the IC predictions.
+ Minimum (Min)
Takes the minimum of the IC predictions.
- Maximum (Max)
Takes the maximum of the IC predictions.
- LastBest (LB)
Tracks which IC was best for s;_; and uses its prediction.
- Reforced (R)
ICs are sorted by the number of data points used from each dimension
and given a preference list of dimensions, the IC with the most data
points from the most preferred dimension is used.

The motivation behind using Minimum and Maximum for consolidation
is to find out if the predictor has a bias towards one or the other. With the
introduction of IS and IC, as well as methods for consolidation, the traversal
methods are now described in more detail.
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FIGURE 5.3 Four different traversal path tested during the experiments. This figure
is taken from Cayoglu et al. (2018c).

5.2.2 Traversal Methods

In order to ensure an ideal use of the IS a closer look at the traversal methods
is necessary. Complementary traversal methods could improve predictions
if more similar data points are traversed back to back. For this purpose
three alternative traversal methods, besides the usual linear traversal, are

suggested in this section (an example for each traversal method is given in
Fig. 5.3):

Linear Traversal. The linear traversal processes the data along a predefined
order of dimensions. For the given two dimensional example (Fig. 5.3) the

order is to first traverse the z-axis and then the y-axis.

Chequerboard Traversal. The sequence based on the chequerboard traver-
sal is structured like a mosaic. First every other value along the preferred
dimension is traversed. Afterwards the remaining data points are traversed.
As in the linear traversal an order must first be determined for the dimen-

sions. In the example the order of dimensions is first z-axis and then y-axis.

Blossom Traversal. This traversalis structured like a blossoming rose which
spreads around the starting point. Here, too, an order must be determined
in which the dimensions will be processed. In the example the traversal

follows a clockwise rotation starting at 12 o’clock.
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Block Traversal. The block traversal follows a sequence around the starting
point with the aim of building fully connected blocks. In the two dimen-
sional case this may look like a spiral around the starting point. Again, an

order for the dimension is considered.

5.2.3 Predictors

Each IC calculates a prediction for the data point to be predicted. There are
several predictors that can be used for this. The following 12 predictors are

implemented and evaluated in the experiments:

- Akumuli from Eugene (2017)

- LastValue from Goeman et al. (2002)

» Stride, TwoStride, and Stride Confidence from Goeman et al. (2002)
- Ratana 3 and Ratana 5 from Ratanaworabhan et al. (2006)

Pascal 1,Pascal 2,...,and Pascal 5(see Appendix B)

The details for the individual predictors can be found in the respective
articles. Pascal = are predictor based on the Lagrange polynomials detailed
in Appendix B. The different variations of the predictors Ratana x and Pascal
x define the number of elements used for the prediction. In case of Ratana

3 this would be: S!™3 = s;_35,_95;_1.

5.3 Experimental Setup

This section describes the simulation data used in the experiments and
moves on to the metrics for evaluation and concludes with a description
of the experiments.

5.3.1 Data

The data used for the compression experiments in this chapter is obtained
from a climate simulation created by the ECMWF Hamburg/Modular Earth
Submodel System Atmospheric Chemistry (EMAC) model (Jockel et al.,
2006). It consists of a 128 x 64 grid (longitude x latitude) with 47 vertical

levels. The following temporal resolutions are used:

- One month (January, 2013) with 74 time steps (every 10 hours)

66



TABLE 5.1 Variables available in each dataset being used in the experiments.

Variable Abbreviation
Specific Humidity Spec. Hum.
Relative Humidity Rel. Hum.
Pressure Press.

Dry Air Temperature Temp.
Zonal Wind (W-E) Wind (W-E)
Meridional Wind (S-N) Wind (S-N)

« One year (2013) with 365 time steps (every 24 hours)
- Fourteen years (2000-2013) with 168 time steps (every month)

The model output is given as single precision floating-point values. The

selection of variables used are shown in Table 5.1.

5.3.2 Metrics

Metrics are necessary for evaluating the experimental results. Three metrics
are used for the evaluation of the experiments: leading zero count (LZC),
compression ratio (CR), and standard deviation (SD). LZC is a measure for
the quality of the prediction. It represents the number of bits not needed to

be saved on disk:
LZC(r) = #Significant Zeros of  + 1 (5-4)

with r representing a residual according to Equation 2.14. Another metric
used in the evaluation of the experimental results is the CR of the files* (see
Eq. 2.17).

Further, the standard deviation (SD) of the LZC is calculated. The SD
gives an indication for the vulnerability of the prediction to the structure of
the data. The larger the SD, the more vulnerable the predictor is.

*Please note that this is not the final compression ratio, since the coding process creates
additional overhead.
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5.3.3 Experiments

Several experiments are conducted to investigate each step of the proposed

algorithm.

Expt 1: Influence of Starting Point. First, the influence of different start-
ing points on the compression rate are analysed. For this purpose, random
blocks' with 1024 data points are build from each data set and for each vari-
able. Then, ten starting points are chosen randomly and the blocks are com-
pressed. This setup provides unbiased information on whether and how
susceptible each predictor (and therefore the compression algorithm) is for

changing starting positions of the applied traversal.

Expt 2: Traversal Order of Dimensions. Since most prediction methods use
the linear traversal method (see Chapter 3), the second experiment analy-
ses how the order of dimensions influences the CR. First, the data is split
randomly into blocks with 1024 data points. Then, a list of every possible
dimension ordering is generated. Afterwards, the data is traversed using
linear traversal according to each of the permutations from the former list.
This experiment provides information if the predictors need to adapt to the
data.

Expt 3: New Traversal without the use of Information Spaces. In the third
experiment the newly proposed traversal methods are tested. The predic-
tors are not adjusted to the new traversal methods. Since most of the pre-
dictors consider the traversal sequence as a data stream, this change should

cause changes in CR.

Expt 4: New Traversal with the use of Information Spaces. Finally, experi-
ments with fully adjusted predictors to information space and the various
consolidation methods are conducted. The Stride predictor is used as a fall-
back predictor, if no IS can be constructed (e.g. at the start or in case of an
empty IC).

TMost compression algorithm split the data into several blocks and compress each
separately to save time during decompression by decompressing only the requested blocks
of data.
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TABLE 5.2 [Expt 1] LZC£SD across predictors with varying starting points for daily,
monthly and 10h dataset. The three highest SD for each dataset are highlighted.

Daily Monthly 10h
Akumuli 11.550 £ 0.041 12.890 £0.036  12.730 £ 0.029
Last Value 13.040 + 0.004 14.200 % 0.003 14.310 £ 0.003
Stride 13.300 £+ 0.007 14.950 £+ 0.006 14.240 £ 0.005

Stride Conf 10.770 + 0.056

11.190 + 0.124

13.640 + 0.053

Stride 2 12.360 = 0.011 13.590 + 0.010 13.800 % 0.006
Ratana 3 12.760 + 0.048 14.240 4= 0.038 13.840 + 0.024
Ratana 5 12.760 4+ 0.048 14.240 + 0.039  13.840 +0.023
Pascal 1 13.040 £ 0.004 14.190 + 0.003 14.310 £ 0.003
Pascal 2 11.420 £ 0.005 12.570 £ 0.005 12.970 + 0.004
Pascal 3 13.150 £+ 0.009 14.780 £+ 0.008 13.880 £ 0.006
Pascal 4 12.510 £ 0.011 14.200 + 0.010 13.070 + 0.008
Pascal 5 12.050 £ 0.014 13.450 £ 0.014 12.380 + 0.010

5.4 Evaluation

In this section the results of the experiments are presented and evaluated.

5.4.1 Expt I: Influence of Starting Point

The influence of different starting points on the LZC is depicted in Table 5.2.
The achieved LZC seems to be independent of the initial value for most pre-
dictors since each SD is very low. The Stride Conf (SC) predictor has the
highest SD in the monthly data record. Here, the LZC is 11.19 with a SD of
0.124 which is about 1.1%. Overall, the SD seems very low for any of the pre-
dictors, but the SC and Ratana x predictors seem to be the most prone. The
SD of the remaining predictors are usually around 3%o. This is a magnitude
lower than the ones of SC and Ratana.

This sensitivity can also be observed in the difference plots depicted in
Figure 5.4. At Akumuli and Pascal the two starting points of (11,7) and (5, 3)
the different sequences are clearly visible. After a short time, the predictors
calculate the same predictions as if the starting point had not changed. This
is not the case with Stride Conf and Ratana. The differently calculated pre-

dictions are much more scattered and do not show a uniform pattern.
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Temp:LZC(so = (0, 3,11, 7)) - LZC(so = (0, 3, 5, 3)) at layer [0, 3, y, x]
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FIGURE 5.4 [Expt 1] Difference plot of LZC for two different starting points. The start-
ing points are at (11,7) and (5, 3) and the temperature variables is used. Difference
plots are unitless. This figure is taken from Cayoglu et al. (2018c).
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OBSERVATION 5.1 There is a steady increase of SD of Pascal x with increas-
ing x. The more values are used for the prediction, the higher the fluctuation.
This is valid across all datasets. The reason for this is that high order poly-
nomials such as Pascal 4 and Pascal 5 lead to large local fluctuations and
therefore worse extrapolation.

OBSERVATION 5.2 The starting point has little to no effect on the compres-
sion factor or rather the LZC. SC and the Ratana predictors seem to be the
most prone to starting point changes. Overall, all predictors show good
stability for starting point changes.

5.4.2 Expt 2: Traversal Order of Dimensions

In the second experiment the effects of the traversal order are analysed
(see Table 5.3). The standard deviation increased several magnitudes, which
confirms that a simple linear traversal through the data in an arbitrary or-
der does not lead to success. In comparison to Expt 1 the LZC decreased
by 10 — 40% and SD increased significantly. SD reaches rates higher than
21% for Pascal 1. These fluctuations are illustrated in Figure 5.5. The figure
suggests that the traversal order of the dimensions greatly influences the
compression rate. This explains the high variance in the LZC depicted in
Table 5.3. The LZC of the predictions are wildly disrupted for Pascal 3 and
Ratana 3. The traversal order (9, 1, 2) seems to be almost consistently better
than the order of (1, 2, @) for Akumuli.

OBSERVATION 5.3 The predictors are more prone to changes regarding
the traversal direction. The SD is several magnitudes stronger than with
changes of the starting point. This vulnerability is shown by all the predic-
tors. This supports the premise, that the context from which the predictions
are made, must adapt to the data.

5.4.3 Expt 3: New Traversal without the use of Information
Spaces

The effects of the various traversal methods on the LZC are analysed in

the third experiment. In most cases the predictors are performing best us-

ing linear traversal. Only in two cases one of the new traversal methods

performs better: The Akumuli predictor reaches a LZC of 5.360 using block
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Temp:LZC(order = 0.2.1) - LZC(order = 2.1.0) at layer [0, 3, vy, x]
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FIGURE 5.5 [Expt 2] Difference plot of LZC for traversal orders (0, 1, 2) and (1,2,0).
This figure is taken from Cayoglu et al. (2018c).
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TABLE 5.3 [Expt 2] LZC£SD across predictors for all possible dimension orders using
linear traversal for daily, monthly and 10h dataset. The three highest SD for each
dataset are highlighted.

