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Abstract 

When water penetrates into silica surfaces near a crack tip, it reacts with the 
SiO2 network and generates hydroxyl SiOH. Due to the hydroxyl generation, 
the glass must expand. Since a free expansion is not possible for the thin 
layers on the undeformed bulk material, compressive stresses occur which 
shield the crack-tip region from externally applied tensile load. The conse-
quence is a fracture mechanics shielding stress intensity factor Ksh<0. 
So far we only determined the shielding stress intensity factor from theoreti-
cal considerations on water diffusion und the high tensile stresses at crack 
tips. Since water concentration measurements on crack surfaces of uncritically 
driven cracks are available in literature, we determine the shielding term Ksh 
from experimental data. This evaluation is done with and without con-
sideration of damaging the initial ring network by hydroxyl generation. 
It can be concluded that the shielding stress intensity factor is clearly overesti-
mated, when crack-tip damage is ignored. Finally, it is illustrated in which 
way the shielding stress intensity factor influences the v-K-curve for subcriti-
cal crack growth. 
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1. Introduction 

The reaction of water and silica in the surface diffusion zone affects the fracture 
mechanics stress intensity factor K at the tips of cracks. At temperatures T < 500°C, 
the equilibrium constant of the water/silica-reaction  

 Si-O-Si +H2O  SiOH+HOSi (1) 

is given by 

 
C

S
k 1 .  (2) 

where, S = [SiOH], is the concentration of the hydroxyl groups in the silica network 
and C = [H2O] the concentration of unreacted water. 
According to Le Chatelier [1], the equation governing the equilibrium constant is 

 
RT

V

p

k 



 1ln

. (3) 

where p is pressure, V  is the reaction volume, R the universal gas constant, and T the 
temperature in °K. By replacing the hydrostatic pressure p by the hydrostatic stress h 
in a solid  

 )(3
1

zyxh    (4) 

we obtain with the hydroxyl concentration S0 for h=0 
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This relation implies that in the high crack-tip stress field nearly all water Cw is present 
in form of hydroxyl S. As could be deduced from density measurements reported in [2], 
hydroxyl generation results in a volume expansion v  

 Sv    (6) 

with 0.97 derived from density measurements on specimens with small water con-
centrations reported by Shelby [2]. 
For a crack of depth a, the singular hydrostatic near-tip stresses are given as 

 )2/cos(
2

)1(3
2 




r

K
h   (7) 

where r and  are the polar coordinates with the origin at the crack tip. As a conse-
quence of eq.(5), very high hydroxyl concentrations and swelling strains must occur in 
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the crack-tip region. This allows the assumption that near a crack tip the water is 
present predominantly in the form of hydroxyl water. 

2. Effect of local swelling at surface cracks 

2.1 Shielding zone at a crack tip  

Due to restrictions in free expansion, the swelling strains v result in swelling stresses 
which give rise for the “shielding” stress intensity factor Ksh<0. At first loading, the 
swelling zone at the crack tip r(h,) is heart-shaped as illustrated in Fig. 1a.  
The height of the contour for constant hydrostatic stress h is due to eq.(7) 
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Fig. 1 a) Swelling zone at the tip of an arrested crack under mechanical loading, caused by stress-
enhanced diffusion, b) zone for a crack grown by a. 

The shielding stress intensity factor caused by a swelling zone of height  is [3] 

 








1

E
K v

sh  (9) 

where E is Young’s modulus and  Poisson’s ratio. The zone of an arrested crack (not 
grown before loading) is heart-shaped, Fig. 1a, resulting in the coefficient =0. When 
a crack has grown at least for a  5, Fig. 1b, a value of =0.22 is reached as was 
shown by McMeeking and Evans [3] and confirmed in [4]. The coefficient  was 
computed in [3] also for different shapes at the zone end as illustrated in Fig. 2a. Fig. b 
shows the related coefficients  for the general representation by eq.(9) as the solid 
circles. We interpolate these data by the interpolating curve through the data points 
that can be expressed simply by  

a0

2

a) 