Daily Monthly 10h
Akumuli 9.90 £+ 0.98 9.81 +£1.09 10.70 + 0.57
Last Value 10.82 +1.59 10.824+1.55 10.87 £+ 1.90
Stride 10.95 4+ 1.43 11.26 £ 1.50 10.71 £ 1.82
Stride Conf 9.53 +0.68 9.50 £+ 0.66 9.88 +1.00
Stride 2 10.27 £1.48 10.13 +1.56 10.24+£1.88
Ratana 3 10.77 £ 1.19 10.79 + 1.38 10.85 £ 1.60
Ratana s 10.77 £ 1.19 10.79 £1.38 10.84 £1.60
Pascal 1 10.82 £1.59 10.82+1.55 10.87 4+ 1.90
Pascal 2 9.30 + 1.47 9.17 £+ 1.58 9.37+1.83
Pascal 3 10.56 4 1.22 10.86 =1.40 10.07 + 2.03
Pascal 4 9.69 4+ 1.27 9.87+1.45 9.25 4+ 2.00
Pascal 5 8.85 £ 1.27 9.13+£1.40 8.34 £+ 2.17

traversal compared to 5.213 using linear traversal. Stride Conf reaches a
LZC of 11.990 using block traversal compared to 11.843 using linear traver-
sal. This suggests that the linear traversal (given the correct ordering) is a

safe choice.

Figure 5.6 depicts the maximum reached LZC for each variable across
predictors for the monthly dataset. While the linear traversal is several bits
better than the other traversal methods, the results suggest an order for
the other traversal methods: Block traversal is better than Blossom traver-
sal, and Blossom traversal is better than Chequerboard traversal. There are

several reasons for this:

Chequerboard. Due to the usage of every other data point in the first half
of the algorithm (see Section 5.2.2) the data locality of the points in the
sequence is scattered. This has more significance at the borders of the data
cube since a jump might occur very often depending on the size of each
dimension. The value differences caused by a jump from a long dimension
to a smaller dimension can be greater than those between dimensions of

the same size, since the travelled distance is greater.
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FIGURE 5.6 [Expt 3] Depicted is the maximum reached LZC for each variable in the
daily dataset without the use of IS. This figure is taken from Cayoglu et al. (2018c).

Blossom vs Blocks. While the difference between both traversal algorithms
is small, the data suggests that block traversal is reaching higher LZCs on
average for the tested predictors. The reason for this is the building and
prediction structure used by the block traversal. The number of interpola-
tions compared to extrapolations is higher in the block traversal than in the

blossom traversal.

5.4.4 Expt 4: New Traversal with the use of Information
Spaces

Finally, the proposed method is evaluated in combination with the new
traversal methods. An overview of the overall results is given in Table 5.4.
The LZC increases by 9.6 + 0.4 % and the SD decreases by 23.5 + 0.9 % on av-
erage. For Pascal 5 the LZC climbs from 9.4 to 12.4 bits (+31.4%, 10h dataset,
LB consolidation) while the effective SD declines by 5.1%.

Performance of Individual Predictors. Next, all predictors are ranked by
their LZC performance on each dataset. Each predictor compressed the
data twice. Once with and once without the use of IS and the respective
consolidation methods (see Section 5.2.1). The results are given in Table 5.5.
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TABLE 5.4 [Expt 4] Changes on average due to the application of IS for each dataset
with linear traversal

10h daily monthly

ALZC 12.26% 9.03% 7.60%
ASD  —1291% —29.17% —34.72%

TABLE 5.5 [Expt 4] Ranking of individual predictors for each dataset. Due to reasons
of space the Pascal x predictor is abbreviated with Px. The consolidation method is
given in round brackets, if the predictor used the proposed method.

10h daily monthly
Predictor LZC Predictor LZC Predictor LZC
1. P2 (LB) 13.29 1.P3(LB) 13.33 1.P3(LB) 15.88
2. P3(LB) 13.13 2.P2(LB) 13.26 =2.P3(R) 15.76
3. P1(LB) 13.00 3.P3(R) 13.11 3.P4(LB) 15.75
17. P1 12.30 16. P2 12.48 12.P2 14.86
17. Last Value 12.30 18. Stride 12.47 13.Stride 14.84
23. P2 12.11 19.P1 12.40 14.P3 14.62

The highest LZCs are achieved by predictors using IS with 15.88 (monthly
dataset), 13.33 (daily dataset) and 13.29 LZCs for the 10h dataset. These re-
sults are achieved with the Last Best (LB) consolidation method by Pascal 3
(for the monthly and daily dataset) and Pascal 2 (10h dataset).

The best predictors not using IS are ranked 12th (14.86 LZC, monthly),
16th (12.48 LZC, daily) and 17th (12.30, 10h) overall. While the best predictor
for the monthly and daily dataset is Pascal 2, the best performance for the
10h dataset is achieved by Pascal 1.

Using IS helps Pascal 3 to improve the LZC from 11.40 to 13.13 LZC for
the 10h dataset. It jumped from 50th to the 2nd place in the ranking. This
is a huge gain considering the data are single precision values and the goal
is lossless compression.

The results for each consolidation and traversal method for the daily
dataset are presented in Figure 5.7. Table 5.8 lists the CR for each variable.
For reasons of brevity, only the results of the daily dataset are displayed,
since the results of the monthly and 1oh datasets are similar.
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FIGURE 5.7 [Expt 4] LZC and SD of predictors using IS and not IS. Depicted are the mean leading zero counts/standard deviations across
all variables for the daily dataset. Each bar represents a consolidation method described in Section 5.2.1 with SQ being the common

method without the use of IS. This figure is taken from Cayoglu et al. (2018c).
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TABLE 5.6 [Expt 4] LZC comparison (higher is better) of proposed consolidation meth-
ods and common method (SQ) with linear traversal. These results are obtained using
the daily dataset.

Block Blossom Cheq. Linear

AV 70.69% 76.63% 67.04% | 77.26%
LB 90.85%  105.82% 80.48% | 107.55%
Max 73.08% 83.40% 65.86% | 83.82%
Min 83.30% 89.74% 66.41% | 90.16%
R 88.60%  100.77% 69.73% | 105.07%

SQ  64.83% 69.70% 66.32% | 100.00%

Comparing of Traversal Methods. In the following, the compression
method using linear traversal and no IS is defined as the common method.
The relative differences for each traversal method coupled with each con-
solidation method using IS compared with the common method is given in
Table 5.6 for the LZC and in Table 5.7 for the SD. The result of the common
method is depicted in the lower right corner.

The linear traversal delivers better LZC results than all the other traver-
sal methods. The LB consolidation is the best performing consolidation
method no matter which traversal method is used. Therefore, it is no sur-
prise that using LB for consolidation and linear traversal end with the high-
est increase in LZC on average across all predictors with 7.55%. The LB con-
solidation also has less fluctuation in its results than most other traversal
methods. Table 5.7 shows a reduction in SD of almost 50% for LB using lin-
ear and block traversal. The results are interesting since the order of perfor-
mance suggested in Section 5.4.3 of Block > Blossom > Chequerboard does
not seem to be valid any more. Chequerboard still performs worst, but the
Blossom method outperforms Block in every case regarding the LZC.
Maximum and Minimum Consolidation. The Maximum and Minimum con-
solidation methods are introduced to gain information about possible biases
of the predictions. Though the LZC of both methods is similar, the SD of
Maximum is many times worse than that of the Minimum. Using Block
traversal the SD of the Maximum method increases by a factor of three
compared to that of the Minimum. This indicates that the predictors are

somewhat biased against the minima.
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TABLE 5.7 [Expt 4] SD comparison (lower is better) of proposed consolidation meth-
ods and common method (SQ) with linear traversal. These results are obtained using
the daily dataset.

Block Blossom Cheq. Linear

AV 214.50% 167.36% 195.66% | 178.82%
LB 50.47% 63.67% 223.30% | 50.66%
Max 253.35% 212.16% 537.39% | 215.39%
Min  80.04% 87.71% 316.41% | 95.48%
R 112.90%  122.96% 418.52% | 60.37%

SQ  168.09% 194.27% 201.06% | 100.00%

Performance per Variable. In this section the performance of IS with re-
spect to each individual variable is discussed, since the performance might
depend on the variable under consideration. The results are represented in
Table 5.8. A comparison of the best performing IS and the common method
is depicted in Figure 5.8. In this comparison, there is not a single dominat-
ing consolidation method. The Reforced (R) and LB consolidation methods
achieve the best CR for different variables. LB performs best regarding wind
fields and the pressure variable. R performs best regarding humidity and
temperature. There is no clear winner, but they always share the first two
places among themselves. It should also be noted, that if LB is not perform-
ing best, it is always within < .005 bits. This is not the case for R. Here, the

difference is on average ~ 0.113 bits.

OBSERVATION 5.4 Given the results of the previous experiments and the
fact that LB is always close to R in cases where it is only the second best con-
solidation method, the experiments suggest using LB as the standard con-
solidation method and the linear traversal method as the standard traversal

method in the future.

5.5 Summary

This chapter analyses the performance of different prediction-based com-

pression algorithms on climate data.

78



TABLE 5.8 [Expt 4] Highest achieved compression rate using the best traversal and
prediction method per variable for the daily dataset.

Spec.  Rel. Wind Wind
Press. Hum. Hum. Temp. (N-S) (E-W)

AV 0.376  0.659 0.673 0.520 0.736  0.795
LB 0.337 0.623 0.644 0.464 0.681 0.740
Max 0.350 0.657 0.671 0.512 0.729 0.775
Min 0375 0.654 0.673 0.508 0.725 0.786
R 0.360 0.619 0.641 0.459 0.692 0.750
SQ 0.381 0.631 0.655 0.488 0.713 0.772
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FIGURE 5.8 [Expt 4] LZC per variable using the best traversal and prediction method
per variable for the daily dataset. This figure is taken from Cayoglu et al. (2018c).

The results show that changing the starting point of the compression al-
gorithm has only negligible effects on the compression rate, while changing
the traversal direction can influence the compression rate significantly. In-
formation Spaces (IS) introduced in this chapter suggest that with the help
of IS it is possible to improve the predictions of each predictor. More im-
portantly, the stability of the predictions are increased. The Information
Contexts which define the Information Space help consolidate information
from several dimensions. This results in higher quality forecasts with less
fluctuation than that of the common method.
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The advantages of the proposed method are higher stability and better
compression ratios. The use of IS increases the complexity of the process.
The calculation of IS in each step is memory intensive and creates an over-
head. However, the potential advantages of this new model have not yet
been exhausted.

There are still different optimisation possibilities. For example, possible
weights can be considered which can be used within the Information Con-
texts for the prediction. The individual Information Contexts can be eval-
uated by calculating a grading factor (such as information density) which
allows deciding which IC to use or to avoid. The different layers of ICs could
also be considered separately during the grading process. However, the
current configuration achieves already a 10% improvement on LZC and de-
creases the standard deviation of the compression results by over 20% on
average. The use of Information Spaces offers new possibilities and levers
to further increase compression rates and gain independence from the in-
ternal structure of the data.

5.6 Code and Data Availability

The data and an implementation of the concepts described in this chap-
ter are available under GNU GPLv3 license at https://github.com/ucyo/
informationspaces (Cayoglu, 2018a).

80


https://github.com/ucyo/informationspaces
https://github.com/ucyo/informationspaces

CHAPTER 6

Data Approximation
using ARIMA Models

The concept of IS introduced in the previous chapter helps adapt the com-
pression algorithm to the data being compressed. In this chapter a method
for lossy compression of time-series data is presented. This makes it possi-
ble to store existing knowledge about the interactions of climate variables
in the encoder using established climate indices. Therefore the encoder can
use this information to decorrelate the data. The contribution of this chap-
ter helps tackle the third challenge described in Chapter 1. The results pre-
sented in this chapter have been published in parts in Cayoglu et al. (2017).

6.1 Motivation

Here, options for compressing environmental indices by using a statistical
method based on the Auto Regressive Integrated Moving Average (ARIMA)
model introduced in Box and Jenkins (1976) are investigated. The ARIMA
model helps identify interdependencies in the dataset. The introduced
method shows that it is possible to improve the accuracy of lossily com-
pressed data by applying an adaptive compression method which preserves
selected data with higher precision. It takes advantage of the interdepen-
dencies of the model and improves the correlation between the original and
reconstructed data while using negligible more storage. Established envi-
ronmental indices are saved using a lossy compression method for later use
by the encoder. The indices are being used for seasonal forecasting of rain-
fall, temperature and monsoon precipitation. These indices help improve

the decorrelation performed by the encoder.
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FIGURE 6.1 Flowchart of data compression using the proposed method (ARIMA
approach) compared to the direct approach. This figure is taken from (Cayoglu et al.,
2017).

6.2 Proposed Method

Two different approaches are used to obtain compressed indices. Figure 6.1
illustrates both approaches. The proposed method using an ARIMA model
is depicted as ‘ARIMA approach’. The second approach illustrates the usual
process by applying compression directly on the indices and is described as

‘Direct approach’.

After calculating the indices an ARIMA model is build for each index.
The results from the ARIMA model are then compressed. After this step

several data points are selected by replacement methods. These data points
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are then replaced by ones with higher precision. The following sections
describe the ARIMA model, the applied compression method, and the avail-

able replacement methods.

6.2.1 Model

The ARIMA model tries to find interdependencies in the dataset and was
first introduced by Box and Jenkins (1976). It assumes that each datum in
a time-series is dependent on its previous values and can be expressed by
a function of its previous values. Because of the seasonal dependency in
weather dynamics the proposed method uses a seasonal ARIMA model
(Chattopadhyay and Chattopadhyay, 2014) for monthly and the original
ARIMA model (Box and Jenkins, 1976) for daily data. The seasonal ARIMA
model is being described by the following notation:

ARIMA(p,d,q)(P, D, Q)

with (p, d, ¢) representing the non-seasonal auto-regressive (p), difference
(d)and moving-average (¢) order and (P, D, Q) the equivalent seasonal order
with period length s.

The general equation for seasonal ARIMA is as follows:
O(B*)¢(B) (e — p) = O(B*)0(B)ey (6-1)

with z, representing the target value at time ¢, i« the expected mean value of
the data, ¢, the error term of the model, and B* the backpropagation with

Bfz; = z;_;, and following components:

Seasonal AR : <D( =1—-®B°—-.. - dpB*
SB) = 1— 6B — - — 4, B

Seasonal MA : @( =1+6,B°+ -+ 6oB?*
MA :0(B)=1+6,B+ - +0,B°

with i representing the time step before the target value, $(B*) the seasonal
auto-regressive (AR) parameter, ¢(B) the AR parameter, ®; the seasonal AR
coefficients, ¢; the AR coefficients, ©(B*) the seasonal moving-average (MA)
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parameter, 0(B) the MA parameter, O, the seasonal MA coefficients and 6,
the MA coefficients of the model. The (partial) auto-correlation function
(ACF)is used for analysing the data and the selection of the range of AR and
MA parameters. ACF is defined as follows:

ACF — Z?:kﬂrl (}? - Y)(}ifk - ?) (6.2)
Y (Y —Y)?

with k € Nrepresenting the temporal lag, Y, time-series with start at time
tand Y the mean value of the time-series. The coefficients ®;, ¢;, ©; and 0,
are optimised using the Akaike’s Information Criterion (AIC) introduced in
Akaike (1974).

6.2.2 Compression

The zfp compression method introduced in Lindstrom (2014) is being used
for the compression of the indices. It has already been applied successfully
on climate data (Baker et al., 2016) and supports lossy as well as lossless data
compression. The following notation is being used throughout the thesis:
zfpPR, where PR denotes the precision of the applied compression. In case of
single precision floating-point numbers, a lossless compression would be
denoted as zfp32.

6.2.3 Replacement Methods

The proposed ARIMA method improves compression by replacing several
data points by ones with higher precision. Those points are chosen by the
replacement methods described in this section.

Let 2 = 2828 ... 2% be a lossily compressed time-series with b represent-
ing the bits preserved from the original time-series. A lossless compression
for single precision floating-point numbers would be depicted as z3? while
the most lossy compression would be z!. Further, let & € N be the number
of data points to be replaced, let [ € N be the number of additional pre-
cision bits to be saved and block size bs = max{p, ¢} represent either the
auto-regressive or moving-average order of the ARIMA model. The param-
eter bs helps identify data contributing to the calculation of a datum z?. The
updated time-series is represented by & = 7125 . .. Z,,. Further on let sort(X)
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be the sorted set of X, argsort(X) the arguments of the sorted set of X and
S(t, X) the t previous values of each element of X:

sort(X) = {:L‘l |2 <y Ny € X} (6.3)
argsort(X) = { argw; | x; <z ANy € X} (6.4)
S(t,X):{x—jUgt/\jeN/\xeX} (6.5)

The algorithm differentiates between the following methods to choose

the data points being replaced.

First. The first & values are replaced.

b (6.6)

x;  else

. {x?“ ifi <k
Even. The k values being replaced are evenly distributed over the whole
time-series. The time-series is splitin bl = {%J + 1 evenly distributed blocks

with size LﬁJ and M midpoints.

M:{j-u” [jENA]<bs)

{x?“ ifiem-— {%SJ e, m {%J)withmeM

A

2% else

]

Special. The cumulative correlation (Eq. 6.8) of the time-series is calculated,
the results sorted and those data points replaced, which contribute to the
data with the lowest correlation.

C:{r17j|jEN/\j§n} (68)

C" = argsort(C)

A 2™ if argi < kwithi € S(bs,C")
€T else

7
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Rolling. The rolling correlation (Eq. 6.10) with window size bs is calculated,
the results sorted and those data points replaced which contribute to the
data with the lowest correlation.

R = {ijs’j | JE N A bs < 7 < n} (6.1@)

R' = argsort(R)
A {xf“ if argi < kwithi € S(bs, R')

€Tr; =

, (6.11)

x;  else

Cumcorr. The cumulative correlation of the time-series is calculated (Eq.
6.8) and the datum identified which is followed by the biggest consecutive
drop in correlation. The data responsible for this datum is then replaced.

Afterwards the process will be repeated until £ data points are replaced.

C:{T17j|j€N/\jSTL} (6.12)
Ci if ¢y >0

C'=<2 _ (6.13)
> ¢y elsewithe,; <OAbEN
=0

C" = argsort(C")
o2 if argi < kwithi € S(bs, C")

T = (6.14)
x?  else

6.3 Experimental Setup

The following sections describe the steps to create the climate indices, the
metrics used and the conducted experiments.

6.3.1 Data

The data used in this chapter is obtained from a simulation with the
ECMWF Hamburg/Modular Earth Submodel System Atmospheric Chem-
istry (EMAC) (Jockel et al., 2006) model. It consists of a 128 x 64 (longitude,
latitude) horizontal grid with six vertical levels (from 1000 hPa to 10 hPa)
and spans a time period from the beginning of 1979 till the end of 2013 with
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TABLE 6.1 Spatial borders and variables used for calculating indices with tempera-
ture (T), pressure (p) and westerly wind (u).

Index Variable Lat[°N]  Lon[°E] Lev[hPa]
ENSO34 T —5to5 190 to 240 1000
QBOx u —5to 5 0 to 360 indicated by x
NAO p Lisbon and Reykjavik 1000

10h time steps. The following variables are available as single precision
floating-point values: ozone, pressure, dry air temperature and westerly
wind.

The following climate indices are created for investigation: El Nifio
Southern Oscillation 3.4 (ENSO34), North Atlantic Oscillation (NAO), Quasi-
Biennial Oscillation (QBO) at 30 (QBO30) and 50 hPa (QBO5@). These indices
show high significance in climate research (de Guenni et al., 2017; Nowack
et al., 2017; Hurrell and Van Loon, 1997; Hurwitz et al., 2011) and help in
numerical weather predictions and seasonal forecasting. ENSO34 is being
used in forecasting rainfall, NAO in forecasting seasonal temperature for
Europe and QBO is being used for predicting monsoon precipitation. Each
index is created with two temporal resolutions: monthly and daily. For the
calculation of ENSO34 and QBOx a spatial subset of the data according to Ta-
ble 6.1 is selected. Next the zonal and meridional means are calculated. The
NAO index is calculated using the difference in surface pressure between
Lisbon and Reykjavik. Afterwards yearly monthly mean and multi-year
monthly mean for all indices are calculated. The multi-year monthly mean
is then subtracted from the corresponding yearly monthly mean and di-
vided by the multi-year standard deviation for each month. This concludes
the process for the monthly indices. For the daily indices these steps are
repeated with respective daily resolution. A histogram of each index is de-
picted in Figure 6.2 and a summary of their characteristics are given in Ta-
ble 6.2.
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FIGURE 6.2 Histogram of each weather index in monthly resolution. The indices are
dimensionless. This figure is taken from Cayoglu et al. (2017).
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TABLE 6.2 Information about the monthly indices.

ENSO34 NAO QBO3e QBOs0

mean 0.000 0.000 0.000 0.000
std 0.936 0.822 0.997 0.995
min —2.208 —2.626 —1.876 —2.464
25% —-0.656 —0.421 —-1.011 —-0.934
50% 0.001  —-0.016 0.097 0.364
75% 0.693 0.397 0.999 0.869
max 2.273 3.097 1.472 1.383

skewness 0.028 0.393 —-0.161 —0.565
kurtosis —0.481 2.065 —1474 —1.149

6.3.2 Metrics

For evaluating the forecasting model the Root Mean Square Deviation
(RMSD) is used. The reconstructed index from the lossy compression is
evaluated using the Pearson correlation coefficient r, . (Pearson, 1896):

- ims(zi — 2)(yi — ¥)
7 \/Z xz - :)3 \/Zz s yz )2

(6.15)

with s and e representing the starting and respectively ending indices of the
time-series, z; representing the original value, 7 the original mean value,
y; the reconstructed value, and 7 the reconstructed mean value. The reason
for choosing the Pearson correlation coefficient as a metric is that most of
the time the correlation between the index and other weather phenomena
is being analysed. Therefore it is of utmost importance to reconstruct an
index correlated to the original index. The compression quality is measured
using the bits per float (bpf) metric (see Eq. 2.19) and the CR (see Eq. 2.17).

6.3.3 Experiments

Several experiments are carried out to investigate possible compression
methods. The first experiment focuses on lossless compression of the in-
dices. Since the datasets are single precision floating-point data zfp32 is
used for compression.
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TABLE 6.3 Results of (seasonal) ARIMA model run for monthly and daily data.

Index Model RMSD
Monthly data

ENSO34 ARIMA(3,0,2)(1,0,0)12  5.067¢08
NAO ARIMA(1,0,0)(1,0,0)12  8.195¢09
QBO30 ARIMA(2,0,3)(1,0,0)12  1.088e07
QBOs50 ARIMA(1,1,1)(1,0,1)12  2.909¢06
Daily data

ENSO34 ARIMA(5,2,4)(0,0,0)g  4.686e04
NAO ARIMA(2,0,2)(0,0,0)q  1.440e07
QBO30 ARIMA(5,0,4)(0,0,0)g  1.084e07
QBOs50@ ARIMA(5,0,4)(0,0,0)g  4.488¢08

Furthermore, a lossy compression is analysed with the aim of achieving
the smallest possible deviation for a given error limit. For this experiment

an error bound of 7 = le—5is set so thatr; , > 1.0 — 7 is always satisfied.