r  

a

b)
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As an application of this relation, the coefficient  may be estimated for a deviating 
zone shape. Computations of swelling zones are mostly carried out for diffusion in a 
motionless coordinate system with a fixed crack tip, i.e. for an arrested crack. 
Whereas for a growing crack the transversal diffusion normal to the crack plane is 
hardly affected by the moving crack tip, the diffusion and the crack propagation com-
pete in crack direction [5,6]. In [7] it was found for crack rates v>10-12 m/s under the 
assumption that the diffusion normal to the crack-plane direction is not affected by the 
crack rate (v=0)  
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For r0/=0.88/271.23, it results from eq.(10) 0.23, introduced in Fig. 2b as the 
open circle. 

 
Fig. 2 Cracks grown for a>5, a) swelling zones with different shape at the zone end, b) shielding 

stress intensity factors by eq.(9) (circles) and interpolating curve according to eq.(10) for the zone ends 
given in a), open circle represents the case of a growing crack with competing rates of crack rate and 

diffusion, case (D). 
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2.2 Shielding stress intensity factor for varying hydroxyl concentration  

In Section 2.1 we considered zones with constant swelling volume v. In the general 
case, we have to expect hydroxyl concentrations and swelling strains that decrease 
with distance from the crack. A Green’s function procedure for such cases had been 
developed in [8]. 
Equation (9) holds for the case of a step-shaped constant strain =0 inside and =0 
outside the swelling zone. For the more general case, we have to subdivide the zone in 
parts of thickness d’ at a distance, ’, from the crack plane (Fig. 3).  
The stress intensity factor caused by this zone of strain (’) results from (9) as 

 '
'

1

1
22.0)( 2

1 



d

E
Kd v

sh 
  (12) 

Now the stress intensity factor for the varying v results from 
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0

 dhK vsh 
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  (13) 

with the Green’s- or “weight function” h  
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Fig. 3 a) Zone with constant S and v, b) differential layer of thickness d’, c) continuously varying 
swelling strain. 
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3. Water profiles below crack surfaces 

3.1 Results by Lechenault et al. [9] 

Subcritical crack growth tests were carried out on DCDC specimens of silica by 
Lechenault et al. [9]. The water entrance into the fracture surfaces formed by the 
passage of the crack exposed to deuterium oxide D2O was evaluated with a neutron 
reflection technique to measure the penetration of the deuterium oxide into the silica 
glass. The authors found a satisfactory fit to the reflection data by assuming that the 
water concentration was constant at the surface up to a distance of L, followed by an 
exponential decrease in concentration for distances greater than L. 
Consequently, Lechenault et al. [9] fitted their results by the expression 

 








LzLz

Lz
CC ww for]/)(exp[

for1
)0(/


 (15) 

and found the parameters L=4.3 nm, =3.5 nm for a region of low crack rates (v10-8 
m/s) at K= 0.61 MPa·m1/2 and L=4.6 nm, =2.3 nm for higher crack rates (v4 10-6 
m/s) at K= 0.77 MPa·m1/2. These water profiles are illustrated in Fig. 4. 

 

 
Fig. 4 Normalized water profiles measured by Lechenault et al. [9] on DCDC specimens fractured in 

heavy water, Cw(0) = concentration at the surface. 

3.2 Result by Tomozawa et al. [10] 

The concentration of water below the crack surfaces was measured by Tomozawa et al. 
[10] using the nuclear reaction analysis (NRA). The profile of the hydrogen concen-
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tration is shown in Fig. 5a. In order to allow an approximate extrapolation of measured 
data to the surface, we fitted the data cH by a complementary error function 

   
Background

322
H,0H cm/10005.0

2
erfc 





b

z
cc  (16) 

taking into account the background level of 0.005 1022/cm3. The coefficient cH,0 is the 
surface concentration.  
The red bar in Fig. 5a indicates the 90%-CI of the surface concentration. The depth b 
at which the concentration decreased to 50% of the surface value in Fig. 5a is about 5 
nm. By fitting (16) to the measurements, the best set of parameters was from [11] is 

cH,0=1.30 [1.055, 1.55] 1022/cm3, b=4.95 [3.28, 6.61] nm-1 (90% CI). 