Finally, a third experiment is conducted to analyse what effect a grad-
ual decline in precision from zfp32 to zfp@1 has on the correlation coeffi-
cient. Further, it is analysed if replacing several data points with a higher
precision improves the correlation coefficient. These indices with updated
data are described by the following notation: zfpPR+1 with [ representing the
number of additional precision bits. The notation zfp06+02 depicts a lossy
compression method with six precision bits where several data points have
two additional bits of precision. For the following experiments five and ten
percent of the datawith [ € {1, 2,3} are replaced.

6.4 Evaluation

6.4.1 Model

Since ARIMA can only be applied to stationary data, the Dickey-Fuller-Test
(DF-test) introduced by Dickey and Fuller (1979) is conducted to analyse the
indices for stationariness. All indices are stationary with a confidence level
of 99%. The results of the DF-test are represented in Table 6.4.
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TABLE 6.4 Results of DF-test.

ENSO34 NAO QBO3e QBOs0

DFT Test Statistic —5.341 —17.571 —7.447 —9.257
Critical Value (1%) —3.446  —3.446 —3.447 —3.447
Critical Value (5%) —2.869 —2.868 —2.869 —2.869
Critical Value (10%)  —2.571  —2.570 —2.571 —2.571

TABLE 6.5 BPF of lossless compression of daily and monthly data for the residuals
of the ARIMA model and direct approach. CR > 32 bits are highlighted red, since this
means the compressed file is actually bigger than the original data. Header files are
excluded.

Monthly data Daily data
Index ARIMA Direct ARIMA Direct

ENSO34 33.371 32.762 33.072 32.300
NAO 33.371 33.067 33.071 32.821
QBO30 33.219 32.152 33.031
QBOs50 33.451 32.457 33.051

The (seasonal) ARIMA model can reconstruct all indices with good accu-
racy. The RMSD of the reconstructed indices for monthly data is better than
the one for the daily data. ARIMA models with differentiation steps, QBO50
for monthly data and ENSO34 for daily data, perform worst in their respec-
tive group. Detailed results are described in Table 6.3. The Pearson corre-
lation coefficient r; ,, for all indices is 1.0 & 2e—12. Figure 6.3 illustrates the
ARIMA model for NAO and QBO30. It can be seen, that the reconstructed
index defined by the ARIMA model represents the original index very well.

6.4.2 Compression

First, the ARIMA approach without replacements is being compared with
the direct approach. In Section 6.4.3 the results of the proposed algorithm
including the replacement methods is compared with the direct approach.

Lossless. The experimental results show that lossless compression of the
ARIMA output is resulting in bigger files than without compression. A loss-
less compression applied directly on the indices returns similar results. The
only exceptions are the QBO30 and QBO5e indices at daily resolution. The
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FIGURE 6.3 NAO (top) and QBO (bottom) indices and their reconstruction via the ARIMA model. Error bars have been omitted for
plotting purposes. This figure is taken from Cayoglu et al. (2017).
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TABLE 6.6 CR for lossy compression of daily and monthly data with 7 = 1le—5 as
error threshold. Header files are excluded.

Monthly data Daily data
Index ARIMA Direct ARIMA Direct

ENSO34 0.386 0.371 0.658 0.322

NAO 0.386 0.386 0.377 0.370
QBO30 0.381 0.357 0.376 0.273
QBOs50 0.668 0.362 0.377 0.281

file size of the QBO30 and QBO50 daily data is decreasing by four percent
for QBO30 and three percent for QBO50. Detailed results are presented in
Table 6.5.

Strict Lossy Compression. Lossy compression with 7 = le—5 achieves in
most cases a CR of ~ 0.4. The ARIMA approach achieves a CR of 0.381 on av-
erage for monthly and daily data. The only exceptions are QBO5@ (monthly)
and ENSO34 (daily) which reach a CR of ~ 0.663. Detailed results are pre-
sented in Table 6.6.

This deviation is due to the differentiation step during model building.
This additional calculation step increases error propagation which results
in additional precision bits needed to meet the threshold 7.

It is no surprise that the direct method achieves smaller CRs for these
two indices. The compression ratio of QBO50 (monthly) is down from 0.668
to 0.362 and ENSO34 (daily) from 0.658 to 0.322. While applying lossy com-
pression directly on the monthly indices does not improve the NAO index,
the CR for QBO30 and ENSO34 are slightly improved by three and one per-

cent, respectively.

The daily data show better results on average (from 0.37 to 0.30). Only
the NAO (monthly) index does not show any decrease or increase regarding

CR by the direct approach.

Lossy Compression with Gradual Decline. The third and last experiment is
conducted to analyse the effects of a more and more aggressive lossy com-
pression method. The precision level of the lossy compression algorithm is
gradually reduced from zfp32 to zfp@1.
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Applying lossy compression on daily and monthly data directly shows
that the NAO index is performing worst regarding CR. The results of the
ARIMA approach are similar to the strict lossy compression. It looks like
the difference step of the ARIMA model (see Table 6.3) has a negative effect
on the correlation.

OBSERVATION 6.1 The results until now suggest that the additional calcula-
tion steps needed for generating the ARIMA model have a negative effect on
the compressed indices. This effect is expected due to the interdependence
in the ARIMA model and thus the error propagation. The accuracy of each
datum depends on all calculations done up to that point. The later the datum
in the time-series, the greater is the effect of calculation errors. This effect is
even more significant if an ARIMA model with a differentiation step is used.
This can be seen in the CR of QBO5@ in the monthly dataset and ENSO34 in
the daily dataset (see Table 6.6). Overall, the ARIMA approach (without re-
placement) is causing a 1 — 3% loss in storage space for the monthly indices
and 10% for the daily indices.

OBSERVATION 6.2 Most interesting are the results for the NAO index. While
the other indices show similar behaviour in gain and loss of CR with both
approaches, the NAO index does not. The direct and ARIMA approach have
no effect on the CR of the monthly indices and only negligible effect on the
daily indices with 0.007 difference in CR. A closer look at the index (Table 6.2
and Figure 6.2) reveals properties unique for NAO which can provide an
explanation for its behaviour. The standard deviation of the NAO index
is the lowest with 0.822 and the first and third quartile are the closest to
the mean with —0.421 and 0.397. Additionally, the NAO index has several
outliers. The minimum and maximum have the highest absolute distance to
the mean regarding of all indices. In addition to these properties, the NAO
index shows an unbiased skewness and kurtosis (see Table 6.2). The NAO
index is heavy tailed with a slight asymmetry on the right tail.

This unique position of NAO can also be observed in conjunction with
the replacement methods. While the ENSO34, QBO50 and QBO30 indices
behave similar to each other, NAO does not. Because of these similarities
only the replacement results for NAO and QBO30 are presented in the next
section.
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6.4.3 Replacement Methods

The results of the former section suggest that CR and r, ,, for a lossy com-
pression algorithm using the ARIMA approach are worse than for the direct
approach. This is due to the interdependency of the data. If one or several
of these data points deviate too far from its original datum, then it will nega-
tively effect the calculation of the following data. But there is a possibility to
use this interdependency for the benefit of the method. If those data points
which have a negative impact on the reconstruction of each index can be
identified, they can then be replaced by ones with higher precision. In the
following, first the indices reconstructed by the different replacement meth-
ods are compared with the original ARIMA output. Afterwards, they are
compared with the directly compressed indices.

Replacement of 5% and 10% of Data. Several tests are carried out to analyse
how many data points need to be replaced to see an effect on the correlation
coefficient 7 ,,. Table 6.7 illustrates the effects for the monthly indices. Most
of the time the gain in correlation by replacing ten instead of five percent
of the data is negligible. There are two exceptions to this: The increase in
correlation from 0.468 to 0.624 with zfp02+01 on the NAO index and the in-
crease from 0.691 to 0.935 with zfp04+01 on the QBO3@ index. It should be
pointed out that the correlation value of 0.935 with zfp04+01 is almost as
good as using zfp@5 for the whole index which has a correlation coefficient
of 0.972.

A more striking and disappointing finding is that replacing data with
higher precision did not always increase the correlation coefficient. While
the NAO index showed no decline, the correlation coefficient of QBO30
dropped in several cases. Most of the time the drops where < 0.01, but
the most significant drop was for QBO3@ from 0.139 to 0.027 with zfp82+01
which is a drop of ~ 80%. Further research is needed to analyse why these
drops occur in the lowest precision level. Figure 6.4 illustrates the correla-

tion coefficient of each replacement method from zfp02+01 to zfp06+03.

Replacement Methods. Figure 6.5 illustrates the correlation coefficient r
at month ¢ for zfp06+03 with ten percent replacement. The NAO index is

represented best by the special method. The reason for this seems twofold:
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TABLE 6.7 Pearson correlation by replacing five and ten percent of the monthly in-
dices. Replacements causing a worsening of the Pearson correlation are highlighted
red and those resulting in an improvement are highlighted green. The replacement
method being used is ‘Special’.

zfp02  zfp@3  zfp@4d zfp@5  zfplb

=0 0354 0.725 0.924 0979 0.994
=1 0.468 0.825 0.950 0.983 0.996

NAO (5%)
=2 0.506 0.826 0.952 0.984 0.996
I=3 0.519 0.831 0.953 0.984 0.996
I=0 0354 0725 0924 0979 0.994
=1 0.624 0.864 0.959 0.987 0.997
NAO (10%)
=2 0.692 0.870 0.964 0.989 0.997
I=3 0.705 0.878 0.965 0.989 0.997
I=0 0139 0482 0.635 0972 0.986
=1 0.027 0.566 0.691 0.967 0.996
QBO (5%)
I=2 0.039 0.591 0.692 0.973 0.993
I=3 0.042 0.596 0.677 0.985 0.995
I=0 0139 0482 0.635 0972 0.936
=1 0.050 0.575 0.935 0.968 0.996
QBO (10%)

=2 0.082 0.615 0.940 0.973 0.993
I=3 0.084 0.607 0.944 0.987 0.996
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First, the special method decides which datum to replace depending on
the lowest correlation coefficient. The correlation coefficient at each time
step is sorted and those data replaced, which contribute to the lowest cor-
relation. With this property the special method can compensate best for
sudden changes in the index. Especially, the first drop at the beginning of
the NAO index and the one at ¢ = 50 are not having as big of an impact on
the correlation coefficient with the special replacement method compared
to the others. This is illustrated on the right of Figure 6.5.

Second, the model being wused for the NAO index is
ARIMA(1,0,0)(1,0,0);2. Every single datum is only depending on its
immediate predecessor and the one at the same time the previous year.
A single datum is only depending on two previous values. This small
dependence helps in (1) correcting more data points and (2) limiting error

propagation.

The ARIMA approach improves the reconstruction of the NAO index
significantly. The reconstruction has a better correlation coefficient on each
time step ¢ than the direct approach with only using negligible more storage
space (see Table 6.8). For the QBO30 index the rolling method has the high-
est correlation coefficient (see Figure 6.5). The rolling method calculates the
rolling correlation coefficient with window size bs = max{p, ¢} where p de-
scribes the auto-regressive and ¢ the moving-average of the ARIMA model.
The coefficients are then sorted and those data replaced which contribute

to the data with the lowest correlation.

Unfortunately, in the case of the QBO30 index the ARIMA approach is
not consistently better. In the beginning of the time-series with ¢ < 50
it performs significantly better: The direct approach drops to 0.991 while
the ARIMA approach stays constantly above 0.997. Afterwards the direct
approach performs better until ¢t = 175 where the ARIMA approach starts

to outperform the direct approach again.

For the daily indices the results are different. Because of the increased
number of calculation steps, the error propagation has a more severe im-
pact. While the correlation coefficient for the direct approach is at 0.999 for
QBO30 and 0.997 for NAO, the best ARIMA approach can only achieve 0.994
for QBO30 and 0.996 for NAO. Table 6.9 shows the results for zfp06+03 on
daily and monthly data.
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TABLE 6.8 CR for NAO and QBO30 index after invocation of the ARIMA approach and
replacing ten percent of the data. Header files are excluded.

zfp02 zfp@3 zfp@4 zfpb5 zfp@b

=0 0.094 0.120 0.150 0.182 0.213
0.097 0.123 0.153 0.185 0.217

NAO (5%)
=2 0100 0.126 0.156 0.188 0.220
=3 0104 0.129 0.159 0.191 0.223
[=0 0.100 0.133 0.167 0.200 0.229
=1 0103 0.137 0.170 0.203 0.232
NAO (10%)
0.106 0.140 0.173 0.206 0.235
=3 0110 0.143 0.176 0.209 0.238
=0 0.099 0.117 0.134 0.151 0.169
=1 0103 0.121 0.137 0.154 0.172
QBO (5%)
0.106 0.124 0.140 0.157 0.176
=3 0109 0.127 0.143 0.160 0.179
[=0 0105 0.124 0.148 0.171 0.200
=1 0.108 0.127 0.151 0.174 0.203
QBO (10%)

0.111 0.130 0.154 0.178 0.206
=3 0.114 0.133 0.157 0.180 0.210

TABLE 6.9 Correlation coefficient for zfp06+03 for daily and monthly data.

Monthly data Daily data
NAO QBO30 NAO QBO30
First 0.99478  0.99755  0.99600  0.99404
Even 0.99500 0.98690 0.99611 0.98814

Special 0.99686 0.99575 0.99598  0.98899
Rolling 0.99428 0.99779 0.99608 0.994 09
Cumcorr 0.99469 0.997 26 0.995 98 0.984 00

Direct 0.99476  0.99774  0.99669  0.999 38
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Effects on Storage Space. Until now only the impact on the Pearson corre-
lation coefficient is analysed. But the additional precision bits used by the
replacement methods have a negative impact on the CR. The effects on the
CR are depicted in Table 6.8 where [ is the number of precision bits added.

The introduced replacement methods are conceptualised to use only a
certain amount of additional storage space. They were designed to use only
[ additional precision bits for & data points of the indices (see Section 6.2.3).

This design decision allows to limit exactly how much additional storage
space is being used by each method. This precaution is reflected in Table 6.8.
In the worst case one percent more storage space is needed. This occurred
when using zfp06+03 and replacing ten percent of the data. The compression
ratio increased from 0.200 to 0.210.

6.5 Summary

In this chapter the efficiency of compression algorithms for environmental
indices are investigated. A lossy compression method for climate indices
is developed based on an established statistical method known as the Auto
Regressive Integrated Moving Average (ARIMA) model. The indices exam-
ined are derived from the El Nifio Southern Oscillation (ENSO), the North
Atlantic Oscillation (NAO) and the Quasi-Biennial Oscillation (QBO) indices.
Each index describes a different aspect of large-scale atmospheric dynam-
ics.

An adaptive compression algorithm is introduced to improve the loss-
ily compressed indices. The experimental results show that it is possible to
improve the accuracy of the reconstructed data by replacing several data
points with slightly higher precision. The improved reconstruction can re-
produce the chosen indices to such a high degree that statistically relevant
information needed for describing climate dynamics is preserved. The com-
pressed indices have the same diagnostic performance than the original
indices.

This study shows that ARIMA models using a differentiation step have
difficulties and perform worse than models without differentiation steps.
The experimental findings indicate that time-series data which can be ex-
pressed with small auto-regressive and moving-average order can be im-
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proved significantly. Further analysis should focus on the aspect why cer-
tain time-series data like the QBO30 do not show the same improvement in
reconstruction as the NAO index.

6.6 Code and Data Availability

The data of the environmental indices and an implementation of the re-
placement methods described above are available under GNU GPLv3 license
at https://github.com/ucyo/adaptive-lossy-compression (Cayoglu, 2017).
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CHAPTER 7

Data Coding and Residual
Calculation

So far, the methods presented have concentrated on either the decorrelation
or the approximation of data. Information spaces help to adapt the com-
pression algorithm to the data to be compressed. The ARIMA model defines
a lossy compression method for time series data that adds prior knowledge
to the encoder. This chapter contributes to the final step of a compression

algorithm by introducing a novel coding algorithm.

Coding is the final step of a compression algorithm. The actual compres-
sion of the data is happening in this step. In prediction-based compression
this step starts with the calculation of the residual between prediction and
truevalue. Currently there are two established forms of residual calculation:
Exclusive-or and numerical difference. This chapter summarises both tech-
niques and describes their strengths and weaknesses. Further, it is shown
that shifting values improves upon some of the weaknesses. Shifting the
prediction and true value to a binary number with certain properties results
in a better compression factor with minimal computational costs. This gain
in compression factor enables the usage of a less sophisticated prediction
algorithm to achieve higher throughput during compression and decom-
pression. In addition, a new coding scheme is introduced which helps to
achieve a 10% increase on average in compression factor compared to the
current state-of-the-art methods. The results presented in this chapter have

been published in parts in Cayoglu et al. (2019b).

In the following section, the two methods for the residual calculation are
described. Section 7.2 introduces the proposed method by first describing
the value shift, then the preparation of the residual followed by the actual
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coding of the residual. Section 7.3 explains the experimental setup and is
followed by the evaluation of the experiments. Finally, an overview of the

results and possible steps for further work is given.

7.1 Motivation

The biggest challenge with compression of floating-point data is the poten-
tially infinite candidate space for making a prediction. While compression
of textual data uses a 26 letter alphabet, the number of words of a certain
length occurring in an English text is rather limited. This is not the case for
numerical data like floating-points.

There are an infinite number of possible real numbers between arbitrary
two numbers. While the precision of a single or double precision floating-
point value is limiting these numbers, the number of possible values is still
large compared to the English alphabet. A single precision floating-point
value z using the IEEE754 standard (754-2008, 2008) has a 32 bits precision.
One bit is being used for the sign, eight for the exponent and 23 for the man-
tissa. The exponent represents the largest power of two, that is still smaller
than x. The mantissa represents the difference between = and the exponent.
With 23 bits for the mantissa, the IEEE754 standard allows 22 = 8388608
values between each power of two. For values between 2 and 4 this results
in a resolution of 2.4¢ — 7. This is the candidate space for the prediction of
x if it is known beforehand that the searched value lies within this range.
This is often not the case.

As Section 2.1.4 explains, a prediction-based compression algorithm
makes a prediction for each data point. Afterwards, the difference between
the true value and the prediction is being calculated. If the prediction is
good, this residual will have a large LZC. These bits are disregarded and
the remaining residuals are saved on disk. The original value can be recon-
structed lossless with the same predictor and the remaining residual. The
calculation method for the residual determines the size of the residual and
the necessary steps to reverse the operation during decompression. There-
fore, the residual calculation is of great importance.

Again, the two established methods for residual calculations are (see
Eq. 2.14 and 2.15):

diff,o, (5;,5;) = 8 ® s (7.1)
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diffops(5,51) = | 8i — si | (7.2)

with s; being a data point in a source S and §; a prediction for s; based on a
subset of S.

Both methods have their strengths and weaknesses. The first approach
(Eq. 7.1) uses an eXclusive OR (XOR) operation for residual calculation. The
advantage of this approach is thatitis a very fast operation on modern hard-
ware. Another advantage is that the reverse operation applied during de-
compression is literally the same operation with s; = §; @ diff,,,.(3;, s;). No
information is needed to be transferred between encoder and decoder. The
disadvantage of XOR is that two numbers representing very close values
can still produce a very large residual. This is due to the two’s-complement
binary representation of floating-point numbers defined by the IEEE754
floating-point standard 754-2008 (2008) first introduced in 1985. This pit-
fall can be observed if §; and s; are close, but on opposite sides of a power of
two e.g. §; = 256.321 and s; = 255.931. While the absolute difference is 0.39,
the residual calculated using Eq. 7.1 is diff,,, = 16762689 and using Eq. 7.2
is diff,;,; = 15041. These residuals need to be saved on disk and the former

residual needs 24 bits while the latter only 14 bits.
The second approach (Eq. 7.2) uses the absolute difference of the two

numbers. In other words, it represents the amount of binary numbers
between the two values using two’s-complement binary representation.
Since the accuracy of two’s-complement binary representation of a value
is limited, the value range of the compared values plays a central role
in residual calculation using this approach. Given §; = 847,390.837 and
s; = 847,794.417 the difference is 403.58, but diff,,. = 6458. At first glance
the prediction of §; = 847,390.837 for s; = 847,794.417 seems to be worse
than §; = 256.321 for s; = 255.931. But using Eq. 7.1 it is still considered
a better prediction due to the two’s-complement binary representation of
floating-point values.

The advantage of diff,;, is that the resulting residual is always smaller
or at worst the same size as the residual calculated by diff,,,. The disadvan-
tage is that additional information needs to be stored about the prediction
$;. Without the information of $; being above or below s; a successful decom-
pression can not happen. Another disadvantage is that to avoid an overflow

or underflow one cannot calculate diff,;; in a single computation contrary
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FIGURE 7.1 Flowchart of the residual calculation and coding phase of the current
state of the art lossless compression algorithm for floating-point data (top) and the
proposed method (bottom). This figure is taken from Cayoglu et al. (2019b).

to diff,,,. The calculation must be split into two steps by first calculating
max(§;, s;) and then subtracting the smaller one from the bigger. This is
especially important if the values are close to the smallest or biggest repre-
sentable number for single and double precision floating-point numbers,
because of a possible overflow respectively underflow. In the following sec-
tion a novel algorithm for calculating and coding the residual using XOR
residual calculation is introduced.

7.2 Proposed Method

Chapter 3 introduced several state-of-the-art lossless compression algo-
rithms for floating-point values. The current state-of-the-art lossless com-
pression algorithm for floating-point data is fpzip which was introduced
in Lindstrom and Isenburg (2006). In the following, the coding scheme of
fpzip is compared to the coding scheme introduced in this chapter. Both
methods are depicted in Figure 7.1. The coding scheme of fpzip is on top and
highlighted with a dark grey background. The proposed coding scheme is
on the bottom and highlighted with a light grey background and further
referred as pzip.

The first step of the proposed algorithm is to shift §; and s; to a value
range more suitable for difference calculation. Afterwards the diff,,, dif-
ference calculation method is applied to the data. The residual is then split

into three streams: leading zero count (LZC), following one count (FOC),
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and residual. The first two streams are transformed using Burrow-Wheeler-
Transform (BWT) and written on disk using range encoding (RE). The third
and final stream is saved verbatim on disk. In the following section each of

these steps is described in more detail.