with the mean squares sum of 11.65 (1022/cm3)2. 
The maximum hydroxyl concentration at z=0, S(0), could be computed in [11] with the 
result 

 wt%)(]4.18,4.14[5.16)0( S  (17) 

For a second description of the water distribution let us be guided by the results of 
Lechenault et al. [9]. We fitted the measurements by Tomozawa et al. [10] also via 
eq.(15) with the parameters 

cH,0=1.12 1022/cm3, L=3.0 nm, =2.96 nm 

and a mean squares sum of 11.78(1022/cm3)2. 
The result is shown in Fig. 5b. Having in mind the rather strong scatter of the surface 
values, the two representations in Figs. 5a and 5b are equal.  

4.  Computation of shielding stress intensity factors 
4.1 Evaluation for undamaged material 
Subtracting the background level and introducing eq.(16) into eq.(13) results in 

 )(
1

)0(
/2')'()'( 4

3

0




 


b
ES

dhSKsh 
  (18) 

with the Euler Gamma function  that for the argument ¾ reads (3/4)=1.2254, so that 
we can finally write with 19777.0)4/3(/2   

 b
ES

Ksh 





1

)0(
 (19) 

Comparison of eqs.(9) and (19) allows to identify approximately: b. For the repre-
sentation of the water profile by eq.(15), introducing into eq.(13) yields  
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From the surface concentration in Fig. 5a, given by eq.(17), the shielding stress inten-
sity factor results as 

 mMPa21.0shK  (21) 

For the description by eq.(15) we obtain: 

 mMPa20.0shK  (22) 

where 73% of the total value come from the constant part of the water profile. 

 

 
Fig. 5 Hydrogen concentration in the surface region of a growing crack via NRA-measurements by 

Tomozawa et al. [10], a) representation by eq.(16), b) expressed via eq.(15). 

4.2 Evaluation for damaged material 

The hydroxyl concentration in the crack-tip region causes damage since the originally 
intact silica ring structure is cracked by the water attack. One of the consequences of 
such damage is the reduction of Young’s modulus E. In order to describe this E-
decrease, we used in [12] the rather simple damage model proposed by Phany and 
Niyogi [13]. When ED is the modulus in the damaged state and E0 the value for 
undamaged silica, we could derive the relation [12] 
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2

max
2

0

)/1()1( SSS
E

ED    (23) 

with =5.3 [4.35, 6.25] (90%-CI in brackets). The related dependency is shown in Fig. 
6. The hydroxyl concentration at which the Young's modulus disappears at Smax =1/= 

0.188 [0.16, 0.23].  

 

 
Fig. 6 Effect of hydroxyl concentration on Young’s modulus according to eq.(23).  

Including the varying modulus into the computation of the shielding stress intensity 
factor requires a modification of eq.(13). Now the stress intensity factor results from 
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Ksh 


  (24) 

The product SE that governs the shielding stress intensity factor according to eq.(24) 
is shown in Fig. 7a. The blue curve shows the result for the representation by eq.(16) 
and the red curve by eq.(15). The region at a depth of z5-6 nm has the strongest 
influence on shielding. Figure 7b gives the shielding stress intensity factor as a 
function of the maximum hydroxyl concentration at the surface.  
From this diagram it results clearly lower shielding effect than for undamaged silica, 
namely for 

distribution Fig. 5a:  Ksh=-0.034 MPam  (25) 

distribution Fig. 5b:  Ksh=-0.030 MPam (26) 
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In the latter case, the shielding stress intensity factor can be computed analytically. It 
results with the integral 
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Fig. 7 a) Distribution of the product SE relevant for eq.(24), b) shielding stress intensity factors for 

the representations by eq.(15) (red curve) and eq.(17) (blue curve). 

The concentration profiles by Lechenault et al. [9], Fig. 4, clearly show the character-
istic shape with a plateau as would be expected from the Irwin and Dugdale crack-tip 
zone models for “plastic flow” behaviour. An interpretation by the Irwin model will be 
given in a separate report.  