7.2.1 Shifted XOR

At the beginning of this chapter it is mentioned that the disadvantage of
using XOR for residual calculation is that small differences between §; and
s; might result in large residuals if both values are on opposite sides of a
power of two. A closer look at the XOR operation helps to understand this
challenge. The XOR is defined as follows:

<§i &) S; = <§z V Si> A _‘<§z A Si) (73)
= <=§z AN _‘Si) V <_‘§z A Si)

The bit of §; @ s; at index i is set, if the bit of §; is different than the bit of
s; at index . The bit is unset if they are the same. In the example given in
Figure 7.2 the XOR calculation has a small LZC of eight and a rather large
following one count (FOC) of ten. The FOC is defined as the number of set
bits following the most significant unset bits in a binary representation.
Although the example is deliberately chosen so that FOC is large, these in-

010000111000000000101001000160111

01000011601111111111601110010101106
0000@0001111111111000111@1000001

11 3 15 1 1 21 2

bin(p=256.321)
bin(t=255.931)
p @t

FIGURE 7.2 An example for the XOR residual calculation method. This figure is taken
from Cayoglu et al. (2019b).

stances occur very frequently when XOR is used for difference calculation.
An advantage, however, is that extreme cases with very large FOC are well
predictable. Due to the high number of zeros at positions 10-18 it can be esti-
mated that a possible bit flip is imminent and therefore can act accordingly.
The proposed shift to overcome this weakness of XOR can be calculated in
two steps: The first step is to calculate a shift value s to be added to the pre-
diction §; so that s = ¢($;) — &, is satisfied, where ¢($;) is defined as follows
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for single precision floating-point values:

15

PP if §; < 230
k:1:41
Yook if 230 < g < 23
9(3) = | "% (7.4)
2%l if 23l < g < 2%
k1:51
> 2% if 232 < g,
k=0

The binary representation of each of the goals is a fluctuation of set and
unset bits. An example for the goal is the following:

15 15

G = Z 22/671 and go = Z 22k

k=1 k=0
bin(gl) = 00101010101010101010101010101010

bin(g;) = 01010101010101010101010101010101

Finally, the shifted prediction $, + s and shifted true value s; + s are calcu-
lated. Afterwards, the residual calculation proceeds as usual with applying
the XOR operation to the shifted values calculating the residual:

diff, . (i, si,8) = (8i +5) B (s; + 8) (7-5)

The shift value can be recalculated without any information transfer be-
tween the encoder and decoder, since the decoder can recalculate the shift s

with the information it has.

7.2.2 Splitting of the Residual

In the next step, each residual is split into three components: LZC, FOC
and the remainder of the residual. This split is performed for each data
point. The respective component of each residual is then grouped and coded
together. As mentioned before, the LZC specifies how many of the Most
Significant Bits (MSB) are unset. Due to the LZC definition, the block of
unset bits is always followed by a block of set bits of size > 1. The FOC
determines the size of this block. The sum of LZC and FOC for a residual
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is restricted to 32 (64) for single (double) precision floating-point values.
The left-over bits are captured as the third component in the remainder.
Since the bit following FOC will be unset, this bit will not be included in the
remainder.

Given the previous example with §; = 256.321 and s; = 255.931 the fol-
lowing components are obtained for the residual of 5; & s;:

5, D s; = 00000VVV111111111100011101000011

RES(S; @ s;) = 0011101000001

where RES represents the remaining residual in binary representation.

7.2.3 Coding of LZC/FOC

In the next step, the LZC and FOC are coded. First, the LZCs and FOCs
are reordered using the Burrow-Wheeler-Transform (BWT) introduced in
Burrows and Wheeler (1994). The BWT algorithm rearranges a given set of
values in such a way, that same values are more likely to appear one after
another compared to the original data. Finally, the newly transformed LZC
and FOC are coded using Range Encoding (Martin, 1979). Since LZC and
FOC are independent from each other the BWT and RE can be performed

concurrently.

7.3 Experimental Setup

7.3.1 Data

Two different datasets are used for the experiments conducted in this chap-
ter. The first dataset is a synthetic dataset generated using a Gaussian dis-
tribution with different mean and standard deviations. These data cover
a wide range of possible datasets that can be compressed with both com-
pression algorithms. The synthetic data is used for the analysis of the XOR

residual calculation when the data is close to a power of two.
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The second dataset is obtained from a climate simulation using the ICON
model (Schroter et al., 2018). The simulation is performed for an analy-
sis of the POLar STRAtosphere in a Changing Climate (POLSTRACC) (POL-
STRACC, 2019; Oelhaf et al., 2019) campaign, which performed flight mea-
surements between December 2015 and March 2016 near the northern po-
lar region. This dataset consists of two different vertical resolutions. The
datasets consist of a 901 x 351 structured horizontal grid (longitude x]lati-
tude) with 47 (respectively 90) vertical levels and four time steps with six
hour resolution.

The following single precision floating-point variables are available:
geopotential, vertical velocity, potential vorticity, cloud water, cloud ice con-
tent, specific humidity, temperature, virtual temperature, zonal wind, vor-

ticity and meridional wind.

7.3.2 Metrics

Two metrics are used for evaluating the coding algorithms: compression
factor (CF) and throughput. CF puts the file size before and after compres-
sion into relation (see Eq. 2.16). The higher the CF, the better the coding
algorithm. The second quality measure for the coding algorithms is the
throughput, which indicates the amount of data processed per unit of time
(see Eq.2.18). The higher the throughput, the faster the algorithm.

7.3.3 Experiments

Several experiments are carried out to test currently available coding

schemes as well as the proposed method.

State-Of-The-Art Compression Algorithm. The first experiment is con-
ducted to identify the best currently available lossless compression algo-
rithm. For this, several general-purpose and custom floating-point com-
pression algorithms are run. This experiment is run using the climate data

described in the previous section.

Shifted XOR. In the next experiment the behaviour of XOR residual calcu-
lation is analysed. These results help identify weaknesses of the method.

The main focus during this experiment are the difficult cases where the val-
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ues are close to powers of two. This experiment is run using the synthetic
data described in the previous section. Further, possibilities to improve the
throughput of the compression algorithm are analysed.

Splitting of the Residual. The third experiment is conducted to analyse the
residuals. The distribution of set and unset bits in the residual are analysed.
This distribution gives clues if the residual still contains information or
whether it is white noise. Like in the previous experiment the synthetic
dataset is being used for this experiment.

Performance of Coding Methods. The fourth experiment helps to assess
available transformation and coding methods. For data transformation the
BWT (Burrows and Wheeler, 1994) and Move-to-front (Ryabko, 1980) algo-
rithms are analysed. Analysed data coding methods are range encoding
(RE), Huffman Coding and run-length encoding (RLE). These transforma-
tions and coding schemes are applied on the original data as well as its delta.
This experiment is run using the climate data.

Comparison of pzip and fpzip. Finally, the proposed method is compared
with the state-of-the-art lossless compression algorithm fpzip regarding
compression factor, throughput as well as the theoretical complexity of the
compression algorithm.

All experiments are conducted on an Intel i5-7200U with 2.5 GHz run-
ning GNU/Linux 4.19.28 Debian with 16 GiB RAM. A native C implementa-
tion of fpzip is used. The proposed algorithm is implemented in Rust 1.33.0-
nightly.

7.4 Evaluation

7.4.1 State-Of-The-Art Compression Algorithms

Various state-of-the-art compression algorithms are run using the cli-
mate simulation output to determine the currently best compression algo-
rithm for floating-point data. The applied compression applications are:
blosc (Alted, 2010), fpzip (Lindstrom and Isenburg, 2006), xz, bzip2, zip,
brotli (Alakuijala and Szabadka, 2016), spdp (Claggett et al., 2018), and fpc
(Burtscher and Ratanaworabhan, 2008). All algorithms were set to max-
imise the compression factor. The results are illustrated in Figure 7.3.
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FIGURE 7.3 Average CF and throughput of the climate simulation dataset with cur-
rently available lossless compression algorithms. This figure is adapted from Cayoglu
et al. (2019b).

The graph indicates that fpzip performs best with a compression fac-
tor ~ 2.4. The runner-up is blosc with a compression factor of ~ 2.0. The
throughput of fpzip is not as good as those of brot1i, spdp or fpc, but taking
into account the mediocre performance of these algorithms regarding com-
pression factor, it can be argued that fpzip is currently the best performing

algorithm regarding lossless compression of floating-point data.

OBSERVATION 7.1 While there might be usage scenarios where fpzip is not
the most successful compression algorithm, the results indicate that fpzip
is on average the best performing algorithm for lossless compression of
floating-data regarding compression factor. Every future algorithm should

measure itself against these results.

7.4.2 Shifted XOR

In the following, the average LZC of a residual is analysed. The residuals
are calculated using XOR with different Gaussian distributions using the
synthetic dataset.

The results are illustrated in Figure 7.4. LZC falls most severely when the
value is a power of two (marked by dotted lines). The intensity of these LZC
dips are greater the smaller the standard deviation is in the data. The closer
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TABLE 7.1 Effects of using a shifted XOR with a more sophisticated prediction al-
gorithm (Lorenz) and inferior one (Last Value). Depicted are the Throughput and
average LZC with and without (round brackets) shift operation.

Climate variable Prediction Throughput|[MiB/s] Avg. LZC

Lorenz 19.86 (22.32) 24.01 (23.75)
Temperature

Last Value 31.33(36.15) 22.89 (22.65)

L 18.23 (18.68) 19.88 (19.61
Zonal wind orenz ( ) (19.61)

Last Value 30.27 (37.49) 18.12 (17. 3)

L 18.86 (19.92) 29.05 (28.85
Geopotential orenz ( ) ( )

Last Value 32.10 (37.91) 28.92(28.83)

the two compared values are to each other at this range, the more important
it is to move out of this range and perform the residual calculation in a
different value range. The shift operation introduced in the previous section
is depicted by the solid vertical lines. It achieves a higher LZC and thus
reduces the final compression factor of the data.

One more advantage of shifting values to a more welcoming value
range is the possibility to increase throughput. Shifting the values enables
throughputincrease by allowing the usage of a simpler prediction model for
compression. The shift operation compensates the weaknesses of a simpler
and faster predictor. Table 7.1 shows that using a simple prediction model
(Last Value) a 50% higher throughput can be achieved, while the LZC is still
close to that of a more sophisticated predictor. For details on the Lorenz
and Last Value prediction methods, see Lindstrom and Isenburg (2006) and
Cayoglu et al. (2018c).

OBSERVATION 7.2 The compression performance is dependent on the value
ranges covered by the data as well as its distribution. A shifted residual
calculation can improve the LZC and help to reduce the final compression
factor of the data.

OBSERVATION 7.3 The shifted XOR calculation improves the average LZC
and therefore the compression factor. It allows the use of simpler prediction
models for higher throughput with comparable average LZCs.
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7.4.3 Splitting of the Residual

In this section the residuals generated by XOR are analysed for statistical

significance in the distribution of set and unset bits.

The results depicted in Figure 7.5 indicate that the distribution of set and
unset values is not uniform. The horizontal blue lines indicate the uniform
distribution. This suggests that information is still contained in the residual,
as otherwise an even distribution of set and not set bits (e.g. white noise)
would be expected. The number of set bits at the most significant positions
of the residual occur at a much higher rate than the number of unset bits.
Even with a length of six bits, there is a clear difference to the expected even
distribution. This unequal distribution is caused by bit flips caused by the
application of the XOR residual. This observation lead to the splitting of the
residual into multiple streams described in Section 7.2.2.

OBSERVATION 7.4 There is a skewed distribution of the set and unset bits
if XOR residual calculation is being used. This unequal distribution shows
that there is information in the residual and that the compression factor
can be further increased. A method to extract this information is to encode

the number of FOCs separately.

7.4.4 Performance of Coding Methods

The transformation and coding methods analysed for this experiment are:
Burrow-Wheeler-Transform (bwt), Delta difference (diff), Huffman coding
(huff), Range coding (range), Move-To-Front (mtf), and Run-length Coding
(rle). These coding methods are applied to the LZC and FOC. This experi-
ment is conducted using the climate simulation output. Exemplary results
for temperature are shown in Table 7.2, since the performance is similar for
the other variables. The BWT transformation coupled with Range Coding
performs best regarding LZC. Regarding FOC it performs only third best
behind BWT+Huffman Coding and Huffman Coding.

Huffman Coding (without any transformation steps) performs best re-
garding FOC. This is due to the small value range of FOC. The downside of
Huffman Coding is that the codelist used for coding the data must be trans-
ferred to the decoder. Such a necessity does not exist for Range Coding.
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TABLE 7.2 File size of temperature data after transformation and coding schemes.
The values are in Bytes. The abbreviations are: Burrow-Wheeler-Transform (bwt),
Delta difference (diff), Huffman coding (huff), Range coding (range), Move-To-Front
(mtf), Run-length Coding (rle). The best performing coding method for each category
is highlighted.

Transformation and

Coding Methods FOC LZC

bwt_diff huff 29715223 41347759
bwt_diff_range 30187482 35727 381
bwt_huff 21625804 50204194
bwt_mtf diff huff 32046 132 45767 747
bwt_mtf diff range 32531946 40367196
bwt_mtf huff 25382523 37223861
bwt_mtf range 25958 407 32657611

bwt_mtf rle diff huff 44054 552 50393 489
bwt_mtf_rle_diﬁ'_range 44 836 681 50698 553

bwt_mtf rle_huff 32794 335 38277196
bwt_mtf rle_range 33716265 38402 906
bwt_range 22043891 28862090
diff_huff 29451797 37695831
diff_range 29720133 36274895
huff 21625389 50203689
mtf diff huff 31908557 46008 528
mtf diff_range 32408277 44602439
mtf huff 25374374 35935034
mtf_range 25782694 34990704
mtf rle_diff huff 43577596 51026248
mtf rle_diff_range 44 320799 51588 757
mtf rle_huff 32380683 38119328
mtf_rle_range 33313109 38667 389
range 22489931 42918321
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FIGURE 7.6 Time spend in each step of the compression algorithm. This figure is
taken from Cayoglu et al. (2019b).

OBSERVATION 7.5 The BWT algorithm coupled with Range Coding outper-
forms most coding methods. While it is not optimal for FOC coding, it still
performs good. With regard to the added value of using a single coding
process for FOC and LZC, BWT+Range Coding is chosen.

7.4.5 Comparison of pzip and fpzip

In the last experiment pzip and fpzip are compared. The direct comparison
of pzip and fpzip regarding CF and throughput is shown in Table 7.3. This
experiment is conducted using the climate simulation output.

As can be seen from the table, in almost all cases the proposed algorithm
outperforms fpzipin relation to CF. The only exception is cloud water, where
pzip achieves a CF of 67.59 and fpzip 73.28. This is due to the high number of
fill values in the cloud water data. Due to the coding scheme used by fpzip,
it can compress exact predictions better than pzip. Future research must
determine whether an alternative scheme should be used in such a case. In
every other case pzip outperforms fpzip by ~ 10% on average. The perfor-
mance of pzip for cloud ice content should be emphasised. The proposed
algorithm achieves an improvement of 36.9% compared to fpzip.

Although the compression factor is better, the throughput of fpzip can-
not be achieved with the current implementation of pzip. On average the

pzip implementation is about six times slower than fpzip.
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In order to analyse the bottleneck, each individual step of pzip was timed
during execution. The result is depicted in Fig. 7.6. The majority of the time
is spend in the coding step, specifically executing the BWT transformation.
This is due to the memory footprint of BWT. While the time complexity of
both algorithms are the same with O(n), the memory consumption is dif-
ferent. The currently known best implementation of BWT has a memory
complexity of O(nlog o) (Okanohara and Sadakane, 2009) with ¢ represent-
ing the number of elements in the alphabet. The time complexity of BWT
is O(n) (Okanohara and Sadakane, 2009). The current implementation of
pzip cannot use the L1, L2 and L3 caches of the CPU as effectively as fpzip.
The reason for this is that the current setup of pzip is executed in block mode
(see Section 2.1.1). This leads to an increased number of cache misses which
in turn reduces throughput.

OBSERVATION 7.6 The compression factor of pzip is in most cases ~ 10% bet-
ter than fpzip the state-of-the-art lossless compression algorithms for real-
world climate data. The BWT transformation is the most time consuming
task. More research is needed to optimise the coding step of the algorithm.

7.5 Summary

In this chapter different coding methods for data compression are analysed.
It is shown that shifting the prediction and true value before calculating the
residual results in a better compression factor with minimal additional com-
putational costs. This shift enables the use of less sophisticated predictors
with higher throughput.

The experimental results implicate that the compression performance
is dependent on the value range covered by the data and its distribution.
The shifted XOR calculation eliminates the disadvantages of XOR residual
calculation by moving the data to a more favourable value range. Using XOR
for residual calculation, results into a skewed distribution of set and unset
bits. This non-uniform distribution suggests, that there is still information
contained in the residual. By splitting the residual into LZC, FOC and the
remaining residual, a decorrelation of this information is achieved. The
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proposed coding scheme outperforms current state-of-the-art compression
methods by ~ 10% with respect to the compression factor for the climate data
used.

The time complexity of fpzip and pzip are the same, while the memory
footprint of pzip is higher. Further research is needed for special case data
such as cloud water, where the data consists mostly of fill values.

7.6 Code and Data Availability

The code of the proposed compression algorithm described above
is available under GNU GPLv3 license at https://github.com/ucyo/
xor-and-residual-calculation (Cayoglu, 2019b).
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CHAPTER 8

Compression Framework

This chapter introduces a compression framework to enable scientists to
design and develop custom compression algorithms. The results presented
in this chapter have been published in parts in Cayoglu et al. (2018D).

8.1 Motivation

The proposed modular framework supports the creation of individual pre-
dictors, which can be customised and adjusted to the data at hand. The
framework provides interfaces and customisable components, which are
the building blocks to implement custom modules that are optimised for
particular applications. Furthermore, the framework provides additional
features such as the execution of benchmarks and validity tests for sequen-

tial and parallel execution of compression algorithms.

8.2 Proposed Method

The main goal of the framework is to provide state-of-the-art compression
algorithms for domain scientists. It provides off-the-shelf solutions and a
low barrier for customisation. In this section the structure of the proposed
framework is described. The framework consists of two core components:

objects and modifiers.

DEFINITION 8.1 (Object) Here, objects represent the current state of the
data during the compression process (see Fig. 8.1). They may include meta-
data about previous states, but once they have been created they are im-

mutable.
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Encoding starts here Decoding starts here
(counterclockwise) T (clockwise)

( Data File ) ( Coded File )
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( Float Array ) ( Coded Object )
map encode

( Integer Array ) ( Residual Array )
flatten subtract
(Sequence Object )—D(Prediction Array)

predict

FIGURE 8.1 State diagram of a prediction-based compression algorithm. The label
on the arrows define the transitions. The colour emphasises the similarity of the
states. Data files are yellow, multi-dimensional arrays are green and custom elements
white. This figure is taken from Cayoglu et al. (2018b).

DEFINITION 8.2 (Modifier) Modifiers operate on objects and are the only
way to transform one object to another. Each modifier has exactly one
method and can only operate on one kind of object. This setup prevents
mistakes by allowing only a single way of interaction. A prediction-based
compression algorithm consists of five modifiers with the following tasks:

- Mapper

Mapping floating-point values to integers
« Sequencer

Transforms an array into a data stream
« Predictor

Predicts next datum on the data stream, based on past values
« Subtractor

Calculates the residual between prediction and true value
 Coder

Prepares residuals to be written on disk

The modifiers are designed for the tasks detailed in Section 2.1.4. The objects
are the outcome of these tasks. The default compression function of the
framework is shown in Algorithm 8.1.

Since the interface of each modifier is standardised it is easy to replace
each modifier of the compression algorithm by a custom implementation.
Apart from these components the framework provides additional modules
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1: procedure COMPRESS(arr, mapper, sequencer, predictor, subtractor, . ..)
2 iarr <~ MAPPER.MAP(arr) > Mapper
3 seq <~ SEQUENCER.FLATTEN (iarr) > Sequencer
4 pred < ARRAY.NEW()

5: fori = 0to seq.size do

6 p < PREDICTOR.PREDICT()

7

8

9

PRED.APPEND(p) > Predictor
PREDICTOR.UPDATE(seq[i])
end for
10: rarr < SUBTRACTOR.SUBTRACT(iarr, seq, pred) > Subtractor
11: coded < CODER.CODE(rarr) > Coder
12: return coded

13: end procedure

ALGORITHM 8.1 Compression function of proposed framework.

to help the domain scientist during the design phase of a compression algo-
rithm. These are for ensemble predictors, quality assessment, parallel com-
pression and random subsetting. These additional modules are described

in the following.

Ensemble Predictors. It is rather unlikely that there is one predictor that
dominates all other predictors. For example, if it is known that a certain
predictor performs well for temperature, but bad for greenhouse gas ozone,
the framework should provide the possibility to switch between predictors
or to average the result of the predictors (see Chapter 5).

For these cases the framework supports ensemble predictors. An ensem-
ble predictor is defined by a list of predictors, a cost function and if neces-
sary a consolidation method. The cost function determines the rank of the
predictors. A consolidation function defines how the various predictions of
the ensemble should be consolidated.

An example for an ensemble predictor is given in Algorithm 8.2. Here
the predictors are ranked based on their performance prior to the current
data point i.e. last best method (see Section 5.2.1) given a predefined traver-
sal sequence (step four in Section 2.1.4). Please note the similarities in the
syntax of Alg. 8.1 and Alg. 8.2. Since there is no distinguishing property of
ensemble and non-ensemble predictors, the framework supports the nest-
ing of ensemble predictors. An ensemble predictor may consist of several

other ensemble predictors.
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1: function PREDICT( )
2: pred < defaultpredictor
3: if lastbestpredictor # Null then
4 pred < lastbestpredictor
5: else
6: pred <— predictors|lastbestpredictor]
7 end if
8: return PRED.PREDICT()
9: end function
10:
11: function cosT(prediction, truth)
12: return ABS(truth — prediction)
13: end function
14:
15: function UPDATE(truth)
16: predictions < HASHMAP.NEW()
17: for all p in predictors do
18: prediction < P.PREDICT()
19: predictions[p] < cOST(prediction, truth)
20: end for
21: sorted < SORTBYVALUE(predictions, ascending = True)
22: lastbestpredictor < sorted|0]

23: end function

ALGORITHM 8.2 An ensemble compression algorithm using the best predictor from
previous prediction.
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Quality Assessment. The Quality Assessment (QA) module provides in-
formation about the achievable compression ratio of the current setup
and dataset. QA hooks into the compression process at step five (see Sec-
tion 2.1.4) and calculates the LZC of the residual array. The residual ar-
ray provides enough information about the performance of the predictors
and expected CR. The average LZC can then be compared to the Shannon
Entropy (Shannon, 1948) of the dataset. The Shannon Entropy quantifies
the average amount of information represented by a random datum of the
dataset.

Parallel Compression. The framework provides an additional module which
can support the domain scientist in search for a compression method: paral-
lel processing. The proposed framework contains a parallelization module,
which can either chunk the data in blocks and compress each on a differ-
ent thread or run a different predictor on each thread with the same input
file. This leads to a less time-consuming development of a compression
algorithm.

Random Subsetting. Since the design of a compression algorithm is an it-
erative process, it would be a daunting task for the scientist to have to com-
press gigabytes of data on each test, only to realise that a certain parameter
needs to be fixed or a predictor eliminated. Therefore, the framework sup-
ports random subsetting of datasets. The subsetting is defined by size, error

margin and possible dimension constraints.