4.3 Shielding stress intensity factor in the unloaded state 

In the case of disappearing total stress intensity factor at the crack tip, Ktotal = Kappl +Ktip 

0, all volume elements in the water-affected zone are under compression due to 
volume swelling by hydroxyl generation [8]. In the previous considerations, we ap-
plied the model of pore-like defects. This model describes symmetrical material re-
sponse under tension and compression loading. The Young's modulus in compression 
is not necessarily identical in tension and compression. This problem was handled by 
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Lemaitre and Sermage [14] introducing non-symmetry of deformation in tension and 
compression. These authors included the case that the reduction of Young’s modulus 
in compression is less strong than in tension by a non-symmetry coefficient or crack 
closure parameter 01 

 








0for)1(

0for)1(

0

0




DE

DE
E  (29) 

For most practical applications Lemaitre and Sermage suggest =0.2 [14]. 
Figure 8a again shows the shielding stress intensity factor for the hydroxyl concentra-
tion according to eqs.(15) and (29) for different values of the symmetry parameter .  

5 Crack-tip shielding and threshold behaviour 
When a grown crack has been unloaded and is again loaded, the crack tip will only see 
loading by a stress intensity factor if Kappl>Ksh. Consequently, the shielding stress 
intensity factor causes a threshold value for the subcritical crack growth as is schema-
tically illustrated in Fig 8b. The stress intensity at which Ktotal and crack growth rate 
disappear in a crack-growth test under monotonously decreasing loading may be 
denoted as Kappl(Ktip=0)=K0. Then it holds for a crack-arrest test under decreasing load 

 0 shappltotal KKK  (30a) 

or shKK 0  (30b) 

It should be emphasized that this threshold behaviour can only occur if the cracks have 
already grown subcritically (Fig. 1b). Cracks that are loaded for the first time can grow 
immediately, since the shielding zone has a heart-shaped contour (Fig. 1a) for which 
Ksh=0 [3]. The shielding stress intensity Ksh is plotted for a zone of height  as shown 
in Fig. 9 according to McMeeking and Evans [3]. Their data were simply described by 
Evans and Faber [15] as  

 )/arctan(
2 


a
K

Ksh 


 (31) 

Since the applied stress intensity factor for a constant applied load depends on the 
crack extension a via 

 



/

/
11

000, a

a

a

a

K

K

appl

appl 



  (32) 

where Kappl,0 stands for Kappl,a=0. Whereas for a crack growing at Ktotal >0, the applied 
stress intensity factor increases and the shielding stress intensity factor becomes 
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stronger negative. The total stress intensity factor must first increase and then decrease. 
After a minimum, the total stress intensity factor rises again. 

 

  
Fig. 8 a) Shielding stress intensity factors for the representations by eqs.(15) and (29) for the 

unloading case of Ktotal = Kappl+Ksh < 0, b) expected threshold values of the v-Kappl curve.  

 
Fig. 9 Shielding stress intensity factor Ksh normalized on its saturation value K, reached for a/ 
obtained by McMeeking and Evans [3]. 

The arrest condition, eq.(30a,b) is illustrated in Figs. 10a and 10b for short cracks of 
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assume in Figs. 10a and 10b constant values for  and K. Crack arrest occurs in those 
cases for which the curves intersect the line Ktotal=0, indicated by the open circles. The 
dashed extensions are hypothetic total stress intensity factors which make no physical 
sense since stress singularities at a crack tip are only present for Ktotal>0. From Fig. 
10b it becomes obvious that subcritical crack growth for small cracks can take place 
below that threshold stress intensity factor that occurs in the case of cracks under 
decreasing loading (here K0=0.2 MPam). 

 

 

Fig. 10 Total stress intensity factor for K = -0.2 MPam, open circles: arrest condition Ktotal=0; a) 
Ktotal vs. a for a0 =3, b) Ktotal vs. Kappl for different initial crack lengths a0. 
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