These features help the scientist define a custom compression method
for their data. The framework defines the necessary components and helper
modules for customisation and grading of compression algorithms, while
at the same time providing easy to use predefined algorithms. In the next

section the actual implementation of the framework is described.

8.3 Implementation

An implementation of the framework is available at Cayoglu (2018b). The
provided framework is implemented in Python 3 and uses as backend mod-
ules scipy (Oliphant, 2007), pandas (McKinney, 2010) and xarray (Hoyer and
Hamman, 2017). It has been tested with files in NetCDF format with Climate

and Forecast Metadata Conventions. The use of established open source

127



| Object Iq—

| Array F——————————f ?
Sequence Object Coded Object

//ﬂ vx\\\\ sequence : list array : np.ndarray

Float Array Integer Array shape : tuple info : dict
data : np.ndarray
array : np.ndarray array : np.ndarray dtype : np.dtype
dtype : np.float dtype : np.int
from_netcdf(filename)
from_dataarray(dataarray) T AN
from_random() Prediction Array Residual Array
from_numpy()
array : np.ndarray array : np.ndarray
dtype : np.int dtype : np.int

FIGURE 8.2 UML class diagram for object components. This figure is taken from
Cayoglu et al. (2018b).

software provides a good basis for uptake, future cooperations and possible
extensions of the framework. The details of the implementation of the core

components are presented here.

The class diagram used for the implementation of the object components
is shown in Fig. 8.2. As described in Section 8.2 the objects do not have the
possibility to mutate itself or others. Except for Float Array, none of the
objects has methods to manipulate its contents. The additional methods
implemented in Float Array are for initialisation from common data types
such as numpy (Oliphant, 2006) arrays or netcdf (Rew and Davis, 1990) data
files.

The Prediction Array and Residual Array inherit from Integer Array.
While these classes do not provide additional functionality compared to the
Integer Array, they are necessary to provide strong distinction of objects on

which each modifier can operate.

Figure 8.3 depicts possible modifiers to be used as components of the
framework. This is a none exhaustive list of modifiers and should exemplify
the large number of possible options in designing a compression algorithm.
The modifiers which are implemented at the time of publication are empha-
sised. A description for each modifier is included in the documentation of

the implementation.
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FIGURE 8.3 A none exhaustive list of modifiers to exemplify the large number of
possible combinations. Emphasised are the modifiers which are implemented and
part of the framework at the time of publication. This figure is taken from Cayoglu
et al. (2018b).

8.4 Summary

In recent years, climate sciences have experienced a breakthrough in terms
of possible fine-granular simulations. Next-generation climate models
make it possible to carry out high-resolution simulations on HPC systems.
This led to a significant increase of storage space. In this chapter a modular
framework for the compression of climate data is presented.

The framework provides all necessary components to design, test and
grade various prediction-based compression algorithms. It also supports
the use of ensemble predictors to merge predictions based on different pre-
dictors, quality assessment methods to help assess the performance of the
prediction methods, parallel compression for concurrent execution of pre-
dictors as well as random subsetting for unbiased result acquisition during
the development of a compression algorithm. Although the framework is
mainly used by climate researchers, it is conceivable to use it in conjunction

with other structured floating-point data.

8.5 Code and Data Availability

An implementation of the framework described above is available under
GNU GPLv3 license at https://github.com/ucyo/cframework (Cayoglu, 2018D).

129


https://github.com/ucyo/cframework




CHAPTER 9

Conclusions and Outlook

This chapter gives an overview of the main contributions of this thesis and
possible future research directions.

9.1 Conclusions

The goal of this thesisis to provide insights and contributions to the state-of-
the-art in compression algorithms for structured floating-point data. The
main challenge in the compression of floating-point data is the candidate
space for making a prediction compared to e.g. textual data. All compres-
sion algorithms use the same principle: Identify and remove redundant in-
formation in the decorrelation step (based on a context), optionally further
align the data in the approximation step, and find a more compact repre-
sentation in the coding step. This thesis provides contributions to each of
these three steps.

The analyses of variance, entropy and mutual information show that
there is no ideal context for value prediction. The ideal context depends on
the time, resolution and location of the data point. The described analyses
for the identification of redundant information and the introduction of in-
formation spaces and contexts contribute to the decorrelation of the data.
The use of information spaces helps to identify new patterns and relation-
ships within variables for the current data. Using IS achieves an improve-
ment of 10% on average for LZC and a reduction of the standard deviation
for the compression factor by an average of more than 20% for the climate
data used.

The lossy ARIMA compression algorithm provides a novel approxima-
tion algorithm for stationary time-series data. This method allows the in-

tegration of prior knowledge about the interactions of the variables into
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the encoder. These two contributions close the circle and allow the compres-
sion algorithm to work with prior knowledge and information from the data
available.

A thorough literature review indicates that a significant part of the
prediction-based compression algorithms for floating-point data uses XOR
for the residual calculation. This kind of residual calculation is improved by
the novel coding algorithm described in this thesis. The analysis and sub-
sequent comparison with state-of-the-art compression algorithms shows
that the coding algorithm presented in this thesis achieves the best compres-
sion factors for structured floating-point data. The proposed coding scheme
outperforms current state-of-the-art compression methods by ~ 10% with
respect to the compression factor for the climate data used.

These contributions are of course meaningless if they cannot be used by
the community. In the spirit of Open Science, all contributions have been
made public as well as open source and can be reproduced by all interested
parties. Please read the last section of each chapter for access to the code
and/or data. In addition, all core contributions are published in a framework
that simplifies the development of a custom compression algorithm.

This research was initiated by the needs of climate science, but the appli-
cation of its contributions is not limited to it. The results of this thesis can
be used to develop or improve any compression algorithm for structured

floating-point data.

9.2 Outlook

The following is a collection of ideas that could be investigated to advance

the compression of floating-point data.

Real Number Representation. The currently most used representation for
real numbers is the IEEE754 floating-point standard 754-2008 (2008) first
introduced in 1985. As already described in the background section, this
form of representation has weaknesses when comparing two numbers or
calculating the difference. There are other ways for describing real numbers:
fixed-point representation (e.g. Q number format), floating-bars, or posits.
An in-depth analysis of these representations and their respective differ-
ences could help solve the problem with powers of two that the IEEE754
floating-point has.
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Coding of LZC/FOC. The coding algorithm described in this thesis still has
redundant information in its residual. Preliminary experiments show that
there is high mutual information between LZC and FOC. Future research
could analyse if the sum of these values behaves differently compared to
each single stream. Then one value (e.g. FOC) could be inferred from the sum
and the remainder (e.g. LZC). This could further improve the compression
factor.

Routing Problem of Ideal Traversal Paths. Two decisions are crucial for the
performance of a prediction-based compression algorithm: traversal path
and prediction method. The traversal path defines what information is avail-
able for calculating the prediction. The prediction method defines how this
information is used to make a final prediction. Both of these problems are
strongly coupled. The first part of the problem could be formulated as a
routing problem: Each data point is a node with 8o edges (number of adja-
cent cells in a tesseract) and the value difference of both nodes as weights
for the edges. The shortest path through all nodes is now the smoothest
curve and therefore the most predictable. The difficulty then no longer lies
in the prediction of the data points, but in the compact representation of
the route since this has to be passed on to the decoder.

Compression Using Adaptive Quantisation. Quantisation is a process of
mapping values from one domain space to the other e.g. by rounding or
truncation. Usually the source domain is continuous and the destination dis-
crete. Instead of a predefined interval in which the simulation model writes
its output, an adaptive quantisation method could be developed, which de-
cidesif an output should be generated based on the data. This decision could
be based on a grade, which classifies how well the current data can be inter-
polated or predicted. This could be developed as a lossless or lossy compres-
sion algorithm. It only depends on the grading model and the extent of the
quantisation applied to the data.

Machine Learning for Lossy and Lossless Compression. Since a couple years,
machine learning is in the centre of attention across different scientific
fields. Neural networks achieve unprecedented results in object recogni-

tion and classification of images and several other fields. The most promis-
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ing models for compression are 3D convolutions and recurrent models e.g.
long short-term memory (LSTM) models. Currently these models are con-
sidered for the whole compression process on its own e.g. Bellard (2019)
and not as an extension for established algorithms. There should be more
research focusing on using LSTM for parts of a prediction-based compres-
sion algorithm. This can be either for the prediction step (e.g. memory of
previous values) or for the definition of the traversal path (e.g. memory
of good traversal dimensions). Both should lead to a better prediction and

therefore a better compression factor.

Predictor Based on Lagrange, Hermite, and Birkhoff Interpolation. There
are already several prediction-based compression algorithms using La-
grange interpolation for one dimensional predictors with very good com-
pression results e.g. Robinson (1994). A natural extension of the Lagrange
interpolation are the multivariate interpolation techniques of Hermite and
Birkhoff. Hermite interpolation considers the actual value and its deriva-
tive for multivariate interpolation, while Birkhoff also considers missing
values. An in-depth analysis of these interpolation techniques for multi-
variate prediction could increase the prediction quality. These results could
be integrated into the information spaces described in this thesis.
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APPENDIX A

Variance Analysis

Inthis appendix further results of the variance analysis described in Section
4.3.2 are shown.
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FIGURE A.1 Short-term variance analysis for specific humidity across time for the
northern hemisphere.
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FIGURE A.2 Short-term variance analysis for specific humidity across longitude along
the latitudes.
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FIGURE A.3 Short-term variance analysis for specific humidity across latitudes.
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FIGURE A.4 Short-term variance analysis for meridional wind across altitudes for
the northern hemisphere.
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FIGURE A.5 Short-term variance analysis for zonal wind across time for the northern
hemisphere.
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FIGURE A.6 Short-term variance analysis for zonal wind across longitude along the
latitudes.

143

Humidity [kg kg-1]







APPENDIX B

Pascal Predictor

In this appendix the pascal predictor is discussed in more detail. Given a
Sequence S = 5153 .. 5,15, with n elements, the Pascal k predictor makes
a prediction for an element s; using the last k£ elements in the sequence with
k < n. The predictor is based on an prediction method used in audio com-
pression (Robinson, 1994) and polynomial interpolation. The Pascal % is the
optimal predictor for data without white noise and on a uniform grid which
can be described by a polynomial function f of degree i — 1 (Eq. B.1). The
coefficients of Pascal 1-5 are shown in Table B.1. The name Pascal has been
chosen, because the coefficients can also be derived from Pascal’s triangle.
In the following the conducted experiments are described.

f@) = Y a5 (B1)

The coefficients of Pascal k predictor can predict a polynomial function
of order & — 1 exactly.
LEMMA B.1 Given the n-th order backwards difference V}[p|(x) the opti-
mal coefficients are p(z) = 37, (—1)""! (’Z) p(x — i) for uniform spacing
h = 1.

TABLE B.1 Coefficients for Pascal k predictor using the last & values for prediction of
Sie

Predictor Formula

Pascal 1 S = 81

Pascal 2 §i =28;.1— Si_9

Pascal 3 8, =3s;-1 —3Si—2+ si—3

Pascal 4 §=48_1—68_90+4s;_3—8;_4

Pascal 5 $5=58_1—10s;_9+10s;_3—558;_4+ Si_5
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Proof This can be shown using finite differences (which are zero in orders
higher than those of the polynomial function):

n

Vilpl(x) = 3 (~1) (2‘) p(x — ih) with & = 1and V2 [p|(z) := 0

0= é—l)@ (7)p=1
0=—1"(7) pte) + -1 () ple - )
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